WO2012086669A1 - Organic light-emitting element and conjugated macromolecular compound - Google Patents

Organic light-emitting element and conjugated macromolecular compound Download PDF

Info

Publication number
WO2012086669A1
WO2012086669A1 PCT/JP2011/079595 JP2011079595W WO2012086669A1 WO 2012086669 A1 WO2012086669 A1 WO 2012086669A1 JP 2011079595 W JP2011079595 W JP 2011079595W WO 2012086669 A1 WO2012086669 A1 WO 2012086669A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
general formula
polymer compound
hydrogen atom
Prior art date
Application number
PCT/JP2011/079595
Other languages
French (fr)
Japanese (ja)
Inventor
誠 安立
重也 小林
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012086669A1 publication Critical patent/WO2012086669A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/625Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing at least one aromatic ring having 7 or more carbon atoms, e.g. azulene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof

Definitions

  • the present invention relates to an organic light emitting device and a conjugated polymer compound.
  • organic EL displays using organic electroluminescence (EL) elements have attracted attention as next-generation displays.
  • the organic light emitting device includes organic layers such as a light emitting layer and a charge transport layer.
  • the organic light emitting device may be made of a low molecular organic material or a high molecular organic material.
  • a polymer organic material is used as a main material, a uniform film can be easily formed when an application method such as ink jet or spin coating is used, which is advantageous for manufacturing a large organic EL display. Therefore, high molecular organic materials have been proposed so far (for example, Patent Documents 1 and 2).
  • the conventional polymeric organic material cannot be said to have a sufficient luminance life when used in an organic light emitting device.
  • an object of the present invention is to provide an organic light emitting device with an improved luminance life.
  • the present invention With a light emitting layer,
  • the light emitting layer contains a compound having a structure represented by the following general formula (1) or a compound having a group derived from the structure represented by the following general formula (1), and
  • an organic light-emitting element hereinafter referred to as “the skeleton having a structure represented by the general formula (1)” in the total amount of the organic compound contained in the light-emitting layer is 0.01% by mass to 20% by mass).
  • organic light-emitting element X Sometimes referred to as “organic light-emitting element X”).
  • R x represents an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, a halogen atom, an acyl group, or an acyloxy group.
  • a functional group selected from the group consisting of a monovalent heterocyclic group, a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or hydrogen Indicates an atom.
  • the functional group having a hydrogen atom the hydrogen atom may be substituted with a substituent.
  • a plurality of R x may be the same or different.
  • the present invention also provides A light emitting layer, and a charge transport layer adjacent to the light emitting layer,
  • the charge transport layer contains a compound having a structure represented by the following general formula (1) or a compound having a group derived from the structure represented by the following general formula (1), and
  • the ratio of the skeleton having the structure represented by the general formula (1) to the total amount of the organic compound contained in the charge transport layer is 0.01% by mass to 50% by mass. (Hereinafter sometimes referred to as “organic light-emitting element Y”).
  • R x is an alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic group
  • the functional group having a hydrogen atom the hydrogen atom may be substituted with a substituent.
  • a plurality of R x may be the same or different.
  • the luminance life of the organic light emitting device is improved.
  • the compound having a group derived from the structure represented by the general formula (1) is preferably a polymer compound, and more preferably a conjugated polymer compound. Moreover, it is preferable that the said conjugated polymer compound has as a repeating unit the group induced
  • conjugated polymer compound Z a group derived from a structure represented by the following general formula (1) and an optional additional group different from the above group are introduced by the above condensation polymerization.
  • R x represents an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, a halogen atom, an acyl group, or an acyloxy group.
  • a functional group selected from the group consisting of a monovalent heterocyclic group, a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or hydrogen Indicates an atom.
  • the hydrogen atom may be substituted with a substituent.
  • a plurality of R x may be the same or different.
  • the conjugated polymer compound of the present invention has a predetermined amount of groups derived from the structure represented by the general formula (1), the electrical characteristics of the organic light emitting device can be obtained by using it in the organic light emitting device. Can be further improved.
  • a group derived from the structure represented by the general formula (1) has the following formula (2), formula (3), formula (4), formula (5), formula (6). Or a group represented by formula (7).
  • R x represents an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, a halogen atom, an acyl group, an acyloxy group, or a monovalent group.
  • the hydrogen atom may be substituted with a substituent.
  • the conjugated polymer compound preferably contains at least one group among the groups represented by the following formulas (A), (B), and (C) as the optional additional group.
  • Ar 1 and Ar 5 are each independently selected from the group consisting of an arylene group, a divalent heterocyclic group composed of a 6-membered ring or more, and a divalent group having a metal complex structure.
  • Ar 2 , Ar 3 and Ar 4 each independently represent a functional group selected from the group consisting of an arylene group and a divalent heterocyclic group composed of a 6-membered ring or more.
  • R 1 and R 2 each independently represents a functional group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group and an arylalkyl group
  • X 1 represents —CR 3 ⁇ CR 4
  • R 3 and R 4 each independently represent a functional group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group, a carboxyl group, a substituted carboxyl group, and a cyano group.
  • a is 0 or 1.
  • the functional group having a hydrogen atom the hydrogen atom may be substituted with a substituent.
  • the luminance life can be further improved.
  • the conjugated polymer compound has the number of moles of optional additional groups represented by the above formulas (A), (B), and (C) and the number of moles of optional additional groups other than these, N A , N B ,
  • N 1 , N A , N B , N C and N M ′ preferably satisfy the following formula (II). 40 ⁇ (N A + N B + N C) ⁇ 100 / (N 1 + N A + N B + N C + N M ') ⁇ 100 (II)
  • the conjugated polymer compound preferably contains an optional additional group represented by the above formula (A). Thereby, it becomes a conjugated high molecular compound excellent in electron transport and electron injection efficiency, and can be used suitably for the charge transport layer (especially electron transport layer) of an organic light emitting element.
  • the conjugated polymer compound preferably includes an arbitrary additional group represented by the formula (B). Thereby, it becomes a conjugated polymer compound excellent in hole transport and hole injection efficiency, and can be suitably used for a charge transport layer (particularly, a hole transport layer) of an organic light emitting device.
  • the conjugated polymer compound preferably includes an optional additional group represented by the formula (A) and an optional additional group represented by the formula (B). Thereby, it becomes a conjugated high molecular compound which can form excitation energy efficiently by the coupling
  • the present invention also provides a composition comprising at least one material selected from the group consisting of a light emitting material, a hole transport material and an electron transport material, and the conjugated polymer compound.
  • the composition of the present invention can be used for production of a light emitting layer, a charge (meaning holes or electrons, hereinafter the same) transport layer or charge injection layer of an organic light emitting device, and improves production efficiency. be able to.
  • the present invention also provides an ink composition comprising the conjugated polymer compound and an organic solvent. Since the ink composition contains an organic solvent, in laminating and forming the thin film containing the conjugated polymer compound, it is only necessary to remove the organic solvent by drying after applying the ink composition. It is advantageous.
  • the present invention also provides an organic light emitting device X and an organic light emitting device Y containing a conjugated polymer compound Z.
  • the present invention further provides a planar light source and a display device provided with the organic light emitting device. Since the above-mentioned organic light emitting device has a remarkably improved luminance life, a planar light source and a display device excellent in durability can be obtained.
  • the organic light emitting device of the present invention is a device having an improved luminance life.
  • the luminance life of the organic light emitting device can be improved by adding the conjugated polymer compound of the present invention to the charge injection layer, the charge transport layer or the light emitting layer of the organic light emitting device.
  • composition and an ink composition containing the conjugated polymer compound, a conjugated polymer compound, a planar light source having the organic light emitting device, a display device, and the like. Can do.
  • tert-butyl group may be expressed as “t-Bu” and the phenyl group as “Ph”.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • C x -C y indicates that the number of carbon atoms in the partial structure corresponding to the functional group name described immediately after this term is It means x to y. That is, when the organic group described immediately after “C x -C y ” is an organic group named by combining a plurality of functional group names (for example, C x -C y alkoxyphenyl group), This means that the number of carbon atoms in the partial structure corresponding to the functional group name (for example, alkoxy) described immediately after “C x -C y ” among the functional group names is x to y.
  • C 1 -C 12 alkyl group means an alkyl group having 1 to 12 carbon atoms
  • C 1 -C 12 alkoxyphenyl group means “1 to 12 carbon atoms”. It means a phenyl group having an “alkoxy group”.
  • the alkyl group may have a substituent, and may be any of a linear alkyl group, a branched alkyl group, and a cyclic alkyl group (that is, a cycloalkyl group).
  • a linear alkyl group and a cyclic alkyl group are preferable, and an unsubstituted alkyl group and an alkyl group substituted with a halogen atom or the like are preferable.
  • substituents examples include alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic ring Groups, heterocyclic thio groups, imine residues, amide compound residues, acid imide residues, carboxyl groups, nitro groups, cyano groups, etc., and some or all of the hydrogen atoms contained in these groups are fluorine It may be substituted with an atom (hereinafter referred to as “substituent” can be exemplified by the same group unless otherwise specified).
  • the alkyl group is a linear alkyl group or a branched alkyl group, it is preferably 1 to 20, more preferably 1 to 15, and still more preferably 1 to 12. In the case of a cyclic alkyl group, it is preferably 3 to 20, more preferably 3 to 15, and still more preferably 3 to 12.
  • Examples of the C 1 to C 12 alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, Examples include heptyl group, octyl group, nonyl group, decyl group, dodecyl group and the like.
  • the alkoxy group may have a substituent, and may be any of a linear alkoxy group, a branched alkoxy group, and a cyclic alkoxy group (that is, a cycloalkoxy group).
  • a linear alkoxy group and a cyclic alkoxy group are preferable, and an unsubstituted alkoxy group and an alkoxy group substituted with a halogen atom, an alkoxy group, or the like are preferable.
  • the number of carbon atoms of the alkoxy group is preferably 1-20, more preferably 1-15, still more preferably 1-12 when it is a linear alkoxy group or branched alkoxy group, and when it is a cyclic alkoxy group Preferably, it is 3 to 20, more preferably 3 to 15, and still more preferably 3 to 12.
  • C 1 -C 12 alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, cyclohexyloxy Group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, dodecyloxy group and the like.
  • the alkylthio group may have a substituent, and may be any of a linear alkylthio group, a molecular chain alkylthio group, and a cyclic alkylthio group (that is, a cycloalkylthio group).
  • a linear alkylthio group and a cyclic alkylthio group are preferable, and an unsubstituted alkylthio group and an alkylthio group substituted with a halogen atom or the like are preferable.
  • alkylthio group is a linear alkylthio group or a branched alkylthio group, it is preferably 1 to 20, more preferably 1 to 15, and still more preferably 1 to 12, and when it is a cyclic alkylthio group Preferably, it is 3 to 20, more preferably 3 to 15, and still more preferably 3 to 12.
  • Examples of the C 1 -C 12 alkylthio group include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, Examples include heptylthio group, octylthio group, 2-ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, dodecylthio group and the like.
  • An aryl group is a remaining atomic group obtained by removing one hydrogen atom bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon, and may have a substituent.
  • an unsubstituted aryl group and an aryl group substituted with a halogen atom, an alkoxy group, an alkyl group or the like are preferable.
  • the aryl group includes a group having a benzene ring, a group having a condensed ring, and two or more benzene rings and / or condensed rings, a single bond or a divalent organic group (for example, an alkylene group such as a vinylene group). And the like bonded through the like.
  • the number of carbon atoms of the aryl group is preferably 6 to 60, more preferably 6 to 48, and still more preferably 6 to 30.
  • a C 1 -C 12 alkoxyphenyl group, a C 1 -C 12 alkylphenyl group, a biphenylyl group, a C 1 -C 12 alkoxybiphenylyl group, and a C 1 -C 12 alkylbiphenylyl group are preferred.
  • C 1 -C 12 alkoxyphenyl groups include methoxyphenyl group, ethoxyphenyl group, propyloxyphenyl group, isopropyloxyphenyl group, butyloxyphenyl group, isobutyloxyphenyl group, tert-butyloxyphenyl group, pentyloxyphenyl group Hexyloxyphenyl group, octyloxyphenyl group and the like.
  • C 1 -C 12 alkylphenyl groups include methylphenyl, ethylphenyl, dimethylphenyl, propylphenyl, mesityl, isopropylphenyl, butylphenyl, isobutylphenyl, tert-butylphenyl, pentylphenyl Group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group, dodecylphenyl group and the like.
  • the aryloxy group may have a substituent, and is preferably an unsubstituted aryloxy group and an aryloxy group substituted with a halogen atom, an alkoxy group, an alkyl group or the like.
  • the number of carbon atoms of the aryloxy group is preferably 6 to 60, more preferably 6 to 48, and still more preferably 6 to 30.
  • the aryloxy group which may have a substituent includes a phenoxy group, a C 1 -C 12 alkoxyphenoxy group, a C 1 -C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, pentafluoro Examples thereof include a phenyloxy group, and among them, a C 1 to C 12 alkoxyphenoxy group and a C 1 to C 12 alkylphenoxy group are preferable.
  • C 1 -C 12 alkoxyphenoxy groups include methoxyphenoxy group, ethoxyphenoxy group, propyloxyphenoxy group, isopropyloxyphenoxy group, butyloxyphenoxy group, isobutyloxyphenoxy group, tert-butyloxyphenoxy group, pentyloxyphenoxy group Hexyloxyphenoxy group, octyloxyphenoxy group and the like.
  • Examples of the C 1 -C 12 alkylphenoxy group include a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, a propylphenoxy group, a 1,3,5-trimethylphenoxy group, a methylethylphenoxy group, an isopropylphenoxy group, a butylphenoxy group, Examples include isobutylphenoxy, sec-butylphenoxy, tert-butylphenoxy, pentylphenoxy, isoamylphenoxy, hexylphenoxy, heptylphenoxy, octylphenoxy, nonylphenoxy, decylphenoxy, dodecylphenoxy It is done.
  • the arylthio group may have a substituent, and is preferably an unsubstituted arylthio group and an arylthio group substituted with a halogen atom, an alkoxy group, an alkyl group, or the like.
  • the number of carbon atoms of the arylthio group is preferably 6 to 60, more preferably 6 to 48, and still more preferably 6 to 30.
  • a thio group etc. are mentioned.
  • the arylalkyl group may have a substituent, and is preferably an unsubstituted arylalkyl group and an arylalkyl group substituted with a halogen atom, an alkoxy group, an alkyl group, or the like.
  • the number of carbon atoms of the arylalkyl group is preferably 7 to 60, more preferably 7 to 48, and still more preferably 7 to 30.
  • arylalkyl group which may have a substituent, a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C Examples thereof include a 1 to C 12 alkyl group, a 1-naphthyl-C 1 to C 12 alkyl group, and a 2-naphthyl-C 1 to C 12 alkyl group.
  • the arylalkoxy group may have a substituent, and is preferably an unsubstituted arylalkoxy group and an arylalkoxy group substituted with a halogen atom, an alkoxy group, an alkyl group, or the like.
  • the number of carbon atoms of the arylalkoxy group is preferably 7 to 60, more preferably 7 to 48, and still more preferably 7 to 30.
  • the arylalkoxy group which may have a substituent includes phenyl-C 1 -C 12 alkoxy group, C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, C 1 -C 12 alkylphenyl-C Examples thereof include 1 to C 12 alkoxy groups, 1-naphthyl-C 1 to C 12 alkoxy groups, and 2-naphthyl-C 1 to C 12 alkoxy groups.
  • the arylalkylthio group may have a substituent, and is preferably an unsubstituted arylalkylthio group and an arylalkylthio group substituted with a halogen atom, an alkoxy group, an alkyl group or the like.
  • the number of carbon atoms of the arylalkylthio group is preferably 7 to 60, more preferably 7 to 48, and still more preferably 7 to 30.
  • the arylalkylthio group which may have a substituent includes phenyl-C 1 -C 12 alkylthio group, C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylthio group, C 1 -C 12 alkylphenyl-C Examples thereof include 1 to C 12 alkylthio groups, 1-naphthyl-C 1 to C 12 alkylthio groups, and 2-naphthyl-C 1 to C 12 alkylthio groups.
  • the alkenyl group may have a substituent, and may be any of a linear alkenyl group, a branched alkenyl group, and a cyclic alkenyl group.
  • the number of carbon atoms of the alkenyl group is preferably 2 to 20, more preferably 2 to 15, and still more preferably 2 to 10.
  • Examples of the alkenyl group include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 1-pentenyl, 2-pentenyl, 1-hexenyl, 2-hexenyl, An octenyl group etc. are mentioned.
  • the arylalkenyl group may have a substituent, and is preferably an unsubstituted arylalkenyl group and an arylalkenyl group substituted with a halogen atom, an alkoxy group, an alkyl group, or the like.
  • the number of carbon atoms of the arylalkenyl group is preferably 8 to 60, more preferably 8 to 48, and still more preferably 8 to 30.
  • the arylalkenyl group which may have a substituent includes phenyl-C 2 -C 12 alkenyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, C 1 -C 12 alkylphenyl-C 2 to C 12 alkenyl groups, 1-naphthyl-C 2 to C 12 alkenyl groups, 2-naphthyl-C 2 to C 12 alkenyl groups, and the like, among others, C 1 to C 12 alkoxyphenyl-C 2 to C 12 alkenyl are mentioned.
  • the group C 1 -C 12 alkylphenyl-C 2 -C 12 alkenyl is preferred.
  • C 2 -C 12 alkenyl groups include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 1-pentenyl, 2-pentenyl, 1-hexenyl, 2- Hexenyl group, 1-octenyl group and the like can be mentioned.
  • the alkynyl group may have a substituent, and may be any of a linear alkynyl group, a branched alkynyl group, and a cyclic alkynyl group.
  • the number of carbon atoms of the alkynyl group is preferably 2 to 20, more preferably 2 to 15, more preferably 2 to 10 for a linear alkynyl group and a branched alkynyl group, and preferably 10 to 10 for a cyclic alkynyl group. -20, more preferably 10-15.
  • the arylalkynyl group may have a substituent, and is preferably an unsubstituted arylalkynyl group and an arylalkynyl group substituted with a halogen atom, an alkoxy group, an alkyl group, or the like.
  • the number of carbon atoms of the arylalkynyl group is preferably 8 to 60, more preferably 8 to 48, and still more preferably 8 to 30.
  • the arylalkynyl group which may have a substituent includes phenyl-C 2 -C 12 alkynyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, C 1 -C 12 alkylphenyl-C 2 to C 12 alkynyl groups, 1-naphthyl-C 2 to C 12 alkynyl groups, 2-naphthyl-C 2 to C 12 alkynyl groups, etc., among others, C 1 to C 12 alkoxyphenyl-C 2 to C 12 alkynyl
  • the group C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl is preferred.
  • C 2 -C 12 alkynyl groups include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 1-hexynyl, 2- Examples include a hexynyl group and a 1-octynyl group.
  • the monovalent heterocyclic group is a remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound, and may have a substituent.
  • the monovalent heterocyclic group is preferably an unsubstituted monovalent heterocyclic group or a monovalent heterocyclic group substituted with a substituent such as an alkyl group.
  • the number of carbon atoms of the monovalent heterocyclic group is preferably 4 to 60, more preferably 4 to 30, and further preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • Heterocyclic compounds are not only carbon atoms but also oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, silicon atoms, selenium atoms as elements constituting the ring among organic compounds having a cyclic structure. , And those containing hetero atoms such as tellurium atoms and arsenic atoms.
  • Examples of the monovalent heterocyclic group which may have a substituent include a thienyl group, a C 1 to C 12 alkyl thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a C 1 to C 12 alkyl pyridyl group, and a pyridazinyl group.
  • the monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
  • the monovalent heterocyclic thio group is a group in which a hydrogen atom of a thiol group is substituted with the above monovalent heterocyclic group, and may have a substituent.
  • Examples of the monovalent heterocyclic thio group include heteroarylthio groups such as a pyridylthio group, a pyridazinylthio group, a pyrimidinylthio group, a pyrazinylthio group, and a triazinylthio group.
  • the amino group may have a substituent, and is preferably substituted with an unsubstituted amino group and 1 or 2 substituents selected from an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group.
  • Amino group hereinafter referred to as “substituted amino group”.
  • the substituent may further have a substituent (hereinafter, the substituent that the organic group further has may be referred to as “secondary substituent”).
  • the number of carbon atoms of the substituted amino group is preferably 1 to 60, more preferably 2 to 48, and still more preferably 2 to 40, not including the number of carbon atoms of the secondary substituent.
  • substituted amino groups include methylamino, dimethylamino, ethylamino, diethylamino, propylamino, dipropylamino, isopropylamino, diisopropylamino, butylamino, isobutylamino, sec-butylamino Group, tert-butylamino group, pentylamino group, hexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, dodecylamino group, cyclopentyl amino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, C
  • the silyl group may have a substituent, preferably an unsubstituted silyl group, and 1 to 3 substituents selected from an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group A silyl group substituted with (hereinafter referred to as “substituted silyl group”).
  • the substituent may have a secondary substituent.
  • the number of carbon atoms of the substituted silyl group does not include the number of carbon atoms of the secondary substituent, and is preferably 1 to 60, more preferably 3 to 48, and still more preferably 3 to 40.
  • substituted silyl groups include trimethylsilyl, triethylsilyl, tripropylsilyl, tri-isopropylsilyl, dimethyl-isopropylsilyl, diethyl-isopropylsilyl, tert-butyldimethylsilyl, pentyldimethylsilyl, hexyldimethyl Silyl group, heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyl-dimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyl-dimethylsilyl group, dodecyldimethylsilyl group, phenyl-C 1 ⁇ C 12 alkylsilyl group, C 1 ⁇ C 12 alkoxyphenyl -C 1 ⁇ C 12 alkylsilyl group,
  • the acyl group may have a substituent, and is preferably an unsubstituted acyl group and an acyl group substituted with a halogen atom or the like.
  • the number of carbon atoms of the acyl group is preferably 2 to 20, more preferably 2 to 18, and still more preferably 2 to 16.
  • Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
  • the acyloxy group may have a substituent, and is preferably an unsubstituted acyloxy group and an acyloxy group substituted with a halogen atom or the like.
  • the number of carbon atoms of the acyloxy group is preferably 2 to 20, more preferably 2 to 18, and still more preferably 2 to 16.
  • Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
  • the imine residue is represented by the general formula: H— N ⁇ C (R Y1 ) 2 or the imine compound having a structure represented by at least one of the general formula: H—CR X1 ⁇ N—R Y1 in the above general formula. It means a residue excluding a hydrogen atom.
  • R X1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group or an arylalkynyl group.
  • R Y1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group.
  • a ring may be formed as an alkylene group having 2 to 18 carbon atoms such as a trimethylene group, a tetramethylene group, a pentamethylene group, or a hexamethylene group.
  • imine compounds include compounds in which a hydrogen atom bonded to a nitrogen atom in aldimine, ketimine, or aldimine is substituted with an alkyl group, aryl group, arylalkyl group, arylalkenyl group, arylalkynyl group, or the like.
  • the number of carbon atoms of the imine residue is preferably 2 to 20, more preferably 2 to 18, and still more preferably 2 to 16. Specific examples of the imine residue include groups represented by the following structural formulas.
  • the amide compound residue is derived from an amide compound having a structure represented by at least one of the general formula: H—NR X2 —COR Y2 and the general formula: H—CO—N (R Y2 ) 2 in the above general formula. It means a residue without an atom.
  • R X2 and R Y2 each independently represent a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group.
  • the number of carbon atoms of the amide compound residue is preferably 2 to 20, more preferably 2 to 18, and still more preferably 2 to 16.
  • amide compound residue As the amide compound residue, formamide group, acetamide group, propioamide group, butyroamide group, benzamide group, trifluoroacetamide group, pentafluorobenzamide group, diformamide group, diacetamide group, dipropioamide group, dibutyroamide group, dibenzamide group, Examples include a ditrifluoroacetamide group and a dipentafluorobenzamide group.
  • the acid imide residue means a residue obtained by removing a hydrogen atom in the above general formula from an acid imide having a structure represented by the general formula: R X3 —CO—NH—CO—R Y 3 .
  • R X3 and R Y3 each independently represent a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group, or R X3 and R Y3 are both constituent atoms. Represents the ring structure formed.
  • the number of carbon atoms of the acid imide residue is preferably 4 to 20, more preferably 4 to 18, and still more preferably 4 to 16. Examples of the acid imide residue include the following groups.
  • Arylene group means an atomic group formed by removing two hydrogen atoms from an aromatic hydrocarbon, and includes an independent benzene ring or a group having a condensed ring.
  • the number of carbon atoms of the arylene group is preferably 6 to 60, more preferably 6 to 48, still more preferably 6 to 30, and particularly preferably 6 to 18. The number of carbon atoms does not include the number of carbon atoms of the substituent.
  • arylene group examples include phenylene groups such as 1,4-phenylene group, 1,3-phenylene group, and 1,2-phenylene group; biphenylylene groups such as 2,7-biphenylylene group and 3,6-biphenylylene group; 4-naphthalenediyl group, 1,5-naphthalenediyl group, naphthalenediyl group such as 2,6-naphthalenediyl group; 1,4-anthracenediyl group, 1,5-anthracenediyl group, 2,6-anthracenediyl group Anthracene diyl groups such as 9,10-anthracenediyl group; Phenanthrene diyl groups such as 2,7-phenanthrene diyl group; Groups: 2,7-fluorenediyl group, 3,6-fluorenediyl group, etc.
  • pyrenediyl group such as 1,6-pyrenediyl group, 1,8-pyrenediyl group, 2,7-pyrenediyl group, 4,9-pyrenediyl group; perylenediyl such as 3,9-perylenediyl group, 3,10-perylenediyl group, etc. Group etc. are mentioned, These may have a substituent. Of these, a phenylene group which may have a substituent and a fluorenediyl group which may have a substituent are preferable.
  • the divalent heterocyclic group refers to the remaining atomic group obtained by removing two hydrogen atoms from the heterocyclic compound, and may have a substituent.
  • the divalent heterocyclic group is preferably an unsubstituted divalent heterocyclic group or a divalent heterocyclic group substituted with an alkyl group or the like.
  • the number of carbon atoms of the divalent heterocyclic group is preferably 4 to 60, more preferably 4 to 30, and further preferably 4 to 12, excluding the number of carbon atoms of the substituent.
  • divalent heterocyclic group examples include pyridinediyl groups such as 2,5-pyridinediyl group and 2,6-pyridinediyl group; quinolinediyl groups such as 2,6-quinolinediyl group; 1,4-isoquinolinediyl group, 1 Isoquinolinediyl groups such as 5,5-isoquinolinediyl group; quinoxalinediyl groups such as 5,8-quinoxalinediyl group; 2,1,3-benzothiadiazoles such as 2,1,3-benzothiadiazole-4,7-diyl group A benzothiazole diyl group such as a 4,7-benzothiazole diyl group; a carbazole diyl group such as a 2,7-carbazole diyl group or a 3,6-carbazole diyl group; a phenoxazine such as a 3,7-phenoxazine diyl group; Diyl group; phenothia
  • 2,1,3-benzothiadiazole-4,7-diyl group which may have a substituent phenoxazinediyl group which may have a substituent, It may be a phenothiazinediyl group.
  • the divalent heterocyclic group is preferably a divalent aromatic heterocyclic group.
  • R x represents an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, a halogen atom, an acyl group, or an acyloxy group.
  • a functional group selected from the group consisting of a monovalent heterocyclic group, a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or hydrogen Indicates an atom.
  • the hydrogen atom may be substituted with a substituent.
  • R x is preferably a hydrogen atom, an alkyl group, an alkoxy group, or an aryl group, more preferably a hydrogen atom, an alkyl group, or an aryl group, and still more preferably a hydrogen atom.
  • a plurality of R x may be the same or different.
  • the group derived from the structure represented by the general formula (1) is a group composed of the remaining atomic groups excluding one or a plurality of R x in the general formula (1).
  • the compound having a group derived from the structure represented by the general formula (1) may be a low molecular compound or a high molecular compound.
  • it can be a compound having a molecular weight of 3,000 or less.
  • this group may be contained in the main chain of the polymer compound or in the side chain. Moreover, when contained in the main chain, it may be contained at the end of the polymer compound.
  • Examples of the polymer compound include a polymer compound containing a group consisting of an atomic group obtained by removing one R x of the general formula (1), and an atomic group obtained by removing one R x of the general formula (1).
  • Examples thereof include a polymer compound containing a group at the terminal and a polymer compound containing a group consisting of an atomic group obtained by removing two R x in the general formula (1).
  • These polymer compounds contain one or more groups consisting of the remaining atomic groups excluding one or more R x in the general formula (1).
  • the polymer compound containing a group consisting of an atomic group obtained by removing one R x of the general formula (1) contains, for example, a polymer compound containing this group in the side chain or this group at the end of the main chain. A high molecular compound is mentioned.
  • the polymer compound containing this group at the end of the main chain includes, for example, a group consisting of an atomic group excluding one R x of the general formula (1) as an end-capping agent used when stopping the polymerization reaction. It can be obtained by using one.
  • excluding two Rx of General formula (1) the high molecular compound which contains this group in a principal chain is mentioned, for example.
  • the polymer compound containing this group in the main chain has, for example, a portion obtained by removing two R x s in the general formula (1) to be a reaction point of polymerization
  • the R x in the general formula (1) is 2 It can be obtained when the removed part becomes a reaction point of polymerization via a linking group.
  • the polymer compound having a group derived from the structure represented by the general formula (1) is preferably a compound containing a group consisting of an atomic group obtained by removing two R x in the general formula (1), more preferably. Can be obtained in such a manner that the portion of the general formula (1) from which R x is removed becomes the reaction point of the polymerization.
  • Examples of the group consisting of an atomic group obtained by removing two R x in the general formula (1) include the following formula (2), formula (3), formula (4), formula (5), formula (6), or formula (7). ) Is preferred. More preferably, it is a group represented by the following formula (2), formula (3), formula (5), formula (6) or formula (7), particularly preferably a group represented by the following formula (2). is there.
  • the polymer compound having a group derived from the structure represented by the general formula (1) is preferably a conjugated polymer compound because the charge injection property and the charge transport property are improved.
  • the “conjugated polymer compound” means a polymer compound in which 50 to 100%, particularly 70 to 100%, particularly 90 to 100% of all bonds in the main chain are conjugated.
  • the conjugated polymer compound preferably has a group derived from the structure represented by the general formula (1) as a repeating unit.
  • “having as a repeating unit” means being included so as to constitute an electron conjugated system.
  • the conjugated polymer compound is synthesized by condensation polymerization, and a group derived from the structure represented by the general formula (1) and an optional additional group different from the group are introduced by the condensation polymerization. is there. Further, the number of moles of group and any additional groups derived from structures represented by the general formula (1) in the entire conjugated polymer compound, respectively, when the N 1 and N M, the following formula (i) The value calculated by is 0.01 or more and 20 or less. N 1 ⁇ 100 / (N 1 + N M ) (i)
  • the value calculated by the formula (i) is expressed by the general formula (1) when the compound subjected to the condensation polymerization is a unit and the total amount of the compounds introduced into the conjugated polymer compound by the condensation polymerization is 100 mol%.
  • the molar content of the group derived from the structure represented by In the conjugated polymer compound of the present invention is preferably 0.03 or more and 15 or less, more preferably 0.1 or more and 12.5 or less.
  • the conjugated polymer compound has a polystyrene-reduced number average molecular weight by gel permeation chromatography (hereinafter referred to as “GPC”), preferably 1 ⁇ 10 3 to 1 ⁇ 10 7 , more preferably 1 ⁇ 10 4 to 5 ⁇ 10 6 .
  • GPC gel permeation chromatography
  • the weight average molecular weight in terms of polystyrene is preferably 1 ⁇ 10 4 to 5 ⁇ 10 7 , more preferably 5 ⁇ 10 4 to 1 ⁇ 10 7 . If the weight average molecular weight of 1 ⁇ 10 4 or more, more excellent charge injection property and charge transport property, and facilitates improved film forming properties, in the case of 5 ⁇ 10 7 or less, film forming property by coating It tends to be good.
  • Examples of the optional additional groups include “conductive polymer materials” (CMC Publishing), “latest application technology of conductive polymers” (CMC Publishing), “basic and applied conductive polymers” (stock) Company IP, edited by Katsumi Yoshino), “Conductive polymer” (edited by the Society of Polymer Science, Shinichi Yoshimura), “Polymer EL Materials” (edited by the Society of Polymer Science, Toshihiro Onishi, Tamami Ogawa), etc.
  • Examples include a group constituting a molecular compound (a group derived from a monomer). Among these, an arylene group which may have a substituent or a divalent aromatic heterocyclic ring which may have a substituent Groups are preferred.
  • the conjugated polymer compound is preferably a bond between a group derived from the structure represented by the general formula (1) and an arbitrary additional group, and a bond between the arbitrary additional group and the optional additional group.
  • an optional additional group represented by the following general formula (A) (hereinafter referred to as “optional additional group A”). )
  • An optional additional group represented by the following general formula (B) (hereinafter referred to as “optional additional group B”), and an optional additional group represented by the following general formula (C) (hereinafter referred to as “optional”). It is preferable to contain at least one group selected from the group consisting of “additional group C”.
  • Ar 1 and Ar 5 are each independently an arylene group, a divalent heterocyclic group composed of a 6-membered ring or more, and a divalent heterocyclic group.
  • Ar 2 , Ar 3 and Ar 4 each independently represent a functional group selected from the group consisting of an arylene group and a divalent heterocyclic group composed of a 6-membered ring or more.
  • R 1 and R 2 each independently represents a functional group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group and an arylalkyl group
  • X 1 represents —CR 3 ⁇ CR 4
  • a functional group selected from the group consisting of — and —C ⁇ C— is shown.
  • R 3 and R 4 each independently represent a functional group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group, a carboxyl group, a substituted carboxyl group, and a cyano group.
  • a is 0 or 1.
  • the hydrogen atom may be substituted with a substituent.
  • the divalent heterocyclic group composed of a 6-membered ring or more is preferably a divalent heterocyclic group larger than the 6-membered ring.
  • Examples include alkenyl groups, arylalkynyl groups, amino groups, substituted amino groups, halogen atoms, acyl groups, acyloxy groups, monovalent heterocyclic groups, carboxyl groups, nitro groups, cyano groups, and preferably alkyl groups, alkoxy groups A group, an aryl group, an aryloxy group, a substituted amino group, and a monovalent heterocyclic group, more preferably an alkyl group, an alkoxy group, and an aryl group.
  • the arylene group in the arylene group which may have a substituent represented by Ar 1 means an atomic group formed by removing two hydrogen atoms from an aromatic hydrocarbon, and independently Group having a benzene ring or condensed ring.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18.
  • the arylene group which may have a substituent represented by Ar 1 includes 1,4-phenylene group, 1,3-phenylene group, 1,4-naphthalene Diyl group, 1,5-naphthalenediyl group, 2,6-naphthalenediyl group, 9,10-anthracenediyl group, 2,7-phenanthrylene group, 5,12-naphthacenylene group, 2,7-fluorenediyl group, 3,6-fluorenediyl group, 1,6-pyrene diyl group, 1,8-pyrene diyl group, 3,9-perylene diyl group, 3,10-perylene diyl group, 2,6-quinoline diyl group, 1,4-isoquinoline diyl Group, 1,5-isoquinolinediyl group, 5,8-quinoxalinediyl group and the like, preferably 1,4-phenylene group, 1,4-naphthalenediyl group, 1,5-naphthalenediyl group,
  • the divalent heterocyclic group composed of a 6-membered ring or more optionally having a substituent represented by Ar 1 includes 4,7-benzo [1, 2,5] thiadiazolediyl group, 3,7-phenoxazinediyl group, 3,7-phenothiazinediyl group and the like can be mentioned, and 4,7-benzo [1,2,5] thiadiazolediyl group is preferable.
  • the divalent group having a metal complex structure which may have a substituent represented by Ar 1 is the rest of the iridium complex or the platinum complex after removing two hydrogen atoms.
  • An atomic group that is, a residue of an iridium complex or a platinum complex
  • M-1, M-2, M-3, M-4, M-5, M-6, and M-7 are represented by the following formulas M-1, M-2, M-3, M-4, M-5, M-6, and M-7.
  • R is an alkyl group, alkoxy group, aryl group, aryloxy group, arylalkyl group, arylalkoxy group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, halogen atom, acyl group, acyloxy group
  • a monovalent heterocyclic group, a carboxyl group, a nitro group or a cyano group is shown.
  • a plurality of R may be the same or different.
  • the group represented by Ar 1 is at least one selected from the group consisting of groups represented by the following formulas (D), (E), (F), (G) and (H). It is desirable to be.
  • R 10 represents an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an arylalkenyl group, an arylalkynyl group, an amino group, a substituted amino group, a halogen atom, an acyl.
  • f is an integer of 0-4. When a plurality of R 10 are present, they may be the same or different.
  • R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group.
  • R 13 and R 14 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an arylalkenyl group, an arylalkynyl group, an amino group A group, a substituted amino group, a halogen atom, an acyl group, an acyloxy group, a monovalent heterocyclic group, a carboxyl group, a nitro group or a cyano group; Some or all of the hydrogen atoms contained in these groups may be substituted with fluorine atoms.
  • R 15 represents a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group or an arylalkyl group.
  • R 16 represents a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group or an arylalkyl group.
  • R 10 is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an arylalkenyl group, an arylalkynyl group, a substituted amino group, an acyl group,
  • a monovalent heterocyclic group more preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a substituted amino group, an acyl group, and a monovalent heterocyclic group, still more preferably an alkyl group, an alkoxy group.
  • f is preferably an integer of 0-2.
  • R 11 and R 12 are preferably an alkyl group, an aryl group, and a monovalent heterocyclic group, and more preferably an alkyl group and an aryl group.
  • R 13 and R 14 are preferably hydrogen atom, alkyl group, alkoxy group, aryl group, aryloxy group, arylalkyl group, arylalkoxy group, substituted amino group, acyl group, monovalent group. More preferably a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, or a monovalent heterocyclic group, still more preferably a hydrogen atom or an alkyl group, particularly preferably. Is a hydrogen atom.
  • R 15 is preferably an alkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group or an aryl group, and still more preferably an aryl group.
  • R 16 is preferably an alkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group or an aryl group, and still more preferably an aryl group.
  • the arylene group in the arylene group which may have a substituent represented by Ar 2 , Ar 3 and Ar 4 is an atom formed by removing two hydrogen atoms from an aromatic hydrocarbon. Means a group having an independent benzene ring or condensed ring. The number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18.
  • the arylene group in the arylene group which may have a substituent represented by Ar 2 , Ar 3 and Ar 4 includes a 1,3-phenylene group and a 1,4-phenylene group 1,4-naphthalenediyl group, 2,6-naphthalenediyl group, 9,10-anthracenediyl group, 2,7-phenanthenediyl group, 5,12-naphthacenediyl group, 2,7-fluorenediyl group, 3 , 8-perylenediyl group and the like.
  • the divalent heterocyclic in Ar 2, Ar 3 and divalent heterocyclic group composed of the ring may also be a 6-membered ring or more, which have a substituent represented by Ar 4
  • the cyclic group usually has 4 to 60 carbon atoms, preferably 4 to 20, and more preferably 4 to 9.
  • the divalent heterocyclic group in the divalent heterocyclic group which may have a substituent represented by Ar 2 , Ar 3 and Ar 4 is N-methyl-2 , 5-pyrroldiyl group, 4,7-benzo [1,2,5] thiadiazolediyl group, 3,7-phenoxazinediyl group, 3,6-carbazolediyl group and the like.
  • Ar 2 and Ar 4 are each independently preferably an arylene group which may have a substituent, and more preferably, an optionally substituted 1, 3-phenylene group, 1,4-phenylene group optionally having substituent, 1,4-naphthalenediyl group optionally having substituent, 2,6 optionally having substituent A naphthalenediyl group, more preferably a 1,4-phenylene group which may have a substituent, and a 1,4-naphthalenediyl group which may have a substituent, particularly preferably It is a 1,4-phenylene group which may have a substituent.
  • Ar 3 preferably may have a substituent group 1,3-phenylene group, which may have a substituent group 1,4-phenylene group, a substituent 1,4-naphthalenediyl group which may have, 2,7-fluorenediyl group which may have a substituent, 4,7-benzo [1,2 which may have a substituent , 5] a thiadiazole diyl group and an optionally substituted 3,7-phenoxazinediyl group, preferably an optionally substituted 1,4-phenylene group and a substituted group.
  • R 1 and R 2 are preferably each independently an alkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group or an aryl group, An aryl group is preferable.
  • R a represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an arylalkenyl group, an arylalkynyl group, an amino group, a substituted amino group, or a halogen atom.
  • a functional group selected from the group consisting of an acyl group, an acyloxy group, a monovalent heterocyclic group, a carboxyl group, a nitro group and a cyano group.
  • the functional group having a hydrogen atom the hydrogen atom may be substituted with a substituent.
  • a plurality of Ra may be the same or different.
  • a divalent heterocyclic ring composed of an arylene group which may have a substituent represented by Ar 5 and a ring having 6 or more members which may have a substituent.
  • the divalent group having a metal complex structure which may have a group and a substituent is the same as the group described and exemplified in the section for Ar 1 .
  • R 3 and R 4 are preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably , Hydrogen atom, aryl group.
  • Examples of the optional additional group represented by the general formula (C) include the following formulas (4A-1), (4A-2), (4A-3), (4A-4), (4A-5), ( 4A-6), (4A-7), (4A-8), (4A-9), (4A-10) and (4A-11).
  • Azulene (a compound in which R x is all hydrogen atoms in the general formula (1)) is commercially available and available.
  • the general formula (1 ) can be produced.
  • the compound of the present invention is a polymer compound which is a preferred embodiment (hereinafter referred to as “polymer compound of the present invention”) will be described.
  • the polymer compound is obtained by polymerizing a monomer corresponding to the group included in the polymer compound, for example. Obtainable.
  • the monomer one synthesized and isolated in advance may be used, or it may be synthesized in a reaction system and used as it is.
  • the obtained polymer compound is used in an organic light emitting device, the purity of the monomer may affect the performance of the organic light emitting device. Therefore, these monomers are preferably purified by methods such as distillation, sublimation purification, and recrystallization.
  • polymerization is performed by Suzuki coupling reaction (Chemical Review (Chem. Rev.), Vol. 95, pages 2457-2483 (1995)), polymerization is performed by Grignard reaction (Bull. Chem. Soc. Jpn., 51, 2091 (1978)), a method of polymerizing with Ni (0) catalyst (Progress in Polymer Science, 17, 173-1205, 1992), Stille Cup Examples include a method using a ring reaction (European Polymer Journal, Vol. 41, pages 2923-2933 (2005)).
  • a method of polymerization by Suzuki coupling reaction and a method of polymerization by Ni (0) catalyst are preferable, and the structure control of the polymer compound is preferable.
  • a method of polymerizing by an aryl-aryl cross-coupling reaction such as a Suzuki coupling reaction, a Grignard reaction, or a Stille coupling reaction is more preferable, and a reaction of polymerizing by a Suzuki coupling reaction is particularly preferable.
  • one of the monomers bonded by polymerization reaction has the following substituent A as a group that causes polymerization reaction.
  • the other monomer has the following substituent group B as a group that causes a polymerization reaction.
  • substituent group A Chlorine atom, bromine atom, iodine atom, —O—S ( ⁇ O) 2 R A (R A may be substituted with an alkyl group, or an alkyl group, an alkoxy group, a nitro group, a fluorine atom, or a cyano group.
  • a group represented by —BF 4 Q 1 Q 1 represents a monovalent cation of lithium, sodium, potassium, rubidium or cesium
  • Q 1 represents a monovalent cation of lithium, sodium, potassium, rubidium or cesium
  • R B2 represents A hydrogen atom or an alkyl group
  • three R B2 s which may be the same or different and may be bonded to each other to form a ring
  • a group represented by —MgY 1 (Y 1 Represents a chlorine atom, a bromine atom or an iodine atom)
  • a group represented by —ZnY 2 Y 2 represents a chlorine atom, a bromine atom or an iodine atom).
  • Examples of the polymerization method include a method in which each monomer is reacted with an appropriate catalyst or base as necessary.
  • a group selected from the substituent group A for example, chlorine
  • the ratio between the total number of moles of atoms, iodine atoms, and bromine atoms and the total number of moles of groups selected from the substituent group B may be adjusted.
  • the ratio of the latter mole number to the former mole number is preferably 0.95 to 1.05, more preferably 0.98 to 1.02, and 0.99 to 1.01. More preferably.
  • the polymer compound of the present invention is a monomer in which one or two R x is substituted with a functional group selected from the group consisting of the substituent group A and the substituent group B from the structure represented by the general formula (1) And a monomer related to the present invention) and an arbitrary monomer having a functional group selected from the group consisting of the substituent group A and the substituent group B.
  • the charging ratio of the monomers related to the present invention to all monomers is 0.01 mol% or more and 20 mol% or less.
  • the number of moles of group and any additional groups derived from structures represented by the general formula (1) in the entire polymer compound, respectively, when the N 1 and N M, by the following formula (i) A polymer compound having a calculated value of 0.01 or more and 20 or less can be easily produced.
  • a low molecular weight compound having a group derived from the structure represented by the general formula (1) can be synthesized by using a coupling reaction such as a Suzuki coupling reaction, a Yamamoto coupling reaction, or a negative coupling reaction. It is.
  • a coupling reaction such as a Suzuki coupling reaction, a Yamamoto coupling reaction, or a negative coupling reaction. It is.
  • the low molecular weight compound can be obtained by controlling the type and mole number of the monomer to be polymerized in the above-described method for producing a polymer compound.
  • a monomer in which one R x is substituted with a functional group selected from the substituent group A, and an arbitrary monomer having one functional group selected from the substituent group B can be obtained by a Suzuki coupling reaction to obtain a compound composed of a group derived from the structure represented by the general formula (1) and an arbitrary additional group.
  • the composition of the present invention contains the conjugated polymer compound of the present invention and at least one selected from the group consisting of a light emitting material, a hole transport material and an electron transport material.
  • the light emitting material is a polymer compound containing a group derived from a low molecular compound having a light emitting function, or a conjugated polymer having a structure different from that of the conjugated polymer compound of the present invention and having a light emitting function.
  • Compounds are preferred.
  • the charge transport material is a polymer compound containing a group derived from a low molecular compound having a charge transport function, or a conjugate having a structure different from that of the conjugated polymer compound of the present invention and having a charge transport function.
  • a polymer compound is preferable.
  • the light emitting material a general light emitting material can be used.
  • the luminescent material “organic EL display” (Co-authored by Shizuo Tokito, Chinami Yasada, Hideyuki Murata, published by Ohm Co., Ltd., 2004, first edition, first print) 17-48 pages, 83-99 pages, 101-120
  • the fluorescent material or triplet light-emitting material described on the page can be used.
  • Examples of low-molecular fluorescent materials include perylene and its derivatives, polymethine-based, xanthene-based, coumarin-based, cyanine-based pigments, 8-hydroxyquinoline metal complexes, 8-hydroxyquinoline derivative metal complexes, aromatics, and the like.
  • Examples thereof include amines, tetraphenylcyclopentadiene and derivatives thereof, tetraphenylbutadiene and derivatives thereof, and more specifically, those described in JP-A-57-51781 and JP-A-59-194393. Etc. can be used.
  • examples of the light emitting material include WO99 / 13692, WO99 / 48160, GB2340304A, WO00 / 53656, WO01 / 19834, WO00 / 55927, GB23448316, WO00 / 46321, WO00 / 06665, WO99 / 54943, WO99 / 5493.
  • Polyfluorene copolymers of derivatives thereof, polyarylene, copolymers of derivatives thereof, polyarylene vinylenes, copolymers of derivatives thereof, aromatics disclosed in Japanese Patent Application Laid-Open No. 11233, JP-A-9-45478, etc.
  • Examples are (co) polymers of amines and their derivatives.
  • the light-emitting material is preferably a light-emitting material that is a conjugated polymer compound.
  • the optional additional group represented by the general formula (A), the optional additional group represented by the general formula (B), and the general A light emitting material that is a polymer compound having at least one optional additional group selected from the group consisting of optional additional groups represented by formula (C) is particularly preferable.
  • the above hole transport material and electron transport material mainly play a role of adjusting the charge balance.
  • the hole transport material examples include polyvinyl carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in side chains or main chains, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline And derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, and the like.
  • the hole transport material is preferably a conjugated polymer compound containing an arbitrary additional group represented by the general formula (B).
  • the content ratio of the hole transport material in the composition of the present invention is preferably 3 to 30 parts by mass, more preferably 3 to 30 parts by mass with respect to 100 parts by mass of the conjugated polymer compound of the present invention, since the charge balance becomes good. Is 3 to 20 parts by mass, particularly preferably 3 to 10 parts by mass.
  • Examples of the electron transport material include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyano
  • Examples include ethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, and the like.
  • JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-2-20988, JP-A-3-37992 examples thereof include a polymer compound described in JP-A-3-152184 and a conjugated polymer compound containing an optional additional group represented by the above general formula (A).
  • the electron transport material is preferably a conjugated polymer compound containing an arbitrary additional group represented by the general formula (A).
  • the content ratio of the electron transport material in the composition of the present invention is preferably 5 to 50 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the conjugated polymer compound of the present invention, so that the charge balance becomes good.
  • the amount is 5 to 30 parts by mass, and particularly preferably 5 to 20 parts by mass.
  • the conjugated polymer compound of the present invention can be made into a solution or a dispersion by mixing with an organic solvent.
  • a solution or dispersion film formation by a coating method can be performed.
  • This solution or dispersion is generally called an ink composition, a liquid composition or the like (hereinafter referred to as “ink composition”).
  • This ink composition is also an embodiment containing an organic solvent in the above-described composition of the present invention.
  • organic solvent contained in the ink composition of the present invention examples include chlorine-based solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene, tetrahydrofuran, dioxane and the like.
  • Ether solvents aromatic hydrocarbon solvents such as toluene, xylene, trimethylbenzene, mesitylene, cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane
  • Aliphatic hydrocarbon solvents such as acetone, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and ethyl cellosolve acetate, ethylene glycol, ethylene glycol monobutyl ether, Polyhydric alcohols such as lenglycol monoethyl ether, ethylene glycol monomethyl ether, dimethoxyethane, propylene glycol, diethoxymethane, triethylene glycol monoe
  • these solvents may be used individually by 1 type, or may use 2 or more types together.
  • the ink composition of the present invention contains an organic solvent
  • the organic solvent is removed by drying. This is very advantageous in the manufacture of organic devices such as organic light-emitting elements.
  • drying it may be dried in a state heated to 50 to 150 ° C., or may be dried under reduced pressure to about 10 ⁇ 3 Pa.
  • spin coating method For lamination and film formation, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, capillary coating method, spray coating
  • a coating method such as a printing method, a screen printing method, a flexographic printing method, an offset printing method, an inkjet printing method, or a nozzle coating method can be used.
  • the preferred viscosity of the ink composition of the present invention varies depending on the coating method used, but is preferably in the range of 0.5 to 500 mPa ⁇ s at 25 ° C.
  • the ink composition of the present invention such as an ink jet printing method passes through a discharge device.
  • the viscosity is preferably in the range of 0.5 to 20 mPa ⁇ s at 25 ° C. in order to prevent clogging and flight bending at the time of discharge.
  • the thin film according to the present invention contains the conjugated polymer compound of the present invention.
  • This thin film can be easily produced from the ink composition of the present invention by the above-described lamination / film formation method. Since the thin film according to the present invention includes the conjugated polymer compound of the present invention, for example, an organic light-emitting element having the thin film according to the present invention in a charge transport layer or a light-emitting layer is an element having an improved luminance life.
  • Organic light emitting device of the present invention can be applied to other organic devices.
  • organic devices include organic semiconductor elements and organic light emitting elements.
  • organic semiconductor elements include organic solar cells and organic transistors.
  • the organic semiconductor element includes the thin film.
  • the organic semiconductor element include an organic thin film solar cell and an organic thin film transistor.
  • the composition of the present invention and the thin film according to the present invention are suitably used. Specifically, for example, by forming the thin film on a Si substrate on which an insulating film such as SiO 2 and a gate electrode are formed, and forming a source electrode and a drain electrode with Au or the like, a field effect organic transistor and can do.
  • the organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer (that is, an active layer) that is a thin film serving as a current path between them, and a gate electrode that controls the amount of current passing through the current path.
  • An electrostatic induction type is exemplified.
  • a field effect organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer serving as a current path between them, a gate electrode for controlling the amount of current passing through the current path, and an organic semiconductor layer disposed between the organic semiconductor layer and the gate electrode. It is preferable to provide an insulating layer.
  • the source electrode and the drain electrode are preferably provided in contact with the organic semiconductor layer, and the gate electrode is preferably provided with an insulating layer in contact with the organic semiconductor layer interposed therebetween.
  • the electrostatic induction type organic thin film transistor has a source electrode and a drain electrode, an organic semiconductor layer serving as a current path between them, and a gate electrode for controlling an amount of current passing through the current path, and the gate electrode is in the organic semiconductor layer.
  • the source electrode, the drain electrode, and the gate electrode provided in the organic semiconductor layer are preferably provided in contact with the organic semiconductor layer.
  • the structure of the gate electrode may be a structure in which a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. An electrode is mentioned.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an organic thin film transistor (field effect organic thin film transistor).
  • the organic thin film transistor 100 shown in FIG. 1 is formed on the substrate 1 so as to cover the substrate 1, the source electrode 5 and the drain electrode 6 formed on the substrate 1 with a predetermined interval, and the source electrode 5 and the drain electrode 6.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of an organic thin film transistor (field effect organic thin film transistor).
  • An organic thin film transistor 110 shown in FIG. 2 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • the organic semiconductor layer 2 is composed of the thin film according to the present invention described above, and becomes a current path (channel) between the source electrode 5 and the drain electrode 6.
  • the gate electrode 4 controls the amount of current passing through the current path (channel) in the organic semiconductor layer 2 by applying a voltage.
  • the field effect type organic thin film transistor can be manufactured by a known method, for example, a method described in JP-A-5-110069.
  • the electrostatic induction organic thin film transistor can be produced by a known method, for example, a method described in JP-A-2004-006476.
  • the organic light-emitting device includes an anode, a cathode, and an organic layer present between the anode and the cathode, and the organic layer is represented by the general formula (1).
  • a compound having a structure or a compound having a group derived from the structure represented by the general formula (1) is included.
  • the compound having a group derived from the structure represented by the general formula (1) is preferably the conjugated polymer compound of the present invention.
  • Examples of the organic light emitting device according to the present embodiment include devices having the following structures (a) to (d). Note that “/” indicates that the layers before and after the adjacent layers are laminated. The same applies hereinafter.
  • (A) Anode / light emitting layer / cathode (b) Anode / hole transport layer / light emitting layer / cathode (c) Anode / light emitting layer / electron transport layer / cathode (d) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode
  • the light emitting layer is a layer having a function of emitting light.
  • the hole transport layer is a layer having a function of transporting holes.
  • the electron transport layer is a layer having a function of transporting electrons.
  • the hole transport layer and the electron transport layer are collectively referred to as a charge transport layer.
  • the hole transport layer adjacent to the light emitting layer may be referred to as an interlayer layer.
  • the compound having the structure represented by the general formula (1) or the compound having a group derived from the structure represented by the general formula (1) is used in the light emitting layer or the charge transport layer (particularly, the hole transport layer). It is preferably included.
  • the structure represented by the general formula (1) Is preferably 0.01% by mass to 20% by mass, and is derived from a compound having a structure represented by the general formula (1) or a structure represented by the general formula (1).
  • the ratio of the skeleton having the structure represented by the general formula (1) is preferably 0.01% by mass to 50% by mass.
  • Each layer can be stacked and formed using a solution containing the material of each layer.
  • Application methods such as spray coating, screen printing, flexographic printing, offset printing, inkjet printing, and nozzle coating can be used.
  • the thickness of the light emitting layer may be selected so that the driving voltage and the light emission efficiency are appropriate values, but is usually 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. .
  • the hole transport material used include those similar to the hole transport material included in the composition of the present invention described above.
  • the hole transport layer may be formed by any method, but when the hole transport material to be used is a low molecular compound, it is preferably formed from a mixed solution with a polymer binder.
  • the hole transport material used is a polymer compound, it is preferable to form a film from a solution.
  • a method exemplified as a coating method can be used.
  • the polymer binder to be mixed with the hole transport material is preferably a compound that does not extremely impede charge transport and does not strongly absorb visible light.
  • the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane, and the like.
  • the thickness of the hole transport layer may be selected so that the driving voltage and the light emission efficiency are appropriate values, and is usually 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. is there.
  • the electron transport material used include the same electron transport materials as those contained in the composition of the present invention described above.
  • the electron transport layer may be formed by any method, but when the electron transport material is a low-molecular compound, a vacuum deposition method from powder or a method by film formation from a solution or a molten state is preferable.
  • the electron transport material is a polymer compound, a method of forming a film from a solution or a molten state is preferable.
  • a polymer binder may be used in combination.
  • a method exemplified as a coating method can be used.
  • the polymer binder to be mixed with the electron transport material is preferably a compound that does not extremely inhibit charge transport and does not strongly absorb visible light.
  • Polymeric binders include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, polycarbonate , Polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like.
  • the thickness of the electron transport layer may be selected so that the drive voltage and the light emission efficiency are appropriate values, and is usually 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. .
  • a charge injection layer having a function of improving charge injection efficiency from the electrode may be provided between the electrode and the charge transport layer. Furthermore, in order to improve the adhesion with the electrode and the efficiency of charge injection from the electrode, the above-described charge injection layer or insulating layer may be provided adjacent to the electrode to improve the interface adhesion, prevent mixing, etc. For this purpose, a thin buffer layer may be inserted at the interface between the charge transport layer and the light emitting layer. Note that the order and number of layers to be stacked, and the thickness of each layer may be selected in consideration of light emission efficiency and element lifetime.
  • Examples of the organic light emitting device provided with the charge injection layer include devices having the following structures (e) to (i).
  • the hole injection layer is a layer containing a conductive polymer, provided between the anode and the hole transport layer, and an ionization potential having an intermediate value between the anode material and the hole transport material contained in the hole transport layer. And a layer containing a material having s.
  • the electron injection layer a layer containing a conductive polymer, a material provided between the cathode and the electron transport layer, and a material having an electron affinity of an intermediate value between the cathode material and the electron transport material contained in the electron transport layer. Examples include layers.
  • the electrical conductivity of the conductive polymer is preferably 10 ⁇ 5 S / cm to 10 3 S / cm, and the leakage current between the light emitting pixels Is preferably 10 ⁇ 5 S / cm to 10 2 S / cm, and more preferably 10 ⁇ 5 S / cm to 10 1 S / cm.
  • the conductive polymer may be doped with an appropriate amount of ions.
  • the kind of ions to be doped is an anion for the hole injection layer and a cation for the electron injection layer.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, camphor sulfonate ion, and the like.
  • the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
  • the thickness of the charge injection layer is, for example, 1 nm to 100 nm, preferably 2 nm to 50 nm.
  • the material used for the charge injection layer may be selected in relation to the material of the electrode and the adjacent layer, such as polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene. And a derivative thereof, polyquinoline and a derivative thereof, polyquinoxaline and a derivative thereof, a conductive polymer such as a polymer having an aromatic amine structure in a main chain or a side chain, metal phthalocyanine (copper phthalocyanine, etc.), carbon and the like.
  • the insulating layer has a function of facilitating charge injection.
  • the average thickness of this insulating layer is usually 0.1 nm to 20 nm, preferably 0.5 nm to 10 nm, more preferably 1 nm to 5 nm.
  • Examples of the material used for the insulating layer include metal fluorides, metal oxides, and organic insulating materials.
  • Examples of the organic light emitting device provided with an insulating layer include devices having the following structures (j) to (y).
  • the substrate on which the organic light emitting device according to the present embodiment is formed may be a substrate that does not chemically change when forming the electrode and the organic layer, and examples thereof include glass, plastic, polymer film, silicon, and the like. It is done.
  • the electrode on the opposite side to the electrode closer to the substrate is preferably transparent or translucent.
  • At least one of the anode and cathode electrodes is transparent or translucent, and the anode side is transparent or translucent.
  • a conductive metal oxide film, a translucent metal thin film, or the like As the material of the anode, a conductive metal oxide film, a translucent metal thin film, or the like is used. Specifically, indium oxide, zinc oxide, tin oxide, and a composite thereof, indium tin oxide. A film made of a conductive inorganic compound made of (ITO), indium / zinc / oxide, NESA, gold, platinum, silver, copper, or the like is used. As the anode, an organic transparent conductive film such as polyaniline and a derivative thereof, polythiophene and a derivative thereof may be used.
  • a layer made of a phthalocyanine derivative, a conductive polymer, carbon, or the like, or a layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like may be provided on the anode.
  • Examples of methods for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • the thickness of the anode can be selected in consideration of light transmittance and electric conductivity, but is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 40 nm to 500 nm. .
  • a material having a small work function is preferable, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, Metals such as europium, terbium, ytterbium, and two or more alloys thereof, or one or more of them, and one of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin An alloy with a seed or more, graphite, or a graphite intercalation compound is used.
  • a vacuum deposition method As a method for producing the cathode, a vacuum deposition method, a sputtering method, a laminating method in which a metal thin film is thermocompression bonded, or the like is used.
  • the thickness of the cathode can be selected in consideration of electric conductivity and durability, but is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • a layer made of a conductive polymer, or a layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like may be provided.
  • a protective layer for protecting the element may be attached. In order to stably use the light emitting element for a long period of time, it is preferable to attach a protective layer and / or a protective cover in order to protect the light emitting element from the outside.
  • the protective layer resins, metal oxides, metal fluorides, metal borides and the like can be used.
  • a glass plate, a plastic plate having a low water permeability treatment on the surface, or the like can be used, and a method of sealing the protective cover by bonding it to the element substrate with a thermosetting resin or a photocurable resin is preferable. Used. If a space is maintained using a spacer, it is easy to prevent the element from being damaged. If an inert gas such as nitrogen or argon is sealed in the space, oxidation of the cathode can be prevented, and further, moisture adsorbed in the manufacturing process can be obtained by installing a desiccant such as barium oxide in the space. It becomes easy to suppress giving an image to an element.
  • FIG. 3 is a schematic cross-sectional view of the organic light-emitting device (organic light-emitting device having the configuration (i) above) according to this embodiment.
  • An organic light emitting device 200 shown in FIG. 3 includes a substrate 20, an anode 22 formed on the substrate 20, a hole injection layer 23, a hole transport layer 24, a light emitting layer 25, an electron transport layer 26, and an electron injection layer 27. And a cathode 28.
  • the anode 22 is provided on the substrate 20 so as to be in contact with the substrate 20.
  • a hole injection layer 23, a hole transport layer 24, a light emitting layer 25, and an electron transport layer are provided on the opposite side of the anode 22 from the substrate 20, a hole injection layer 23, a hole transport layer 24, a light emitting layer 25, and an electron transport layer are provided. 26, the electron injection layer 27 and the cathode 28 are laminated in this order.
  • FIG. 4 is a schematic cross-sectional view of the organic light emitting device (organic light emitting device having the configuration of (e) above) according to the present embodiment.
  • An organic light emitting device 220 shown in FIG. 4 includes a substrate 20, and an anode 22, a hole injection layer 23, a hole transport layer 24, a light emitting layer 25, and a cathode 28 formed on the substrate 20. .
  • the anode 22 is provided on the substrate 20 so as to be in contact with the substrate.
  • a hole injection layer 23, a hole transport layer 24, a light emitting layer 25, and a cathode 28 are provided on the opposite side of the anode 22 from the substrate 20, a hole injection layer 23, a hole transport layer 24, a light emitting layer 25, and a cathode 28 are provided. They are stacked in order.
  • a layer containing a compound having a structure represented by the general formula (1) or a compound having a group derived from the structure represented by the general formula (1) includes a light emitting layer, a positive layer.
  • a hole transport layer or an electron transport layer is preferred.
  • an organic light emitting device containing a compound having a structure represented by the general formula (1) or a compound having a group derived from the structure represented by the general formula (1) in the hole transport layer and the light emitting layer, Organic light-emitting devices contained in the electron transport layer and the light-emitting layer, organic light-emitting devices contained in the hole-transport layer and the electron transport layer, organic light-emitting devices contained in the hole transport layer, the light-emitting layer, and the electron transport layer .
  • the compound having a group derived from the structure represented by the general formula (1) is preferably contained in the organic light emitting device as the conjugated polymer compound of the present invention. This further improves the luminance life of the organic light emitting device.
  • the conjugated polymer compound of the present invention When the conjugated polymer compound of the present invention is contained in the hole transport layer, the conjugated polymer compound has good hole injecting property and hole transporting property, and therefore is represented by the general formula (1).
  • a conjugated polymer compound containing a group derived from a structure and a divalent aromatic amine residue is preferable, and the divalent aromatic amine residue is represented by the above general formula (B). More preferably, it is an optional additional group represented.
  • the conjugated polymer compound of the present invention is contained in the electron transport layer, the electron injecting property and the electron transporting property are improved, so that the group derived from the structure represented by the general formula (1) and the above general A conjugated polymer compound containing an arbitrary additional group represented by the formula (A) is preferable.
  • the conjugated polymer compound of the present invention is contained in the light emitting layer, the charge (hole and electron) injection and transport properties are improved, and excitation energy is efficiently formed by the combination of holes and electrons. Therefore, the conjugated polymer compound is Conjugated system containing a group derived from the structure represented by the general formula (1), an optional additional group represented by the general formula (A), and an optional additional group represented by the general formula (B) Molecular compounds, Conjugated system containing a group derived from the structure represented by the general formula (1), an optional additional group represented by the general formula (B), and an optional additional group represented by the general formula (C) Molecular compounds, Or a group derived from the structure represented by the general formula (1), an optional additional group represented by the general formula (A), an optional additional group represented by the general formula (B), and the general formula ( A conjugated polymer compound containing an optional additional group represented by C) is preferred. Among these, a conjugated system containing a group derived from the structure represented by the general formula (1), an optional additional group
  • a layer containing a compound having a structure represented by the general formula (1) or a compound having a group derived from the structure represented by the general formula (1) is contained in an organic device such as an organic light emitting device.
  • an organic device such as an organic light emitting device.
  • the content of the compound having the structure represented by the general formula (1) or the compound having a group derived from the structure represented by the general formula (1) depends on the type of the organic device and the layer used in the organic device. The type can be selected.
  • the content of the compound having a structure represented by the general formula (1) or a compound having a group derived from the structure represented by the general formula (1) in each layer is as follows.
  • the layer is a light emitting layer, it is 0.01% by mass to 20% by mass in terms of the structure represented by the general formula (1) with respect to the total amount of the organic compound contained in the light emitting layer.
  • it is 0.03% by mass to 5% by mass, more preferably 0.05% by mass to 3% by mass
  • the layer is a charge transport layer, it is 0.01% by mass to 50% by mass in terms of the structure represented by the general formula (1) with respect to the total amount of the organic compound contained in the charge transport layer.
  • the “skeleton of the structure represented by the general formula (1)” means the remaining atomic group excluding all R x in the structure represented by the general formula (1).
  • the layer contains both a compound having a structure represented by the general formula (1) and a compound having a group derived from the structure represented by the general formula (1), the above contents are It is the total value of the content of.
  • the organic light emitting device includes a planar light source such as a curved light source and a planar light source (for example, illumination); a segment display device, a dot matrix display device (for example, a dot matrix flat display), a liquid crystal display device (for example, It is useful for display devices such as liquid crystal display devices and backlights of liquid crystal displays.
  • a light emitting material other than blue may be further contained in the light emitting layer of the organic light emitting device in order to obtain white color purity, or organic
  • the light emitting element may have a second light emitting layer having a light emitting material other than blue.
  • the planar anode and cathode may be arranged so as to overlap each other.
  • a method in which a mask having a pattern-like window is provided on the surface of the planar organic light-emitting element, either the anode or the cathode, or both electrodes in a pattern form There is a method of forming. By forming a pattern by any of these methods and arranging several electrodes so that they can be turned on and off independently, a segment type display device capable of displaying numbers, letters, simple symbols, and the like can be obtained.
  • both the anode and the cathode may be formed in a stripe shape and arranged so as to be orthogonal to each other. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively or may be driven actively in combination with a TFT or the like.
  • These display devices can be used as display devices for computers, televisions, mobile terminals, mobile phones, car navigation systems, video camera viewfinders, and the like.
  • FIG. 5 is a schematic cross-sectional view of a planar light source according to the present embodiment.
  • a planar light source 300 shown in FIG. 5 includes a substrate 30, an anode 31, a hole injection layer 32, a light emitting layer 33, a cathode 34, and a protective layer 35.
  • the anode 31 is provided on the substrate 30 so as to be in contact with the substrate 30, and a hole injection layer 32, a light emitting layer 33, and a cathode 34 are laminated in this order on the opposite side of the anode 31 from the substrate 30. .
  • the protective layer 35 is formed so as to cover all of the anode 31, the charge injection layer 32, the light emitting layer 33, and the cathode 34 formed on the substrate 30 and in contact with the substrate 30 at the end.
  • the light emitting layer 33 includes a compound having a structure represented by the general formula (1) according to the present invention, a compound having a group derived from the structure represented by the general formula (1) according to the present invention, or the present invention. Conjugated polymer compounds are included.
  • the planar light source 300 shown in FIG. 5 further includes a plurality of light emitting layers other than the light emitting layer 33, and each light emitting layer uses a red light emitting material, a blue light emitting material, and a green light emitting material, and drives each light emitting layer. By controlling, a color display device can be obtained.
  • the compound having the structure represented by the general formula (1) according to the present invention or the compound having a group derived from the structure represented by the general formula (1) according to the present invention is a dye for laser, organic It is also useful as a material for a solar cell, an organic semiconductor for an organic transistor, a conductive thin film material such as a conductive thin film or an organic semiconductor thin film, a light emitting thin film material that emits fluorescence, a material for a polymer field effect transistor, or the like.
  • the number average molecular weight and weight average molecular weight in terms of polystyrene were determined by GPC (manufactured by Shimadzu Corporation, trade name: LC-10Avp).
  • the polymer compound to be measured was dissolved in tetrahydrofuran (hereinafter referred to as “THF”) to a concentration of about 0.5% by mass, and 30 ⁇ L was injected into GPC.
  • THF tetrahydrofuran
  • TSKgel SuperHM-H manufactured by Tosoh
  • TSKgel SuperH2000 manufactured by Tosoh
  • a differential refractive index detector manufactured by Shimadzu Corporation, trade name: RID-10A was used as the detector.
  • NMR measurement The NMR measurement of the monomer was performed under the following conditions. Apparatus: Nuclear magnetic resonance apparatus, INOVA300 (trade name), manufactured by Varian Inc. Measurement solvent: Deuterated chloroform or deuterated tetrahydrofuran Sample concentration: About 1% by mass Measurement temperature: 25 ° C
  • LC-MS measurement was performed by the following method.
  • the measurement sample was dissolved in chloroform or tetrahydrofuran to a concentration of 2 mg / mL, and 1 ⁇ L was injected into LC-MS (manufactured by Agilent Technologies, trade name: 1100LCMSD).
  • LC-MS mobile phase of LC-MS
  • ion-exchanged water, acetonitrile, tetrahydrofuran or a mixture thereof was used, and acetic acid was added as necessary.
  • L-column 2 ODS (3 ⁇ m) manufactured by Chemicals Evaluation and Research Institute, inner diameter: 2.1 mm, length: 100 mm, particle diameter: 3 ⁇ m
  • the measurement sample was measured by LC-MS and analyzed.
  • the obtained solid was purified by silica gel column chromatography and recrystallization using hexane.
  • the target compound 1A is 3.75 parts by mass (HPLC purity 100%) as a recovery from recrystallization, and 2.83 parts by mass (HPLC purity 99.6%) as a recovery from the filtrate. It was. The overall yield was 99.1%.
  • the structure of Compound 1A was confirmed by NMR.
  • solution B 2-methoxycarbonyl-4,4′-dibromobiphenyl (16.0 parts by mass) and anhydrous tetrahydrofuran were added to a two-necked flask to prepare a solution (hereinafter referred to as “solution B”).
  • Solution B was added dropwise to solution A so that the temperature of solution A was kept at ⁇ 70 ° C. and stirred. The reaction was then stirred at room temperature for 15 hours. Next, water was added to the reaction solution at 0 ° C. and stirred. Next, the solvent was distilled off by concentration under reduced pressure, and hexane and water were added to the residue, followed by stirring.
  • reaction solution was added to saturated brine and extracted with chloroform warmed to about 50 ° C.
  • solvent was distilled off from the obtained organic layer, a solid was produced.
  • Toluene was added thereto and heated until the solid dissolved. Then, after allowing to cool, the precipitate was filtered to obtain 9.9 parts by mass of Compound 2G as a white solid.
  • phenylboronic acid 36.8 mg
  • dichlorobis triphenylphosphine
  • aqueous tetraethylammonium hydroxide 10 mL
  • an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours.
  • the obtained mixture was cooled and then washed twice with water, twice with a 3% by mass acetic acid aqueous solution and twice with water.
  • the obtained solution was dropped into methanol and collected by filtration to obtain a precipitate.
  • This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 3.12 g of polymer compound 1.
  • the number average molecular weight in terms of polystyrene of the polymer compound 1 was 8.0 ⁇ 10 4
  • the weight average molecular weight in terms of polystyrene was 2.6 ⁇ 10 5 .
  • the polymer compound 1 has the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: Is a random copolymer containing a repeating unit represented by a molar ratio of 50: 30: 12.5: 7.5.
  • the polymer compound 2 has the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: Is a random copolymer containing a repeating unit represented by a molar ratio of 50: 12.5: 30: 7.5.
  • the polymer compound 3 had a polystyrene-equivalent number average molecular weight of 1.0 ⁇ 10 5 and a polystyrene-equivalent weight average molecular weight of 2.9 ⁇ 10 5 .
  • the polymer compound 3 has the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: Is a random copolymer containing a repeating unit represented by a molar ratio of 50: 10: 32: 3: 5.
  • the polymer compound 4 has the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: And a repeating unit represented by the following formula: Is a random copolymer containing a repeating unit represented by a molar ratio of 50: 10: 29: 3: 5: 3.
  • Example 1 Production and evaluation of organic light emitting device 1> A glass substrate with an ITO film having a thickness of 45 nm formed by sputtering is spin-coated using AQ-1200 (manufactured by Plextronics), which is a polythiophene / sulfonic acid-based hole injecting agent, as a hole injecting material. A film was formed with a thickness and dried on a hot plate at 170 ° C. for 15 minutes.
  • AQ-1200 manufactured by Plextronics
  • the polymer compound 2 was spin-coated in a 0.7% by mass xylene solution to form a film having a thickness of about 20 nm. Then, it heated at 180 degreeC for 60 minutes on the hotplate in nitrogen atmosphere.
  • the polymer compound 3 was spin-coated in a 1.2% by mass xylene solution to form a film having a thickness of about 60 nm. Then, it heated at 130 degreeC for 10 minute (s) on the hotplate in nitrogen atmosphere. As a cathode, about 3 nm of sodium fluoride and then about 80 nm of aluminum were vapor-deposited, and the organic light-emitting device 1 was produced. Note that metal deposition was started after the degree of vacuum reached 1 ⁇ 10 ⁇ 4 Pa or less.
  • the organic light-emitting device 1 obtained above was set to a current value so that the initial luminance was 5000 cd / m 2 , then was driven with a constant current, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 257 hours.
  • the organic light-emitting device C1 obtained above was set to have a current value so that the initial luminance was 5000 cd / m 2 , then was driven with a constant current, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 83 hours.
  • the organic light-emitting device 2 obtained above was set to have a current value so that the initial luminance was 5000 cd / m 2 , then was driven with a constant current, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 220 hours.
  • the organic light-emitting device 3 obtained above was set to have a current value so that the initial luminance was 5000 cd / m 2 , then was driven with a constant current, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 222 hours.
  • Example 4 Production and evaluation of organic light-emitting element 4>
  • EL light emission having a peak at 460 nm derived from the polymer compound 3 was obtained from this device.
  • the organic light-emitting device 4 obtained above was driven with a constant current after setting the current value so that the initial luminance was 5000 cd / m 2, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 172 hours.
  • Example 5 Production and evaluation of organic light-emitting element 5>
  • a solution obtained by dissolving the polymer compound 4 and the polymer compound 3 in xylene was used, and the mixing ratio was determined as polymer compound 4:
  • polymer compound 3 Example 1 except that a solution having a ratio of 7.5: 92.5 (mass ratio) was used and that a xylene solution of polymer compound 1 was used instead of a xylene solution of polymer compound 2 Similarly, an organic light emitting device 5 was produced. When voltage was applied to the obtained organic light emitting device 5, EL light emission having a peak at 460 nm derived from the polymer compound 3 and the polymer compound 4 was obtained from this device.
  • the organic light-emitting device 5 obtained above was driven with a constant current after setting the current value so that the initial luminance was 5000 cd / m 2, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 206 hours.
  • Example 6 Production and evaluation of organic light-emitting element 6>
  • the organic light-emitting device 6 obtained above was set to have a current value so that the initial luminance was 5000 cd / m 2 , then was driven with a constant current, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 193 hours.
  • Example 7 Production and evaluation of organic light-emitting element 7>
  • the organic light-emitting device 7 obtained above was driven with a constant current after setting the current value so that the initial luminance was 5000 cd / m 2, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 186 hours.

Abstract

The present invention provides an organic light-emitting element provided with a light-emitting layer. Said light-emitting layer contains either a compound having the structure represented by general formula (1) or a compound having a group derived from the structure represented by general formula (1). Furthermore, the skeleton of the structure represented by general formula (1) constitutes 0.01% to 20% of the total mass of organic compounds in the light-emitting layer. (In the formula, Rx represents either a hydrogen atom or a functional group selected from the group comprising: an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, a halogen atom, an acyl group, an acyloxy group, a monovalent heterocyclic group, a monovalent heterocyclic thio group, an imine residue, an amide-compound residue, an acid-imide residue, a carboxyl group, a nitro group, and a cyano group. In functional groups containing a hydrogen atom, said hydrogen atom may be substituted by a substituent. The plurality of Rxs may be the same as or different from each other.)

Description

有機発光素子及び共役系高分子化合物Organic light emitting device and conjugated polymer compound
 本発明は、有機発光素子及び共役系高分子化合物に関する。 The present invention relates to an organic light emitting device and a conjugated polymer compound.
 近年、次世代ディスプレイとして、有機エレクトロルミネッセンス(EL)素子(以下、有機発光素子と言う。)を用いた有機ELディスプレイが注目されている。この有機発光素子は、発光層、電荷輸送層等の有機層を備える。有機発光素子は低分子有機材料からなる場合、高分子有機材料からなる場合がある。高分子有機材料を主な材料として使用する場合、インクジェットやスピンコート等の塗布法を使用した際に均一な膜を容易に形成することができ、大型の有機ELディスプレイを作製する際に有利であるため、これまでに高分子有機材料が提案されている(例えば、特許文献1~2)。 In recent years, organic EL displays using organic electroluminescence (EL) elements (hereinafter referred to as organic light-emitting elements) have attracted attention as next-generation displays. The organic light emitting device includes organic layers such as a light emitting layer and a charge transport layer. The organic light emitting device may be made of a low molecular organic material or a high molecular organic material. When a polymer organic material is used as a main material, a uniform film can be easily formed when an application method such as ink jet or spin coating is used, which is advantageous for manufacturing a large organic EL display. Therefore, high molecular organic materials have been proposed so far (for example, Patent Documents 1 and 2).
特開2008-56909号公報JP 2008-56909 A 国際公開99/54385号パンフレットWO99 / 54385 pamphlet
 しかしながら、従来の高分子有機材料では、有機発光素子に用いる場合、その輝度寿命が十分であるとはいえなかった。 However, the conventional polymeric organic material cannot be said to have a sufficient luminance life when used in an organic light emitting device.
 そこで、本発明は、輝度寿命の向上した有機発光素子を提供することを目的とする。 Therefore, an object of the present invention is to provide an organic light emitting device with an improved luminance life.
 本発明は、
 発光層を備え、
 前記発光層が、下記一般式(1)で表される構造を有する化合物又は下記一般式(1)で表される構造から誘導される基を有する化合物を含有し、かつ、
 前記発光層において、前記発光層に含有される有機化合物全量に対する、前記一般式(1)で表される構造の骨格の割合が0.01質量%~20質量%である、有機発光素子(以下、「有機発光素子X」と言うことがある。)を提供する。
Figure JPOXMLDOC01-appb-C000006
 一般式(1)中、Rは、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、1価の複素環チオ基、イミン残基、アミド化合物残基、酸イミド残基、カルボキシル基、ニトロ基及びシアノ基からなる群より選ばれる官能基、又は、水素原子を示す。但し、水素原子を有する前記官能基は、該水素原子が置換基で置換されていてもよい。複数あるRは、同一であっても異なっていてもよい。
The present invention
With a light emitting layer,
The light emitting layer contains a compound having a structure represented by the following general formula (1) or a compound having a group derived from the structure represented by the following general formula (1), and
In the light-emitting layer, an organic light-emitting element (hereinafter referred to as “the skeleton having a structure represented by the general formula (1)” in the total amount of the organic compound contained in the light-emitting layer is 0.01% by mass to 20% by mass). , Sometimes referred to as “organic light-emitting element X”).
Figure JPOXMLDOC01-appb-C000006
In general formula (1), R x represents an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, a halogen atom, an acyl group, or an acyloxy group. A functional group selected from the group consisting of a monovalent heterocyclic group, a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or hydrogen Indicates an atom. However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent. A plurality of R x may be the same or different.
 本発明はまた、
 発光層と、該発光層に隣接する電荷輸送層とを備え、
 前記電荷輸送層が、下記一般式(1)で表される構造を有する化合物又は下記一般式(1)で表される構造から誘導される基を有する化合物を含有し、かつ、
 前記電荷輸送層において、前記電荷輸送層に含有される有機化合物全量に対する、前記一般式(1)で表される構造の骨格の割合が0.01質量%~50質量%である、有機発光素子(以下、「有機発光素子Y」と言うことがある。)を提供する。
Figure JPOXMLDOC01-appb-C000007
[式中、
 Rは、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、1価の複素環チオ基、イミン残基、アミド化合物残基、酸イミド残基、カルボキシル基、ニトロ基及びシアノ基からなる群より選ばれる官能基、又は、水素原子を示す。
 但し、水素原子を有する前記官能基は、該水素原子が置換基で置換されていてもよい。複数あるRは、同一であっても異なっていてもよい。]
The present invention also provides
A light emitting layer, and a charge transport layer adjacent to the light emitting layer,
The charge transport layer contains a compound having a structure represented by the following general formula (1) or a compound having a group derived from the structure represented by the following general formula (1), and
In the charge transport layer, the ratio of the skeleton having the structure represented by the general formula (1) to the total amount of the organic compound contained in the charge transport layer is 0.01% by mass to 50% by mass. (Hereinafter sometimes referred to as “organic light-emitting element Y”).
Figure JPOXMLDOC01-appb-C000007
[Where:
R x is an alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic group A functional group selected from the group consisting of a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or a hydrogen atom.
However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent. A plurality of R x may be the same or different. ]
 本発明によれば、有機発光素子が、上述したいずれかの要件を満たすことにより、有機発光素子の輝度寿命が向上する。 According to the present invention, when the organic light emitting device satisfies any of the above-described requirements, the luminance life of the organic light emitting device is improved.
 上記一般式(1)で表される構造から誘導される基を有する化合物は、高分子化合物であることが好ましく、共役系高分子化合物であることがより好ましい。また、上記共役系高分子化合物は、上記一般式(1)で表される構造から誘導される基を繰り返し単位として有することが好ましい。これにより、有機発光素子の電気的特性が向上する。 The compound having a group derived from the structure represented by the general formula (1) is preferably a polymer compound, and more preferably a conjugated polymer compound. Moreover, it is preferable that the said conjugated polymer compound has as a repeating unit the group induced | guided | derived from the structure represented by the said General formula (1). Thereby, the electrical characteristics of the organic light emitting device are improved.
 本発明はまた、縮合重合で合成され、下記一般式(1)で表される構造から誘導される基及び上記基とは相違する任意追加基が上記縮合重合により導入されており、一般式(1)で表される構造から誘導される基及び上記任意追加基のモル数を、それぞれN及びNとしたときに、N及びNが下記式(I)を満たす、共役系高分子化合物(以下、「共役系高分子化合物Z」と言うことがある。)を提供する。
 0.01≦N×100/(N+N)≦20  (I)
Figure JPOXMLDOC01-appb-C000008
 一般式(1)中、Rは、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、1価の複素環チオ基、イミン残基、アミド化合物残基、酸イミド残基、カルボキシル基、ニトロ基及びシアノ基からなる群より選ばれる官能基、又は、水素原子を示す。但し、水素原子を有する前記官能基は、該水素原子が置換基で置換されていてもよい。複数あるRは、同一であっても異なっていてもよい。
In the present invention, a group derived from a structure represented by the following general formula (1) and an optional additional group different from the above group are introduced by the above condensation polymerization. the number of moles of group and the optional additional groups derived from structures represented by 1), when the N 1 and N M, respectively, N 1 and N M satisfies the following formula (I), the conjugated system high A molecular compound (hereinafter sometimes referred to as “conjugated polymer compound Z”) is provided.
0.01 ≦ N 1 × 100 / (N 1 + N M ) ≦ 20 (I)
Figure JPOXMLDOC01-appb-C000008
In general formula (1), R x represents an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, a halogen atom, an acyl group, or an acyloxy group. A functional group selected from the group consisting of a monovalent heterocyclic group, a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or hydrogen Indicates an atom. However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent. A plurality of R x may be the same or different.
 本発明の共役系高分子化合物は、上記一般式(1)で表される構造から誘導される基を所定量有していることにより、有機発光素子に用いることで有機発光素子の電気的特性を一層向上させることができる。 Since the conjugated polymer compound of the present invention has a predetermined amount of groups derived from the structure represented by the general formula (1), the electrical characteristics of the organic light emitting device can be obtained by using it in the organic light emitting device. Can be further improved.
 上記共役系高分子化合物は、上記一般式(1)で表される構造から誘導される基が、下記式(2)、式(3)、式(4)、式(5)、式(6)又は式(7)で表される基とすることができる。下記式中、Rは、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、1価の複素環チオ基、イミン残基、アミド化合物残基、酸イミド残基、カルボキシル基、ニトロ基及びシアノ基からなる群より選ばれる官能基、又は、水素原子を示す。但し、水素原子を有する前記官能基は、該水素原子が置換基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000009
In the conjugated polymer compound, a group derived from the structure represented by the general formula (1) has the following formula (2), formula (3), formula (4), formula (5), formula (6). Or a group represented by formula (7). In the following formula, R x represents an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, a halogen atom, an acyl group, an acyloxy group, or a monovalent group. A functional group selected from the group consisting of a heterocyclic group, a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or a hydrogen atom . However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent.
Figure JPOXMLDOC01-appb-C000009
 上記共役系高分子化合物は、上記任意追加基として、下記式(A)、(B)及び(C)で表される基のうち、少なくとも一つの基を含むことが好ましい。下記式中、Ar及びArは、それぞれ独立に、アリーレン基、6員環以上の環から構成される2価の複素環基及び金属錯体構造を有する2価の基からなる群より選ばれる官能基を示し、Ar、Ar及びArは、それぞれ独立に、アリーレン基及び6員環以上の環から構成される2価の複素環基からなる群より選ばれる官能基を示す。R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基及びアリールアルキル基からなる群より選ばれる官能基を示し、Xは-CR=CR-及び-C≡C-からなる群より選ばれる官能基を示す。R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群より選ばれる官能基を示す。aは、0又は1である。但し、水素原子を有する前記官能基は、該水素原子が置換基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000010
The conjugated polymer compound preferably contains at least one group among the groups represented by the following formulas (A), (B), and (C) as the optional additional group. In the following formulae, Ar 1 and Ar 5 are each independently selected from the group consisting of an arylene group, a divalent heterocyclic group composed of a 6-membered ring or more, and a divalent group having a metal complex structure. Ar 2 , Ar 3 and Ar 4 each independently represent a functional group selected from the group consisting of an arylene group and a divalent heterocyclic group composed of a 6-membered ring or more. R 1 and R 2 each independently represents a functional group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group and an arylalkyl group, and X 1 represents —CR 3 ═CR 4 A functional group selected from the group consisting of — and —C≡C— is shown. R 3 and R 4 each independently represent a functional group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group, a carboxyl group, a substituted carboxyl group, and a cyano group. a is 0 or 1. However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent.
Figure JPOXMLDOC01-appb-C000010
 上記共役系高分子化合物が、上記式(A)、(B)又は(C)で表される任意追加基のうち、少なくとも一つの基を含むことにより、電荷輸送及び電荷注入効率に優れた共役系高分子化合物となる。また、有機発光素子に用いたときに、輝度寿命を一層向上させることができる。 Conjugation excellent in charge transport and charge injection efficiency when the conjugated polymer compound contains at least one of the optional additional groups represented by the formula (A), (B) or (C). It becomes a high molecular compound. In addition, when used in an organic light emitting device, the luminance life can be further improved.
 上記共役系高分子化合物は、上記式(A)、(B)、(C)で表される任意追加基のモル数及びこれら以外の任意追加基のモル数を、それぞれN、N、N及びNM’としたときに、N、N、N、N及びNM’が下記式(II)を満たすことが好ましい。
 40≦(N+N+N)×100/(N+N+N+N+NM’)<100  (II)
The conjugated polymer compound has the number of moles of optional additional groups represented by the above formulas (A), (B), and (C) and the number of moles of optional additional groups other than these, N A , N B , When N C and N M ′ are set, N 1 , N A , N B , N C and N M ′ preferably satisfy the following formula (II).
40 ≦ (N A + N B + N C) × 100 / (N 1 + N A + N B + N C + N M ') <100 (II)
 上記共役系高分子化合物は、上記式(A)で表される任意追加基を含むことが好ましい。これにより、電子輸送及び電子注入効率に優れた共役系高分子化合物となり、有機発光素子の電荷輸送層(特に電子輸送層)に好適に用いることができる。上記共役系高分子化合物は、上記式(B)で表される任意追加基を含むことが好ましい。これにより、正孔輸送及び正孔注入効率に優れた共役系高分子化合物となり、有機発光素子の電荷輸送層(特に正孔輸送層)に好適に用いることができる。上記共役系高分子化合物は、上記式(A)で表される任意追加基及び上記式(B)で表される任意追加基を含むことが好ましい。これにより、正孔と電子の結合により励起エネルギーを効率良く形成することができる共役系高分子化合物となり、有機発光素子の発光層に好適に用いることができる。 The conjugated polymer compound preferably contains an optional additional group represented by the above formula (A). Thereby, it becomes a conjugated high molecular compound excellent in electron transport and electron injection efficiency, and can be used suitably for the charge transport layer (especially electron transport layer) of an organic light emitting element. The conjugated polymer compound preferably includes an arbitrary additional group represented by the formula (B). Thereby, it becomes a conjugated polymer compound excellent in hole transport and hole injection efficiency, and can be suitably used for a charge transport layer (particularly, a hole transport layer) of an organic light emitting device. The conjugated polymer compound preferably includes an optional additional group represented by the formula (A) and an optional additional group represented by the formula (B). Thereby, it becomes a conjugated high molecular compound which can form excitation energy efficiently by the coupling | bonding of a hole and an electron, and can be used suitably for the light emitting layer of an organic light emitting element.
 本発明はまた、発光材料、正孔輸送材料及び電子輸送材料からなる群より選ばれる少なくとも一種の材料と、上記共役系高分子化合物と、を含む組成物を提供する。本発明の組成物は、有機発光素子の発光層、電荷(正孔又は電子を意味し、以下、同様である。)輸送層又は電荷注入層の製造に用いることができ、製造効率を向上させることができる。 The present invention also provides a composition comprising at least one material selected from the group consisting of a light emitting material, a hole transport material and an electron transport material, and the conjugated polymer compound. The composition of the present invention can be used for production of a light emitting layer, a charge (meaning holes or electrons, hereinafter the same) transport layer or charge injection layer of an organic light emitting device, and improves production efficiency. be able to.
 本発明はまた、上記共役系高分子化合物と、有機溶媒と、を含むインク組成物を提供する。インク組成物は有機溶媒を含むため、上記共役系高分子化合物を含む薄膜を積層・成膜させるにあたり、インク組成物を塗布した後、乾燥により有機溶媒を除去するだけでよく、製造上非常に有利である。 The present invention also provides an ink composition comprising the conjugated polymer compound and an organic solvent. Since the ink composition contains an organic solvent, in laminating and forming the thin film containing the conjugated polymer compound, it is only necessary to remove the organic solvent by drying after applying the ink composition. It is advantageous.
 本発明はまた、共役系高分子化合物Zを含有する、有機発光素子X及び有機発光素子Yを提供する。 The present invention also provides an organic light emitting device X and an organic light emitting device Y containing a conjugated polymer compound Z.
 本発明はさらに、上記有機発光素子を備えた面状光源及び表示装置を提供する。上記有機発光素子は、輝度寿命が顕著に向上しているため、耐久性に優れた面状光源及び表示装置とすることができる。 The present invention further provides a planar light source and a display device provided with the organic light emitting device. Since the above-mentioned organic light emitting device has a remarkably improved luminance life, a planar light source and a display device excellent in durability can be obtained.
 本発明の有機発光素子は、輝度寿命が向上した素子である。また、本発明の共役系高分子化合物は、有機発光素子の電荷注入層、電荷輸送層又は発光層に含有させることで有機発光素子の輝度寿命を向上させることが可能である。 The organic light emitting device of the present invention is a device having an improved luminance life. In addition, the luminance life of the organic light emitting device can be improved by adding the conjugated polymer compound of the present invention to the charge injection layer, the charge transport layer or the light emitting layer of the organic light emitting device.
 更に、本発明によれば、上記共役系高分子化合物を含有する組成物及びインク組成物、上記共役系高分子化合物、並びに、上記有機発光素子を有する面状光源、表示装置等を提供することができる。 Furthermore, according to the present invention, there are provided a composition and an ink composition containing the conjugated polymer compound, a conjugated polymer compound, a planar light source having the organic light emitting device, a display device, and the like. Can do.
一実施形態に係る有機薄膜トランジスタの模式断面図である。It is a schematic cross section of the organic thin-film transistor which concerns on one Embodiment. 一実施形態に係る有機薄膜トランジスタの模式断面図である。It is a schematic cross section of the organic thin-film transistor which concerns on one Embodiment. 一実施形態に係る有機発光素子(構成i)の模式断面図である。It is a schematic cross section of the organic light emitting element (configuration i) according to one embodiment. 一実施形態に係る有機発光素子(構成e)の模式断面図である。It is a schematic cross section of the organic light emitting element (configuration e) according to one embodiment. 一実施形態に係る面状光源の模式断面図である。It is a schematic cross section of the planar light source which concerns on one Embodiment.
 以下、本発明の好適な実施形態について詳細に説明する。なお、以下の説明において、tert-ブチル基を「t-Bu」、フェニル基を「Ph」とそれぞれ表記する場合がある。 Hereinafter, preferred embodiments of the present invention will be described in detail. In the following description, the tert-butyl group may be expressed as “t-Bu” and the phenyl group as “Ph”.
<用語の説明>
 以下、本明細書において共通して用いられる用語について、必要に応じて具体例を挙げて説明する。
<Explanation of terms>
Hereinafter, terms commonly used in this specification will be described with specific examples as necessary.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 「C~C」(x、yはx<yを満たす正の整数である。)という用語は、この用語の直後に記載された官能基名に該当する部分構造の炭素原子数が、x~y個であることを意味する。即ち、「C~C」の直後に記載された有機基が、複数の官能基名を組み合わせて命名された有機基(例えば、C~Cアルコキシフェニル基)である場合、複数の官能基名のうち「C~C」の直後に記載された官能基名(例えば、アルコキシ)に該当する部分構造の炭素原子数が、x~y個であることを意味する。例えば、「C~C12アルキル基」は炭素原子数が1~12個であるアルキル基を意味し、「C~C12アルコキシフェニル基」は「炭素原子数が1~12個であるアルコキシ基」を有するフェニル基を意味する。 The term “C x -C y ” (where x and y are positive integers satisfying x <y) indicates that the number of carbon atoms in the partial structure corresponding to the functional group name described immediately after this term is It means x to y. That is, when the organic group described immediately after “C x -C y ” is an organic group named by combining a plurality of functional group names (for example, C x -C y alkoxyphenyl group), This means that the number of carbon atoms in the partial structure corresponding to the functional group name (for example, alkoxy) described immediately after “C x -C y ” among the functional group names is x to y. For example, “C 1 -C 12 alkyl group” means an alkyl group having 1 to 12 carbon atoms, and “C 1 -C 12 alkoxyphenyl group” means “1 to 12 carbon atoms”. It means a phenyl group having an “alkoxy group”.
 アルキル基は、置換基を有していてもよく、直鎖状アルキル基、分岐状アルキル基及び環状アルキル基(即ち、シクロアルキル基)のいずれであってもよい。アルキル基としては、直鎖状アルキル基及び環状アルキル基が好ましく、非置換のアルキル基及びハロゲン原子等で置換されたアルキル基が好ましい。 The alkyl group may have a substituent, and may be any of a linear alkyl group, a branched alkyl group, and a cyclic alkyl group (that is, a cycloalkyl group). As the alkyl group, a linear alkyl group and a cyclic alkyl group are preferable, and an unsubstituted alkyl group and an alkyl group substituted with a halogen atom or the like are preferable.
 置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、複素環チオ基、イミン残基、アミド化合物残基、酸イミド残基、カルボキシル基、ニトロ基、シアノ基等が挙げられ、これらの基に含まれる水素原子の一部又は全部は、フッ素原子で置換されていてもよい(以下、「置換基」というときは、特記しない限り、同様の基を例示できる。)。 Examples of the substituent include alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic ring Groups, heterocyclic thio groups, imine residues, amide compound residues, acid imide residues, carboxyl groups, nitro groups, cyano groups, etc., and some or all of the hydrogen atoms contained in these groups are fluorine It may be substituted with an atom (hereinafter referred to as “substituent” can be exemplified by the same group unless otherwise specified).
 置換基を有していてもよいアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ドデシル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。 Examples of the alkyl group which may have a substituent include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isoamyl group, and a hexyl group. Cyclohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, dodecyl group, trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl Group, perfluorooctyl group and the like.
 アルキル基の炭素原子数は、直鎖状アルキル基又は分岐状アルキル基である場合、1~20であることが好ましく、1~15であることがより好ましく、1~12であることがさらに好ましく、環状アルキル基である場合、3~20であることが好ましく、3~15であることがより好ましく、3~12であることがさらに好ましい。C~C12アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等が挙げられる。 When the alkyl group is a linear alkyl group or a branched alkyl group, it is preferably 1 to 20, more preferably 1 to 15, and still more preferably 1 to 12. In the case of a cyclic alkyl group, it is preferably 3 to 20, more preferably 3 to 15, and still more preferably 3 to 12. Examples of the C 1 to C 12 alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, Examples include heptyl group, octyl group, nonyl group, decyl group, dodecyl group and the like.
 アルコキシ基は、置換基を有していてもよく、直鎖状アルコキシ基、分岐状アルコキシ基及び環状アルコキシ基(即ち、シクロアルコキシ基)のいずれであってもよい。アルコキシ基としては、直鎖状アルコキシ基及び環状アルコキシ基が好ましく、非置換のアルコキシ基、及び、ハロゲン原子、アルコキシ基等で置換されたアルコキシ基が好ましい。 The alkoxy group may have a substituent, and may be any of a linear alkoxy group, a branched alkoxy group, and a cyclic alkoxy group (that is, a cycloalkoxy group). As the alkoxy group, a linear alkoxy group and a cyclic alkoxy group are preferable, and an unsubstituted alkoxy group and an alkoxy group substituted with a halogen atom, an alkoxy group, or the like are preferable.
 置換基を有していてもよいアルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ドデシルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、メトキシメチルオキシ基、2-メトキシエチルオキシ基等が挙げられる。 Examples of the alkoxy group which may have a substituent include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy Group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, dodecyloxy group, trifluoromethoxy group, pentafluoroethoxy group, par Examples thereof include a fluorobutoxy group, a perfluorohexyloxy group, a perfluorooctyloxy group, a methoxymethyloxy group, and a 2-methoxyethyloxy group.
 アルコキシ基の炭素原子数は、直鎖状アルコキシ基又は分岐状アルコキシ基である場合、好ましくは1~20、より好ましくは1~15、さらに好ましくは1~12であり、環状アルコキシ基である場合、好ましくは3~20であり、より好ましくは3~15であり、さらに好ましくは3~12である。C~C12アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ドデシルオキシ基等が挙げられる。 The number of carbon atoms of the alkoxy group is preferably 1-20, more preferably 1-15, still more preferably 1-12 when it is a linear alkoxy group or branched alkoxy group, and when it is a cyclic alkoxy group Preferably, it is 3 to 20, more preferably 3 to 15, and still more preferably 3 to 12. C 1 -C 12 alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, cyclohexyloxy Group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, dodecyloxy group and the like.
 アルキルチオ基は、置換基を有していてもよく、直鎖状アルキルチオ基、分子鎖状アルキルチオ基及び環状アルキルチオ基(即ち、シクロアルキルチオ基)のいずれであってもよい。アルキルチオ基としては、直鎖状アルキルチオ基及び環状アルキルチオ基が好ましく、非置換のアルキルチオ基及びハロゲン原子等で置換されたアルキルチオ基が好ましい。 The alkylthio group may have a substituent, and may be any of a linear alkylthio group, a molecular chain alkylthio group, and a cyclic alkylthio group (that is, a cycloalkylthio group). As the alkylthio group, a linear alkylthio group and a cyclic alkylthio group are preferable, and an unsubstituted alkylthio group and an alkylthio group substituted with a halogen atom or the like are preferable.
 置換基を有していてもよいアルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ドデシルチオ基、トリフルオロメチルチオ基等が挙げられる。 Examples of the alkylthio group which may have a substituent include a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a butylthio group, an isobutylthio group, a sec-butylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, Examples include cyclohexylthio group, heptylthio group, octylthio group, 2-ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, dodecylthio group, trifluoromethylthio group and the like.
 アルキルチオ基の炭素原子数は、直鎖状アルキルチオ基又は分岐状アルキルチオ基である場合、好ましくは1~20、より好ましくは1~15、さらに好ましくは1~12であり、環状アルキルチオ基である場合、好ましくは3~20であり、より好ましくは3~15であり、さらに好ましくは3~12である。C~C12アルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ドデシルチオ基等が挙げられる。 When the alkylthio group is a linear alkylthio group or a branched alkylthio group, it is preferably 1 to 20, more preferably 1 to 15, and still more preferably 1 to 12, and when it is a cyclic alkylthio group Preferably, it is 3 to 20, more preferably 3 to 15, and still more preferably 3 to 12. Examples of the C 1 -C 12 alkylthio group include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, Examples include heptylthio group, octylthio group, 2-ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, dodecylthio group and the like.
 アリール基は、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子1個を除いた残りの原子団であり、置換基を有していてもよい。アリール基としては、非置換のアリール基、及び、ハロゲン原子、アルコキシ基、アルキル基等で置換されたアリール基が好ましい。アリール基としては、ベンゼン環を有する基、縮合環を有する基、並びに、ベンゼン環及び/又は縮合環が2個以上、単結合又は2価の有機基(例えば、ビニレン基等のアルキレン基)を介して結合した基等が含まれる。アリール基の炭素原子数は、好ましくは6~60、より好ましくは6~48、さらに好ましくは6~30である。 An aryl group is a remaining atomic group obtained by removing one hydrogen atom bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon, and may have a substituent. As the aryl group, an unsubstituted aryl group and an aryl group substituted with a halogen atom, an alkoxy group, an alkyl group or the like are preferable. The aryl group includes a group having a benzene ring, a group having a condensed ring, and two or more benzene rings and / or condensed rings, a single bond or a divalent organic group (for example, an alkylene group such as a vinylene group). And the like bonded through the like. The number of carbon atoms of the aryl group is preferably 6 to 60, more preferably 6 to 48, and still more preferably 6 to 30.
 置換基を有していてもよいアリール基としては、フェニル基、C~C12アルコキシフェニル基、C~C12アルキルフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、2-フルオレニル基、ペンタフルオロフェニル基、ビフェニリル基、C~C12アルコキシビフェニリル基、C~C12アルキルビフェニリル基等が挙げられ、中でも、フェニル基、C~C12アルコキシフェニル基、C~C12アルキルフェニル基、ビフェニリル基、C~C12アルコキシビフェニリル基、C~C12アルキルビフェニリル基が好ましい。 Examples of the aryl group which may have a substituent include a phenyl group, a C 1 -C 12 alkoxyphenyl group, a C 1 -C 12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 2-fluorenyl group, pentafluorophenyl group, biphenylyl group, C 1 -C 12 alkoxybiphenylyl group, C 1 -C 12 alkylbiphenylyl group, etc. A C 1 -C 12 alkoxyphenyl group, a C 1 -C 12 alkylphenyl group, a biphenylyl group, a C 1 -C 12 alkoxybiphenylyl group, and a C 1 -C 12 alkylbiphenylyl group are preferred.
 C~C12アルコキシフェニル基としては、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブチルオキシフェニル基、イソブチルオキシフェニル基、tert-ブチルオキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、オクチルオキシフェニル基等が挙げられる。 C 1 -C 12 alkoxyphenyl groups include methoxyphenyl group, ethoxyphenyl group, propyloxyphenyl group, isopropyloxyphenyl group, butyloxyphenyl group, isobutyloxyphenyl group, tert-butyloxyphenyl group, pentyloxyphenyl group Hexyloxyphenyl group, octyloxyphenyl group and the like.
 C~C12アルキルフェニル基としては、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、tert-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基等が挙げられる。 C 1 -C 12 alkylphenyl groups include methylphenyl, ethylphenyl, dimethylphenyl, propylphenyl, mesityl, isopropylphenyl, butylphenyl, isobutylphenyl, tert-butylphenyl, pentylphenyl Group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group, dodecylphenyl group and the like.
 アリールオキシ基は、置換基を有していてもよく、好ましくは非置換のアリールオキシ基、及び、ハロゲン原子、アルコキシ基、アルキル基等で置換されたアリールオキシ基である。アリールオキシ基の炭素原子数は、好ましくは6~60、より好ましくは6~48、さらに好ましくは6~30である。 The aryloxy group may have a substituent, and is preferably an unsubstituted aryloxy group and an aryloxy group substituted with a halogen atom, an alkoxy group, an alkyl group or the like. The number of carbon atoms of the aryloxy group is preferably 6 to 60, more preferably 6 to 48, and still more preferably 6 to 30.
 置換基を有していてもよいアリールオキシ基としては、フェノキシ基、C~C12アルコキシフェノキシ基、C~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基等が挙げられ、中でもC~C12アルコキシフェノキシ基、C~C12アルキルフェノキシ基が好ましい。 The aryloxy group which may have a substituent includes a phenoxy group, a C 1 -C 12 alkoxyphenoxy group, a C 1 -C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, pentafluoro Examples thereof include a phenyloxy group, and among them, a C 1 to C 12 alkoxyphenoxy group and a C 1 to C 12 alkylphenoxy group are preferable.
 C~C12アルコキシフェノキシ基としては、メトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブチルオキシフェノキシ基、イソブチルオキシフェノキシ基、tert-ブチルオキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、オクチルオキシフェノキシ基等が挙げられる。 C 1 -C 12 alkoxyphenoxy groups include methoxyphenoxy group, ethoxyphenoxy group, propyloxyphenoxy group, isopropyloxyphenoxy group, butyloxyphenoxy group, isobutyloxyphenoxy group, tert-butyloxyphenoxy group, pentyloxyphenoxy group Hexyloxyphenoxy group, octyloxyphenoxy group and the like.
 C~C12アルキルフェノキシ基としては、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5-トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、sec-ブチルフェノキシ基、tert-ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、ドデシルフェノキシ基等が挙げられる。 Examples of the C 1 -C 12 alkylphenoxy group include a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, a propylphenoxy group, a 1,3,5-trimethylphenoxy group, a methylethylphenoxy group, an isopropylphenoxy group, a butylphenoxy group, Examples include isobutylphenoxy, sec-butylphenoxy, tert-butylphenoxy, pentylphenoxy, isoamylphenoxy, hexylphenoxy, heptylphenoxy, octylphenoxy, nonylphenoxy, decylphenoxy, dodecylphenoxy It is done.
 アリールチオ基は、置換基を有していてもよく、好ましくは非置換のアリールチオ基、及び、ハロゲン原子、アルコキシ基、アルキル基等で置換されたアリールチオ基である。アリールチオ基の炭素原子数は、好ましくは6~60、より好ましくは6~48、さらに好ましくは6~30である。置換基を有していてもよいアリールチオ基としては、フェニルチオ基、C~C12アルコキシフェニルチオ基、C~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、ペンタフルオロフェニルチオ基等が挙げられる。 The arylthio group may have a substituent, and is preferably an unsubstituted arylthio group and an arylthio group substituted with a halogen atom, an alkoxy group, an alkyl group, or the like. The number of carbon atoms of the arylthio group is preferably 6 to 60, more preferably 6 to 48, and still more preferably 6 to 30. Examples of the arylthio group which may have a substituent include a phenylthio group, a C 1 to C 12 alkoxyphenylthio group, a C 1 to C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and pentafluorophenyl. A thio group etc. are mentioned.
 アリールアルキル基は、置換基を有していてもよく、好ましくは、非置換のアリールアルキル基、及び、ハロゲン原子、アルコキシ基、アルキル基等で置換されたアリールアルキル基である。アリールアルキル基の炭素原子数は、好ましくは7~60、より好ましくは7~48、さらに好ましくは7~30である。置換基を有していてもよいアリールアルキル基としては、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基、1-ナフチル-C~C12アルキル基、2-ナフチル-C~C12アルキル基等が挙げられる。 The arylalkyl group may have a substituent, and is preferably an unsubstituted arylalkyl group and an arylalkyl group substituted with a halogen atom, an alkoxy group, an alkyl group, or the like. The number of carbon atoms of the arylalkyl group is preferably 7 to 60, more preferably 7 to 48, and still more preferably 7 to 30. As the arylalkyl group which may have a substituent, a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C Examples thereof include a 1 to C 12 alkyl group, a 1-naphthyl-C 1 to C 12 alkyl group, and a 2-naphthyl-C 1 to C 12 alkyl group.
 アリールアルコキシ基は、置換基を有していてもよく、好ましくは非置換のアリールアルコキシ基、及び、ハロゲン原子、アルコキシ基、アルキル基等で置換されたアリールアルコキシ基である。アリールアルコキシ基の炭素原子数は、好ましくは7~60、より好ましくは7~48、さらに好ましくは7~30である。置換基を有していてもよいアリールアルコキシ基としては、フェニル-C~C12アルコキシ基、C~C12アルコキシフェニル-C~C12アルコキシ基、C~C12アルキルフェニル-C~C12アルコキシ基、1-ナフチル-C~C12アルコキシ基、2-ナフチル-C~C12アルコキシ基等が挙げられる。 The arylalkoxy group may have a substituent, and is preferably an unsubstituted arylalkoxy group and an arylalkoxy group substituted with a halogen atom, an alkoxy group, an alkyl group, or the like. The number of carbon atoms of the arylalkoxy group is preferably 7 to 60, more preferably 7 to 48, and still more preferably 7 to 30. The arylalkoxy group which may have a substituent includes phenyl-C 1 -C 12 alkoxy group, C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, C 1 -C 12 alkylphenyl-C Examples thereof include 1 to C 12 alkoxy groups, 1-naphthyl-C 1 to C 12 alkoxy groups, and 2-naphthyl-C 1 to C 12 alkoxy groups.
 アリールアルキルチオ基は、置換基を有していてもよく、好ましくは非置換のアリールアルキルチオ基、及び、ハロゲン原子、アルコキシ基、アルキル基等で置換されたアリールアルキルチオ基である。アリールアルキルチオ基の炭素原子数は、好ましくは7~60、より好ましくは7~48、さらに好ましくは7~30である。置換基を有していてもよいアリールアルキルチオ基としては、フェニル-C~C12アルキルチオ基、C~C12アルコキシフェニル-C~C12アルキルチオ基、C~C12アルキルフェニル-C~C12アルキルチオ基、1-ナフチル-C~C12アルキルチオ基、2-ナフチル-C~C12アルキルチオ基等が挙げられる。 The arylalkylthio group may have a substituent, and is preferably an unsubstituted arylalkylthio group and an arylalkylthio group substituted with a halogen atom, an alkoxy group, an alkyl group or the like. The number of carbon atoms of the arylalkylthio group is preferably 7 to 60, more preferably 7 to 48, and still more preferably 7 to 30. The arylalkylthio group which may have a substituent includes phenyl-C 1 -C 12 alkylthio group, C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylthio group, C 1 -C 12 alkylphenyl-C Examples thereof include 1 to C 12 alkylthio groups, 1-naphthyl-C 1 to C 12 alkylthio groups, and 2-naphthyl-C 1 to C 12 alkylthio groups.
 アルケニル基は、置換基を有していてもよく、直鎖状アルケニル基、分岐状アルケニル基及び環状アルケニル基のいずれであってもよい。アルケニル基の炭素原子数は、好ましくは2~20、より好ましくは2~15、さらに好ましくは2~10である。アルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基等が挙げられる。 The alkenyl group may have a substituent, and may be any of a linear alkenyl group, a branched alkenyl group, and a cyclic alkenyl group. The number of carbon atoms of the alkenyl group is preferably 2 to 20, more preferably 2 to 15, and still more preferably 2 to 10. Examples of the alkenyl group include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 1-pentenyl, 2-pentenyl, 1-hexenyl, 2-hexenyl, An octenyl group etc. are mentioned.
 アリールアルケニル基は、置換基を有していてもよく、好ましくは非置換のアリールアルケニル基、及び、ハロゲン原子、アルコキシ基、アルキル基等で置換されたアリールアルケニル基である。アリールアルケニル基の炭素原子数は、好ましくは8~60、より好ましくは8~48、さらに好ましくは8~30である。置換基を有していてもよいアリールアルケニル基としては、フェニル-C~C12アルケニル基、C~C12アルコキシフェニル-C~C12アルケニル基、C~C12アルキルフェニル-C~C12アルケニル基、1-ナフチル-C~C12アルケニル基、2-ナフチル-C~C12アルケニル基等が挙げられ、中でもC~C12アルコキシフェニル-C~C12アルケニル基、C~C12アルキルフェニル-C~C12アルケニル基が好ましい。C~C12アルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基等が挙げられる。 The arylalkenyl group may have a substituent, and is preferably an unsubstituted arylalkenyl group and an arylalkenyl group substituted with a halogen atom, an alkoxy group, an alkyl group, or the like. The number of carbon atoms of the arylalkenyl group is preferably 8 to 60, more preferably 8 to 48, and still more preferably 8 to 30. The arylalkenyl group which may have a substituent includes phenyl-C 2 -C 12 alkenyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, C 1 -C 12 alkylphenyl-C 2 to C 12 alkenyl groups, 1-naphthyl-C 2 to C 12 alkenyl groups, 2-naphthyl-C 2 to C 12 alkenyl groups, and the like, among others, C 1 to C 12 alkoxyphenyl-C 2 to C 12 alkenyl are mentioned. The group C 1 -C 12 alkylphenyl-C 2 -C 12 alkenyl is preferred. C 2 -C 12 alkenyl groups include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 1-pentenyl, 2-pentenyl, 1-hexenyl, 2- Hexenyl group, 1-octenyl group and the like can be mentioned.
 アルキニル基は、置換基を有していてもよく、直鎖状アルキニル基、分岐状アルキニル基及び環状アルキニル基のいずれであってもよい。アルキニル基の炭素原子数は、直鎖状アルキニル基及び分岐状アルキニル基では、好ましくは2~20、より好ましくは2~15、さらに好ましくは2~10であり、環状アルキニル基では、好ましくは10~20、より好ましくは10~15である。置換基を有していてもよいアルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、1-ペンチニル基、2-ペンチニル基、1-ヘキシニル基、2-ヘキシニル基、1-オクチニル基及びアリールアルキニル基等が挙げられる。 The alkynyl group may have a substituent, and may be any of a linear alkynyl group, a branched alkynyl group, and a cyclic alkynyl group. The number of carbon atoms of the alkynyl group is preferably 2 to 20, more preferably 2 to 15, more preferably 2 to 10 for a linear alkynyl group and a branched alkynyl group, and preferably 10 to 10 for a cyclic alkynyl group. -20, more preferably 10-15. Examples of the alkynyl group which may have a substituent include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group and 1-hexynyl. Group, 2-hexynyl group, 1-octynyl group, arylalkynyl group and the like.
 アリールアルキニル基は、置換基を有していてもよく、好ましくは非置換のアリールアルキニル基、及び、ハロゲン原子、アルコキシ基、アルキル基等で置換されたアリールアルキニル基である。アリールアルキニル基の炭素原子数は、好ましくは8~60、より好ましくは8~48、さらに好ましくは8~30である。置換基を有していてもよいアリールアルキニル基としては、フェニル-C~C12アルキニル基、C~C12アルコキシフェニル-C~C12アルキニル基、C~C12アルキルフェニル-C~C12アルキニル基、1-ナフチル-C~C12アルキニル基、2-ナフチル-C~C12アルキニル基等が挙げられ、中でもC~C12アルコキシフェニル-C~C12アルキニル基、C~C12アルキルフェニル-C~C12アルキニル基が好ましい。C~C12アルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、1-ペンチニル基、2-ペンチニル基、1-ヘキシニル基、2-ヘキシニル基、1-オクチニル基等が挙げられる。 The arylalkynyl group may have a substituent, and is preferably an unsubstituted arylalkynyl group and an arylalkynyl group substituted with a halogen atom, an alkoxy group, an alkyl group, or the like. The number of carbon atoms of the arylalkynyl group is preferably 8 to 60, more preferably 8 to 48, and still more preferably 8 to 30. The arylalkynyl group which may have a substituent includes phenyl-C 2 -C 12 alkynyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, C 1 -C 12 alkylphenyl-C 2 to C 12 alkynyl groups, 1-naphthyl-C 2 to C 12 alkynyl groups, 2-naphthyl-C 2 to C 12 alkynyl groups, etc., among others, C 1 to C 12 alkoxyphenyl-C 2 to C 12 alkynyl The group C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl is preferred. C 2 -C 12 alkynyl groups include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 1-hexynyl, 2- Examples include a hexynyl group and a 1-octynyl group.
 1価の複素環基は、複素環式化合物から水素原子1個を除いた残りの原子団であり、置換基を有していてもよい。1価の複素環基としては、非置換の1価の複素環基、及び、アルキル基等の置換基で置換された1価の複素環基が好ましい。1価の複素環基の炭素原子数は、置換基の炭素原子数を含めずに、好ましくは4~60、より好ましくは4~30、さらに好ましくは4~20である。複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含むものをいう。置換基を有していてもよい1価の複素環基としては、チエニル基、C~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C~C12アルキルピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基等が挙げられ、中でもチエニル基、C~C12アルキルチエニル基、ピリジル基、C~C12アルキルピリジル基が好ましい。なお、1価の複素環基としては、1価の芳香族複素環基が好ましい。 The monovalent heterocyclic group is a remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound, and may have a substituent. The monovalent heterocyclic group is preferably an unsubstituted monovalent heterocyclic group or a monovalent heterocyclic group substituted with a substituent such as an alkyl group. The number of carbon atoms of the monovalent heterocyclic group is preferably 4 to 60, more preferably 4 to 30, and further preferably 4 to 20, excluding the number of carbon atoms of the substituent. Heterocyclic compounds are not only carbon atoms but also oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, silicon atoms, selenium atoms as elements constituting the ring among organic compounds having a cyclic structure. , And those containing hetero atoms such as tellurium atoms and arsenic atoms. Examples of the monovalent heterocyclic group which may have a substituent include a thienyl group, a C 1 to C 12 alkyl thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a C 1 to C 12 alkyl pyridyl group, and a pyridazinyl group. , pyrimidinyl group, pyrazinyl group, triazinyl group, pyrrolidyl group, piperidyl group, quinolyl group, isoquinolyl group and the like, among which thienyl group, C 1 ~ C 12 alkyl thienyl group, a pyridyl group, C 1 ~ C 12 alkyl pyridyl group Is preferred. The monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
 1価の複素環チオ基は、チオール基の水素原子が上記1価の複素環基で置換された基であり、置換基を有していてもよい。1価の複素環チオ基としては、例えば、ピリジルチオ基、ピリダジニルチオ基、ピリミジニルチオ基、ピラジニルチオ基、トリアジニルチオ基等のヘテロアリールチオ基が挙げられる。 The monovalent heterocyclic thio group is a group in which a hydrogen atom of a thiol group is substituted with the above monovalent heterocyclic group, and may have a substituent. Examples of the monovalent heterocyclic thio group include heteroarylthio groups such as a pyridylthio group, a pyridazinylthio group, a pyrimidinylthio group, a pyrazinylthio group, and a triazinylthio group.
 アミノ基は、置換基を有していてもよく、好ましくは非置換のアミノ基並びにアルキル基、アリール基、アリールアルキル基及び1価の複素環基から選ばれる1又は2個の置換基で置換されたアミノ基(以下、「置換アミノ基」という。)である。該置換基はさらに置換基(以下、有機基の有する置換基が、さらに有する置換基を、「二次置換基」という場合がある。)を有していてもよい。置換アミノ基の炭素原子数は、二次置換基の炭素原子数を含めずに、好ましくは1~60、より好ましくは2~48、さらに好ましくは2~40である。 The amino group may have a substituent, and is preferably substituted with an unsubstituted amino group and 1 or 2 substituents selected from an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group. Amino group (hereinafter referred to as “substituted amino group”). The substituent may further have a substituent (hereinafter, the substituent that the organic group further has may be referred to as “secondary substituent”). The number of carbon atoms of the substituted amino group is preferably 1 to 60, more preferably 2 to 48, and still more preferably 2 to 40, not including the number of carbon atoms of the secondary substituent.
 置換アミノ基としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec-ブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ドデシルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C~C12アルコキシフェニルアミノ基、ビス(C~C12アルコキシフェニル)アミノ基、C~C12アルキルフェニルアミノ基、ビス(C~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジニルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、フェニル-C~C12アルキルアミノ基、C~C12アルコキシフェニル-C~C12アルキルアミノ基、ジ(C~C12アルコキシフェニル-C~C12アルキル)アミノ基、C~C12アルキルフェニル-C~C12アルキルアミノ基、ジ(C~C12アルキルフェニル-C~C12アルキル)アミノ基、1-ナフチル-C~C12アルキルアミノ基、2-ナフチル-C~C12アルキルアミノ基等が挙げられる。 Examples of substituted amino groups include methylamino, dimethylamino, ethylamino, diethylamino, propylamino, dipropylamino, isopropylamino, diisopropylamino, butylamino, isobutylamino, sec-butylamino Group, tert-butylamino group, pentylamino group, hexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, dodecylamino group, cyclopentyl amino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, C 1 ~ C 12 alkoxyphenyl amino group, bis (C 1 C 12 alkoxyphenyl) amino group, C 1 ~ C 12 alkyl phenyl group, bis (C 1 ~ C 12 alkylphenyl) amino groups, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino Group, pyridazinylamino group, pyrimidinylamino group, pyrazinylamino group, triazinylamino group, phenyl-C 1 -C 12 alkylamino group, C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylamino group, Di (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) amino group, C 1 -C 12 alkylphenyl-C 1 -C 12 alkylamino group, di (C 1 -C 12 alkylphenyl-C 1- C 12 alkyl) amino groups, 1-naphthyl -C 1 ~ C 12 alkyl group, - naphthyl -C 1 ~ C 12 alkylamino groups and the like.
 シリル基は、置換基を有していてもよく、好ましくは非置換のシリル基、並びに、アルキル基、アリール基、アリールアルキル基及び1価の複素環基から選ばれる1~3個の置換基で置換されたシリル基(以下、「置換シリル基」という。)である。置換基は二次置換基を有していてもよい。置換シリル基の炭素原子数は、二次置換基の炭素原子数を含めないで、好ましくは1~60、より好ましくは3~48、さらに好ましくは3~40である。 The silyl group may have a substituent, preferably an unsubstituted silyl group, and 1 to 3 substituents selected from an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group A silyl group substituted with (hereinafter referred to as “substituted silyl group”). The substituent may have a secondary substituent. The number of carbon atoms of the substituted silyl group does not include the number of carbon atoms of the secondary substituent, and is preferably 1 to 60, more preferably 3 to 48, and still more preferably 3 to 40.
 置換シリル基としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ-イソプロピルシリル基、ジメチル-イソプロピルシリル基、ジエチル-イソプロピルシリル基、tert-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシル-ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチル-ジメチルシリル基、ドデシルジメチルシリル基、フェニル-C~C12アルキルシリル基、C~C12アルコキシフェニル-C~C12アルキルシリル基、C~C12アルキルフェニル-C~C12アルキルシリル基、1-ナフチル-C~C12アルキルシリル基、2-ナフチル-C~C12アルキルシリル基、フェニル-C~C12アルキルジメチルシリル基、トリフェニルシリル基、トリ-p-キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基、ジメチルフェニルシリル基等が挙げられる。 Examples of substituted silyl groups include trimethylsilyl, triethylsilyl, tripropylsilyl, tri-isopropylsilyl, dimethyl-isopropylsilyl, diethyl-isopropylsilyl, tert-butyldimethylsilyl, pentyldimethylsilyl, hexyldimethyl Silyl group, heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyl-dimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyl-dimethylsilyl group, dodecyldimethylsilyl group, phenyl-C 1 ~ C 12 alkylsilyl group, C 1 ~ C 12 alkoxyphenyl -C 1 ~ C 12 alkylsilyl group, C 1 ~ C 12 alkylphenyl -C 1 ~ C 12 alkylsilyl group, 1-naphthyl -C 1 ~ C 2 alkylsilyl group, 2-naphthyl -C 1 ~ C 12 alkylsilyl group, a phenyl -C 1 ~ C 12 alkyl dimethyl silyl group, a triphenylsilyl group, tri -p- Kishirirushiriru group, tribenzylsilyl group, diphenylmethylsilyl Group, tert-butyldiphenylsilyl group, dimethylphenylsilyl group and the like.
 アシル基は、置換基を有していてもよく、好ましくは非置換のアシル基、及び、ハロゲン原子等で置換されたアシル基である。アシル基の炭素原子数は、好ましくは2~20、より好ましくは2~18、さらに好ましくは2~16である。アシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基等が挙げられる。 The acyl group may have a substituent, and is preferably an unsubstituted acyl group and an acyl group substituted with a halogen atom or the like. The number of carbon atoms of the acyl group is preferably 2 to 20, more preferably 2 to 18, and still more preferably 2 to 16. Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
 アシルオキシ基は、置換基を有していてもよく、好ましくは非置換のアシルオキシ基、及び、ハロゲン原子等で置換されたアシルオキシ基である。アシルオキシ基の炭素原子数は、好ましくは2~20、より好ましくは2~18、さらに好ましくは2~16である。アシルオキシ基としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基等が挙げられる。 The acyloxy group may have a substituent, and is preferably an unsubstituted acyloxy group and an acyloxy group substituted with a halogen atom or the like. The number of carbon atoms of the acyloxy group is preferably 2 to 20, more preferably 2 to 18, and still more preferably 2 to 16. Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
 イミン残基は、一般式:H-N=C(RY1又は一般式:H-CRX1=N-RY1の少なくとも一方で表される構造を有するイミン化合物から、上記一般式中の水素原子を除いた残基を意味する。式中、RX1は水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基又はアリールアルキニル基を示す。式中、RY1は、水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基又はアリールアルキニル基を示す。但し、RY1が2個存在する場合、それらは同一であっても異なっていてもよく、また、2個のRY1は相互に結合し一体となって2価の基、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素原子数2~18のアルキレン基として環を形成してもよい。このようなイミン化合物としては、例えば、アルジミン、ケチミン又はアルジミン中の窒素原子に結合した水素原子が、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基等で置換された化合物が挙げられる。イミン残基の炭素原子数は、好ましくは2~20、より好ましくは2~18、さらに好ましくは2~16である。イミン残基の具体例としては、以下の構造式で示される基が挙げられる。 The imine residue is represented by the general formula: H— N═C (R Y1 ) 2 or the imine compound having a structure represented by at least one of the general formula: H—CR X1 ═N—R Y1 in the above general formula. It means a residue excluding a hydrogen atom. In the formula, R X1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group or an arylalkynyl group. In the formula, R Y1 represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group. However, when two R Y1 are present, they may be the same or different, and the two R Y1 are bonded together to form a divalent group such as an ethylene group, A ring may be formed as an alkylene group having 2 to 18 carbon atoms such as a trimethylene group, a tetramethylene group, a pentamethylene group, or a hexamethylene group. Examples of such imine compounds include compounds in which a hydrogen atom bonded to a nitrogen atom in aldimine, ketimine, or aldimine is substituted with an alkyl group, aryl group, arylalkyl group, arylalkenyl group, arylalkynyl group, or the like. Can be mentioned. The number of carbon atoms of the imine residue is preferably 2 to 20, more preferably 2 to 18, and still more preferably 2 to 16. Specific examples of the imine residue include groups represented by the following structural formulas.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 アミド化合物残基は、一般式:H-NRX2-CORY2及び一般式:H-CO-N(RY2の少なくとも一方で表される構造を有するアミド化合物から、上記一般式中の水素原子を除いた残基を意味する。式中、RX2及びRY2は、それぞれ独立に、水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基又はアリールアルキニル基を表す。アミド化合物残基の炭素原子数は、好ましくは2~20、より好ましくは2~18、さらに好ましくは2~16である。アミド化合物残基としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基及びジペンタフルオロベンズアミド基等が挙げられる。 The amide compound residue is derived from an amide compound having a structure represented by at least one of the general formula: H—NR X2 —COR Y2 and the general formula: H—CO—N (R Y2 ) 2 in the above general formula. It means a residue without an atom. In the formula, R X2 and R Y2 each independently represent a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group. The number of carbon atoms of the amide compound residue is preferably 2 to 20, more preferably 2 to 18, and still more preferably 2 to 16. As the amide compound residue, formamide group, acetamide group, propioamide group, butyroamide group, benzamide group, trifluoroacetamide group, pentafluorobenzamide group, diformamide group, diacetamide group, dipropioamide group, dibutyroamide group, dibenzamide group, Examples include a ditrifluoroacetamide group and a dipentafluorobenzamide group.
 酸イミド残基は、一般式:RX3-CO-NH-CO-RY3で表される構造を有する酸イミドから、上記一般式中の水素原子を除いた残基を意味する。式中、RX3及びRY3は、それぞれ独立に、水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基又はアリールアルキニル基を表すか、又は、RX3及びRY3がともに構成原子となって形成される環構造を表す。酸イミド残基の炭素原子数は、好ましくは4~20、より好ましくは4~18、さらに好ましくは4~16である。酸イミド残基としては、例えば、以下に示す基が挙げられる。 The acid imide residue means a residue obtained by removing a hydrogen atom in the above general formula from an acid imide having a structure represented by the general formula: R X3 —CO—NH—CO—R Y 3 . In the formula, R X3 and R Y3 each independently represent a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group, or R X3 and R Y3 are both constituent atoms. Represents the ring structure formed. The number of carbon atoms of the acid imide residue is preferably 4 to 20, more preferably 4 to 18, and still more preferably 4 to 16. Examples of the acid imide residue include the following groups.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 アリーレン基は、芳香族炭化水素から水素原子2個を除いてなる原子団を意味し、独立したベンゼン環又は縮合環を持つ基を含む。アリーレン基の炭素原子数は、好ましくは6~60、より好ましくは6~48、さらに好ましくは6~30、特に好ましくは6~18である。該炭素原子数は置換基の炭素原子数は含まない。アリーレン基としては、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基等のフェニレン基;2,7-ビフェニリレン基、3,6-ビフェニリレン基等のビフェニリレン基;1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、2,6-ナフタレンジイル基等のナフタレンジイル基;1,4-アントラセンジイル基、1,5-アントラセンジイル基、2,6-アントラセンジイル基、9,10-アントラセンジイル基等のアントラセンジイル基;2,7-フェナントレンジイル基等のフェナントレンジイル基;1,7-ナフタセンジイル基、2,8-ナフタセンジイル基、5,12-ナフタセンジイル基等のナフタセンジイル基;2,7-フルオレンジイル基、3,6-フルオレンジイル基等のフルオレンジイル基;1,6-ピレンジイル基、1,8-ピレンジイル基、2,7-ピレンジイル基、4,9-ピレンジイル基等のピレンジイル基;3,9-ペリレンジイル基、3,10-ペリレンジイル基等のペリレンジイル基等が挙げられ、これらは置換基を有していてもよい。これらのうち、好ましくは、置換基を有していてもよいフェニレン基、置換基を有していてもよいフルオレンジイル基である。 Arylene group means an atomic group formed by removing two hydrogen atoms from an aromatic hydrocarbon, and includes an independent benzene ring or a group having a condensed ring. The number of carbon atoms of the arylene group is preferably 6 to 60, more preferably 6 to 48, still more preferably 6 to 30, and particularly preferably 6 to 18. The number of carbon atoms does not include the number of carbon atoms of the substituent. Examples of the arylene group include phenylene groups such as 1,4-phenylene group, 1,3-phenylene group, and 1,2-phenylene group; biphenylylene groups such as 2,7-biphenylylene group and 3,6-biphenylylene group; 4-naphthalenediyl group, 1,5-naphthalenediyl group, naphthalenediyl group such as 2,6-naphthalenediyl group; 1,4-anthracenediyl group, 1,5-anthracenediyl group, 2,6-anthracenediyl group Anthracene diyl groups such as 9,10-anthracenediyl group; Phenanthrene diyl groups such as 2,7-phenanthrene diyl group; Groups: 2,7-fluorenediyl group, 3,6-fluorenediyl group, etc. Group: pyrenediyl group such as 1,6-pyrenediyl group, 1,8-pyrenediyl group, 2,7-pyrenediyl group, 4,9-pyrenediyl group; perylenediyl such as 3,9-perylenediyl group, 3,10-perylenediyl group, etc. Group etc. are mentioned, These may have a substituent. Of these, a phenylene group which may have a substituent and a fluorenediyl group which may have a substituent are preferable.
 2価の複素環基は、複素環式化合物から水素原子2個を除いた残りの原子団をいい、置換基を有していてもよい。2価の複素環基としては、非置換の2価の複素環基及びアルキル基等で置換された2価の複素環基が好ましい。2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、好ましくは4~60、より好ましくは4~30であり、さらに好ましくは4~12である。 The divalent heterocyclic group refers to the remaining atomic group obtained by removing two hydrogen atoms from the heterocyclic compound, and may have a substituent. The divalent heterocyclic group is preferably an unsubstituted divalent heterocyclic group or a divalent heterocyclic group substituted with an alkyl group or the like. The number of carbon atoms of the divalent heterocyclic group is preferably 4 to 60, more preferably 4 to 30, and further preferably 4 to 12, excluding the number of carbon atoms of the substituent.
 2価の複素環基としては、2,5-ピリジンジイル基、2,6-ピリジンジイル基等のピリジンジイル基;2,6-キノリンジイル基等のキノリンジイル基;1,4-イソキノリンジイル基、1,5-イソキノリンジイル基等のイソキノリンジイル基;5,8-キノキサリンジイル基等のキノキサリンジイル基;2,1,3-ベンゾチアジアゾール-4,7-ジイル基等の2,1,3-ベンゾチアジアゾール基;4,7-ベンゾチアゾールジイル基等のベンゾチアゾールジイル基;2,7-カルバゾールジイル基、3,6-カルバゾールジイル基等のカルバゾールジイル基;3,7-フェノキサジンジイル基等のフェノキサジンジイル基;3,7-フェノチアジンジイル基等のフェノチアジンジイル基;2,7-ジベンゾシロールジイル基等のジベンゾシロールジイル基等が挙げられ、これらは置換基を有していてもよい。これらのうち、好ましくは置換基を有していてもよい2,1,3-ベンゾチアジアゾール-4,7-ジイル基、置換基を有していてもよいフェノキサジンジイル基、置換基を有していてもよいフェノチアジンジイル基である。なお、2価の複素環基としては、2価の芳香族複素環基が好ましい。 Examples of the divalent heterocyclic group include pyridinediyl groups such as 2,5-pyridinediyl group and 2,6-pyridinediyl group; quinolinediyl groups such as 2,6-quinolinediyl group; 1,4-isoquinolinediyl group, 1 Isoquinolinediyl groups such as 5,5-isoquinolinediyl group; quinoxalinediyl groups such as 5,8-quinoxalinediyl group; 2,1,3-benzothiadiazoles such as 2,1,3-benzothiadiazole-4,7-diyl group A benzothiazole diyl group such as a 4,7-benzothiazole diyl group; a carbazole diyl group such as a 2,7-carbazole diyl group or a 3,6-carbazole diyl group; a phenoxazine such as a 3,7-phenoxazine diyl group; Diyl group; phenothiazinediyl group such as 3,7-phenothiazinediyl group; 2,7-dibenzosiloldiyl group Dibenzosilole-diyl group and the like, and these may have a substituent. Of these, preferably 2,1,3-benzothiadiazole-4,7-diyl group which may have a substituent, phenoxazinediyl group which may have a substituent, It may be a phenothiazinediyl group. The divalent heterocyclic group is preferably a divalent aromatic heterocyclic group.
<一般式(1)で表される構造を有する化合物及び一般式(1)で表される構造から誘導される基を有する化合物>
 一般式(1)で表される構造を有する化合物及び一般式(1)で表される構造から誘導される基を有する化合物について説明する。
Figure JPOXMLDOC01-appb-C000013
 一般式(1)中、Rは、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、1価の複素環チオ基、イミン残基、アミド化合物残基、酸イミド残基、カルボキシル基、ニトロ基及びシアノ基からなる群より選ばれる官能基、又は、水素原子を示す。但し、水素原子を有する上記官能基は、該水素原子が置換基で置換されていてもよい。
 Rとして、好ましくは水素原子、アルキル基、アルコキシ基、アリール基が好ましく、より好ましくは、水素原子、アルキル基、アリール基であり、さらに好ましくは水素原子である。複数あるRは、同一であっても異なっていてもよい。
<A compound having a structure represented by the general formula (1) and a compound having a group derived from the structure represented by the general formula (1)>
A compound having a structure represented by the general formula (1) and a compound having a group derived from the structure represented by the general formula (1) will be described.
Figure JPOXMLDOC01-appb-C000013
In general formula (1), R x represents an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, a halogen atom, an acyl group, or an acyloxy group. A functional group selected from the group consisting of a monovalent heterocyclic group, a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or hydrogen Indicates an atom. However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent.
R x is preferably a hydrogen atom, an alkyl group, an alkoxy group, or an aryl group, more preferably a hydrogen atom, an alkyl group, or an aryl group, and still more preferably a hydrogen atom. A plurality of R x may be the same or different.
 一般式(1)で表される構造を有する化合物としては、例えば、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
As a compound which has a structure represented by General formula (1), the compound represented by a following formula is mentioned, for example.
Figure JPOXMLDOC01-appb-C000014
 一般式(1)で表される構造から誘導される基とは、一般式(1)中の1又は複数のRを除いた残りの原子団からなる基である。 The group derived from the structure represented by the general formula (1) is a group composed of the remaining atomic groups excluding one or a plurality of R x in the general formula (1).
 一般式(1)で表される構造から誘導される基を有する化合物は、低分子化合物であっても高分子化合物であってもよい。例えば、分子量が3,000以下の化合物とすることができる。 The compound having a group derived from the structure represented by the general formula (1) may be a low molecular compound or a high molecular compound. For example, it can be a compound having a molecular weight of 3,000 or less.
 一般式(1)で表される構造から誘導される基を有する高分子化合物において、この基は、高分子化合物の主鎖に含有されていてもよく、側鎖に含有されていてもよい。また、主鎖に含有される場合、高分子化合物の末端に含有されていてもよい。 In the polymer compound having a group derived from the structure represented by the general formula (1), this group may be contained in the main chain of the polymer compound or in the side chain. Moreover, when contained in the main chain, it may be contained at the end of the polymer compound.
 高分子化合物としては、例えば、一般式(1)のRを1個除いた原子団からなる基を含有する高分子化合物、一般式(1)のRを1個除いた原子団からなる基を末端に含有する高分子化合物、一般式(1)のRを2個除いた原子団からなる基を含有する高分子化合物が挙げられる。なお、これらの高分子化合物には、一般式(1)中の1又は複数のRを除いた残りの原子団からなる基が1つ又は複数含有される。 Examples of the polymer compound include a polymer compound containing a group consisting of an atomic group obtained by removing one R x of the general formula (1), and an atomic group obtained by removing one R x of the general formula (1). Examples thereof include a polymer compound containing a group at the terminal and a polymer compound containing a group consisting of an atomic group obtained by removing two R x in the general formula (1). These polymer compounds contain one or more groups consisting of the remaining atomic groups excluding one or more R x in the general formula (1).
 一般式(1)のRを1個除いた原子団からなる基を含有する高分子化合物は、例えば、この基を側鎖に含有する高分子化合物又はこの基を主鎖の末端に含有する高分子化合物が挙げられる。この基を主鎖の末端に含有する高分子化合物は、例えば、重合反応を止める際に使用する末端封止剤として一般式(1)のRを1個除いた原子団からなる基を含むものを用いることにより得ることができる。 The polymer compound containing a group consisting of an atomic group obtained by removing one R x of the general formula (1) contains, for example, a polymer compound containing this group in the side chain or this group at the end of the main chain. A high molecular compound is mentioned. The polymer compound containing this group at the end of the main chain includes, for example, a group consisting of an atomic group excluding one R x of the general formula (1) as an end-capping agent used when stopping the polymerization reaction. It can be obtained by using one.
 一般式(1)のRを2個除いた原子団からなる基を含有する高分子化合物は、例えば、この基を主鎖に含有する高分子化合物が挙げられる。この基を主鎖に含有する高分子化合物は、例えば、一般式(1)のRを2個取り除いた部分が重合の反応点となるような場合、一般式(1)のRを2個取り除いた部分が連結基を介して重合の反応点となるような場合に得ることができる。 As for the high molecular compound containing the group which consists of an atomic group remove | excluding two Rx of General formula (1), the high molecular compound which contains this group in a principal chain is mentioned, for example. When the polymer compound containing this group in the main chain has, for example, a portion obtained by removing two R x s in the general formula (1) to be a reaction point of polymerization, the R x in the general formula (1) is 2 It can be obtained when the removed part becomes a reaction point of polymerization via a linking group.
 一般式(1)で表される構造から誘導される基を有する高分子化合物としては、一般式(1)のRを2個除いた原子団からなる基を含有するものが好ましく、より好ましくは一般式(1)のRを2個取り除いた部分が重合の反応点となるようにして得ることができるものである。 The polymer compound having a group derived from the structure represented by the general formula (1) is preferably a compound containing a group consisting of an atomic group obtained by removing two R x in the general formula (1), more preferably. Can be obtained in such a manner that the portion of the general formula (1) from which R x is removed becomes the reaction point of the polymerization.
 一般式(1)のRを2個除いた原子団からなる基としては、下記式(2)、式(3)、式(4)、式(5)、式(6)又は式(7)で表される基が好ましい。より好ましくは下記式(2)、式(3)、式(5)、式(6)又は式(7)で表される基であり、特に好ましくは下記式(2)で表される基である。
Figure JPOXMLDOC01-appb-C000015
Examples of the group consisting of an atomic group obtained by removing two R x in the general formula (1) include the following formula (2), formula (3), formula (4), formula (5), formula (6), or formula (7). ) Is preferred. More preferably, it is a group represented by the following formula (2), formula (3), formula (5), formula (6) or formula (7), particularly preferably a group represented by the following formula (2). is there.
Figure JPOXMLDOC01-appb-C000015
 上記式(2)、式(3)、式(4)、式(5)、式(6)又は式(7)で表される基の具体例としては、下記式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000016
Specific examples of the group represented by the above formula (2), formula (3), formula (4), formula (5), formula (6), or formula (7) include groups represented by the following formulas. It is done.
Figure JPOXMLDOC01-appb-C000016
<一般式(1)で表される構造から誘導される基を有する共役系高分子化合物>
 一般式(1)で表される構造から誘導される基を有する高分子化合物は、電荷注入性及び電荷輸送性がより良好になるので、共役系高分子化合物であることが好ましい。「共役系高分子化合物」とは、主鎖における全結合の50~100%、特には70~100%、とりわけ90~100%が共役している高分子化合物を意味する。
<Conjugated polymer compound having a group derived from the structure represented by the general formula (1)>
The polymer compound having a group derived from the structure represented by the general formula (1) is preferably a conjugated polymer compound because the charge injection property and the charge transport property are improved. The “conjugated polymer compound” means a polymer compound in which 50 to 100%, particularly 70 to 100%, particularly 90 to 100% of all bonds in the main chain are conjugated.
 上記の共役系高分子化合物は、上記一般式(1)で表される構造から誘導される基を繰り返し単位として有することが好ましい。ここで、「繰り返し単位として有する」とは、電子共役系を構成するように含まれることを意味する。 The conjugated polymer compound preferably has a group derived from the structure represented by the general formula (1) as a repeating unit. Here, “having as a repeating unit” means being included so as to constitute an electron conjugated system.
 上記の共役系高分子化合物は、縮合重合で合成され、一般式(1)で表される構造から誘導される基及びその基とは相違する任意追加基が上記縮合重合により導入されたものである。また、共役系高分子化合物全体における一般式(1)で表される構造から誘導される基及び任意追加基のモル数を、それぞれ、N及びNとしたときに、下記式(i)で計算される値が0.01以上20以下である。
 N×100/(N+N)  (i)
The conjugated polymer compound is synthesized by condensation polymerization, and a group derived from the structure represented by the general formula (1) and an optional additional group different from the group are introduced by the condensation polymerization. is there. Further, the number of moles of group and any additional groups derived from structures represented by the general formula (1) in the entire conjugated polymer compound, respectively, when the N 1 and N M, the following formula (i) The value calculated by is 0.01 or more and 20 or less.
N 1 × 100 / (N 1 + N M ) (i)
 式(i)で計算される値は、縮合重合に供した化合物を単位とし、縮合重合により共役系高分子化合物に導入された化合物の合計を100モル%としたときの、一般式(1)で表される構造から誘導される基のモル含有率を示す。本発明の共役系高分子化合物において、式(i)で計算される値は、好ましくは0.03以上15以下であり、より好ましくは0.1以上12.5以下である。 The value calculated by the formula (i) is expressed by the general formula (1) when the compound subjected to the condensation polymerization is a unit and the total amount of the compounds introduced into the conjugated polymer compound by the condensation polymerization is 100 mol%. The molar content of the group derived from the structure represented by In the conjugated polymer compound of the present invention, the value calculated by the formula (i) is preferably 0.03 or more and 15 or less, more preferably 0.1 or more and 12.5 or less.
 上記の共役系高分子化合物は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という)によるポリスチレン換算の数平均分子量が、好ましくは1×10~1×10であり、より好ましくは1×10~5×10である。数平均分子量が1×10以上の場合は、電荷注入性及び電荷輸送性がより優れ、かつ、成膜性が向上し易く、1×10以下の場合は、塗布法による成膜性が良好になり易い。また、ポリスチレン換算の重量平均分子量が、好ましくは1×10~5×10であり、より好ましくは5×10~1×10である。重量平均分子量が1×10以上の場合は、電荷注入性及び電荷輸送性がより優れ、かつ、成膜性が向上し易く、5×10以下の場合は、塗布法による成膜性が良好になり易い。 The conjugated polymer compound has a polystyrene-reduced number average molecular weight by gel permeation chromatography (hereinafter referred to as “GPC”), preferably 1 × 10 3 to 1 × 10 7 , more preferably 1 × 10 4 to 5 × 10 6 . When the number average molecular weight of 1 × 10 3 or more, more excellent charge injection property and charge transport property, and facilitates improved film forming properties, in the case of 1 × 10 7 or less, film forming property by coating It tends to be good. The weight average molecular weight in terms of polystyrene is preferably 1 × 10 4 to 5 × 10 7 , more preferably 5 × 10 4 to 1 × 10 7 . If the weight average molecular weight of 1 × 10 4 or more, more excellent charge injection property and charge transport property, and facilitates improved film forming properties, in the case of 5 × 10 7 or less, film forming property by coating It tends to be good.
 上記任意追加基としては、例えば、「導電性高分子材料」(シーエムシー出版)、「導電性高分子の最新応用技術」(シーエムシー出版)、「導電性高分子の基礎と応用」(株式会社アイピーシー、吉野勝美 編著)、「導電性ポリマー」(高分子学会 編集、吉村進一 著)、「高分子EL材料」(高分子学会 編集 大西敏博・小川珠美 著)等に記載の共役系高分子化合物を構成する基(モノマーから誘導される基)が挙げられ、これらのうち、置換基を有していてもよいアリーレン基又は置換基を有していてもよい2価の芳香族複素環基が好ましい。 Examples of the optional additional groups include “conductive polymer materials” (CMC Publishing), “latest application technology of conductive polymers” (CMC Publishing), “basic and applied conductive polymers” (stock) Company IP, edited by Katsumi Yoshino), “Conductive polymer” (edited by the Society of Polymer Science, Shinichi Yoshimura), “Polymer EL Materials” (edited by the Society of Polymer Science, Toshihiro Onishi, Tamami Ogawa), etc. Examples include a group constituting a molecular compound (a group derived from a monomer). Among these, an arylene group which may have a substituent or a divalent aromatic heterocyclic ring which may have a substituent Groups are preferred.
 上記の共役系高分子化合物は、一般式(1)で表される構造から誘導される基と任意追加基の間の結合、及び、任意追加基と任意追加基の間の結合のうち、好ましくは50%以上、より好ましくは70%以上、さらに好ましくは90%以上が、直接結合、窒素原子、ビニレン基又はアセチレン基により連結された化合物であることが好ましい。 The conjugated polymer compound is preferably a bond between a group derived from the structure represented by the general formula (1) and an arbitrary additional group, and a bond between the arbitrary additional group and the optional additional group. Is a compound in which 50% or more, more preferably 70% or more, and still more preferably 90% or more are connected by a direct bond, a nitrogen atom, a vinylene group, or an acetylene group.
 上記の共役系高分子化合物は、電荷輸送性、電荷注入性及び輝度寿命が優れるので、上記任意追加基として、下記一般式(A)で表される任意追加基(以下、「任意追加基A」という。)、下記一般式(B)で表される任意追加基(以下、「任意追加基B」という。)、及び下記一般式(C)で表される任意追加基(以下、「任意追加基C」という。)からなる群より選ばれる少なくとも一つの基を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(A)~(C)中、Ar及びArは、それぞれ独立に、アリーレン基、6員環以上の環から構成される2価の複素環基及び金属錯体構造を有する2価の基からなる群より選ばれる官能基を示し、
 Ar、Ar及びArは、それぞれ独立に、アリーレン基及び6員環以上の環から構成される2価の複素環基からなる群より選ばれる官能基を示す。
 R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基及びアリールアルキル基からなる群より選ばれる官能基を示し、Xは-CR=CR-及び-C≡C-からなる群より選ばれる官能基を示す。
 R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群より選ばれる官能基を示す。
 aは、0又は1である。
 但し、水素原子を有する前記官能基は、該水素原子が置換基で置換されていてもよい。ここで、6員環以上の環から構成される2価の複素環基は、好ましくは6員環より大きい2価の複素環基である。
Since the above conjugated polymer compound is excellent in charge transporting property, charge injection property and luminance life, as the optional additional group, an optional additional group represented by the following general formula (A) (hereinafter referred to as “optional additional group A”). ), An optional additional group represented by the following general formula (B) (hereinafter referred to as “optional additional group B”), and an optional additional group represented by the following general formula (C) (hereinafter referred to as “optional”). It is preferable to contain at least one group selected from the group consisting of “additional group C”.
Figure JPOXMLDOC01-appb-C000017
In the general formulas (A) to (C), Ar 1 and Ar 5 are each independently an arylene group, a divalent heterocyclic group composed of a 6-membered ring or more, and a divalent heterocyclic group. A functional group selected from the group consisting of groups;
Ar 2 , Ar 3 and Ar 4 each independently represent a functional group selected from the group consisting of an arylene group and a divalent heterocyclic group composed of a 6-membered ring or more.
R 1 and R 2 each independently represents a functional group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group and an arylalkyl group, and X 1 represents —CR 3 ═CR 4 A functional group selected from the group consisting of — and —C≡C— is shown.
R 3 and R 4 each independently represent a functional group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group, a carboxyl group, a substituted carboxyl group, and a cyano group.
a is 0 or 1.
However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent. Here, the divalent heterocyclic group composed of a 6-membered ring or more is preferably a divalent heterocyclic group larger than the 6-membered ring.
 また、本発明の共役系高分子化合物に含まれる上記一般式(1)で表される構造から誘導される基のモル数をNとし、共役系高分子化合物に含まれる任意追加基A、任意追加基B、任意追加基C及びこれら以外の任意追加基のモル数を、それぞれ、N、N、N及びNM’としたときに、下記式(ii)で計算される値が、40以上100未満であることが好ましく、さらに好ましくは50以上100未満であり、より好ましくは70以上100未満であり、特に好ましくは80以上100未満である。
 (N+N+N)×100/(N+N+N+N+NM’)  (ii)
Further, the number of moles of groups derived from structures represented by the general formula contained in the conjugated polymer compound of the present invention (1) and N 1, optional additional group A contained in the conjugated polymer compound, A value calculated by the following formula (ii) when the number of moles of the optional additional group B, the optional additional group C, and the optional additional group other than these is N A , N B , N C, and N M ′ , respectively. However, it is preferable that it is 40 or more and less than 100, More preferably, it is 50 or more and less than 100, More preferably, it is 70 or more and less than 100, Especially preferably, it is 80 or more and less than 100.
(N A + N B + N C ) × 100 / (N 1 + N A + N B + N C + N M ′ ) (ii)
 -一般式(A)で表される任意追加基-
 上記一般式(A)において、Arで表される基が置換基を有する場合、該置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシル基、ニトロ基、シアノ基等が挙げられ、好ましくは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、置換アミノ基、1価の複素環基であり、より好ましくは、アルキル基、アルコキシ基、アリール基である。
-Arbitrary additional group represented by general formula (A)-
In the general formula (A), when the group represented by Ar 1 has a substituent, examples of the substituent include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, and an aryl group. Examples include alkenyl groups, arylalkynyl groups, amino groups, substituted amino groups, halogen atoms, acyl groups, acyloxy groups, monovalent heterocyclic groups, carboxyl groups, nitro groups, cyano groups, and preferably alkyl groups, alkoxy groups A group, an aryl group, an aryloxy group, a substituted amino group, and a monovalent heterocyclic group, more preferably an alkyl group, an alkoxy group, and an aryl group.
 上記一般式(A)中、Arで表される置換基を有していてもよいアリーレン基におけるアリーレン基は、芳香族炭化水素から水素原子2個を除いてなる原子団を意味し、独立したベンゼン環又は縮合環を持つ基を含む。このアリーレン基の炭素原子数は、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 上記一般式(A)中、Arで表される置換基を有していてもよいアリーレン基におけるアリーレン基としては、1,4-フェニレン基、1,3-フェニレン基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、2,6-ナフタレンジイル基、9,10-アントラセンジイル基、2,7-フェナントリレン基、5,12-ナフタセニレン基、2,7-フルオレンジイル基、3,6-フルオレンジイル基、1,6-ピレンジイル基、1,8-ピレンジイル基、3,9-ペリレンジイル基、3,10-ペリレンジイル基、2,6-キノリンジイル基、1,4-イソキノリンジイル基、1,5-イソキノリンジイル基、5,8-キノキサリンジイル基等が挙げられ、好ましくは、1,4-フェニレン基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、2,6-ナフタレンジイル基、9,10-アントラセンジイル基、2,7-フルオレンジイル基、1,6-ピレンジイル基、3,9-ペリレンジイル基、3,10-ペリレンジイル基、2,6-キノリンジイル基、1,4-イソキノリンジイル基、5,8-キノキサリンジイル基であり、より好ましくは、1,4-フェニレン基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、2,6-ナフタレンジイル基、9,10-アントラセンジイル基、2,7-フルオレンジイル基、5,8-キノキサリンジイル基であり、特に好ましくは、1,4-フェニレン基、2,7-フルオレンジイル基である。
In the above general formula (A), the arylene group in the arylene group which may have a substituent represented by Ar 1 means an atomic group formed by removing two hydrogen atoms from an aromatic hydrocarbon, and independently Group having a benzene ring or condensed ring. The number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18.
In the general formula (A), the arylene group which may have a substituent represented by Ar 1 includes 1,4-phenylene group, 1,3-phenylene group, 1,4-naphthalene Diyl group, 1,5-naphthalenediyl group, 2,6-naphthalenediyl group, 9,10-anthracenediyl group, 2,7-phenanthrylene group, 5,12-naphthacenylene group, 2,7-fluorenediyl group, 3,6-fluorenediyl group, 1,6-pyrene diyl group, 1,8-pyrene diyl group, 3,9-perylene diyl group, 3,10-perylene diyl group, 2,6-quinoline diyl group, 1,4-isoquinoline diyl Group, 1,5-isoquinolinediyl group, 5,8-quinoxalinediyl group and the like, preferably 1,4-phenylene group, 1,4-naphthalenediyl group, 1,5-naphthalenediyl group, 2,6-naphthalenediyl group, 9,10-anthracenediyl group, 2,7-fluorenediyl group, 1,6-pyrenediyl group, 3,9-perylenediyl group, 3,10 -Perylenediyl group, 2,6-quinolinediyl group, 1,4-isoquinolinediyl group, 5,8-quinoxalinediyl group, more preferably 1,4-phenylene group, 1,4-naphthalenediyl group, 1, 5-naphthalenediyl group, 2,6-naphthalenediyl group, 9,10-anthracenediyl group, 2,7-fluorenediyl group, 5,8-quinoxalinediyl group, particularly preferably 1,4-phenylene Group, 2,7-fluorenediyl group.
 上記一般式(A)中、Arで表される置換基を有していてもよい6員環以上の環から構成される2価の複素環基としては、4,7-ベンゾ[1,2,5]チアジアゾールジイル基、3,7-フェノキサジンジイル基、3,7-フェノチアジンジイル基等が挙げられ、好ましくは、4,7-ベンゾ[1,2,5]チアジアゾールジイル基である。 In the general formula (A), the divalent heterocyclic group composed of a 6-membered ring or more optionally having a substituent represented by Ar 1 includes 4,7-benzo [1, 2,5] thiadiazolediyl group, 3,7-phenoxazinediyl group, 3,7-phenothiazinediyl group and the like can be mentioned, and 4,7-benzo [1,2,5] thiadiazolediyl group is preferable.
 上記一般式(A)中、Arで表される置換基を有していてもよい金属錯体構造を有する2価の基としては、イリジウム錯体又は白金錯体から水素原子2個を取り除いた残りの原子団(即ち、イリジウム錯体又は白金錯体の残基)等が挙げられ、下記式M-1、M-2、M-3、M-4、M-5、M-6及びM-7で表される基が好ましい。式中、Rは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシル基、ニトロ基又はシアノ基を示す。複数あるRは、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
In the above general formula (A), the divalent group having a metal complex structure which may have a substituent represented by Ar 1 is the rest of the iridium complex or the platinum complex after removing two hydrogen atoms. An atomic group (that is, a residue of an iridium complex or a platinum complex) and the like, and are represented by the following formulas M-1, M-2, M-3, M-4, M-5, M-6, and M-7. Preferred are the groups In the formula, R is an alkyl group, alkoxy group, aryl group, aryloxy group, arylalkyl group, arylalkoxy group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, halogen atom, acyl group, acyloxy group A monovalent heterocyclic group, a carboxyl group, a nitro group or a cyano group is shown. A plurality of R may be the same or different.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 これらの中でも、Arで表される基としては、下記式(D)、(E)、(F)、(G)及び(H)で表される基からなる群より選択される少なくとも一種であることが望ましい。
Figure JPOXMLDOC01-appb-C000020
 式(D)中、R10は、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシル基、ニトロ基又はシアノ基を示す。これらの基に含まれる水素原子の一部又は全部は、フッ素原子で置換されていてもよい。fは0~4の整数である。R10が複数存在する場合には、それらは同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000021
 式(E)中、R11及びR12は、それぞれ独立に、水素原子、アルキル基、アリール基、アリールアルキル基又は1価の複素環基を示す。
Figure JPOXMLDOC01-appb-C000022
 式(F)中、R13及びR14は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシル基、ニトロ基又はシアノ基を示す。これらの基に含まれる水素原子の一部又は全部は、フッ素原子で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000023
 式(G)中、R15は、水素原子、アルキル基、アリール基、1価の複素環基又はアリールアルキル基を示す。
Figure JPOXMLDOC01-appb-C000024
 式(H)中、R16は、水素原子、アルキル基、アリール基、1価の複素環基又はアリールアルキル基を示す。
Among these, the group represented by Ar 1 is at least one selected from the group consisting of groups represented by the following formulas (D), (E), (F), (G) and (H). It is desirable to be.
Figure JPOXMLDOC01-appb-C000020
In the formula (D), R 10 represents an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an arylalkenyl group, an arylalkynyl group, an amino group, a substituted amino group, a halogen atom, an acyl. A group, an acyloxy group, a monovalent heterocyclic group, a carboxyl group, a nitro group or a cyano group; Some or all of the hydrogen atoms contained in these groups may be substituted with fluorine atoms. f is an integer of 0-4. When a plurality of R 10 are present, they may be the same or different.
Figure JPOXMLDOC01-appb-C000021
In formula (E), R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group.
Figure JPOXMLDOC01-appb-C000022
In the formula (F), R 13 and R 14 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an arylalkenyl group, an arylalkynyl group, an amino group A group, a substituted amino group, a halogen atom, an acyl group, an acyloxy group, a monovalent heterocyclic group, a carboxyl group, a nitro group or a cyano group; Some or all of the hydrogen atoms contained in these groups may be substituted with fluorine atoms.
Figure JPOXMLDOC01-appb-C000023
In formula (G), R 15 represents a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group or an arylalkyl group.
Figure JPOXMLDOC01-appb-C000024
In the formula (H), R 16 represents a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group or an arylalkyl group.
 上記式(D)中、R10は、好ましくは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、置換アミノ基、アシル基、1価の複素環基であり、より好ましくは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、置換アミノ基、アシル基、1価の複素環基であり、更に好ましくは、アルキル基、アルコキシ基、アリール基、1価の複素環基であり、特に好ましくは、アルキル基、アルコキシ基、アリール基である。 In the above formula (D), R 10 is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an arylalkenyl group, an arylalkynyl group, a substituted amino group, an acyl group, A monovalent heterocyclic group, more preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a substituted amino group, an acyl group, and a monovalent heterocyclic group, still more preferably an alkyl group, an alkoxy group. A group, an aryl group, and a monovalent heterocyclic group, particularly preferably an alkyl group, an alkoxy group, and an aryl group.
 上記式(D)中、fは、好ましくは0~2の整数である。 In the above formula (D), f is preferably an integer of 0-2.
 上記式(E)中、R11、R12は、好ましくは、アルキル基、アリール基、1価の複素環基であり、より好ましくは、アルキル基、アリール基である。 In the above formula (E), R 11 and R 12 are preferably an alkyl group, an aryl group, and a monovalent heterocyclic group, and more preferably an alkyl group and an aryl group.
 上記式(F)中、R13及びR14は、好ましくは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、置換アミノ基、アシル基、1価の複素環基であり、より好ましくは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、1価の複素環基であり、更に好ましくは、水素原子、アルキル基であり、特に好ましくは、水素原子である。 In the above formula (F), R 13 and R 14 are preferably hydrogen atom, alkyl group, alkoxy group, aryl group, aryloxy group, arylalkyl group, arylalkoxy group, substituted amino group, acyl group, monovalent group. More preferably a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, or a monovalent heterocyclic group, still more preferably a hydrogen atom or an alkyl group, particularly preferably. Is a hydrogen atom.
 上記式(G)中、R15は、好ましくは、アルキル基、アリール基、1価の複素環基であり、より好ましくは、アルキル基、アリール基であり、更に好ましくは、アリール基である。 In the above formula (G), R 15 is preferably an alkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group or an aryl group, and still more preferably an aryl group.
 上記式(H)中、R16は、好ましくは、アルキル基、アリール基、1価の複素環基であり、より好ましくは、アルキル基、アリール基であり、更に好ましくは、アリール基である。 In the above formula (H), R 16 is preferably an alkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group or an aryl group, and still more preferably an aryl group.
 -一般式(B)で表される任意追加基-
 上記一般式(B)において、Ar、Ar及びArで表される基が置換基を有する場合、該置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシル基、ニトロ基、シアノ基が挙げられ、好ましくは、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、置換アミノ基、アシル基、シアノ基であり、より好ましくは、アルキル基、アルコキシ基、アリール基である。
-Arbitrary additional group represented by general formula (B)-
In the general formula (B), when the groups represented by Ar 2 , Ar 3 and Ar 4 have a substituent, the substituent includes an alkyl group, an alkoxy group, an aryl group, an aryloxy group, and an arylalkyl group. , Arylalkoxy group, arylalkenyl group, arylalkynyl group, amino group, substituted amino group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic group, carboxyl group, nitro group, cyano group, preferably , An alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, a substituted amino group, an acyl group, and a cyano group, and more preferably an alkyl group, an alkoxy group, and an aryl group.
 上記一般式(B)中、Ar、Ar及びArで表される置換基を有していてもよいアリーレン基におけるアリーレン基は、芳香族炭化水素から水素原子2個を除いてなる原子団を意味し、独立したベンゼン環又は縮合環を持つ基を含む。このアリーレン基の炭素原子数は、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。 In the general formula (B), the arylene group in the arylene group which may have a substituent represented by Ar 2 , Ar 3 and Ar 4 is an atom formed by removing two hydrogen atoms from an aromatic hydrocarbon. Means a group having an independent benzene ring or condensed ring. The number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18.
 上記一般式(B)中、Ar、Ar及びArで表される置換基を有していてもよいアリーレン基におけるアリーレン基としては、1,3-フェニレン基、1,4-フェニレン基、1,4-ナフタレンジイル基、2,6-ナフタレンジイル基、9,10-アントラセンジイル基、2,7-フェナントレンジイル基、5,12-ナフタセンジイル基、2,7-フルオレンジイル基、3,8-ペリレンジイル基等が挙げられる。 In the general formula (B), the arylene group in the arylene group which may have a substituent represented by Ar 2 , Ar 3 and Ar 4 includes a 1,3-phenylene group and a 1,4-phenylene group 1,4-naphthalenediyl group, 2,6-naphthalenediyl group, 9,10-anthracenediyl group, 2,7-phenanthenediyl group, 5,12-naphthacenediyl group, 2,7-fluorenediyl group, 3 , 8-perylenediyl group and the like.
 上記一般式(B)中、Ar、Ar及びArで表される置換基を有していてもよい6員環以上の環から構成される2価の複素環基における2価の複素環基は、炭素原子数が、通常、4~60であり、好ましくは4~20であり、より好ましくは4~9である。上記一般式(B)中、Ar、Ar及びArで表される置換基を有していてもよい2価の複素環基における2価の複素環基としては、N-メチル-2,5-ピロールジイル基、4,7-ベンゾ[1,2,5]チアジアゾールジイル基、3,7-フェノキサジンジイル基、3,6-カルバゾールジイル基等が挙げられる。 In the general formula (B), the divalent heterocyclic in Ar 2, Ar 3 and divalent heterocyclic group composed of the ring may also be a 6-membered ring or more, which have a substituent represented by Ar 4 The cyclic group usually has 4 to 60 carbon atoms, preferably 4 to 20, and more preferably 4 to 9. In the general formula (B), the divalent heterocyclic group in the divalent heterocyclic group which may have a substituent represented by Ar 2 , Ar 3 and Ar 4 is N-methyl-2 , 5-pyrroldiyl group, 4,7-benzo [1,2,5] thiadiazolediyl group, 3,7-phenoxazinediyl group, 3,6-carbazolediyl group and the like.
 上記一般式(B)中、Ar及びArはそれぞれ独立に、好ましくは、置換基を有していてもよいアリーレン基であり、より好ましくは、置換基を有していてもよい1,3-フェニレン基、置換基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフタレンジイル基、置換基を有していてもよい2,6-ナフタレンジイル基であり、より好ましくは、置換基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフタレンジイル基であり、特に好ましくは、置換基を有していてもよい1,4-フェニレン基である。 In the general formula (B), Ar 2 and Ar 4 are each independently preferably an arylene group which may have a substituent, and more preferably, an optionally substituted 1, 3-phenylene group, 1,4-phenylene group optionally having substituent, 1,4-naphthalenediyl group optionally having substituent, 2,6 optionally having substituent A naphthalenediyl group, more preferably a 1,4-phenylene group which may have a substituent, and a 1,4-naphthalenediyl group which may have a substituent, particularly preferably It is a 1,4-phenylene group which may have a substituent.
 上記一般式(B)中、Arは、好ましくは、置換基を有していてもよい1,3-フェニレン基、置換基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフタレンジイル基、置換基を有していてもよい2,7-フルオレンジイル基、置換基を有していてもよい4,7-ベンゾ[1,2,5]チアジアゾールジイル基、置換基を有していてもよい3,7-フェノキサジンジイル基であり、好ましくは、置換基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフタレンジイル基、置換基を有していてもよい2,7-フルオレンジイル基であり、更に好ましくは置換基を有していてもよい1,4-フェニレン基である。 In the general formula (B), Ar 3 preferably may have a substituent group 1,3-phenylene group, which may have a substituent group 1,4-phenylene group, a substituent 1,4-naphthalenediyl group which may have, 2,7-fluorenediyl group which may have a substituent, 4,7-benzo [1,2 which may have a substituent , 5] a thiadiazole diyl group and an optionally substituted 3,7-phenoxazinediyl group, preferably an optionally substituted 1,4-phenylene group and a substituted group. An optionally substituted 1,4-naphthalenediyl group, an optionally substituted 2,7-fluorenediyl group, and more preferably an optionally substituted 1,4-phenylene It is a group.
 上記一般式(B)中、R及びRは、それぞれ独立に、好ましくは、アルキル基、アリール基、1価の複素環基であり、より好ましくは、アルキル基、アリール基であり、更に好ましくは、アリール基である。 In the general formula (B), R 1 and R 2 are preferably each independently an alkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group or an aryl group, An aryl group is preferable.
 上記一般式(B)で表される任意追加基としては、以下の式(3B-1)、(3B-3)及び(3B-4)で表される基が挙げられる。なお、式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、カルボキシル基、ニトロ基及びシアノ基からなる群より選ばれる官能基を示す。但し、水素原子を有する上記官能基は、該水素原子が置換基で置換されていてもよい。複数あるRは、同一であっても異なっていてもよい。 Examples of the optional additional group represented by the general formula (B) include groups represented by the following formulas (3B-1), (3B-3), and (3B-4). In the formula, R a represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, an arylalkenyl group, an arylalkynyl group, an amino group, a substituted amino group, or a halogen atom. And a functional group selected from the group consisting of an acyl group, an acyloxy group, a monovalent heterocyclic group, a carboxyl group, a nitro group and a cyano group. However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent. A plurality of Ra may be the same or different.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 -一般式(C)で表される任意追加基-
 上記一般式(C)中、Arで表される置換基を有していてもよいアリーレン基、置換基を有していてもよい6員環以上の環から構成される2価の複素環基及び置換基を有していてもよい金属錯体構造を有する2価の基は、Arの項で説明し例示した基と同じである。
-Arbitrary additional group represented by general formula (C)-
In the above general formula (C), a divalent heterocyclic ring composed of an arylene group which may have a substituent represented by Ar 5 and a ring having 6 or more members which may have a substituent. The divalent group having a metal complex structure which may have a group and a substituent is the same as the group described and exemplified in the section for Ar 1 .
 上記一般式(C)中、Xである-CR=CR-で示される官能基において、R及びRは、好ましくは、水素原子、アルキル基、アリール基であり、より好ましくは、水素原子、アリール基である。 In the above general formula (C), in the functional group represented by —CR 3 ═CR 4 — which is X 1 , R 3 and R 4 are preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably , Hydrogen atom, aryl group.
 上記一般式(C)で表される任意追加基としては、以下の式(4A-1)、(4A-2)、(4A-3)、(4A-4)、(4A-5)、(4A-6)、(4A-7)、(4A-8)、(4A-9)、(4A-10)及び(4A-11)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Examples of the optional additional group represented by the general formula (C) include the following formulas (4A-1), (4A-2), (4A-3), (4A-4), (4A-5), ( 4A-6), (4A-7), (4A-8), (4A-9), (4A-10) and (4A-11).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
<一般式(1)で表される構造を有する化合物の製造方法>
 アズレン(一般式(1)において、Rが全て水素原子の化合物)は、市販されており入手可能である。また、アズレンから、例えば、芳香族求電子置換反応、芳香族求核置換反応等により、アズレン環に直接結合している水素原子と、任意の官能基とを置換することによって、一般式(1)で表される構造を有する化合物を製造することができる。
<The manufacturing method of the compound which has a structure represented by General formula (1)>
Azulene (a compound in which R x is all hydrogen atoms in the general formula (1)) is commercially available and available. In addition, by substituting a hydrogen atom directly bonded to the azulene ring with an arbitrary functional group from azulene by, for example, an aromatic electrophilic substitution reaction, an aromatic nucleophilic substitution reaction, or the like, the general formula (1 ) Can be produced.
<一般式(1)で表される構造から誘導される基を有する化合物の製造方法>
-高分子化合物の製造方法-
 以下、本発明の化合物が、好ましい実施形態である高分子化合物の場合(以下、「本発明の高分子化合物」と言う。)について、説明する。
 一般式(1)で表される構造から誘導される基を有する化合物が高分子化合物である場合、該高分子化合物は、例えば、該高分子化合物に含まれる基に対応するモノマーを重合して得ることができる。モノマーは、予め合成し単離したものを用いてもよく、反応系中で合成してそのまま用いてもよい。得られる高分子化合物を有機発光素子に用いる場合、モノマーの純度が有機発光素子の性能に影響を与えることがある。そのため、これらのモノマーは蒸留、昇華精製、再結晶等の方法で精製されていることが好ましい。
<Method for Producing Compound Having Group Derived from Structure Represented by General Formula (1)>
-Polymer compound production method-
Hereinafter, the case where the compound of the present invention is a polymer compound which is a preferred embodiment (hereinafter referred to as “polymer compound of the present invention”) will be described.
When the compound having a group derived from the structure represented by the general formula (1) is a polymer compound, the polymer compound is obtained by polymerizing a monomer corresponding to the group included in the polymer compound, for example. Obtainable. As the monomer, one synthesized and isolated in advance may be used, or it may be synthesized in a reaction system and used as it is. When the obtained polymer compound is used in an organic light emitting device, the purity of the monomer may affect the performance of the organic light emitting device. Therefore, these monomers are preferably purified by methods such as distillation, sublimation purification, and recrystallization.
 重合方法としては、Suzukiカップリング反応により重合する方法(ケミカル レビュー(Chem.Rev.),第95巻,2457-2483頁(1995年))、Grignard反応により重合する方法(Bull.Chem.Soc.Jpn.,第51巻,2091頁(1978年))、Ni(0)触媒により重合する方法(プログレッシブ ポリマー サイエンス(Progress in Polymer Science),第17巻,1153~1205頁,1992年)、Stilleカップリング反応を用いる方法(ヨーロピアン ポリマー ジャーナル(European Polymer Journal),第41巻,2923-2933頁(2005年))等が挙げられる。これらのうち、原料の合成のし易さ、重合反応操作の簡便性の観点からは、Suzukiカップリング反応により重合する方法、Ni(0)触媒により重合する方法が好ましく、高分子化合物の構造制御のし易さの観点からは、Suzukiカップリング反応、Grignard反応、Stilleカップリング反応等のアリール-アリールクロスカップリング反応により重合する方法がより好ましく、Suzukiカップリング反応により重合する反応が特に好ましい。 As a polymerization method, polymerization is performed by Suzuki coupling reaction (Chemical Review (Chem. Rev.), Vol. 95, pages 2457-2483 (1995)), polymerization is performed by Grignard reaction (Bull. Chem. Soc. Jpn., 51, 2091 (1978)), a method of polymerizing with Ni (0) catalyst (Progress in Polymer Science, 17, 173-1205, 1992), Stille Cup Examples include a method using a ring reaction (European Polymer Journal, Vol. 41, pages 2923-2933 (2005)). Among these, from the viewpoint of easy synthesis of raw materials and ease of polymerization reaction operation, a method of polymerization by Suzuki coupling reaction and a method of polymerization by Ni (0) catalyst are preferable, and the structure control of the polymer compound is preferable. From the viewpoint of ease of handling, a method of polymerizing by an aryl-aryl cross-coupling reaction such as a Suzuki coupling reaction, a Grignard reaction, or a Stille coupling reaction is more preferable, and a reaction of polymerizing by a Suzuki coupling reaction is particularly preferable.
 Suzukiカップリング反応により重合する方法を選択する場合は、合成が簡便であり、かつ、各化合物が取り扱い易いので、重合反応により結合する一方のモノマーは、重合反応を生じる基として、下記置換基A群を有することが好ましく、他方のモノマーは、重合反応を生じる基として、下記置換基B群を有することが好ましい。
(置換基A群)
 塩素原子、臭素原子、ヨウ素原子、-O-S(=O)(Rはアルキル基、又は、アルキル基、アルコキシ基、ニトロ基、フッ素原子若しくはシアノ基で置換されていてもよいアリール基を示す。)で表される基。
(置換基B群)
 -B(ORB1(RB1は水素原子又はアルキル基を示し、2個存在するRB1は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-BF(Qはリチウム、ナトリウム、カリウム、ルビジウム又はセシウムの1価の陽イオンを示す。)で表される基、-Sn(RB2(RB2は水素原子又はアルキル基を示し、3個存在するRB2は、同一でも異なっていてもよく、互いに結合して環を形成していてもよい。)で表される基、-MgY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基、-ZnY(Yは塩素原子、臭素原子又はヨウ素原子を示す。)で表される基。
When selecting a method for polymerization by Suzuki coupling reaction, since synthesis is simple and each compound is easy to handle, one of the monomers bonded by polymerization reaction has the following substituent A as a group that causes polymerization reaction. Preferably, the other monomer has the following substituent group B as a group that causes a polymerization reaction.
(Substituent group A)
Chlorine atom, bromine atom, iodine atom, —O—S (═O) 2 R A (R A may be substituted with an alkyl group, or an alkyl group, an alkoxy group, a nitro group, a fluorine atom, or a cyano group. Represents an aryl group.)
(Substituent group B)
—B (OR B1 ) 2 (R B1 represents a hydrogen atom or an alkyl group, and two R B1 s may be the same or different and may be bonded to each other to form a ring). A group represented by —BF 4 Q 1 (Q 1 represents a monovalent cation of lithium, sodium, potassium, rubidium or cesium), —Sn (R B2 ) 3 (R B2 represents A hydrogen atom or an alkyl group, and three R B2 s, which may be the same or different and may be bonded to each other to form a ring, a group represented by —MgY 1 (Y 1 Represents a chlorine atom, a bromine atom or an iodine atom), and a group represented by —ZnY 2 (Y 2 represents a chlorine atom, a bromine atom or an iodine atom).
 重合方法としては、各モノマーを、必要に応じて適切な触媒や塩基とともに反応させる方法が挙げられる。Suzukiカップリング反応により重合する方法を選択する場合、所望の分子量を有する高分子化合物を得るためには、各モノマーが有する重合反応を生じる基として置換基A群から選ばれた基(例えば、塩素原子、ヨウ素原子、臭素原子)の合計モル数と、置換基B群から選ばれた基(例えば、-B(ORB1)の合計モル数との比率を調整すればよい。通常、前者のモル数に対する後者のモル数の比率を、0.95~1.05とすることが好ましく、0.98~1.02とすることがより好ましく、0.99~1.01とすることがさらに好ましい。 Examples of the polymerization method include a method in which each monomer is reacted with an appropriate catalyst or base as necessary. In the case of selecting a polymerization method by Suzuki coupling reaction, in order to obtain a polymer compound having a desired molecular weight, a group selected from the substituent group A (for example, chlorine) as a group that causes a polymerization reaction that each monomer has. The ratio between the total number of moles of atoms, iodine atoms, and bromine atoms and the total number of moles of groups selected from the substituent group B (for example, —B (OR B1 ) 2 ) may be adjusted. Usually, the ratio of the latter mole number to the former mole number is preferably 0.95 to 1.05, more preferably 0.98 to 1.02, and 0.99 to 1.01. More preferably.
 本発明の高分子化合物は、一般式(1)で表される構造から、1又は2つのRを置換基A群及び置換基B群からなる群より選ばれる官能基で置換したモノマー(以下、「本発明に関連するモノマー」という。)と、置換基A群及び置換基B群からなる群より選ばれる官能基を有する任意のモノマーとを重合反応させることで得ることができる。 The polymer compound of the present invention is a monomer in which one or two R x is substituted with a functional group selected from the group consisting of the substituent group A and the substituent group B from the structure represented by the general formula (1) And a monomer related to the present invention) and an arbitrary monomer having a functional group selected from the group consisting of the substituent group A and the substituent group B.
 本発明の高分子化合物の製造方法においては、本発明に関連するモノマーの全モノマーに対する仕込み比率を、0.01モル%以上20モル%以下とすることが好ましい。これにより、高分子化合物全体における一般式(1)で表される構造から誘導される基及び任意追加基のモル数を、それぞれ、N及びNとしたときに、下記式(i)で計算される値が0.01以上20以下である高分子化合物を容易に製造することができる。
 N×100/(N+N)  (i)
In the method for producing a polymer compound of the present invention, it is preferable that the charging ratio of the monomers related to the present invention to all monomers is 0.01 mol% or more and 20 mol% or less. Thus, the number of moles of group and any additional groups derived from structures represented by the general formula (1) in the entire polymer compound, respectively, when the N 1 and N M, by the following formula (i) A polymer compound having a calculated value of 0.01 or more and 20 or less can be easily produced.
N 1 × 100 / (N 1 + N M ) (i)
-低分子化合物の製造方法-
 一般式(1)で表される構造から誘導される基を有する低分子化合物は、例えばsuzukiカップリング反応、yamamotoカップリング反応、negishiカップリング反応などのカップリング反応を用いて合成することが可能である。suzukiカップリング反応を用いて上記低分子化合物を合成する例としては、上述した高分子化合物の製造方法において、重合反応させるモノマーの種類及びモル数を制御することにより得ることができる。例えば、一般式(1)で表される構造から、1つのRを置換基A群から選択した官能基で置換したモノマーと、置換基B群から選択した官能基を1つ有する任意のモノマーとを、Suzukiカップリング反応により、一般式(1)で表される構造から誘導される基と任意追加基からなる化合物を得ることができる。
-Manufacturing method of low molecular weight compounds-
A low molecular weight compound having a group derived from the structure represented by the general formula (1) can be synthesized by using a coupling reaction such as a Suzuki coupling reaction, a Yamamoto coupling reaction, or a negative coupling reaction. It is. As an example of synthesizing the low molecular weight compound using a Suzuki coupling reaction, the low molecular weight compound can be obtained by controlling the type and mole number of the monomer to be polymerized in the above-described method for producing a polymer compound. For example, from the structure represented by the general formula (1), a monomer in which one R x is substituted with a functional group selected from the substituent group A, and an arbitrary monomer having one functional group selected from the substituent group B Can be obtained by a Suzuki coupling reaction to obtain a compound composed of a group derived from the structure represented by the general formula (1) and an arbitrary additional group.
<組成物>
 本発明の組成物は、本発明の共役系高分子化合物と、発光材料、正孔輸送材料及び電子輸送材料からなる群より選ばれる少なくとも一種と、を含む。上記発光材料は、発光機能を有する低分子化合物から誘導される基を含有する高分子化合物、又は、本発明の共役系高分子化合物とは異なる構造を有し、発光機能を有する共役系高分子化合物が好ましい。上記電荷輸送材料は、電荷輸送機能を有する低分子化合物から誘導される基を含有する高分子化合物、又は、本発明の共役系高分子化合物とは異なる構造を有し、電荷輸送機能を有する共役系高分子化合物が好ましい。
<Composition>
The composition of the present invention contains the conjugated polymer compound of the present invention and at least one selected from the group consisting of a light emitting material, a hole transport material and an electron transport material. The light emitting material is a polymer compound containing a group derived from a low molecular compound having a light emitting function, or a conjugated polymer having a structure different from that of the conjugated polymer compound of the present invention and having a light emitting function. Compounds are preferred. The charge transport material is a polymer compound containing a group derived from a low molecular compound having a charge transport function, or a conjugate having a structure different from that of the conjugated polymer compound of the present invention and having a charge transport function. A polymer compound is preferable.
 上記発光材料については、一般的な発光材料を用いることができる。発光材料として好ましくは、「有機ELディスプレイ」(時任静夫、安達千波矢、村田英幸 共著 株式会社オーム社 平成16年刊 第1版第1刷発行)17~48頁、83~99頁、101~120頁に記載の蛍光材料又は三重項発光材料が利用できる。低分子の蛍光材料としては、例えば、ペリレン及びその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系等の色素類、8-ヒドロキシキノリンの金属錯体、8-ヒドロキシキノリン誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエン及びその誘導体、テトラフェニルブタジエン及びその誘導体等が挙げられ、より具体的には、特開昭57-51781号公報、特開昭59-194393号公報に記載されているもの等を用いることができる。その他にも、上記発光材料としては、例えば、WO99/13692、WO99/48160、GB2340304A、WO00/53656、WO01/19834、WO00/55927、GB2348316、WO00/46321、WO00/06665、WO99/54943、WO99/54385、US5777070、WO98/06773、WO97/05184、WO00/35987、WO00/53655、WO01/34722、WO99/24526、WO00/22027、WO00/22026、WO98/27136、US573636、WO98/21262、US5741921、WO97/09394、WO96/29356、WO96/10617、EP0707020、WO95/07955、特開2001-181618号公報、特開2001-123156号公報、特開2001-3045号公報、特開2000-351967号公報、特開2000-303066号公報、特開2000-299189号公報、特開2000-252065号公報、特開2000-136379号公報、特開2000-104057号公報、特開2000-80167号公報、特開平10-324870号公報、特開平10-114891号公報、特開平9-111233号公報、特開平9-45478号公報等に開示されているポリフルオレン、その誘導体の共重合体、ポリアリーレン、その誘導体の共重合体、ポリアリーレンビニレン、その誘導体の共重合体、芳香族アミン及びその誘導体の(共)重合体が例示される。 As the light emitting material, a general light emitting material can be used. As the luminescent material, “organic EL display” (Co-authored by Shizuo Tokito, Chinami Yasada, Hideyuki Murata, published by Ohm Co., Ltd., 2004, first edition, first print) 17-48 pages, 83-99 pages, 101-120 The fluorescent material or triplet light-emitting material described on the page can be used. Examples of low-molecular fluorescent materials include perylene and its derivatives, polymethine-based, xanthene-based, coumarin-based, cyanine-based pigments, 8-hydroxyquinoline metal complexes, 8-hydroxyquinoline derivative metal complexes, aromatics, and the like. Examples thereof include amines, tetraphenylcyclopentadiene and derivatives thereof, tetraphenylbutadiene and derivatives thereof, and more specifically, those described in JP-A-57-51781 and JP-A-59-194393. Etc. can be used. In addition, examples of the light emitting material include WO99 / 13692, WO99 / 48160, GB2340304A, WO00 / 53656, WO01 / 19834, WO00 / 55927, GB23448316, WO00 / 46321, WO00 / 06665, WO99 / 54943, WO99 / 5493. 54385, US5777070, WO98 / 06773, WO97 / 05184, WO00 / 35987, WO00 / 53655, WO01 / 34722, WO99 / 24526, WO00 / 22027, WO00 / 22026, WO98 / 27136, US573636, WO98 / 21262, US5741921, WO97 / 09394, WO96 / 29356, WO96 / 10617, EP07007020, WO95 / 07955 JP 2001-181618, JP 2001-123156, JP 2001-3045, JP 2000-351967, JP 2000-303066, JP 2000-299189, JP JP 2000-252065, JP 2000-136379, JP 2000-104057, JP 2000-80167, JP 10-324870, JP 10-114891, and JP 9-9. Polyfluorene, copolymers of derivatives thereof, polyarylene, copolymers of derivatives thereof, polyarylene vinylenes, copolymers of derivatives thereof, aromatics disclosed in Japanese Patent Application Laid-Open No. 11233, JP-A-9-45478, etc. Examples are (co) polymers of amines and their derivatives.
 上記発光材料は、共役系高分子化合物である発光材料であることが好ましく、上記一般式(A)で表される任意追加基、上記一般式(B)で表される任意追加基及び上記一般式(C)で表される任意追加基からなる群から選ばれる少なくとも一種の任意追加基を有する高分子化合物である発光材料であることが特に好ましい。 The light-emitting material is preferably a light-emitting material that is a conjugated polymer compound. The optional additional group represented by the general formula (A), the optional additional group represented by the general formula (B), and the general A light emitting material that is a polymer compound having at least one optional additional group selected from the group consisting of optional additional groups represented by formula (C) is particularly preferable.
 上記正孔輸送材料及び電子輸送材料は、主に電荷バランスの調整の役割を担う。 The above hole transport material and electron transport material mainly play a role of adjusting the charge balance.
 上記正孔輸送材料としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体等が挙げられる。その他にも、特開昭63-70257号公報、同63-175860号公報、特開平2-135359号公報、同2-135361号公報、同2-209988号公報、同3-37992号公報、同3-152184号公報に記載されたもの、また、上記一般式(B)で表される任意追加基を含有する共役系高分子化合物が挙げられる。正孔輸送材料として、好ましくは、上記一般式(B)で表される任意追加基を含有する共役系高分子化合物である。 Examples of the hole transport material include polyvinyl carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in side chains or main chains, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline And derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, and the like. In addition, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-2-20988, JP-A-3-37992, Examples thereof include those described in JP-A-3-152184 and conjugated polymer compounds containing an arbitrary additional group represented by the above general formula (B). The hole transport material is preferably a conjugated polymer compound containing an arbitrary additional group represented by the general formula (B).
 本発明の組成物における正孔輸送材料の含有割合は、本発明の共役系高分子化合物100質量部に対して、電荷バランスが良好になるので、好ましくは3~30質量部であり、より好ましくは3~20質量部であり、特に好ましくは3~10質量部である。 The content ratio of the hole transport material in the composition of the present invention is preferably 3 to 30 parts by mass, more preferably 3 to 30 parts by mass with respect to 100 parts by mass of the conjugated polymer compound of the present invention, since the charge balance becomes good. Is 3 to 20 parts by mass, particularly preferably 3 to 10 parts by mass.
 上記電子輸送材料としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。その他にも、特開昭63-70257号公報、同63-175860号公報、特開平2-135359号公報、同2-135361号公報、同2-209988号公報、同3-37992号公報、同3-152184号公報に記載された高分子化合物、また上記一般式(A)で表される任意追加基を含む共役系高分子化合物が挙げられる。電子輸送材料として、好ましくは上記一般式(A)で表される任意追加基を含む共役系高分子化合物である。 Examples of the electron transport material include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyano Examples include ethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, and the like. In addition, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-2-20988, JP-A-3-37992, Examples thereof include a polymer compound described in JP-A-3-152184 and a conjugated polymer compound containing an optional additional group represented by the above general formula (A). The electron transport material is preferably a conjugated polymer compound containing an arbitrary additional group represented by the general formula (A).
 本発明の組成物における電子輸送材料の含有割合は、本発明の共役系高分子化合物100質量部に対して、電荷バランスが良好になるので、好ましくは5~50質量部であり、より好ましくは5~30質量部であり、特に好ましくは5~20質量部である。 The content ratio of the electron transport material in the composition of the present invention is preferably 5 to 50 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the conjugated polymer compound of the present invention, so that the charge balance becomes good. The amount is 5 to 30 parts by mass, and particularly preferably 5 to 20 parts by mass.
 本発明の共役系高分子化合物は、有機溶媒と混合することにより、溶液又は分散液とすることができる。溶液又は分散液とすることにより、塗布法による成膜を行うことができる。この溶液又は分散液は、一般的に、インク組成物、液状組成物等と呼ばれる(以下、「インク組成物」と言う。)。このインク組成物は、上述した本発明の組成物において、有機溶媒を含む実施形態でもある。 The conjugated polymer compound of the present invention can be made into a solution or a dispersion by mixing with an organic solvent. By using a solution or dispersion, film formation by a coating method can be performed. This solution or dispersion is generally called an ink composition, a liquid composition or the like (hereinafter referred to as “ink composition”). This ink composition is also an embodiment containing an organic solvent in the above-described composition of the present invention.
 本発明のインク組成物に含まれる有機溶媒としては、クロロホルム、塩化メチレン、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、トルエン、キシレン、トリメチルベンゼン、メシチレン等の芳香族炭化水素系溶媒、シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン等の脂肪族炭化水素系溶媒、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、メチルベンゾエート、エチルセルソルブアセテート等のエステル系溶媒、エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2-ヘキサンジオール等の多価アルコール及びその誘導体、メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等のアルコール系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、N-メチル-2-ピロリドン、N,N’-ジメチルホルムアミド等のアミド系溶媒が挙げられる。なお、これらの溶媒は、一種単独で用いても二種以上を併用してもよい。これらの溶媒のうち、ベンゼン環を含む構造を有し、かつ融点が0℃以下、沸点が100℃以上である有機溶媒を含むと、粘度及び成膜性が優れるので好ましい。 Examples of the organic solvent contained in the ink composition of the present invention include chlorine-based solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene, tetrahydrofuran, dioxane and the like. Ether solvents, aromatic hydrocarbon solvents such as toluene, xylene, trimethylbenzene, mesitylene, cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane Aliphatic hydrocarbon solvents such as acetone, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and ethyl cellosolve acetate, ethylene glycol, ethylene glycol monobutyl ether, Polyhydric alcohols such as lenglycol monoethyl ether, ethylene glycol monomethyl ether, dimethoxyethane, propylene glycol, diethoxymethane, triethylene glycol monoethyl ether, glycerin, 1,2-hexanediol and their derivatives, methanol, ethanol, propanol And alcohol solvents such as isopropanol and cyclohexanol, sulfoxide solvents such as dimethyl sulfoxide, and amide solvents such as N-methyl-2-pyrrolidone and N, N′-dimethylformamide. In addition, these solvents may be used individually by 1 type, or may use 2 or more types together. Among these solvents, it is preferable to include an organic solvent having a structure containing a benzene ring and having a melting point of 0 ° C. or lower and a boiling point of 100 ° C. or higher because the viscosity and film formability are excellent.
 本発明のインク組成物は有機溶媒を含むため、本発明の共役系高分子化合物を含む薄膜を積層・成膜させるにあたり、本発明のインク組成物を塗布した後、乾燥により有機溶媒を除去するだけでよく、有機発光素子等の有機デバイスの製造上非常に有利である。なお、乾燥の際には、50~150℃に加温した状態で乾燥させてもよく、また、10-3Pa程度に減圧して乾燥させてもよい。 Since the ink composition of the present invention contains an organic solvent, when the thin film containing the conjugated polymer compound of the present invention is laminated and formed, after applying the ink composition of the present invention, the organic solvent is removed by drying. This is very advantageous in the manufacture of organic devices such as organic light-emitting elements. When drying, it may be dried in a state heated to 50 to 150 ° C., or may be dried under reduced pressure to about 10 −3 Pa.
 積層・成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、ノズルコート法等の塗布法を用いることができる。 For lamination and film formation, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, capillary coating method, spray coating A coating method such as a printing method, a screen printing method, a flexographic printing method, an offset printing method, an inkjet printing method, or a nozzle coating method can be used.
 本発明のインク組成物の好ましい粘度は、用いる塗布法によって異なるが、25℃において0.5~500mPa・sの範囲が好ましく、インクジェットプリント法等、本発明のインク組成物が吐出装置を経由するものの場合には、吐出時の目づまり及び飛行曲がりを防止するために粘度が25℃において0.5~20mPa・sの範囲であることが好ましい。 The preferred viscosity of the ink composition of the present invention varies depending on the coating method used, but is preferably in the range of 0.5 to 500 mPa · s at 25 ° C. The ink composition of the present invention such as an ink jet printing method passes through a discharge device. In the case of a product, the viscosity is preferably in the range of 0.5 to 20 mPa · s at 25 ° C. in order to prevent clogging and flight bending at the time of discharge.
<薄膜>
 本発明に係る薄膜は、本発明の共役系高分子化合物を含むものである。この薄膜は、上述の積層・成膜の方法により、本発明のインク組成物から容易に製造することができる。本発明に係る薄膜は、本発明の共役系高分子化合物を含むものであるため、例えば、本発明に係る薄膜を電荷輸送層又は発光層に有する有機発光素子は、輝度寿命が向上した素子となる。
<Thin film>
The thin film according to the present invention contains the conjugated polymer compound of the present invention. This thin film can be easily produced from the ink composition of the present invention by the above-described lamination / film formation method. Since the thin film according to the present invention includes the conjugated polymer compound of the present invention, for example, an organic light-emitting element having the thin film according to the present invention in a charge transport layer or a light-emitting layer is an element having an improved luminance life.
<有機デバイス>
 本発明の有機発光素子の構成は、その他の有機デバイスにも適用できる。
<Organic devices>
The configuration of the organic light emitting device of the present invention can be applied to other organic devices.
 その他の有機デバイスとしては、有機半導体素子、有機発光素子が挙げられる。有機半導体素子の例としては、有機太陽電池、有機トランジスタが挙げられる。 Other organic devices include organic semiconductor elements and organic light emitting elements. Examples of organic semiconductor elements include organic solar cells and organic transistors.
-有機半導体素子-
 上記有機半導体素子は、上記薄膜を備える。この有機半導体素子としては、有機薄膜太陽電池、有機薄膜トランジスタが例示される。その製造には、本発明の組成物及び本発明に係る薄膜が好適に用いられる。具体的には、例えば、SiO等の絶縁膜とゲート電極とを形成したSi基板上に上記薄膜を形成し、Au等でソース電極とドレイン電極を形成することにより、電界効果型有機トランジスタとすることができる。
-Organic semiconductor device-
The organic semiconductor element includes the thin film. Examples of the organic semiconductor element include an organic thin film solar cell and an organic thin film transistor. For the production thereof, the composition of the present invention and the thin film according to the present invention are suitably used. Specifically, for example, by forming the thin film on a Si substrate on which an insulating film such as SiO 2 and a gate electrode are formed, and forming a source electrode and a drain electrode with Au or the like, a field effect organic transistor and can do.
 有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となり薄膜からなる有機半導体層(即ち、活性層)、電流経路を通る電流量を制御するゲート電極を備えるものであり、電界効果型、静電誘導型が例示される。 The organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer (that is, an active layer) that is a thin film serving as a current path between them, and a gate electrode that controls the amount of current passing through the current path. An electrostatic induction type is exemplified.
 電界効果型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層、この電流経路を通る電流量を制御するゲート電極並びに、有機半導体層とゲート電極との間に配置される絶縁層を備えることが好ましい。特に、ソース電極及びドレイン電極が、有機半導体層に接して設けられており、さらに有機半導体層に接した絶縁層を挟んでゲート電極が設けられていることが好ましい。 A field effect organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer serving as a current path between them, a gate electrode for controlling the amount of current passing through the current path, and an organic semiconductor layer disposed between the organic semiconductor layer and the gate electrode. It is preferable to provide an insulating layer. In particular, the source electrode and the drain electrode are preferably provided in contact with the organic semiconductor layer, and the gate electrode is preferably provided with an insulating layer in contact with the organic semiconductor layer interposed therebetween.
 静電誘導型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層、並びに電流経路を通る電流量を制御するゲート電極を有し、このゲート電極が有機半導体層中に設けられていることが好ましい。特に、ソース電極、ドレイン電極及び有機半導体層中に設けられたゲート電極が、有機半導体層に接して設けられていることが好ましい。ここで、ゲート電極の構造としては、ソース電極からドレイン電極へ流れる電流経路が形成され、且つゲート電極に印加した電圧で電流経路を流れる電流量が制御できる構造であればよく、例えば、くし形電極が挙げられる。 The electrostatic induction type organic thin film transistor has a source electrode and a drain electrode, an organic semiconductor layer serving as a current path between them, and a gate electrode for controlling an amount of current passing through the current path, and the gate electrode is in the organic semiconductor layer. Is preferably provided. In particular, the source electrode, the drain electrode, and the gate electrode provided in the organic semiconductor layer are preferably provided in contact with the organic semiconductor layer. Here, the structure of the gate electrode may be a structure in which a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. An electrode is mentioned.
 図1は、有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の一実施形態を示す模式断面図である。図1に示す有機薄膜トランジスタ100は、基板1と、基板1上に所定の間隔をもって形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を覆うようにして基板1上に形成された有機半導体層2と、有機半導体層2上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の絶縁層3の領域を覆うように絶縁層3上に形成されたゲート電極4と、を備える。 FIG. 1 is a schematic cross-sectional view showing an embodiment of an organic thin film transistor (field effect organic thin film transistor). The organic thin film transistor 100 shown in FIG. 1 is formed on the substrate 1 so as to cover the substrate 1, the source electrode 5 and the drain electrode 6 formed on the substrate 1 with a predetermined interval, and the source electrode 5 and the drain electrode 6. Formed on the insulating layer 3 so as to cover the region of the insulating layer 3 formed on the organic semiconductor layer 2, the insulating layer 3 formed on the organic semiconductor layer 2, and the source electrode 5 and the drain electrode 6. A gate electrode 4.
 図2は、有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の他の実施形態を示す模式断面図である。図2に示す有機薄膜トランジスタ110は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を一部覆うように、絶縁層3上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を一部覆うように絶縁層3上に形成された有機半導体層2と、を備える。 FIG. 2 is a schematic cross-sectional view showing another embodiment of an organic thin film transistor (field effect organic thin film transistor). An organic thin film transistor 110 shown in FIG. 2 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom. A part of the source electrode 5 and the drain electrode 6 and a part of the source electrode 5 and the drain electrode 6 formed on the insulating layer 3 with a predetermined interval so as to partially cover the region of the insulating layer 3 formed on An organic semiconductor layer 2 formed on the insulating layer 3 so as to cover it.
 上述した有機薄膜トランジスタにおいては、有機半導体層2は、上述した本発明に係る薄膜から構成されており、ソース電極5とドレイン電極6との間の電流通路(チャネル)となる。また、ゲート電極4は、電圧を印加することにより有機半導体層2における電流通路(チャネル)を通る電流量を制御する。 In the organic thin film transistor described above, the organic semiconductor layer 2 is composed of the thin film according to the present invention described above, and becomes a current path (channel) between the source electrode 5 and the drain electrode 6. The gate electrode 4 controls the amount of current passing through the current path (channel) in the organic semiconductor layer 2 by applying a voltage.
 有機薄膜トランジスタのうち、電界効果型有機薄膜トランジスタは、公知の方法、例えば、特開平5-110069号公報に記載の方法により製造することができる。また、静電誘導型有機薄膜トランジスタは、公知の方法、例えば、特開2004-006476号公報に記載の方法により製造することができる。 Among the organic thin film transistors, the field effect type organic thin film transistor can be manufactured by a known method, for example, a method described in JP-A-5-110069. The electrostatic induction organic thin film transistor can be produced by a known method, for example, a method described in JP-A-2004-006476.
-有機発光素子-
 本実施形態に係る有機発光素子は、陽極と、陰極と、該陽極及び該陰極の間に存在する有機層と、を有し、該有機層には、上記一般式(1)で表される構造を有する化合物又は上記一般式(1)で表される構造から誘導される基を有する化合物が含まれる。一般式(1)で表される構造から誘導される基を有する化合物としては、本発明の共役系高分子化合物であることが好ましい。
-Organic light emitting device-
The organic light-emitting device according to this embodiment includes an anode, a cathode, and an organic layer present between the anode and the cathode, and the organic layer is represented by the general formula (1). A compound having a structure or a compound having a group derived from the structure represented by the general formula (1) is included. The compound having a group derived from the structure represented by the general formula (1) is preferably the conjugated polymer compound of the present invention.
 本実施形態に係る有機発光素子としては、以下の(a)~(d)の構造を有する素子が挙げられる。なお、「/」は、その前後の層が隣接して積層していることを示す。以下、同様である。
(a)陽極/発光層/陰極
(b)陽極/正孔輸送層/発光層/陰極
(c)陽極/発光層/電子輸送層/陰極
(d)陽極/正孔輸送層/発光層/電子輸送層/陰極
Examples of the organic light emitting device according to the present embodiment include devices having the following structures (a) to (d). Note that “/” indicates that the layers before and after the adjacent layers are laminated. The same applies hereinafter.
(A) Anode / light emitting layer / cathode (b) Anode / hole transport layer / light emitting layer / cathode (c) Anode / light emitting layer / electron transport layer / cathode (d) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode
 発光層とは、発光する機能を有する層である。
 正孔輸送層とは、正孔を輸送する機能を有する層である。
 電子輸送層とは、電子を輸送する機能を有する層である。
 正孔輸送層と電子輸送層を総称して電荷輸送層と言う。
 発光層に隣接した正孔輸送層をインターレイヤー層と言う場合がある。
 上記の一般式(1)で表される構造を有する化合物又は一般式(1)で表される構造から誘導される基を有する化合物は、発光層又は電荷輸送層(特に正孔輸送層)に含まれることが好ましい。
 一般式(1)で表される構造を有する化合物又は一般式(1)で表される構造から誘導される基を有する化合物が発光層に含まれる場合、一般式(1)で表される構造の骨格の割合は0.01質量%~20質量%であることが好ましく、また、一般式(1)で表される構造を有する化合物又は一般式(1)で表される構造から誘導される基を有する化合物が電荷輸送層(特に正孔輸送層)に含まれる場合、一般式(1)で表される構造の骨格の割合は0.01質量%~50質量%であることが好ましい。
The light emitting layer is a layer having a function of emitting light.
The hole transport layer is a layer having a function of transporting holes.
The electron transport layer is a layer having a function of transporting electrons.
The hole transport layer and the electron transport layer are collectively referred to as a charge transport layer.
The hole transport layer adjacent to the light emitting layer may be referred to as an interlayer layer.
The compound having the structure represented by the general formula (1) or the compound having a group derived from the structure represented by the general formula (1) is used in the light emitting layer or the charge transport layer (particularly, the hole transport layer). It is preferably included.
When a compound having a structure represented by the general formula (1) or a compound having a group derived from the structure represented by the general formula (1) is included in the light emitting layer, the structure represented by the general formula (1) Is preferably 0.01% by mass to 20% by mass, and is derived from a compound having a structure represented by the general formula (1) or a structure represented by the general formula (1). When the compound having a group is contained in the charge transport layer (particularly the hole transport layer), the ratio of the skeleton having the structure represented by the general formula (1) is preferably 0.01% by mass to 50% by mass.
 各層の積層・成膜は、それぞれ各層の材料を含む溶液を用いて行うことができる。溶液からの積層・成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、ノズルコート法等の塗布法を用いることができる。 Each layer can be stacked and formed using a solution containing the material of each layer. For lamination and film formation from solution, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, capillary coating method Application methods such as spray coating, screen printing, flexographic printing, offset printing, inkjet printing, and nozzle coating can be used.
 発光層の厚さは、駆動電圧と発光効率が適度な値となるように選択すればよいが、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~200nmである。 The thickness of the light emitting layer may be selected so that the driving voltage and the light emission efficiency are appropriate values, but is usually 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. .
 本実施形態に係る有機発光素子が正孔輸送層を有する場合、使用される正孔輸送材料としては、上記した本発明の組成物に含まれる正孔輸送材料と同様のものが挙げられる。正孔輸送層の成膜は、如何なる方法で行ってもよいが、使用される正孔輸送材料が低分子化合物である場合には、高分子バインダーとの混合液から成膜することが好ましい。使用される正孔輸送材料が高分子化合物である場合には、溶液から成膜することが好ましい。溶液からの成膜には、塗布法として例示した方法を用いることができる。 When the organic light-emitting device according to this embodiment has a hole transport layer, examples of the hole transport material used include those similar to the hole transport material included in the composition of the present invention described above. The hole transport layer may be formed by any method, but when the hole transport material to be used is a low molecular compound, it is preferably formed from a mixed solution with a polymer binder. When the hole transport material used is a polymer compound, it is preferable to form a film from a solution. For film formation from a solution, a method exemplified as a coating method can be used.
 正孔輸送材料と混合する高分子バインダーは、電荷輸送を極度に阻害しない化合物であって、可視光に対する吸収が強くない化合物が好ましい。高分子バインダーとしては、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。 The polymer binder to be mixed with the hole transport material is preferably a compound that does not extremely impede charge transport and does not strongly absorb visible light. Examples of the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane, and the like.
 正孔輸送層の厚さは、駆動電圧と発光効率が適度な値となるように選択すればよく、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~200nmである。 The thickness of the hole transport layer may be selected so that the driving voltage and the light emission efficiency are appropriate values, and is usually 1 nm to 1 μm, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. is there.
 本実施形態に係る有機発光素子が電子輸送層を有する場合、使用される電子輸送材料としては、上記した本発明の組成物に含まれる電子輸送材料と同様のものが挙げられる。電子輸送層の成膜は、如何なる方法で行ってもよいが、電子輸送材料が低分子化合物である場合には、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が好ましい。電子輸送材料が高分子化合物である場合には、溶液又は溶融状態からの成膜による方法が好ましい。溶液又は溶融状態からの成膜には、高分子バインダーを併用してもよい。溶液からの成膜には、塗布法として例示した方法を用いることができる。 When the organic light emitting device according to this embodiment has an electron transport layer, examples of the electron transport material used include the same electron transport materials as those contained in the composition of the present invention described above. The electron transport layer may be formed by any method, but when the electron transport material is a low-molecular compound, a vacuum deposition method from powder or a method by film formation from a solution or a molten state is preferable. When the electron transport material is a polymer compound, a method of forming a film from a solution or a molten state is preferable. For film formation from a solution or a molten state, a polymer binder may be used in combination. For film formation from a solution, a method exemplified as a coating method can be used.
 電子輸送材料と混合する高分子バインダーは、電荷輸送を極度に阻害しない化合物であって、可視光に対する吸収が強くない化合物が好ましい。高分子バインダーとしては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。 The polymer binder to be mixed with the electron transport material is preferably a compound that does not extremely inhibit charge transport and does not strongly absorb visible light. Polymeric binders include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, polycarbonate , Polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like.
 電子輸送層の厚さは、駆動電圧と発光効率が適度な値となるように選択すればよく、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~200nmである。 The thickness of the electron transport layer may be selected so that the drive voltage and the light emission efficiency are appropriate values, and is usually 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. .
 電極と電荷輸送層の間に、電極からの電荷注入効率を改善する機能を有する電荷注入層を有していてもよい。更に、電極との密着性向上や電極からの電荷注入効率の改善のために、電極に隣接して上記の電荷注入層又は絶縁層を設けてもよく、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファー層を挿入してもよい。なお、積層する層の順番や数、及び各層の厚さについては、発光効率や素子寿命を勘案して選択すればよい。 A charge injection layer having a function of improving charge injection efficiency from the electrode may be provided between the electrode and the charge transport layer. Furthermore, in order to improve the adhesion with the electrode and the efficiency of charge injection from the electrode, the above-described charge injection layer or insulating layer may be provided adjacent to the electrode to improve the interface adhesion, prevent mixing, etc. For this purpose, a thin buffer layer may be inserted at the interface between the charge transport layer and the light emitting layer. Note that the order and number of layers to be stacked, and the thickness of each layer may be selected in consideration of light emission efficiency and element lifetime.
 電荷注入層を設けた有機発光素子としては、以下の(e)~(i)の構造を有する素子が挙げられる。
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/発光層/電子輸送層/電子注入層/陰極
(g)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(h)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(i)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
Examples of the organic light emitting device provided with the charge injection layer include devices having the following structures (e) to (i).
(E) Anode / hole injection layer / hole transport layer / light emitting layer / cathode (f) Anode / light emitting layer / electron transport layer / electron injection layer / cathode (g) anode / hole injection layer / hole transport layer / Light emitting layer / electron transport layer / cathode (h) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (i) anode / hole injection layer / hole transport layer / light emitting layer / electron Transport layer / electron injection layer / cathode
 正孔注入層としては、導電性高分子を含む層、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層等が挙げられる。 The hole injection layer is a layer containing a conductive polymer, provided between the anode and the hole transport layer, and an ionization potential having an intermediate value between the anode material and the hole transport material contained in the hole transport layer. And a layer containing a material having s.
 電子注入層としては、導電性高分子を含む層、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する材料を含む層等が挙げられる。 As the electron injection layer, a layer containing a conductive polymer, a material provided between the cathode and the electron transport layer, and a material having an electron affinity of an intermediate value between the cathode material and the electron transport material contained in the electron transport layer. Examples include layers.
 電荷注入層が導電性高分子を含む層である場合、該導電性高分子の電気伝導度は、10-5S/cm~10S/cmであることが好ましく、発光画素間のリーク電流を小さくするためには、10-5S/cm~10S/cmであることがより好ましく、10-5S/cm~10S/cmであることがさらに好ましい。かかる範囲を満たすために、導電性高分子に適量のイオンをドープしてもよい。 When the charge injection layer is a layer containing a conductive polymer, the electrical conductivity of the conductive polymer is preferably 10 −5 S / cm to 10 3 S / cm, and the leakage current between the light emitting pixels Is preferably 10 −5 S / cm to 10 2 S / cm, and more preferably 10 −5 S / cm to 10 1 S / cm. In order to satisfy this range, the conductive polymer may be doped with an appropriate amount of ions.
 ドープするイオンの種類は、正孔注入層であればアニオン、電子注入層であればカチオンである。アニオンとしては、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオン等が挙げられ、カチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオン等が挙げられる。 The kind of ions to be doped is an anion for the hole injection layer and a cation for the electron injection layer. Examples of the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, camphor sulfonate ion, and the like. Examples of the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
 電荷注入層の厚さは、例えば、1nm~100nmであり、2nm~50nmが好ましい。 The thickness of the charge injection layer is, for example, 1 nm to 100 nm, preferably 2 nm to 50 nm.
 電荷注入層に用いる材料としては、電極や隣接する層の材料との関係で選択すればよく、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子、金属フタロシアニン(銅フタロシアニン等)、カーボン等が挙げられる。 The material used for the charge injection layer may be selected in relation to the material of the electrode and the adjacent layer, such as polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene. And a derivative thereof, polyquinoline and a derivative thereof, polyquinoxaline and a derivative thereof, a conductive polymer such as a polymer having an aromatic amine structure in a main chain or a side chain, metal phthalocyanine (copper phthalocyanine, etc.), carbon and the like.
 絶縁層は、電荷注入を容易にする機能を有するものである。この絶縁層の平均厚さは、通常、0.1nm~20nmであり、好ましくは0.5nm~10nm、より好ましくは1nm~5nmである。絶縁層に用いる材料としては、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。 The insulating layer has a function of facilitating charge injection. The average thickness of this insulating layer is usually 0.1 nm to 20 nm, preferably 0.5 nm to 10 nm, more preferably 1 nm to 5 nm. Examples of the material used for the insulating layer include metal fluorides, metal oxides, and organic insulating materials.
 絶縁層を設けた有機発光素子としては、以下の(j)~(y)の構造を有する素子が挙げられる。
(j)陽極/絶縁層/発光層/陰極
(k)陽極/発光層/絶縁層/陰極
(l)陽極/絶縁層/発光層/絶縁層/陰極
(m)陽極/絶縁層/正孔輸送層/発光層/陰極
(n)陽極/正孔輸送層/発光層/絶縁層/陰極
(o)陽極/絶縁層/正孔輸送層/発光層/絶縁層/陰極
(p)陽極/絶縁層/発光層/電子輸送層/陰極
(q)陽極/発光層/電子輸送層/絶縁層/陰極
(r)陽極/絶縁層/発光層/電子輸送層/絶縁層/陰極
(s)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/陰極
(t)陽極/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
(u)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
(v)陽極/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(w)陽極/絶縁層/発光層/電子輸送層/電子注入層/陰極
(x)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(y)陽極/絶縁層/発光層/電子輸送層/電子注入層/絶縁層/陰極
Examples of the organic light emitting device provided with an insulating layer include devices having the following structures (j) to (y).
(J) Anode / insulating layer / light emitting layer / cathode (k) anode / light emitting layer / insulating layer / cathode (l) Anode / insulating layer / light emitting layer / insulating layer / cathode (m) anode / insulating layer / hole transport Layer / light emitting layer / cathode (n) anode / hole transport layer / light emitting layer / insulating layer / cathode (o) anode / insulating layer / hole transporting layer / light emitting layer / insulating layer / cathode (p) anode / insulating layer / Light emitting layer / electron transport layer / cathode (q) anode / light emitting layer / electron transport layer / insulating layer / cathode (r) anode / insulating layer / light emitting layer / electron transport layer / insulating layer / cathode (s) anode / insulating Layer / hole transport layer / light emitting layer / electron transport layer / cathode (t) anode / hole transport layer / light emitting layer / electron transport layer / insulating layer / cathode (u) anode / insulating layer / hole transport layer / light emitting Layer / electron transport layer / insulating layer / cathode (v) anode / hole injection layer / hole transport layer / light emitting layer / insulating layer / cathode (w) anode / insulating layer / light emitting layer / electron transport layer / electron injection layer Cathode (x) anode / insulating layer / hole injecting layer / hole transporting layer / light emitting layer / insulating layer / cathode (y) anode / insulating layer / light emitting layer / electron transport layer / electron injection layer / insulating layer / cathode
 本実施形態に係る有機発光素子を形成する基板は、電極及び有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、高分子フィルム、シリコン等の基板が挙げられる。不透明な基板の場合には、該基板により近い電極と反対側の電極が透明又は半透明であることが好ましい。 The substrate on which the organic light emitting device according to the present embodiment is formed may be a substrate that does not chemically change when forming the electrode and the organic layer, and examples thereof include glass, plastic, polymer film, silicon, and the like. It is done. In the case of an opaque substrate, the electrode on the opposite side to the electrode closer to the substrate is preferably transparent or translucent.
 本実施形態において、通常は、陽極及び陰極からなる電極の少なくとも一方が透明又は半透明であり、陽極側が透明又は半透明であることが好ましい。 In the present embodiment, it is usually preferable that at least one of the anode and cathode electrodes is transparent or translucent, and the anode side is transparent or translucent.
 陽極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が用いられ、具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性無機化合物を用いて作製された膜、NESA、金、白金、銀、銅等が用いられる。陽極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。陽極上に、電荷注入を容易にするために、フタロシアニン誘導体、導電性高分子、カーボン等からなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる層を設けてもよい。 As the material of the anode, a conductive metal oxide film, a translucent metal thin film, or the like is used. Specifically, indium oxide, zinc oxide, tin oxide, and a composite thereof, indium tin oxide. A film made of a conductive inorganic compound made of (ITO), indium / zinc / oxide, NESA, gold, platinum, silver, copper, or the like is used. As the anode, an organic transparent conductive film such as polyaniline and a derivative thereof, polythiophene and a derivative thereof may be used. In order to facilitate charge injection, a layer made of a phthalocyanine derivative, a conductive polymer, carbon, or the like, or a layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like may be provided on the anode.
 陽極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。 Examples of methods for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
 陽極の厚さは、光の透過性と電気伝導度とを考慮して選択することができるが、通常、10nm~10μmであり、好ましくは20nm~1μmであり、更に好ましくは40nm~500nmである。 The thickness of the anode can be selected in consideration of light transmittance and electric conductivity, but is usually 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 40 nm to 500 nm. .
 陰極の材料としては、仕事関数の小さい材料が好ましく、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2種以上の合金、或いはそれらのうち1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金、グラファイト又はグラファイト層間化合物等が用いられる。 As a material of the cathode, a material having a small work function is preferable, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, Metals such as europium, terbium, ytterbium, and two or more alloys thereof, or one or more of them, and one of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin An alloy with a seed or more, graphite, or a graphite intercalation compound is used.
 陰極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法等が用いられる。 As a method for producing the cathode, a vacuum deposition method, a sputtering method, a laminating method in which a metal thin film is thermocompression bonded, or the like is used.
 陰極の厚さは、電気伝導度や耐久性を考慮して選択することができるが、通常、10nm~10μmであり、好ましくは20nm~1μmであり、更に好ましくは50nm~500nmである。 The thickness of the cathode can be selected in consideration of electric conductivity and durability, but is usually 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.
 陰極と発光層又は陰極と電子輸送層との間に、導電性高分子からなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる層を設けてもよく、陰極作製後、発光素子を保護する保護層を装着していてもよい。該発光素子を長期安定的に用いるためには、発光素子を外部から保護するために、保護層及び/又は保護カバーを装着することが好ましい。 Between the cathode and the light emitting layer or between the cathode and the electron transport layer, a layer made of a conductive polymer, or a layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like may be provided. A protective layer for protecting the element may be attached. In order to stably use the light emitting element for a long period of time, it is preferable to attach a protective layer and / or a protective cover in order to protect the light emitting element from the outside.
 保護層としては、樹脂、金属酸化物、金属フッ化物、金属ホウ化物等を用いることができる。保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板等を用いることができ、該保護カバーを熱硬化樹脂や光硬化樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。スペーサーを用いて空間を維持すれば、素子がキズつくのを防ぐことが容易である。該空間に窒素やアルゴン等の不活性なガスを封入すれば、陰極の酸化を防止することができ、更に酸化バリウム等の乾燥剤を該空間内に設置することにより製造工程で吸着した水分が素子にタメージを与えるのを抑制することが容易となる。 As the protective layer, resins, metal oxides, metal fluorides, metal borides and the like can be used. As the protective cover, a glass plate, a plastic plate having a low water permeability treatment on the surface, or the like can be used, and a method of sealing the protective cover by bonding it to the element substrate with a thermosetting resin or a photocurable resin is preferable. Used. If a space is maintained using a spacer, it is easy to prevent the element from being damaged. If an inert gas such as nitrogen or argon is sealed in the space, oxidation of the cathode can be prevented, and further, moisture adsorbed in the manufacturing process can be obtained by installing a desiccant such as barium oxide in the space. It becomes easy to suppress giving an image to an element.
 図3は、本実施形態に係る有機発光素子(上記(i)の構成を有する有機発光素子)の模式断面図である。図3に示す有機発光素子200は、基板20と、該基板20上に形成された陽極22、正孔注入層23、正孔輸送層24、発光層25、電子輸送層26、電子注入層27及び陰極28と、を有している。陽極22は、基板20と接するように基板20上に設けられており、陽極22の基板20とは反対側には、正孔注入層23、正孔輸送層24、発光層25、電子輸送層26、電子注入層27及び陰極28が、この順で積層されている。 FIG. 3 is a schematic cross-sectional view of the organic light-emitting device (organic light-emitting device having the configuration (i) above) according to this embodiment. An organic light emitting device 200 shown in FIG. 3 includes a substrate 20, an anode 22 formed on the substrate 20, a hole injection layer 23, a hole transport layer 24, a light emitting layer 25, an electron transport layer 26, and an electron injection layer 27. And a cathode 28. The anode 22 is provided on the substrate 20 so as to be in contact with the substrate 20. On the opposite side of the anode 22 from the substrate 20, a hole injection layer 23, a hole transport layer 24, a light emitting layer 25, and an electron transport layer are provided. 26, the electron injection layer 27 and the cathode 28 are laminated in this order.
 図4は、本実施形態に係る有機発光素子(上記(e)の構成を有する有機発光素子)の模式断面図である。図4に示す有機発光素子220は、基板20と、該基板20上に形成された陽極22、正孔注入層23、正孔輸送層24、発光層25及び陰極28と、を有している。陽極22は、基板と接するように基板20上に設けられており、陽極22の基板20と反対側には、正孔注入層23、正孔輸送層24、発光層25及び陰極28が、この順で積層されている。 FIG. 4 is a schematic cross-sectional view of the organic light emitting device (organic light emitting device having the configuration of (e) above) according to the present embodiment. An organic light emitting device 220 shown in FIG. 4 includes a substrate 20, and an anode 22, a hole injection layer 23, a hole transport layer 24, a light emitting layer 25, and a cathode 28 formed on the substrate 20. . The anode 22 is provided on the substrate 20 so as to be in contact with the substrate. On the opposite side of the anode 22 from the substrate 20, a hole injection layer 23, a hole transport layer 24, a light emitting layer 25, and a cathode 28 are provided. They are stacked in order.
 有機発光素子の場合、上記一般式(1)で表される構造を有する化合物又は上記一般式(1)で表される構造から誘導される基を有する化合物が含まれる層は、発光層、正孔輸送層又は電子輸送層であることが好ましい。 In the case of an organic light emitting device, a layer containing a compound having a structure represented by the general formula (1) or a compound having a group derived from the structure represented by the general formula (1) includes a light emitting layer, a positive layer. A hole transport layer or an electron transport layer is preferred.
 また、上記一般式(1)で表される構造を有する化合物又は上記一般式(1)で表される構造から誘導される基を有する化合物が含まれる層が複数あってもよい。例えば、一般式(1)で表される構造を有する化合物又は一般式(1)で表される構造から誘導される基を有する化合物を、正孔輸送層及び発光層に含有する有機発光素子、電子輸送層及び発光層に含有する有機発光素子、正孔輸送層及び電子輸送層に含有する有機発光素子、正孔輸送層、発光層及び電子輸送層に含有する有機発光素子とすることができる。 Further, there may be a plurality of layers containing a compound having a structure represented by the general formula (1) or a compound having a group derived from the structure represented by the general formula (1). For example, an organic light emitting device containing a compound having a structure represented by the general formula (1) or a compound having a group derived from the structure represented by the general formula (1) in the hole transport layer and the light emitting layer, Organic light-emitting devices contained in the electron transport layer and the light-emitting layer, organic light-emitting devices contained in the hole-transport layer and the electron transport layer, organic light-emitting devices contained in the hole transport layer, the light-emitting layer, and the electron transport layer .
 また、上記一般式(1)で表される構造から誘導される基を有する化合物としては、本発明の共役系高分子化合物として有機発光素子に含有されていることが好ましい。これにより、有機発光素子の輝度寿命が一層向上する。 Further, the compound having a group derived from the structure represented by the general formula (1) is preferably contained in the organic light emitting device as the conjugated polymer compound of the present invention. This further improves the luminance life of the organic light emitting device.
 本発明の共役系高分子化合物が正孔輸送層に含有される場合、当該共役系高分子化合物は正孔注入性及び正孔輸送性が良好になるので、上記一般式(1)で表される構造から誘導される基及び2価の芳香族アミン残基を含有している共役系高分子化合物であることが好ましく、2価の芳香族アミン残基としては、上記一般式(B)で表される任意追加基であることがさらに好ましい。 When the conjugated polymer compound of the present invention is contained in the hole transport layer, the conjugated polymer compound has good hole injecting property and hole transporting property, and therefore is represented by the general formula (1). A conjugated polymer compound containing a group derived from a structure and a divalent aromatic amine residue is preferable, and the divalent aromatic amine residue is represented by the above general formula (B). More preferably, it is an optional additional group represented.
 本発明の共役系高分子化合物が電子輸送層に含有される場合、電子注入性及び電子輸送性が良好になるので、上記一般式(1)で表される構造から誘導される基及び上記一般式(A)で表される任意追加基を含有している共役系高分子化合物であることが好ましい。 When the conjugated polymer compound of the present invention is contained in the electron transport layer, the electron injecting property and the electron transporting property are improved, so that the group derived from the structure represented by the general formula (1) and the above general A conjugated polymer compound containing an arbitrary additional group represented by the formula (A) is preferable.
 本発明の共役系高分子化合物が発光層に含有される場合、電荷(正孔及び電子)注入性及び輸送性が良好になり、かつ、正孔と電子の結合により励起エネルギーを効率良く形成することができるので、当該共役系高分子化合物は、
 上記一般式(1)で表される構造から誘導される基、上記一般式(A)で表される任意追加基及び上記一般式(B)で表される任意追加基を含有する共役系高分子化合物、
 上記一般式(1)で表される構造から誘導される基、上記一般式(B)で表される任意追加基及び上記一般式(C)で表される任意追加基を含有する共役系高分子化合物、
 又は上記一般式(1)で表される構造から誘導される基、上記一般式(A)で表される任意追加基、上記一般式(B)で表される任意追加基及び上記一般式(C)で表される任意追加基を含む共役系高分子化合物が好ましい。
 これらのうち、一般式(1)で表される構造から誘導される基、一般式(A)で表される任意追加基及び一般式(B)で表される任意追加基を含有する共役系高分子化合物がより好ましい。
When the conjugated polymer compound of the present invention is contained in the light emitting layer, the charge (hole and electron) injection and transport properties are improved, and excitation energy is efficiently formed by the combination of holes and electrons. Therefore, the conjugated polymer compound is
Conjugated system containing a group derived from the structure represented by the general formula (1), an optional additional group represented by the general formula (A), and an optional additional group represented by the general formula (B) Molecular compounds,
Conjugated system containing a group derived from the structure represented by the general formula (1), an optional additional group represented by the general formula (B), and an optional additional group represented by the general formula (C) Molecular compounds,
Or a group derived from the structure represented by the general formula (1), an optional additional group represented by the general formula (A), an optional additional group represented by the general formula (B), and the general formula ( A conjugated polymer compound containing an optional additional group represented by C) is preferred.
Among these, a conjugated system containing a group derived from the structure represented by the general formula (1), an optional additional group represented by the general formula (A), and an optional additional group represented by the general formula (B) High molecular compounds are more preferred.
 上記一般式(1)で表される構造を有する化合物又は上記一般式(1)で表される構造から誘導される基を有する化合物を含有する層が有機発光素子等の有機デバイスに含有される場合、一般式(1)で表される構造を有する化合物又は一般式(1)で表される構造から誘導される基を有する化合物の含有量は、有機デバイスの種類及び有機デバイス中に用いる層の種類により選択することができる。 A layer containing a compound having a structure represented by the general formula (1) or a compound having a group derived from the structure represented by the general formula (1) is contained in an organic device such as an organic light emitting device. In this case, the content of the compound having the structure represented by the general formula (1) or the compound having a group derived from the structure represented by the general formula (1) depends on the type of the organic device and the layer used in the organic device. The type can be selected.
 有機発光素子の場合、各層における、上記一般式(1)で表される構造を有する化合物又は上記一般式(1)で表される構造から誘導される基を有する化合物の含有量については、
 当該層が発光層である場合、発光層に含有される有機化合物全量に対して、一般式(1)で表される構造に換算して、0.01質量%~20質量%であることが好ましく、0.03質量%~5質量%であることがより好ましく、0.05質量%~3質量%であることがさらに好ましく、また、
 当該層が電荷輸送層の場合、電荷輸送層に含有される有機化合物全量に対して、一般式(1)で表される構造に換算して、0.01質量%~50質量%であることが好ましく、0.01質量%~20質量%であることがより好ましく、1質量%~15質量%であることがさらに好ましい。
 なお、「一般式(1)で表される構造の骨格」とは、一般式(1)で表される構造中の全てのRを除いた残りの原子団を意味する。
 当該層が、一般式(1)で表される構造を有する化合物及び一般式(1)で表される構造から誘導される基を有する化合物のいずれをも含有する場合は、上記含有量はこれらの含有量の合計値である。
In the case of an organic light emitting device, the content of the compound having a structure represented by the general formula (1) or a compound having a group derived from the structure represented by the general formula (1) in each layer is as follows.
When the layer is a light emitting layer, it is 0.01% by mass to 20% by mass in terms of the structure represented by the general formula (1) with respect to the total amount of the organic compound contained in the light emitting layer. Preferably, it is 0.03% by mass to 5% by mass, more preferably 0.05% by mass to 3% by mass,
When the layer is a charge transport layer, it is 0.01% by mass to 50% by mass in terms of the structure represented by the general formula (1) with respect to the total amount of the organic compound contained in the charge transport layer. It is preferably 0.01% by mass to 20% by mass, more preferably 1% by mass to 15% by mass.
The “skeleton of the structure represented by the general formula (1)” means the remaining atomic group excluding all R x in the structure represented by the general formula (1).
When the layer contains both a compound having a structure represented by the general formula (1) and a compound having a group derived from the structure represented by the general formula (1), the above contents are It is the total value of the content of.
<面状光源、表示装置>
 本発明に係る有機発光素子は、曲面状光源、平面状光源等の面状光源(例えば、照明);セグメント表示装置、ドットマトリックス表示装置(例えば、ドットマトリックスのフラットディスプレイ)、液晶表示装置(例えば、液晶表示装置、液晶ディスプレイのバックライト)等の表示装置等に有用である。
<Surface light source, display device>
The organic light emitting device according to the present invention includes a planar light source such as a curved light source and a planar light source (for example, illumination); a segment display device, a dot matrix display device (for example, a dot matrix flat display), a liquid crystal display device (for example, It is useful for display devices such as liquid crystal display devices and backlights of liquid crystal displays.
 白色照明の一部として、本発明に係る有機発光素子を用いる場合は、白色の色純度を得るために青色以外の発光材料を有機発光素子の発光層にさらに含有していてもよいし、有機発光素子が青色以外の発光材料を有する第二の発光層を有していてもよい。 When using the organic light emitting device according to the present invention as part of white illumination, a light emitting material other than blue may be further contained in the light emitting layer of the organic light emitting device in order to obtain white color purity, or organic The light emitting element may have a second light emitting layer having a light emitting material other than blue.
 本実施形態に係る有機発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、該面状の有機発光素子の表面にパターン状の窓を設けたマスクを設置する方法、陽極若しくは陰極のいずれか一方、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字や文字、簡単な記号等を表示できるセグメントタイプの表示装置が得られる。更に、ドットマトリックス表示装置とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法や、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動してもよい。これらの表示装置は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダー等の表示装置として用いることができる。 In order to obtain planar light emission using the organic light emitting device according to this embodiment, the planar anode and cathode may be arranged so as to overlap each other. In addition, in order to obtain pattern-like light emission, a method in which a mask having a pattern-like window is provided on the surface of the planar organic light-emitting element, either the anode or the cathode, or both electrodes in a pattern form There is a method of forming. By forming a pattern by any of these methods and arranging several electrodes so that they can be turned on and off independently, a segment type display device capable of displaying numbers, letters, simple symbols, and the like can be obtained. Furthermore, in order to obtain a dot matrix display device, both the anode and the cathode may be formed in a stripe shape and arranged so as to be orthogonal to each other. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors or a method using a color filter or a fluorescence conversion filter. The dot matrix display device can be driven passively or may be driven actively in combination with a TFT or the like. These display devices can be used as display devices for computers, televisions, mobile terminals, mobile phones, car navigation systems, video camera viewfinders, and the like.
 図5は、本実施形態に係る面状光源の模式断面図である。図5に示す面状光源300は、基板30と、陽極31と、正孔注入層32と、発光層33と、陰極34と、保護層35と、から構成されている。陽極31は、基板30と接するように基板30上に設けられており、陽極31の基板30と反対側には、正孔注入層32、発光層33及び陰極34がこの順で積層されている。また、保護層35は、基板30上に形成された陽極31、電荷注入層32、発光層33及び陰極34を全て覆うように、かつ、端部で基板30と接するように、形成されている。発光層33には、本発明に係る一般式(1)で表される構造を有する化合物、本発明に係る一般式(1)で表される構造から誘導される基を有する化合物又は本発明の共役系高分子化合物が含まれる。 FIG. 5 is a schematic cross-sectional view of a planar light source according to the present embodiment. A planar light source 300 shown in FIG. 5 includes a substrate 30, an anode 31, a hole injection layer 32, a light emitting layer 33, a cathode 34, and a protective layer 35. The anode 31 is provided on the substrate 30 so as to be in contact with the substrate 30, and a hole injection layer 32, a light emitting layer 33, and a cathode 34 are laminated in this order on the opposite side of the anode 31 from the substrate 30. . The protective layer 35 is formed so as to cover all of the anode 31, the charge injection layer 32, the light emitting layer 33, and the cathode 34 formed on the substrate 30 and in contact with the substrate 30 at the end. . The light emitting layer 33 includes a compound having a structure represented by the general formula (1) according to the present invention, a compound having a group derived from the structure represented by the general formula (1) according to the present invention, or the present invention. Conjugated polymer compounds are included.
 図5に示す面状光源300は、発光層33以外の発光層をさらに複数備えるものとし、それぞれの発光層に赤色発光材料、青色発光材料及び緑色発光材料を用い、それぞれの発光層の駆動を制御することで、カラー表示装置とすることができる。 The planar light source 300 shown in FIG. 5 further includes a plurality of light emitting layers other than the light emitting layer 33, and each light emitting layer uses a red light emitting material, a blue light emitting material, and a green light emitting material, and drives each light emitting layer. By controlling, a color display device can be obtained.
 なお、本発明に係る一般式(1)で表される構造を有する化合物、又は本発明に係る一般式(1)で表される構造から誘導される基を有する化合物は、レーザー用色素、有機太陽電池用材料、有機トランジスタ用の有機半導体、導電性薄膜、有機半導体薄膜等の伝導性薄膜用材料、蛍光を発する発光性薄膜材料、高分子電界効果トランジスタの材料等としても有用である。 The compound having the structure represented by the general formula (1) according to the present invention or the compound having a group derived from the structure represented by the general formula (1) according to the present invention is a dye for laser, organic It is also useful as a material for a solar cell, an organic semiconductor for an organic transistor, a conductive thin film material such as a conductive thin film or an organic semiconductor thin film, a light emitting thin film material that emits fluorescence, a material for a polymer field effect transistor, or the like.
 以下、実施例及び比較例に基づいて本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
(数平均分子量及び重量平均分子量)
 ポリスチレン換算の数平均分子量及び重量平均分子量は、GPC(島津製作所製、商品名:LC-10Avp)により求めた。測定する高分子化合物は、約0.5質量%の濃度になるようにテトラヒドロフラン(以下、「THF」という。)に溶解させ、GPCに30μL注入した。GPCの移動相にはTHFを用い、0.6mL/分の流速で流した。カラムは、TSKgel SuperHM-H(東ソー製)2本とTSKgel SuperH2000(東ソー製)1本を直列に繋げた。検出器には示差屈折率検出器(島津製作所製、商品名:RID-10A)を用いた。
(Number average molecular weight and weight average molecular weight)
The number average molecular weight and weight average molecular weight in terms of polystyrene were determined by GPC (manufactured by Shimadzu Corporation, trade name: LC-10Avp). The polymer compound to be measured was dissolved in tetrahydrofuran (hereinafter referred to as “THF”) to a concentration of about 0.5% by mass, and 30 μL was injected into GPC. THF was used as the mobile phase of GPC, and flowed at a flow rate of 0.6 mL / min. As the column, two TSKgel SuperHM-H (manufactured by Tosoh) and one TSKgel SuperH2000 (manufactured by Tosoh) were connected in series. A differential refractive index detector (manufactured by Shimadzu Corporation, trade name: RID-10A) was used as the detector.
(NMR測定)
 単量体のNMR測定は、以下の条件で行った。
  装置     : 核磁気共鳴装置、INOVA300(商品名)、バリアン社製
  測定溶媒   : 重水素化クロロホルム又は重水素化テトラヒドロフラン
  サンプル濃度 : 約1質量%
  測定温度   : 25℃
(NMR measurement)
The NMR measurement of the monomer was performed under the following conditions.
Apparatus: Nuclear magnetic resonance apparatus, INOVA300 (trade name), manufactured by Varian Inc. Measurement solvent: Deuterated chloroform or deuterated tetrahydrofuran Sample concentration: About 1% by mass
Measurement temperature: 25 ° C
 LC-MSの測定は、以下の方法で行った。測定試料を2mg/mLの濃度になるようにクロロホルム又はテトラヒドロフランに溶解させて、LC-MS(アジレント・テクノロジー製、商品名:1100LCMSD)に1μL注入した。LC-MSの移動相には、イオン交換水、アセトニトリル、テトラヒドロフラン又はそれらの混合液を用い、必要に応じて酢酸を添加した。カラムは、L-column 2 ODS(3μm)(化学物質評価研究機構製、内径:2.1mm、長さ:100mm、粒子径3μm)を用いた。こうした条件で、測定試料をLC-MSにて測定し、解析した。 LC-MS measurement was performed by the following method. The measurement sample was dissolved in chloroform or tetrahydrofuran to a concentration of 2 mg / mL, and 1 μL was injected into LC-MS (manufactured by Agilent Technologies, trade name: 1100LCMSD). As the mobile phase of LC-MS, ion-exchanged water, acetonitrile, tetrahydrofuran or a mixture thereof was used, and acetic acid was added as necessary. As the column, L-column 2 ODS (3 μm) (manufactured by Chemicals Evaluation and Research Institute, inner diameter: 2.1 mm, length: 100 mm, particle diameter: 3 μm) was used. Under these conditions, the measurement sample was measured by LC-MS and analyzed.
<合成例1A:化合物1Aの合成>
 化合物1Aは、Eur.J.Org.Chem.2005年,pp.2207に記載の方法に従って、合成した。
 窒素雰囲気下、3口ナスフラスコにアズレン(3.0質量部)を仕込み、ヘキサンを加えて攪拌した。氷浴を用いて0℃まで冷却し、そこに、NBS(N-ブロモスクシンイミド)(10.4質量部)を反応温度を保ちながら少しずつ加えた。反応終了後、得られた混合物を室温で2時間攪拌し、その後溶媒を除去した。得られた固体を、シリカゲルカラムクロマトグラフィー、及び、ヘキサンを用いた再結晶を行い精製した。目的とする化合物1Aは、再結晶からの回収分として3.75質量部(HPLC純度100%)、及び、ろ液からの回収分として2.83質量部(HPLC純度99.6%)が得られた。全収率は99.1%であった。化合物1Aの構造はNMRにより確認した。
<Synthesis Example 1A: Synthesis of Compound 1A>
Compound 1A was prepared according to Eur. J. et al. Org. Chem. 2005, pp. Synthesized according to the method described in 2207.
In a nitrogen atmosphere, azulene (3.0 parts by mass) was charged into a three-necked eggplant flask, and hexane was added and stirred. The mixture was cooled to 0 ° C. using an ice bath, and NBS (N-bromosuccinimide) (10.4 parts by mass) was added little by little while maintaining the reaction temperature. After completion of the reaction, the resulting mixture was stirred at room temperature for 2 hours, after which the solvent was removed. The obtained solid was purified by silica gel column chromatography and recrystallization using hexane. The target compound 1A is 3.75 parts by mass (HPLC purity 100%) as a recovery from recrystallization, and 2.83 parts by mass (HPLC purity 99.6%) as a recovery from the filtrate. It was. The overall yield was 99.1%. The structure of Compound 1A was confirmed by NMR.
Figure JPOXMLDOC01-appb-C000029
 H-NMR(300MHz,CDCl):δ(ppm)=8.32(d,12Hz,2H),7.81(s,1H),7.68(t,12Hz,1H),7.27(m,2H).
 13C-NMR(75MHz,CDCl):δ(ppm)=140.36,138.50,137.01,136.07,124.33,102.99.
Figure JPOXMLDOC01-appb-C000029
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 8.32 (d, 12 Hz, 2H), 7.81 (s, 1H), 7.68 (t, 12 Hz, 1H), 7.27 (M, 2H).
13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 140.36, 138.50, 137.01, 136.07, 124.33, 102.99.
<合成例1B:化合物1Bの合成>
 アルゴン気流下、反応容器に1-ブロモ-3,5-ジ-n-ヘキシルベンゼン(20.0質量部)とテトラヒドロフランを加え、均一溶液を調製し、該溶液を-69℃まで冷却した。該溶液に2.76Mのn-ブチルリチウム/ヘキサン溶液(1-ブロモ-3,5-ジ-n-ヘキシルベンゼンに対して1モル当量)を-68℃で1.5時間かけて滴下し、さらに該溶液を-70℃で1.5時間撹拌した。次いで、化合物1B-1(9.0質量部)とテトラヒドロフランとからなる溶液を-70℃で1時間かけて滴下し、-70℃で2時間撹拌した。次いで、該溶液に-70℃にてメタノール及び蒸留水を加え撹拌した後、室温まで昇温し、室温にて一晩撹拌した。次いで、反応混合物をろ過し、ろ液を濃縮した。得られた濃縮物に、ヘプタン及び水を加え撹拌し、静置して分液した有機層から水層を除去した。該有機層に飽和食塩水を加え撹拌し、静置して分液した有機層から水層を除去した。有機層に硫酸マグネシウムを加え撹拌し、ろ過して得られたろ液を濃縮し、化合物1Bを23.4質量部得た。
<Synthesis Example 1B: Synthesis of Compound 1B>
Under a stream of argon, 1-bromo-3,5-di-n-hexylbenzene (20.0 parts by mass) and tetrahydrofuran were added to the reaction vessel to prepare a homogeneous solution, and the solution was cooled to -69 ° C. A 2.76 M n-butyllithium / hexane solution (1 molar equivalent to 1-bromo-3,5-di-n-hexylbenzene) was added dropwise to the solution at −68 ° C. over 1.5 hours. The solution was further stirred at −70 ° C. for 1.5 hours. Next, a solution consisting of Compound 1B-1 (9.0 parts by mass) and tetrahydrofuran was added dropwise at −70 ° C. over 1 hour, and the mixture was stirred at −70 ° C. for 2 hours. Next, methanol and distilled water were added to the solution and stirred at −70 ° C., and then the mixture was warmed to room temperature and stirred overnight at room temperature. The reaction mixture was then filtered and the filtrate was concentrated. To the obtained concentrate, heptane and water were added and stirred, and the aqueous layer was removed from the organic layer which was allowed to stand and liquid-separated. Saturated saline was added to the organic layer, stirred, and the aqueous layer was removed from the organic layer which was allowed to stand and separate. Magnesium sulfate was added to the organic layer and stirred, and the filtrate obtained by filtration was concentrated to obtain 23.4 parts by mass of Compound 1B.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
<合成例2B:化合物2Bの合成>
 アルゴン気流下、反応容器に化合物1B(48.0質量部)及びジクロロメタンを加え、均一溶液を調製し、-30℃に冷却した。該溶液に三フッ化ホウ素ジエチルエーテル錯体(化合物1Bに対して1モル当量)を30分間かけて滴下し、室温にて一晩撹拌した。次いで、反応混合物を-20℃に冷却し、蒸留水を加え、1時間撹拌した。その後、反応液を静置して分液させることにより、水層を除去して、有機層を得た。次いで、その有機層に水を加え撹拌し、静置して分液させることにより、水層を除去して、有機層を得た。得られた有機層に10質量%炭酸水素ナトリウム水溶液を加え撹拌し、静置して分液させることにより、水層を除去して、有機層を得た。この有機層を濃縮し溶媒を除去した。次いで、この有機層を、トルエン及びヘプタンを展開溶媒としてシリカゲルカラムクロマトグラフィーにて精製し、濃縮して溶媒を除去した。次いで、得られた濃縮物に対して、酢酸ブチルとメタノールを用い再結晶することにより、目的とする化合物2Bを23.2質量部得た。
<Synthesis Example 2B: Synthesis of Compound 2B>
Under a stream of argon, Compound 1B (48.0 parts by mass) and dichloromethane were added to the reaction vessel to prepare a uniform solution and cooled to −30 ° C. Boron trifluoride diethyl ether complex (1 molar equivalent to Compound 1B) was added dropwise to the solution over 30 minutes, and the mixture was stirred overnight at room temperature. The reaction mixture was then cooled to −20 ° C., distilled water was added and stirred for 1 hour. Thereafter, the reaction solution was allowed to stand to cause liquid separation, whereby the aqueous layer was removed to obtain an organic layer. Next, water was added to the organic layer, and the mixture was stirred and allowed to stand for liquid separation, whereby the aqueous layer was removed to obtain an organic layer. A 10% by mass aqueous sodium hydrogen carbonate solution was added to the obtained organic layer, stirred, and allowed to stand for liquid separation, whereby the aqueous layer was removed to obtain an organic layer. The organic layer was concentrated to remove the solvent. Subsequently, this organic layer was purified by silica gel column chromatography using toluene and heptane as developing solvents, and concentrated to remove the solvent. Next, 23.2 parts by mass of the target compound 2B was obtained by recrystallizing the resulting concentrate using butyl acetate and methanol.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
<合成例3B:化合物3Bの合成>
 アルゴン気流下、4口フラスコに化合物2B(9.5質量部)、化合物3B-1(6.6質量部)、1,4-ジオキサン、酢酸カリウム(7.05質量部)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(dppf、0.1質量部)及び1,1’-ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム(II)塩化メチレン錯体(PdCl(dppf)・CHCl、0.15質量部)を加え、100~102℃で5時間撹拌した。次いで、得られた反応混合物を室温まで冷却した後、セライト及びシリカゲルを敷き詰めたろ過器でろ過し、得られたろ液を濃縮して溶媒を除去した。次いで、得られた濃縮物にヘキサンを加えて調製した溶液に、活性炭を加え、ヘキサンが還流する温度にて1時間撹拌した。得られた混合液を室温まで冷却後、セライトを敷き詰めたろ過器でろ過し、濃縮して溶媒を除去した。次いで、トルエン及びアセトニトリルで再結晶を行うことにより、目的とする化合物3Bを10.1質量部得た。
<Synthesis Example 3B: Synthesis of Compound 3B>
In a 4-necked flask under an argon stream, compound 2B (9.5 parts by mass), compound 3B-1 (6.6 parts by mass), 1,4-dioxane, potassium acetate (7.05 parts by mass), 1,1 ′ -Bis (diphenylphosphino) ferrocene (dppf, 0.1 parts by weight) and 1,1'-bis (diphenylphosphino) ferrocenedichloropalladium (II) methylene chloride complex (PdCl 2 (dppf) · CH 2 Cl 2 , 0.15 parts by mass) was added and the mixture was stirred at 100 to 102 ° C. for 5 hours. Subsequently, after cooling the obtained reaction mixture to room temperature, it filtered with the filter which spread Celite and the silica gel, and the obtained filtrate was concentrated and the solvent was removed. Next, activated carbon was added to a solution prepared by adding hexane to the obtained concentrate, and the mixture was stirred at a temperature at which hexane was refluxed for 1 hour. The resulting mixture was cooled to room temperature, filtered through a filter packed with celite, and concentrated to remove the solvent. Subsequently, 10.1 mass parts of target compound 3B was obtained by recrystallizing with toluene and acetonitrile.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
<合成例1C:化合物1Cの合成>
 不活性雰囲気下、3口フラスコに、3-n-ヘキシル-5-メチルブロモベンゼン(26.2質量部)及び無水テトラヒドロフランを加え均一溶液とし、-70℃に冷却した。得られた溶液に、2.5Mのn-ブチルリチウム/ヘキサン溶液(3-n-ヘキシル-5-メチルブロモベンゼンに対して0.93モル当量)を、溶液の温度が-70℃に保たれるように滴下し、同温度にて4時間撹拌し、溶液(以下、「溶液A」と言う。)を調製した。
 別途、2口フラスコに、2-メトキシカルボニル-4,4’-ジブロモビフェニル(16.0質量部)及び無水テトラヒドロフランを加え、溶液(以下、「溶液B」と言う。)を調製した。
 溶液Aに溶液Bを、溶液Aの温度が-70℃に保たれるように滴下し、撹拌した。次いで、反応液を室温にて15時間撹拌した。次いで、反応液に水を0℃にて加え、撹拌した。次いで、減圧下で濃縮操作により溶媒を留去し、残留物にヘキサン及び水を加え、撹拌した。得られた混合液を静置して分液させることにより、水層を除去して、有機層を得た。この有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥させた後、減圧下で濃縮することにより、下記式で表される化合物1Cを白色固体として得た。
<Synthesis Example 1C: Synthesis of Compound 1C>
Under an inert atmosphere, 3-n-hexyl-5-methylbromobenzene (26.2 parts by mass) and anhydrous tetrahydrofuran were added to a three-necked flask to form a homogeneous solution, and the mixture was cooled to -70 ° C. To the resulting solution, a 2.5 M n-butyllithium / hexane solution (0.93 molar equivalent to 3-n-hexyl-5-methylbromobenzene) was kept at a solution temperature of −70 ° C. And stirred at the same temperature for 4 hours to prepare a solution (hereinafter referred to as “solution A”).
Separately, 2-methoxycarbonyl-4,4′-dibromobiphenyl (16.0 parts by mass) and anhydrous tetrahydrofuran were added to a two-necked flask to prepare a solution (hereinafter referred to as “solution B”).
Solution B was added dropwise to solution A so that the temperature of solution A was kept at −70 ° C. and stirred. The reaction was then stirred at room temperature for 15 hours. Next, water was added to the reaction solution at 0 ° C. and stirred. Next, the solvent was distilled off by concentration under reduced pressure, and hexane and water were added to the residue, followed by stirring. The obtained liquid mixture was allowed to stand and liquid-separated to remove the aqueous layer and obtain an organic layer. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain Compound 1C represented by the following formula as a white solid.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
<合成例2C:化合物2Cの合成>
 不活性雰囲気下、3口フラスコに、化合物1C(30.0質量部)及び無水ジクロロメタンを加え、5℃に冷却した。得られた混合物に、温度が0~5℃の範囲内に保たれるように、三フッ化ホウ素ジエチルエーテル錯体(化合物1Cに対して4.2モル当量)を滴下した後、室温にて終夜撹拌した。反応液を、氷水に注意深く注ぎ、30分撹拌し、静置して分液させることにより、水層を除去して、有機層を得た。この有機層に10質量%リン酸カリウム水溶液を加え、2時間撹拌した後、静置して分液させることにより、水層を除去して、有機層を得た。得られた有機層を水で洗浄し、無水硫酸マグネシウムにて乾燥させた後、濃縮することにより溶媒を留去し、オイル状の液体を得た。このオイル状の液体にメタノールを加えたところ、固体が生じた。この固体をn-ブチルアセテート及びメタノールを用いて再結晶を行うことにより、下記式で表される化合物2Cを24.0質量部得た。
<Synthesis Example 2C: Synthesis of Compound 2C>
Under an inert atmosphere, Compound 1C (30.0 parts by mass) and anhydrous dichloromethane were added to a three-necked flask and cooled to 5 ° C. Boron trifluoride diethyl ether complex (4.2 molar equivalents relative to compound 1C) was added dropwise to the resulting mixture so that the temperature was kept within the range of 0 to 5 ° C., and then at room temperature overnight. Stir. The reaction solution was carefully poured into ice water, stirred for 30 minutes, and allowed to stand for liquid separation, whereby the aqueous layer was removed to obtain an organic layer. A 10% by mass aqueous potassium phosphate solution was added to the organic layer, and the mixture was stirred for 2 hours, and then allowed to stand for liquid separation, whereby the aqueous layer was removed to obtain an organic layer. The obtained organic layer was washed with water, dried over anhydrous magnesium sulfate, and concentrated to distill off the solvent to obtain an oily liquid. When methanol was added to the oily liquid, a solid was formed. By recrystallizing this solid using n-butyl acetate and methanol, 24.0 parts by mass of Compound 2C represented by the following formula was obtained.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
<合成例3C:化合物3Cの合成>
 3口フラスコに、化合物2C(8.0質量部)、ビス(ピナコレート)ジボロン(6.6質量部)、1,1’-ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム(II)塩化メチレン錯体(Pd(dppf)・CHCl、0.15質量部)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(0.099質量部)、無水1,4-ジオキサン及び酢酸カリウム(7.0質量部)を加え、100℃で20時間撹拌した。反応液を室温に冷却した後、シリカゲルを通液させ、シリカゲルをトルエンで洗浄し、得られた溶液の溶媒を濃縮することにより留去し、褐色の液体を得た。この液体を、ヘキサンを展開溶媒とし、シリカゲルカラムクロマトグラフィーによって精製した後、濃縮することにより得られた液体にアセトニトリルを加え、固体を得た。この固体をアセトニトリル及びトルエンを用いて再結晶を1回行い、ジクロロメタン及びメタノールを用いて再結晶を1回行い、得られた有機層を減圧下で乾燥させることにより、下記式で表される化合物3Cを2.9質量部得た。
<Synthesis Example 3C: Synthesis of Compound 3C>
In a three-necked flask, compound 2C (8.0 parts by mass), bis (pinacolato) diboron (6.6 parts by mass), 1,1′-bis (diphenylphosphino) ferrocenedichloropalladium (II) methylene chloride complex (Pd (Dppf) · CH 2 Cl 2 , 0.15 parts by mass), 1,1′-bis (diphenylphosphino) ferrocene (0.099 parts by mass), anhydrous 1,4-dioxane and potassium acetate (7.0 parts by mass) Part) was added and stirred at 100 ° C. for 20 hours. After the reaction solution was cooled to room temperature, silica gel was passed through, the silica gel was washed with toluene, and the solvent of the obtained solution was concentrated to distill off to obtain a brown liquid. This liquid was purified by silica gel column chromatography using hexane as a developing solvent and then concentrated to a liquid obtained by concentration to obtain a solid. The solid is recrystallized once with acetonitrile and toluene, recrystallized once with dichloromethane and methanol, and the resulting organic layer is dried under reduced pressure to give a compound represented by the following formula: As a result, 2.9 parts by mass of 3C was obtained.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
<合成例1D:化合物1Dの合成>
 3口フラスコ内の気体を窒素で置換し、3口フラスコ内で、1-ブロモ-3-n-ヘキシルベンゼン22.6質量部を、無水テトラヒドロフランに溶解させた。得られた溶液を-75℃以下に冷却し、2.5M n-ブチルリチウム/ヘキサン溶液(1-ブロモ-3-n-ヘキシルベンゼンに対して0.96モル当量)を滴下し、-75℃以下に保ちながら5時間撹拌した。反応液を-70℃に保ちながら、そこに、2-メトキシカルボニル-4,4’-ジブロモビフェニル15.0質量部を無水テトラヒドロフランに溶解させた溶液を滴下した。得られた溶液を室温までゆっくりと昇温後、終夜撹拌した。反応液を0℃で撹拌しながら、水を滴下した。反応液から溶媒を留去した後、残渣に水を加え、ヘキサンで3回抽出した。得られた有機層を合わせ、飽和食塩水で洗浄し、水層をヘキサンで再抽出した。その後、得られた有機層を硫酸マグネシウムで乾燥させ、次いで、溶媒を留去したところ、26.4質量部の化合物1Dの粗生成物を得た。
<Synthesis Example 1D: Synthesis of Compound 1D>
The gas in the three-necked flask was replaced with nitrogen, and 22.6 parts by mass of 1-bromo-3-n-hexylbenzene was dissolved in anhydrous tetrahydrofuran in the three-necked flask. The obtained solution was cooled to −75 ° C. or lower, and a 2.5M n-butyllithium / hexane solution (0.96 molar equivalent with respect to 1-bromo-3-n-hexylbenzene) was added dropwise, and −75 ° C. It stirred for 5 hours, keeping below. While maintaining the reaction liquid at −70 ° C., a solution prepared by dissolving 15.0 parts by mass of 2-methoxycarbonyl-4,4′-dibromobiphenyl in anhydrous tetrahydrofuran was added dropwise thereto. The resulting solution was slowly warmed to room temperature and stirred overnight. While the reaction solution was stirred at 0 ° C., water was added dropwise. After the solvent was distilled off from the reaction solution, water was added to the residue and the mixture was extracted 3 times with hexane. The obtained organic layers were combined, washed with saturated brine, and the aqueous layer was re-extracted with hexane. Then, when the obtained organic layer was dried with magnesium sulfate and then the solvent was distilled off, 26.4 parts by mass of a crude product of compound 1D was obtained.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
<合成例2D:化合物2Dの合成>
 3口フラスコ内で、上記で合成した化合物1D 26.4質量部を、ジクロロメタンに溶解させ、該フラスコ内の気体を窒素で置換した。得られた溶液を0℃以下に冷却した後、該溶液を5℃以下に保ちながら、三フッ化ホウ素ジエチルエーテル錯体(化合物1Dに対して5モル当量)を滴下した。室温までゆっくり昇温後、終夜撹拌した。反応液を氷水中に撹拌しながら注ぎ、30分撹拌した。反応液を分液し、水層をジクロロメタンで抽出した。有機層を合わせ、10質量%リン酸カリウム水溶液を加えて分液し、有機層を水2回で洗浄した。有機層を硫酸マグネシウムで乾燥させ、次いで、溶媒を留去することによりオイル状の液体が得られた。このオイル状の液体をトルエンに溶解させ、シリカゲルを敷いたグラスフィルターに通し、ろ過した。ろ液から溶媒を留去した後、メタノールを加えて激しく撹拌したところ、結晶が得られた。この結晶をろ過し、メタノールで洗浄した。洗浄した結晶をヘキサンと酢酸ブチルとの混合溶媒で再結晶して、化合物2Dを12.1質量部得た。
<Synthesis Example 2D: Synthesis of Compound 2D>
In a three-necked flask, 26.4 parts by mass of the compound 1D synthesized above was dissolved in dichloromethane, and the gas in the flask was replaced with nitrogen. After cooling the obtained solution to 0 ° C. or lower, boron trifluoride diethyl ether complex (5 molar equivalents relative to Compound 1D) was added dropwise while keeping the solution at 5 ° C. or lower. The mixture was slowly warmed to room temperature and stirred overnight. The reaction solution was poured into ice water with stirring and stirred for 30 minutes. The reaction solution was separated, and the aqueous layer was extracted with dichloromethane. The organic layers were combined, 10% by mass aqueous potassium phosphate solution was added for liquid separation, and the organic layer was washed twice with water. The organic layer was dried over magnesium sulfate and then the solvent was distilled off to obtain an oily liquid. This oily liquid was dissolved in toluene, passed through a glass filter covered with silica gel, and filtered. After the solvent was distilled off from the filtrate, methanol was added and vigorously stirred to obtain crystals. The crystals were filtered and washed with methanol. The washed crystal was recrystallized with a mixed solvent of hexane and butyl acetate to obtain 12.1 parts by mass of Compound 2D.
Figure JPOXMLDOC01-appb-C000037
 H-NMR(300MHz,CDCl):δ(ppm)=0.86(t,6H),1.26(m,12H),1.52(m,4H),2.51(t,4H),6.87(d,2H),7.00(s,2H),7.04(d,2H),7.12(t,2H),7.46(dd,2H),7.48(d,2H),7.55(d,2H).
Figure JPOXMLDOC01-appb-C000037
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 0.86 (t, 6H), 1.26 (m, 12H), 1.52 (m, 4H), 2.51 (t, 4H) ), 6.87 (d, 2H), 7.00 (s, 2H), 7.04 (d, 2H), 7.12 (t, 2H), 7.46 (dd, 2H), 7.48 (D, 2H), 7.55 (d, 2H).
<合成例3D:化合物3Dの合成>
 3口フラスコに化合物2D 5.0質量部を加え、該フラスコ内の気体を窒素で置換した。そこに、無水テトラヒドロフランを加え、-70℃以下に冷却した。得られた溶液を-70℃以下に保ちながら2.5M n-ブチルリチウム/ヘキサン溶液(化合物2Dに対して2.2モル当量)を滴下した。滴下後、温度を保ちながら4時間撹拌した。そこに、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(化合物2Dに対して2.8モル当量)を加えた後、室温までゆっくり昇温し、終夜撹拌した。反応液を-30℃に冷却し、そこに2M塩酸/ジエチルエーテル溶液を滴下した後、室温まで昇温した。反応液から溶媒を留去した後、生じた固体を、トルエンを加えて溶解させた。得られた溶液をシリカゲルを敷いたグラスフィルターに通してろ過し、ろ液の溶媒を留去して、5.0質量部の粗生成物を得た。この粗生成物を、窒素雰囲気下でトルエンとアセトニトリルとの混合溶媒で再結晶して、化合物3Dを3.4質量部得た。
<Synthesis Example 3D: Synthesis of Compound 3D>
5.0 parts by mass of Compound 2D was added to a three-necked flask, and the gas in the flask was replaced with nitrogen. Thereto was added anhydrous tetrahydrofuran, and the mixture was cooled to -70 ° C or lower. While maintaining the obtained solution at −70 ° C. or lower, a 2.5M n-butyllithium / hexane solution (2.2 molar equivalents relative to Compound 2D) was added dropwise. After dropping, the mixture was stirred for 4 hours while maintaining the temperature. 2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.8 molar equivalents relative to Compound 2D) was added thereto, and the temperature was slowly raised to room temperature. Stir overnight. The reaction solution was cooled to −30 ° C., and a 2M hydrochloric acid / diethyl ether solution was added dropwise thereto, and then the temperature was raised to room temperature. After the solvent was distilled off from the reaction solution, the resulting solid was dissolved by adding toluene. The obtained solution was filtered through a glass filter covered with silica gel, and the solvent of the filtrate was distilled off to obtain 5.0 parts by mass of a crude product. This crude product was recrystallized with a mixed solvent of toluene and acetonitrile under a nitrogen atmosphere to obtain 3.4 parts by mass of Compound 3D.
Figure JPOXMLDOC01-appb-C000038
 H-NMR(300MHz,CDCl):δ(ppm)=0.86(t,6H),1.26-1.29(m,12H),1.31(s,24H),1.52-1.53(m,4H),2.50(t,4H),6.92(d,2H),7.00(d,2H),7.08(t,2H),7.13(s,2H),7.77(d,2H),7.81-7.82(m,4H).
Figure JPOXMLDOC01-appb-C000038
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 0.86 (t, 6H), 1.26-1.29 (m, 12H), 1.31 (s, 24H), 1.52 -1.53 (m, 4H), 2.50 (t, 4H), 6.92 (d, 2H), 7.00 (d, 2H), 7.08 (t, 2H), 7.13 ( s, 2H), 7.77 (d, 2H), 7.81-7.82 (m, 4H).
<合成例1F:化合物1Fの合成>
 3口フラスコに、3,5-ジブロモフェノール9.6質量部、3,5-ビス(4-tert-ブチルフェニル)フェニルボロン酸30.9質量部(特開2005-82730号公報に記載の方法に従って合成した。)及びテトラエチルアンモニウムヒドロキシド95.0質量部(20質量%水溶液)を加えた後、フラスコ内の気体を窒素で置換した。そこに、トルエン及びジクロロビス(トリフェニルホスフィン)パラジウム0.15質量部を加え、100℃で8時間加熱した。その後、得られた混合液を放冷すると、結晶が析出した。この結晶を、クロロホルムを加えて溶解させ、得られた溶液に1N塩酸を加えて酸性にし、分液した。得られた水層をクロロホルムで抽出し、抽出後のクロロホルムを有機層と合わせ、水、飽和食塩水の順で洗浄した。洗浄後の有機層を、シリカゲルを敷いたグラスフィルターに通してろ過し、ろ液から溶媒を留去したところ、41.8質量部の粗生成物を得た。これに、ヘキサンを加え、還流温度まで昇温後、室温までゆっくり放冷し、ろ過し、得られた残渣をヘキサンで洗浄したところ、下記式で表される化合物1Fを28.0質量部得た。
<Synthesis Example 1F: Synthesis of Compound 1F>
In a three-necked flask, 9.6 parts by mass of 3,5-dibromophenol and 30.9 parts by mass of 3,5-bis (4-tert-butylphenyl) phenylboronic acid (the method described in JP-A-2005-82730) And 95.0 parts by mass of tetraethylammonium hydroxide (20% by mass aqueous solution) were added, and the gas in the flask was replaced with nitrogen. Thereto were added 0.15 parts by mass of toluene and dichlorobis (triphenylphosphine) palladium, and the mixture was heated at 100 ° C. for 8 hours. Then, when the obtained liquid mixture was allowed to cool, crystals were precipitated. The crystals were dissolved by adding chloroform, and the resulting solution was acidified with 1N hydrochloric acid and separated. The obtained aqueous layer was extracted with chloroform, and the extracted chloroform was combined with the organic layer and washed with water and saturated brine in this order. The washed organic layer was filtered through a glass filter covered with silica gel, and the solvent was distilled off from the filtrate to obtain 41.8 parts by mass of a crude product. Hexane was added thereto, the temperature was raised to reflux temperature, and then slowly cooled to room temperature, filtered, and the resulting residue was washed with hexane to obtain 28.0 parts by mass of Compound 1F represented by the following formula. It was.
Figure JPOXMLDOC01-appb-C000039
 LC-MS(APPI-MS,posi):775([M+H],exact mass=774).
 H-NMR(300MHz,CDCl):δ(ppm)=1.35(s,36H),5.19(s,1H),7.15(s,2H),7.47(d,8H),7.59(s,1H),7.60(d,8H),7.78(s,6H).
 13C-NMR(300MHz,CDCl):δ(ppm)=31.8,34.9,113.9,119.6,125.2,125.7,126.2,127.4,138.6,142.1,142.6,144.0,150.9,156.6.
Figure JPOXMLDOC01-appb-C000039
LC-MS (APPI-MS, posi): 775 ([M + H] + , exact mass = 774).
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 1.35 (s, 36H), 5.19 (s, 1H), 7.15 (s, 2H), 7.47 (d, 8H ), 7.59 (s, 1H), 7.60 (d, 8H), 7.78 (s, 6H).
13 C-NMR (300 MHz, CDCl 3 ): δ (ppm) = 31.8, 34.9, 113.9, 119.6, 125.2, 125.7, 126.2, 127.4, 138. 6, 142.1, 142.6, 144.0, 150.9, 156.6.
<合成例2F:化合物2Fの合成>
 4口フラスコ内の気体を窒素で置換し、4口フラスコ内で化合物1F 28.0質量部及びN,N-ジメチル-4-アミノピリジン13.0質量部を脱水ジクロロメタンに溶解させ、0℃に冷却した。そこに、無水トリフルオロメタンスルホン酸25.0質量部を30分かけて滴下した。そして、20分撹拌後、冷浴を外し、1.5時間撹拌を継続した。得られた混合液を、シリカゲルを敷いたグラスフィルターに通し、ろ過し、得られた残渣をトルエンで洗浄して、混合液とした。得られた混合液から溶媒を留去したところ、下記式で表される化合物2Fを28.9質量部得た。
<Synthesis Example 2F: Synthesis of Compound 2F>
The gas in the four-necked flask was replaced with nitrogen, and 28.0 parts by mass of Compound 1F and 13.0 parts by mass of N, N-dimethyl-4-aminopyridine were dissolved in dehydrated dichloromethane in the four-necked flask. Cooled down. There, 25.0 mass parts of trifluoromethanesulfonic anhydride was dripped over 30 minutes. And after stirring for 20 minutes, the cold bath was removed and stirring was continued for 1.5 hours. The obtained mixed solution was passed through a glass filter with silica gel and filtered, and the obtained residue was washed with toluene to obtain a mixed solution. When the solvent was distilled off from the obtained mixed liquid, 28.9 parts by mass of Compound 2F represented by the following formula was obtained.
Figure JPOXMLDOC01-appb-C000040
 LC-MS(ESI-MS,positive):945([M+K]、exact mass=906).
 H-NMR(300MHz,CDCl):δ(ppm)=1.38(s,36H),7.52(d,8H),7.57(s,2H),7.64(d,8H),7.77(s,4H),7.85(s,2H),7.97(s,1H).
 13C-NMR(300MHz,CDCl):δ(ppm)=31.7,34.9,119.3.
Figure JPOXMLDOC01-appb-C000040
LC-MS (ESI-MS, positive): 945 ([M + K] + , exact mass = 906).
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 1.38 (s, 36H), 7.52 (d, 8H), 7.57 (s, 2H), 7.64 (d, 8H) ), 7.77 (s, 4H), 7.85 (s, 2H), 7.97 (s, 1H).
13 C-NMR (300 MHz, CDCl 3 ): δ (ppm) = 31.7, 34.9, 119.3.
<合成例3F:化合物3Fの合成>
 4口フラスコ内の気体を窒素で置換し、フェノキサジン6.1質量部を入れ、脱水トルエンに溶解させた。そこに、トリス(ジベンジリデンアセトン)ジパラジウム0.71質量部、1,1’-ビス(ジフェニルホスフィノ)フェロセン0.86質量部及び炭酸セシウム15.2質量部を加え、110℃に加熱した。そこに、化合物2F 28.9質量部を窒素バブリングした脱水トルエンに溶解させた溶液を1時間かけて滴下した。そして、20時間撹拌後、得られた混合物をシリカゲルを敷いたグラスフィルターで熱時ろ過し、得られた残渣をトルエンで洗浄した。得られた混合液から溶媒を留去したところ、33.0質量部の粗生成物を得た。この粗生成物をトルエンに溶解させ、得られた溶液をメタノール1L中に滴下し、再沈殿させた。得られた溶液を、ろ過し、得られた沈殿をメタノールで洗浄したところ、50.0質量部の粗生成物を得た。そこに、トルエンを加え、加熱して溶解させ、エタノールを滴下し、再結晶した。さらに、得られた生成物を、ろ過し、エタノールで洗浄したところ、24.8質量部の生成物を得た。この生成物を、トルエンとエタノールとの混合溶媒を用いて再結晶したところ、下記式で表される化合物3Fを16.6質量部得た。
<Synthesis Example 3F: Synthesis of Compound 3F>
The gas in the four-neck flask was replaced with nitrogen, and 6.1 parts by mass of phenoxazine was added and dissolved in dehydrated toluene. Thereto was added 0.71 part by weight of tris (dibenzylideneacetone) dipalladium, 0.86 part by weight of 1,1′-bis (diphenylphosphino) ferrocene and 15.2 parts by weight of cesium carbonate, and the mixture was heated to 110 ° C. . A solution prepared by dissolving 28.9 parts by mass of Compound 2F in dehydrated toluene bubbled with nitrogen was added dropwise over 1 hour. Then, after stirring for 20 hours, the obtained mixture was filtered with a glass filter with silica gel while hot, and the resulting residue was washed with toluene. When the solvent was distilled off from the obtained mixed liquid, 33.0 parts by mass of a crude product was obtained. This crude product was dissolved in toluene, and the resulting solution was dropped into 1 L of methanol to cause reprecipitation. The obtained solution was filtered, and the resulting precipitate was washed with methanol to obtain 50.0 parts by mass of a crude product. Toluene was added and heated to dissolve, and ethanol was added dropwise for recrystallization. Furthermore, when the obtained product was filtered and washed with ethanol, 24.8 parts by mass of the product was obtained. When this product was recrystallized using a mixed solvent of toluene and ethanol, 16.6 parts by mass of Compound 3F represented by the following formula was obtained.
Figure JPOXMLDOC01-appb-C000041
 LC-MS(APCI,positive):940([M+H]、exact mass=939).
 H-NMR(300MHz,CDCl):δ(ppm)=1.37(s,36H),6.13-6.16(m,2H),6.62-6.71(m,6H),7.50(d,8H),7.64(d,8H),7.72(s,2H),7.83(s,6H),8.11(s,1H).
 13C-NMR(300MHz,CDCl):δ(ppm)=31.7,34.9,113.7,115.8,121.7,123.7,125.0,126.0,126.1,126.3,127.4,128.8,134.6,138.4,140.4,141.1,142.8,144.3,145.3,151.0.
Figure JPOXMLDOC01-appb-C000041
LC-MS (APCI, positive): 940 ([M + H] + , exact mass = 939).
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 1.37 (s, 36H), 6.13-6.16 (m, 2H), 6.62-6.71 (m, 6H) , 7.50 (d, 8H), 7.64 (d, 8H), 7.72 (s, 2H), 7.83 (s, 6H), 8.11 (s, 1H).
13 C-NMR (300 MHz, CDCl 3 ): δ (ppm) = 31.7, 34.9, 113.7, 115.8, 121.7, 123.7, 125.0, 126.0, 126. 1, 126.3, 127.4, 128.8, 134.6, 138.4, 140.4, 141.1, 142.8, 144.3, 145.3, 151.0.
<合成例4F:化合物4Fの合成>
 4口フラスコ内の気体を窒素で置換し、化合物3F 16.6質量部を加え、クロロホルムに溶解させた。得られた溶液を冷浴を用いて0℃に冷却し、そこに、6.3質量部のNBSをDMF(N,N-ジメチルホルムアミド)に溶解させた溶液を50分かけて滴下した。そして、10分撹拌後、冷浴を外し、3時間撹拌を継続した。得られた混合液を、再度0℃に冷却し、そこに、0.1質量部のNBSをDMFに溶解させた溶液を滴下した。混合液を室温で1.5時間撹拌した後、そこに、水を滴下し分液した。得られた水層をトルエンで2回抽出し、得られたトルエン溶液を有機層と合わせ、更にトルエンを加えた後、得られた混合液を、水及び飽和食塩水の順で洗浄した。洗浄後の混合液を、シリカゲルを敷いたグラスフィルターに通してろ過し、得られた残渣をトルエンで洗浄した。得られた混合液から溶媒を留去したところ、下記式で表される化合物4Fを25.1質量部得た。
<Synthesis Example 4F: Synthesis of Compound 4F>
The gas in the four-necked flask was replaced with nitrogen, and 16.6 parts by mass of Compound 3F was added and dissolved in chloroform. The obtained solution was cooled to 0 ° C. using a cold bath, and a solution in which 6.3 parts by mass of NBS was dissolved in DMF (N, N-dimethylformamide) was added dropwise over 50 minutes. And after stirring for 10 minutes, the cold bath was removed and stirring was continued for 3 hours. The obtained mixed solution was cooled again to 0 ° C., and a solution in which 0.1 part by mass of NBS was dissolved in DMF was added dropwise thereto. The mixture was stirred at room temperature for 1.5 hours, and then water was added dropwise thereto for liquid separation. The obtained aqueous layer was extracted twice with toluene, the obtained toluene solution was combined with the organic layer, and toluene was further added, and then the resulting mixture was washed with water and saturated brine in this order. The washed liquid mixture was filtered through a glass filter covered with silica gel, and the resulting residue was washed with toluene. When the solvent was distilled off from the obtained mixed liquid, 25.1 parts by mass of Compound 4F represented by the following formula was obtained.
Figure JPOXMLDOC01-appb-C000042
 LC-MS(APCI,positive):1096([M+H]、exact mass=1095).
 H-NMR(300MHz,CDCl):δ(ppm)=1.37(s,36H),5.99(d,2H),6.75(d,2H),6.85(brs,2H),7.50(d,8H),7.61-7.65(m,10H),7.82(d,6H),8.11(s,1H).
 13C-NMR(300MHz,CDCl):δ(ppm)=31.7,34.9,113.3,114.9,119.0,125.0,126.2,126.7,127.3,128.2,129.3,133.5,138.3,139.6,140.7,142.9,144.5,145.6,151.1.
Figure JPOXMLDOC01-appb-C000042
LC-MS (APCI, positive): 1096 ([M + H] + , exact mass = 1095).
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 1.37 (s, 36H), 5.99 (d, 2H), 6.75 (d, 2H), 6.85 (brs, 2H) ), 7.50 (d, 8H), 7.61-7.65 (m, 10H), 7.82 (d, 6H), 8.11 (s, 1H).
13 C-NMR (300 MHz, CDCl 3 ): δ (ppm) = 31.7, 34.9, 113.3, 114.9, 119.0, 125.0, 126.2, 126.7, 127. 3, 128.2, 129.3, 133.5, 138.3, 139.6, 140.7, 142.9, 144.5, 145.6, 151.1.
<合成例1G:化合物1Gの合成>
 不活性雰囲気下で、3口フラスコに酢酸225質量部を入れ、5-tert-ブチル-m-キシレン24.3質量部を加えた。次いで、そこに、臭素31.2質量部を加えた後、15~20℃で3時間反応させた。反応液を水500mLに加え、析出した沈殿をろ過した。得られた沈殿を水250mLで2回洗浄し、白色の固体である化合物1Gを34.2質量部得た。
<Synthesis Example 1G: Synthesis of Compound 1G>
Under an inert atmosphere, 225 parts by mass of acetic acid was placed in a three-necked flask, and 24.3 parts by mass of 5-tert-butyl-m-xylene was added. Next, 31.2 parts by mass of bromine was added thereto, followed by reaction at 15 to 20 ° C. for 3 hours. The reaction solution was added to 500 mL of water, and the deposited precipitate was filtered. The obtained precipitate was washed twice with 250 mL of water to obtain 34.2 parts by mass of Compound 1G as a white solid.
Figure JPOXMLDOC01-appb-C000043
 H-NMR(300MHz,CDCl):δ(ppm)=1.3(s,9H),2.4(s,6H),7.1(s,2H).
 MS(FD+):M 241.
Figure JPOXMLDOC01-appb-C000043
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 1.3 (s, 9H), 2.4 (s, 6H), 7.1 (s, 2H).
MS (FD +): M <+> 241.
<合成例2G:化合物2Gの合成>
 不活性雰囲気下で、3口フラスコに脱気した脱水トルエンを入れ、トリ(tert-ブチル)ホスフィン0.63質量部を加えた。次いで、トリス(ジベンジリデンアセトン)ジパラジウム0.41質量部、化合物1G9.6質量部、tert-ブトキシナトリウム5.2質量部及びN,N’-ジフェニル-1,4-フェニレンジアミン4.7質量部を加えた後、100℃で3時間反応させた。反応液を飽和食塩水に加え、約50℃に温めたクロロホルムで抽出した。得られた有機層から溶媒を留去したところ、固体が生じた。そこに、トルエンを加えて、固体が溶解するまで加熱した。次いで、放冷した後、沈殿をろ過し、白色の固体である化合物2Gを9.9質量部得た。
<Synthesis Example 2G: Synthesis of Compound 2G>
Under an inert atmosphere, degassed dehydrated toluene was placed in a three-necked flask, and 0.63 parts by mass of tri (tert-butyl) phosphine was added. Subsequently, 0.41 part by mass of tris (dibenzylideneacetone) dipalladium, 9.6 parts by mass of compound 1G, 5.2 parts by mass of sodium tert-butoxy and 4.7 parts by mass of N, N′-diphenyl-1,4-phenylenediamine After adding a part, it was made to react at 100 degreeC for 3 hours. The reaction solution was added to saturated brine and extracted with chloroform warmed to about 50 ° C. When the solvent was distilled off from the obtained organic layer, a solid was produced. Toluene was added thereto and heated until the solid dissolved. Then, after allowing to cool, the precipitate was filtered to obtain 9.9 parts by mass of Compound 2G as a white solid.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
<合成例3G>(化合物3Gの合成)
 不活性雰囲気下で、3口フラスコに、脱水N,N-ジメチルホルムアミドを入れ、化合物2G5.2質量部を溶解した後、氷浴下でN-ブロモスクシンイミド3.5質量部をN,N-ジメチルホルムアミドに溶解させた溶液を滴下し、一昼夜反応させた。反応液に水を加え、析出した沈殿をろ過し、得られた沈殿をメタノールで2回洗浄し、白色の固体である化合物3Gを4.4質量部得た。
<Synthesis Example 3G> (Synthesis of Compound 3G)
Under an inert atmosphere, dehydrated N, N-dimethylformamide was placed in a three-necked flask to dissolve 5.2 parts by mass of Compound 2G, and then 3.5 parts by mass of N-bromosuccinimide was added to the N, N— A solution dissolved in dimethylformamide was added dropwise and allowed to react all day and night. Water was added to the reaction solution, the deposited precipitate was filtered, and the obtained precipitate was washed twice with methanol to obtain 4.4 parts by mass of Compound 3G as a white solid.
Figure JPOXMLDOC01-appb-C000045
 H-NMR(300MHz,THF-d8):δ(ppm)=1.3(s,18H),2.0(s,12H),6.6~6.7(d,4H),6.8~6.9(br,4H),7.1(s,4H),7.2~7.3(d,4H).
 MS(FD+):M 738.
Figure JPOXMLDOC01-appb-C000045
1 H-NMR (300 MHz, THF-d8): δ (ppm) = 1.3 (s, 18H), 2.0 (s, 12H), 6.6 to 6.7 (d, 4H), 6. 8 to 6.9 (br, 4H), 7.1 (s, 4H), 7.2 to 7.3 (d, 4H).
MS (FD +): M <+> 738.
<重合例1:高分子化合物1の合成>
 不活性雰囲気下、化合物3B(2.688g,2.96mmol)、下記式:
Figure JPOXMLDOC01-appb-C000046
で表される化合物1H(1.640g,1.80mmol)、下記式:
Figure JPOXMLDOC01-appb-C000047
で表されるF8BR(0.411g,0.75mmol)、下記式:
Figure JPOXMLDOC01-appb-C000048
で表される化合物1J(0.238g,0.45mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム(2.1mg)及びトルエン(62mL)を混合し、105℃に加熱した。反応液に20質量%水酸化テトラエチルアンモニウム水溶液(10mL)を滴下し、3時間20分還流させた。反応後、そこに、フェニルボロン酸(36.8mg)、ジクロロビス(トリフェニルホスフィン)パラジウム(2.1mg)、及び水酸化テトラエチルアンモニウム水溶液(10mL)を加え、更に16時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、水で2回、3質量%酢酸水溶液で2回、水で2回洗浄した。得られた溶液をメタノールに滴下、濾取することで沈殿物を得た。この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムを順番に通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物を濾取し、乾燥させることにより、高分子化合物1を3.12g得た。高分子化合物1のポリスチレン換算の数平均分子量は8.0×10であり、ポリスチレン換算の重量平均分子量は2.6×10であった。
<Polymerization Example 1: Synthesis of polymer compound 1>
Under an inert atmosphere, compound 3B (2.688 g, 2.96 mmol), the following formula:
Figure JPOXMLDOC01-appb-C000046
1H (1.640 g, 1.80 mmol) represented by the following formula:
Figure JPOXMLDOC01-appb-C000047
F8BR (0.411 g, 0.75 mmol) represented by the following formula:
Figure JPOXMLDOC01-appb-C000048
Embedded image Compound 1J (0.238 g, 0.45 mmol), dichlorobis (triphenylphosphine) palladium (2.1 mg) and toluene (62 mL) were mixed and heated to 105 ° C. A 20% by mass aqueous tetraethylammonium hydroxide solution (10 mL) was added dropwise to the reaction solution, and the mixture was refluxed for 3 hours and 20 minutes. After the reaction, phenylboronic acid (36.8 mg), dichlorobis (triphenylphosphine) palladium (2.1 mg), and aqueous tetraethylammonium hydroxide (10 mL) were added thereto, and the mixture was further refluxed for 16 hours. Next, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained mixture was cooled and then washed twice with water, twice with a 3% by mass acetic acid aqueous solution and twice with water. The obtained solution was dropped into methanol and collected by filtration to obtain a precipitate. This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 3.12 g of polymer compound 1. The number average molecular weight in terms of polystyrene of the polymer compound 1 was 8.0 × 10 4 , and the weight average molecular weight in terms of polystyrene was 2.6 × 10 5 .
 高分子化合物1は、仕込み原料から求めた理論値では、下記式:
Figure JPOXMLDOC01-appb-C000049
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000050
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000051
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000052
で表される繰り返し単位とを、50:30:12.5:7.5のモル比で含有するランダム共重合体である。
The polymer compound 1 has the following formula:
Figure JPOXMLDOC01-appb-C000049
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000050
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000051
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000052
Is a random copolymer containing a repeating unit represented by a molar ratio of 50: 30: 12.5: 7.5.
<重合実施例1:高分子化合物2の合成>
 不活性雰囲気下、化合物3B(1.7922g,1.98mmol)、化合物1A(0.1430g,0.50mmol)、化合物1H(1.0930g,1.20mmol)、化合物1J(0.1584g,0.30mmol)、酢酸パラジウム(0.70mg)、トリス(2-メトキシフェニル)ホスフィン(4.30mg)、1-ヘキセン(30.1mg)及びトルエン(53mL)を混合し、105℃に加熱した。反応液に20質量%水酸化テトラエチルアンモニウム水溶液(7.5mL)を滴下し、3.5時間還流させた。反応後、そこに、フェニルボロン酸(25.4mg)、酢酸パラジウム(0.70mg)、トリス(2-メトキシフェニル)ホスフィン(4.28mg)及び20質量%水酸化テトラエチルアンモニウム水溶液(7.5mL)を加え、更に17時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、有機層を、水で2回、3質量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下し、生じた沈澱を濾取することで沈殿物を得た。この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムを順番に通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物を濾取し、乾燥させることにより、高分子化合物2を1.95g得た。高分子化合物2のポリスチレン換算の数平均分子量は3.5×10であり、ポリスチレン換算の重量平均分子量は1.4×10であった。
<Polymerization Example 1: Synthesis of polymer compound 2>
Under an inert atmosphere, Compound 3B (1.7922 g, 1.98 mmol), Compound 1A (0.1430 g, 0.50 mmol), Compound 1H (1.0930 g, 1.20 mmol), Compound 1J (0.1584 g,. 30 mmol), palladium acetate (0.70 mg), tris (2-methoxyphenyl) phosphine (4.30 mg), 1-hexene (30.1 mg) and toluene (53 mL) were mixed and heated to 105 ° C. A 20% by mass aqueous tetraethylammonium hydroxide solution (7.5 mL) was added dropwise to the reaction solution, and the mixture was refluxed for 3.5 hours. After the reaction, there was added phenylboronic acid (25.4 mg), palladium acetate (0.70 mg), tris (2-methoxyphenyl) phosphine (4.28 mg) and 20% by mass tetraethylammonium hydroxide aqueous solution (7.5 mL). And refluxed for a further 17 hours. Next, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. After cooling the obtained mixture, the organic layer is washed twice with water, twice with a 3% by mass acetic acid aqueous solution and twice with water, the obtained solution is added dropwise to methanol, and the resulting precipitate is collected by filtration. A precipitate was obtained. This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.95 g of polymer compound 2. The number average molecular weight in terms of polystyrene of the polymer compound 2 was 3.5 × 10 4 , and the weight average molecular weight in terms of polystyrene was 1.4 × 10 5 .
 高分子化合物2は、仕込み原料から求めた理論値では、下記式:
Figure JPOXMLDOC01-appb-C000053
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000054
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000055
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000056
で表される繰り返し単位とを、50:12.5:30:7.5のモル比で含有するランダム共重合体である。
The polymer compound 2 has the following formula:
Figure JPOXMLDOC01-appb-C000053
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000054
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000055
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000056
Is a random copolymer containing a repeating unit represented by a molar ratio of 50: 12.5: 30: 7.5.
<重合例2:高分子化合物3の合成>
 不活性雰囲気下、化合物3C(2.2749g,2.97mmol)、F8BR(0.3290g,0.60mmol)、化合物2D(1.2375g,1.92mmol)、化合物3G(0.1330g,0.18mmol)、化合物4F(0.3295g,0.30mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム(2.1mg)及びトルエン(76mL)を混合し、105℃に加熱した。反応液に20質量%水酸化テトラエチルアンモニウム水溶液(10mL)を滴下し、2時間還流させた。反応後、そこに、フェニルボロン酸(37mg)、ジクロロビス(トリフェニルホスフィン)パラジウム(2.1mg)、トルエン(6mL)、20質量%水酸化テトラエチルアンモニウム水溶液(10mL)を加え、更に14.5時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、有機層を、水で2回、3質量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下し、生じた沈澱を濾取することで沈殿物を得た。この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムを順番に通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物を濾取し、乾燥させることにより、高分子化合物3を2.42g得た。高分子化合物3のポリスチレン換算の数平均分子量は1.0×10であり、ポリスチレン換算の重量平均分子量は2.9×10であった。
<Polymerization Example 2: Synthesis of Polymer Compound 3>
Under an inert atmosphere, Compound 3C (2.2749 g, 2.97 mmol), F8BR (0.3290 g, 0.60 mmol), Compound 2D (1.2375 g, 1.92 mmol), Compound 3G (0.1330 g, 0.18 mmol) ), Compound 4F (0.3295 g, 0.30 mmol), dichlorobis (triphenylphosphine) palladium (2.1 mg) and toluene (76 mL) were mixed and heated to 105 ° C. A 20% by mass aqueous tetraethylammonium hydroxide solution (10 mL) was added dropwise to the reaction solution, and the mixture was refluxed for 2 hours. After the reaction, phenylboronic acid (37 mg), dichlorobis (triphenylphosphine) palladium (2.1 mg), toluene (6 mL), 20% by mass tetraethylammonium hydroxide aqueous solution (10 mL) were added thereto, and further 14.5 hours. Refluxed. Next, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. After cooling the obtained mixture, the organic layer is washed twice with water, twice with a 3% by mass acetic acid aqueous solution and twice with water, the obtained solution is added dropwise to methanol, and the resulting precipitate is collected by filtration. A precipitate was obtained. This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 2.42 g of the polymer compound 3. The polymer compound 3 had a polystyrene-equivalent number average molecular weight of 1.0 × 10 5 and a polystyrene-equivalent weight average molecular weight of 2.9 × 10 5 .
 高分子化合物3は、仕込み原料から求めた理論値では、下記式:
Figure JPOXMLDOC01-appb-C000057
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000058
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000059
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000060
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000061
で表される繰り返し単位とを、50:10:32:3:5のモル比で含有するランダム共重合体である。
The polymer compound 3 has the following formula:
Figure JPOXMLDOC01-appb-C000057
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000058
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000059
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000060
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000061
Is a random copolymer containing a repeating unit represented by a molar ratio of 50: 10: 32: 3: 5.
<重合実施例2:高分子化合物4の合成>
 不活性雰囲気下、化合物3C(1.5135g,1.97mmol)、F8BR(0.2193g,0.40mmol)、化合物2D(0.7477g,1.16mmol)、化合物3G(0.0886g,0.12mmol)、化合物4F(0.2196g,0.20mmol)、化合物1A(0.0344g,0.12mmol)、酢酸パラジウム(0.62mg)、トリス(2-メトキシフェニル)ホスフィン(4.23mg)、1-ヘキセン(15.0mg)及びトルエン(52mL)を混合し、105℃に加熱した。反応液に20質量%水酸化テトラエチルアンモニウム水溶液(7mL)を滴下し、4時間還流させた。反応後、そこに、フェニルボロン酸(25mg)、酢酸パラジウム(0.63mg)、トリス(2-メトキシフェニル)ホスフィン(4.26mg)、トルエン(4mL)、20質量%水酸化テトラエチルアンモニウム水溶液(7mL)を加え、更に19時間還流させた。次いで、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた混合物を冷却後、有機層を、水で2回、3質量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下し、生じた沈澱を濾取することで沈殿物を得た。この沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムを順番に通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物を濾取し、乾燥させることにより、高分子化合物4を1.55g得た。高分子化合物4のポリスチレン換算の数平均分子量は7.9×10であり、ポリスチレン換算の重量平均分子量は2.1×10であった。
<Polymerization Example 2: Synthesis of polymer compound 4>
Under inert atmosphere, Compound 3C (1.5135 g, 1.97 mmol), F8BR (0.2193 g, 0.40 mmol), Compound 2D (0.7477 g, 1.16 mmol), Compound 3G (0.0886 g, 0.12 mmol) ), Compound 4F (0.2196 g, 0.20 mmol), compound 1A (0.0344 g, 0.12 mmol), palladium acetate (0.62 mg), tris (2-methoxyphenyl) phosphine (4.23 mg), 1- Hexene (15.0 mg) and toluene (52 mL) were mixed and heated to 105 ° C. A 20% by mass aqueous tetraethylammonium hydroxide solution (7 mL) was added dropwise to the reaction solution, and the mixture was refluxed for 4 hours. After the reaction, there was added phenylboronic acid (25 mg), palladium acetate (0.63 mg), tris (2-methoxyphenyl) phosphine (4.26 mg), toluene (4 mL), 20% by mass tetraethylammonium hydroxide aqueous solution (7 mL). ) And refluxed for an additional 19 hours. Next, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. After cooling the obtained mixture, the organic layer is washed twice with water, twice with a 3% by mass acetic acid aqueous solution and twice with water, the obtained solution is added dropwise to methanol, and the resulting precipitate is collected by filtration. A precipitate was obtained. This precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.55 g of polymer compound 4. The number average molecular weight of polystyrene conversion of the high molecular compound 4 was 7.9 * 10 < 4 >, and the weight average molecular weight of polystyrene conversion was 2.1 * 10 < 5 >.
 高分子化合物4は、仕込み原料から求めた理論値では、下記式:
Figure JPOXMLDOC01-appb-C000062
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000063
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000064
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000065
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000066
で表される繰り返し単位と、下記式:
Figure JPOXMLDOC01-appb-C000067
で表される繰り返し単位とを、50:10:29:3:5:3のモル比で含有するランダム共重合体である。
The polymer compound 4 has the following formula:
Figure JPOXMLDOC01-appb-C000062
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000063
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000064
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000065
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000066
And a repeating unit represented by the following formula:
Figure JPOXMLDOC01-appb-C000067
Is a random copolymer containing a repeating unit represented by a molar ratio of 50: 10: 29: 3: 5: 3.
<実施例1:有機発光素子1の製造と評価>
 スパッタ法により45nmの厚さでITO膜を付けたガラス基板に、正孔注入材料としてポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plextronics社製)を用いてスピンコートにより50nmの厚さで成膜し、ホットプレート上で170℃、15分間乾燥した。
<Example 1: Production and evaluation of organic light emitting device 1>
A glass substrate with an ITO film having a thickness of 45 nm formed by sputtering is spin-coated using AQ-1200 (manufactured by Plextronics), which is a polythiophene / sulfonic acid-based hole injecting agent, as a hole injecting material. A film was formed with a thickness and dried on a hot plate at 170 ° C. for 15 minutes.
 次に、高分子化合物2を0.7質量%のキシレン溶液の状態でスピンコートして、約20nmの厚さに成膜した。その後、窒素雰囲気下においてホットプレート上で180℃、60分間加熱した。 Next, the polymer compound 2 was spin-coated in a 0.7% by mass xylene solution to form a film having a thickness of about 20 nm. Then, it heated at 180 degreeC for 60 minutes on the hotplate in nitrogen atmosphere.
 次に、高分子化合物3を1.2質量%のキシレン溶液の状態でスピンコートして、約60nmの厚さに成膜した。その後、窒素雰囲気下においてホットプレート上で130℃、10分間加熱した。陰極としてフッ化ナトリウムを約3nm、次いでアルミニウムを約80nm蒸着して、有機発光素子1を作製した。なお、真空度が、1×10-4Pa以下に到達した後に金属の蒸着を開始した。 Next, the polymer compound 3 was spin-coated in a 1.2% by mass xylene solution to form a film having a thickness of about 60 nm. Then, it heated at 130 degreeC for 10 minute (s) on the hotplate in nitrogen atmosphere. As a cathode, about 3 nm of sodium fluoride and then about 80 nm of aluminum were vapor-deposited, and the organic light-emitting device 1 was produced. Note that metal deposition was started after the degree of vacuum reached 1 × 10 −4 Pa or less.
 得られた有機発光素子1に電圧を印加したところ、この素子から高分子化合物3に由来する460nmにピークを有するEL発光が得られた。 When voltage was applied to the obtained organic light emitting device 1, EL light emission having a peak at 460 nm derived from the polymer compound 3 was obtained from this device.
 上記で得られた有機発光素子1を初期輝度が5000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、輝度は257時間後に半減した。 The organic light-emitting device 1 obtained above was set to a current value so that the initial luminance was 5000 cd / m 2 , then was driven with a constant current, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 257 hours.
<比較例1:有機発光素子C1の製造と評価>
 実施例1における高分子化合物2に代えて、高分子化合物1を用いたこと以外は、実施例1と同様にして、有機発光素子C1を作製した。得られた有機発光素子C1に電圧を印加したところ、この素子から高分子化合物3に由来する460nmにピークを有するEL発光が得られた。
<Comparative Example 1: Production and Evaluation of Organic Light-Emitting Element C1>
An organic light emitting device C1 was produced in the same manner as in Example 1 except that the polymer compound 1 was used in place of the polymer compound 2 in Example 1. When voltage was applied to the obtained organic light emitting device C1, EL light emission having a peak at 460 nm derived from the polymer compound 3 was obtained from this device.
 上記で得られた有機発光素子C1を初期輝度が5000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、輝度は83時間後に半減した。 The organic light-emitting device C1 obtained above was set to have a current value so that the initial luminance was 5000 cd / m 2 , then was driven with a constant current, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 83 hours.
<実施例2:有機発光素子2の作製と評価>
 実施例1における高分子化合物2のキシレン溶液に代えて、高分子化合物2と高分子化合物1をそれぞれキシレンに溶解させた溶液を用いて、混合比率を、高分子化合物2:高分子化合物1=75:25(質量比)とした溶液を用いたこと以外は、実施例1と同様にして、有機発光素子2を作製した。得られた有機発光素子2に電圧を印加したところ、この素子から高分子化合物3に由来する460nmにピークを有するEL発光が得られた。
<Example 2: Production and evaluation of organic light emitting device 2>
Instead of the xylene solution of the polymer compound 2 in Example 1, a solution obtained by dissolving the polymer compound 2 and the polymer compound 1 in xylene was used, and the mixing ratio was determined as polymer compound 2: polymer compound 1 = An organic light emitting device 2 was produced in the same manner as in Example 1 except that a solution having a ratio of 75:25 (mass ratio) was used. When voltage was applied to the obtained organic light emitting device 2, EL light emission having a peak at 460 nm derived from the polymer compound 3 was obtained from this device.
 上記で得られた有機発光素子2を初期輝度が5000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、輝度は220時間後に半減した。 The organic light-emitting device 2 obtained above was set to have a current value so that the initial luminance was 5000 cd / m 2 , then was driven with a constant current, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 220 hours.
<実施例3:有機発光素子3の作製と評価>
 実施例1における高分子化合物2のキシレン溶液に代えて、高分子化合物2と高分子化合物1をそれぞれキシレンに溶解させた溶液を用いて、混合比率を、高分子化合物2:高分子化合物1=50:50(質量比)とした溶液を用いたこと以外は、実施例1と同様にして、有機発光素子3を作製した。得られた有機発光素子3に電圧を印加したところ、この素子から高分子化合物3に由来する460nmにピークを有するEL発光が得られた。
<Example 3: Production and evaluation of organic light emitting device 3>
Instead of the xylene solution of the polymer compound 2 in Example 1, a solution obtained by dissolving the polymer compound 2 and the polymer compound 1 in xylene was used, and the mixing ratio was determined as polymer compound 2: polymer compound 1 = An organic light emitting device 3 was produced in the same manner as in Example 1 except that a solution having a 50:50 (mass ratio) was used. When voltage was applied to the obtained organic light emitting device 3, EL light emission having a peak at 460 nm derived from the polymer compound 3 was obtained from this device.
 上記で得られた有機発光素子3を初期輝度が5000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、輝度は222時間後に半減した。 The organic light-emitting device 3 obtained above was set to have a current value so that the initial luminance was 5000 cd / m 2 , then was driven with a constant current, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 222 hours.
<実施例4:有機発光素子4の作製と評価>
 実施例1における高分子化合物2のキシレン溶液に代えて、高分子化合物2と高分子化合物1をそれぞれキシレンに溶解させた溶液を用いて、混合比率を、高分子化合物2:高分子化合物1=25:75(質量比)とした溶液を用いたこと以外は、実施例1と同様にして、有機発光素子4を作製した。得られた有機発光素子4に電圧を印加したところ、この素子から高分子化合物3に由来する460nmにピークを有するEL発光が得られた。
<Example 4: Production and evaluation of organic light-emitting element 4>
Instead of the xylene solution of the polymer compound 2 in Example 1, a solution obtained by dissolving the polymer compound 2 and the polymer compound 1 in xylene was used, and the mixing ratio was determined as polymer compound 2: polymer compound 1 = An organic light emitting device 4 was produced in the same manner as in Example 1 except that a solution having a ratio of 25:75 (mass ratio) was used. When voltage was applied to the obtained organic light emitting device 4, EL light emission having a peak at 460 nm derived from the polymer compound 3 was obtained from this device.
 上記で得られた有機発光素子4を初期輝度が5000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、輝度は172時間後に半減した。 The organic light-emitting device 4 obtained above was driven with a constant current after setting the current value so that the initial luminance was 5000 cd / m 2, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 172 hours.
<実施例5:有機発光素子5の作製と評価>
 実施例1における高分子化合物3のキシレン溶液に代えて、高分子化合物4と高分子化合物3をそれぞれキシレンに溶解させた溶液を用いて、混合比率を、高分子化合物4:高分子化合物3=7.5:92.5(質量比)とした溶液を用いたこと、及び、高分子化合物2のキシレン溶液に代えて、高分子化合物1のキシレン溶液を用いたこと以外は、実施例1と同様にして、有機発光素子5を作製した。得られた有機発光素子5に電圧を印加したところ、この素子から高分子化合物3及び高分子化合物4に由来する460nmにピークを有するEL発光が得られた。
<Example 5: Production and evaluation of organic light-emitting element 5>
Instead of the xylene solution of the polymer compound 3 in Example 1, a solution obtained by dissolving the polymer compound 4 and the polymer compound 3 in xylene was used, and the mixing ratio was determined as polymer compound 4: polymer compound 3 = Example 1 except that a solution having a ratio of 7.5: 92.5 (mass ratio) was used and that a xylene solution of polymer compound 1 was used instead of a xylene solution of polymer compound 2 Similarly, an organic light emitting device 5 was produced. When voltage was applied to the obtained organic light emitting device 5, EL light emission having a peak at 460 nm derived from the polymer compound 3 and the polymer compound 4 was obtained from this device.
 上記で得られた有機発光素子5を初期輝度が5000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、輝度は206時間後に半減した。 The organic light-emitting device 5 obtained above was driven with a constant current after setting the current value so that the initial luminance was 5000 cd / m 2, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 206 hours.
<実施例6:有機発光素子6の作製と評価>
 実施例1における高分子化合物3のキシレン溶液に代えて、高分子化合物4と高分子化合物3をそれぞれキシレンに溶解させた溶液を用いて、混合比率を、高分子化合物4:高分子化合物3=10:90(質量比)とした溶液を用いたこと、及び、高分子化合物2のキシレン溶液に代えて、高分子化合物1のキシレン溶液を用いたこと以外は、実施例1と同様にして、有機発光素子6を作製した。得られた有機発光素子6に電圧を印加したところ、この素子から高分子化合物3及び高分子化合物4に由来する460nmにピークを有するEL発光が得られた。
<Example 6: Production and evaluation of organic light-emitting element 6>
Instead of the xylene solution of the polymer compound 3 in Example 1, a solution obtained by dissolving the polymer compound 4 and the polymer compound 3 in xylene was used, and the mixing ratio was determined as polymer compound 4: polymer compound 3 = Except for using a 10:90 (mass ratio) solution and using a xylene solution of polymer compound 1 instead of a xylene solution of polymer compound 2, in the same manner as in Example 1, An organic light emitting device 6 was produced. When voltage was applied to the obtained organic light emitting device 6, EL light emission having a peak at 460 nm derived from the polymer compound 3 and the polymer compound 4 was obtained from this device.
 上記で得られた有機発光素子6を初期輝度が5000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、輝度は193時間後に半減した。 The organic light-emitting device 6 obtained above was set to have a current value so that the initial luminance was 5000 cd / m 2 , then was driven with a constant current, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 193 hours.
<実施例7:有機発光素子7の作製と評価>
 実施例1における高分子化合物3のキシレン溶液に代えて、高分子化合物4と高分子化合物3をそれぞれキシレンに溶解させた溶液を用いて、混合比率を、高分子化合物4:高分子化合物3=12.5:87.5(質量比)とした溶液を用いたこと、及び、高分子化合物2のキシレン溶液に代えて、高分子化合物1のキシレン溶液を用いたこと以外は、実施例1と同様にして、有機発光素子7を作製した。得られた有機発光素子7に電圧を印加したところ、この素子から高分子化合物3及び高分子化合物4に由来する460nmにピークを有するEL発光が得られた。
<Example 7: Production and evaluation of organic light-emitting element 7>
Instead of the xylene solution of the polymer compound 3 in Example 1, a solution obtained by dissolving the polymer compound 4 and the polymer compound 3 in xylene was used, and the mixing ratio was determined as polymer compound 4: polymer compound 3 = Example 1 except that a solution having a ratio of 12.5: 87.5 (mass ratio) was used and that a xylene solution of polymer compound 1 was used instead of a xylene solution of polymer compound 2 Similarly, an organic light emitting device 7 was produced. When voltage was applied to the obtained organic light emitting device 7, EL light emission having a peak at 460 nm derived from the polymer compound 3 and the polymer compound 4 was obtained from this device.
 上記で得られた有機発光素子7を初期輝度が5000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度の時間変化を測定した。その結果、輝度は186時間後に半減した。 The organic light-emitting device 7 obtained above was driven with a constant current after setting the current value so that the initial luminance was 5000 cd / m 2, and the change in luminance with time was measured. As a result, the luminance was reduced by half after 186 hours.
 実施例と比較例の結果を下記にまとめた。
Figure JPOXMLDOC01-appb-T000068
The results of Examples and Comparative Examples are summarized below.
Figure JPOXMLDOC01-appb-T000068
 1…基板、2…有機半導体層、3…絶縁層、4…ゲート電極、5…ソース電極、6…ドレイン電極、20…基板、22…陽極、23…正孔注入層、24…正孔輸送層、25…発光層、26…電子輸送層、27…電子注入層、28…陰極、30…基板、31…陽極、32…正孔注入層、33…発光層、34…陰極、35…保護層、100…有機薄膜トランジスタ、110…有機薄膜トランジスタ、200…有機発光素子(構成i)、220…有機発光素子(構成e)、300…面状光源。 DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Organic semiconductor layer, 3 ... Insulating layer, 4 ... Gate electrode, 5 ... Source electrode, 6 ... Drain electrode, 20 ... Substrate, 22 ... Anode, 23 ... Hole injection layer, 24 ... Hole transport Layer, 25 ... light emitting layer, 26 ... electron transport layer, 27 ... electron injection layer, 28 ... cathode, 30 ... substrate, 31 ... anode, 32 ... hole injection layer, 33 ... light emitting layer, 34 ... cathode, 35 ... protection Layer: 100... Organic thin film transistor, 110... Organic thin film transistor, 200... Organic light emitting element (configuration i), 220.

Claims (16)

  1.  発光層を備え、
     前記発光層が、下記一般式(1)で表される構造を有する化合物又は下記一般式(1)で表される構造から誘導される基を有する化合物を含有し、かつ、
     前記発光層において、前記発光層に含有される有機化合物全量に対する、前記一般式(1)で表される構造の骨格の割合が0.01質量%~20質量%である、有機発光素子。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Rは、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、1価の複素環チオ基、イミン残基、アミド化合物残基、酸イミド残基、カルボキシル基、ニトロ基及びシアノ基からなる群より選ばれる官能基、又は、水素原子を示す。
     但し、水素原子を有する前記官能基は、該水素原子が置換基で置換されていてもよい。複数あるRは、同一であっても異なっていてもよい。]
    With a light emitting layer,
    The light emitting layer contains a compound having a structure represented by the following general formula (1) or a compound having a group derived from the structure represented by the following general formula (1), and
    The organic light-emitting device in which the ratio of the skeleton having the structure represented by the general formula (1) is 0.01% by mass to 20% by mass with respect to the total amount of the organic compound contained in the light-emitting layer in the light-emitting layer.
    Figure JPOXMLDOC01-appb-C000001
    [Where:
    R x is an alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic group A functional group selected from the group consisting of a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or a hydrogen atom.
    However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent. A plurality of R x may be the same or different. ]
  2.  発光層と、該発光層に隣接する電荷輸送層とを備え、
     前記電荷輸送層が、下記一般式(1)で表される構造を有する化合物又は下記一般式(1)で表される構造から誘導される基を有する化合物を含有し、かつ、
     前記電荷輸送層において、前記電荷輸送層に含有される有機化合物全量に対する、前記一般式(1)で表される構造の骨格の割合が0.01質量%~50質量%である、有機発光素子。
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     Rは、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、1価の複素環チオ基、イミン残基、アミド化合物残基、酸イミド残基、カルボキシル基、ニトロ基及びシアノ基からなる群より選ばれる官能基、又は、水素原子を示す。
     但し、水素原子を有する前記官能基は、該水素原子が置換基で置換されていてもよい。複数あるRは、同一であっても異なっていてもよい。]
    A light emitting layer, and a charge transport layer adjacent to the light emitting layer,
    The charge transport layer contains a compound having a structure represented by the following general formula (1) or a compound having a group derived from the structure represented by the following general formula (1), and
    In the charge transport layer, the ratio of the skeleton having the structure represented by the general formula (1) to the total amount of the organic compound contained in the charge transport layer is 0.01% by mass to 50% by mass. .
    Figure JPOXMLDOC01-appb-C000002
    [Where:
    R x is an alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic group A functional group selected from the group consisting of a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or a hydrogen atom.
    However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent. A plurality of R x may be the same or different. ]
  3.  前記一般式(1)で表される構造から誘導される基を有する化合物が、共役系高分子化合物である、請求項1又は2に記載の有機発光素子。 The organic light-emitting device according to claim 1 or 2, wherein the compound having a group derived from the structure represented by the general formula (1) is a conjugated polymer compound.
  4.  前記共役系高分子化合物が、前記一般式(1)で表される構造から誘導される基を繰り返し単位として有する、請求項3に記載の有機発光素子。 The organic light-emitting device according to claim 3, wherein the conjugated polymer compound has a group derived from the structure represented by the general formula (1) as a repeating unit.
  5.  縮合重合で合成され、
     下記一般式(1)で表される構造から誘導される基及び当該基とは相違する任意追加基が前記縮合重合により導入されており、
     前記一般式(1)で表される構造から誘導される基及び前記任意追加基のモル数を、それぞれN及びNとしたときに、N及びNが下記式(I)を満たす、共役系高分子化合物。
     0.01≦N×100/(N+N)≦20  (I)
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     Rは、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、1価の複素環チオ基、イミン残基、アミド化合物残基、酸イミド残基、カルボキシル基、ニトロ基及びシアノ基からなる群より選ばれる官能基、又は、水素原子を示す。
     但し、水素原子を有する前記官能基は、該水素原子が置換基で置換されていてもよい。複数あるRは、同一であっても異なっていてもよい。]
    Synthesized by condensation polymerization,
    A group derived from the structure represented by the following general formula (1) and an optional additional group different from the group are introduced by the condensation polymerization,
    The number of moles of group and the optional additional groups derived from structures represented by the general formula (1), when the N 1 and N M, respectively, N 1 and N M satisfies the following formula (I) Conjugated polymer compounds.
    0.01 ≦ N 1 × 100 / (N 1 + N M ) ≦ 20 (I)
    Figure JPOXMLDOC01-appb-C000003
    [Where:
    R x is an alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic group A functional group selected from the group consisting of a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or a hydrogen atom.
    However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent. A plurality of R x may be the same or different. ]
  6.  前記一般式(1)で表される構造から誘導される基が、下記式(2)、式(3)、式(4)、式(5)、式(6)又は式(7)で表される、請求項5に記載の共役系高分子化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     Rは、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、1価の複素環基、1価の複素環チオ基、イミン残基、アミド化合物残基、酸イミド残基、カルボキシル基、ニトロ基及びシアノ基からなる群より選ばれる官能基、又は、水素原子を示す。
     但し、水素原子を有する前記官能基は、該水素原子が置換基で置換されていてもよい。複数あるRは、同一であっても異なっていてもよい。]
    The group derived from the structure represented by the general formula (1) is represented by the following formula (2), formula (3), formula (4), formula (5), formula (6), or formula (7). The conjugated polymer compound according to claim 5.
    Figure JPOXMLDOC01-appb-C000004
    [Where:
    R x is an alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, monovalent heterocyclic group A functional group selected from the group consisting of a monovalent heterocyclic thio group, an imine residue, an amide compound residue, an acid imide residue, a carboxyl group, a nitro group and a cyano group, or a hydrogen atom.
    However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent. A plurality of R x may be the same or different. ]
  7.  前記任意追加基として、下記式(A)、(B)及び(C)で表される基のうち、少なくとも一つの基を含む、請求項5又は6に記載の共役系高分子化合物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     Ar及びArは、それぞれ独立に、アリーレン基、6員環以上の環から構成される2価の複素環基及び金属錯体構造を有する2価の基からなる群より選ばれる官能基を示し、Ar、Ar及びArは、それぞれ独立に、アリーレン基及び6員環以上の環から構成される2価の複素環基からなる群より選ばれる官能基を示す。
     R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基及びアリールアルキル基からなる群より選ばれる官能基を示し、
     Xは-CR=CR-及び-C≡C-からなる群より選ばれる官能基を示す。R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基及びシアノ基からなる群より選ばれる官能基を示す。
     aは、0又は1である。
     但し、水素原子を有する前記官能基は、該水素原子が置換基で置換されていてもよい。]
    The conjugated polymer compound according to claim 5 or 6, comprising at least one group among groups represented by the following formulas (A), (B), and (C) as the optional additional group.
    Figure JPOXMLDOC01-appb-C000005
    [Where:
    Ar 1 and Ar 5 each independently represent a functional group selected from the group consisting of an arylene group, a divalent heterocyclic group composed of a 6-membered ring or more, and a divalent group having a metal complex structure. , Ar 2 , Ar 3 and Ar 4 each independently represent a functional group selected from the group consisting of an arylene group and a divalent heterocyclic group composed of a 6-membered ring or more.
    R 1 and R 2 each independently represent a functional group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group and an arylalkyl group;
    X 1 represents a functional group selected from the group consisting of —CR 3 ═CR 4 — and —C≡C—. R 3 and R 4 each independently represent a functional group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group, a carboxyl group, a substituted carboxyl group, and a cyano group.
    a is 0 or 1.
    However, in the functional group having a hydrogen atom, the hydrogen atom may be substituted with a substituent. ]
  8.  前記式(A)、(B)、(C)で表される任意追加基のモル数及びこれら以外の任意追加基のモル数を、それぞれN、N、N及びNM’としたときに、前記N、N、N、N及びNM’が下記式(II)を満たす、請求項7に記載の共役系高分子化合物。
     40≦(N+N+N)×100/(N+N+N+N+NM’)<100  (II)
    The number of moles of the optional additional group represented by the formulas (A), (B), and (C) and the number of moles of the optional additional group other than these are N A , N B , N C, and N M ′ , respectively. The conjugated polymer compound according to claim 7, wherein the N 1 , N A , N B , N C and N M ′ sometimes satisfy the following formula (II).
    40 ≦ (N A + N B + N C) × 100 / (N 1 + N A + N B + N C + N M ') <100 (II)
  9.  前記式(A)で表される任意追加基を含む、請求項7又は8に記載の共役系高分子化合物。 The conjugated polymer compound according to claim 7 or 8, comprising an arbitrary additional group represented by the formula (A).
  10.  前記式(B)で表される任意追加基を含む、請求項7~9のいずれか一項に記載の共役系高分子化合物。 The conjugated polymer compound according to any one of claims 7 to 9, comprising an optional additional group represented by the formula (B).
  11.  前記式(A)で表される任意追加基及び前記式(B)で表される任意追加基を含む、請求項7~10のいずれか一項に記載の共役系高分子化合物。 The conjugated polymer compound according to any one of claims 7 to 10, comprising an optional additional group represented by the formula (A) and an optional additional group represented by the formula (B).
  12.  発光材料、正孔輸送材料及び電子輸送材料からなる群より選ばれる少なくとも一種の材料と、
     請求項5~11のいずれか一項に記載の共役系高分子化合物と、を含む組成物。
    At least one material selected from the group consisting of a light emitting material, a hole transport material and an electron transport material;
    A composition comprising the conjugated polymer compound according to any one of claims 5 to 11.
  13.  請求項5~11のいずれか一項に記載の共役系高分子化合物と、有機溶媒と、を含むインク組成物。 An ink composition comprising the conjugated polymer compound according to any one of claims 5 to 11 and an organic solvent.
  14.  請求項5~11のいずれか一項に記載の共役系高分子化合物を含有する、請求項3に記載の有機発光素子。 The organic light-emitting device according to claim 3, comprising the conjugated polymer compound according to any one of claims 5 to 11.
  15.  請求項1~4及び14のいずれか一項に記載の有機発光素子を備えた面状光源。 A planar light source comprising the organic light emitting device according to any one of claims 1 to 4 and 14.
  16.  請求項1~4及び14のいずれか一項に記載の有機発光素子を備えた表示装置。 A display device comprising the organic light-emitting element according to any one of claims 1 to 4 and 14.
PCT/JP2011/079595 2010-12-21 2011-12-21 Organic light-emitting element and conjugated macromolecular compound WO2012086669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010284965 2010-12-21
JP2010-284965 2010-12-21

Publications (1)

Publication Number Publication Date
WO2012086669A1 true WO2012086669A1 (en) 2012-06-28

Family

ID=46313937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079595 WO2012086669A1 (en) 2010-12-21 2011-12-21 Organic light-emitting element and conjugated macromolecular compound

Country Status (3)

Country Link
JP (1) JP2012146968A (en)
TW (1) TW201233771A (en)
WO (1) WO2012086669A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135362A (en) * 2012-09-20 2018-08-30 ユー・ディー・シー アイルランド リミテッド Azadibenzofurans for electronic applications

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955660B2 (en) * 2012-06-20 2016-07-20 住友化学株式会社 Composition, polymer compound and light emitting device using them
CN110272410B (en) * 2019-06-29 2021-03-23 上海天马有机发光显示技术有限公司 Compound, luminescent material, organic photoelectric device and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189663A (en) * 1984-10-08 1986-05-07 Nippon Telegr & Teleph Corp <Ntt> Polymer semiconductor element and manufacture thereof
JP2003261481A (en) * 2001-12-10 2003-09-16 Merck Patent Gmbh Monomer, oligomer and polymer comprising 2,6-azulene group and use thereof as charge transfer material
JP2006506824A (en) * 2002-11-26 2006-02-23 キヤノン株式会社 Azulene group compounds in organic light emitting device elements
JP2006096722A (en) * 2004-09-30 2006-04-13 Toyota Central Res & Dev Lab Inc Azulene derivative and organoelectroluminescent element obtained using the same
JP2008056909A (en) * 2006-08-01 2008-03-13 Sumitomo Chemical Co Ltd Polymer compound and polymer light-emitting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189663A (en) * 1984-10-08 1986-05-07 Nippon Telegr & Teleph Corp <Ntt> Polymer semiconductor element and manufacture thereof
JP2003261481A (en) * 2001-12-10 2003-09-16 Merck Patent Gmbh Monomer, oligomer and polymer comprising 2,6-azulene group and use thereof as charge transfer material
JP2006506824A (en) * 2002-11-26 2006-02-23 キヤノン株式会社 Azulene group compounds in organic light emitting device elements
JP2006096722A (en) * 2004-09-30 2006-04-13 Toyota Central Res & Dev Lab Inc Azulene derivative and organoelectroluminescent element obtained using the same
JP2008056909A (en) * 2006-08-01 2008-03-13 Sumitomo Chemical Co Ltd Polymer compound and polymer light-emitting element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOBAI WANG ET AL.: "Synthesis, Electronic, and Emission Spectroscopy, and Electrochromic Characterization of Azulene-Fluorene Conjugated Oligomers and Polymers", MACROMOLECULES, vol. 42, 2009, pages 5534 - 5544 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135362A (en) * 2012-09-20 2018-08-30 ユー・ディー・シー アイルランド リミテッド Azadibenzofurans for electronic applications

Also Published As

Publication number Publication date
TW201233771A (en) 2012-08-16
JP2012146968A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5913959B2 (en) Composition and block copolymer
JP5875852B2 (en) Polymer compound and organic EL device using the same
US8298685B2 (en) Block copolymer and polymer light-emitting device
US8815414B2 (en) Polymer compound and polymer light emitting device using the same
JP5625272B2 (en) Compound containing 1,3-diene and method for producing the same
US8384066B2 (en) Polymer light-emitting device, polymer compound, composition, liquid composition, and conductive thin film
US20110127512A1 (en) Copolymer and polymer light emitting device using the same
US20110118411A1 (en) Polymeric compound having residue of nitrogen-containing heterocyclic compound
JP2008106241A (en) Polymer compound and polymer light-emitting element using the same
JP5714347B2 (en) LIGHT EMITTING MATERIAL, INK COMPOSITION, THIN FILM, LIGHT EMITTING ELEMENT AND METHOD FOR PRODUCING LIGHT EMITTING ELEMENT
KR20100038287A (en) Pyrene polymer and luminescent element made with the same
JP6046389B2 (en) Organic electroluminescence device
US8513877B2 (en) Anthracene polymer compound and light emitting device using the same
JP6064433B2 (en) Polymer compound and light emitting device using the same
US20090174326A1 (en) Polymer material and polymer light-emitting device using same
JP5604804B2 (en) Composition comprising a nitrogen-containing heterocyclic compound
WO2012086669A1 (en) Organic light-emitting element and conjugated macromolecular compound
JP2010260879A (en) Polymer having residue of nitrogen-containing heterocyclic compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850343

Country of ref document: EP

Kind code of ref document: A1