WO2012086474A1 - Therapeutic agent for central nervous system diseases - Google Patents

Therapeutic agent for central nervous system diseases Download PDF

Info

Publication number
WO2012086474A1
WO2012086474A1 PCT/JP2011/078846 JP2011078846W WO2012086474A1 WO 2012086474 A1 WO2012086474 A1 WO 2012086474A1 JP 2011078846 W JP2011078846 W JP 2011078846W WO 2012086474 A1 WO2012086474 A1 WO 2012086474A1
Authority
WO
WIPO (PCT)
Prior art keywords
adamts
central nervous
disease
therapeutic agent
spinal cord
Prior art date
Application number
PCT/JP2011/078846
Other languages
French (fr)
Japanese (ja)
Inventor
健治 門松
史郎 今釜
亮吏 田内
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2012549743A priority Critical patent/JPWO2012086474A1/en
Publication of WO2012086474A1 publication Critical patent/WO2012086474A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a therapeutic agent for central nervous disease and its use.
  • This application claims priority based on Japanese Patent Application No. 2010-283910 filed on Dec. 21, 2010, the entire contents of which are incorporated by reference.
  • the central nerve once damaged is not regenerated.
  • the central nerves such as the brain and spinal cord
  • the central nerves are damaged by trauma or hemorrhage, and neuropathy appears, it is not usually cured.
  • the reason for this is thought to be a factor that suppresses it compared to a factor that promotes regeneration.
  • the myelin-related proteins Nogo, MAG, OMgp and chondroitin sulfate proteoglycan hereinafter “CSPG”) are well known as nerve regeneration inhibitors.
  • CSPG chondroitin sulfate proteoglycan
  • C-ABC chondroitinase ABC
  • KSPG keratan sulfate proteoglycan
  • An object of the present invention is to provide a novel therapeutic means for central nervous system diseases.
  • K-II Keratanase II
  • ADAMTS-4 A disintegrin and metalloprotease with thrombospondin motif 4
  • ADAMTS-4 A disintegrin and metalloprotease with thrombospondin motif 4
  • the experiment was carried out on the assumption that the structural change of proteoglycan caused by the degradation of core protein by ADAMTS-4 has the effect of elongating nerve axons after spinal cord injury.
  • ADAMTS-4 showed a high nerve axon extension effect and was found to be extremely effective in improving function after spinal cord injury.
  • ADAMTS-4 is highly expressed at astrocytes and microglia rather than neurons. Furthermore, important and useful findings were obtained regarding the mechanism of action of ADAMTS-4 in the regeneration of the central nervous system, such as the degradation of proteoglycans in the brain, such as blebican, neurocan and phosphacan, which occurs specifically in ADMATS4.
  • a therapeutic agent for central nervous disease comprising the following (1) or (2) as an active ingredient: (1) ADAMTS-4 protein; (2) An expression vector carrying the ADAMTS-4 gene.
  • the central nervous system disease is selected from the group consisting of spinal cord injury, myelitis, brain injury, neuronal degeneration / dropout due to cerebral infarction associated with cerebral ischemia or intracerebral hemorrhage, and retinal disease with neuronal damage
  • the therapeutic agent for central nervous disease according to any one of [1] to [3], which is a disease or a disease state.
  • a method for treating central nervous disease comprising the step of administering a therapeutic agent for central nervous disease comprising the following (1) or (2) as an active ingredient to a patient with central nervous disease: (1) ADAMTS-4 protein; (2) An expression vector carrying the ADAMTS-4 gene.
  • the central nervous disease is selected from the group consisting of spinal cord injury, myelitis, brain injury, neuronal degeneration / dropout due to cerebral infarction associated with cerebral ischemia and intracerebral hemorrhage, and retinal disease accompanied by neuronal damage
  • the treatment according to [6] which is a disease.
  • the treatment method according to [6] wherein the central nervous disease is spinal cord injury.
  • Results of RT-PCR using mRNA extracted from damaged spinal cord tissue The expression level of ADAMTS-4 mRNA after 3 days, 1 week and 2 weeks after spinal cord injury surgery was examined. Results of real-time RT-PCR using mRNA extracted from damaged spinal cord tissue. The expression level of ADAMTS-4 mRNA was quantified 3 days after surgery for spinal cord injury, 1 week later, and 2 weeks later. NS: No significant difference. Results of Western blot using a homogenate of damaged spinal cord tissue. One week after the operation, the ADAMTS-4 protein expression level was compared between the spinal cord injury surgery group and the sham group (10th thoracic laminectomy only). Fluorescence assay results.
  • PG proteoglycan
  • first lane control (PG only)
  • second lane: ADAMTS-4 (1 ⁇ M) added third lane: ADAMTS-4 boiled at 95 ° C
  • 5th lane: ADAMTS-13 boiled at 95 ° C. is added.
  • first lane control (PG only)
  • second lane: ADAMTS-4 (1 ⁇ M) added third lane: ADAMTS-4 boiled at 95 ° C
  • 5th lane: ADAMTS-13 boiled at 95 ° C. is added.
  • first lane control (PG only)
  • 5th lane: ADAMTS-13 boiled at 95 ° C. is added.
  • PLL Poly-L-lysine-coated slide used (no enzyme added)
  • ADAMTS-4 + PLL Poly-L-lysine-coated slide and ADAMTS-4 added
  • ADAMTS-13 + PLL Poly-L-lysine-coated slide used ADAMTS-13 added
  • PG using proteoglycan coated slide (no enzyme added)
  • ADAMTS-4 + PG using proteoglycan coated slide and ADAMTS-4 added
  • ADAMTS-13 + PG using proteoglycan coated slide and ADAMTS-13 added
  • C- ABC + PG Use proteoglycan-coated slides and add C-ABC.
  • NS No significant difference. *: ⁇ 0.01.
  • the first aspect of the present invention relates to a therapeutic agent for central nervous disease (hereinafter also referred to as “the therapeutic agent of the present invention” for convenience of explanation).
  • the nervous system is roughly classified into a central nervous system and a peripheral nervous system, the present invention provides a therapeutic agent applied to diseases of the central nervous system.
  • therapeutic agent for central nervous system disease refers to a drug used for the treatment of central nervous system diseases.
  • the therapeutic agent of the present invention contains (1) ADAMTS-4 protein or (2) an expression vector carrying the ADAMTS-4 gene as an active ingredient.
  • the therapeutic agent of this invention contains either (1) and (2) normally, it does not prevent containing these both.
  • ADAMTS-4 protein ADAMTS-4 (A disintegrin and metalloprotease with thrombospondin motif 4) is a molecule belonging to the ADAMTS family and is also called aggrecanase.
  • the amino acid sequence of ADAMTS-4 protein (GenPept (NCBI), ACCESSION: NP_005090, DEFINITION: A disintegrin and metalloproteinase with thrombospondin motifs 4 preproprotein [Homo sapiens]) registered in the public database is shown in SEQ ID NO: 1 Show.
  • a part of ADAMTS-4 protein (partial protein) may be used as long as the intended effect of the present invention, that is, effectiveness against central nervous system diseases is maintained.
  • SEQ ID NO: 3 amino acid sequence corresponding to amino acid residues 52 to 685.
  • ADAMTS-4 protein is used as a term including such partial proteins.
  • a polypeptide containing an amino acid sequence equivalent to the amino acid of SEQ ID NO: 1 or the amino acid of SEQ ID NO: 3 can also be used as the ADAMTS-4 protein.
  • the “equivalent amino acid sequence” here is partly different from the reference amino acid sequence (SEQ ID NO: 1 or SEQ ID NO: 3), but the difference is the function of the protein (effective action against central nervous disease). ) Refers to an amino acid sequence that does not substantially affect Therefore, substantial identity is recognized between the reference amino acid sequence (SEQ ID NO: 1 or SEQ ID NO: 3) and the equivalent amino acid sequence.
  • ADAMTS-4 is highly conserved and ADAMTS-4 has been identified in various animal species.
  • “Different in part of amino acid sequence” typically means deletion or substitution of 1 to several amino acids (upper limit is 3, 5, 7, 10) constituting the amino acid sequence. Alternatively, it means that a mutation (change) has occurred in the amino acid sequence due to addition, insertion, or a combination of 1 to several amino acids (the upper limit is, for example, 3, 5, 7, 10). Differences in amino acid sequences here are allowed as long as there is no significant decrease in the above functions. As long as this condition is satisfied, the positions where the amino acid sequences are different are not particularly limited, and differences may occur at a plurality of positions.
  • the term “plurality” as used herein refers to, for example, a number corresponding to less than about 30% of all amino acids, preferably a number corresponding to less than about 20%, and more preferably a number corresponding to less than about 10%.
  • the number is preferably less than about 5%, and most preferably less than about 1%.
  • the equivalent amino acid sequence is the amino acid sequence of SEQ ID NO: 1 (or the amino acid sequence of SEQ ID NO: 3), for example, about 70% or more, preferably about 80% or more, more preferably about 90% or more, and still more preferably about 95%. As described above, the sequence identity of about 99% or more is most preferable.
  • conservative amino acid substitution refers to substitution of a certain amino acid residue with an amino acid residue having a side chain having the same properties.
  • a basic side chain eg lysine, arginine, histidine
  • an acidic side chain eg aspartic acid, glutamic acid
  • an uncharged polar side chain eg glycine, asparagine, glutamine, serine, threonine, tyrosine
  • Cysteine eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • ⁇ -branched side chains eg threonine, valine, isoleucine
  • aromatic side chains eg tyrosine, phenylalanine, Like tryptophan and histidine.
  • Conservative amino acid substitutions are preferably substitutions between amino acid residues within the same family.
  • sequence identity % of two amino acid sequences or two nucleic acid sequences (hereinafter, “two sequences” is used as a term including them) can be determined, for example, by the following procedure.
  • two sequences are aligned for optimal comparison (eg, a gap may be introduced into the first sequence to optimize alignment with the second sequence).
  • a molecule amino acid residue or nucleotide
  • Gapped BLAST described in Altschul et al. (1997) Amino Acids Research 25 (17): 3389-3402 can be used.
  • ADAMTS-4 protein is easily prepared by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. with reference to the sequence information disclosed in this specification or the attached sequence listing. can do. For example, it can be prepared by transforming a suitable host cell (for example, E. coli, yeast) with DNA encoding ADAMTS-4 protein and recovering the protein expressed in the transformant. The recovered protein is appropriately purified according to the purpose. Thus, various modifications are possible if ADAMTS-4 protein is obtained as a recombinant protein.
  • suitable host cell for example, E. coli, yeast
  • a DNA encoding ADAMTS-4 protein and other appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, a recombinant protein in which any peptide or protein is linked ADAMTS-4 protein consisting of can be obtained.
  • modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur.
  • the ADAMTS-4 protein is also commercially available (for example, recombinant human ADAMTS-4 (having the amino acid sequence of SEQ ID NO: 3) provided by R & D® Systems, Inc., catalog number 4307-AD) and is readily available. It is.
  • ADAMTS-4 protein is preferably prepared by genetic engineering techniques.
  • the method for preparing ADAMTS-4 protein is not limited to genetic engineering.
  • ADAMTS-4 protein can be prepared from natural materials by standard techniques (crushing, extraction, purification, etc.).
  • an expression vector holding ADAMTS-4 gene (hereinafter referred to as “ADAMTS-4 gene”) is used as an active ingredient.
  • “Expression vector” refers to a vector capable of introducing a nucleic acid inserted therein into a target cell (host cell) and allowing expression in the cell.
  • the ADAMTS-4 gene is retained so that it can be expressed.
  • the type of the vector is not particularly limited as long as the ADAMTS-4 gene can be introduced into the target cell and expressed in the target cell.
  • the “vector” herein includes viral vectors and non-viral vectors.
  • Adenovirus vectors adeno-associated virus vectors, retrovirus vectors, lentivirus vectors, herpes virus vectors, Sendai virus vectors and the like have been developed as virus vectors.
  • Non-viral vectors include liposomes, positively charged liposomes (Felgner, PL, Gadek, TR, Holm, M. et al., Proc. Natl. Acad. Sci., 84: 7413-7417, 1987), HVJ (Hemagglutinating virus of Japan) -Liposome (Dzau, VJ, Mann, M., Morishita, R. et al., Proc. Natl. Acad. Sci., 93: 11421-11425, 1996, Kaneda, Y. , R., Molecular Med. Today, 5: 298-303, 1999).
  • the vector in the present invention may be constructed as such a non-viral vector. Further, a YAC vector, a BAC vector or the like may be used.
  • Retroviral vectors are not suitable for gene transfer into non-dividing cells because cell division is required for integration of the viral genome into the host chromosome.
  • lentivirus vectors and adeno-associated virus vectors cause integration of foreign genes into the host chromosome after infection even in non-dividing cells. Therefore, these vectors are effective for stably and long-term expressing foreign genes in non-dividing cells.
  • Each virus vector can be prepared according to a previously reported method or using a commercially available dedicated kit.
  • an adenovirus vector can be prepared by the COS-TPC method or full-length DNA introduction method.
  • the COS-TPC method is a homologous recombination that occurs in 293 cells by co-transfecting a recombinant cosmid incorporating the target cDNA or expression cassette and a parent virus DNA-terminal protein complex (DNA-TPC) into 293 cells.
  • DNA-TPC parent virus DNA-terminal protein complex
  • the full-length DNA introduction method is a method for producing a recombinant adenovirus by subjecting a recombinant cosmid inserted with a target gene to restriction digestion and then transfecting 293 cells (Miho Terashima, Koki Kondo). Hiromi Kanegae, Izumi Saito (2003) Experimental Medicine 21 (7) 931.).
  • the COS-TPC method can be performed using Adenovirus® Expression® Vector® Kit® (Dual® Version) (Takara Bio Inc.) and Adenovirus® genome® DNA-TPC (Takara Bio Inc.).
  • the full-length DNA introduction method can be performed using Adenovirus® Expression® Vector® Kit® (Dual® Version) (Takara Bio Inc.).
  • retroviral vectors can be prepared by the following procedure. First, the virus genome (gag, pol, env gene) other than the packaging signal sequence between the LTRs (Long Terminal Repeat) existing at both ends of the virus genome is removed, and the target gene is inserted therein. The viral DNA thus constructed is introduced into a packaging cell that constitutively expresses the gag, pol, and env genes. Thereby, only the vector RNA having the packaging signal sequence is incorporated into the viral particle, and a retroviral vector is produced.
  • the virus genome gag, pol, env gene
  • LTRs Long Terminal Repeat
  • the expression vector of the present invention may be constructed as such a viral vector.
  • ADAMTS-4 gene inserted into the vector is, for example, SEQ ID NO: 2 (GenBank (NCBI), ACCESSION: NM_005099, DEFINITION: Homo sapiens ADAM metallopeptidase with thrombospondin type 1 motif, 4 (ADAMTS -4), mRNA.) Or SEQ ID NO: 4 (sequence encoding amino acid residues 53 to 685 of the amino acid sequence of SEQ ID NO: 1).
  • DNA having a base sequence equivalent to the base sequence hereinafter referred to as “equivalent DNA” can also be used as the ADAMTS-4 gene.
  • the “equivalent base sequence” here is partially different from the standard base sequence, but the function of the protein encoded by this difference (effective action on central nervous disease) has a substantial effect.
  • a specific example of equivalent DNA is DNA that hybridizes under stringent conditions to a base sequence complementary to a reference base sequence (for example, the base sequence of SEQ ID NO: 2 or SEQ ID NO: 4).
  • the “stringent conditions” here are conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Such stringent conditions are known to those skilled in the art, such as Molecular Cloning (Third Edition, Cold Spring Harbor Laboratory Press, New York) and Current protocols in molecular biology (edited by Frederick M.
  • Ausubel et al., 1987 Can be set with reference to.
  • stringent conditions for example, hybridization solution (50% formamide, 10 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 5 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g / ml denaturation Conditions of incubation at about 42 ° C to about 50 ° C using salmon sperm DNA, 50 mM phosphate buffer (pH 7.5), followed by washing at about 65 ° C to about 70 ° C using 0.1 x SSC, 0.1% SDS Can be mentioned.
  • Further preferable stringent conditions include, for example, 50% formamide, 5 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 1 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g / ml as a hybridization solution. Of denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5)).
  • equivalent DNA consisting of a base sequence including substitution, deletion, insertion, addition, or inversion of one or more bases with respect to a reference base sequence (SEQ ID NO: 2, SEQ ID NO: 4).
  • a DNA encoding a protein effective against non-ischemic myocardial injury can be mentioned.
  • Base substitution or deletion may occur at a plurality of sites.
  • the term “plurality” as used herein refers to, for example, 2 to 40 bases, preferably 2 to 20 bases, more preferably 2 to 10 bases, although it varies depending on the position and type of amino acid residues in the three-dimensional structure of the protein encoded by the DNA. It is.
  • Such equivalent DNAs include, for example, restriction enzyme treatment, treatment with exonuclease and DNA ligase, position-directed mutagenesis (MolecularMCloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York) Includes substitutions, deletions, insertions, additions, and / or inversions of bases using mutation introduction methods (Molecular Cloning, ingThird Edition, Chapterhap13, Cold Spring Harbor Laboratory Press, New York) Thus, it can obtain by modifying DNA which has a standard base sequence.
  • the equivalent DNA can also be obtained by other methods such as ultraviolet irradiation.
  • DNA in which a difference in base as described above is recognized due to a polymorphism represented by SNP (single nucleotide polymorphism).
  • the ADAMTS-4 gene can be prepared by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. with reference to the sequence information disclosed in this specification or the attached sequence listing. it can.
  • the ADAMTS-4 gene can be isolated (and amplified) from a human cDNA library by appropriately using an oligonucleotide probe / primer that can specifically hybridize to the ADAMTS-4 gene.
  • the oligonucleotide probe primer for example, a DNA complementary to the base sequence shown in SEQ ID NO: 2 or the base sequence shown in SEQ ID NO: 4 or a continuous part thereof is used. Oligonucleotide probes and primers can be easily synthesized using a commercially available automated DNA synthesizer.
  • Molecular® Cloning • Third • Edition, • Cold®Spring®Harbor®Laboratory®Press, and “New York” are helpful.
  • An equivalent DNA can be prepared by using a cDNA library derived from a non-human mammalian cell (for example, monkey, mouse, rat, pig, bovine) instead of the human cDNA library.
  • a cDNA library derived from a non-human mammalian cell (for example, monkey, mouse, rat, pig, bovine) instead of the human cDNA library.
  • Preparation of the therapeutic agent of the present invention can be performed according to a conventional method.
  • other pharmaceutically acceptable ingredients for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, physiological Saline solution and the like.
  • excipient lactose, starch, sorbitol, D-mannitol, sucrose and the like can be used.
  • disintegrant starch, carboxymethylcellulose, calcium carbonate and the like can be used. Phosphate, citrate, acetate, etc. can be used as the buffer.
  • emulsifier gum arabic, sodium alginate, tragacanth and the like can be used.
  • suspending agent glyceryl monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate and the like can be used.
  • soothing agent benzyl alcohol, chlorobutanol, sorbitol and the like can be used.
  • stabilizer propylene glycol, ascorbic acid or the like can be used.
  • preservatives phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like can be used.
  • benzalkonium chloride paraoxybenzoic acid, chlorobutanol and the like can be used.
  • Antibiotics pH adjusters, growth factors (eg, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF)), and the like may be included.
  • growth factors eg, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF)
  • NGF nerve growth factor
  • BDNF brain-derived neurotrophic factor
  • an expression vector carrying the ADAMTS-4 gene When an expression vector carrying the ADAMTS-4 gene is used as an active ingredient, it may be formulated in combination with a pharmaceutically acceptable medium.
  • “Pharmaceutically acceptable medium” refers to a substance that provides advantages or benefits with respect to administration or storage of an expression vector without substantially affecting the efficacy of the expression vector (ie, efficacy against central nervous system diseases).
  • examples of the “pharmaceutically acceptable medium” include deionized water, ultrapure water, physiological saline, phosphate buffered saline (PBS), and 5% dextrose aqueous solution.
  • the expression vector carrying the ADAMTS-4 gene is in the form of a viral vector
  • a biocompatible polyol for example, poloxamer 407
  • the use of polyols can increase the transduction rate of viral vectors by 10 to 100 times (March et al., Human Generap Therapy 6: 41-53,) 1995). Therefore, if a polyol is used in combination, the dose of the viral vector can be kept low.
  • the dosage form for formulation is not particularly limited. Examples of dosage forms are tablets, powders, fine granules, granules, capsules, syrups, injections, external preparations, and suppositories.
  • the therapeutic agent of the present invention contains an active ingredient in an amount necessary for obtaining an expected therapeutic effect (or preventive effect) (that is, a therapeutically effective amount).
  • the amount of the active ingredient in the therapeutic agent of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set, for example, within the range of about 0.1 wt% to about 99 wt% so as to achieve a desired dose.
  • the administration route of the therapeutic agent of the present invention is not particularly limited.
  • it is applied by topical administration.
  • topical administration include injection or application to the target tissue.
  • spinal cord injury for example, it may be injected into the subarachnoid space.
  • the therapeutic agent of the present invention may be administered by intravenous injection, intraarterial injection, intraportal injection, intradermal injection, subcutaneous injection, intramuscular injection, or intraperitoneal injection. These administration routes are not mutually exclusive, and two or more arbitrarily selected can be used in combination.
  • the “subject” here is not particularly limited, and includes humans and non-human mammals (including pet animals, domestic animals, laboratory animals. Specifically, for example, mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats. , Sheep, dogs, cats, chickens, quails, etc.).
  • the therapeutic agent of the present invention is applied to humans.
  • the composition of the present invention is administered to a subject in the acute phase or the subacute phase so as to maximize the effect of the therapeutic agent of the present invention.
  • the dose of the therapeutic agent of the present invention is set so as to obtain the expected therapeutic effect.
  • a therapeutically effective dose the patient's symptoms, age, sex, weight, etc. are generally considered.
  • a person skilled in the art can set an appropriate dose in consideration of these matters.
  • the dose is adjusted so that the amount of active ingredient per day is about 20 ⁇ g to about 20 mg, preferably about 2 mg to about 10 mg.
  • the administration schedule for example, once to several times a day, once every two days, or once every three days can be adopted. In preparing the administration schedule, the patient's symptoms and the duration of effect of the active ingredient can be taken into consideration.
  • the therapeutic agent of the present invention is used for the treatment of central nervous disease.
  • the active ingredient causes a structural change of proteoglycan that inhibits regeneration of the damaged central nerve, and exhibits a therapeutic effect.
  • the treatment based on such a mechanism is an effective disease or pathological condition, it can be a target disease of the present invention regardless of its type or cause.
  • central nervous diseases caused by trauma or bleeding, specifically spinal cord injury, myelitis, brain injury, neuronal degeneration / dropout due to cerebral infarction associated with cerebral ischemia or intracerebral hemorrhage, and neuronal damage
  • the therapeutic agent of the present invention is applied to retinal diseases and the like involving
  • Spinal cord injury refers to a condition in which the spinal cord is damaged by an external impact or an internal factor such as a spinal cord tumor or hernia. Depending on the degree of injury, it is divided into a complete type (a state in which the spinal cord is completely cut halfway) and an incomplete type (a state in which the spinal cord is damaged or compressed, but the function of the spinal cord is partially maintained). Current medical technology cannot completely recover spinal cord injury, and the establishment of a new treatment is eagerly desired. Spinal cord injury is one of the diseases for which regenerative medicine is expected to be applied, and the use of bone marrow, neural stem cells, embryonic stem cells, induced pluripotent stem cells and the like has been studied. However, due to various problems, a definitive treatment technique has not been realized.
  • the therapeutic agent of the present invention provides a therapeutic method that can be expected to have a high therapeutic effect in such a situation, and its significance and value are extremely high.
  • Method (1) Surgery for spinal cord injury Female SD (Sprague-Dawley) rats (200-230 g) were used. Ketamine (100 mg / kg) and xylazine (10 mg / kg) were administered intraperitoneally to rats and anesthetized. A tenth thoracic laminectomy was performed to expose the dura mater. Spinal cord injury was created with an intensity of 200 kdyn using IH impactor (Infinite Horizon impactor; Precision Systems & Instrumentation, Lexington, KY). The eleventh thoracic vertebral arch was partially excised, and a silicon tube connected to a pump (Alzet pump) into which a drug solution had been previously injected was placed in the subarachnoid space under a microscope. Manual urination was performed twice a day. Food was placed at the bottom of the cage and a drinking bottle with antibiotics was installed. Management was performed according to the guidelines of the Nagoya University School of Medicine.
  • Real-time PCR was performed to quantify ADAMTS-4 mRNA during spinal cord injury.
  • Real-time PCR was performed using a Light Cycler 480 Real-Time System (Roche Diagnostics Corporation) and a Light Cycler Fast Start DNA Master SYBR Green I (Roche Diagnostics Corporation). The following primers were used in real-time PCR.
  • ADAMTS-4 protein expression and activity in the injured spinal cord After spinal cord tissue homogenization at 1 week after spinal cord injury, centrifugation was performed at 10,000 g for 15 minutes. The supernatant was collected, protein quantification was performed, and Western blotting was performed with a protein amount of 20 ⁇ g.
  • the primary antibody is anti-ADAMTS-4 (1000-fold diluted; Santa Cruz), anti- ⁇ -actin antibody (100,000-fold diluted; Sigma), the secondary antibody is horseradish peroxidase-labeled goat anti-mouse IgG antibody (5000-fold diluted) and Anti-rabbit IgG antibody (5000-fold dilution; Invitrogen) was used.
  • ECL plus Western blotting detection kit (GE Healthcare, Buckinghamshire, UK) was used for color development.
  • ADAMTS-4 activity in the injured spinal cord was measured by a fluorescence assay using SensoLyte (registered trademark) 520 Aggrecanase-1 assay kit (AnaSpec, San Jose, USA).
  • ADAMTS-4 mRNA in neurons / astrocytes / microglia mRNA was extracted from cells using the RNeasy Mini Kit (QIAGEN) according to the attached protocol.
  • the expression of ADAMTS-4 mRNA was confirmed by a method similar to the method (2) described above.
  • Axon extension assay by ADAMTS-4 Neurons were collected by the method described above. 20 ⁇ g / ml poly-L-lysine (PLL; Sigma) or 300 ng / ml proteoglycan (Millipore Bioscience Research Reagents) was added dropwise to a 4-well camber slide at 4 ° C. overnight. Neurons were seeded on the slides thus prepared at a cell density of 2.0 ⁇ 10 5 / well.
  • Hindlimb motor function Rats (ADAMTS-4 (5.3 ⁇ g / ⁇ l), C-ABC (0.25 U / ⁇ l) or solvent that had undergone spinal cord injury surgery using the BBB scale (Basso, Beattie and Bresnahan scale)
  • Hindlimb motor function was evaluated by administering a chemical solution containing only to the subarachnoid space. The injection amount of the drug solution was about 15 ⁇ l / day. Measurements were taken every week after injury until week 8. Measurements were made in a double blind manner.
  • ADAMTS-4 mRNA expression in the injured spinal cord was not significantly different before injury, 3 days after injury, 1 week, and 2 weeks in both RT-PCR and real-time RT-PCR measurements ( 1 and 2).
  • the protein activity of ADAMTS-4 by the fluorescent peptide assay was slightly enhanced by 1.4 times in the damaged group compared to the sham group (FIG. 4).
  • ADAMTS-4 degree of improvement was comparable between ADAMTS-4 and C-ABC with no significant difference.
  • the therapeutic effect of ADAMTS-4 was confirmed at the animal level.
  • the fact that ADAMTS-4 showed the same therapeutic effect as C-ABC means that if ADAMTS-4 is used, a high therapeutic effect can be obtained regardless of bacterial C-ABC.
  • spinal cord injury myelitis
  • brain injury degeneration and loss of neurons by cerebral infarction caused by cerebral ischemia or cerebral hemorrhage, and retinal diseases and the like accompanied by disorders of the nervous cells is assumed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Diabetes (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Psychiatry (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The purpose of the present invention is to provide a novel therapeutic means for central nervous system diseases. Provided is a therapeutic agent for central nervous system diseases, said therapeutic agent comprising, as the active ingredient, ADAMTS-4 protein or an expression vector carrying ADAMTS-4 gene.

Description

中枢神経疾患治療剤CNS therapeutic agent
 本発明は中枢神経疾患用の治療剤及びその用途に関する。本出願は、2010年12月21日に出願された日本国特許出願第2010-283910号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to a therapeutic agent for central nervous disease and its use. This application claims priority based on Japanese Patent Application No. 2010-283910 filed on Dec. 21, 2010, the entire contents of which are incorporated by reference.
 従来、一度損傷を受けた中枢神経が再生することはないと言われてきた。実際、脳や脊髄といった中枢神経が一度外傷や出血により障害を受け、神経障害が出現すれば、通常治癒はしない。その理由として、再生を促す因子に比べ、それを抑制する因子が強いと考えられている。なかでも、ミエリン関連蛋白であるNogo、MAG、OMgpやコンドロイチン硫酸プロテオグリカン(以下、「CSPG」)などは神経再生阻害因子として有名である。2002年にBradburryらはCSPGのCS鎖を分解するコンドロイチナーゼABC(以下、「C-ABC」)をラット損傷脊髄に投与することにより後肢運動機能が回復したことを報告した(非特許文献1)。同様に脊髄損傷後に損傷周囲に集積し、神経再生を抑制するとされるケラタン硫酸プロテオグリカン(以下、「KSPG」)がある。我々のグループでは、KSPGのノックアウトされたマウスに脊髄損傷が起きると、野生型マウスに比較して、損傷後の後肢運動機能が回復したことを報告した(非特許文献2)。 Conventionally, it has been said that the central nerve once damaged is not regenerated. In fact, once the central nerves, such as the brain and spinal cord, are damaged by trauma or hemorrhage, and neuropathy appears, it is not usually cured. The reason for this is thought to be a factor that suppresses it compared to a factor that promotes regeneration. Among them, the myelin-related proteins Nogo, MAG, OMgp and chondroitin sulfate proteoglycan (hereinafter “CSPG”) are well known as nerve regeneration inhibitors. In 2002, Bradburry et al. Reported that hindlimb motor function was restored by administering chondroitinase ABC (hereinafter referred to as “C-ABC”), which degrades CS chain of CSPG, to the injured spinal cord of rats (Non-patent Document 1). ). Similarly, there is a keratan sulfate proteoglycan (hereinafter referred to as “KSPG”) that accumulates around the injury after spinal cord injury and suppresses nerve regeneration. Our group reported that when spinal cord injury occurred in a KSPG knocked out mouse, the hindlimb motor function after the injury was restored compared to the wild type mouse (Non-patent Document 2).
 本発明の課題は、中枢神経系疾患に対する新規な治療手段を提供することにある。 An object of the present invention is to provide a novel therapeutic means for central nervous system diseases.
 以上の課題の下、本発明者らは研究を進めた。まず、C-ABCと同様に脊髄損傷後にケラタン硫酸を分解する酵素であるケラタナーゼII(以下、「K-II」)を、脊髄損傷モデル(ラット)のくも膜下腔に投与したところ、C-ABCと同様の回復が得られた。しかし、C-ABCとK-IIの同時投与を行ったが、その際の効果はC-ABC単独およびK-II単独投与と同等であった。付加的な効果が得られなかった理由として、CSPGのCS鎖及びKSPGのKS鎖が切れることによるプロテオグリカンの構造変化が神経軸索の伸長効果に影響を及ぼしていることが示唆された。そこで、同様のプロテオグリカンの構造変化をもたらす酵素として、コアプロテインを分解するADAMTS-4(A disintegrin and metalloprotease with thrombospondin motif 4)に注目した。つまり、ADAMTS-4によるコアプロテインの分解により起きるプロテオグリカンの構造変化が脊髄損傷後の神経軸索伸長効果をもたらすことを仮定して実験を進めた。その結果、ADAMTS-4が高い神経軸索伸長効果を示し、脊髄損傷後の機能改善に極めて有効であることが判明した。また、脊髄損傷後、ADMATS4の発現量はmRNAレベルでは変化は認められないものの、タンパク質レベルでは増加が見られることや、ニューロンよりもアストロサイトやミクログリアでADAMTS-4の高発現が認められること、更にはブレビカンやニューロカン或いはフォスファカンなどの脳内プロテオグリカンの分解がADMATS4特異的に生じること等、中枢神経系の再生におけるADAMTS-4の作用機序に関する重要且つ有益な知見が得られた。 Under the above problems, the present inventors proceeded with research. First, as with C-ABC, Keratanase II (K-II), an enzyme that degrades keratan sulfate after spinal cord injury, was administered into the subarachnoid space of a spinal cord injury model (rat). A similar recovery was obtained. However, co-administration of C-ABC and K-II was performed, and the effect at that time was equivalent to that of C-ABC alone and K-II alone. The reason why the additional effect was not obtained was suggested that the structural change of proteoglycan due to the CS chain of CSPG and the KS chain of KSPG being broken affects the elongation effect of nerve axon. Therefore, we focused on ADAMTS-4 (A disintegrin and metalloprotease with thrombospondin motif 4), which degrades the core protein, as an enzyme that causes similar structural changes in proteoglycans. In other words, the experiment was carried out on the assumption that the structural change of proteoglycan caused by the degradation of core protein by ADAMTS-4 has the effect of elongating nerve axons after spinal cord injury. As a result, ADAMTS-4 showed a high nerve axon extension effect and was found to be extremely effective in improving function after spinal cord injury. In addition, after spinal cord injury, although the expression level of ADMATS4 does not change at the mRNA level, an increase is seen at the protein level, and ADAMTS-4 is highly expressed at astrocytes and microglia rather than neurons, Furthermore, important and useful findings were obtained regarding the mechanism of action of ADAMTS-4 in the regeneration of the central nervous system, such as the degradation of proteoglycans in the brain, such as blebican, neurocan and phosphacan, which occurs specifically in ADMATS4.
 以上の通り、本発明者らの鋭意検討の結果、ADAMTS-4が中枢神経系の再生・治癒に極めて有効であるとの知見がもたらされた。以下に示す本発明は、主として当該知見に基づく。
 [1]以下の(1)又は(2)を有効成分として含む、中枢神経疾患用治療剤:
 (1)ADAMTS-4タンパク質;
 (2)ADAMTS-4遺伝子を保持する発現ベクター。
 [2]ADAMTS-4タンパク質が、配列番号1に示すアミノ酸配列又は該アミノ酸配列に等価なアミノ酸配列を含む、[1]に記載の中枢神経疾患用治療剤。
 [3]ADAMTS-4遺伝子が、配列番号2に示す塩基配列又は該塩基配列に等価な塩基配列を含む、[1]に記載の中枢神経疾患用治療剤。
 [4]中枢神経疾患が脊髄損傷、脊髄炎、脳損傷、脳虚血や脳内出血に伴う脳梗塞による神経細胞の変性・脱落、及び神経細胞の障害を伴う網膜疾患からなる群より選択される疾患ないし病態である、[1]~[3]のいずれか一項に記載の中枢神経疾患用治療剤。
 [5]中枢神経疾患が脊髄損傷である、[1]~[3]のいずれか一項に記載の中枢神経疾患用治療剤。
 [6]中枢神経疾患の患者に対して、以下の(1)又は(2)を有効成分として含む中枢神経疾患用治療剤を投与するステップを含む、中枢神経疾患の治療法:
 (1)ADAMTS-4タンパク質;
 (2)ADAMTS-4遺伝子を保持する発現ベクター。
 [7]中枢神経疾患が脊髄損傷、脊髄炎、脳損傷、脳虚血や脳内出血に伴う脳梗塞による神経細胞の変性・脱落、及び神経細胞の障害を伴う網膜疾患からなる群より選択される疾患である、[6]に記載の治療法。
 [8]中枢神経疾患が脊髄損傷である、[6]に記載の治療法。
As described above, as a result of intensive studies by the present inventors, the knowledge that ADAMTS-4 is extremely effective for the regeneration and healing of the central nervous system has been brought about. The present invention described below is mainly based on the findings.
[1] A therapeutic agent for central nervous disease comprising the following (1) or (2) as an active ingredient:
(1) ADAMTS-4 protein;
(2) An expression vector carrying the ADAMTS-4 gene.
[2] The therapeutic agent for central nervous disease according to [1], wherein the ADAMTS-4 protein comprises the amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence equivalent to the amino acid sequence.
[3] The therapeutic agent for central nervous disease according to [1], wherein the ADAMTS-4 gene comprises the base sequence shown in SEQ ID NO: 2 or a base sequence equivalent to the base sequence.
[4] The central nervous system disease is selected from the group consisting of spinal cord injury, myelitis, brain injury, neuronal degeneration / dropout due to cerebral infarction associated with cerebral ischemia or intracerebral hemorrhage, and retinal disease with neuronal damage The therapeutic agent for central nervous disease according to any one of [1] to [3], which is a disease or a disease state.
[5] The therapeutic agent for central nervous disease according to any one of [1] to [3], wherein the central nervous disease is spinal cord injury.
[6] A method for treating central nervous disease, comprising the step of administering a therapeutic agent for central nervous disease comprising the following (1) or (2) as an active ingredient to a patient with central nervous disease:
(1) ADAMTS-4 protein;
(2) An expression vector carrying the ADAMTS-4 gene.
[7] The central nervous disease is selected from the group consisting of spinal cord injury, myelitis, brain injury, neuronal degeneration / dropout due to cerebral infarction associated with cerebral ischemia and intracerebral hemorrhage, and retinal disease accompanied by neuronal damage The treatment according to [6], which is a disease.
[8] The treatment method according to [6], wherein the central nervous disease is spinal cord injury.
損傷脊髄組織から抽出したmRNAを用いたRT-PCRの結果。脊髄損傷手術3日後、1週後、2週後のADAMTS-4 mRNA発現量を調べた。Results of RT-PCR using mRNA extracted from damaged spinal cord tissue. The expression level of ADAMTS-4 mRNA after 3 days, 1 week and 2 weeks after spinal cord injury surgery was examined. 損傷脊髄組織から抽出したmRNAを用いたリアルタイムRT-PCRの結果。脊髄損傷手術3日後、1週後、2週後のADAMTS-4 mRNA発現量を定量した。NS:有意差なし。Results of real-time RT-PCR using mRNA extracted from damaged spinal cord tissue. The expression level of ADAMTS-4 mRNA was quantified 3 days after surgery for spinal cord injury, 1 week later, and 2 weeks later. NS: No significant difference. 損傷脊髄組織のホモジネートを用いたウエスタンブロットの結果。手術1週後に脊髄損傷術群とsham群(第10胸椎椎弓切除のみ)のADAMTS-4タンパク質発現量を比較した。Results of Western blot using a homogenate of damaged spinal cord tissue. One week after the operation, the ADAMTS-4 protein expression level was compared between the spinal cord injury surgery group and the sham group (10th thoracic laminectomy only). 蛍光アッセイの結果。損傷脊髄中のADAMTS-4活性を蛍光アッセイ(n=9)で測定した。*:<0.001Fluorescence assay results. ADAMTS-4 activity in the injured spinal cord was measured with a fluorescence assay (n = 9). *: <0.001 神経系細胞から抽出したmRNAを用いたRT-PCRの結果。ニューロン、アストロサイト及びミクログリアのADAMTS-4発現レベルを比較した。Results of RT-PCR using mRNA extracted from nervous system cells. The ADAMTS-4 expression levels of neurons, astrocytes and microglia were compared. ラット脳より採取したプロテオグリカン(PG)を用いた分解アッセイの結果。ADAMTS-4及びADAMTS-13によるブレビカンの分解活性をウエスタンブロットで比較評価した。左から順に、第1レーン:コントロール(PGのみ)、第2レーン:ADAMTS-4(1μM)を添加、第3レーン:95℃でボイルしたADAMTS-4を添加、第4レーン:ADAMTS-13(1μM)を添加、第5レーン:95℃でボイルしたADAMTS-13を添加。Results of degradation assay using proteoglycan (PG) collected from rat brain. The degradation activity of blebican by ADAMTS-4 and ADAMTS-13 was comparatively evaluated by Western blot. From left to right, first lane: control (PG only), second lane: ADAMTS-4 (1 μM) added, third lane: ADAMTS-4 boiled at 95 ° C, fourth lane: ADAMTS-13 ( 1 μM), 5th lane: ADAMTS-13 boiled at 95 ° C. is added. ラット脳より採取したプロテオグリカン(PG)を用いた分解アッセイの結果。ADAMTS-4及びADAMTS-13によるニューロカンの分解活性をウエスタンブロットで比較評価した。左から順に、第1レーン:コントロール(PGのみ)、第2レーン:ADAMTS-4(1μM)を添加、第3レーン:95℃でボイルしたADAMTS-4を添加、第4レーン:ADAMTS-13(1μM)を添加、第5レーン:95℃でボイルしたADAMTS-13を添加。Results of degradation assay using proteoglycan (PG) collected from rat brain. Neurocan degradation activity by ADAMTS-4 and ADAMTS-13 was evaluated by Western blot. From left to right, first lane: control (PG only), second lane: ADAMTS-4 (1 μM) added, third lane: ADAMTS-4 boiled at 95 ° C, fourth lane: ADAMTS-13 ( 1 μM), 5th lane: ADAMTS-13 boiled at 95 ° C. is added. ラット脳より採取したプロテオグリカン(PG)を用いた分解アッセイの結果。ADAMTS-4及びADAMTS-13によるフォスファカンの分解活性をウエスタンブロットで比較評価した。左から順に、第1レーン:コントロール(PGのみ)、第2レーン:ADAMTS-4(1μM)を添加、第3レーン:95℃でボイルしたADAMTS-4を添加、第4レーン:ADAMTS-13(1μM)を添加、第5レーン:95℃でボイルしたADAMTS-13を添加。Results of degradation assay using proteoglycan (PG) collected from rat brain. The degradation activity of phosphacan by ADAMTS-4 and ADAMTS-13 was compared and evaluated by Western blot. From left to right, first lane: control (PG only), second lane: ADAMTS-4 (1 μM) added, third lane: ADAMTS-4 boiled at 95 ° C, fourth lane: ADAMTS-13 ( 1 μM), 5th lane: ADAMTS-13 boiled at 95 ° C. is added. 軸索伸長アッセイの結果。PGの存在下及び非存在下でADAMTS-4の軸索伸長効果を調べた。PLL:ポリ-L-リジンコートしたスライド使用(酵素添加なし)、ADAMTS-4+PLL:ポリ-L-リジンコートしたスライド使用且つADAMTS-4添加、ADAMTS-13+PLL:ポリ-L-リジンコートしたスライド使用且つADAMTS-13添加、PG:プロテオグリカンコートしたスライド使用(酵素添加なし)、ADAMTS-4+PG:プロテオグリカンコートしたスライド使用且つADAMTS-4添加、ADAMTS-13+PG:プロテオグリカンコートしたスライド使用且つADAMTS-13添加、C-ABC+PG:プロテオグリカンコートしたスライド使用且つC-ABC添加。NS:有意差なし。*:<0.01。Results of axon elongation assay. The axon extension effect of ADAMTS-4 was investigated in the presence and absence of PG. PLL: Poly-L-lysine-coated slide used (no enzyme added), ADAMTS-4 + PLL: Poly-L-lysine-coated slide and ADAMTS-4 added, ADAMTS-13 + PLL: Poly-L-lysine-coated slide used ADAMTS-13 added, PG: using proteoglycan coated slide (no enzyme added), ADAMTS-4 + PG: using proteoglycan coated slide and ADAMTS-4 added, ADAMTS-13 + PG: using proteoglycan coated slide and ADAMTS-13 added, C- ABC + PG: Use proteoglycan-coated slides and add C-ABC. NS: No significant difference. *: <0.01. 軸索伸長アッセイの結果。接着細胞数を各条件で比較した。PG:プロテオグリカンコートしたスライド使用(酵素添加なし)、ADAMTS-13:プロテオグリカンコートしたスライド使用且つADAMTS-13添加、ADAMTS-4:プロテオグリカンコートしたスライド使用且つADAMTS-4添加、C-ABC:プロテオグリカンコートしたスライド使用且つC-ABC添加。*:<0.001。Results of axon elongation assay. The number of adherent cells was compared under each condition. PG: Proteoglycan coated slide use (without enzyme addition), ADAMTS-13: Proteoglycan coated slide use and ADAMTS-13 addition, ADAMTS-4: Proteoglycan coated slide use and ADAMTS-4 addition, C-ABC: Proteoglycan coated Use slide and add C-ABC. *: <0.001. BBBスケールを用いた後肢運動機能評価の結果。脊髄損傷手術を施したラットにADAMTS-4、c-ABC又は溶媒のみ(Vehicle)を含む薬液をくも膜下腔に投与し、後肢運動機能を経時的に比較評価した(n=6)。*:<0.05。Results of hindlimb motor function evaluation using the BBB scale. Rats subjected to spinal cord injury surgery were administered ADAMTS-4, c-ABC, or a drug solution containing only vehicle (Vehicle) into the subarachnoid space, and the hindlimb motor function was compared and evaluated over time (n = 6). *: <0.05. 5-HT線維の免疫組織染色結果。左上、左下及び右上は染色像。右下は5HT陽性エリアの計測結果。Results of immunohistochemical staining of 5-HT fibers. Upper left, lower left and upper right are stained images. The lower right is the measurement result of 5HT positive area.
1.中枢神経疾患用治療剤
 本発明の第1の局面は中枢神経疾患用治療剤(以下、説明の便宜上「本発明の治療剤」ともいう)に関する。神経系は中枢神経系と末梢神経系に大別されるが、本発明は中枢神経系の疾患に対して適用される治療剤を提供する。本明細書において「中枢神経疾患用治療剤」とは中枢神経系疾患の治療に用いられる薬剤のことをいう。
1. Therapeutic Agent for Central Nervous Disease The first aspect of the present invention relates to a therapeutic agent for central nervous disease (hereinafter also referred to as “the therapeutic agent of the present invention” for convenience of explanation). Although the nervous system is roughly classified into a central nervous system and a peripheral nervous system, the present invention provides a therapeutic agent applied to diseases of the central nervous system. As used herein, “therapeutic agent for central nervous system disease” refers to a drug used for the treatment of central nervous system diseases.
 本発明の治療剤は有効成分として(1)ADAMTS-4タンパク質又は(2)ADAMTS-4遺伝子を保持する発現ベクターを含む。尚、本発明の治療剤は通常(1)と(2)のいずれかを含むが、これら両者を含むことを妨げるものではない。 The therapeutic agent of the present invention contains (1) ADAMTS-4 protein or (2) an expression vector carrying the ADAMTS-4 gene as an active ingredient. In addition, although the therapeutic agent of this invention contains either (1) and (2) normally, it does not prevent containing these both.
(1)ADAMTS-4タンパク質
 ADAMTS-4(A disintegrin and metalloprotease with thrombospondin motif 4)は、ADAMTSファミリーに属する分子であり、アグリカネーゼとも呼ばれる。公共のデータベースに登録されている、ADAMTS-4タンパク質のアミノ酸配列(GenPept(NCBI), ACCESSION:NP_005090, DEFINITION: A disintegrin and metalloproteinase with thrombospondin motifs 4 preproprotein [Homo sapiens])を配列表の配列番号1に示す。本発明が意図する作用効果、即ち、中枢神経系疾患に対する有効性が維持される限りにおいて、ADAMTS-4タンパク質の一部(部分タンパク質)を用いてもよい。このような部分タンパク質の一例として、そのアミノ酸配列を配列番号3(52番アミノ酸残基~685番アミノ酸残基に相当する配列)に示す。尚、本明細書では、このような部分タンパク質も包含する用語として、「ADAMTS-4タンパク質」を使用する。
(1) ADAMTS-4 protein ADAMTS-4 (A disintegrin and metalloprotease with thrombospondin motif 4) is a molecule belonging to the ADAMTS family and is also called aggrecanase. The amino acid sequence of ADAMTS-4 protein (GenPept (NCBI), ACCESSION: NP_005090, DEFINITION: A disintegrin and metalloproteinase with thrombospondin motifs 4 preproprotein [Homo sapiens]) registered in the public database is shown in SEQ ID NO: 1 Show. A part of ADAMTS-4 protein (partial protein) may be used as long as the intended effect of the present invention, that is, effectiveness against central nervous system diseases is maintained. As an example of such a partial protein, its amino acid sequence is shown in SEQ ID NO: 3 (sequence corresponding to amino acid residues 52 to 685). In the present specification, “ADAMTS-4 protein” is used as a term including such partial proteins.
 配列番号1のアミノ酸又は配列番号3のアミノ酸に等価なアミノ酸配列を含むポリペプチドをADAMTS-4タンパク質として用いることもできる。ここでの「等価なアミノ酸配列」とは、基準となるアミノ酸配列(配列番号1又は配列番号3)と一部で相違するが、当該相違がタンパク質の機能(中枢神経疾患に対して有効な作用)に実質的な影響を与えていないアミノ酸配列のことをいう。従って、基準となるアミノ酸配列(配列番号1又は配列番号3)と、それに等価なアミノ酸配列との間には実質的な同一性が認められる。実質的な同一性の有無を判定するためには、例えば、後述の実施例に記載した実験系(動物モデルによる評価)を用い、中枢神経疾患に対する作用・効果の点において二つのアミノ酸配列の間に実質的な差がないことを確認すればよい。尚、ADAMTS-4の保存性は高く、様々な動物種においてADAMTS-4が同定されている。 A polypeptide containing an amino acid sequence equivalent to the amino acid of SEQ ID NO: 1 or the amino acid of SEQ ID NO: 3 can also be used as the ADAMTS-4 protein. The “equivalent amino acid sequence” here is partly different from the reference amino acid sequence (SEQ ID NO: 1 or SEQ ID NO: 3), but the difference is the function of the protein (effective action against central nervous disease). ) Refers to an amino acid sequence that does not substantially affect Therefore, substantial identity is recognized between the reference amino acid sequence (SEQ ID NO: 1 or SEQ ID NO: 3) and the equivalent amino acid sequence. In order to determine the presence or absence of substantial identity, for example, using the experimental system (evaluation by an animal model) described in the examples below, between the two amino acid sequences in terms of the action / effect on the central nervous system disease It is sufficient to confirm that there is no substantial difference between the two. ADAMTS-4 is highly conserved and ADAMTS-4 has been identified in various animal species.
 「アミノ酸配列の一部で相違する」とは、典型的には、アミノ酸配列を構成する1~数個(上限は例えば3個、5個、7個、10個)のアミノ酸の欠失、置換、若しくは1~数個(上限は例えば3個、5個、7個、10個)のアミノ酸の付加、挿入、又はこれらの組合せによりアミノ酸配列に変異(変化)が生じていることをいう。ここでのアミノ酸配列の相違は上記機能の大幅な低下がない限り許容される。この条件を満たす限りアミノ酸配列が相違する位置は特に限定されず、また複数の位置で相違が生じていてもよい。ここでの複数とは例えば全アミノ酸の約30%未満に相当する数であり、好ましくは約20%未満に相当する数であり、さらに好ましくは約10%未満に相当する数であり、より一層好ましくは約5%未満に相当する数であり、最も好ましくは約1%未満に相当する数である。即ち等価アミノ酸配列は、配列番号1のアミノ酸配列(又は配列番号3のアミノ酸配列)と例えば約70%以上、好ましくは約80%以上、さらに好ましくは約90%以上、より一層好ましくは約95%以上、最も好ましくは約99%以上の配列同一性を有する。 “Different in part of amino acid sequence” typically means deletion or substitution of 1 to several amino acids (upper limit is 3, 5, 7, 10) constituting the amino acid sequence. Alternatively, it means that a mutation (change) has occurred in the amino acid sequence due to addition, insertion, or a combination of 1 to several amino acids (the upper limit is, for example, 3, 5, 7, 10). Differences in amino acid sequences here are allowed as long as there is no significant decrease in the above functions. As long as this condition is satisfied, the positions where the amino acid sequences are different are not particularly limited, and differences may occur at a plurality of positions. The term “plurality” as used herein refers to, for example, a number corresponding to less than about 30% of all amino acids, preferably a number corresponding to less than about 20%, and more preferably a number corresponding to less than about 10%. The number is preferably less than about 5%, and most preferably less than about 1%. That is, the equivalent amino acid sequence is the amino acid sequence of SEQ ID NO: 1 (or the amino acid sequence of SEQ ID NO: 3), for example, about 70% or more, preferably about 80% or more, more preferably about 90% or more, and still more preferably about 95%. As described above, the sequence identity of about 99% or more is most preferable.
 基準となるアミノ酸配列(配列番号1、配列番号3)と等価アミノ酸配列との間の相違が保存的アミノ酸置換基によって生じていることが好ましい。ここでの「保存的アミノ酸置換」とは、あるアミノ酸残基を、同様の性質の側鎖を有するアミノ酸残基に置換することをいう。アミノ酸残基はその側鎖によって塩基性側鎖(例えばリシン、アルギニン、ヒスチジン)、酸性側鎖(例えばアスパラギン酸、グルタミン酸)、非荷電極性側鎖(例えばグリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えばアラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐側鎖(例えばスレオニン、バリン、イソロイシン)、芳香族側鎖(例えばチロシン、フェニルアラニン、トリプトファン、ヒスチジン)のように、いくつかのファミリーに分類されている。保存的アミノ酸置換は、好ましくは同一のファミリー内のアミノ酸残基間の置換である。 It is preferable that the difference between the reference amino acid sequence (SEQ ID NO: 1, SEQ ID NO: 3) and the equivalent amino acid sequence is caused by a conservative amino acid substituent. As used herein, “conservative amino acid substitution” refers to substitution of a certain amino acid residue with an amino acid residue having a side chain having the same properties. Depending on the side chain of the amino acid residue, a basic side chain (eg lysine, arginine, histidine), an acidic side chain (eg aspartic acid, glutamic acid), an uncharged polar side chain (eg glycine, asparagine, glutamine, serine, threonine, tyrosine) Cysteine), non-polar side chains (eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), β-branched side chains (eg threonine, valine, isoleucine), aromatic side chains (eg tyrosine, phenylalanine, Like tryptophan and histidine). Conservative amino acid substitutions are preferably substitutions between amino acid residues within the same family.
 ところで、二つのアミノ酸配列又は二つの核酸配列(以下、これらを含む用語として「二つの配列」を使用する)の配列同一性(%)は例えば以下の手順で決定することができる。まず、最適な比較ができるよう二つの配列を並べる(例えば、第一の配列にギャップを導入して第二の配列とのアライメントを最適化してもよい)。第一の配列の特定位置の分子(アミノ酸残基又はヌクレオチド)が、第二の配列における対応する位置の分子と同じであるとき、その位置の分子が同一であるといえる。配列同一性は、その二つの配列に共通する同一位置の数の関数であり(すなわち、配列同一性(%)=同一位置の数/位置の総数 × 100)、好ましくは、アライメントの最適化に要したギャップの数およびサイズも考慮に入れる。 Incidentally, the sequence identity (%) of two amino acid sequences or two nucleic acid sequences (hereinafter, “two sequences” is used as a term including them) can be determined, for example, by the following procedure. First, two sequences are aligned for optimal comparison (eg, a gap may be introduced into the first sequence to optimize alignment with the second sequence). When a molecule (amino acid residue or nucleotide) at a specific position in the first sequence is the same as the molecule at the corresponding position in the second sequence, it can be said that the molecule at that position is the same. Sequence identity is a function of the number of identical positions common to the two sequences (ie, sequence identity (%) = number of identical positions / total number of positions × 100), preferably for alignment optimization Take into account the number and size of gaps required.
 二つの配列の比較及び同一性の決定は数学的アルゴリズムを用いて実現可能である。配列の比較に利用可能な数学的アルゴリズムの具体例としては、KarlinおよびAltschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68に記載され、KarlinおよびAltschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-77において改変されたアルゴリズムがあるが、これに限定されることはない。このようなアルゴリズムは、Altschulら (1990) J. Mol. Biol. 215:403-10に記載のNBLASTプログラムおよびXBLASTプログラム(バージョン2.0)に組み込まれている。本発明における核酸分子に等価なヌクレオチド配列を得るには例えば、NBLASTプログラムでscore = 100、wordlength = 12としてBLASTヌクレオチド検索を行えばよい。基準となるアミノ酸配列に等価なアミノ酸配列を得るには例えば、XBLASTプログラムでscore = 50、wordlength = 3としてBLASTポリペプチド検索を行えばよい。比較のためのギャップアライメントを得るためには、Altschulら (1997) Amino Acids Research 25(17):3389-3402に記載のGapped BLASTが利用可能である。BLASTおよびGapped BLASTを利用する場合は、対応するプログラム(例えばXBLASTおよびNBLAST)のデフォルトパラメータを使用することができる。詳しくは例えばNCBIのウェブページを参照されたい。配列の比較に利用可能な他の数学的アルゴリズムの例としては、MyersおよびMiller (1988) Comput Appl Biosci. 4:11-17に記載のアルゴリズムがある。このようなアルゴリズムは、例えばGENESTREAMネットワークサーバー(IGH Montpellier、フランス)またはISRECサーバーで利用可能なALIGNプログラムに組み込まれている。アミノ酸配列の比較にALIGNプログラムを利用する場合は例えば、PAM120残基質量表を使用し、ギャップ長ペナルティ=12、ギャップペナルティ=4とすることができる。 比較 Comparison of two sequences and determination of identity can be achieved using a mathematical algorithm. Specific examples of mathematical algorithms that can be used for sequence comparison are described in Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 226 87: 2264-68; Karlin and Altschul (1993) Proc. Natl. There is a modified algorithm in Acad. Sci. USA 90: 5873-77, but it is not limited to this. Such an algorithm is incorporated in the NBLAST program and XBLAST program (version 2.0) described in Altschul et al. (1990) J. Mol. Biol. 215: 403-10. In order to obtain a nucleotide sequence equivalent to the nucleic acid molecule in the present invention, for example, a BLAST nucleotide search may be performed with the score = 100 and wordlength = 12 in the NBLAST program. In order to obtain an amino acid sequence equivalent to the reference amino acid sequence, for example, a BLAST polypeptide search may be performed using the XBLAST program with score = 50 and wordlength = 3. In order to obtain a gap alignment for comparison, Gapped BLAST described in Altschul et al. (1997) Amino Acids Research 25 (17): 3389-3402 can be used. When utilizing BLAST and Gapped BLAST, the default parameters of the corresponding programs (eg, XBLAST and NBLAST) can be used. For details, refer to the NCBI web page. Examples of other mathematical algorithms that can be used for sequence comparison include those described in Myers and Miller (1988) Comput Appl Biosci. 4: 11-17. Such an algorithm is incorporated in the ALIGN program available on, for example, the GENESTREAM network server (IGH (Montpellier, France) or the ISREC server. When using the ALIGN program for comparison of amino acid sequences, for example, a PAM120 residue mass table can be used, with a gap length penalty = 12 and a gap penalty = 4.
 二つのアミノ酸配列の同一性を、GCGソフトウェアパッケージのGAPプログラムを用いて、Blossom 62マトリックスまたはPAM250マトリックスを使用し、ギャップ加重=12、10、8、6、又は4、ギャップ長加重=2、3、又は4として決定することができる。また、二つの核酸配列の同一性を、GCGソフトウェアパッケージのGAPプログラムを用いて、ギャップ加重=50、ギャップ長加重=3として決定することができる。 The identity of two amino acid sequences, using the Gloss program in the GCG software package, using a Blossom 62 matrix or PAM250 matrix, gap weight = 12, 10, 8, 6, or 4, gap length weight = 2, 3 Or 4 can be determined. Also, the identity of two nucleic acid sequences can be determined using the GAP program of the GCG software package, with gap weight = 50 and gap length weight = 3.
 ADAMTS-4タンパク質は、本明細書又は添付の配列表が開示する配列情報を参考にして、標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって容易に調製することができる。例えば、ADAMTS-4タンパク質をコードするDNAで適当な宿主細胞(例えば大腸菌、酵母)を形質転換し、形質転換体内で発現されたタンパク質を回収することにより調製することができる。回収されたタンパク質は目的に応じて適宜精製される。このように組換えタンパク質としてADAMTS-4タンパク質を得ることにすれば種々の修飾が可能である。例えば、ADAMTS-4タンパク質をコードするDNAと他の適当なDNAとを同じベクターに挿入し、当該ベクターを用いて組換えタンパク質の生産を行えば、任意のペプチドないしタンパク質が連結された組換えタンパク質からなるADAMTS-4タンパク質を得ることができる。また、糖鎖及び/又は脂質の付加や、あるいはN末端若しくはC末端のプロセッシングが生ずるような修飾を施してもよい。以上のような修飾により、組換えタンパク質の抽出、精製の簡便化、又は生物学的機能の付加等が可能である。尚、ADAMTS-4タンパク質は市販もされており(例えば、R&D Systems, Incが提供する組換えヒトADAMTS-4(配列番号3のアミノ酸配列を有する)、カタログ番号4307-AD)、容易に入手可能である。 ADAMTS-4 protein is easily prepared by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. with reference to the sequence information disclosed in this specification or the attached sequence listing. can do. For example, it can be prepared by transforming a suitable host cell (for example, E. coli, yeast) with DNA encoding ADAMTS-4 protein and recovering the protein expressed in the transformant. The recovered protein is appropriately purified according to the purpose. Thus, various modifications are possible if ADAMTS-4 protein is obtained as a recombinant protein. For example, if a DNA encoding ADAMTS-4 protein and other appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, a recombinant protein in which any peptide or protein is linked ADAMTS-4 protein consisting of can be obtained. In addition, modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur. By the modification as described above, extraction of recombinant protein, simplification of purification, addition of biological function, and the like are possible. The ADAMTS-4 protein is also commercially available (for example, recombinant human ADAMTS-4 (having the amino acid sequence of SEQ ID NO: 3) provided by R & D® Systems, Inc., catalog number 4307-AD) and is readily available. It is.
 質的均一性及び純度の面などから、ADAMTS-4タンパク質を遺伝子工学的手法によって調製することが好ましい。しかしながら、ADAMTS-4タンパク質の調製法は遺伝子工学的手法によるものに限られない。例えば、天然材料から標準的な手法(破砕、抽出、精製など)によってADAMTS-4タンパク質を調製することもできる。 In view of qualitative uniformity and purity, ADAMTS-4 protein is preferably prepared by genetic engineering techniques. However, the method for preparing ADAMTS-4 protein is not limited to genetic engineering. For example, ADAMTS-4 protein can be prepared from natural materials by standard techniques (crushing, extraction, purification, etc.).
(2)ADAMTS-4遺伝子を保持する発現ベクター
 本発明の一態様では、ADAMTS-4遺伝子(以下、「ADAMTS-4遺伝子」と呼ぶ)を保持する発現ベクターを有効成分とする。「発現ベクター」とは、それに挿入された核酸を目的の細胞(宿主細胞)内に導入することができ、且つ当該細胞内において発現させることが可能なベクターをいう。本発明に係る発現ベクターでは、ADAMTS-4遺伝子が発現可能に保持されることになる。ADAMTS-4遺伝子を標的細胞に導入し、標的細胞内で発現させることが可能である限り、ベクターの種類は特に限定されない。ここでの「ベクター」にはウイルスベクター及び非ウイルスベクターが含まれる。ウイルスベクターを用いた遺伝子導入法は、ウイルスが細胞へと感染する現象を巧みに利用するものであり、高い遺伝子導入効率が得られる。ウイルスベクターとしてアデノウイルスベクター、アデノ随伴ウイルスベクター、レトロウイルスベクター、レンチウイルスベクター、ヘルペスウイルスベクター、センダイウイルスベクター等が開発されている。
(2) Expression Vector Holding ADAMTS-4 Gene In one embodiment of the present invention, an expression vector holding ADAMTS-4 gene (hereinafter referred to as “ADAMTS-4 gene”) is used as an active ingredient. “Expression vector” refers to a vector capable of introducing a nucleic acid inserted therein into a target cell (host cell) and allowing expression in the cell. In the expression vector according to the present invention, the ADAMTS-4 gene is retained so that it can be expressed. The type of the vector is not particularly limited as long as the ADAMTS-4 gene can be introduced into the target cell and expressed in the target cell. The “vector” herein includes viral vectors and non-viral vectors. The gene transfer method using a virus vector skillfully utilizes the phenomenon that a virus infects cells, and high gene transfer efficiency can be obtained. Adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, lentivirus vectors, herpes virus vectors, Sendai virus vectors and the like have been developed as virus vectors.
 非ウイルスベクターとしてリポソーム、正電荷型リポソーム(Felgner, P.L., Gadek, T.R., Holm, M. et al., Proc. Natl. Acad. Sci., 84:7413-7417, 1987)、HVJ(Hemagglutinating virus of Japan)-リポソーム(Dzau, V.J., Mann, M., Morishita, R. et al., Proc. Natl. Acad. Sci., 93:11421-11425, 1996、Kaneda, Y., Saeki, Y. & Morishita, R., Molecular Med. Today, 5:298-303, 1999)等が開発されている。本発明におけるベクターをこのような非ウイルス性ベクターとして構築してもよい。また、YACベクター、BACベクター等を利用することにしてもよい。 Non-viral vectors include liposomes, positively charged liposomes (Felgner, PL, Gadek, TR, Holm, M. et al., Proc. Natl. Acad. Sci., 84: 7413-7417, 1987), HVJ (Hemagglutinating virus of Japan) -Liposome (Dzau, VJ, Mann, M., Morishita, R. et al., Proc. Natl. Acad. Sci., 93: 11421-11425, 1996, Kaneda, Y. , R., Molecular Med. Today, 5: 298-303, 1999). The vector in the present invention may be constructed as such a non-viral vector. Further, a YAC vector, a BAC vector or the like may be used.
 アデノ随伴ウイルスベクター、レトロウイルスベクター、レンチウイルスベクターではベクターに組み込んだ外来遺伝子が宿主染色体へと組み込まれ、安定かつ長期的な発現が期待できる。レトロウイルスベクターの場合はウイルスゲノムの宿主染色体への組み込みには細胞の分裂が必要であることから非分裂細胞への遺伝子導入には適さない。一方、レンチウイルスベクターやアデノ随伴ウイルスベクターは非分裂細胞においても感染後に外来遺伝子の宿主染色体への組み込みが生ずる。従って、これらのベクターは非分裂細胞において安定かつ長期的に外来遺伝子を発現させるために有効である。 In adeno-associated virus vectors, retrovirus vectors, and lentivirus vectors, a foreign gene incorporated into the vector is incorporated into the host chromosome, and stable and long-term expression can be expected. Retroviral vectors are not suitable for gene transfer into non-dividing cells because cell division is required for integration of the viral genome into the host chromosome. On the other hand, lentivirus vectors and adeno-associated virus vectors cause integration of foreign genes into the host chromosome after infection even in non-dividing cells. Therefore, these vectors are effective for stably and long-term expressing foreign genes in non-dividing cells.
 各ウイルスベクターは既報の方法に従い又は市販される専用のキットを用いて作製することができる。例えば、アデノウイルスベクターの作製はCOS-TPC法や完全長DNA導入法などで行うことができる。COS-TPC法は、目的のcDNA又は発現カセットを組み込んだ組換えコスミドと、親ウイルスDNA-末端タンパク質複合体(DNA-TPC)を293細胞に同時トランスフェクションし、293細胞内でおこる相同組換えを利用して組換えアデノウイルスを作製する方法である(Miyake,S., Makimura,M., Kanegae,Y., Harada,S., Takamori,K., Tokuda,C., and Saito,I. (1996) Proc. Natl. Acad. Sci. USA, 93, 1320.)。一方、完全長DNA導入法は、目的の遺伝子を挿入した組換えコスミドを制限消化処理した後、293細胞にトランスフェクションすることによって組換えアデノウイルスを作製する方法である(寺島美保、近藤小貴、鐘ヶ江裕美、斎藤泉(2003)実験医学 21(7)931.)。COS-TPC法はAdenovirus Expression Vector Kit (Dual Version)(タカラバイオ株式会社)、Adenovirus genome DNA-TPC(タカラバイオ株式会社)を利用して行うことができる。また、完全長DNA導入法は、Adenovirus Expression Vector Kit (Dual Version)(タカラバイオ株式会社)を利用して行うことができる。 Each virus vector can be prepared according to a previously reported method or using a commercially available dedicated kit. For example, an adenovirus vector can be prepared by the COS-TPC method or full-length DNA introduction method. The COS-TPC method is a homologous recombination that occurs in 293 cells by co-transfecting a recombinant cosmid incorporating the target cDNA or expression cassette and a parent virus DNA-terminal protein complex (DNA-TPC) into 293 cells. (Mayake, S., Makimura, M., Kanegae, Y., Harada, S., Takamori, K., Tokuda, C., and Saito, I. (1996) Proc. Natl. Acad. Sci. USA, 93, 1320.). On the other hand, the full-length DNA introduction method is a method for producing a recombinant adenovirus by subjecting a recombinant cosmid inserted with a target gene to restriction digestion and then transfecting 293 cells (Miho Terashima, Koki Kondo). Hiromi Kanegae, Izumi Saito (2003) Experimental Medicine 21 (7) 931.). The COS-TPC method can be performed using Adenovirus® Expression® Vector® Kit® (Dual® Version) (Takara Bio Inc.) and Adenovirus® genome® DNA-TPC (Takara Bio Inc.). In addition, the full-length DNA introduction method can be performed using Adenovirus® Expression® Vector® Kit® (Dual® Version) (Takara Bio Inc.).
 一方、レトロウイルスベクターは以下の手順で作製することができる。まず、ウイルスゲノムの両端に存在するLTR(Long Terminal Repeat)の間のパッケージングシグナル配列以外のウイルスゲノム(gag、pol、env遺伝子)を取り除き、そこへ目的の遺伝子を挿入する。このようにして構築したウイルスDNAを、gag、pol、env遺伝子を構成的に発現するパッケージング細胞に導入する。これによって、パッケージングシグナル配列をもつベクターRNAのみがウイルス粒子に組み込まれ、レトロウイルスベクターが産生される。 On the other hand, retroviral vectors can be prepared by the following procedure. First, the virus genome (gag, pol, env gene) other than the packaging signal sequence between the LTRs (Long Terminal Repeat) existing at both ends of the virus genome is removed, and the target gene is inserted therein. The viral DNA thus constructed is introduced into a packaging cell that constitutively expresses the gag, pol, and env genes. Thereby, only the vector RNA having the packaging signal sequence is incorporated into the viral particle, and a retroviral vector is produced.
 アデノベクターを応用ないし改良したベクターとして、ファイバータンパク質の改変により特異性を向上させたもの(特異的感染ベクター)や目的遺伝子の発現効率向上が期待できるguttedベクター(ヘルパー依存性型ベクター)などが開発されている。本発明の発現ベクターをこのようなウイルスベクターとして構築してもよい。 Developed by improving or specificizing fiber protein by modifying adeno vectors (specific infection vectors) and gutted vectors (helper-dependent vectors) that can be expected to improve the expression efficiency of target genes. Has been. The expression vector of the present invention may be constructed as such a viral vector.
 ベクターに挿入されるADAMTS-4遺伝子(以下「ADAMTS-4遺伝子」と呼ぶ)は例えば配列番号2(GenBank(NCBI), ACCESSION: NM_005099, DEFINITION: Homo sapiens ADAM metallopeptidase with thrombospondin type 1 motif, 4 (ADAMTS-4), mRNA.)の塩基配列又は配列番号4(配列番号1のアミノ酸配列の53番アミノ酸残基~685番アミノ酸残基をコードする配列)からなる。但し、当該塩基配列に等価な塩基配列かならなるDNA(以下、「等価DNA」と呼ぶ)をADAMTS-4遺伝子として用いることもできる。ここでの「等価な塩基配列」とは、基準の塩基配列と一部で相違するが、当該相違によってそれがコードするタンパク質の機能(中枢神経疾患対して有効な作用)が実質的な影響を受けていない塩基配列のことをいう。等価DNAの具体例は、基準の塩基配列(例えば配列番号2又は配列番号4の塩基配列)に相補的な塩基配列に対してストリンジェントな条件下でハイブリダイズするDNAである。ここでの「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。このようなストリンジェントな条件は当業者に公知であって例えばMolecular Cloning(Third Edition, Cold Spring Harbor Laboratory Press, New York)やCurrent protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987)を参照して設定することができる。ストリンジェントな条件として例えば、ハイブリダイゼーション液(50%ホルムアミド、10×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、5×Denhardt溶液、1% SDS、10% デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いて約42℃~約50℃でインキュベーションし、その後0.1×SSC、0.1% SDSを用いて約65℃~約70℃で洗浄する条件を挙げることができる。更に好ましいストリンジェントな条件として例えば、ハイブリダイゼーション液として50%ホルムアミド、5×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、1×Denhardt溶液、1%SDS、10%デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いる条件を挙げることができる。 The ADAMTS-4 gene inserted into the vector (hereinafter referred to as “ADAMTS-4 gene”) is, for example, SEQ ID NO: 2 (GenBank (NCBI), ACCESSION: NM_005099, DEFINITION: Homo sapiens ADAM metallopeptidase with thrombospondin type 1 motif, 4 (ADAMTS -4), mRNA.) Or SEQ ID NO: 4 (sequence encoding amino acid residues 53 to 685 of the amino acid sequence of SEQ ID NO: 1). However, DNA having a base sequence equivalent to the base sequence (hereinafter referred to as “equivalent DNA”) can also be used as the ADAMTS-4 gene. The “equivalent base sequence” here is partially different from the standard base sequence, but the function of the protein encoded by this difference (effective action on central nervous disease) has a substantial effect. The base sequence that has not been received. A specific example of equivalent DNA is DNA that hybridizes under stringent conditions to a base sequence complementary to a reference base sequence (for example, the base sequence of SEQ ID NO: 2 or SEQ ID NO: 4). The “stringent conditions” here are conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Such stringent conditions are known to those skilled in the art, such as Molecular Cloning (Third Edition, Cold Spring Harbor Laboratory Press, New York) and Current protocols in molecular biology (edited by Frederick M. Ausubel et al., 1987) Can be set with reference to. As stringent conditions, for example, hybridization solution (50% formamide, 10 × SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 5 × Denhardt solution, 1% SDS, 10% dextran sulfate, 10 μg / ml denaturation Conditions of incubation at about 42 ° C to about 50 ° C using salmon sperm DNA, 50 mM phosphate buffer (pH 7.5), followed by washing at about 65 ° C to about 70 ° C using 0.1 x SSC, 0.1% SDS Can be mentioned. Further preferable stringent conditions include, for example, 50% formamide, 5 × SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 1 × Denhardt solution, 1% SDS, 10% dextran sulfate, 10 μg / ml as a hybridization solution. Of denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5)).
 等価DNAの他の具体例として、基準の塩基配列(配列番号2、配列番号4)に対して1若しくは複数の塩基の置換、欠失、挿入、付加、又は逆位を含む塩基配列からなり、非虚血性心筋障害に対して有効なタンパク質をコードするDNAを挙げることができる。塩基の置換や欠失などは複数の部位に生じていてもよい。ここでの「複数」とは、当該DNAがコードするタンパク質の立体構造におけるアミノ酸残基の位置や種類によっても異なるが例えば2~40塩基、好ましくは2~20塩基、より好ましくは2~10塩基である。以上のような等価DNAは例えば、制限酵素処理、エキソヌクレアーゼやDNAリガーゼ等による処理、位置指定突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)やランダム突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)による変異の導入などを利用して、塩基の置換、欠失、挿入、付加、及び/又は逆位を含むように基準の塩基配列を有するDNAを改変することによって得ることができる。また、紫外線照射など他の方法によっても等価DNAを得ることができる。 As another specific example of equivalent DNA, consisting of a base sequence including substitution, deletion, insertion, addition, or inversion of one or more bases with respect to a reference base sequence (SEQ ID NO: 2, SEQ ID NO: 4), A DNA encoding a protein effective against non-ischemic myocardial injury can be mentioned. Base substitution or deletion may occur at a plurality of sites. The term “plurality” as used herein refers to, for example, 2 to 40 bases, preferably 2 to 20 bases, more preferably 2 to 10 bases, although it varies depending on the position and type of amino acid residues in the three-dimensional structure of the protein encoded by the DNA. It is. Such equivalent DNAs include, for example, restriction enzyme treatment, treatment with exonuclease and DNA ligase, position-directed mutagenesis (MolecularMCloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York) Includes substitutions, deletions, insertions, additions, and / or inversions of bases using mutation introduction methods (Molecular Cloning, ingThird Edition, Chapterhap13, Cold Spring Harbor Laboratory Press, New York) Thus, it can obtain by modifying DNA which has a standard base sequence. The equivalent DNA can also be obtained by other methods such as ultraviolet irradiation.
 等価DNAの更に他の例として、SNP(一塩基多型)に代表される多型に起因して上記のごとき塩基の相違が認められるDNAを挙げることができる。 As yet another example of equivalent DNA, there can be mentioned DNA in which a difference in base as described above is recognized due to a polymorphism represented by SNP (single nucleotide polymorphism).
 ADAMTS-4遺伝子は、本明細書又は添付の配列表が開示する配列情報を参考にし、標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって調製することができる。例えば、ADAMTS-4遺伝子に対して特異的にハイブリダイズ可能なオリゴヌクレオチドプローブ・プライマーを適宜利用することによってヒトcDNAライブラリーよりADAMTS-4遺伝子を単離(及び増幅)することができる。オリゴヌクレオチドプローブ・プライマーとしては、例えば、配列番号2に示す塩基配列又は配列番号4に示す塩基配列に相補的なDNA又はその連続した一部が用いられる。オリゴヌクレオチドプローブ・プライマーは市販の自動化DNA合成装置などを用いて容易に合成することができる。尚、ADAMTS-4遺伝子を調製するために用いるライブラリーの作製方法については、例えばMolecular Cloning, Third Edition, Cold Spring Harbor Laboratory Press, New Yorkが参考になる。 The ADAMTS-4 gene can be prepared by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. with reference to the sequence information disclosed in this specification or the attached sequence listing. it can. For example, the ADAMTS-4 gene can be isolated (and amplified) from a human cDNA library by appropriately using an oligonucleotide probe / primer that can specifically hybridize to the ADAMTS-4 gene. As the oligonucleotide probe primer, for example, a DNA complementary to the base sequence shown in SEQ ID NO: 2 or the base sequence shown in SEQ ID NO: 4 or a continuous part thereof is used. Oligonucleotide probes and primers can be easily synthesized using a commercially available automated DNA synthesizer. For the method of preparing a library used for preparing the ADAMTS-4 gene, for example, Molecular® Cloning, • Third • Edition, • Cold®Spring®Harbor®Laboratory®Press, and “New York” are helpful.
 ヒトcDNAライブラリーに代えてヒト以外の哺乳動物細胞(例えば、サル、マウス、ラット、ブタ、ウシ)由来のcDNAライブラリーを用いれば等価DNAを調製可能である。 An equivalent DNA can be prepared by using a cDNA library derived from a non-human mammalian cell (for example, monkey, mouse, rat, pig, bovine) instead of the human cDNA library.
 本発明の治療剤の製剤化は常法に従って行うことができる。製剤化する場合には、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を含有させることができる。賦形剤としては乳糖、デンプン、ソルビトール、D-マンニトール、白糖等を用いることができる。崩壊剤としてはデンプン、カルボキシメチルセルロース、炭酸カルシウム等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。乳化剤としてはアラビアゴム、アルギン酸ナトリウム、トラガント等を用いることができる。懸濁剤としてはモノステアリン酸グリセリン、モノステアリン酸アルミニウム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ラウリル硫酸ナトリウム等を用いることができる。無痛化剤としてはベンジルアルコール、クロロブタノール、ソルビトール等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としては塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等と用いることができる。抗生物質、pH調整剤、成長因子(例えば神経成長因子(NGF)、脳由来神経栄養因子(BDNF))等を含有させることにしてもよい。 Preparation of the therapeutic agent of the present invention can be performed according to a conventional method. In the case of formulating, other pharmaceutically acceptable ingredients (for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, physiological Saline solution and the like). As the excipient, lactose, starch, sorbitol, D-mannitol, sucrose and the like can be used. As the disintegrant, starch, carboxymethylcellulose, calcium carbonate and the like can be used. Phosphate, citrate, acetate, etc. can be used as the buffer. As the emulsifier, gum arabic, sodium alginate, tragacanth and the like can be used. As the suspending agent, glyceryl monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate and the like can be used. As the soothing agent, benzyl alcohol, chlorobutanol, sorbitol and the like can be used. As the stabilizer, propylene glycol, ascorbic acid or the like can be used. As preservatives, phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like can be used. As preservatives, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used. Antibiotics, pH adjusters, growth factors (eg, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF)), and the like may be included.
 ADAMTS-4遺伝子を保持する発現ベクターを有効成分とした場合、薬学的に許容可能な媒体を組み合わせて製剤化するとよい。「薬学的に許容可能な媒体」とは、発現ベクターの薬効(即ち中枢神経疾患に対する有効性)に実質的な影響を与えることなく発現ベクターの投与や保存等に関して利点ないし恩恵をもたらす物質をいう。「薬学的に許容可能な媒体」として、脱イオン水、超純水、生理食塩水、リン酸緩衝生理食塩水(PBS)、5%デキストロース水溶液等を例示できる。 When an expression vector carrying the ADAMTS-4 gene is used as an active ingredient, it may be formulated in combination with a pharmaceutically acceptable medium. “Pharmaceutically acceptable medium” refers to a substance that provides advantages or benefits with respect to administration or storage of an expression vector without substantially affecting the efficacy of the expression vector (ie, efficacy against central nervous system diseases). . Examples of the “pharmaceutically acceptable medium” include deionized water, ultrapure water, physiological saline, phosphate buffered saline (PBS), and 5% dextrose aqueous solution.
 ADAMTS-4遺伝子を保持する発現ベクターがウイルスベクターの形態の場合、生体適合性のポリオル(例えばpoloxamer407など)を併用することが好ましい。ポリオルの使用によってウイルスベクターの形質導入率を10~100倍に上昇させ得る(March et al., Human  Gene Therapy 6:41-53, 1995)。従って、ポリオルを併用することにすればウイルスベクターの投与量を低く抑えることができる。尚、本発明の治療剤の一成分としてポリオルを使用することにしても、本発明の治療剤とは別にポリオル(又はそれを含む組成物)を調製することにしてもよい。後者の場合、本発明の治療剤を投与するときにポリオル(又はそれを含む組成物)を併せて投与することになる。 When the expression vector carrying the ADAMTS-4 gene is in the form of a viral vector, it is preferable to use a biocompatible polyol (for example, poloxamer 407) in combination. The use of polyols can increase the transduction rate of viral vectors by 10 to 100 times (March et al., Human Generap Therapy 6: 41-53,) 1995). Therefore, if a polyol is used in combination, the dose of the viral vector can be kept low. In addition, you may decide to use a polyol as one component of the therapeutic agent of this invention, or to prepare a polyol (or composition containing it) separately from the therapeutic agent of this invention. In the latter case, when the therapeutic agent of the present invention is administered, polyol (or a composition containing it) is also administered.
 製剤化する場合の剤形は特に限定されない。剤形の例は錠剤、散剤、細粒剤、顆粒剤、カプセル剤、シロップ剤、注射剤、外用剤、及び座剤である。 The dosage form for formulation is not particularly limited. Examples of dosage forms are tablets, powders, fine granules, granules, capsules, syrups, injections, external preparations, and suppositories.
 本発明の治療剤には、期待される治療効果(又は予防効果)を得るために必要な量(即ち治療上有効量)の有効成分が含有される。本発明の治療剤中の有効成分量は一般に剤形によって異なるが、所望の投与量を達成できるように有効成分量を例えば約0.1重量%~約99重量%の範囲内で設定する。 The therapeutic agent of the present invention contains an active ingredient in an amount necessary for obtaining an expected therapeutic effect (or preventive effect) (that is, a therapeutically effective amount). The amount of the active ingredient in the therapeutic agent of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set, for example, within the range of about 0.1 wt% to about 99 wt% so as to achieve a desired dose.
 目的の組織に送達される限りにおいて、本発明の治療剤の投与経路は特に限定されない。例えば、局所投与により適用する。局所投与の例として、目的組織への注入又は塗布を挙げることができる。脊髄損傷に対して適用する場合、例えばくも膜下腔に注入投与するとよい。静脈内注射、動脈内注射、門脈内注射、皮内注射、皮下注射、筋肉内注射、又は腹腔内注射によって本発明の治療剤を投与することにしてもよい。これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる。 As long as it is delivered to the target tissue, the administration route of the therapeutic agent of the present invention is not particularly limited. For example, it is applied by topical administration. Examples of topical administration include injection or application to the target tissue. When applied to spinal cord injury, for example, it may be injected into the subarachnoid space. The therapeutic agent of the present invention may be administered by intravenous injection, intraarterial injection, intraportal injection, intradermal injection, subcutaneous injection, intramuscular injection, or intraperitoneal injection. These administration routes are not mutually exclusive, and two or more arbitrarily selected can be used in combination.
 ここでの「対象」は特に限定されず、ヒト及びヒト以外の哺乳動物(ペット動物、家畜、実験動物を含む。具体的には例えばマウス、ラット、モルモット、ハムスター、サル、ウシ、ブタ、ヤギ、ヒツジ、イヌ、ネコ、ニワトリ、ウズラ等である)を含む。好ましい一態様では本発明の治療剤はヒトに対して適用される。好ましくは、本発明の治療剤の効果を最大限活かすように、急性期又は亜急性期の対象に対して本発明の組成物を投与する。 The “subject” here is not particularly limited, and includes humans and non-human mammals (including pet animals, domestic animals, laboratory animals. Specifically, for example, mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats. , Sheep, dogs, cats, chickens, quails, etc.). In a preferred embodiment, the therapeutic agent of the present invention is applied to humans. Preferably, the composition of the present invention is administered to a subject in the acute phase or the subacute phase so as to maximize the effect of the therapeutic agent of the present invention.
 本発明の治療剤の投与量は、期待される治療効果が得られるように設定される。治療上有効な投与量の設定においては一般に患者の症状、年齢、性別、及び体重などが考慮される。尚、当業者であればこれらの事項を考慮して適当な投与量を設定することが可能である。例えば、ADAMTS-4タンパク質を有効成分とした場合、例えば、成人(体重約60kg)を対象として一日当たりの有効成分量が約20μg~約20mg、好ましくは約2mg~約10mgとなるよう投与量を設定することができる。投与スケジュールとしては例えば1日1回~数回、2日に1回、或いは3日に1回などを採用できる。投与スケジュールの作成においては、患者の症状や有効成分の効果持続時間などを考慮することができる。 The dose of the therapeutic agent of the present invention is set so as to obtain the expected therapeutic effect. In setting a therapeutically effective dose, the patient's symptoms, age, sex, weight, etc. are generally considered. A person skilled in the art can set an appropriate dose in consideration of these matters. For example, when ADAMTS-4 protein is used as an active ingredient, for example, for an adult (body weight of about 60 kg), the dose is adjusted so that the amount of active ingredient per day is about 20 μg to about 20 mg, preferably about 2 mg to about 10 mg. Can be set. As the administration schedule, for example, once to several times a day, once every two days, or once every three days can be adopted. In preparing the administration schedule, the patient's symptoms and the duration of effect of the active ingredient can be taken into consideration.
 本発明の治療剤は中枢神経疾患の治療に用いられる。理論に拘泥する訳ではないが、本発明の治療剤によればその有効成分によって、損傷した中枢神経の再生を阻害するプロテオグリカンの構造変化が生じ、治療効果が発揮される。このような機序に基づく治療が有効な疾患ないし病態であれば、その種類や原因等の如何に拘わらず、本発明の対象疾患となり得る。好ましくは、外傷や出血などに起因する中枢神経疾患、具体的には脊髄損傷、脊髄炎、脳損傷、脳虚血や脳内出血に伴う脳梗塞による神経細胞の変性・脱落、及び神経細胞の障害を伴う網膜疾患に対して、本発明の治療剤は適用される。 The therapeutic agent of the present invention is used for the treatment of central nervous disease. Without being bound by theory, according to the therapeutic agent of the present invention, the active ingredient causes a structural change of proteoglycan that inhibits regeneration of the damaged central nerve, and exhibits a therapeutic effect. If the treatment based on such a mechanism is an effective disease or pathological condition, it can be a target disease of the present invention regardless of its type or cause. Preferably, central nervous diseases caused by trauma or bleeding, specifically spinal cord injury, myelitis, brain injury, neuronal degeneration / dropout due to cerebral infarction associated with cerebral ischemia or intracerebral hemorrhage, and neuronal damage The therapeutic agent of the present invention is applied to retinal diseases and the like involving
 脊髄損傷は外部からの衝撃や脊髄腫瘍又はヘルニアなどの内的要因によって脊髄が損傷した状態をいう。損傷の度合によって完全型(脊髄が途中で完全に切断された状態)と不完全型(脊髄が損傷又は圧迫を受けているものの脊髄の機能が部分的に維持されている状態)に分かれる。現在の医療技術では脊髄損傷を完全に回復させることはできず、新たな治療法の確立が切望されている。脊髄損傷は、再生医療の適用が期待される疾病の一つであり、骨髄、神経幹細胞、胚性幹細胞、人工多能性幹細胞等の使用が検討されている。しかしながら、様々な問題から、決定的な治療技術の実現には至っていない。本発明の治療剤は、このような状況にあって高い治療効果を期待できる治療法を提供するものであり、その意義・価値は極めて高い。 Spinal cord injury refers to a condition in which the spinal cord is damaged by an external impact or an internal factor such as a spinal cord tumor or hernia. Depending on the degree of injury, it is divided into a complete type (a state in which the spinal cord is completely cut halfway) and an incomplete type (a state in which the spinal cord is damaged or compressed, but the function of the spinal cord is partially maintained). Current medical technology cannot completely recover spinal cord injury, and the establishment of a new treatment is eagerly desired. Spinal cord injury is one of the diseases for which regenerative medicine is expected to be applied, and the use of bone marrow, neural stem cells, embryonic stem cells, induced pluripotent stem cells and the like has been studied. However, due to various problems, a definitive treatment technique has not been realized. The therapeutic agent of the present invention provides a therapeutic method that can be expected to have a high therapeutic effect in such a situation, and its significance and value are extremely high.
 ADAMTS-4によるコアプロテインの分解により起きるプロテオグリカンの構造変化が脊髄損傷後の神経軸索伸長効果をもたらすことを仮定し、以下の実験を行った。 Suppose that the structural change of proteoglycan caused by the degradation of core protein by ADAMTS-4 brings about the effect of elongating nerve axons after spinal cord injury, the following experiment was conducted.
1.方法
(1)脊髄損傷手術
 メス成体SD(Sprague-Dawley)ラット(200-230g)を用いた。ケタミン(100mg/kg)及びキシラジン(10mg/kg)をラット腹腔内に投与して、麻酔をかけた。第10胸椎椎弓切除を行い、硬膜を露出した。IH impactor (Infinite Horizon impactor; Precision Systems & Instrumentation, Lexington, KY)を用いて、200kdynの強度で脊髄損傷を作成した。第11胸椎椎弓を部分切除し、事前に薬液を注入したポンプ(Alzet pump)に接続しておいたシリコンチューブを顕微鏡下にくも膜下腔に留置した。1日に2回徒手排尿を行った。食物はケージの底に置き、抗生剤入りの飲水ボトルを設置した。名古屋大学医学部のガイドラインに沿って管理を行った。
1. Method (1) Surgery for spinal cord injury Female SD (Sprague-Dawley) rats (200-230 g) were used. Ketamine (100 mg / kg) and xylazine (10 mg / kg) were administered intraperitoneally to rats and anesthetized. A tenth thoracic laminectomy was performed to expose the dura mater. Spinal cord injury was created with an intensity of 200 kdyn using IH impactor (Infinite Horizon impactor; Precision Systems & Instrumentation, Lexington, KY). The eleventh thoracic vertebral arch was partially excised, and a silicon tube connected to a pump (Alzet pump) into which a drug solution had been previously injected was placed in the subarachnoid space under a microscope. Manual urination was performed twice a day. Food was placed at the bottom of the cage and a drinking bottle with antibiotics was installed. Management was performed according to the guidelines of the Nagoya University School of Medicine.
(2)損傷脊髄におけるADAMTS-4 mRNAの測定(RT-PCR およびリアルタイムPCR)
 損傷脊髄組織をRNeasy Lipid Tissue Mini Kit (QIAGEN)を用いて、プロトコールに沿ってmRNAを抽出した。SuperScriptIII First-Strand Synthesis SuperMix (Invitrogen)を用いて、mRNAよりcDNAを作成した。PCRには以下のプライマーを用いた。
<ADAMTS-4用プライマー>
 5’-ctacaaccaccgaaccgac-3’(配列番号5)
 5’-tgccagccaccagaactt-3’(配列番号6)
<ラット特異的GAPDH用プライマー
 5’-tatgactctacccacggcaag-3’(配列番号7)
 5’-tgcattgctgacaatcttgag-3(配列番号8)
(2) Measurement of ADAMTS-4 mRNA in the injured spinal cord (RT-PCR and real-time PCR)
Using the RNeasy Lipid Tissue Mini Kit (QIAGEN), mRNA was extracted from the damaged spinal cord tissue according to the protocol. CDNA was prepared from mRNA using SuperScriptIII First-Strand Synthesis SuperMix (Invitrogen). The following primers were used for PCR.
<Primer for ADAMTS-4>
5'-ctacaaccaccgaaccgac-3 '(SEQ ID NO: 5)
5'-tgccagccaccagaactt-3 '(SEQ ID NO: 6)
<Rat-specific GAPDH primer 5'-tatgactctacccacggcaag-3 '(SEQ ID NO: 7)
5'-tgcattgctgacaatcttgag-3 (SEQ ID NO: 8)
 脊髄損傷中のADAMTS-4 mRNAを定量するためにリアルタイムPCRを行った。リアルタイムPCRはLight Cycler 480 Real-Time System (Roche Diagnostics Corporation)及びLight Cycler Fast Start DNA Master SYBR Green I (Roche Diagnostics Corporation)を用いて行った。リアルタイムPCRでは以下のプライマーを用いた。
<ラット特異的ADAMTS-4用プライマー>
 5’-cccggaatggtggaaagtatt-3’(配列番号9)
 5’-tcttcacggaaggtcaatgct-3’(配列番号10)
<ラット特異的GAPDH用プライマー>
 5’-tgattctacccacggcaagt-3’(配列番号11)
 5’-agcatcaccccatttgatgt-3’(配列番号12)
Real-time PCR was performed to quantify ADAMTS-4 mRNA during spinal cord injury. Real-time PCR was performed using a Light Cycler 480 Real-Time System (Roche Diagnostics Corporation) and a Light Cycler Fast Start DNA Master SYBR Green I (Roche Diagnostics Corporation). The following primers were used in real-time PCR.
<Rat-specific ADAMTS-4 primer>
5'-cccggaatggtggaaagtatt-3 '(SEQ ID NO: 9)
5'-tcttcacggaaggtcaatgct-3 '(SEQ ID NO: 10)
<Rat specific GAPDH primer>
5'-tgattctacccacggcaagt-3 '(SEQ ID NO: 11)
5'-agcatcaccccatttgatgt-3 '(SEQ ID NO: 12)
(3)損傷脊髄におけるADAMTS-4蛋白の発現と活性の測定
 脊髄損傷後1週間での脊髄組織をホモゲナイズした後に、10000gで15分間遠心分離を行った。上清を採取して蛋白定量を行い、20μgの蛋白量にてウエスタンブロットを行った。1次抗体には抗ADAMTS-4 (1000倍希釈; Santa Cruz)、抗βアクチン抗体(100,000倍希釈; Sigma)、2次抗体にはホースラディッシュペルオキシダーゼ標識ヤギ抗マウスIgG抗体(5000倍希釈)及び抗ウサギIgG抗体(5000倍希釈; Invitrogen)を用いた。発色にはECL plus Western blotting detection kit (GE Healthcare, Buckinghamshire, UK)を用いた。損傷脊髄中のADAMTS-4活性は、SensoLyte(登録商標) 520 Aggrecanase-1 assay kit (AnaSpec, San Jose, USA)を用いた蛍光アッセイにて測定した。
(3) Measurement of ADAMTS-4 protein expression and activity in the injured spinal cord After spinal cord tissue homogenization at 1 week after spinal cord injury, centrifugation was performed at 10,000 g for 15 minutes. The supernatant was collected, protein quantification was performed, and Western blotting was performed with a protein amount of 20 μg. The primary antibody is anti-ADAMTS-4 (1000-fold diluted; Santa Cruz), anti-β-actin antibody (100,000-fold diluted; Sigma), the secondary antibody is horseradish peroxidase-labeled goat anti-mouse IgG antibody (5000-fold diluted) and Anti-rabbit IgG antibody (5000-fold dilution; Invitrogen) was used. ECL plus Western blotting detection kit (GE Healthcare, Buckinghamshire, UK) was used for color development. ADAMTS-4 activity in the injured spinal cord was measured by a fluorescence assay using SensoLyte (registered trademark) 520 Aggrecanase-1 assay kit (AnaSpec, San Jose, USA).
(4)細胞培養
(a)ニューロン
 p8ラットの小脳より軟膜を除去し、細かくした後に37℃で15分間培養した。その後、溶液に10%FBS、1M MgCl2、DAaseIを投与して、再度37℃で10分間培養した。これをPBSにて洗浄し、これを60%および35%パーコールの入った容器に入れ、遠心操作を行った。これでニューロンとグリアが分けられる。分取したニューロンをシャーレ上で培養した。
(b)アストロサイト
 p3ラットの大脳より軟膜を除去し、細かくした後に10%FBS入りDMEMにてフラスコで37℃、5%CO2の条件下で培養を行った。培養液は3-5日ごとに交換し、コンフルエントな状態になるまで培養した。95%がGFAP陽性細胞であることを確認した。最終的にmRNAを採取する際に、振盪することでミクログリアを除去した。
(c)ミクログリア
 アストロサイトと同様の方法で、細胞集団(グリア細胞)を21日間培養し、シェイカーにて200回転/分で30分間振盪し、細胞(ミクログリア)を剥がして、これを回収して培養し、使用した。95%以上の細胞がIba-1陽性細胞であることを確認した。
(4) Cell culture
(a) Neurons After removing the buffy coat from the cerebellum of p8 rat, it was cultured at 37 ° C. for 15 minutes. Thereafter, 10% FBS, 1M MgCl 2 and DAase I were administered to the solution, and the cells were cultured again at 37 ° C. for 10 minutes. This was washed with PBS, placed in a container containing 60% and 35% percoll, and centrifuged. This separates neurons and glia. The sorted neurons were cultured on a petri dish.
(b) Astrocytes After removing the buffy coat from the cerebrum of p3 rat, it was cultured in a flask with DMEM containing 10% FBS under conditions of 37 ° C. and 5% CO 2 . The culture solution was changed every 3-5 days and cultured until confluent. It was confirmed that 95% were GFAP positive cells. When the mRNA was finally collected, the microglia was removed by shaking.
(c) Microglia In the same way as astrocytes, the cell population (glia cells) is cultured for 21 days, shaken at 200 rpm for 30 minutes with a shaker, and the cells (microglia) are peeled off and collected. Cultured and used. It was confirmed that 95% or more of the cells were Iba-1 positive cells.
(5)ニューロン/アストロサイト/ミクログリアにおけるADAMTS-4 mRNA発現
 細胞からRNeasy Mini Kit (QIAGEN)を用い、添付のプロトコールに沿ってmRNAを抽出した。上述した方法(2)と同様の方法でADAMTS-4 mRNAの発現を確認した。
(5) Expression of ADAMTS-4 mRNA in neurons / astrocytes / microglia mRNA was extracted from cells using the RNeasy Mini Kit (QIAGEN) according to the attached protocol. The expression of ADAMTS-4 mRNA was confirmed by a method similar to the method (2) described above.
(6)分解アッセイ(Degradation assay)によるADAMTS-4のプロテオグリカン分解作用の確認
 ラット脳からMatsuiらの方法(2006, Adv Pharmacol 2006;53:3-20)により、100kDa以上のプロテオグリカン(PG)を採取した。精製したPG(3μg)に酵素(ADAMTS-4(1μM)、ADAMTS-13(1μM)、95℃でボイルしたADAMTS-4、又は95℃でボイルしたADAMTS-13)を添加し、37℃で3時間インキュベートした。その後、さらにC-ABC 10U/mlを投与し、37℃で1時間インキュベートした溶液を試料として、抗ブレビカン(Brevican)抗体、抗ニューロカン(Neurocan)抗体、及び抗フォスファカン(Phosphacan)抗体を用いたウエスタンブロットを行い、各酵素の分解活性を調べた。
(6) Confirmation of proteoglycan degradation action of ADAMTS-4 by degradation assay Collecting proteoglycan (PG) of 100kDa or more from rat brain by the method of Matsui et al. (2006, Adv Pharmacol 2006; 53: 3-20) did. Add purified enzyme (ADAMTS-4 (1 μM), ADAMTS-13 (1 μM), ADAMTS-4 boiled at 95 ° C., or ADAMTS-13 boiled at 95 ° C.) to purified PG (3 μg). Incubated for hours. Then, C-ABC 10U / ml was administered, and a solution incubated at 37 ° C. for 1 hour was used as a sample, using an anti-Brevican antibody, an anti-Neurocan antibody, and an anti-Phosphacan antibody. Western blotting was performed to examine the degradation activity of each enzyme.
(7)ADAMTS-4による軸索伸長アッセイ
 ニューロンは上述の方法で採取した。4ウェルキャンバースライドに20μg/mlポリ-L-リジン(PLL; Sigma)又は300ng/mlプロテオグリカン(Millipore Bioscience Research Reagents)を滴下して4℃で一晩置いた。このようにして調製したスライドに2.0×105/ウェルの細胞密度でニューロンを播種した。その後、10nM/ml ADAMTS-4、10U/ml C-ABC又は10nM ADAMTS-13を投与し、24時間後に4%パラホルムアルデヒドにて固定し、抗β-チューブリン抗体を用いて神経軸索の伸長と細胞接着数を計測した。
(7) Axon extension assay by ADAMTS-4 Neurons were collected by the method described above. 20 μg / ml poly-L-lysine (PLL; Sigma) or 300 ng / ml proteoglycan (Millipore Bioscience Research Reagents) was added dropwise to a 4-well camber slide at 4 ° C. overnight. Neurons were seeded on the slides thus prepared at a cell density of 2.0 × 10 5 / well. Thereafter, 10 nM / ml ADAMTS-4, 10 U / ml C-ABC or 10 nM ADAMTS-13 was administered, and fixed with 4% paraformaldehyde 24 hours later, and nerve axon extension using anti-β-tubulin antibody The number of cell adhesion was measured.
(8)後肢運動機能評価
 BBBスケール(Basso, Beattie and Bresnahan scale)を用いて、脊髄損傷手術を施したラット(ADAMTS-4(5.3 μg/μl)、C-ABC(0.25U/μl)又は溶媒のみを含む薬液をくも膜下腔に投与)の後肢運動機能を評価した。薬液の注入量は約15μl/日とした。損傷後1週ごとに8週目まで測定を行った。二重盲検法で測定した。
(8) Evaluation of hindlimb motor function Rats (ADAMTS-4 (5.3 μg / μl), C-ABC (0.25 U / μl) or solvent that had undergone spinal cord injury surgery using the BBB scale (Basso, Beattie and Bresnahan scale) Hindlimb motor function was evaluated by administering a chemical solution containing only to the subarachnoid space. The injection amount of the drug solution was about 15 μl / day. Measurements were taken every week after injury until week 8. Measurements were made in a double blind manner.
(9)免疫組織染色によるセロトニン作動性線維(serotonergic fiber)の評価
 後肢運動機能の改善を免疫組織学的に評価するべく、5-HT陽性線維のカウントによりセロトニン作動性線維(serotonergic fiber)の染色を調べた。脊髄損傷後8週にて、ラットを4%パラホルムアルデヒドにて灌流固定し、1日間4%パラホルムアルデヒドにて再度固定した後に、30%スクロースに2日間浸して、20μmの凍結切片を作成した。切片に対して、一次抗体(抗5-HT抗体)及び二次抗体(Alexa 488標識)を反応させて、顕微鏡にて確認した。線維のカウントにはMetaMorph Offline version 6.3 r2(Molecular Devices)を用いた。
(9) Evaluation of serotonergic fibers by immunohistochemical staining In order to evaluate the improvement of hindlimb motor function immunohistologically, staining of serotonergic fibers by counting 5-HT positive fibers I investigated. At 8 weeks after spinal cord injury, the rats were fixed by perfusion with 4% paraformaldehyde, fixed again with 4% paraformaldehyde for 1 day, and then immersed in 30% sucrose for 2 days to prepare 20 μm frozen sections. The section was reacted with a primary antibody (anti-5-HT antibody) and a secondary antibody (Alexa 488 label) and confirmed with a microscope. MetaMorph Offline version 6.3 r 2 (Molecular Devices) was used for fiber count.
2.結果
(1)損傷脊髄におけるADAMTS-4 mRNAの発現は、RT-PCR及びリアルタイムRT-PCRのいずれの測定においても、損傷前、損傷後3日、1週、2週で有意差はなかった(図1、2)。
(2)ウエスタンブロットにより蛋白の発現を調べた結果、損傷後1週においてsham群(第10胸椎椎弓切除のみ)に比べて損傷群ではやや上昇していた(図3)。蛍光ペプチドアッセイによるADAMTS-4の蛋白活性ではsham群と比べて損傷群では1.4倍とやや増強がみられた(図4)。
(3)培養後のニューロン、アストロサイト及びミクログリアから採取したmRNAを用いて、ADAMTS-4の発現をみたところ、ニューロンに比べてアストロサイト及びミクログリアでより強い発現を認めた(図5)。
(4)ラット脳より採取したPGを用いた分解アッセイの結果より、ADAMTS-4のみがブレビカン、ニューロカン及びフォスファカンを分解し、不活化したADAMTS-4及びADAMTS-13は分解活性を示さないことが判明した(図6~8)。即ち、ADAMTS-4が特異的にこれらプロテオグリカンの分解に関与していることが示唆された。
(5)ADAMTS-4を用いた軸索伸長アッセイでは、コントロール(PG単独)及びADAMTS-13添加群と比較し、ADAMTS-4添加群及びC-ABC添加群で有意な軸索伸長を認めた(図9)。細胞接着数についてもADAMTS-4添加群及びC-ABC添加群で有意に多い(図10)。この結果は、その神経軸索伸長効果によってADAMTS-4が中枢神経系の再生に有効であることを示唆する。
(6)BBBスケールを用いた後肢運動機能評価においては、ADAMTS-4およびC-ABCを用いて治療介入を行ったラットはVehicle群と比べて有意な改善を示した(図11)。改善の程度はADAMTS-4およびC-ABCに有意差はなく、同等であった。このように、ADAMTS-4の治療効果が動物レベルで確認された。尚、ADAMTS-4がC-ABCと同等の治療効果を示したことは、ADAMTS-4を使用すればバクテリア由来のC-ABCによらずとも高い治療効果が得られることを意味し、より安全な治療戦略を可能にする。
(7)Vehicle群に比べ、ADAMTS-4で治療介入を行ったラットでは、損傷脊髄の尾側前角において有意に多い5-HT陽性線維を認めた(図12)。即ち、免疫組織学的にも機能改善が確認された。
2. Results (1) ADAMTS-4 mRNA expression in the injured spinal cord was not significantly different before injury, 3 days after injury, 1 week, and 2 weeks in both RT-PCR and real-time RT-PCR measurements ( 1 and 2).
(2) As a result of examining the protein expression by Western blot, it was slightly elevated in the damaged group compared with the sham group (only 10th thoracic laminectomy) one week after the injury (FIG. 3). The protein activity of ADAMTS-4 by the fluorescent peptide assay was slightly enhanced by 1.4 times in the damaged group compared to the sham group (FIG. 4).
(3) When ADAMTS-4 expression was observed using mRNA collected from neurons, astrocytes and microglia after culture, stronger expression was observed in astrocytes and microglia than in neurons (FIG. 5).
(4) From the results of degradation assay using PG collected from rat brain, only ADAMTS-4 degrades blebican, neurocan and phosphacan, and inactivated ADAMTS-4 and ADAMTS-13 show no degradation activity. Was found (FIGS. 6-8). That is, it was suggested that ADAMTS-4 is specifically involved in the degradation of these proteoglycans.
(5) In the axon extension assay using ADAMTS-4, significant axon extension was observed in the ADAMTS-4 added group and the C-ABC added group compared with the control (PG alone) and ADAMTS-13 added groups. (FIG. 9). The number of cell adhesion is also significantly higher in the ADAMTS-4 added group and the C-ABC added group (FIG. 10). This result suggests that ADAMTS-4 is effective for the regeneration of the central nervous system due to its nerve axon elongation effect.
(6) In the hindlimb motor function evaluation using the BBB scale, the rats that received therapeutic intervention using ADAMTS-4 and C-ABC showed a significant improvement compared to the Vehicle group (FIG. 11). The degree of improvement was comparable between ADAMTS-4 and C-ABC with no significant difference. Thus, the therapeutic effect of ADAMTS-4 was confirmed at the animal level. The fact that ADAMTS-4 showed the same therapeutic effect as C-ABC means that if ADAMTS-4 is used, a high therapeutic effect can be obtained regardless of bacterial C-ABC. Possible treatment strategies.
(7) Compared with the vehicle group, the rats subjected to treatment intervention with ADAMTS-4 showed significantly more 5-HT positive fibers in the caudal anterior horn of the injured spinal cord (FIG. 12). That is, functional improvement was confirmed also in immunohistochemistry.
 本発明の治療剤を適用可能な疾患として、脊髄損傷、脊髄炎、脳損傷、脳虚血や脳内出血に伴う脳梗塞による神経細胞の変性・脱落、及び神経細胞の障害を伴う網膜疾患が想定される。 As applicable disease therapeutic agent of the present invention, spinal cord injury, myelitis, brain injury, degeneration and loss of neurons by cerebral infarction caused by cerebral ischemia or cerebral hemorrhage, and retinal diseases and the like accompanied by disorders of the nervous cells is assumed.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
 本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.
 配列番号5~12:人工配列の説明:PCR用プライマー Sequence numbers 5 to 12: Artificial sequence description: PCR primers

Claims (8)

  1.  以下の(1)又は(2)を有効成分として含む、中枢神経疾患用治療剤:
     (1)ADAMTS-4タンパク質;
     (2)ADAMTS-4遺伝子を保持する発現ベクター。
    A therapeutic agent for central nervous system disease comprising the following (1) or (2) as an active ingredient:
    (1) ADAMTS-4 protein;
    (2) An expression vector carrying the ADAMTS-4 gene.
  2.  ADAMTS-4タンパク質が、配列番号1に示すアミノ酸配列又は該アミノ酸配列に等価なアミノ酸配列を含む、請求項1に記載の中枢神経疾患用治療剤。 The therapeutic agent for central nervous disease according to claim 1, wherein the ADAMTS-4 protein comprises the amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence equivalent to the amino acid sequence.
  3.  ADAMTS-4遺伝子が、配列番号2に示す塩基配列又は該塩基配列に等価な塩基配列を含む、請求項1に記載の中枢神経疾患用治療剤。 The therapeutic agent for central nervous disease according to claim 1, wherein the ADAMTS-4 gene comprises the base sequence shown in SEQ ID NO: 2 or a base sequence equivalent to the base sequence.
  4.  中枢神経疾患が脊髄損傷、脊髄炎、脳損傷、脳虚血や脳内出血に伴う脳梗塞による神経細胞の変性・脱落、及び神経細胞の障害を伴う網膜疾患からなる群より選択される疾患ないし病態である、請求項1~3のいずれか一項に記載の中枢神経疾患用治療剤。 A disease or condition selected from the group consisting of spinal cord injury, myelitis, brain injury, neuronal degeneration / dropout due to cerebral infarction associated with cerebral ischemia or intracerebral hemorrhage, and retinal disease associated with neuronal damage The therapeutic agent for central nervous disease according to any one of claims 1 to 3, wherein
  5.  中枢神経疾患が脊髄損傷である、請求項1~3のいずれか一項に記載の中枢神経疾患用治療剤。 The therapeutic agent for central nervous disease according to any one of claims 1 to 3, wherein the central nervous disease is spinal cord injury.
  6.  中枢神経疾患の患者に対して、以下の(1)又は(2)を有効成分として含む中枢神経疾患用治療剤を投与するステップを含む、中枢神経疾患の治療法:
     (1)ADAMTS-4タンパク質;
     (2)ADAMTS-4遺伝子を保持する発現ベクター。
    A method for treating central nervous disease, comprising the step of administering a therapeutic agent for central nervous disease comprising the following (1) or (2) as an active ingredient to a patient with central nervous disease:
    (1) ADAMTS-4 protein;
    (2) An expression vector carrying the ADAMTS-4 gene.
  7.  中枢神経疾患が脊髄損傷、脊髄炎、脳損傷、脳虚血や脳内出血に伴う脳梗塞による神経細胞の変性・脱落、及び神経細胞の障害を伴う網膜疾患からなる群より選択される疾患である、請求項6に記載の治療法。 The central nervous system disease is a disease selected from the group consisting of spinal cord injury, myelitis, brain injury, neuronal degeneration / dropout due to cerebral infarction associated with cerebral ischemia or intracerebral hemorrhage, and retinal disease with neuronal damage The treatment method according to claim 6.
  8.  中枢神経疾患が脊髄損傷である、請求項6に記載の治療法。 The treatment according to claim 6, wherein the central nervous disease is spinal cord injury.
PCT/JP2011/078846 2010-12-21 2011-12-14 Therapeutic agent for central nervous system diseases WO2012086474A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549743A JPWO2012086474A1 (en) 2010-12-21 2011-12-14 CNS therapeutic agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010283910 2010-12-21
JP2010-283910 2010-12-21

Publications (1)

Publication Number Publication Date
WO2012086474A1 true WO2012086474A1 (en) 2012-06-28

Family

ID=46313751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078846 WO2012086474A1 (en) 2010-12-21 2011-12-14 Therapeutic agent for central nervous system diseases

Country Status (2)

Country Link
JP (1) JPWO2012086474A1 (en)
WO (1) WO2012086474A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MATT S. WEAVER ET AL.: "Processing of the Matricellular Protein Hevin in Mouse Brain Is Dependent on ADAMTS4", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 285, no. 8, 19 February 2010 (2010-02-19), pages 5868 - 5877 *
MICHELLE G. HAMEL ET AL.: "Multimodal signaling by the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) promotes neurite extension", EXPERIMENTAL NEUROLOGY, vol. 210, no. 2, 2008, pages 428 - 440, XP022577355 *
RYOJI TAUCHI ET AL.: "Rat Sekizui Atsuza Sonsho ni Okeru ADAMTS-4 no Proteoglycan Bunkai Sayo to sono Jikusaku Saisei Koka", THE JOURNAL OF THE JAPANESE ORTHOPAEDIC ASSOCIATION, vol. 85, no. 8, 25 August 2011 (2011-08-25), pages S1077 *
TAKUYA SHUO ET AL.: "ADAMTS-4 ni yoru NGC Saibogai Ryoiki no Kiridashi Kiko no Kaiseki", ABSTRACTS OF ANNUAL MEETING OF PHARMACEUTICAL SOCIETY OF JAPAN, vol. 126, no. 3, 2006, pages 104 *

Also Published As

Publication number Publication date
JPWO2012086474A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
KR102427379B1 (en) Compositions and methods for treating Huntington&#39;s disease
JP6850736B2 (en) Adeno-associated virus vector for the treatment of mucopolysaccharidosis
JP6634073B2 (en) Adeno-associated virus vector for treatment of lysosomal storage disease
EP3403675B1 (en) Adeno-associated virus virion for use in treatment of epilepsy
JP2015533368A (en) Gene therapy for glycogen storage disease
KR20220107243A (en) APOE gene therapy
JP2022517435A (en) Treatment of diseases associated with deficiency of ENPP1 or ENPP3
JP6135945B2 (en) Brown adipocyte differentiation inducer
CN113056560B (en) Synthetic gene capable of realizing feedback, target seed matching box and application thereof
JP2003520784A (en) Use of insulin-like growth factor I isoform MGF for treating neuropathy
JP6998055B2 (en) Muscle atrophy inhibitor
US20230374092A1 (en) METHODS OF TREATING NEURONAL DISEASES USING AIMP2-DX2 AND OPTIONALLY A TARGET SEQUENCE FOR miR-142 AND COMPOSITIONS THEREOF
US20230295658A1 (en) Compositions and methods for in vivo gene transfer
WO2012086474A1 (en) Therapeutic agent for central nervous system diseases
US20210316015A1 (en) Compositions and methods for the treatment of heart disease
KR20220022126A (en) Methods and compositions comprising TERT activation therapy
WO2020176732A1 (en) TREATMENT OF PULMONARY FIBROSIS WITH SERCA2a GENE THERAPY
JP4831551B2 (en) Medicine for non-ischemic myocardial injury
RU2748383C1 (en) METHOD FOR THERAPY FOR TAY-SACHS DISEASE AND SANDHOFF DISEASE USING GENETICALLY MODIFIED HUMAN MESENCHYMAL STEM CELLS WITH OVEREXPRESSION OF β-HEXOSAMINIDASE A
KR20230123925A (en) NEUROD1 and DLX2 vectors
KR20230123926A (en) DLX2 vectors
AU2021216720A1 (en) miRNA-485 inhibitor for gene upregulation
EP4341284A1 (en) Granulin/epithelin modules and combinations thereof to treat neurodegenerative disease
WO2023014724A2 (en) Scaffold matrix attachment regions for gene therapy
JP2013531990A (en) Compositions and methods for the treatment of atherosclerosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851923

Country of ref document: EP

Kind code of ref document: A1