WO2012086457A1 - Operation input system - Google Patents

Operation input system Download PDF

Info

Publication number
WO2012086457A1
WO2012086457A1 PCT/JP2011/078758 JP2011078758W WO2012086457A1 WO 2012086457 A1 WO2012086457 A1 WO 2012086457A1 JP 2011078758 W JP2011078758 W JP 2011078758W WO 2012086457 A1 WO2012086457 A1 WO 2012086457A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
operating
rotation
pressure
follower
Prior art date
Application number
PCT/JP2011/078758
Other languages
French (fr)
Japanese (ja)
Inventor
圭司 外川
紀行 福島
Original Assignee
株式会社ソニー・コンピュータエンタテインメント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソニー・コンピュータエンタテインメント filed Critical 株式会社ソニー・コンピュータエンタテインメント
Publication of WO2012086457A1 publication Critical patent/WO2012086457A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1043Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being characterized by constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H25/00Switches with compound movement of handle or other operating part
    • H01H25/04Operating part movable angularly in more than one plane, e.g. joystick
    • H01H25/041Operating part movable angularly in more than one plane, e.g. joystick having a generally flat operating member depressible at different locations to operate different controls
    • H01H2025/046Operating part movable angularly in more than one plane, e.g. joystick having a generally flat operating member depressible at different locations to operate different controls having a spherical bearing between operating member and housing or bezel

Definitions

  • the present invention relates to an operation input system.
  • Patent Document 1 an operation device that is connected to an information processing device such as a PC (Personal Computer) or a game device and transmits an operation signal to the information processing device is known (for example, see Patent Document 1).
  • the controller (operation device) described in Patent Document 1 includes a left grip portion and a right grip portion that are gripped by the left and right hands of a user, and a direction key and an operation button that are disposed in front of the controller. .
  • the direction key is disposed at a position corresponding to the thumb when the left grip portion is gripped with the left hand
  • the operation button is disposed at a position corresponding to the thumb when the right grip portion is gripped with the right hand. It is installed.
  • the controller is provided with two analog sticks between areas where direction keys and operation buttons are arranged.
  • Such an analog stick has an orthogonal biaxial joystick structure, and the analog stick is provided in a hemispherical manner so as to be freely displaceable. And if the said analog stick is operated, a controller will output the operation signal according to the displacement direction.
  • An object of the present invention is to provide an operation input system including an operation element that can detect more operation directions.
  • the operation input system is supported so as to be movable along each of three reference axes orthogonal to each other and to be rotatable about each of the three reference axes as a rotation axis.
  • An operating element comprising: an operating body to be received; and a plurality of detecting bodies that are arranged along a circumferential direction of the operating body and detect a magnitude of pressure received by parallel movement and rotation of the operating body; Using a value indicating the magnitude of the pressure detected by each of the detection bodies, the amount of parallel movement of the operating body along each of the three reference axes and each of the three reference axes as rotation axes. And a control device that calculates a rotation amount of the operating body.
  • the perspective view which shows the operating device which concerns on 1st Embodiment of this invention The perspective view which shows the operation element in the said embodiment.
  • the operation input system is supported so as to be able to translate along each of three reference axes orthogonal to each other, and to be rotatable about each of the three reference axes as a rotation axis
  • An operating element comprising: an operating body that receives an input operation; and a plurality of detection bodies that are arranged along a circumferential direction of the operating body and that detect a magnitude of pressure received by translation and rotation of the operating body; Using the value indicating the magnitude of the pressure detected by each of the plurality of detection bodies, the amount of translation of the operating body along each of the three reference axes and the rotation of each of the three reference axes And a control device for calculating a rotation amount of the operating body as an axis.
  • each of the plurality of detection bodies has a follower that engages with the operation body and follows the movement of the operation body, and the pressure applied to the follower by the displacement of the operation body. It is good also as detecting a magnitude
  • each of the plurality of detection bodies may detect the magnitude of pressure applied to the follower along each of two directions that intersect the direction toward the operating body and intersect each other.
  • one of the follower and the operation body has a hole, and the other is inserted into the hole to transmit the movement of the operation body to the follower. It is good also as a clearance gap being provided between the front-end
  • FIG. 1 is a perspective view showing an operating device 1 according to the present embodiment.
  • the Z direction indicates the axial direction of the operating body 31 to be described later
  • the X direction and the Y direction are the right direction when the housing 2 is viewed from the front out of the directions orthogonal to the Z direction.
  • the X1 direction indicates a direction inclined by 45 ° from the X direction toward the Y direction on the XY plane
  • the Y1 direction indicates a direction inclined by 45 ° from the Y direction toward the opposite direction to the X direction.
  • the operating device 1 is connected to an information processing device D such as a PC or a game device, and transmits an operation signal corresponding to an input operation to the information processing device D.
  • the operating device 1 includes a synthetic resin casing 2 and a pair of operating elements 3 provided in the casing 2 (the left and right operating elements in FIG. 1 are respectively 3L and 3R. ).
  • the housing 2 includes a left grip 21L that is gripped by the user's left hand and a right grip 21R that is gripped by the user's right hand. Further, on the front surface 2F of the housing 2, a first disposing portion 22 where the cross key K1 is disposed is provided at a position corresponding to the thumb when the left gripping portion 21L is gripped with the left hand of the user. Yes. Further, on the front surface 2F, a second disposing portion 23 in which four operation keys K2 are disposed is provided at a position corresponding to the thumb when the right grip portion 21R is gripped with the right hand of the user. .
  • the manipulator disposing portions 24 provided with the manipulating members 3L and 3R (left and right manipulating element arrangements) are provided.
  • the installation portions are 24L and 24R, respectively).
  • other operation keys K3 are provided on the upper surface 2T of the housing 2 on the left and right sides, and these arrangement positions are positions corresponding to the index finger of the user.
  • the operation element arranging parts 24L and 24R are configured as holes having a substantially circular shape in plan view, and the operation element 3 is provided in the hole part. Then, both ends of the central axis of the operation body 31 constituting the operation element 3 (3L, 3R) are exposed to the outside of the housing 2 from the front surface 2F and the back surface 2R.
  • the user When using the operating device 1, for example, the user operates the operation keys with the left and right index fingers while holding the left gripping part 21 ⁇ / b> L and the right gripping part 21 ⁇ / b> R so as to be wrapped with the left and right palms, the little finger, and the ring finger. While inputting K3, the cross key K1 and the operation key K2 are input with the left and right thumbs.
  • the operating elements 3L and 3R when operating the operating elements 3L and 3R in this state, the operating elements 3L and 3R are operated with the left and right thumbs, and, if necessary, the operating elements 3L and 3R are sandwiched between the thumb and the middle finger. To operate. Further, as will be described later, it is also possible to roll the operating elements 3L and 3R by pinching the operating elements 3L and 3R with the thumb and forefinger.
  • FIG. 2 is a perspective view showing the operation element 3
  • FIG. 3 is a longitudinal sectional view (cross-sectional view in the X1Z plane) showing the operation element 3.
  • FIG. 4 is a transverse cross-sectional view (cross-sectional view on the XY plane at the axial center of the operation element 3) showing the operation element 3.
  • FIG. 5 is a vertical cross-sectional view (cross-sectional view on the X1Z plane) of the operation element 3 showing a state of the detection body 32 when the operation body 31 is displaced (rotated in the direction opposite to the X1 direction).
  • the operation element 3 (L, 3R) includes a cylindrical operation body 31 that is operated by a user, and four detection bodies 32 that detect the displacement direction of the operation body 31. , Each of the detection bodies 32 is supported, and thus has a support body 33 that supports the operation body 31.
  • the operation element 3 detects the displacement of the operation body 31 in the 6-axis direction by each detection body 32.
  • the operation element 3 detects the parallel movement of the operation body 31 in the XY plane and the parallel movement in the Z direction, and rotates the operation body 31 with a virtual straight line on the XY plane as a rotation axis (for example, , Yaw rotation and pitch rotation), and rotation of the operating body 31 with the Z direction as a rotation axis (roll rotation).
  • a rotation axis for example, , Yaw rotation and pitch rotation
  • roll rotation rotation of the operating body 31 with the Z direction as a rotation axis
  • the operating body 31 includes a cylindrical shaft portion 311, a pair of fixing portions 312 attached to both ends of the shaft portion 311, and a pair of elastic portions 313 and action portions 314 sandwiched between the fixing portions 312. .
  • the fixing portion 312 is formed in a circular shape in plan view having substantially the same diameter as the elastic portion 313, and is fixed to the shaft portion 311 with a screw 315.
  • a cylindrical cap 316 (see FIG. 1) is attached to these fixing portions 312 so as to cover the fixing portion 312 and is a portion operated by the user.
  • a pair of elastic portions 313 and action portions 314 are arranged at positions sandwiched between such fixing portions 312.
  • the pair of elastic portions 313 is formed in a cylindrical shape by an elastic member such as rubber, and is provided so as to surround the shaft portion 311 and sandwich the action portion 314.
  • the pair of elastic portions 313 connect the shaft portion 311 and the fixing portion 312 and the action portion 314, and mediate the displacement of the shaft portion 311 and the fixing portion 312 to the action portion 314.
  • the elastic portion 313 is elastically deformed and bent when the shaft portion 311 and the fixed portion 312 are rotationally displaced, so that the rotation is absorbed, and only the pressure generated by the rotational displacement acts. Is transmitted to the unit 314.
  • the action part 314 is formed in an annular shape with a synthetic resin or metal having higher rigidity than the elastic part 313, and is fixed to the elastic part 313 with an adhesive or the like.
  • the action part 314 has a diameter larger than that of the elastic part 313, and the action part 314 has a hole part into which an insertion part 3211 (described later) is inserted at equal intervals in the circumferential direction of the XY plane. 3141 are formed so as to penetrate the action part 314, respectively.
  • the action unit 314 transmits the pressure in the displacement direction of the operating body 31 transmitted through the elastic unit 313 to the detection body 32 through the insertion unit 3211.
  • the hole 3141 into which the insertion part 3211 is inserted corresponds to the hole of the present invention, and the formation position of the hole 3141 corresponds to the detection site of the present invention. Therefore, in the operating body 31 of the present embodiment, four detection sites are provided.
  • a predetermined gap is formed between the inner wall of the hole through which the shaft portion 311 is inserted in the action portion 314 and the outer peripheral surface of the shaft portion 311, and the stroke amount of the operating body 31 is secured by the gap.
  • the detection body 32 (the detection bodies positioned at the X1 direction front end side and the base end side are 32X1 and 32X2 and the Y1 direction front end side and base end side detection bodies are 32Y1 and 32Y2) is a strain gauge. Each of the pressures in the displacement direction of the operating body 31 is detected. Specifically, each detection body 32 is provided at a position corresponding to the above-described hole 3141, and thereby the operation body 31 is arranged at equal intervals (every 90 ° in the present embodiment) in the circumferential direction of the operation body 31. It is arranged so that it surrounds. Each of these detectors 32 includes a follower 321 that protrudes toward the operating body 31 and a detector 322 that detects the direction of pressure applied to the follower 321.
  • the detection unit 322 detects a change in the pressure of the operation body 31 by detecting a pressure change transmitted through the follower 321 when the operation body 31 is displaced.
  • the follower 321 is formed of a member having rigidity or flexibility.
  • the follower 321 has an insertion part 3211 that is inserted into the hole 3141 at the tip of the follower 321 in the protruding direction.
  • These insertion portions 3211 have an outer diameter dimension that is slightly smaller than the inner diameter of the corresponding hole portion 3141, whereby a slight clearance is provided between the inner surface of the hole portion 3141 and the outer surface of the insertion portion 3211. Is formed. More specifically, a clearance C ⁇ b> 1 is formed between the end surface of the insertion portion 3211 orthogonal to the protruding direction (insertion direction into the hole 3141) and the inner surface of the hole 3141. Further, since the hole 3141 formed in the action part 314 is formed so as to penetrate the action part 314, a clearance is provided between the hole 3141 and the end surface of the insertion part 3211 in the protruding direction. C2 is formed.
  • Such a follower 321 is displaced according to the displacement of the operating body 31 to cause a change in the pressure direction detected by the detector 322.
  • the operating body 31 is rotationally displaced in the direction opposite to the X1 direction (P direction) with the Y1 direction as a rotational axis.
  • the follower 321 of the detector 32X1 located on the side transmits the pressure in the Z direction to the detector 322, and the follower 321 of the detector 32X2 located on the base end side in the X1 direction is in a direction opposite to the Z direction. Is transmitted to the detection unit 322. And the detection part 322 of these detection bodies 32X1 and 32X2 detects the pressure direction of each tracking part 321.
  • the displacement direction of the operation body 31 is detected.
  • abuts the said tracking part 321 (insertion part 3211) is not arrange
  • a clearance C2 is formed.
  • the support body 33 has a regular rectangular tube shape made of metal or the like, and is disposed so as to surround the operation body 31 (particularly the action portion 314).
  • Each detection body 32 is attached to each of the four planes of the support 33 by screws 331 so that the follower 321 faces the operating body 31.
  • the dimension of the operation body 31 in the axial direction (Z direction) of the support body 33 is set to about 1/3 of the dimension of the operation body 31 in the same direction. Are exposed from the support 33.
  • the caps 316 are attached to both ends of the operation body 31, and the operation body 31 can be operated (displaced).
  • FIG. 6 is a diagram illustrating the operating device 1 when the operating body 31 of the operating element 3L is displaced in the X direction.
  • 6A and 6B are a front view and a side view of the operating device 1, respectively.
  • FIG. 7 is a diagram showing the operating device 1 when the operating body 31 of the operating element 3L is displaced in the Y direction.
  • 7A and 7B are a front view and a side view of the operating device 1, respectively.
  • FIG. 8 is a diagram showing the operating device 1 when the operating body 31 of the operating element 3L is displaced in the Z direction.
  • 8A and 8B are a front view and a side view of the operating device 1, respectively.
  • the operation element 3 detects the parallel movement along the X, Y, and Z directions of the operation body 31 by detecting the pressure direction applied to the follower 321 by each detection body 32. Note that the parallel movement of the operating body 31 in the other direction on the XY plane is also detected in the same manner.
  • FIG. 9 is a diagram showing the operating device 1 when the operating body 31 of the operating element 3L is displaced (yaw rotated) in the X direction with the Y direction as a rotation axis.
  • 9A and 9B are a front view and a side view of the operating device 1, respectively.
  • FIG. 10 is a diagram showing the operating device 1 when the operating body 31 of the operating element 3L is displaced (pitch rotation) in the Y direction with the X direction as a rotation axis.
  • 10A and 10B are a front view and a side view of the operating device 1, respectively.
  • FIG. 11 is a diagram showing the operating device 1 when the operating body 31 of the operating element 3L is displaced (rolled) with the Z direction as a rotational axis.
  • 11A and 11B are a front view and a side view of the operating device 1.
  • the operating element 3R has the same configuration as the operating element 3L, and detects the displacement of the operating body 31 in the same manner as the operating element 3L.
  • the displacement of the operating body 31 detected in this way is transmitted as a control signal from the operating elements 3L and 3R to the control device (not shown) of the operating device 1. Then, the control device performs various corrections such as sensitivity correction, bias correction, variation correction, and drift correction between the detection bodies 32, performs dead zone processing, and the like, and obtains an operation signal based on the control signal as the above-described information. Transmit to processing device D.
  • the control device of the operating device 1 detects the direction of parallel movement and the direction of rotation of the operating body 31 based on the direction of pressure detected by each detector 32. Further, the controller device 1 calculates the magnitude of the translation (amount of translation) of the operating body 31 along the X, Y, and Z directions by using the magnitude of the pressure detected by each detector 32. To do. Similarly, by using the magnitude of the pressure detected by each detection body 32, pitch rotation, yaw rotation, and roll with the operation body 31 as rotation axes in the X direction, Y direction, and Z direction, respectively. The magnitude of rotation (the amount of rotation) is calculated.
  • a method of calculating the parallel movement amount and the rotation amount will be described.
  • each of the X direction, the Y direction, and the Z direction is set as a reference direction, and the parallel movement amounts of the operation body 31 along the reference direction are expressed as Px, Py, and Pz.
  • the displacement in the reference direction is represented by a positive value
  • the displacement in the direction opposite to the reference direction is represented by a negative value.
  • the rotation amounts of the operation body 31 with the X direction, the Y direction, and the Z direction as rotation axes are denoted as Rx, Ry, and Rz.
  • Rx the rotation of the front surface of the operating body 31 in the Y direction (rotation in the direction shown in FIG.
  • each detection body 32 detects the magnitude of the pressure applied to the follower 321 along each of the two directions intersecting with the direction toward the operation body 31 and intersecting each other.
  • each detection body 32 is orthogonal to the protruding direction of the follower 321 (the direction toward the operating body 31) and two directions orthogonal to each other as the detection direction, and the action part along the detection direction.
  • the magnitude of the pressure exerted on the follower 321 by 314 is detected. More specifically, each detection body 32 detects the magnitude of the pressure applied to the follower 321 along the vertical detection direction with the Z direction as the vertical detection direction.
  • each detection body 32 faces the follower 321 and follows the horizontal detection direction with the left hand direction when the follower 321 is viewed so that the Z direction is on the horizontal detection direction.
  • the magnitude of the pressure applied to the part 321 is detected. That is, the detection body 32X1 is the horizontal detection direction, the detection body 32Y1 is the reverse direction of the X1 direction, the detection body 32X2 is the reverse direction of the Y1 direction, and the detection body 23Y2 is the horizontal detection direction.
  • the magnitude of the pressure in the horizontal detection direction detected by each of the detection bodies 32X1, 32Y1, 32X2, and 32Y2 will be referred to as pressure values x1, x2, x3, and x4, and the magnitude of the pressure in the vertical detection direction.
  • FIG. 12 shows the positional relationship between the detection bodies 32X1, 32Y1, 32X2, and 32Y2 and the detection direction thereof.
  • the center point O indicates the center position of the operating body 31.
  • the follower 321 of each detection body 32 has a square apex inscribed in a circle centered on the center point O on the XY plane orthogonal to the longitudinal direction (Z direction) of the operation body 31. Placed in position.
  • the parallel movement amount Px of the operating body 31 is calculated by projecting and adding the pressure values x1 to x4 in the horizontal detection direction detected by the respective detection bodies 32 in the X direction. That is, the parallel movement amount Px is calculated by the following calculation formula.
  • G 1 is a proportionality constant determined in advance.
  • each detector 32 detects the magnitude of the pressure along the Z direction, so the pressure values y1 to y4 in the vertical detection direction detected by each detector 32 are simply added together. It is calculated by that. That is, parallel movement amount Pz as proportional constant defined the G 3 in advance, is calculated by the following equation.
  • the detection body 32X1 and the detection body 32Y1 detect the pressure in the direction opposite to the Z direction
  • the detection body 32X2 and the detection body 32Y2 detect pressure in the Z direction.
  • each detection body 32 is arranged in a direction shifted by 45 ° from the Y direction, which is the rotation direction, when viewed from the center of the operation body 31.
  • the rotation amount Rx is calculated by multiplying the pressure values y1 to y4 in the vertical detection direction detected by the respective detection bodies 32 by a coefficient in consideration of the moment.
  • rotation amount Rx is a proportionality constant that is determined to G 4 in advance, is calculated by the following equation.
  • rotation amount Rz is calculated by adding the pressure values x1 to x4 in the horizontal detection direction detected by the respective detection bodies 32.
  • rotation amount Rz is as a proportional constant defined the G 6 in advance, is calculated by the following equation.
  • the proportional constants G 1 to G 6 are determined in advance by the relationship between the numerical value of the detection result by the detection body 32 and the actual amount of translation and rotation of the operation body 31, and are stored in the control device of the operation apparatus 1. Is done. Note that the proportional constants G 1 to G 3 may be the same value or different values. Similarly, G 4 to G 6 may be the same value or different values.
  • the parallel movement amount and the rotation amount of the operating body 31 are calculated using a previously prepared calculation formula and predetermined proportional constants G 1 to G 6.
  • the parallel movement amount and the rotation amount may be calculated by a method other than the above.
  • the controller device 1 may calculate the parallel movement amount and the rotation amount of the operation body 31 using calibration data obtained by executing calibration in advance.
  • the calibration data is data indicating the relationship between the pressure value detected by the detection body 32 and the physical parallel movement amount and rotation amount of the operation body 31 calculated by executing calibration. is there. A specific example in this case will be described below.
  • This reference operation includes a translation operation for translating the operation body 31 by a predetermined amount of displacement in each of the X direction, the Y direction, and the Z direction, and a rotation operation in each of the X direction, the Y direction, and the Z direction.
  • This is a rotation operation that rotates the operating body 31 by a rotation amount determined as a moving axis.
  • the reference operation may be an operation of moving and rotating the operating body 31 with a force determined in each direction.
  • Calibration is executed, for example, when the operating device 1 is shipped from the factory.
  • a parallel movement operation can be realized by fixing the operating device 1 to the stage, holding the operating body 31 with an arm or the like, and pulling it in each reference direction with a predetermined force.
  • a rotating operation can be realized by holding the operating body 31 with an arm or the like and rotating it with a predetermined force.
  • the calibration may be executed by the user of the controller device 1.
  • the operation input system causes the user to perform six types of reference operations, for example, by displaying a message prompting execution of calibration on the screen of a monitor connected to the information processing apparatus D. . This makes it possible to generate calibration data that reflects a habit of operation by the user who performed calibration.
  • calibration data unique to each user may be generated by causing each of the plurality of users to perform calibration. Further, the calibration by the user may be executed only once when the user uses the controller device 1 for the first time, or may be executed every time the user uses the controller device 1.
  • the calibration data is calculated using measurement data including pressure values detected by the respective detection bodies 32 when each of the six types of reference operations is executed.
  • the pressure values x1 and y1 detected by the detection body 32X1 the pressure values x2 and y2 detected by the detection body 32Y1, and the detection body 32X2
  • the pressure values x3 and y3 detected by, and the pressure values x4 and y4 detected by the detector 32Y2 are expressed as px1, px2, px3, px4, px5, px6, px7, and px8, respectively.
  • the pressure values detected by the four detectors 32 when the translation operation in the Y direction is performed are represented as py1 to py8, and four when the translation operation in the Z direction is performed.
  • the pressure values detected by the detector 32 are expressed as pz1 to pz8.
  • the pressure values detected when the rotation operation with the X direction as the rotation axis is expressed as rx1 to rx8, and detected when the rotation operation with the Y direction as the rotation axis is performed.
  • the obtained pressure values are expressed as ry1 to ry8, and the pressure values detected when the rotation operation with the Z direction as the rotation axis is performed are expressed as rz1 to rz8.
  • the matrix A shown below is defined by these measurement data.
  • the generalized inverse matrix A ⁇ 1 of this matrix A is the calibration data. It becomes. That is, when certain pressure values x1 to x4 and y1 to y4 are detected, the parallel movement amounts Px, Py, Pz and rotation amounts Rx, Ry, Rz of the operating body 31 at that time are as follows using A- 1. It is calculated by the following formula.
  • the arithmetic unit of the controller device 1 calculates each component of the generalized inverse matrix A- 1 using the measurement data obtained at the time of executing calibration, and stores it as calibration data.
  • the parallel movement amounts Px, Py, Pz and the rotation amounts Rx, Ry, Rz are calculated using the stored calibration data, and information processing is performed. Transmit to device D. Specifically, if the component of m rows and n columns of the matrix A ⁇ 1 is a mn , for example, the parallel movement amount Px is It can be calculated with the following formula.
  • the calibration data may be corrected so that
  • the controller device 1 uses the values x1 to x4 and y1 to y4 that are detection results of the respective detectors 32 to translate the operation body 31 along three reference directions orthogonal to each other. Px, Py, and Pz can be calculated. Similarly, the controller device 1 can calculate the rotation amounts Rx, Ry, and Rz of the operating body 31 with the three reference directions as the rotation axes using the values x1 to x4 and y1 to y4.
  • control device included in the controller device 1 calculates the parallel movement amount and the rotation amount.
  • the control device may be an arithmetic element such as a microcomputer built in the operation device 1.
  • the calculation of the parallel movement amount and the rotation amount is not necessarily performed by the operation device 1, and may be performed by the information processing device D.
  • the controller device 1 transmits the numerical information of x1 to x4 and y1 to y4, which are detection results of the respective detection bodies 32, as they are to the information processing device D as operation signals indicating the operation contents of the user, and the information processing device D
  • a control device such as a CPU built in the CPU calculates the parallel movement amount and the rotation amount of the operation body 31 using the operation signal received from the operation device 1.
  • the operation input system according to the present embodiment described above has the following effects.
  • the displacement direction of the operating body 31 can be detected more than the conventional analog stick. Therefore, the convenience of the operating device 1 can be improved.
  • Each follower 321 of each detection body 32 is engaged with the action portion 314 of the operation body 31 to reliably transmit the direction of pressure generated by the displacement of the operation body 31 to each detection body 32. Can do. Accordingly, each detection body 32 can reliably detect the displacement direction of the operation body 31.
  • An insertion portion 3211 to be inserted into a hole 3141 formed in the action portion 314 is formed at the leading end of the follow-up portion 321 in the protruding direction from the detection body 32, whereby the operating body 31 and the detection body 32 can be physically connected with a simple configuration. According to this, the direction of the pressure generated by the displacement of the operation body 31 can be reliably transmitted to the detection body 32 via the follower 321. Therefore, each detection body 32 can detect the displacement direction of the operation body 31 more reliably.
  • the operating body 31 since the clearance C2 is formed, the operating body 31 extends along the protruding direction of the insertion portion 3211 (insertion direction into the hole 3141) in a state where the insertion portion 3211 does not contact the inner surface of the hole 3141. Can be displaced. According to this, it is possible to prevent internal force interference between the detection body 32 having the insertion portion 3211 and the operation body 31. In this case, since the displacement of the operation body 31 is detected by the other detection body 32, the displacement direction of the operation body 31 can be detected appropriately.
  • the operation body 31 is supported by the follower 321 (insertion section 3211) of each detection body 32 supported by the support body 33 so as to surround the operation body 31. According to this, it is not necessary to separately provide another configuration for supporting the operation body 31 so as to be displaceable in the above-described direction. Therefore, the configuration of the operation element 3 can be simplified.
  • the operation body 31 has a pair of elastic parts 313 so as to sandwich the action part 314 in which the hole 3141 serving as a detection part is formed, and the elastic part 313 is moved when the operation body 31 is displaced. Elastically deforms and bends. According to this, since the user can actually feel the input operation on the operation body 31, the operability of the operation element 3 can be further improved.
  • operating element arrangement portions 24 ⁇ / b> L and 24 ⁇ / b> R where the operating element 3 is provided are provided between the first arranging part 22 and the second arranging part 23.
  • the operation element 3 is disposed in each of the installation portions 24L and 24R. According to this, the left and right operators 3 can be operated with the left hand of the user holding the left gripping portion 21L and the right hand of the user holding the right gripping portion 21R. Therefore, since the operation element 3 can be operated without releasing the hand from the operation device 1, the operability of the operation device 1 can be improved.
  • the operating device according to the present embodiment has the same configuration as the operating device 1 described above.
  • the operation element 3 (3L, 3R) provided in the operation device 1 has a configuration including four detection bodies 32.
  • the operator provided in the operating device according to the present embodiment has three detectors. In this respect, the operating device according to the present embodiment and the operating device 1 are different.
  • parts that are the same as or substantially the same as those already described are assigned the same reference numerals and description thereof is omitted.
  • FIG. 13 is a perspective view showing the operating element 4 provided in the operating device according to the present embodiment.
  • 14 and 15 are a longitudinal sectional view (cross sectional view on the XZ plane) and a lateral sectional view (cross sectional view on the XY plane) showing the operation element 4.
  • the operating device has the same configuration and function as the above-described operating device 1 except that the operating device 4 is provided instead of the operating device 3.
  • the operation element 4 supports the operation body 41, the three detection bodies 32 (32A to 32C), and the detection bodies 32, and thus supports the operation body 41. And a body 43.
  • the operating body 41 has the same configuration as that of the operating body 31 except that it has an operating portion 414 instead of the operating portion 314.
  • the action part 414 is an annular body that is disposed substantially at the center in the axial direction of the operation body 41 so as to surround the shaft part 311 and be sandwiched between the pair of elastic parts 313.
  • Three holes 4141 are formed at equal intervals in the circumferential direction of the operating body 41 on the XY plane on the outer surface of the action portion 414, and protrusions 4142 are formed between the formation portions of the holes 4141. .
  • the insertion part 3211 of the detection body 32 arranged according to the formation position of the hole 4141 is inserted into each hole 4141.
  • the inner diameters of these hole portions 4141 are formed larger than the outer diameter of the insertion portion 3211, similar to the above-described hole portion 3141, and there is a predetermined gap between the inner surface of the hole portion 4141 and the outer surface of the insertion portion 3211.
  • the clearance C1 is formed.
  • the hole portion 4141 is formed so as to penetrate the action portion 414, and the operating body 31 is displaced in the direction in which the hole portion 4141 is formed also between the protruding end surface of the insertion portion 3211 and the shaft portion 311. Even so, the clearance C ⁇ b> 2 is formed so that the insertion portion 3211 and the shaft portion 311 do not contact each other.
  • Each projection 4142 has a substantially semicircular cross section in the XY plane. These protrusions 4142 are positioned in a recess 431 formed on the inner side of the support body 43 in accordance with the protrusions 4142. These protrusions 4142 and recesses 431 suppress excessive displacement of the follower 321.
  • the support body 43 has a regular triangular tube shape made of metal or the like, and is disposed so as to surround the operation body 41 (particularly the action portion 414).
  • the detection bodies 32 are attached to the three planes of the support body 43 with screws 331 so that the follower 321 faces the operating body 41.
  • the dimension of the support body 43 in the Z direction is set to about 1/3 of the dimension of the operation body 41 in the same direction.
  • Caps 316 (see FIG. 1) are attached to both ends of the operating body 41.
  • Such an operation element 4 detects the displacement of the operation body 41 in the same manner as the operation element 3 described above.
  • the detecting section 322 detects the displacement of each follower 321 on the XY plane, and the operating element 4 detects the displacement direction of the operating body 41.
  • the follower 321 is not displaced. Internal interference between the body 41 and the detection body 32 is prevented.
  • each follower 321 When the operating body 41 is translated along the Z direction, each follower 321 is displaced along the Z direction. Therefore, when the detector 322 detects the displacement direction of each follower 321, the operator 4 is The displacement along the Z direction of the operating body 41 is detected.
  • the operation element 4 detects the displacement direction of the operation body 41.
  • the detecting unit 322 detects the displacement of each follower 321 in the same direction. The displacement direction of the operating body 41 is detected.
  • the displacement of the operating body 41 detected by the operating element 4 is transmitted as a control signal from the operating element 4 to the control device of the operating apparatus, as in the case of the operating element 3.
  • the said control apparatus performs the above-mentioned various corrections, performs a dead zone process etc., and transmits the operation signal based on the said control signal to the above-mentioned information processing apparatus D.
  • each detection body 32 detects the magnitude of pressure applied to the follower 321 along the vertical detection direction and the horizontal detection direction, as in the first embodiment.
  • the vertical detection direction is the Z direction
  • the horizontal detection direction is the left hand direction when the detection bodies 32 are viewed so as to face the follower 321 and the Z direction is on the top.
  • FIG. 16 shows the positional relationship between the detection bodies 32A to 32C and their detection directions.
  • the center point O indicates the center position of the operating body 41.
  • the follower 321 of each detection body 32 is an equilateral triangle inscribed in a circle centered on the center point O on the XY plane orthogonal to the longitudinal direction (Z direction) of the operation body 41. It is placed at the vertex position.
  • the parallel movement amount Px is calculated by projecting and adding the detection results in the horizontal detection direction by the detection bodies 32A and 32B in the X direction. Specifically, the amount of parallel movement Px as proportional constant defined the G 1 in advance, is calculated by the following equation.
  • the parallel movement amount Pz in the Z direction is calculated by adding up the pressure values ya to yc in the vertical detection direction detected by the respective detectors 32 as in the first embodiment. That is, parallel movement amount Pz as proportional constant defined the G 3 in advance, is calculated by the following equation.
  • the detection body 32A detects pressure in the reverse direction of the Z direction, and the detection body 32B detects pressure in the Z direction.
  • no pressure is applied to the follower 321 of the detection body 32C arranged in the direction along the rotation axis.
  • the detection bodies 32A and 32B are arranged in a direction shifted by 30 ° from the Y direction, which is the rotation direction, when viewed from the center of the operation body 41. Therefore, the rotation amount Rx is calculated by multiplying the pressure values ya and yb in the vertical detection direction detected by the detection bodies 32A and 32B by a coefficient that takes into account the moment.
  • rotation amount Rx is a proportionality constant that is determined to G 4 in advance, is calculated by the following equation.
  • the detection bodies 32A and 32B detect pressure in the reverse direction of the Z direction, and the detection body 32C detects pressure in the Z direction.
  • the detection bodies 32A and 32B are arranged in a direction shifted by 60 ° from the X direction as the rotation direction when viewed from the center of the operation body 41, but the detection body 32C is located at a position along the rotation direction.
  • the rotation amount Ry is calculated by multiplying the pressure values ya and yb by a coefficient considering the moment, and adding these values and the pressure value yc.
  • rotation amount Ry as proportional constant defined the G 5 in advance, is calculated by the following equation.
  • rotation amount Rz is calculated by adding the pressure values xa to xc in the horizontal detection direction detected by the respective detection bodies 32.
  • rotation amount Rz is as a proportional constant defined the G 6 in advance, is calculated by the following equation.
  • the proportional constants G 1 to G 6 are determined in advance by the relationship between the numerical value of the detection result by the detection body 32 and the actual amount of translation and rotation of the operation body 41, and the operation It is stored in the control device of the device 1.
  • the controller device 1 may calculate the parallel movement amount and the rotation amount using calibration data obtained by calibration instead of the method using the above-described calculation formula. .
  • the measurement data necessary for calibration is acquired by executing the same reference operation as in the first embodiment.
  • the pressure values xc and yc detected by 32C are expressed as px1, px2, px3, px4, px5 and px6, respectively.
  • the pressure values detected by the three detectors 32 when the translation operation in the Y direction is performed are represented as py1 to py6, and three when the translation operation in the Z direction is performed.
  • the pressure values detected by the detector 32 are expressed as pz1 to pz6.
  • the pressure values detected when the rotation operation with the X direction as the rotation axis is expressed as rx1 to rx6, and detected when the rotation operation with the Y direction as the rotation axis is performed.
  • the obtained pressure values are expressed as ry1 to ry6, and the pressure values detected when the rotation operation with the Z direction as the rotation axis is performed are expressed as rz1 to rz6.
  • the matrix B shown below is defined by these measurement data.
  • the inverse matrix B ⁇ 1 becomes calibration data. That is, when certain pressure values xa to xc and ya to yc are detected, the parallel movement amounts Px, Py, Pz and the rotation amounts Rx, Ry, Rz of the operating body 41 at that time are as follows using B- 1. It is calculated by the following formula.
  • the arithmetic unit of the controller device 1 calculates each component of the inverse matrix B ⁇ 1 using the measurement data obtained when the calibration is executed, and stores it as calibration data. When the user performs an input operation using the operator 3, the parallel movement amounts Px, Py, Pz and the rotation amounts Rx, Ry, Rz are calculated using the stored calibration data, and information processing is performed. Transmit to device D.
  • the controller device 1 directly transmits the pressure value detected by the detection body 32 to the information processing device D, and the control device built in the information processing device D operates the controller device D.
  • the parallel movement amount and the rotation amount of the body 41 may be calculated.
  • the operation device according to the present embodiment described above has the following effects in addition to the same effects as the operation device 1 described above.
  • the operating element 4 can detect the displacement of the operating body 41 in the same direction as the displacement direction of the operating body 31 that can be detected by the four detecting bodies 32 in the operating element 3 by the three detecting bodies 32.
  • the number of the detection bodies 32 is smaller than that of the operation element 3 having the four detection bodies 32. Therefore, the operation element 4 can be manufactured at a lower cost than the operation element 3, and the operation device can be manufactured at a lower cost.
  • the operating element 3 has four detection bodies 32 that detect the displacement of the operating body 31, and in the second embodiment, the operating element 4 detects the displacement of the operating body 41 3.
  • the present invention is not limited to this. That is, the number of detection bodies provided in the operation element may be 1 or 2 or 5 or more. Of these, in the case where the operating element includes two detection bodies, the operation elements may be arranged at a position corresponding to one of the detection bodies 32X1 and 32X2 and the detection bodies 32Y1 and 32Y2. Furthermore, you may comprise an operation element combining the above-mentioned detection body.
  • the detection body is configured to have a strain gauge as a sensor for detecting pressure
  • the present invention is not limited to this, and other pressure-sensitive sheets and the like can also be adopted.
  • a detection body having a strain gauge in the operation element 3 a detection body having a follow-up section similar to the detection body 32 and a detection section having a Hall element may be employed. In this case, it is good also as a structure which provides the follower part in which the insertion part was formed in the front end in the action part side, and forms the hole part in which the said insertion part is inserted in a detection part.
  • the detection body 32 it is possible to employ a detection body including a follower connected to the action unit 314 and a detection unit having a pressure-sensitive sheet for detecting the displacement direction of the follower. is there.
  • the operation body itself does not include a sensor configuration, but the present invention is not limited to this.
  • the operation body may include a multi-axis sensor such as a 2-axis sensor.
  • the insertion portion is inserted and a hole serving as a detection site in displacement detection by the detection body 32 is formed in the operation body.
  • the present invention is not limited to this. That is, an insertion part may be formed in the operating body, and a hole may be formed in the follow-up part that transmits the displacement of the operating body to the detection body. In this case, the position where the insertion portion is formed becomes the detection site.
  • the above-mentioned clearances C1 and C2 are formed between the hole and the insertion portion, it is possible to prevent internal interference between the operation body and the detection body.
  • the pair of elastic portions 313 are each formed in a cylindrical shape, but the present invention is not limited to this.
  • the entire operating body may be formed of a rigid member such as a synthetic resin without providing the elastic portion. Even when the elastic portion is provided, the operational feeling of the operating body in the predetermined direction is changed by changing the shape, material, etc. so that resistance is generated in the displacement of the operating body in the predetermined direction. May be changed.
  • both ends of the operating body are exposed on the front 2F side and the back 2R side of the housing 2, but the present invention is not limited to this. That is, it is only necessary that a part of the operating body is exposed from the casing.
  • each operating device two operating elements are provided in each operating device, but the present invention is not limited to this. That is, the number of operators provided in the operating device can be changed as appropriate. In addition, the position of the operation element arrangement portion can be set as appropriate.
  • the operation body protrudes from the support body and is further exposed from the housing 2, but the present invention is not limited to this.
  • the operation body may be formed in an annular shape and disposed in the support body, and the user may operate the operation body by inserting a finger into the opening of the operation body through the opening of the support body.
  • the operation element may be arranged so that only one end of the operation body is exposed from the casing.
  • the operating body is formed in a cylindrical shape, but the present invention is not limited to this. That is, the operating body may be formed in a prismatic shape.
  • the operating element detects the displacement direction of the operating body, but the present invention is not limited to this. That is, a button that protrudes and sunk at the end of the operation body may be provided, and an operation element that also detects the input state of the button may be configured. In this case, the button may be provided at both ends of the operating body, or may be provided only at one end.
  • the operation element 3 is arranged in the housing 2 so that the two detection bodies 32 are respectively positioned in the X1 direction and the Y1 direction inclined by 45 ° with respect to the X direction and the Y direction on the XY plane.
  • the present invention is not limited to this. That is, the arrangement of the operation elements can be set as appropriate in consideration of the detection sensitivity of the detection object, the usability of the user, and the like. The same applies to the controls shown in the second embodiment.
  • the operating device of the present invention is cited as an operating device connected to an information processing device, but the present invention is not limited to this.
  • the operation device may be provided in a portable information terminal (portable terminal).

Abstract

Provided is an operation input system, comprising an operation input element, with which detection of a greater number of operation directions is possible. An operation input system comprises: an operation input element (3); and a control device, which uses the values which denote the amount of pressure which each detection body (32) detects, to compute the degree of parallel movement of the operation body (31) along each of the three axes of reference, and the degree of rotation of the operation body (31) wherein each of the three axes of reference are treated as axes of rotation. The operation input element (3) further comprises: an operation body (31) which receives an input operation, said operation body (31) being capable of parallel movement along each of three mutually orthogonal axes of reference, and being rotatably supported with each of the three axes of reference being treated as axes of rotation; and a plurality of detection bodies (32) which are positioned along the circumference direction of the operation body (31), and which detect the amount of pressure received, by the parallel movement and rotation of the operation body (31).

Description

操作入力システムOperation input system
 本発明は、操作入力システムに関する。 The present invention relates to an operation input system.
 従来、PC(Personal Computer)やゲーム装置等の情報処理装置に接続され、当該情報処理装置に操作信号を送信する操作装置が知られている(例えば、特許文献1参照)。この特許文献1に記載のコントローラー(操作装置)は、使用者の左右の手で把持される左側把持部及び右側把持部と、当該コントローラーの正面に配設された方向キー及び操作ボタンとを有する。このうち、方向キーは、左側把持部が左手で把持された際の親指に対応する位置に配設され、操作ボタンは、右側把持部が右手で把持された際の親指に対応する位置に配設されている。更に、当該コントローラーは、方向キー及び操作ボタンが配設される領域の間に2つのアナログスティックが設けられている。このようなアナログスティックは、直交2軸のジョイスティック構造を有し、当該アナログスティックは、半球状に変位自在に設けられている。そして、コントローラーは、当該アナログスティックが操作されると、その変位方向に応じた操作信号を出力する。 Conventionally, an operation device that is connected to an information processing device such as a PC (Personal Computer) or a game device and transmits an operation signal to the information processing device is known (for example, see Patent Document 1). The controller (operation device) described in Patent Document 1 includes a left grip portion and a right grip portion that are gripped by the left and right hands of a user, and a direction key and an operation button that are disposed in front of the controller. . Among these, the direction key is disposed at a position corresponding to the thumb when the left grip portion is gripped with the left hand, and the operation button is disposed at a position corresponding to the thumb when the right grip portion is gripped with the right hand. It is installed. Further, the controller is provided with two analog sticks between areas where direction keys and operation buttons are arranged. Such an analog stick has an orthogonal biaxial joystick structure, and the analog stick is provided in a hemispherical manner so as to be freely displaceable. And if the said analog stick is operated, a controller will output the operation signal according to the displacement direction.
米国特許出願公開第2009/0131171号明細書US Patent Application Publication No. 2009/0131171
 近年、複雑な操作が要求されるゲームソフト等のソフトウェアが多数流通している。例えば、FPS(First Person shooter)と呼ばれるゲームでは、キャラクターを移動させつつ、当該キャラクターの視線を変更する操作や、目標物に対する照準を変更する操作が行われる。一方、前述の特許文献1に記載されたコントローラーは、方向キーにより上下左右の各方向を検出し、アナログスティックによりパン及びチルトの各方向を検出するが、更なる複雑な操作が可能で、更なる操作方向を検出可能なコントローラー(操作装置)が要望されている。 In recent years, a lot of software such as game software that requires complicated operations has been distributed. For example, in a game called FPS (First Person Person shooter), an operation for changing the line of sight of the character and an operation for changing the aim of the target are performed while moving the character. On the other hand, the controller described in the above-mentioned Patent Document 1 detects the up / down / left / right directions with the direction key and detects the pan and tilt directions with the analog stick. However, more complicated operations are possible. There is a demand for a controller (operation device) that can detect the operation direction.
 本発明の目的は、より多くの操作方向を検出可能な操作子を備えた操作入力システムを提供することである。 An object of the present invention is to provide an operation input system including an operation element that can detect more operation directions.
 本発明に係る操作入力システムは、互いに直交する3つの基準軸のそれぞれに沿って平行移動可能に、かつ、前記3つの基準軸のそれぞれを回動軸として回動可能に支持され、入力操作を受け付ける操作体と、前記操作体の周方向に沿って配置され、前記操作体の平行移動及び回動によって受ける圧力の大きさを検出する複数の検出体と、を備える操作子と、前記複数の検出体のそれぞれが検出した圧力の大きさを示す値を用いて、前記3つの基準軸のそれぞれに沿った前記操作体の平行移動量、及び前記3つの基準軸のそれぞれを回動軸とした前記操作体の回動量を算出する制御装置と、を含むことを特徴とする。 The operation input system according to the present invention is supported so as to be movable along each of three reference axes orthogonal to each other and to be rotatable about each of the three reference axes as a rotation axis. An operating element comprising: an operating body to be received; and a plurality of detecting bodies that are arranged along a circumferential direction of the operating body and detect a magnitude of pressure received by parallel movement and rotation of the operating body; Using a value indicating the magnitude of the pressure detected by each of the detection bodies, the amount of parallel movement of the operating body along each of the three reference axes and each of the three reference axes as rotation axes. And a control device that calculates a rotation amount of the operating body.
本発明の第1実施形態に係る操作装置を示す斜視図。The perspective view which shows the operating device which concerns on 1st Embodiment of this invention. 前記実施形態における操作子を示す斜視図。The perspective view which shows the operation element in the said embodiment. 前記実施形態における操作子を示す縦断面図。The longitudinal cross-sectional view which shows the operation element in the said embodiment. 前記実施形態における操作子を示す横断面図。The cross-sectional view which shows the operation element in the said embodiment. 前記実施形態における操作子の操作体が変位した状態を示す縦断面図。The longitudinal cross-sectional view which shows the state which the operation body of the operation element in the said embodiment displaced. (A)前記実施形態における操作部のX方向への変位状態を示す正面図。(B)前記実施形態における操作部のX方向への変位状態を示す側面図。(A) The front view which shows the displacement state to the X direction of the operation part in the said embodiment. (B) The side view which shows the displacement state to the X direction of the operation part in the said embodiment. (A)前記実施形態における操作部のY方向への変位状態を示す正面図。(B)前記実施形態における操作部のY方向への変位状態を示す側面図。(A) The front view which shows the displacement state to the Y direction of the operation part in the said embodiment. (B) The side view which shows the displacement state to the Y direction of the operation part in the said embodiment. (A)前記実施形態における操作部のZ方向への変位状態を示す正面図。(B)前記実施形態における操作部のZ方向への変位状態を示す側面図。(A) The front view which shows the displacement state to the Z direction of the operation part in the said embodiment. (B) The side view which shows the displacement state to the Z direction of the operation part in the said embodiment. (A)前記実施形態における操作部のヨー回動状態を示す正面図。(B)前記実施形態における操作部のヨー回動状態を示す側面図。(A) The front view which shows the yaw rotation state of the operation part in the said embodiment. (B) The side view which shows the yaw rotation state of the operation part in the said embodiment. (A)前記実施形態における操作部のピッチ回動状態を示す正面図。(B)前記実施形態における操作部のピッチ回動状態を示す側面図。(A) The front view which shows the pitch rotation state of the operation part in the said embodiment. (B) The side view which shows the pitch rotation state of the operation part in the said embodiment. (A)前記実施形態における操作部のロール回動状態を示す正面図。(B)前記実施形態における操作部のロール回動状態を示す側面図。(A) The front view which shows the roll rotation state of the operation part in the said embodiment. (B) The side view which shows the roll rotation state of the operation part in the said embodiment. 前記実施形態における検出体の位置関係と検出方向を示す説明図。Explanatory drawing which shows the positional relationship and detection direction of the detection body in the said embodiment. 本発明の第2実施形態に係る操作装置が有する操作子を示す斜視図。The perspective view which shows the operation element which the operating device which concerns on 2nd Embodiment of this invention has. 前記実施形態における操作子を示す縦断面図。The longitudinal cross-sectional view which shows the operation element in the said embodiment. 前記実施形態における操作子を示す横断面図。The cross-sectional view which shows the operation element in the said embodiment. 前記実施形態における検出体の位置関係と検出方向を示す説明図。Explanatory drawing which shows the positional relationship and detection direction of the detection body in the said embodiment.
 本発明の実施形態に係る操作入力システムは、互いに直交する3つの基準軸のそれぞれに沿って平行移動可能に、かつ、前記3つの基準軸のそれぞれを回動軸として回動可能に支持され、入力操作を受け付ける操作体と、前記操作体の周方向に沿って配置され、前記操作体の平行移動及び回動によって受ける圧力の大きさを検出する複数の検出体と、を備える操作子と、前記複数の検出体のそれぞれが検出した圧力の大きさを示す値を用いて、前記3つの基準軸のそれぞれに沿った前記操作体の平行移動量、及び前記3つの基準軸のそれぞれを回動軸とした前記操作体の回動量を算出する制御装置と、を含んでいる。 The operation input system according to the embodiment of the present invention is supported so as to be able to translate along each of three reference axes orthogonal to each other, and to be rotatable about each of the three reference axes as a rotation axis, An operating element comprising: an operating body that receives an input operation; and a plurality of detection bodies that are arranged along a circumferential direction of the operating body and that detect a magnitude of pressure received by translation and rotation of the operating body; Using the value indicating the magnitude of the pressure detected by each of the plurality of detection bodies, the amount of translation of the operating body along each of the three reference axes and the rotation of each of the three reference axes And a control device for calculating a rotation amount of the operating body as an axis.
 前記操作入力システムにおいて、前記複数の検出体のそれぞれは、前記操作体と係合して前記操作体の動きに追従する追従部を有し、前記操作体の変位によって当該追従部に加わる圧力の大きさを検出することとしてもよい。 In the operation input system, each of the plurality of detection bodies has a follower that engages with the operation body and follows the movement of the operation body, and the pressure applied to the follower by the displacement of the operation body. It is good also as detecting a magnitude | size.
 さらに、前記複数の検出体のそれぞれは、前記操作体に向かう方向と交差し、かつ、互いに交差する2方向のそれぞれに沿って前記追従部に加わる圧力の大きさを検出することとしてもよい。 Furthermore, each of the plurality of detection bodies may detect the magnitude of pressure applied to the follower along each of two directions that intersect the direction toward the operating body and intersect each other.
 また、前記操作入力システムにおいて、前記追従部及び前記操作体のいずれか一方は、穴部を有し、他方は、当該穴部に挿入されて前記操作体の動きを前記追従部に伝達する挿入部を有し、前記挿入部の先端と前記穴部との間には間隙が設けられていることとしてもよい。 Further, in the operation input system, one of the follower and the operation body has a hole, and the other is inserted into the hole to transmit the movement of the operation body to the follower. It is good also as a clearance gap being provided between the front-end | tip of the said insertion part, and the said hole part.
[第1実施形態]
 以下、本発明の第1実施形態を図面に基づいて説明する。
[First Embodiment]
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings.
 本実施形態に係る操作入力システムは、ユーザが把持して入力操作を行う操作装置1と、操作装置1から送信される操作信号に応じて動作する情報処理装置Dと、を含んで構成される。図1は、本実施形態に係る操作装置1を示す斜視図である。なお、以降の図で、Z方向は、後述する操作体31の軸方向を示し、X方向及びY方向は、当該Z方向に直交する方向のうち筐体2を正面視した際の右方向及び上方向を示す。また、X1方向は、XY平面において、X方向からY方向に向かって45°傾けた方向を示し、Y1方向は、Y方向からX方向の反対方向に向かって45°傾けた方向を示す。 The operation input system according to the present embodiment includes an operation device 1 that a user holds to perform an input operation, and an information processing device D that operates according to an operation signal transmitted from the operation device 1. . FIG. 1 is a perspective view showing an operating device 1 according to the present embodiment. In the following drawings, the Z direction indicates the axial direction of the operating body 31 to be described later, and the X direction and the Y direction are the right direction when the housing 2 is viewed from the front out of the directions orthogonal to the Z direction. Indicates upward direction. The X1 direction indicates a direction inclined by 45 ° from the X direction toward the Y direction on the XY plane, and the Y1 direction indicates a direction inclined by 45 ° from the Y direction toward the opposite direction to the X direction.
 本実施形態に係る操作装置1は、PCやゲーム装置等の情報処理装置Dに接続され、入力操作に応じた操作信号を当該情報処理装置Dに送信するものである。この操作装置1は、図1に示すように、合成樹脂製の筐体2と、当該筐体2に設けられる一対の操作子3(図1において左側及び右側の操作子をそれぞれ3L,3Rとする)とを有する。 The operating device 1 according to the present embodiment is connected to an information processing device D such as a PC or a game device, and transmits an operation signal corresponding to an input operation to the information processing device D. As shown in FIG. 1, the operating device 1 includes a synthetic resin casing 2 and a pair of operating elements 3 provided in the casing 2 (the left and right operating elements in FIG. 1 are respectively 3L and 3R. ).
[筐体の構成]
 筐体2は、使用者の左手で把持される左側把持部21Lと、使用者の右手で把持される右側把持部21Rとを有する。また、筐体2の正面2Fにおいて、左側把持部21Lが使用者の左手で把持された際の親指に対応する位置に、十字キーK1が配設される第1配設部22が設けられている。更に、当該正面2Fにおいて、右側把持部21Rが使用者の右手で把持された際の親指に対応する位置に、4つの操作キーK2が配設される第2配設部23が設けられている。
[Case configuration]
The housing 2 includes a left grip 21L that is gripped by the user's left hand and a right grip 21R that is gripped by the user's right hand. Further, on the front surface 2F of the housing 2, a first disposing portion 22 where the cross key K1 is disposed is provided at a position corresponding to the thumb when the left gripping portion 21L is gripped with the left hand of the user. Yes. Further, on the front surface 2F, a second disposing portion 23 in which four operation keys K2 are disposed is provided at a position corresponding to the thumb when the right grip portion 21R is gripped with the right hand of the user. .
 この他、正面2Fには、第1配設部22と第2配設部23との間には、操作子3L,3Rがそれぞれ設けられる操作子配設部24(左側及び右側の操作子配設部をそれぞれ24L,24Rとする)が設けられている。更に筐体2の上面2Tには、他の操作キーK3が左右に設けられており、これらの配設位置は、使用者の人差し指に対応する位置である。 In addition, on the front surface 2F, between the first disposing portion 22 and the second disposing portion 23, the manipulator disposing portions 24 provided with the manipulating members 3L and 3R (left and right manipulating element arrangements) are provided. The installation portions are 24L and 24R, respectively). Further, other operation keys K3 are provided on the upper surface 2T of the housing 2 on the left and right sides, and these arrangement positions are positions corresponding to the index finger of the user.
 このうち、操作子配設部24L,24Rは、正面2Fと背面2Rとを連通する平面視略円形状の孔部として構成されており、当該孔部内に操作子3が設けられる。そして、操作子3(3L,3R)を構成する操作体31の中心軸の両端は、正面2F及び背面2Rのそれぞれから筐体2の外部に露出する。 Among these, the operation element arranging parts 24L and 24R are configured as holes having a substantially circular shape in plan view, and the operation element 3 is provided in the hole part. Then, both ends of the central axis of the operation body 31 constituting the operation element 3 (3L, 3R) are exposed to the outside of the housing 2 from the front surface 2F and the back surface 2R.
 そして、操作装置1を使用する場合には、使用者は、例えば、左右の掌と小指及び薬指とで包むように左側把持部21L及び右側把持部21Rを把持した状態で、左右の人差し指で操作キーK3を入力するとともに、左右の親指で十字キーK1及び操作キーK2を入力する。また、当該状態で、操作子3L,3Rを操作する場合には、左右の親指で操作子3L,3Rを操作する他、必要に応じて、親指及び中指で挟むようにして、当該操作子3L,3Rを操作する。更に、後述するように、操作子3L,3Rを親指と人差し指とで摘むようにして、当該操作子3L,3Rをロール回動させることも可能である。 When using the operating device 1, for example, the user operates the operation keys with the left and right index fingers while holding the left gripping part 21 </ b> L and the right gripping part 21 </ b> R so as to be wrapped with the left and right palms, the little finger, and the ring finger. While inputting K3, the cross key K1 and the operation key K2 are input with the left and right thumbs. In addition, when operating the operating elements 3L and 3R in this state, the operating elements 3L and 3R are operated with the left and right thumbs, and, if necessary, the operating elements 3L and 3R are sandwiched between the thumb and the middle finger. To operate. Further, as will be described later, it is also possible to roll the operating elements 3L and 3R by pinching the operating elements 3L and 3R with the thumb and forefinger.
[操作子の構成]
 図2は、操作子3を示す斜視図であり、図3は、操作子3を示す縦断面図(X1Z平面での断面図)である。また、図4は、操作子3を示す横断面図(操作子3の軸方向中央におけるXY平面での断面図)である。更に、図5は、操作体31が変位(X1方向とは反対方向へ回動)した際の検出体32の状態を示す操作子3の縦断面図(X1Z平面での断面図)である。
[Configuration of controls]
FIG. 2 is a perspective view showing the operation element 3, and FIG. 3 is a longitudinal sectional view (cross-sectional view in the X1Z plane) showing the operation element 3. FIG. 4 is a transverse cross-sectional view (cross-sectional view on the XY plane at the axial center of the operation element 3) showing the operation element 3. Further, FIG. 5 is a vertical cross-sectional view (cross-sectional view on the X1Z plane) of the operation element 3 showing a state of the detection body 32 when the operation body 31 is displaced (rotated in the direction opposite to the X1 direction).
 操作子3(3L,3R)は、図2~図5に示すように、使用者により操作される円筒状の操作体31と、当該操作体31の変位方向を検出する4つの検出体32と、当該各検出体32を支持し、ひいては、操作体31を支持する支持体33とを有する。そして、操作子3は、各検出体32により、操作体31の6軸方向の変位を検出する。すなわち、操作子3は、操作体31のXY平面における平行移動及びZ方向への平行移動を検出する他、XY平面上のある仮想の直線を回動軸とする操作体31の回動(例えば、ヨー回動及びピッチ回動)、並びに、Z方向を回動軸とする操作体31の回動(ロール回動)を検出する6軸検出体である。 As shown in FIGS. 2 to 5, the operation element 3 (3L, 3R) includes a cylindrical operation body 31 that is operated by a user, and four detection bodies 32 that detect the displacement direction of the operation body 31. , Each of the detection bodies 32 is supported, and thus has a support body 33 that supports the operation body 31. The operation element 3 detects the displacement of the operation body 31 in the 6-axis direction by each detection body 32. That is, the operation element 3 detects the parallel movement of the operation body 31 in the XY plane and the parallel movement in the Z direction, and rotates the operation body 31 with a virtual straight line on the XY plane as a rotation axis (for example, , Yaw rotation and pitch rotation), and rotation of the operating body 31 with the Z direction as a rotation axis (roll rotation).
[操作体の構成]
 操作体31は、円柱状の軸部311と、当該軸部311の両端に取り付けられる一対の固定部312と、当該各固定部312により挟持される一対の弾性部313及び作用部314とを有する。
[Operation body configuration]
The operating body 31 includes a cylindrical shaft portion 311, a pair of fixing portions 312 attached to both ends of the shaft portion 311, and a pair of elastic portions 313 and action portions 314 sandwiched between the fixing portions 312. .
 このうち、固定部312は、弾性部313の直径寸法と略同じ直径寸法を有する平面視円形状に形成され、軸部311にねじ315により固定される。これら固定部312には、当該固定部312を覆うように、円筒状のキャップ316(図1参照)が取り付けられ、使用者により操作される部分となる。このような固定部312に挟まれる位置に、一対の弾性部313及び作用部314は配置される。 Among these, the fixing portion 312 is formed in a circular shape in plan view having substantially the same diameter as the elastic portion 313, and is fixed to the shaft portion 311 with a screw 315. A cylindrical cap 316 (see FIG. 1) is attached to these fixing portions 312 so as to cover the fixing portion 312 and is a portion operated by the user. A pair of elastic portions 313 and action portions 314 are arranged at positions sandwiched between such fixing portions 312.
 一対の弾性部313は、ゴム等の弾性部材により円筒状に形成され、軸部311を囲み、かつ、作用部314を挟むように設けられている。そして、当該一対の弾性部313は、軸部311及び固定部312と、作用部314とを接続して、当該軸部311及び固定部312の変位を、作用部314に仲介する。このような弾性部313は、軸部311及び固定部312が回動変位した際に弾性変形して撓むことにより、これらの回動が吸収され、当該回動変位によって生じた圧力のみが作用部314に伝達される。このため、作用部314は、軸部311及び固定部312が変位した場合でも、ほぼ変位せず、変位した場合でも、軸部311及び固定部312の変位量に比べると僅かである。 The pair of elastic portions 313 is formed in a cylindrical shape by an elastic member such as rubber, and is provided so as to surround the shaft portion 311 and sandwich the action portion 314. The pair of elastic portions 313 connect the shaft portion 311 and the fixing portion 312 and the action portion 314, and mediate the displacement of the shaft portion 311 and the fixing portion 312 to the action portion 314. The elastic portion 313 is elastically deformed and bent when the shaft portion 311 and the fixed portion 312 are rotationally displaced, so that the rotation is absorbed, and only the pressure generated by the rotational displacement acts. Is transmitted to the unit 314. For this reason, even if the axial part 311 and the fixing | fixed part 312 are displaced, the action part 314 is hardly displaced, and even if it is displaced, it is a little compared with the displacement amount of the axial part 311 and the fixing | fixed part 312.
 作用部314は、弾性部313より剛性が高い合成樹脂や金属により環状に形成されており、当該弾性部313と接着剤等により固定されている。この作用部314は、弾性部313より直径寸法が大きく形成されており、当該作用部314には、XY平面の周方向において等間隔となる位置に、後述する挿入部3211が挿入される孔部3141が、作用部314を貫通するようにそれぞれ形成されている。そして、当該作用部314は、弾性部313を介して伝達される操作体31の変位方向の圧力を、挿入部3211を介して、検出体32に伝達する。この挿入部3211が挿入される孔部3141は、本発明の穴部に相当し、当該孔部3141の形成位置が、本発明の検出部位に相当する。従って、本実施形態の操作体31では、4つの検出部位が設けられている。なお、作用部314における軸部311が挿通する孔の内壁と、当該軸部311の外周面との間には、所定の隙間が形成され、当該隙間により、操作体31のストローク量が確保される。 The action part 314 is formed in an annular shape with a synthetic resin or metal having higher rigidity than the elastic part 313, and is fixed to the elastic part 313 with an adhesive or the like. The action part 314 has a diameter larger than that of the elastic part 313, and the action part 314 has a hole part into which an insertion part 3211 (described later) is inserted at equal intervals in the circumferential direction of the XY plane. 3141 are formed so as to penetrate the action part 314, respectively. The action unit 314 transmits the pressure in the displacement direction of the operating body 31 transmitted through the elastic unit 313 to the detection body 32 through the insertion unit 3211. The hole 3141 into which the insertion part 3211 is inserted corresponds to the hole of the present invention, and the formation position of the hole 3141 corresponds to the detection site of the present invention. Therefore, in the operating body 31 of the present embodiment, four detection sites are provided. A predetermined gap is formed between the inner wall of the hole through which the shaft portion 311 is inserted in the action portion 314 and the outer peripheral surface of the shaft portion 311, and the stroke amount of the operating body 31 is secured by the gap. The
[検出体の構成]
 検出体32(X1方向先端側及び基端側に位置する検出体を32X1,32X2とし、Y1方向先端側及び基端側の検出体を32Y1,32Y2とする)は、本実施形態では、歪みゲージにより構成されており、操作体31の変位方向の圧力をそれぞれ検出する。具体的に、各検出体32は、前述の孔部3141に応じた位置に設けられ、これにより、操作体31の周方向において等間隔(本実施形態では90°おき)に、当該操作体31を囲むように配置される。これら検出体32は、それぞれ操作体31に向かって突出する追従部321と、当該追従部321に加わる圧力の方向を検出する検出部322とを有する。
[Configuration of the detection object]
In this embodiment, the detection body 32 (the detection bodies positioned at the X1 direction front end side and the base end side are 32X1 and 32X2 and the Y1 direction front end side and base end side detection bodies are 32Y1 and 32Y2) is a strain gauge. Each of the pressures in the displacement direction of the operating body 31 is detected. Specifically, each detection body 32 is provided at a position corresponding to the above-described hole 3141, and thereby the operation body 31 is arranged at equal intervals (every 90 ° in the present embodiment) in the circumferential direction of the operation body 31. It is arranged so that it surrounds. Each of these detectors 32 includes a follower 321 that protrudes toward the operating body 31 and a detector 322 that detects the direction of pressure applied to the follower 321.
 このうち、検出部322は、操作体31に変位が生じた際に、追従部321を介して伝わる圧力変化を検出して、操作体31の変位方向を検出する。 Among these, the detection unit 322 detects a change in the pressure of the operation body 31 by detecting a pressure change transmitted through the follower 321 when the operation body 31 is displaced.
 追従部321は、剛性若しくは可撓性を有する部材により形成されている。この追従部321は、当該追従部321の突出方向先端に、孔部3141に挿入される挿入部3211を有する。 The follower 321 is formed of a member having rigidity or flexibility. The follower 321 has an insertion part 3211 that is inserted into the hole 3141 at the tip of the follower 321 in the protruding direction.
 これら挿入部3211は、対応する孔部3141の内径より僅かに小さい外径寸法を有し、これにより、孔部3141の内表面と、挿入部3211の外表面との間には、僅かなクリアランスが形成される。より詳しくは、挿入部3211における突出方向(孔部3141への挿入方向)に対する直交方向の端面と、孔部3141の内面との間には、クリアランスC1が形成されている。また、作用部314に形成された孔部3141は、当該作用部314を貫通するように形成されているため、当該孔部3141と、挿入部3211における突出方向の端面との間には、クリアランスC2が形成されている。 These insertion portions 3211 have an outer diameter dimension that is slightly smaller than the inner diameter of the corresponding hole portion 3141, whereby a slight clearance is provided between the inner surface of the hole portion 3141 and the outer surface of the insertion portion 3211. Is formed. More specifically, a clearance C <b> 1 is formed between the end surface of the insertion portion 3211 orthogonal to the protruding direction (insertion direction into the hole 3141) and the inner surface of the hole 3141. Further, since the hole 3141 formed in the action part 314 is formed so as to penetrate the action part 314, a clearance is provided between the hole 3141 and the end surface of the insertion part 3211 in the protruding direction. C2 is formed.
 このような追従部321は、操作体31の変位に応じて変位して、検出部322により検出される圧力方向に変化を生じさせる。 Such a follower 321 is displaced according to the displacement of the operating body 31 to cause a change in the pressure direction detected by the detector 322.
 例えば、図5に示す例では、操作体31は、Y1方向を回動軸として、X1方向とは反対方向(P方向)側に回動変位しているが、このような場合、X1方向先端側に位置する検出体32X1の追従部321は、Z方向への圧力を検出部322に伝達し、X1方向基端側に位置する検出体32X2の追従部321は、Z方向とは反対方向への圧力を検出部322に伝達する。そして、これら検出体32X1,32X2の検出部322は、それぞれの追従部321の圧力方向を検出する。 For example, in the example shown in FIG. 5, the operating body 31 is rotationally displaced in the direction opposite to the X1 direction (P direction) with the Y1 direction as a rotational axis. The follower 321 of the detector 32X1 located on the side transmits the pressure in the Z direction to the detector 322, and the follower 321 of the detector 32X2 located on the base end side in the X1 direction is in a direction opposite to the Z direction. Is transmitted to the detection unit 322. And the detection part 322 of these detection bodies 32X1 and 32X2 detects the pressure direction of each tracking part 321.
 なお、追従部321における挿入部3211と孔部3141との間には、前述のクリアランスC1が形成されているため、Y1方向先端側及び基端側に位置する検出体32Y1,32Y2の追従部321は、図5に示す操作体31の回動変位においては圧力が伝達されない。このため、検出体32Y1,32Y2は、操作体31の変位を検出しない。 In addition, since the above-mentioned clearance C1 is formed between the insertion part 3211 and the hole 3141 in the follower part 321, the follower part 321 of the detection bodies 32Y1 and 32Y2 positioned on the distal end side and the proximal end side in the Y1 direction. No pressure is transmitted in the rotational displacement of the operating body 31 shown in FIG. For this reason, the detection bodies 32Y1 and 32Y2 do not detect the displacement of the operation body 31.
 これら検出体32の検出結果に基づいて、操作体31の変位方向が検出される。 Based on the detection results of these detection bodies 32, the displacement direction of the operation body 31 is detected.
 また、追従部321の突出方向先端側(挿入部3211の孔部3141への挿入方向先端側)には、当該追従部321(挿入部3211)に当接する構成は配置されておらず、前述のクリアランスC2が形成されている。このため、操作体31が当該突出方向に沿って変位した場合には、当該突出方向に突出した追従部321を有する検出体32は、操作体31の変位を検出しない。これにより、操作体31と検出体32との間に内力の干渉が生じることを防ぎ、当該操作体31の検出誤差が生じることを防いでいる。 Moreover, the structure which contact | abuts the said tracking part 321 (insertion part 3211) is not arrange | positioned at the protrusion direction front end side (following direction of the insertion part 3211 to the hole 3141) of the tracking part 321. A clearance C2 is formed. For this reason, when the operating body 31 is displaced along the protruding direction, the detection body 32 having the follower 321 protruding in the protruding direction does not detect the displacement of the operating body 31. This prevents internal force interference between the operating body 31 and the detecting body 32 and prevents the detection error of the operating body 31 from occurring.
[支持体の構成]
 支持体33は、図2~5に示すように、金属等により形成された正四角筒状を有し、操作体31(特に作用部314)を囲むように配置される。そして、当該支持体33における4つの平面には、追従部321を操作体31に向けるようにして、各検出体32がねじ331によりそれぞれ取り付けられる。この支持体33における操作体31の軸方向(Z方向)の寸法は、当該操作体31の同方向の寸法の1/3程度に設定されており、これにより、操作体31の軸方向の両端は、支持体33から露出する。そして、前述のように、当該操作体31の両端には、キャップ316が取り付けられ、これにより、操作体31の操作(変位)が可能となる。
[Structure of the support]
As shown in FIGS. 2 to 5, the support body 33 has a regular rectangular tube shape made of metal or the like, and is disposed so as to surround the operation body 31 (particularly the action portion 314). Each detection body 32 is attached to each of the four planes of the support 33 by screws 331 so that the follower 321 faces the operating body 31. The dimension of the operation body 31 in the axial direction (Z direction) of the support body 33 is set to about 1/3 of the dimension of the operation body 31 in the same direction. Are exposed from the support 33. As described above, the caps 316 are attached to both ends of the operation body 31, and the operation body 31 can be operated (displaced).
[操作体の変位検出]
 図6は、操作子3Lの操作体31をX方向に変位させた場合の操作装置1を示す図である。なお、図6(A)及び(B)は、当該操作装置1の正面図及び側面図である。
[Operation body displacement detection]
FIG. 6 is a diagram illustrating the operating device 1 when the operating body 31 of the operating element 3L is displaced in the X direction. 6A and 6B are a front view and a side view of the operating device 1, respectively.
 図6に示すように、操作子3Lの操作体31をX方向に変位(XY平面での平行移動)させた場合には、それぞれの追従部321に、当該操作体31の変位に倣った方向の圧力が加わる。具体的には、検出体32X1,32X2にはY1方向の反対方向への圧力が加わり、検出体32Y1,32Y2にはX1方向への圧力が加わる。そして、各検出体32がそれぞれの追従部321に加わる圧力方向を検出することにより、操作子3Lは、操作体31のX方向への変位を検出する。 As shown in FIG. 6, when the operating body 31 of the operating element 3L is displaced in the X direction (translation in the XY plane), the direction following the displacement of the operating body 31 is set to each follower 321. Pressure is applied. Specifically, pressure in the direction opposite to the Y1 direction is applied to the detection bodies 32X1 and 32X2, and pressure in the X1 direction is applied to the detection bodies 32Y1 and 32Y2. Then, by detecting the pressure direction that each detection body 32 applies to each follower 321, the operation element 3 </ b> L detects the displacement of the operation body 31 in the X direction.
 図7は、操作子3Lの操作体31をY方向に変位させた場合の操作装置1を示す図である。なお、図7(A)及び(B)は、当該操作装置1の正面図及び側面図である。 FIG. 7 is a diagram showing the operating device 1 when the operating body 31 of the operating element 3L is displaced in the Y direction. 7A and 7B are a front view and a side view of the operating device 1, respectively.
 図7に示すように、操作子3Lの操作体31をY方向に変位(XY平面での平行移動)させた場合には、前述の場合と同様に、それぞれの追従部321に、当該操作体31の変位に倣って方向の圧力が加わる。具体的には、検出体32X1,32X2にはY1方向への圧力が加わり、検出体32Y1,32Y2にはX1方向への圧力が加わる。そして、各検出体32がそれぞれの追従部321に加わる圧力方向を検出することにより、操作子3Lは、操作体31のY方向への変位を検出する。 As shown in FIG. 7, when the operating body 31 of the operating element 3L is displaced in the Y direction (translation in the XY plane), the corresponding operating body is placed in each follower 321 as described above. A directional pressure is applied following the displacement of 31. Specifically, pressure in the Y1 direction is applied to the detection bodies 32X1 and 32X2, and pressure in the X1 direction is applied to the detection bodies 32Y1 and 32Y2. Then, the operation element 3L detects the displacement of the operation body 31 in the Y direction by detecting the pressure direction applied to each follower 321 by each detection body 32.
 図8は、操作子3Lの操作体31をZ方向に変位させた場合の操作装置1を示す図である。なお、図8(A)及び(B)は、当該操作装置1の正面図及び側面図である。 FIG. 8 is a diagram showing the operating device 1 when the operating body 31 of the operating element 3L is displaced in the Z direction. 8A and 8B are a front view and a side view of the operating device 1, respectively.
 図8に示すように、操作子3Lの操作体31をZ方向に変位(Z方向への平行移動)させた場合には、全ての追従部321にZ方向への圧力が加わる。そして、各検出体32がそれぞれの追従部321に加わる圧力方向を検出することにより、操作子3Lは、操作体31のZ方向への変位を検出する。 As shown in FIG. 8, when the operating body 31 of the operating element 3L is displaced in the Z direction (parallel movement in the Z direction), pressure in the Z direction is applied to all the followers 321. Then, by detecting the pressure direction that each detection body 32 applies to each follower 321, the operation element 3 </ b> L detects the displacement of the operation body 31 in the Z direction.
 このように、各検出体32が追従部321に加わる圧力方向を検出することで、操作子3は、操作体31のX,Y,Z方向に沿う平行移動を検出する。なお、XY平面での他の方向への操作体31の平行移動も、同様に検出される。 Thus, the operation element 3 detects the parallel movement along the X, Y, and Z directions of the operation body 31 by detecting the pressure direction applied to the follower 321 by each detection body 32. Note that the parallel movement of the operating body 31 in the other direction on the XY plane is also detected in the same manner.
 図9は、操作子3Lの操作体31をY方向を回動軸としてX方向に向かって変位(ヨー回動)させた場合の操作装置1を示す図である。なお、図9(A)及び(B)は、当該操作装置1の正面図及び側面図である。 FIG. 9 is a diagram showing the operating device 1 when the operating body 31 of the operating element 3L is displaced (yaw rotated) in the X direction with the Y direction as a rotation axis. 9A and 9B are a front view and a side view of the operating device 1, respectively.
 図9に示すように、操作子3Lの操作体31をY方向を回動軸としてX方向に変位(ヨー回動)させた場合には、図4に示した検出体32X1,32Y2の追従部321にZ方向とは反対方向への圧力が加わり、検出体32X2,32Y1の追従部321にZ方向への圧力が加わる。そして、これら追従部321に加わる圧力方向を各検出体32がそれぞれ検出することにより、操作子3Lは、操作体31のX方向へのヨー回動を検出する。 As shown in FIG. 9, when the operating body 31 of the operating element 3L is displaced in the X direction (yaw rotation) about the Y direction as a rotation axis, the followers of the detection bodies 32X1 and 32Y2 shown in FIG. Pressure in the direction opposite to the Z direction is applied to 321, and pressure in the Z direction is applied to the follower 321 of the detection bodies 32X2 and 32Y1. Then, when each detector 32 detects the direction of pressure applied to the follower 321, the operator 3 </ b> L detects the yaw rotation of the operator 31 in the X direction.
 図10は、操作子3Lの操作体31をX方向を回動軸としてY方向に向かって変位(ピッチ回動)させた場合の操作装置1を示す図である。なお、図10(A)及び(B)は、当該操作装置1の正面図及び側面図である。 FIG. 10 is a diagram showing the operating device 1 when the operating body 31 of the operating element 3L is displaced (pitch rotation) in the Y direction with the X direction as a rotation axis. 10A and 10B are a front view and a side view of the operating device 1, respectively.
 図10に示すように、操作子3Lの操作体31をX方向を回動軸としてY方向に変位(ピッチ回動)させた場合には、図4に示した検出体32X1,32Y1の追従部321にZ方向とは反対方向への圧力が加わり、検出体32X2,32Y2の追従部321にZ方向への圧力が加わる。そして、これら追従部321に加わる圧力方向を、各検出体32がそれぞれ検出することにより、操作子3Lは、操作体31のY方向へのピッチ回動を検出する。 As shown in FIG. 10, when the operating body 31 of the operating element 3L is displaced in the Y direction (pitch rotation) with the X direction as the rotation axis, the followers of the detection bodies 32X1 and 32Y1 shown in FIG. A pressure in the direction opposite to the Z direction is applied to 321, and a pressure in the Z direction is applied to the follower 321 of the detection bodies 32 </ b> X <b> 2 and 32 </ b> Y <b> 2. Then, when each detection body 32 detects the pressure direction applied to the follower 321, the operation element 3 </ b> L detects the pitch rotation of the operation body 31 in the Y direction.
 なお、XY平面上の仮想の直線を回動軸とする他の方向への回動も同様に検出される。 It should be noted that rotation in another direction with a virtual straight line on the XY plane as the rotation axis is also detected.
 図11は、操作子3Lの操作体31をZ方向を回動軸として変位(ロール回動)させた場合の操作装置1を示す図である。なお、図11(A)及び(B)は、当該操作装置1の正面図及び側面図である。 FIG. 11 is a diagram showing the operating device 1 when the operating body 31 of the operating element 3L is displaced (rolled) with the Z direction as a rotational axis. 11A and 11B are a front view and a side view of the operating device 1.
 図11に示すように、操作子3Lの操作体31をZ方向を回動軸として変位(ロール回動)させた場合には、図4に示した全ての検出体32の追従部321に、当該各検出体32を正面視した際の同一方向(追従部321の突出方向から見て同一方向)への圧力が加わる。例えば、図11の例では、操作装置1を正面から見て操作体31を反時計回りにロール回動させているが、この状態では、追従部321と対向し、かつ、Z方向が上となるように当該追従部321を見た場合、それぞれの追従部321には全て左側への圧力が加わる。一方、操作体31を時計回りにロール回動させた場合には、それぞれの追従部321には全て右側への圧力が加わる。これら追従部321に加わる圧力方向を、各検出体32がそれぞれ検出することにより、操作子3Lは、操作体31のZ方向を回動軸とするロール回動を検出する。 As shown in FIG. 11, when the operation body 31 of the operation element 3L is displaced (roll rotation) with the Z direction as a rotation axis, the followers 321 of all the detection bodies 32 shown in FIG. Pressure in the same direction (same direction as seen from the protruding direction of the follower 321) when the detection bodies 32 are viewed from the front is applied. For example, in the example of FIG. 11, the operating body 31 is rotated in a counterclockwise direction when the operating device 1 is viewed from the front. However, in this state, the operating body 31 faces the follower 321 and the Z direction is upward. Thus, when the follower 321 is viewed, the leftward pressure is applied to each follower 321. On the other hand, when the operating body 31 is rotated in a clockwise direction, the rightward pressure is applied to each of the following portions 321. When each detection body 32 detects the pressure direction applied to the follower 321, the operator 3 </ b> L detects roll rotation about the Z direction of the operation body 31 as a rotation axis.
 なお、操作体31の平行移動と回動変位とを組合せた場合も、同様に検出される。 In addition, when the parallel movement and the rotational displacement of the operation body 31 are combined, it is detected similarly.
 操作子3Rは、操作子3Lと同様の構成を有し、当該操作子3Lと同様に、操作体31の変位を検出する。 The operating element 3R has the same configuration as the operating element 3L, and detects the displacement of the operating body 31 in the same manner as the operating element 3L.
 このように検出された操作体31の変位は、操作子3L,3Rから操作装置1の制御装置(図示省略)に制御信号として送信される。そして、当該制御装置が、各検出体32間の感度補正、バイアス補正、ばらつき補正及びドリフト補正等の各種補正を行うとともに、不感帯処理等を行って、当該制御信号に基づく操作信号を前述の情報処理装置Dに送信する。 The displacement of the operating body 31 detected in this way is transmitted as a control signal from the operating elements 3L and 3R to the control device (not shown) of the operating device 1. Then, the control device performs various corrections such as sensitivity correction, bias correction, variation correction, and drift correction between the detection bodies 32, performs dead zone processing, and the like, and obtains an operation signal based on the control signal as the above-described information. Transmit to processing device D.
[操作体の平行移動量及び回動量の算出]
 以上説明したように、操作装置1の制御装置は、各検出体32が検出する圧力の方向に基づいて、操作体31の平行移動の向き、及び回動の向きを検出する。さらに操作装置1は、各検出体32が検出する圧力の大きさを用いることにより、操作体31のX方向、Y方向、及びZ方向に沿った平行移動の大きさ(平行移動量)を算出する。同様に、各検出体32が検出する圧力の大きさを用いることにより、操作体31のX方向、Y方向、及びZ方向のそれぞれを回動軸としたピッチ回動、ヨー回動、及びロール回動の大きさ(回動量)を算出する。以下、このような平行移動量及び回動量の算出方法について、説明する。
[Calculation of parallel movement amount and rotation amount of operating body]
As described above, the control device of the operating device 1 detects the direction of parallel movement and the direction of rotation of the operating body 31 based on the direction of pressure detected by each detector 32. Further, the controller device 1 calculates the magnitude of the translation (amount of translation) of the operating body 31 along the X, Y, and Z directions by using the magnitude of the pressure detected by each detector 32. To do. Similarly, by using the magnitude of the pressure detected by each detection body 32, pitch rotation, yaw rotation, and roll with the operation body 31 as rotation axes in the X direction, Y direction, and Z direction, respectively. The magnitude of rotation (the amount of rotation) is calculated. Hereinafter, a method of calculating the parallel movement amount and the rotation amount will be described.
 以下では、X方向、Y方向、及びZ方向のそれぞれを基準方向として、当該基準方向に沿った操作体31の平行移動量をPx、Py、及びPzと表記する。ここで、Px、Py、及びPzのいずれについても、基準方向に向かう変位を正の値、基準方向と反対方向に向かう変位を負の値で表すものとする。また、X方向、Y方向、及びZ方向のそれぞれを回動軸とした操作体31の回動量をRx、Ry、及びRzと表記する。ここで、Rxについては、操作体31の正面側がY方向に向かう回動(図10に示す向きの回動)を正の値で表し、逆向きの回動を負の値で表す。Ryについては、操作体31の正面側がX方向に向かう回動(図9に示す向きの回動)を正の値で表す。Rzについては、正面から見て反時計回りの回動(図11に示す向きの回動)を正の値で表す。 Hereinafter, each of the X direction, the Y direction, and the Z direction is set as a reference direction, and the parallel movement amounts of the operation body 31 along the reference direction are expressed as Px, Py, and Pz. Here, for any of Px, Py, and Pz, the displacement in the reference direction is represented by a positive value, and the displacement in the direction opposite to the reference direction is represented by a negative value. In addition, the rotation amounts of the operation body 31 with the X direction, the Y direction, and the Z direction as rotation axes are denoted as Rx, Ry, and Rz. Here, for Rx, the rotation of the front surface of the operating body 31 in the Y direction (rotation in the direction shown in FIG. 10) is represented by a positive value, and the reverse rotation is represented by a negative value. Regarding Ry, the rotation of the front surface of the operating body 31 in the X direction (the rotation in the direction shown in FIG. 9) is expressed by a positive value. For Rz, a counterclockwise rotation (rotation in the direction shown in FIG. 11) when viewed from the front is represented by a positive value.
 また、各検出体32は、操作体31に向かう方向と交差し、かつ、互いに交差する2方向のそれぞれに沿って追従部321に加わる圧力の大きさを検出する。本実施形態では、各検出体32は、追従部321の突出方向(操作体31に向かう方向)に対して直交し、かつ互いに直交する2方向を検出方向とし、当該検出方向に沿って作用部314が追従部321に及ぼす圧力の大きさを検出する。より具体的に、各検出体32は、いずれもZ方向を垂直検出方向として、当該垂直検出方向に沿って追従部321に加わる圧力の大きさを検出する。また、各検出体32は、追従部321と対向し、かつ、Z方向が上となるように当該追従部321を見た場合の左手方向を水平検出方向として、当該水平検出方向に沿って追従部321に加わる圧力の大きさを検出する。すなわち、検出体32X1はY1方向、検出体32Y1はX1方向の逆方向、検出体32X2はY1方向の逆方向、検出体23Y2はX1方向を、それぞれ水平検出方向とする。以下では、検出体32X1、32Y1、32X2、及び32Y2のそれぞれが検出する水平検出方向の圧力の大きさを圧力値x1、x2、x3、及びx4と表記し、垂直検出方向の圧力の大きさを圧力値y1、y2、y3、及びy4と表記する。なお、いずれの検出体32も、検出方向と逆方向の圧力を検出した場合には、当該圧力の大きさを示す負の値を圧力値として出力する。図12は、検出体32X1、32Y1、32X2、及び32Y2の位置関係とその検出方向を示している。この図において中心点Oは操作体31の中心位置を示している。この図に示されるように、各検出体32の追従部321は、操作体31の長手方向(Z方向)と直交するXY平面上において、中心点Oを中心とした円に内接する正方形の頂点位置に配置されている。 Further, each detection body 32 detects the magnitude of the pressure applied to the follower 321 along each of the two directions intersecting with the direction toward the operation body 31 and intersecting each other. In this embodiment, each detection body 32 is orthogonal to the protruding direction of the follower 321 (the direction toward the operating body 31) and two directions orthogonal to each other as the detection direction, and the action part along the detection direction. The magnitude of the pressure exerted on the follower 321 by 314 is detected. More specifically, each detection body 32 detects the magnitude of the pressure applied to the follower 321 along the vertical detection direction with the Z direction as the vertical detection direction. In addition, each detection body 32 faces the follower 321 and follows the horizontal detection direction with the left hand direction when the follower 321 is viewed so that the Z direction is on the horizontal detection direction. The magnitude of the pressure applied to the part 321 is detected. That is, the detection body 32X1 is the horizontal detection direction, the detection body 32Y1 is the reverse direction of the X1 direction, the detection body 32X2 is the reverse direction of the Y1 direction, and the detection body 23Y2 is the horizontal detection direction. In the following, the magnitude of the pressure in the horizontal detection direction detected by each of the detection bodies 32X1, 32Y1, 32X2, and 32Y2 will be referred to as pressure values x1, x2, x3, and x4, and the magnitude of the pressure in the vertical detection direction. The pressure values are expressed as y1, y2, y3, and y4. When any pressure is detected in the direction opposite to the detection direction, any of the detection bodies 32 outputs a negative value indicating the magnitude of the pressure as the pressure value. FIG. 12 shows the positional relationship between the detection bodies 32X1, 32Y1, 32X2, and 32Y2 and the detection direction thereof. In this figure, the center point O indicates the center position of the operating body 31. As shown in this figure, the follower 321 of each detection body 32 has a square apex inscribed in a circle centered on the center point O on the XY plane orthogonal to the longitudinal direction (Z direction) of the operation body 31. Placed in position.
 操作体31がX方向に変位した場合、当該変位に起因して、各検出体32の追従部321に分散して圧力が加わる。その結果、検出体32X1及び検出体32Y1は水平検出方向と逆向きの圧力を検出し、検出体32X2及び検出体32Y2は水平検出方向に対する圧力を検出する。そのため、操作体31の平行移動量Pxは、各検出体32が検出した水平検出方向の圧力値x1~x4をX方向に射影して合算することにより算出される。すなわち、平行移動量Pxは、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000001
ここで、Gは予め定められた比例定数である。
When the operating body 31 is displaced in the X direction, due to the displacement, pressure is distributed and applied to the follower 321 of each detecting body 32. As a result, the detection body 32X1 and the detection body 32Y1 detect pressure opposite to the horizontal detection direction, and the detection body 32X2 and detection body 32Y2 detect pressure in the horizontal detection direction. Therefore, the parallel movement amount Px of the operating body 31 is calculated by projecting and adding the pressure values x1 to x4 in the horizontal detection direction detected by the respective detection bodies 32 in the X direction. That is, the parallel movement amount Px is calculated by the following calculation formula.
Figure JPOXMLDOC01-appb-M000001
Here, G 1 is a proportionality constant determined in advance.
 同様に、Y方向の平行移動量Pyは、Gを予め定められた比例定数として、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000002
Similarly, the amount of parallel movement Py in the Y direction, as a proportional constant defined the G 2 in advance, is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000002
 Z方向の平行移動量Pzについては、各検出体32がZ方向に沿った圧力の大きさを検出するので、単純に各検出体32が検出した垂直検出方向の圧力値y1~y4を合算することで計算される。すなわち、平行移動量Pzは、Gを予め定められた比例定数として、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000003
For the parallel movement amount Pz in the Z direction, each detector 32 detects the magnitude of the pressure along the Z direction, so the pressure values y1 to y4 in the vertical detection direction detected by each detector 32 are simply added together. It is calculated by that. That is, parallel movement amount Pz as proportional constant defined the G 3 in advance, is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000003
 また、X方向を回動軸として操作体31をY方向に向けて回動させた場合、前述したように、検出体32X1及び検出体32Y1はZ方向の逆方向に対する圧力を検出し、検出体32X2及び検出体32Y2はZ方向に対する圧力を検出する。ここで各検出体32は、操作体31の中心から見て、回動方向であるY方向から45°ずれた方向に配置されている。そのため回動量Rxは、各検出体32が検出する垂直検出方向の圧力値y1~y4に対して、モーメントを考慮した係数を乗じて合算することにより算出される。すなわち、回動量Rxは、Gを予め定められた比例定数として、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000004
Further, when the operating body 31 is rotated in the Y direction with the X direction as the rotation axis, as described above, the detection body 32X1 and the detection body 32Y1 detect the pressure in the direction opposite to the Z direction, and the detection body 32X2 and the detection body 32Y2 detect pressure in the Z direction. Here, each detection body 32 is arranged in a direction shifted by 45 ° from the Y direction, which is the rotation direction, when viewed from the center of the operation body 31. For this reason, the rotation amount Rx is calculated by multiplying the pressure values y1 to y4 in the vertical detection direction detected by the respective detection bodies 32 by a coefficient in consideration of the moment. In other words, rotation amount Rx is a proportionality constant that is determined to G 4 in advance, is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000004
 同様に、回動量Ryは、Gを予め定められた比例定数として、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000005
Similarly, the pivot amount Ry as proportional constant defined the G 5 in advance, is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000005
 また、Z方向を回動軸として操作体31を正面から見て反時計回りに回動させた場合、各検出体32はいずれも水平検出方向に対する圧力を検出する。そのため回動量Rzは、各検出体32が検出した水平検出方向の圧力値x1~x4を合算することで計算される。すなわち、回動量Rzは、Gを予め定められた比例定数として、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000006
Further, when the operating body 31 is rotated counterclockwise as viewed from the front with the Z direction as a rotation axis, each of the detection bodies 32 detects a pressure in the horizontal detection direction. Therefore, the rotation amount Rz is calculated by adding the pressure values x1 to x4 in the horizontal detection direction detected by the respective detection bodies 32. In other words, rotation amount Rz is as a proportional constant defined the G 6 in advance, is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000006
 なお、比例定数G~Gは、検出体32による検出結果の数値と、実際の操作体31の平行移動量及び回動量との関係によって予め決定され、操作装置1の制御装置内に格納される。なお、比例定数G~Gは互いに同じ値であってもよいし、互いに異なる値であってもよい。同様に、G~Gも互いに同じ値であってよいし、互いに異なる値であってもよい。 The proportional constants G 1 to G 6 are determined in advance by the relationship between the numerical value of the detection result by the detection body 32 and the actual amount of translation and rotation of the operation body 31, and are stored in the control device of the operation apparatus 1. Is done. Note that the proportional constants G 1 to G 3 may be the same value or different values. Similarly, G 4 to G 6 may be the same value or different values.
 以上の説明では、予め用意された計算式と予め定められた比例定数G~Gとを用いて操作体31の平行移動量及び回動量を算出することとしたが、操作装置1はこれ以外の方法で平行移動量及び回動量を算出してもよい。例えば操作装置1は、事前にキャリブレーションを実行して得られるキャリブレーションデータを用いて、操作体31の平行移動量及び回動量を算出してもよい。ここでキャリブレーションデータは、キャリブレーションを実行することによって算出される、検出体32によって検出される圧力値と操作体31の物理的な平行移動量及び回動量との間の関係を示すデータである。この場合の具体例について、以下に説明する。 In the above description, the parallel movement amount and the rotation amount of the operating body 31 are calculated using a previously prepared calculation formula and predetermined proportional constants G 1 to G 6. The parallel movement amount and the rotation amount may be calculated by a method other than the above. For example, the controller device 1 may calculate the parallel movement amount and the rotation amount of the operation body 31 using calibration data obtained by executing calibration in advance. Here, the calibration data is data indicating the relationship between the pressure value detected by the detection body 32 and the physical parallel movement amount and rotation amount of the operation body 31 calculated by executing calibration. is there. A specific example in this case will be described below.
 キャリブレーションを実行する際には、操作体31に対して6種類の基準操作を順に実行する必要がある。この基準操作は、X方向、Y方向、及びZ方向のそれぞれに対して決まった変位量だけ操作体31を平行移動させる平行移動操作、並びに、X方向、Y方向、及びZ方向のそれぞれを回動軸として決まった回動量だけ操作体31を回動させる回動操作である。あるいは、基準操作は、各方向に決まった力で操作体31を平行移動及び回動させる操作であってもよい。 When executing calibration, it is necessary to sequentially execute six types of reference operations on the operation body 31. This reference operation includes a translation operation for translating the operation body 31 by a predetermined amount of displacement in each of the X direction, the Y direction, and the Z direction, and a rotation operation in each of the X direction, the Y direction, and the Z direction. This is a rotation operation that rotates the operating body 31 by a rotation amount determined as a moving axis. Alternatively, the reference operation may be an operation of moving and rotating the operating body 31 with a force determined in each direction.
 キャリブレーションは、例えば操作装置1の工場出荷時に実行される。この場合、操作装置1をステージに固定し、操作体31をアーム等で掴んで所定の力で各基準方向に引っ張ることで、平行移動操作を実現できる。また、操作体31をアーム等で掴んで所定の力で回動させることにより、回動操作を実現できる。また、キャリブレーションは、操作装置1のユーザによって実行されてもよい。この場合、本実施形態に係る操作入力システムは、例えば情報処理装置Dに接続されたモニタの画面に、キャリブレーションの実行を促すメッセージを表示することによって、ユーザに6種類の基準操作を行わせる。これにより、キャリブレーションを行ったユーザによる操作の癖などを反映したキャリブレーションデータを生成することができる。なお、複数のユーザが操作装置1を使用する場合、これら複数のユーザのそれぞれにキャリブレーションを行わせることによって、各ユーザに固有のキャリブレーションデータを生成してもよい。また、ユーザによるキャリブレーションは、ユーザが最初に操作装置1を使用する際に1回だけ実行することとしてもよいし、ユーザが操作装置1を使用する都度実行することとしてもよい。 Calibration is executed, for example, when the operating device 1 is shipped from the factory. In this case, a parallel movement operation can be realized by fixing the operating device 1 to the stage, holding the operating body 31 with an arm or the like, and pulling it in each reference direction with a predetermined force. Further, a rotating operation can be realized by holding the operating body 31 with an arm or the like and rotating it with a predetermined force. Further, the calibration may be executed by the user of the controller device 1. In this case, the operation input system according to the present embodiment causes the user to perform six types of reference operations, for example, by displaying a message prompting execution of calibration on the screen of a monitor connected to the information processing apparatus D. . This makes it possible to generate calibration data that reflects a habit of operation by the user who performed calibration. When a plurality of users use the controller device 1, calibration data unique to each user may be generated by causing each of the plurality of users to perform calibration. Further, the calibration by the user may be executed only once when the user uses the controller device 1 for the first time, or may be executed every time the user uses the controller device 1.
 キャリブレーションデータは、この6種類の基準操作のそれぞれが実行された際に各検出体32が検出した圧力値からなる測定データを用いて算出される。以下では、操作体31に対してX方向への平行移動操作が行われた際に、検出体32X1が検出した圧力値x1及びy1、検出体32Y1が検出した圧力値x2及びy2、検出体32X2が検出した圧力値x3及びy3、並びに検出体32Y2が検出した圧力値x4及びy4を、それぞれpx1、px2、px3、px4、px5、px6、px7及びpx8と表記する。同様に、Y方向への平行移動操作が行われた際に4個の検出体32が検出した圧力値をpy1~py8と表記し、Z方向への平行移動操作が行われた際に4個の検出体32が検出した圧力値をpz1~pz8と表記する。また、X方向を回動軸とした回動操作が行われた際に検出された圧力値をrx1~rx8と表記し、Y方向を回動軸とした回動操作が行われた際に検出された圧力値をry1~ry8と表記し、Z方向を回動軸とした回動操作が行われた際に検出された圧力値をrz1~rz8と表記する。 The calibration data is calculated using measurement data including pressure values detected by the respective detection bodies 32 when each of the six types of reference operations is executed. Hereinafter, when a parallel movement operation in the X direction is performed on the operation body 31, the pressure values x1 and y1 detected by the detection body 32X1, the pressure values x2 and y2 detected by the detection body 32Y1, and the detection body 32X2 The pressure values x3 and y3 detected by, and the pressure values x4 and y4 detected by the detector 32Y2 are expressed as px1, px2, px3, px4, px5, px6, px7, and px8, respectively. Similarly, the pressure values detected by the four detectors 32 when the translation operation in the Y direction is performed are represented as py1 to py8, and four when the translation operation in the Z direction is performed. The pressure values detected by the detector 32 are expressed as pz1 to pz8. In addition, the pressure values detected when the rotation operation with the X direction as the rotation axis is expressed as rx1 to rx8, and detected when the rotation operation with the Y direction as the rotation axis is performed. The obtained pressure values are expressed as ry1 to ry8, and the pressure values detected when the rotation operation with the Z direction as the rotation axis is performed are expressed as rz1 to rz8.
 これらの測定データにより、以下に示す行列Aが定義される。
Figure JPOXMLDOC01-appb-M000007
そして、各検出体32が検出する圧力値と操作体31の平行移動量及び回動量との間に線形関係が成立すると仮定した場合、この行列Aの一般化逆行列A-1がキャリブレーションデータとなる。すなわち、ある圧力値x1~x4及びy1~y4が検出された場合、そのときの操作体31の平行移動量Px、Py、Pz及び回動量Rx、Ry、Rzは、A-1を用いて以下の計算式により算出される。
Figure JPOXMLDOC01-appb-M000008
操作装置1の演算装置は、キャリブレーションの実行時に得られた測定データを用いてこの一般化逆行列A-1の各成分を算出し、キャリブレーションデータとして記憶しておく。そして、ユーザが操作子3を用いて入力操作を行う際には、記憶されているキャリブレーションデータを用いて平行移動量Px、Py、Pz及び回動量Rx、Ry、Rzを算出し、情報処理装置Dに送信する。具体的に、行列A-1のm行n列の成分をamnとすると、例えば平行移動量Pxは、
Figure JPOXMLDOC01-appb-M000009
という計算式で計算できる。
The matrix A shown below is defined by these measurement data.
Figure JPOXMLDOC01-appb-M000007
When it is assumed that a linear relationship is established between the pressure value detected by each detector 32 and the amount of translation and rotation of the operating body 31, the generalized inverse matrix A −1 of this matrix A is the calibration data. It becomes. That is, when certain pressure values x1 to x4 and y1 to y4 are detected, the parallel movement amounts Px, Py, Pz and rotation amounts Rx, Ry, Rz of the operating body 31 at that time are as follows using A- 1. It is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000008
The arithmetic unit of the controller device 1 calculates each component of the generalized inverse matrix A- 1 using the measurement data obtained at the time of executing calibration, and stores it as calibration data. When the user performs an input operation using the operator 3, the parallel movement amounts Px, Py, Pz and the rotation amounts Rx, Ry, Rz are calculated using the stored calibration data, and information processing is performed. Transmit to device D. Specifically, if the component of m rows and n columns of the matrix A −1 is a mn , for example, the parallel movement amount Px is
Figure JPOXMLDOC01-appb-M000009
It can be calculated with the following formula.
 なお、キャリブレーションを実行する際には、前述した計算式に使用される係数を用いて、キャリブレーションデータを補正したり、キャリブレーションデータの妥当性を評価したりしてもよい。例えば式(1)と式(9)を対比すると、a11~a18は理論上以下の値になると想定される。
11=a13=-G・cos45°
15=a17=G・cos45°
12=a14=a16=a18=0
そのため、キャリブレーションを実行して算出した行列A-1の各成分の値が、理論値から大きく乖離する場合には、エラーを出力してキャリブレーションを再実行させたり、理論値に近い値となるようキャリブレーションデータを補正したりしてもよい。
When executing calibration, the calibration data may be corrected or the validity of the calibration data may be evaluated using the coefficients used in the above-described calculation formula. For example, when Equations (1) and (9) are compared, a 11 to a 18 are theoretically assumed to be the following values.
a 11 = a 13 = −G 1 · cos 45 °
a 15 = a 17 = G 1 · cos 45 °
a 12 = a 14 = a 16 = a 18 = 0
For this reason, when the values of the respective components of the matrix A- 1 calculated by executing the calibration greatly deviate from the theoretical values, an error is output and the calibration is executed again, or the values close to the theoretical values are obtained. The calibration data may be corrected so that
 以上説明したように、操作装置1は、各検出体32の検出結果であるx1~x4及びy1~y4の値を用いて、互いに直交する3つの基準方向に沿った操作体31の平行移動量Px、Py、及びPzを算出することができる。同様に、操作装置1は、x1~x4及びy1~y4の値を用いて、3つの基準方向を回動軸とした操作体31の回動量Rx、Ry、及びRzを算出することができる。 As described above, the controller device 1 uses the values x1 to x4 and y1 to y4 that are detection results of the respective detectors 32 to translate the operation body 31 along three reference directions orthogonal to each other. Px, Py, and Pz can be calculated. Similarly, the controller device 1 can calculate the rotation amounts Rx, Ry, and Rz of the operating body 31 with the three reference directions as the rotation axes using the values x1 to x4 and y1 to y4.
 なお、以上の説明では、操作装置1が備える制御装置が平行移動量及び回動量の算出を行うこととした。この制御装置は、操作装置1に内蔵されたマイクロコンピュータ等の演算素子であってよい。また、本実施形態に係る操作入力システムにおいて、平行移動量及び回動量の算出は必ずしも操作装置1が実行する必要はなく、情報処理装置Dが実行してもよい。この場合、操作装置1は、各検出体32の検出結果であるx1~x4及びy1~y4の数値情報をそのままユーザの操作内容を示す操作信号として情報処理装置Dに送信し、情報処理装置Dに内蔵されたCPU等の制御装置が、操作装置1から受信した操作信号を用いて操作体31の平行移動量及び回動量を算出する。 In the above description, the control device included in the controller device 1 calculates the parallel movement amount and the rotation amount. The control device may be an arithmetic element such as a microcomputer built in the operation device 1. In the operation input system according to the present embodiment, the calculation of the parallel movement amount and the rotation amount is not necessarily performed by the operation device 1, and may be performed by the information processing device D. In this case, the controller device 1 transmits the numerical information of x1 to x4 and y1 to y4, which are detection results of the respective detection bodies 32, as they are to the information processing device D as operation signals indicating the operation contents of the user, and the information processing device D A control device such as a CPU built in the CPU calculates the parallel movement amount and the rotation amount of the operation body 31 using the operation signal received from the operation device 1.
 以上説明した本実施形態に係る操作入力システムによれば、以下の効果がある。 The operation input system according to the present embodiment described above has the following effects.
 (1)X1方向に配置された2つの検出体32と、XY平面においてX1方向に直交するY1方向に配置された2つの検出体32とにより、操作体31のXY平面における平行移動、Z方向に沿う平行移動、XY平面における仮想の直線を回動軸とする回動、及び、Z方向を回動軸とする回動の全てを検出できる。 (1) The two detectors 32 arranged in the X1 direction and the two detectors 32 arranged in the Y1 direction orthogonal to the X1 direction in the XY plane, translate the operation body 31 in the XY plane, in the Z direction. , A rotation with a virtual straight line on the XY plane as a rotation axis, and a rotation with the Z direction as a rotation axis can be detected.
 これによれば、従来のアナログスティックより多くの操作体31の変位方向を検出できる。従って、操作装置1の利便性を向上できる。 According to this, the displacement direction of the operating body 31 can be detected more than the conventional analog stick. Therefore, the convenience of the operating device 1 can be improved.
 (2)それぞれの検出体32の追従部321が、操作体31の作用部314と係合することにより、当該操作体31の変位によって生じる圧力の方向を各検出体32に確実に伝達させることができる。従って、各検出体32が操作体31の変位方向を確実に検出できる。 (2) Each follower 321 of each detection body 32 is engaged with the action portion 314 of the operation body 31 to reliably transmit the direction of pressure generated by the displacement of the operation body 31 to each detection body 32. Can do. Accordingly, each detection body 32 can reliably detect the displacement direction of the operation body 31.
 (3)追従部321の検出体32からの突出方向先端には、作用部314に形成された孔部3141に挿入される挿入部3211が形成されており、これにより、操作体31と検出体32とを、簡易な構成で物理的に接続できる。これによれば、追従部321を介して、操作体31の変位によって生じる圧力の方向を検出体32に確実に伝達できる。従って、各検出体32が操作体31の変位方向をより確実に検出できる。 (3) An insertion portion 3211 to be inserted into a hole 3141 formed in the action portion 314 is formed at the leading end of the follow-up portion 321 in the protruding direction from the detection body 32, whereby the operating body 31 and the detection body 32 can be physically connected with a simple configuration. According to this, the direction of the pressure generated by the displacement of the operation body 31 can be reliably transmitted to the detection body 32 via the follower 321. Therefore, each detection body 32 can detect the displacement direction of the operation body 31 more reliably.
 (4)孔部3141の内面と、挿入部3211の外表面との間には、クリアランスC1,C2が形成されている。このため、操作体31が当該クリアランスC1に応じた寸法だけ僅かに変位した場合には、検出体32が操作体31の変位を検出しない。これによれば、検出体32による操作体31の変位検出が頻繁に生じることを抑制できる。 (4) Clearances C1 and C2 are formed between the inner surface of the hole 3141 and the outer surface of the insertion portion 3211. For this reason, when the operating body 31 is slightly displaced by a dimension corresponding to the clearance C1, the detecting body 32 does not detect the displacement of the operating body 31. According to this, it can suppress that the displacement detection of the operation body 31 by the detection body 32 arises frequently.
 また、クリアランスC2が形成されていることにより、孔部3141の内面に挿入部3211が当接しない状態で、操作体31が当該挿入部3211の突出方向(孔部3141への挿入方向)に沿って変位できる。これによれば、当該挿入部3211を有する検出体32と操作体31との間での内力の干渉が生じることを防止できる。なお、この場合には、操作体31の変位は、他の検出体32により検出されるので、操作体31の変位方向を適切に検出できる。 Further, since the clearance C2 is formed, the operating body 31 extends along the protruding direction of the insertion portion 3211 (insertion direction into the hole 3141) in a state where the insertion portion 3211 does not contact the inner surface of the hole 3141. Can be displaced. According to this, it is possible to prevent internal force interference between the detection body 32 having the insertion portion 3211 and the operation body 31. In this case, since the displacement of the operation body 31 is detected by the other detection body 32, the displacement direction of the operation body 31 can be detected appropriately.
 (5)操作体31を囲むように支持体33に支持される各検出体32の追従部321(挿入部3211)により、当該操作体31は支持される。これによれば、操作体31を前述の方向に変位自在に支持する他の構成を別途設ける必要がない。従って、操作子3の構成を簡略化できる。 (5) The operation body 31 is supported by the follower 321 (insertion section 3211) of each detection body 32 supported by the support body 33 so as to surround the operation body 31. According to this, it is not necessary to separately provide another configuration for supporting the operation body 31 so as to be displaceable in the above-described direction. Therefore, the configuration of the operation element 3 can be simplified.
 (6)操作体31は、検出部位となる孔部3141が形成された作用部314を挟むように一対の弾性部313を有し、当該弾性部313は、操作体31を変位させた際に弾性変形して撓む。これによれば、操作体31に対する入力操作を使用者が実感できるので、操作子3の操作性をより向上できる。 (6) The operation body 31 has a pair of elastic parts 313 so as to sandwich the action part 314 in which the hole 3141 serving as a detection part is formed, and the elastic part 313 is moved when the operation body 31 is displaced. Elastically deforms and bends. According to this, since the user can actually feel the input operation on the operation body 31, the operability of the operation element 3 can be further improved.
 (7)操作装置1においては、操作体31の両端が筐体2の正面2F側及び背面2R側に露出していることにより、当該両端を親指及び中指等で挟むようにして、操作体31を操作できる。従って、操作子3ひいては操作装置1の操作性をより向上できる。 (7) In the operating device 1, since both ends of the operating body 31 are exposed on the front 2F side and the back 2R side of the housing 2, the operating body 31 is operated so that the both ends are sandwiched between the thumb and the middle finger. it can. Therefore, the operability of the operating element 3 and thus the operating device 1 can be further improved.
 (8)操作装置1においては、第1配設部22及び第2配設部23の間に、操作子3が配設される操作子配設部24L,24Rが設けられ、これら操作子配設部24L,24Rのそれぞれに操作子3が配設される。これによれば、左側把持部21Lを把持する使用者の左手、及び、右側把持部21Rを把持する使用者の右手のそれぞれで、左右の操作子3を操作できる。従って、操作装置1から手を離さずに、操作子3を操作できるので、操作装置1の操作性を向上できる。 (8) In the operating device 1, operating element arrangement portions 24 </ b> L and 24 </ b> R where the operating element 3 is provided are provided between the first arranging part 22 and the second arranging part 23. The operation element 3 is disposed in each of the installation portions 24L and 24R. According to this, the left and right operators 3 can be operated with the left hand of the user holding the left gripping portion 21L and the right hand of the user holding the right gripping portion 21R. Therefore, since the operation element 3 can be operated without releasing the hand from the operation device 1, the operability of the operation device 1 can be improved.
[第2実施形態]
 以下、本発明の第2実施形態について説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described.
 本実施形態に係る操作装置は、前述の操作装置1と同様の構成を有する。ここで、当該操作装置1に設けられる操作子3(3L,3R)は、4つの検出体32を備える構成であった。これに対し、本実施形態に係る操作装置に設けられる操作子は、3つの検出体を有する。この点で、本実施形態に係る操作装置と操作装置1とは相違する。なお、以下の説明では、既に説明した部分と同一または略同一である部分については、同一の符号を付して説明を省略する。 The operating device according to the present embodiment has the same configuration as the operating device 1 described above. Here, the operation element 3 (3L, 3R) provided in the operation device 1 has a configuration including four detection bodies 32. On the other hand, the operator provided in the operating device according to the present embodiment has three detectors. In this respect, the operating device according to the present embodiment and the operating device 1 are different. In the following description, parts that are the same as or substantially the same as those already described are assigned the same reference numerals and description thereof is omitted.
 図13は、本実施形態に係る操作装置が備える操作子4を示す斜視図である。また、図14及び図15は、操作子4を示す縦断面図(XZ平面での断面図)及び横断面図(XY平面での断面図)である。 FIG. 13 is a perspective view showing the operating element 4 provided in the operating device according to the present embodiment. 14 and 15 are a longitudinal sectional view (cross sectional view on the XZ plane) and a lateral sectional view (cross sectional view on the XY plane) showing the operation element 4.
 本実施形態に係る操作装置は、詳しい図示を省略するが、操作子3に代えて操作子4を備える他は、前述の操作装置1と同様の構成及び機能を有する。 Although the detailed illustration of the operating device according to the present embodiment is omitted, the operating device has the same configuration and function as the above-described operating device 1 except that the operating device 4 is provided instead of the operating device 3.
 操作子4は、図13~図15に示すように、操作体41と、3つの検出体32(32A~32C)と、当該各検出体32を支持し、ひいては、操作体41を支持する支持体43とを有する。 As shown in FIGS. 13 to 15, the operation element 4 supports the operation body 41, the three detection bodies 32 (32A to 32C), and the detection bodies 32, and thus supports the operation body 41. And a body 43.
 操作体41は、作用部314に代えて作用部414を有する他は、操作体31と同様の構成を有する。 The operating body 41 has the same configuration as that of the operating body 31 except that it has an operating portion 414 instead of the operating portion 314.
 作用部414は、作用部314と同様に、軸部311を囲むとともに一対の弾性部313に挟まれるように、操作体41における軸方向略中央に配置される環状体である。この作用部414の外表面には、XY平面における操作体41の周方向において等間隔に3つの孔部4141が形成され、各孔部4141の形成部位間にそれぞれ突出部4142が形成されている。 Similarly to the action part 314, the action part 414 is an annular body that is disposed substantially at the center in the axial direction of the operation body 41 so as to surround the shaft part 311 and be sandwiched between the pair of elastic parts 313. Three holes 4141 are formed at equal intervals in the circumferential direction of the operating body 41 on the XY plane on the outer surface of the action portion 414, and protrusions 4142 are formed between the formation portions of the holes 4141. .
 このうち、各孔部4141には、当該孔部4141の形成位置に応じて配置された検出体32の挿入部3211が挿入される。 Among these, the insertion part 3211 of the detection body 32 arranged according to the formation position of the hole 4141 is inserted into each hole 4141.
 これら孔部4141の内径は、前述の孔部3141と同様に、挿入部3211の外径より大きく形成されており、当該孔部4141の内面と、挿入部3211の外面との間には、所定のクリアランスC1が形成されている。また、孔部4141は、作用部414を貫通するように形成されており、挿入部3211の突出方向先端面と軸部311との間にも、操作体31が孔部4141の形成方向に変位しても、当該挿入部3211と軸部311とが当接しない程度のクリアランスC2が形成されている。 The inner diameters of these hole portions 4141 are formed larger than the outer diameter of the insertion portion 3211, similar to the above-described hole portion 3141, and there is a predetermined gap between the inner surface of the hole portion 4141 and the outer surface of the insertion portion 3211. The clearance C1 is formed. The hole portion 4141 is formed so as to penetrate the action portion 414, and the operating body 31 is displaced in the direction in which the hole portion 4141 is formed also between the protruding end surface of the insertion portion 3211 and the shaft portion 311. Even so, the clearance C <b> 2 is formed so that the insertion portion 3211 and the shaft portion 311 do not contact each other.
 各突出部4142は、XY平面の断面が略半円形状に形成されている。これら突出部4142は、支持体43の内側に当該突出部4142に応じて形成された凹部431内に位置付けられる。これら突出部4142及び凹部431により、追従部321に過度な変位が生じることが抑制される。 Each projection 4142 has a substantially semicircular cross section in the XY plane. These protrusions 4142 are positioned in a recess 431 formed on the inner side of the support body 43 in accordance with the protrusions 4142. These protrusions 4142 and recesses 431 suppress excessive displacement of the follower 321.
 支持体43は、金属等により形成された正三角筒状を有し、操作体41(特に作用部414)を囲むように配置される。そして、当該支持体43の3つの平面には、追従部321を操作体41に向けるようにして、検出体32がねじ331によりそれぞれ取り付けられる。また、支持体33と同様に、支持体43のZ方向の寸法は、操作体41の同方向の寸法の1/3程度に設定されており、これにより、操作体41のZ方向の両端は、支持体43から露出する。この操作体41の両端には、キャップ316(図1参照)が取り付けられる。 The support body 43 has a regular triangular tube shape made of metal or the like, and is disposed so as to surround the operation body 41 (particularly the action portion 414). The detection bodies 32 are attached to the three planes of the support body 43 with screws 331 so that the follower 321 faces the operating body 41. Similarly to the support body 33, the dimension of the support body 43 in the Z direction is set to about 1/3 of the dimension of the operation body 41 in the same direction. , Exposed from the support 43. Caps 316 (see FIG. 1) are attached to both ends of the operating body 41.
 このような操作子4は、前述の操作子3と同様に、操作体41の変位を検出する。 Such an operation element 4 detects the displacement of the operation body 41 in the same manner as the operation element 3 described above.
 すなわち、XY平面における操作体41の平行移動は、各追従部321のXY平面上での変位を検出部322が検出することで、操作子4は、操作体41の変位方向を検出する。なお、操作子3の場合と同様に、操作体41の変位方向と、追従部321の突出方向及び孔部4141の形成方向とが一致する場合には、当該追従部321は変位しないので、操作体41と検出体32との内的干渉が防がれている。 That is, for the parallel movement of the operating body 41 in the XY plane, the detecting section 322 detects the displacement of each follower 321 on the XY plane, and the operating element 4 detects the displacement direction of the operating body 41. As in the case of the operator 3, when the displacement direction of the operating body 41 coincides with the protruding direction of the follower 321 and the formation direction of the hole 4141, the follower 321 is not displaced. Internal interference between the body 41 and the detection body 32 is prevented.
 操作体41がZ方向に沿って平行移動した場合、各追従部321がZ方向に沿って変位するので、当該各追従部321の変位方向を検出部322が検出することにより、操作子4は、操作体41のZ方向に沿う変位を検出する。 When the operating body 41 is translated along the Z direction, each follower 321 is displaced along the Z direction. Therefore, when the detector 322 detects the displacement direction of each follower 321, the operator 4 is The displacement along the Z direction of the operating body 41 is detected.
 また、XY平面上の仮想の直線を回動軸として操作体41が回動変位した場合、1つ或いは2つの追従部321のZ方向とは反対方向への変位、及び、1つ或いは2つの追従部321のZ方向への変位を検出部322が検出することで、操作子4は、操作体41の変位方向を検出する。 Further, when the operating body 41 is rotationally displaced with a virtual straight line on the XY plane as a rotational axis, the displacement of the one or two followers 321 in the direction opposite to the Z direction, and one or two When the detection unit 322 detects the displacement of the follower 321 in the Z direction, the operation element 4 detects the displacement direction of the operation body 41.
 更に、Z方向を回動軸として操作体41が回動変位(ロール回動)した場合、それぞれの追従部321の同方向への変位を検出部322が検出することで、操作子4は、操作体41の変位方向を検出する。 Further, when the operating body 41 is rotationally displaced (rolled rotationally) with the Z direction as the rotational axis, the detecting unit 322 detects the displacement of each follower 321 in the same direction. The displacement direction of the operating body 41 is detected.
 なお、このような操作子4により検出された操作体41の変位は、操作子3の場合と同様に、操作子4から操作装置の制御装置に制御信号として送信される。そして、当該制御装置が、前述の各種補正を行うとともに、不感帯処理等を行って、当該制御信号に基づく操作信号を前述の情報処理装置Dに送信する。 Note that the displacement of the operating body 41 detected by the operating element 4 is transmitted as a control signal from the operating element 4 to the control device of the operating apparatus, as in the case of the operating element 3. And the said control apparatus performs the above-mentioned various corrections, performs a dead zone process etc., and transmits the operation signal based on the said control signal to the above-mentioned information processing apparatus D.
 以下、第2実施形態において、操作装置1の制御装置が操作体41の平行移動量Px、Py、Pz、及び回動量Rx、Ry、Rzを算出する方法の具体例について、説明する。本実施形態でも、第1実施形態と同様に、各検出体32は垂直検出方向、及び水平検出方向のそれぞれに沿って追従部321に加わる圧力の大きさを検出する。ここで、垂直検出方向はZ方向であり、水平検出方向は、追従部321と対向し、かつZ方向が上となるように各検出体32をみた場合の左手方向である。以下では、検出体32A、32B、及び32Cのそれぞれが検出する水平検出方向の圧力の大きさを圧力値xa、xb、及びxcと表記し、垂直検出方向の圧力の大きさを圧力値ya、yb、及びycと表記する。図16は、検出体32A~32C及びその検出方向の位置関係を示している。この図において中心点Oは操作体41の中心位置を示している。この図に示されるように、各検出体32の追従部321は、操作体41の長手方向(Z方向)と直交するXY平面上において、中心点Oを中心とした円に内接する正三角形の頂点位置に配置されている。 Hereinafter, in the second embodiment, a specific example of a method in which the control device of the operation device 1 calculates the parallel movement amounts Px, Py, Pz and the rotation amounts Rx, Ry, Rz of the operation body 41 will be described. Also in this embodiment, each detection body 32 detects the magnitude of pressure applied to the follower 321 along the vertical detection direction and the horizontal detection direction, as in the first embodiment. Here, the vertical detection direction is the Z direction, and the horizontal detection direction is the left hand direction when the detection bodies 32 are viewed so as to face the follower 321 and the Z direction is on the top. Hereinafter, the magnitude of the pressure in the horizontal detection direction detected by each of the detection bodies 32A, 32B, and 32C is expressed as pressure values xa, xb, and xc, and the magnitude of the pressure in the vertical detection direction is set to the pressure value ya, Indicated as yb and yc. FIG. 16 shows the positional relationship between the detection bodies 32A to 32C and their detection directions. In this figure, the center point O indicates the center position of the operating body 41. As shown in this figure, the follower 321 of each detection body 32 is an equilateral triangle inscribed in a circle centered on the center point O on the XY plane orthogonal to the longitudinal direction (Z direction) of the operation body 41. It is placed at the vertex position.
 操作体41がX方向に沿って平行移動した場合、当該平行移動により、検出体32A及び32Bの追従部321に分散して圧力が加わる。一方で、検出体32Cの追従部321はX方向に平行に配置されているため、X方向に沿った変位だけでは圧力を検出しない。特に、作用部414を貫通するように孔部4141が設けられ、クリアランスC2が形成されていることで、操作体41がX方向の逆方向(すなわち、検出体32Cに向かう方向)に変位した場合であっても、検出体32Cの追従部321には作用部414からの圧力が加わらないことになる。そのため平行移動量Pxは、検出体32A及び32Bのそれぞれによる水平検出方向の検出結果をX方向に射影して合算することで算出される。具体的に、平行移動量Pxは、Gを予め定められた比例定数として、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000010
When the operating body 41 moves in parallel along the X direction, pressure is applied in a distributed manner to the followers 321 of the detecting bodies 32A and 32B due to the parallel movement. On the other hand, since the follower 321 of the detection body 32C is disposed in parallel with the X direction, the pressure is not detected only by the displacement along the X direction. In particular, when the operating body 41 is displaced in the reverse direction of the X direction (that is, the direction toward the detection body 32C) because the hole 4141 is provided so as to penetrate the action portion 414 and the clearance C2 is formed. Even so, the pressure from the action part 414 is not applied to the follower 321 of the detection body 32C. Therefore, the parallel movement amount Px is calculated by projecting and adding the detection results in the horizontal detection direction by the detection bodies 32A and 32B in the X direction. Specifically, the amount of parallel movement Px as proportional constant defined the G 1 in advance, is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000010
 操作体41がY方向に沿って平行移動した場合には、3つの検出体32のそれぞれに分散して圧力が加えられる。そのため平行移動量Pyは、Gを予め定められた比例定数として、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000011
When the operation body 41 moves in parallel along the Y direction, pressure is applied to each of the three detection bodies 32 in a dispersed manner. Therefore the amount of parallel movement Py is a proportionality constant which is determined with G 2 in advance, is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000011
 Z方向の平行移動量Pzについては、第1実施形態と同様に、各検出体32が検出した垂直検出方向の圧力値ya~ycを合算することで計算される。すなわち、平行移動量Pzは、Gを予め定められた比例定数として、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000012
The parallel movement amount Pz in the Z direction is calculated by adding up the pressure values ya to yc in the vertical detection direction detected by the respective detectors 32 as in the first embodiment. That is, parallel movement amount Pz as proportional constant defined the G 3 in advance, is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000012
 また、X方向を回動軸として操作体31をY方向に向けて回動させた場合、検出体32AはZ方向の逆方向に対する圧力を検出し、検出体32BはZ方向に対する圧力を検出する。一方、回動軸に沿った方向に配置された検出体32Cの追従部321には圧力が加わらない。ここで検出体32A及び32Bは、操作体41の中心から見て、回動方向であるY方向から30°ずれた方向に配置されている。そのため回動量Rxは、検出体32A及び32Bが検出する垂直検出方向の圧力値ya及びybに対して、モーメントを考慮した係数を乗じて合算することにより算出される。すなわち、回動量Rxは、Gを予め定められた比例定数として、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000013
When the operating body 31 is rotated in the Y direction about the X direction as a rotation axis, the detection body 32A detects pressure in the reverse direction of the Z direction, and the detection body 32B detects pressure in the Z direction. . On the other hand, no pressure is applied to the follower 321 of the detection body 32C arranged in the direction along the rotation axis. Here, the detection bodies 32A and 32B are arranged in a direction shifted by 30 ° from the Y direction, which is the rotation direction, when viewed from the center of the operation body 41. Therefore, the rotation amount Rx is calculated by multiplying the pressure values ya and yb in the vertical detection direction detected by the detection bodies 32A and 32B by a coefficient that takes into account the moment. In other words, rotation amount Rx is a proportionality constant that is determined to G 4 in advance, is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000013
 Y方向を回動軸として操作体31をX方向に向けて回動させた場合、検出体32A及び32BはZ方向の逆方向に対する圧力を検出し、検出体32CはZ方向に対する圧力を検出する。ここで検出体32A及び32Bは、操作体41の中心から見て、回動方向であるX方向から60°ずれた方向に配置されているが、検出体32Cは回動方向に沿った位置に配置されている。そのため回動量Ryは、圧力値ya及びybにモーメントを考慮した係数を乗じたうえで、これらの値と圧力値ycとを合算して算出される。すなわち、回動量Ryは、Gを予め定められた比例定数として、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000014
When the operation body 31 is rotated in the X direction about the Y direction as a rotation axis, the detection bodies 32A and 32B detect pressure in the reverse direction of the Z direction, and the detection body 32C detects pressure in the Z direction. . Here, the detection bodies 32A and 32B are arranged in a direction shifted by 60 ° from the X direction as the rotation direction when viewed from the center of the operation body 41, but the detection body 32C is located at a position along the rotation direction. Has been placed. Therefore, the rotation amount Ry is calculated by multiplying the pressure values ya and yb by a coefficient considering the moment, and adding these values and the pressure value yc. In other words, rotation amount Ry as proportional constant defined the G 5 in advance, is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000014
 また、Z方向を回動軸として操作体31を正面から見て反時計回りに回動させた場合、各検出体32はいずれも水平検出方向に対する圧力を検出する。そのため回動量Rzは、各検出体32が検出した水平検出方向の圧力値xa~xcを合算することで計算される。すなわち、回動量Rzは、Gを予め定められた比例定数として、以下の計算式で計算される。
Figure JPOXMLDOC01-appb-M000015
Further, when the operating body 31 is rotated counterclockwise as viewed from the front with the Z direction as a rotation axis, each of the detection bodies 32 detects a pressure in the horizontal detection direction. Therefore, the rotation amount Rz is calculated by adding the pressure values xa to xc in the horizontal detection direction detected by the respective detection bodies 32. In other words, rotation amount Rz is as a proportional constant defined the G 6 in advance, is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000015
 なお、第1実施形態と同様に、比例定数G~Gは、検出体32による検出結果の数値と、実際の操作体41の平行移動量及び回動量との関係によって予め決定され、操作装置1の制御装置内に格納される。 As in the first embodiment, the proportional constants G 1 to G 6 are determined in advance by the relationship between the numerical value of the detection result by the detection body 32 and the actual amount of translation and rotation of the operation body 41, and the operation It is stored in the control device of the device 1.
 また、操作装置1は、第1実施形態と同様に、上述した計算式を使用する方法に代えて、キャリブレーションによって得られるキャリブレーションデータを用いて平行移動量及び回動量を算出してもよい。具体的に、キャリブレーションに必要な測定データは、第1実施形態の場合と同様の基準操作を実行することによって取得される。以下では、操作体41に対してX方向への平行移動操作が行われた際に、検出体32Aが検出した圧力値xa及びya、検出体32Bが検出した圧力値xb及びyb、並びに検出体32Cが検出した圧力値xc及びycを、それぞれpx1、px2、px3、px4、px5及びpx6と表記する。同様に、Y方向への平行移動操作が行われた際に3個の検出体32が検出した圧力値をpy1~py6と表記し、Z方向への平行移動操作が行われた際に3個の検出体32が検出した圧力値をpz1~pz6と表記する。また、X方向を回動軸とした回動操作が行われた際に検出された圧力値をrx1~rx6と表記し、Y方向を回動軸とした回動操作が行われた際に検出された圧力値をry1~ry6と表記し、Z方向を回動軸とした回動操作が行われた際に検出された圧力値をrz1~rz6と表記する。 Further, similarly to the first embodiment, the controller device 1 may calculate the parallel movement amount and the rotation amount using calibration data obtained by calibration instead of the method using the above-described calculation formula. . Specifically, the measurement data necessary for calibration is acquired by executing the same reference operation as in the first embodiment. In the following, the pressure values xa and ya detected by the detection body 32A, the pressure values xb and yb detected by the detection body 32B, and the detection body when the operation body 41 is translated in the X direction. The pressure values xc and yc detected by 32C are expressed as px1, px2, px3, px4, px5 and px6, respectively. Similarly, the pressure values detected by the three detectors 32 when the translation operation in the Y direction is performed are represented as py1 to py6, and three when the translation operation in the Z direction is performed. The pressure values detected by the detector 32 are expressed as pz1 to pz6. In addition, the pressure values detected when the rotation operation with the X direction as the rotation axis is expressed as rx1 to rx6, and detected when the rotation operation with the Y direction as the rotation axis is performed. The obtained pressure values are expressed as ry1 to ry6, and the pressure values detected when the rotation operation with the Z direction as the rotation axis is performed are expressed as rz1 to rz6.
 これらの測定データにより、以下に示す行列Bが定義される。
Figure JPOXMLDOC01-appb-M000016
そして、その逆行列B-1がキャリブレーションデータとなる。すなわち、ある圧力値xa~xc及びya~ycが検出された場合、そのときの操作体41の平行移動量Px、Py、Pz及び回動量Rx、Ry、Rzは、B-1を用いて以下の計算式により算出される。
Figure JPOXMLDOC01-appb-M000017
操作装置1の演算装置は、キャリブレーションの実行時に得られた測定データを用いてこの逆行列B-1の各成分を算出し、キャリブレーションデータとして記憶しておく。そして、ユーザが操作子3を用いて入力操作を行う際には、記憶されているキャリブレーションデータを用いて平行移動量Px、Py、Pz及び回動量Rx、Ry、Rzを算出し、情報処理装置Dに送信する。
The matrix B shown below is defined by these measurement data.
Figure JPOXMLDOC01-appb-M000016
The inverse matrix B −1 becomes calibration data. That is, when certain pressure values xa to xc and ya to yc are detected, the parallel movement amounts Px, Py, Pz and the rotation amounts Rx, Ry, Rz of the operating body 41 at that time are as follows using B- 1. It is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000017
The arithmetic unit of the controller device 1 calculates each component of the inverse matrix B −1 using the measurement data obtained when the calibration is executed, and stores it as calibration data. When the user performs an input operation using the operator 3, the parallel movement amounts Px, Py, Pz and the rotation amounts Rx, Ry, Rz are calculated using the stored calibration data, and information processing is performed. Transmit to device D.
 なお、第1実施形態と同様に、本実施形態においても、操作装置1は検出体32が検出した圧力値をそのまま情報処理装置Dに送信し、情報処理装置Dに内蔵された制御装置が操作体41の平行移動量及び回動量を算出することとしてもよい。 As in the first embodiment, also in this embodiment, the controller device 1 directly transmits the pressure value detected by the detection body 32 to the information processing device D, and the control device built in the information processing device D operates the controller device D. The parallel movement amount and the rotation amount of the body 41 may be calculated.
 以上説明した本実施形態に係る操作装置によれば、前述の操作装置1と同様の効果がある他、以下の効果がある。 The operation device according to the present embodiment described above has the following effects in addition to the same effects as the operation device 1 described above.
 すなわち、操作子4は、3つの検出体32により、前述の操作子3において4つの検出体32で検出可能な操作体31の変位方向と同じ方向への操作体41の変位を検出可能であるが、当該検出体32の数は、4つの検出体32を有する操作子3に比べて少ない。従って、操作子3に比べて操作子4を安価に製造でき、ひいては、操作装置を安価に製造できる。 That is, the operating element 4 can detect the displacement of the operating body 41 in the same direction as the displacement direction of the operating body 31 that can be detected by the four detecting bodies 32 in the operating element 3 by the three detecting bodies 32. However, the number of the detection bodies 32 is smaller than that of the operation element 3 having the four detection bodies 32. Therefore, the operation element 4 can be manufactured at a lower cost than the operation element 3, and the operation device can be manufactured at a lower cost.
[実施形態の変形]
 本発明を実施するための最良の構成などは、以上の記載で開示されているが、本発明はこれに限定されるものではない。すなわち、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部若しくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
[Modification of Embodiment]
The best configuration for implementing the present invention has been disclosed in the above description, but the present invention is not limited to this. That is, the description limited to the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such is included in this invention.
 前記第1実施形態では、操作子3は、操作体31の変位を検出する4つの検出体32を有し、前記第2実施形態では、操作子4は、操作体41の変位を検出する3つの検出体32を有するとしたが、本発明はこれに限らない。すなわち、操作子に設けられる検出体の数は、1又は2でも、5以上でもよい。このうち、操作子が2つの検出体を備える場合には、前述の検出体32X1,32X2と、検出体32Y1,32Y2とのうち、いずれかに応じた位置に配置すればよい。更に、上記した検出体を組み合わせて操作子を構成してもよい。 In the first embodiment, the operating element 3 has four detection bodies 32 that detect the displacement of the operating body 31, and in the second embodiment, the operating element 4 detects the displacement of the operating body 41 3. However, the present invention is not limited to this. That is, the number of detection bodies provided in the operation element may be 1 or 2 or 5 or more. Of these, in the case where the operating element includes two detection bodies, the operation elements may be arranged at a position corresponding to one of the detection bodies 32X1 and 32X2 and the detection bodies 32Y1 and 32Y2. Furthermore, you may comprise an operation element combining the above-mentioned detection body.
 また、検出体は、圧力を検出するセンサとして歪みゲージを有する構成としたが、本発明はこれに限らず、他の感圧シートなどを採用することも可能である。例えば、操作子3において、歪みゲージを有する検出体32に変えて、当該検出体32と同様の追従部と、ホール素子を有する検出部とを備えた検出体を採用してもよい。この場合、先端に挿入部が形成された追従部を作用部側に設け、当該挿入部が挿入される穴部を検出部に形成する構成としてもよい。更に、当該検出体32に変えて、作用部314と接続される追従部と、当該追従部の変位方向を検出する感圧シートを有する検出部とを備えた検出体を採用することも可能である。 In addition, although the detection body is configured to have a strain gauge as a sensor for detecting pressure, the present invention is not limited to this, and other pressure-sensitive sheets and the like can also be adopted. For example, instead of the detection body 32 having a strain gauge in the operation element 3, a detection body having a follow-up section similar to the detection body 32 and a detection section having a Hall element may be employed. In this case, it is good also as a structure which provides the follower part in which the insertion part was formed in the front end in the action part side, and forms the hole part in which the said insertion part is inserted in a detection part. Further, instead of the detection body 32, it is possible to employ a detection body including a follower connected to the action unit 314 and a detection unit having a pressure-sensitive sheet for detecting the displacement direction of the follower. is there.
 更に、前記各実施形態では、操作体自体にセンサー構成は含まれていなかったが、本発明はこれに限らない。例えば、操作体が2軸センサー等の多軸センサーを備える構成としてもよい。 Further, in each of the above embodiments, the operation body itself does not include a sensor configuration, but the present invention is not limited to this. For example, the operation body may include a multi-axis sensor such as a 2-axis sensor.
 前記各実施形態では、挿入部が挿入されて、検出体32による変位検出における検出部位となる孔部を操作体に形成したが、本発明はこれに限らない。すなわち、操作体に挿入部を形成し、検出体に操作体の変位を伝達する追従部に孔部を形成してもよい。この場合には、挿入部が形成された位置が検出部位となる。なお、当該孔部と挿入部との間に、前述のクリアランスC1,C2が形成されていれば、操作体と検出体との間の内的干渉を防止できる。 In each of the above-described embodiments, the insertion portion is inserted and a hole serving as a detection site in displacement detection by the detection body 32 is formed in the operation body. However, the present invention is not limited to this. That is, an insertion part may be formed in the operating body, and a hole may be formed in the follow-up part that transmits the displacement of the operating body to the detection body. In this case, the position where the insertion portion is formed becomes the detection site. In addition, if the above-mentioned clearances C1 and C2 are formed between the hole and the insertion portion, it is possible to prevent internal interference between the operation body and the detection body.
 前記各実施形態では、一対の弾性部313は、それぞれ円筒状に形成されているとしたが、本発明はこれに限らない。例えば、弾性部を設けずに、操作体全体を合成樹脂等の剛性を有する部材により形成してもよい。また、弾性部を設ける場合であっても、形状や材質等を変化させて、所定方向への操作体の変位に抵抗が生じるように構成するなどして、所定方向への操作体の操作感を変更させてもよい。 In each of the above embodiments, the pair of elastic portions 313 are each formed in a cylindrical shape, but the present invention is not limited to this. For example, the entire operating body may be formed of a rigid member such as a synthetic resin without providing the elastic portion. Even when the elastic portion is provided, the operational feeling of the operating body in the predetermined direction is changed by changing the shape, material, etc. so that resistance is generated in the displacement of the operating body in the predetermined direction. May be changed.
 前記各実施形態では、操作体の両端は、筐体2における正面2F側及び背面2R側に露出するとしたが、本発明はこれに限らない。すなわち、操作体の一部が筐体から露出していればよい。 In the above embodiments, both ends of the operating body are exposed on the front 2F side and the back 2R side of the housing 2, but the present invention is not limited to this. That is, it is only necessary that a part of the operating body is exposed from the casing.
 前記各実施形態では、操作子は、操作装置にそれぞれ2つずつ設けられているとしたが、本発明はこれに限らない。すなわち、操作装置に設けられる操作子の数は、適宜変更できる。また、操作子配設部の位置も適宜設定可能である。 In each of the above embodiments, two operating elements are provided in each operating device, but the present invention is not limited to this. That is, the number of operators provided in the operating device can be changed as appropriate. In addition, the position of the operation element arrangement portion can be set as appropriate.
 前記各実施形態では、操作体が支持体から突出し、更に、筐体2から露出する構成としたが、本発明はこれに限らない。例えば、操作体を環状に形成して支持体内に配置し、当該支持体の開口を介して操作体の開口内に使用者が指を挿入することで、当該操作体を操作する構成としてもよい。また、操作体の一方の端部のみが筐体から露出するように、操作子を配置してもよい。 In each of the embodiments described above, the operation body protrudes from the support body and is further exposed from the housing 2, but the present invention is not limited to this. For example, the operation body may be formed in an annular shape and disposed in the support body, and the user may operate the operation body by inserting a finger into the opening of the operation body through the opening of the support body. . Further, the operation element may be arranged so that only one end of the operation body is exposed from the casing.
 前記各実施形態では、操作体は、円筒状に形成されていたが、本発明はこれに限らない。すなわち、操作体は、角柱状に形成されていてもよい。 In each of the above embodiments, the operating body is formed in a cylindrical shape, but the present invention is not limited to this. That is, the operating body may be formed in a prismatic shape.
 前記各実施形態では、操作子は、操作体の変位方向を検出するものとしたが、本発明はこれに限らない。すなわち、操作体の端部に突没するボタンを設け、当該ボタンの入力状態も合わせて検出する操作子として構成してもよい。この場合、当該ボタンは、操作体の両端に設けられてもよく、また、一方の端部にのみ設けられる構成としてもよい。 In each of the above embodiments, the operating element detects the displacement direction of the operating body, but the present invention is not limited to this. That is, a button that protrudes and sunk at the end of the operation body may be provided, and an operation element that also detects the input state of the button may be configured. In this case, the button may be provided at both ends of the operating body, or may be provided only at one end.
 前記第1実施形態では、操作子3は、XY平面においてX方向及びY方向に対して45°傾けたX1方向及びY1方向に、それぞれ2つの検出体32が位置するように筐体2に配置したが、本発明はこれに限らない。すなわち、操作子の配置は、検出体の検出感度や、使用者の使い勝手等を考慮して適宜設定可能である。第2実施形態で示した操作子も同様である。 In the first embodiment, the operation element 3 is arranged in the housing 2 so that the two detection bodies 32 are respectively positioned in the X1 direction and the Y1 direction inclined by 45 ° with respect to the X direction and the Y direction on the XY plane. However, the present invention is not limited to this. That is, the arrangement of the operation elements can be set as appropriate in consideration of the detection sensitivity of the detection object, the usability of the user, and the like. The same applies to the controls shown in the second embodiment.
 前記各実施形態では、本発明の操作装置を情報処理装置に接続される操作装置として挙げたが、本発明はこれに限らない。例えば、操作装置を携帯可能な情報端末(携帯端末)に設ける構成としてもよい。 In each of the above embodiments, the operating device of the present invention is cited as an operating device connected to an information processing device, but the present invention is not limited to this. For example, the operation device may be provided in a portable information terminal (portable terminal).

Claims (4)

  1.  互いに直交する3つの基準軸のそれぞれに沿って平行移動可能に、かつ、前記3つの基準軸のそれぞれを回動軸として回動可能に支持され、入力操作を受け付ける操作体と、
     前記操作体の周方向に沿って配置され、前記操作体の平行移動及び回動によって受ける圧力の大きさを検出する複数の検出体と、
     を備える操作子と、
     前記複数の検出体のそれぞれが検出した圧力の大きさを示す値を用いて、前記3つの基準軸のそれぞれに沿った前記操作体の平行移動量、及び前記3つの基準軸のそれぞれを回動軸とした前記操作体の回動量を算出する制御装置と、
     を含むことを特徴とする操作入力システム。
    An operating body that is supported so as to be able to translate along each of three reference axes orthogonal to each other and to be rotatable about each of the three reference axes as a rotation axis, and to accept an input operation;
    A plurality of detection bodies that are arranged along a circumferential direction of the operation body, and that detect a magnitude of pressure received by parallel movement and rotation of the operation body;
    An operator comprising:
    Using the value indicating the magnitude of the pressure detected by each of the plurality of detection bodies, the amount of translation of the operating body along each of the three reference axes and the rotation of each of the three reference axes A control device for calculating a rotation amount of the operating body as an axis;
    An operation input system comprising:
  2.  請求項1に記載の操作入力システムにおいて、
     前記複数の検出体のそれぞれは、前記操作体と係合して前記操作体の動きに追従する追従部を有し、前記操作体の変位によって当該追従部に加わる圧力の大きさを検出する
     ことを特徴とする操作入力システム。
    The operation input system according to claim 1,
    Each of the plurality of detection bodies includes a follower that engages with the operation body and follows the movement of the operation body, and detects a magnitude of pressure applied to the follower by displacement of the operation body. An operation input system characterized by
  3.  請求項2に記載の操作入力システムにおいて、
     前記複数の検出体のそれぞれは、前記操作体に向かう方向と交差し、かつ、互いに交差する2方向のそれぞれに沿って前記追従部に加わる圧力の大きさを検出する
     ことを特徴とする操作入力システム。
    The operation input system according to claim 2,
    Each of the plurality of detection bodies detects a magnitude of pressure applied to the follower along each of two directions intersecting with the direction toward the operation body and intersecting each other. system.
  4.  請求項2又は3に記載の操作入力システムにおいて、
     前記追従部及び前記操作体のいずれか一方は、穴部を有し、他方は、当該穴部に挿入されて前記操作体の動きを前記追従部に伝達する挿入部を有し、
     前記挿入部の先端と前記穴部との間には間隙が設けられている
     ことを特徴とする操作入力システム。
    In the operation input system according to claim 2 or 3,
    Either one of the follower and the operation body has a hole, and the other has an insertion part that is inserted into the hole and transmits the movement of the operation body to the follower.
    An operation input system, wherein a gap is provided between the distal end of the insertion portion and the hole portion.
PCT/JP2011/078758 2010-12-22 2011-12-13 Operation input system WO2012086457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-285959 2010-12-22
JP2010285959A JP2014052664A (en) 2010-12-22 2010-12-22 Operator and operation device

Publications (1)

Publication Number Publication Date
WO2012086457A1 true WO2012086457A1 (en) 2012-06-28

Family

ID=46313736

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/078758 WO2012086457A1 (en) 2010-12-22 2011-12-13 Operation input system
PCT/JP2011/079407 WO2012086601A1 (en) 2010-12-22 2011-12-19 Manipulator and manual operating device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079407 WO2012086601A1 (en) 2010-12-22 2011-12-19 Manipulator and manual operating device

Country Status (2)

Country Link
JP (1) JP2014052664A (en)
WO (2) WO2012086457A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102785A (en) * 2012-11-22 2014-06-05 Shoji Masubuchi Input device, input system, information processing system, information processing program and information processing method
JP5519836B1 (en) * 2013-06-24 2014-06-11 祐弥 持吉 Input device
JP2015038675A (en) * 2013-06-24 2015-02-26 祐弥 持吉 Input device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753227B2 (en) * 2013-06-24 2015-07-22 祐弥 持吉 Input device
WO2016080906A1 (en) * 2014-11-18 2016-05-26 Razer (Asia-Pacific) Pte. Ltd. Gaming controller for mobile device and method of operating a gaming controller
JP6442558B2 (en) * 2017-05-11 2018-12-19 株式会社タイトー Game device
JP7441325B2 (en) 2020-10-13 2024-02-29 任天堂株式会社 Information processing system, information processing program, and information processing method
JPWO2023002596A1 (en) * 2021-07-21 2023-01-26

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522798A (en) * 2002-04-12 2005-07-28 ヘンリー ケイ. オバーマイヤー, Multi-axis joystick and transducer means therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230998A (en) * 1996-02-20 1997-09-05 Csk Corp Pointing device
JP2000029607A (en) * 1998-07-14 2000-01-28 Topre Corp Keyboard
EP1843243B1 (en) * 2006-04-05 2012-02-22 Société Civile "GALILEO 2011" Opto-electronic device for determining relative movements or relative positions of two objects

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522798A (en) * 2002-04-12 2005-07-28 ヘンリー ケイ. オバーマイヤー, Multi-axis joystick and transducer means therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102785A (en) * 2012-11-22 2014-06-05 Shoji Masubuchi Input device, input system, information processing system, information processing program and information processing method
JP5519836B1 (en) * 2013-06-24 2014-06-11 祐弥 持吉 Input device
JP2015038675A (en) * 2013-06-24 2015-02-26 祐弥 持吉 Input device

Also Published As

Publication number Publication date
JP2014052664A (en) 2014-03-20
WO2012086601A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
WO2012086457A1 (en) Operation input system
US10324487B2 (en) Multi-axis gimbal mounting for controller providing tactile feedback for the null command
JP5955556B2 (en) Operating element and operating device
CN110476039B (en) Magnetic device for detecting relative movement or relative position
US9630101B2 (en) Operating device
JP2012208577A (en) Input device and method for calculating pen pressure
US20180074585A1 (en) Compensated Haptic Rendering for Flexible Electronic Devices
JP2013049121A (en) Remote control device
WO2020190311A1 (en) Sensing system
JP2013064706A (en) Sensor
JP5318831B2 (en) Operation position detector
US6246391B1 (en) Three-dimensional tactile feedback computer input device
JP5860225B2 (en) Input device
US9993725B2 (en) Operating device
US20140139434A1 (en) Input device, input system, information processing system, computer-readable storage medium having stored thereon information processing program, and information processing method
US20130213179A1 (en) Vehicular input apparatus
US20070216650A1 (en) Data Recording Device for Data Processing Units
EP1723499B1 (en) Control and a control arrangement
CN105843418A (en) Pointing device, keyboard assembly, and portable computer
JP5818914B2 (en) Operating element and operating device
JP2010112864A (en) Force sensor
JP6480169B2 (en) Probe head for 3D coordinate measuring machine
WO2012022764A1 (en) Data recording device in the form of an arrangement for entering position or motion parameters
JP5971747B2 (en) Operation device
WO2021067686A1 (en) Compliant multi-mode sensing systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP