WO2012086236A1 - Photoenhancement element - Google Patents

Photoenhancement element Download PDF

Info

Publication number
WO2012086236A1
WO2012086236A1 PCT/JP2011/064095 JP2011064095W WO2012086236A1 WO 2012086236 A1 WO2012086236 A1 WO 2012086236A1 JP 2011064095 W JP2011064095 W JP 2011064095W WO 2012086236 A1 WO2012086236 A1 WO 2012086236A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
highly reflective
layer
enhancement element
light enhancement
Prior art date
Application number
PCT/JP2011/064095
Other languages
French (fr)
Japanese (ja)
Inventor
三津夫 川崎
森本 幸裕
昌博 川▲崎▼
祐 山崎
Original Assignee
国立大学法人京都大学
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, ウシオ電機株式会社 filed Critical 国立大学法人京都大学
Publication of WO2012086236A1 publication Critical patent/WO2012086236A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Definitions

  • the present invention relates to a light enhancement element using localized surface plasmons of fine metal particles, and more specifically, to enhance the intensity of luminescence (fluorescence) emitted from a luminescent chemical species (fluorescent substance) by irradiation with excitation light, or
  • the present invention relates to a light enhancement element capable of enhancing the intensity of Raman scattered light obtained from a Raman active chemical species by excitation light irradiation.
  • a fluorescence analysis method for performing qualitative and quantitative analysis of an analysis object by exciting the analysis object with excitation light irradiation to generate fluorescence and analyzing the fluorescence is one of high-sensitivity analysis methods, It plays an important role in trace analysis.
  • the fluorescence emitted from a fluorescent material not only reflects the characteristics of the fluorescent material itself, but is also easily affected by the environment around the fluorescent material. Therefore, the fluorescent material is used as a labeling agent (biosensor) for tissue and DNA in the body. It is also used for appraisal and is used in a wide range of fields including biomedical chemistry.
  • Fluorescence is widely used in this way, but the fluorescence intensity varies depending on the substance. Usually, if the fluorescence of a substance having a weak fluorescence intensity can be observed, the application range is expected to be further expanded. For this reason, research aimed at enhancing the fluorescence of substances has been actively conducted.
  • Patent Document 1 discloses a technique using an island-like sputtered film made of flat silver particles having an average particle size in the submicron region and a height of several tens of nanometers. According to this fluorescence enhancement method, significant emission enhancement can be obtained even in a chemical species located in a position in direct contact with the silver particle surface. Therefore, it is said that the quenching action by the metal is remarkably suppressed, and therefore, significant emission enhancement can be obtained even in the case of a chemical species that is relatively easy to shine.
  • Raman spectroscopy which obtains a spectrum of Raman scattered light by dispersing Raman scattered light obtained by irradiating an analysis object with light of a single wavelength (laser light), is used for identification of substances.
  • Raman scattered light obtained from an analysis object is difficult to detect with high sensitivity because the signal is weak.
  • SERS surface-enhanced Raman scattering
  • the present invention has been made based on the above-described circumstances, and an object thereof is to provide a light enhancement element capable of obtaining a sufficiently high light enhancement effect.
  • the light enhancement element of the present invention includes a substrate, a highly reflective layer formed on the substrate, a dielectric layer formed on the highly reflective layer, and a number of metals formed on the dielectric layer. It consists of an enhanced electromagnetic field forming layer made of fine particles, and the dielectric layer has a thickness of 50 nm or more.
  • the highly reflective layer is preferably made of a metal selected from silver, gold, aluminum, and copper.
  • the surface on the dielectric layer side of the high reflection layer is a rough surface.
  • the enhanced electromagnetic field forming layer has a configuration in which metal fine particles are randomly arranged.
  • a highly reflective layer, a dielectric layer, and an enhanced electromagnetic field forming layer are formed in a multilayer structure formed on a substrate, and the thickness of the dielectric layer is set to a specific size.
  • a strong enhanced electromagnetic field can be formed in the vicinity of each metal fine particle constituting the enhanced electromagnetic field forming layer, so that a sufficiently high light enhancement effect can be obtained.
  • an extremely low output and small light source such as an LD (semiconductor laser) or an LED (light emitting diode) is used as the excitation light source, the desired light enhancement effect can be obtained.
  • the enhanced electromagnetic field forming layer itself does not have to have a structure (nanostructure) in which the light enhancement effect by the localized surface plasmon is dominant (dominant).
  • the structure itself is simplified by eliminating the structural constraints of conventional light-enhancing elements using the mechanism based on the interaction between the localized surface plasmons of fine particles and the surface plasmon polaritons between the metal fine particles and the highly reflective layer. It is easy to handle and can be produced advantageously in terms of cost.
  • FIG. 1 is a schematic diagram showing an outline of a configuration in an example of the light enhancement element of the present invention.
  • the light enhancement element 10 includes, for example, a flat substrate 15, a high reflection layer 20 formed on the surface of the substrate 15, and a dielectric formed on the surface of the high reflection layer 20.
  • the multilayer structure includes a layer 30 and an enhanced electromagnetic field forming layer 40 formed of a large number of metal fine particles 41 formed on the surface of the dielectric layer 30.
  • the light enhancement element 10 enhances light emission (for example, fluorescence) by irradiation of excitation light with respect to a luminescent chemical species supported directly or via a spacer on the surface of the enhanced electromagnetic field forming layer 40 (metal fine particles 41).
  • light emission for example, fluorescence
  • Raman scattered light by the excitation light irradiation to the Raman active chemical species carried directly or via a spacer on the surface of the metal fine particle 41 is enhanced.
  • substrate 15 is not specifically limited, For example, glass, ceramics, resin, a metal etc. can be illustrated. As will be described later, when heat treatment (for example, heating at 200 ° C. or higher) is performed in the manufacturing process of the light enhancement element 10, it is preferable to have heat resistance such as glass or polyimide resin. Further, the surface of the substrate 15 on the high reflection layer 20 side does not have to be a flat surface, and may be a curved surface, a small spherical surface, or the like, for example.
  • the highly reflective layer 20 is highly reflective in, for example, the entire visible region or a wavelength region of at least 500 nm or more, specifically, a wavelength region of excitation light that excites an analyte such as a luminescent chemical species and a Raman active chemical species. It is preferable that the material has a ratio, and specific examples include silver, gold, aluminum, and copper.
  • the thickness of the highly reflective layer 20 is preferably large enough to obtain a reflectance of 90% or more in the entire visible region or in a wavelength region of 500 nm or more.
  • the surface of the highly reflective layer 20 on the dielectric layer 30 side may be an optically smooth surface, but is preferably a rough surface. Specifically, for example, a rough surface having a surface roughness Ra of about 10 to 30 nm is preferable. Thereby, as shown in the result of the experimental example to be described later, a higher light enhancement effect can be obtained.
  • the dielectric layer 30 is made of a material that is transparent to excitation light. As will be described later, heat treatment (for example, heating at 200 ° C. or higher) is performed in the manufacturing process of the light enhancement element 10. It is preferable that it is comprised with the material which has heat resistance. Specific examples include SOG (spin-on-glass) materials mainly composed of silicon oxide, siloxane-based materials such as tetraethoxysilane (TEOS) and dimethylsiloxane. Further, when the dielectric layer 30 is composed of a fired body (SOG film) obtained by firing an SOG material, the surface of the SOG film has a relatively strong hydrophobicity, so that an alkali treatment is performed as necessary.
  • SOG spin-on-glass
  • the thickness of the dielectric layer 30 is 50 nm or more, more preferably 60 to 90 nm. When the thickness of the dielectric layer 30 is too small, a sufficient light enhancement effect cannot be obtained as shown in the result of an experimental example described later.
  • the enhanced electromagnetic field forming layer 40 is preferably composed of a single layer film composed of a large number of metal fine particles 41.
  • the metal fine particles 41 constituting the enhanced electromagnetic field forming layer 40 for example, silver ultrafine particles can be preferably used, but any material that can be excited by irradiation with excitation light to excite surface plasmons, such as gold, Copper or the like may be used.
  • the metal fine particles 41 have a size equal to or smaller than the wavelength of the excitation light, for example, a cross-sectional particle size (a horizontal dimension in FIG. 1) d of 30 to 400 nm and a thickness t of 5 to 70 nm. Those having shape anisotropy such as a shape can be preferably used.
  • it is desirable that all of the metal fine particles 41 have a uniform size and shape, but there may be some variation in size and shape.
  • the metal fine particles 41 having the above-mentioned size are, for example, two-dimensionally randomly, specifically, for example, a density of 10 8 to 10 10 particles / cm 2 . And are arranged in an independent state without contacting each other. Further, the enhanced electromagnetic field forming layer 40 may be configured such that the metal fine particles 41 are regularly arranged.
  • a method for forming such an enhanced electromagnetic field forming layer 40 is not particularly limited.
  • a method in which a dispersion in which metal fine particles are dispersed in an appropriate solvent is applied by a spin coating method and heated, dipping Then, a heating method, a vacuum deposition method, or the like can be suitably used.
  • the analysis object is carried on the enhanced electromagnetic field forming layer 40, specifically, on the surface of the metal fine particle 41 directly or via a spacer.
  • the analyte is, for example, a fluorescent material
  • the concentration of the fluorescent material increases, the excitation energy moves between the fluorescent materials, the probability of a non-radiative process increases, and the intensity of the fluorescence decreases. End up (self-quenching effect). Therefore, in order to reduce the self-quenching effect as much as possible, it is desirable that the fluorescent material be supported at the lowest possible concentration (thin).
  • spectroscopic analysis is performed by detecting the fluorescence emitted from an analysis object by excitation light irradiation with a suitable spectroscope.
  • the spacer is for adjusting the distance between the surface of the metal fine particle 41 and the analysis target, and can be composed of a dielectric such as an SOG film.
  • the spacer thickness is preferably, for example, 10 nm or less, and the light enhancement effect is maximized particularly when the thickness is about 1 nm or less.
  • the highly reflective layer 20, the dielectric layer 30, and the enhanced electromagnetic field forming layer 40 have a multilayer structure formed on the substrate 15.
  • the thickness By setting the thickness to 50 nm or more, a strong enhanced electromagnetic field can be formed in the vicinity of each metal fine particle 41 constituting the enhanced electromagnetic field forming layer 40, so that it is clear from the results of the experimental examples described later.
  • a sufficiently high light enhancement effect can be obtained. The reason for this is that, as shown in FIG. 2, interference occurs between the excitation light and the reflected light of the excitation light by the high reflection layer 20 in the vicinity of each metal fine particle 41 constituting the enhanced electromagnetic field forming layer 40.
  • a field is formed, and it is considered that the enhanced electromagnetic field (region surrounded by a broken line in FIG. 2) due to the localized surface plasmon of the metal fine particle 41 is further enhanced by the action of the interference field.
  • the well-known interference effect alone cannot sufficiently explain the large light enhancement factor shown in the experimental example, and the secondary electromagnetic field itself radiated by the localized surface plasmon of the metal fine particles 41 is a highly reflective layer. It is presumed that the presence of 20 causes a high-order enhancement such as self-amplification, thereby generating a large enhanced electromagnetic field that cannot be imagined from conventional common sense.
  • an extremely low output and small light source such as an LD (semiconductor laser) or an LED (light emitting diode) is used as an excitation light source, for example, fluorescence of a luminescent species, Raman active species, etc.
  • a sufficiently large light enhancement effect can be obtained.
  • the Raman spectrum of Raman active species can be measured even when low-power laser light having an energy density of 10 mW / cm 2 or less is used as excitation light. Therefore, the desired Raman spectroscopic analysis can be performed with high reliability with a very simple structure such as the measurement system used in the experimental examples described later.
  • the enhanced electromagnetic field forming layer 40 since it is not necessary for the enhanced electromagnetic field forming layer 40 itself to have a structure (nanostructure) in which the light enhancement effect by the localized surface plasmon is dominant (dominant), for example, as means for forming the enhanced electromagnetic field,
  • the structure itself is simplified by eliminating the structural constraints of the conventional light enhancement element using the mechanism based on the interaction between the localized surface plasmon of the metal fine particle and the surface plasmon polariton between the metal fine particle and the highly reflective layer. Are easy to handle, and can be produced advantageously in terms of cost.
  • a solution obtained by appropriately diluting a commercially available dimethylsiloxane solution with ethanol is spin-coated on the surface of the silver film at 3000 revolutions, and then heat-treated on a hot plate at 200 to 250 ° C. for several minutes to thereby form a dielectric layer ( 30) was formed as a dielectric film (refractive index: 1.3 to 1.4).
  • the thickness of the dielectric film was appropriately adjusted based on the relationship (calibration curve) between the concentration of the solution used for spin coating and the thickness of the dielectric film to be formed, which was actually measured by measuring the level difference using AFM.
  • the maximum film thickness obtained is 180 nm, and when forming a dielectric film with a large film thickness, the above treatment was repeated a plurality of times. . And the hydrophilization process by a plasma process was performed with respect to the surface (upper surface) of the obtained dielectric film. Then, an acetone dispersion (concentration of about 0.4 wt%) of protective film-free silver nanoparticles (volume average particle size of about 15 nm) is spin-coated on the hydrophilic surface of the dielectric film at 3000 rpm, and then about 250 By heating on a hot plate at 0 ° C.
  • a silver ultrafine particle monolayer film as an enhanced electromagnetic field forming layer (40) was formed.
  • the cross-sectional particle diameter (d) of the ultrafine silver particles is about 150 nm on average and the thickness (t) is about 30 nm on average, with a density of 10 8 to 10 10 particles / cm 2 . It is randomly arranged in a two-dimensional manner in a distributed state.
  • XRD X-ray diffraction
  • 53A and 53B are condensing lenses, and 54A is a filter.
  • Reference numeral 51 denotes a He—Ne laser (wavelength 632.8 nm) having an output of less than 1 mW used as an excitation light source in the measurement of Raman scattered light, and is not condensed (energy density is about 300 mW / cm) through the filter 54B.
  • the light enhancement element 10 is irradiated as anti-condensation (defocused, energy density of about 10 mW / cm 2 or less) excitation light.
  • the light enhancement element 10 is rotatably provided, and the incident angle of the excitation light can be set.
  • excitation light is incident on the light enhancement element 10 perpendicularly, and fluorescence emitted in a 45 ° angle (polar angle) direction from the dye carried on the light enhancement element 10 is converted into the light enhancement element 10.
  • the light was condensed on the light receiving head 56 of the electronically cooled diode array detector (manufactured by Hamamatsu Photonics) 55 through the filter 54C by a condensing lens (caliber 35 mm) 53C disposed at a position approximately 13 cm away from the surface.
  • the Raman scattering is performed by causing excitation light to enter the light enhancement element 10 at an incident angle of 45 ° and being scattered in the 90 ° angle direction by the dye carried on the light enhancement element 10.
  • the light was condensed by the condenser lens 53C onto the light receiving head 56 of the electronically cooled diode array detector 55 via the filter 54C.
  • a comparative light enhancement element was prepared, and the fluorescence intensity and the Raman scattering intensity were the same as in Experimental Example 1. As a result, the fluorescence enhancement was about 20 times at the maximum, and the Raman scattering intensity was not measurable.
  • a silver film (highly reflective layer), a dielectric film (dielectric layer) and a silver ultrafine particle single layer film (enhanced electromagnetic field forming layer) are formed on a slide glass (substrate). It was confirmed that a high fluorescence enhancement effect and a Raman scattering light enhancement effect can be obtained when the multilayer structure is used and the thickness of the dielectric film is 50 nm or more.
  • Example 2 In the manufacturing process of the light enhancement element in Experimental Example 1, the surface of the silver film (high reflection layer) on the dielectric film side was subjected to a roughening treatment by heat treatment, and the surface was optically roughened. Other than that, a light enhancement element having the same configuration as that of the light enhancement element according to Experimental Example 1 was manufactured by the same method as described above. Here, the surface roughness Ra of the surface of the silver film was about 10 to 30 nm by AFM measurement. Then, the fluorescence intensity and the Raman scattering intensity were measured by the same method as in Experimental Example 1. The results are shown in FIG. 4 and FIG. FIG. 4 is a graph showing an example of the fluorescence spectrum of the light enhancement element produced in Experimental Example 2, and FIG.
  • FIGS. (A) is due to a light enhancement element having a rough surface on the dielectric film side of the silver film, and (B) is a light enhancement element (experiment) where the surface is an optically smooth surface. Produced in Example 1).
  • the surface of the silver film (highly reflective layer) on the dielectric film side is roughened, so that the surface of the silver film has an optically smooth surface. It was confirmed that both the fluorescence intensity and the Raman scattering intensity (Raman signal) were higher than those of the device, and a higher light enhancement effect was obtained.

Abstract

Provided is a photoenhancement element that obtains a sufficiently high photoenhancement effect. The photoenhancement element comprises: a substrate; a highly reflective layer formed on the substrate; a dielectric layer formed on the highly reflective layer; and an enhanced electromagnetic-field-forming layer formed on the dielectric layer and resulting from numerous metal microparticles. The thickness of the dielectric layer is at least 50 nm. The highly reflective layer is preferably configured from a metal selected from silver, gold, aluminum, and copper, and furthermore, the surface of the highly reflective layer on the dielectric layer side is preferably a rough surface. Also, the enhanced electromagnetic-field-forming layer preferably has a configuration wherein the metal microparticles are arrayed randomly.

Description

光増強素子Light enhancement element
 本発明は、金属微粒子の局在型表面プラズモンを利用した光増強素子に関し、詳しくは、励起光照射により発光性化学種(蛍光物質)から発せられる発光(蛍光)の強度を増強すること、あるいは、励起光照射によりラマン活性化学種から得られるラマン散乱光の強度を増強することのできる光増強素子に関する。 The present invention relates to a light enhancement element using localized surface plasmons of fine metal particles, and more specifically, to enhance the intensity of luminescence (fluorescence) emitted from a luminescent chemical species (fluorescent substance) by irradiation with excitation light, or The present invention relates to a light enhancement element capable of enhancing the intensity of Raman scattered light obtained from a Raman active chemical species by excitation light irradiation.
 例えば、分析対象物を励起光照射により励起させて蛍光を発生させ、その蛍光を分析することによって分析対象物の定性及び定量分析を行う蛍光分析法は、高感度分析法の一つであり、微量分析において重要な役割を果たしている。 For example, a fluorescence analysis method for performing qualitative and quantitative analysis of an analysis object by exciting the analysis object with excitation light irradiation to generate fluorescence and analyzing the fluorescence is one of high-sensitivity analysis methods, It plays an important role in trace analysis.
 例えば蛍光物質から発せられる蛍光は、その蛍光物質自身の特徴をよく反映するだけでなく蛍光物質周囲の環境からも影響を受けやすいため、蛍光物質を標識剤(バイオセンサ)として体内組織やDNAの鑑定に用いることも行われており、生医化学を含め、広範な分野において利用されている。 For example, the fluorescence emitted from a fluorescent material not only reflects the characteristics of the fluorescent material itself, but is also easily affected by the environment around the fluorescent material. Therefore, the fluorescent material is used as a labeling agent (biosensor) for tissue and DNA in the body. It is also used for appraisal and is used in a wide range of fields including biomedical chemistry.
 また、電界効果で励起される蛍光物質は、薄型の表示デバイスの一つとして著しい発展を続けている有機EL素子に応用されている。 In addition, a fluorescent material excited by a field effect is applied to an organic EL element that has been remarkably developed as one of thin display devices.
 このように幅広く利用されている蛍光であるが、蛍光強度は物質によって異なる。通常では蛍光強度が微弱な物質の蛍光を観測できるようになれば、その応用範囲は更に拡大することが期待される。そのため、物質の蛍光を増強することを目的とした研究が盛んに行われてきた。 Fluorescence is widely used in this way, but the fluorescence intensity varies depending on the substance. Usually, if the fluorescence of a substance having a weak fluorescence intensity can be observed, the application range is expected to be further expanded. For this reason, research aimed at enhancing the fluorescence of substances has been actively conducted.
 蛍光増強法として、特許文献1には、サブミクロン領域の平均粒径と数十nmの高さをもつ平板型の銀粒子からなる島状スパッタ膜を利用する手法が開示されている。この蛍光増強法によると、銀粒子表面と実質的に直接接触する位置におかれた化学種でも有意な発光増強が得られ、最大の増強が得られる表面からの距離は約1nmの至近距離となることから、金属による消光作用が著しく抑制され、従って、比較的光りやすい化学種の場合にも有意な発光増強が得られる、とされている。 As a fluorescence enhancement method, Patent Document 1 discloses a technique using an island-like sputtered film made of flat silver particles having an average particle size in the submicron region and a height of several tens of nanometers. According to this fluorescence enhancement method, significant emission enhancement can be obtained even in a chemical species located in a position in direct contact with the silver particle surface. Therefore, it is said that the quenching action by the metal is remarkably suppressed, and therefore, significant emission enhancement can be obtained even in the case of a chemical species that is relatively easy to shine.
 他方、分析対象物に単波長の光(レーザー光)を照射して得られるラマン散乱光を分光してラマン散乱光のスペクトルを得るラマン分光法は、物質の同定等に利用されているが、通常、分析対象物から得られるラマン散乱光は信号が微弱であるため高感度で検出することが困難である。
 近年においては、上記のような光増強素子(金属微粒子の局在型表面プラズモンを利用したもの)によって、ラマン散乱光の信号強度を大きくする表面増強ラマン散乱(SERS)の研究が進められている。
On the other hand, Raman spectroscopy, which obtains a spectrum of Raman scattered light by dispersing Raman scattered light obtained by irradiating an analysis object with light of a single wavelength (laser light), is used for identification of substances. Usually, Raman scattered light obtained from an analysis object is difficult to detect with high sensitivity because the signal is weak.
In recent years, research on surface-enhanced Raman scattering (SERS) that increases the signal intensity of Raman-scattered light using the above-described light-enhancing element (using localized surface plasmons of metal fine particles) has been promoted. .
特開2007-139540号公報JP 2007-139540 A
 しかしながら、従来の局在型表面プラズモンを利用した光増強素子による光増強技術は、実用的にはいまだ不十分であり、励起光として高出力かつ大型のレーザー光を照射しなければ、十分な強度の測定光(蛍光、ラマン散乱光)を得ることができないなどの問題がある。
 本発明は、以上のような事情に基づいてなされたものであり、十分に高い光増強効果の得られる光増強素子を提供することを目的とする。
However, the conventional light enhancement technology using a light-enhancing element using localized surface plasmons is still insufficient for practical use, and sufficient intensity is required unless high-power and large-scale laser light is irradiated as excitation light. The measurement light (fluorescence, Raman scattered light) cannot be obtained.
The present invention has been made based on the above-described circumstances, and an object thereof is to provide a light enhancement element capable of obtaining a sufficiently high light enhancement effect.
 本発明の光増強素子は、基板と、この基板上に形成された高反射層と、この高反射層上に形成された誘電体層と、この誘電体層上に形成された、多数の金属微粒子による増強電磁場形成層とよりなり、前記誘電体層の厚みが50nm以上であることを特徴とする。 The light enhancement element of the present invention includes a substrate, a highly reflective layer formed on the substrate, a dielectric layer formed on the highly reflective layer, and a number of metals formed on the dielectric layer. It consists of an enhanced electromagnetic field forming layer made of fine particles, and the dielectric layer has a thickness of 50 nm or more.
 本発明の光増強素子においては、前記高反射層は、銀、金、アルミニウム、銅のうちから選ばれた金属により構成されることが好ましい。 In the light enhancement element of the present invention, the highly reflective layer is preferably made of a metal selected from silver, gold, aluminum, and copper.
 また、本発明の光増強素子においては、前記高反射層における誘電体層側の表面が粗面とされていることが好ましい。 In the light enhancement element of the present invention, it is preferable that the surface on the dielectric layer side of the high reflection layer is a rough surface.
 さらにまた、本発明の光増強素子においては、前記増強電磁場形成層は、金属微粒子がランダムに配列されてなる構成とされていることが好ましい。 Furthermore, in the light enhancement element of the present invention, it is preferable that the enhanced electromagnetic field forming layer has a configuration in which metal fine particles are randomly arranged.
 本発明の光増強素子によれば、高反射層、誘電体層および増強電磁場形成層が基板上に形成されてなる多層構造とされると共に、誘電体層の厚さが特定の大きさとされていることにより、増強電磁場形成層を構成する各金属微粒子の近傍位置において、強い増強電磁場を形成することができるので、十分に高い光増強効果が得られる。
 また、励起用光源として、例えばLD(半導体レーザー)やLED(発光ダイオード)といった、きわめて低出力かつ小型の光源を用いた場合であっても、所期の光増強効果を得ることができる。
 さらにまた、増強電磁場形成層自体を局在型表面プラズモンによる光増強効果が支配的(優勢)となるような構造(ナノ構造)とする必要がないので、例えば、増強電磁場の形成手段として、金属微粒子の局在型表面プラズモンと、金属微粒子と高反射層との間の表面プラズモンポラリトンとの相互作用による機構を利用した従来の光増強素子のような構造的制約がなくなって構造自体が簡素化され、取り扱いも容易であり、コスト的にも有利に作製することができる。
According to the light enhancement element of the present invention, a highly reflective layer, a dielectric layer, and an enhanced electromagnetic field forming layer are formed in a multilayer structure formed on a substrate, and the thickness of the dielectric layer is set to a specific size. As a result, a strong enhanced electromagnetic field can be formed in the vicinity of each metal fine particle constituting the enhanced electromagnetic field forming layer, so that a sufficiently high light enhancement effect can be obtained.
Further, even when an extremely low output and small light source such as an LD (semiconductor laser) or an LED (light emitting diode) is used as the excitation light source, the desired light enhancement effect can be obtained.
Furthermore, the enhanced electromagnetic field forming layer itself does not have to have a structure (nanostructure) in which the light enhancement effect by the localized surface plasmon is dominant (dominant). The structure itself is simplified by eliminating the structural constraints of conventional light-enhancing elements using the mechanism based on the interaction between the localized surface plasmons of fine particles and the surface plasmon polaritons between the metal fine particles and the highly reflective layer. It is easy to handle and can be produced advantageously in terms of cost.
本発明の光増強素子の一例における構成の概略を示す模式図である。It is a schematic diagram which shows the outline of a structure in an example of the light enhancement element of this invention. 本発明の光増強素子における光増強のメカニズムを説明するための模式図である。It is a schematic diagram for demonstrating the mechanism of the optical enhancement in the optical enhancement element of this invention. 実験例において、蛍光測定およびラマン散乱光測定を行うために構築した測定システムの構成の概略を示す説明図である。In an experiment example, it is explanatory drawing which shows the outline of a structure of the measurement system constructed | assembled in order to perform a fluorescence measurement and a Raman scattered light measurement. 実験例2において作製した光増強素子を用いて測定された蛍光スペクトルの一例を示すグラフである。6 is a graph showing an example of a fluorescence spectrum measured using a light enhancement element produced in Experimental Example 2. 実験例2において作製した光増強素子を用いて測定されたラマンスペクトルの一例を示すグラフである。It is a graph which shows an example of the Raman spectrum measured using the optical enhancement element produced in Experimental example 2.
 以下、本発明の実施の形態について詳細に説明する。
 図1は、本発明の光増強素子の一例における構成の概略を示す模式図である。
 この実施の形態に係る光増強素子10は、例えば平板状の基板15と、この基板15の表面上に形成された高反射層20と、この高反射層20の表面上に形成された誘電体層30と、この誘電体層30の表面上に形成された、多数の金属微粒子41による増強電磁場形成層40とを含む多層構造を有する。この光増強素子10は、例えば、増強電磁場形成層40(金属微粒子41)の表面上に直接あるいはスペーサーを介して担持させた発光性化学種に対する励起光照射による発光(例えば蛍光)を増強させる、あるいは、金属微粒子41の表面上に直接あるいはスペーサーを介して担持させたラマン活性化学種に対する励起光照射によるラマン散乱光を増強させるものである。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic diagram showing an outline of a configuration in an example of the light enhancement element of the present invention.
The light enhancement element 10 according to this embodiment includes, for example, a flat substrate 15, a high reflection layer 20 formed on the surface of the substrate 15, and a dielectric formed on the surface of the high reflection layer 20. The multilayer structure includes a layer 30 and an enhanced electromagnetic field forming layer 40 formed of a large number of metal fine particles 41 formed on the surface of the dielectric layer 30. For example, the light enhancement element 10 enhances light emission (for example, fluorescence) by irradiation of excitation light with respect to a luminescent chemical species supported directly or via a spacer on the surface of the enhanced electromagnetic field forming layer 40 (metal fine particles 41). Alternatively, the Raman scattered light by the excitation light irradiation to the Raman active chemical species carried directly or via a spacer on the surface of the metal fine particle 41 is enhanced.
 基板15の材質は、特に限定されるものではなく、例えば、ガラス、セラミックス、樹脂、金属などを例示することができる。後述するように、光増強素子10の作製工程において加熱処理(例えば200℃以上の加熱)が行われる場合には、例えばガラス、ポリイミド樹脂などの耐熱性を有するものであることが好ましい。
 また、基板15の高反射層20側の表面は、平面である必要はなく、例えば曲面、小球面などとされていてもよい。
The material of the board | substrate 15 is not specifically limited, For example, glass, ceramics, resin, a metal etc. can be illustrated. As will be described later, when heat treatment (for example, heating at 200 ° C. or higher) is performed in the manufacturing process of the light enhancement element 10, it is preferable to have heat resistance such as glass or polyimide resin.
Further, the surface of the substrate 15 on the high reflection layer 20 side does not have to be a flat surface, and may be a curved surface, a small spherical surface, or the like, for example.
 高反射層20は、例えば、可視領域全域、または少なくとも500nm以上の波長領域、具体的には、発光性化学種およびラマン活性化学種などの分析対象物を励起させる励起光の波長域で高い反射率を有する材質であることが好ましく、具体的には例えば、銀、金、アルミニウムあるいは銅を例示することができる。
 高反射層20の厚みは、可視領域全域または500nm以上の波長領域で90%以上の反射率が得られる大きさであることが好ましい。
 また、高反射層20における誘電体層30側の表面は、光学的に平滑な面であってもよいが、粗面とされていることが好ましい。具体的には例えば、表面粗さRaが10~30nm程度である荒れた面であることが好ましい。これにより、後述する実験例の結果に示されているように、一層高い光増強効果が得られる。
The highly reflective layer 20 is highly reflective in, for example, the entire visible region or a wavelength region of at least 500 nm or more, specifically, a wavelength region of excitation light that excites an analyte such as a luminescent chemical species and a Raman active chemical species. It is preferable that the material has a ratio, and specific examples include silver, gold, aluminum, and copper.
The thickness of the highly reflective layer 20 is preferably large enough to obtain a reflectance of 90% or more in the entire visible region or in a wavelength region of 500 nm or more.
The surface of the highly reflective layer 20 on the dielectric layer 30 side may be an optically smooth surface, but is preferably a rough surface. Specifically, for example, a rough surface having a surface roughness Ra of about 10 to 30 nm is preferable. Thereby, as shown in the result of the experimental example to be described later, a higher light enhancement effect can be obtained.
 誘電体層30は、励起光に対して透光性を有する材料により構成されており、後述するように、光増強素子10の作製工程において加熱処理(例えば200℃以上の加熱)が行われる場合には、耐熱性を有する材料により構成されていることが好ましい。具体的には例えば、酸化珪素を主成分としたSOG(スピンオングラス)材料、テトラエトキシシラン(TEOS)およびジメチルシロキサンなどのシロキサン系材料などを例示することができる。また、誘電体層30がSOG材料を焼成して得られる焼成体(SOG膜)により構成されている場合には、SOG膜の表面は比較的強い疎水性を有するため、必要に応じてアルカリ処理もしくはプラズマ処理による親水化処理がなされたものであることが好ましい。
 誘電体層30の厚みは、50nm以上とされ、より好ましくは60~90nmとされる。誘電体層30の厚みが過小である場合には、後述する実験例の結果に示されるように、十分な光増強効果を得ることができない。
The dielectric layer 30 is made of a material that is transparent to excitation light. As will be described later, heat treatment (for example, heating at 200 ° C. or higher) is performed in the manufacturing process of the light enhancement element 10. It is preferable that it is comprised with the material which has heat resistance. Specific examples include SOG (spin-on-glass) materials mainly composed of silicon oxide, siloxane-based materials such as tetraethoxysilane (TEOS) and dimethylsiloxane. Further, when the dielectric layer 30 is composed of a fired body (SOG film) obtained by firing an SOG material, the surface of the SOG film has a relatively strong hydrophobicity, so that an alkali treatment is performed as necessary. Or it is preferable that the hydrophilic treatment by plasma treatment was made.
The thickness of the dielectric layer 30 is 50 nm or more, more preferably 60 to 90 nm. When the thickness of the dielectric layer 30 is too small, a sufficient light enhancement effect cannot be obtained as shown in the result of an experimental example described later.
 増強電磁場形成層40は、多数の金属微粒子41による単層膜により構成されていることが好ましい。
 増強電磁場形成層40を構成する金属微粒子41としては、例えば銀超微粒子を好適に用いることができるが、励起光の照射により励起されて表面プラズモンを励起しうるものであればよく、例えば金、銅などが用いられてもよい。
 金属微粒子41は、励起光の波長以下の大きさ、例えば断面粒径(図1における左右方向の寸法)dが30~400nm、厚さtが5~70nmである、例えば扁平な球形状、平板状の形状など、形状異方性を有するものを好適に用いることができる。ここに、金属微粒子41は、いずれも均一の大きさ及び形状を備えていることが望ましいが、大きさや形状に多少のばらつきがあってもよい。
The enhanced electromagnetic field forming layer 40 is preferably composed of a single layer film composed of a large number of metal fine particles 41.
As the metal fine particles 41 constituting the enhanced electromagnetic field forming layer 40, for example, silver ultrafine particles can be preferably used, but any material that can be excited by irradiation with excitation light to excite surface plasmons, such as gold, Copper or the like may be used.
The metal fine particles 41 have a size equal to or smaller than the wavelength of the excitation light, for example, a cross-sectional particle size (a horizontal dimension in FIG. 1) d of 30 to 400 nm and a thickness t of 5 to 70 nm. Those having shape anisotropy such as a shape can be preferably used. Here, it is desirable that all of the metal fine particles 41 have a uniform size and shape, but there may be some variation in size and shape.
 増強電磁場形成層40は、上記の大きさ(断面粒径,厚さ)を有する金属微粒子41が例えば2次元的にランダムに、具体的には例えば、10~1010個/cmの密度で分布し、互いに接触することなく独立した状態で配列されていることが好ましい。
 また、増強電磁場形成層40は、金属微粒子41が規則的に配列されてなる構成とされていてもよい。
In the enhanced electromagnetic field forming layer 40, the metal fine particles 41 having the above-mentioned size (cross-sectional particle size, thickness) are, for example, two-dimensionally randomly, specifically, for example, a density of 10 8 to 10 10 particles / cm 2 . And are arranged in an independent state without contacting each other.
Further, the enhanced electromagnetic field forming layer 40 may be configured such that the metal fine particles 41 are regularly arranged.
 このような増強電磁場形成層40の形成方法としては、特に限定されるものではないが、例えば、金属微粒子が適宜の溶媒に分散された分散液をスピンコート法により塗布して加熱する方法、ディッピングして加熱する方法、真空蒸着する方法などを好適に用いることができる。 A method for forming such an enhanced electromagnetic field forming layer 40 is not particularly limited. For example, a method in which a dispersion in which metal fine particles are dispersed in an appropriate solvent is applied by a spin coating method and heated, dipping Then, a heating method, a vacuum deposition method, or the like can be suitably used.
 この光増強素子10を使用するに際しては、上述したように、分析対象物が、増強電磁場形成層40上、具体的には金属微粒子41の表面上に直接あるいはスペーサーを介して担持される。ここに、分析対象物が例えば蛍光物質である場合には、蛍光物質の濃度が大きくなると、蛍光物質間で励起エネルギーが移動して非放射過程の確率が増し、蛍光の強さが減少してしまう(自己消光効果)。従って、自己消光効果をなるべく小さくするために、蛍光物質は可能な限り低濃度で(薄く)担持されることが望ましい。そして、励起光照射により分析対象物から発せられる蛍光を適宜の分光器により検出することにより分光分析が行われる。 When using this light enhancement element 10, as described above, the analysis object is carried on the enhanced electromagnetic field forming layer 40, specifically, on the surface of the metal fine particle 41 directly or via a spacer. Here, when the analyte is, for example, a fluorescent material, when the concentration of the fluorescent material increases, the excitation energy moves between the fluorescent materials, the probability of a non-radiative process increases, and the intensity of the fluorescence decreases. End up (self-quenching effect). Therefore, in order to reduce the self-quenching effect as much as possible, it is desirable that the fluorescent material be supported at the lowest possible concentration (thin). And spectroscopic analysis is performed by detecting the fluorescence emitted from an analysis object by excitation light irradiation with a suitable spectroscope.
 スペーサーは、金属微粒子41の表面と分析対象物との間の距離を調整するためのものであり、例えばSOG膜などの誘電体により構成することができる。
 スペーサーの厚みは、例えば10nm以下であることが好ましく、特に1nm程度、あるいはそれ以下である場合に、光増強効果が最大となる。
The spacer is for adjusting the distance between the surface of the metal fine particle 41 and the analysis target, and can be composed of a dielectric such as an SOG film.
The spacer thickness is preferably, for example, 10 nm or less, and the light enhancement effect is maximized particularly when the thickness is about 1 nm or less.
 而して、上記の光増強素子10によれば、高反射層20、誘電体層30および増強電磁場形成層40が基板15上に形成されてなる多層構造とされると共に、誘電体層30の厚さが50nm以上とされていることにより、増強電磁場形成層40を構成する各金属微粒子41の近傍位置において、強い増強電磁場を形成することができるので、後述する実験例の結果から明らかなように、十分に高い光増強効果が得られる。この理由としては、図2に示すように、増強電磁場形成層40を構成する各金属微粒子41の近傍位置において励起光と高反射層20による当該励起光の反射光との正の干渉が生ずる干渉場が形成され、当該干渉場の作用によって、金属微粒子41の局在型表面プラズモンによる増強電磁場(図2において破線で囲まれた領域)が一層強められるものと考えられるが、この種の、すでによく知られた干渉効果のみでは、特に実験例で示す大きな光増強率を十分に説明することはできず、金属微粒子41の局在型表面プラズモンが放射する二次的な電磁場そのものが高反射層20の存在により自己増幅的な高次の増強を受け、これによりこれまでの常識からは想像できない大きな増強電磁場が発生するものと推定される。
 また、励起用光源として、例えばLD(半導体レーザー)やLED(発光ダイオード)といった、きわめて低出力かつ小型の光源を用いた場合であっても、例えば発光性化学種の蛍光、ラマン活性化学種のラマン散乱光について、十分に大きい光増強効果を得ることができる。例えば、ラマン散乱光の測定においては、エネルギー密度が10mW/cm以下である低出力のレーザー光を励起光として用いた場合であっても、ラマン活性化学種のラマンスペクトルを測定することができ、従って、後述する実験例において用いた測定システムのような極めて簡単な構造で、所望のラマン分光分析を高い信頼性で行うことができる。
 さらにまた、増強電磁場形成層40自体を局在型表面プラズモンによる光増強効果が支配的(優勢)となるような構造(ナノ構造)とする必要がないので、例えば、増強電磁場の形成手段として、金属微粒子の局在型表面プラズモンと、金属微粒子と高反射層との間の表面プラズモンポラリトンとの相互作用による機構を利用した従来の光増強素子のような構造的制約がなくなって構造自体が簡素化され、取り扱いも容易であり、コスト的にも有利に作製することができる。
Thus, according to the above-described light enhancement element 10, the highly reflective layer 20, the dielectric layer 30, and the enhanced electromagnetic field forming layer 40 have a multilayer structure formed on the substrate 15. By setting the thickness to 50 nm or more, a strong enhanced electromagnetic field can be formed in the vicinity of each metal fine particle 41 constituting the enhanced electromagnetic field forming layer 40, so that it is clear from the results of the experimental examples described later. In addition, a sufficiently high light enhancement effect can be obtained. The reason for this is that, as shown in FIG. 2, interference occurs between the excitation light and the reflected light of the excitation light by the high reflection layer 20 in the vicinity of each metal fine particle 41 constituting the enhanced electromagnetic field forming layer 40. A field is formed, and it is considered that the enhanced electromagnetic field (region surrounded by a broken line in FIG. 2) due to the localized surface plasmon of the metal fine particle 41 is further enhanced by the action of the interference field. The well-known interference effect alone cannot sufficiently explain the large light enhancement factor shown in the experimental example, and the secondary electromagnetic field itself radiated by the localized surface plasmon of the metal fine particles 41 is a highly reflective layer. It is presumed that the presence of 20 causes a high-order enhancement such as self-amplification, thereby generating a large enhanced electromagnetic field that cannot be imagined from conventional common sense.
Further, even when an extremely low output and small light source such as an LD (semiconductor laser) or an LED (light emitting diode) is used as an excitation light source, for example, fluorescence of a luminescent species, Raman active species, etc. For Raman scattered light, a sufficiently large light enhancement effect can be obtained. For example, in the measurement of Raman scattered light, the Raman spectrum of Raman active species can be measured even when low-power laser light having an energy density of 10 mW / cm 2 or less is used as excitation light. Therefore, the desired Raman spectroscopic analysis can be performed with high reliability with a very simple structure such as the measurement system used in the experimental examples described later.
Furthermore, since it is not necessary for the enhanced electromagnetic field forming layer 40 itself to have a structure (nanostructure) in which the light enhancement effect by the localized surface plasmon is dominant (dominant), for example, as means for forming the enhanced electromagnetic field, The structure itself is simplified by eliminating the structural constraints of the conventional light enhancement element using the mechanism based on the interaction between the localized surface plasmon of the metal fine particle and the surface plasmon polariton between the metal fine particle and the highly reflective layer. Are easy to handle, and can be produced advantageously in terms of cost.
 以下、本発明に係る光増強素子の効果を確認するために行った実験例について説明する。 Hereinafter, experimental examples performed for confirming the effect of the light enhancement element according to the present invention will be described.
<実験例1>
〔光増強素子(10)の作製〕
 図1に示す構成に従って、誘電体層の厚みが下記表1に従って調整された6つの光増強素子を次のようにして作製した。
 基板(15)として1cm角の大きさのスライドガラスを用い、このスライドガラスの表面上に、標準的な抵抗加熱型真空蒸着法により高反射層(20)としての銀膜を形成した。得られた銀膜の厚さは0.2μm以上で透過率は可視領域で実質的にゼロであった。また実測反射率は、可視領域のほぼ全域で98%以上の、バルク銀の光学定数を用いて理論的に計算した値と一致する、高い反射率を示すことがわかった。
 次いで、市販のジメチルシロキサン溶液をエタノールで適宜希釈した溶液を、銀膜の表面上に3000回転でスピンコートし、その後200~250℃のホットプレート上で数分間加熱処理することにより誘電体層(30)としての誘電体膜(屈折率1.3~1.4)を形成した。誘電体膜の厚みは、AFMによる段差測定により実測した、スピンコートに用いた溶液濃度と形成する誘電体膜の厚さの関係(検量線)に基づいて適宜調整した。ここに、市販のジメチルシロキサン溶液の原液をそのままスピンコートした場合に得られる最大膜厚は180nmであり、大きな膜厚の誘電体膜を形成する際には、上記の処理を複数回繰り返し行った。そして、得られた誘電体膜の表面(上面)に対して、プラズマ処理による親水化処理を行った。
 そして、保護膜フリー銀ナノ粒子(体積平均粒径約15nm)のアセトン分散液(濃度約0.4wt%)を誘電体膜の親水化処理した表面上に3000回転でスピンコートし、その後約250℃のホットプレート上で数分間加熱することにより、増強電磁場形成層(40)としての銀超微粒子単層膜を形成した。得られた銀超微粒子単層膜における銀超微粒子の断面粒径(d)は平均で約150nm、厚さ(t)は平均で約30nmであり、10~1010個/cmの密度で分布した状態で二次元的にランダムに配列されてなる。また、各銀超微粒子は、XRD(X線回折)測定によりバルク銀なみの高い結晶性を有することが確認された。
<Experimental example 1>
[Production of light enhancement element (10)]
In accordance with the configuration shown in FIG. 1, six light enhancement elements in which the thickness of the dielectric layer was adjusted according to Table 1 below were produced as follows.
A 1 cm square slide glass was used as the substrate (15), and a silver film as a highly reflective layer (20) was formed on the surface of the slide glass by a standard resistance heating vacuum deposition method. The thickness of the obtained silver film was 0.2 μm or more, and the transmittance was substantially zero in the visible region. It was also found that the measured reflectance shows a high reflectance that is equal to or more than 98% of the theoretical value calculated using the optical constant of bulk silver in almost the entire visible region.
Next, a solution obtained by appropriately diluting a commercially available dimethylsiloxane solution with ethanol is spin-coated on the surface of the silver film at 3000 revolutions, and then heat-treated on a hot plate at 200 to 250 ° C. for several minutes to thereby form a dielectric layer ( 30) was formed as a dielectric film (refractive index: 1.3 to 1.4). The thickness of the dielectric film was appropriately adjusted based on the relationship (calibration curve) between the concentration of the solution used for spin coating and the thickness of the dielectric film to be formed, which was actually measured by measuring the level difference using AFM. Here, when the stock solution of a commercially available dimethylsiloxane solution is spin coated as it is, the maximum film thickness obtained is 180 nm, and when forming a dielectric film with a large film thickness, the above treatment was repeated a plurality of times. . And the hydrophilization process by a plasma process was performed with respect to the surface (upper surface) of the obtained dielectric film.
Then, an acetone dispersion (concentration of about 0.4 wt%) of protective film-free silver nanoparticles (volume average particle size of about 15 nm) is spin-coated on the hydrophilic surface of the dielectric film at 3000 rpm, and then about 250 By heating on a hot plate at 0 ° C. for several minutes, a silver ultrafine particle monolayer film as an enhanced electromagnetic field forming layer (40) was formed. In the obtained silver ultrafine particle monolayer film, the cross-sectional particle diameter (d) of the ultrafine silver particles is about 150 nm on average and the thickness (t) is about 30 nm on average, with a density of 10 8 to 10 10 particles / cm 2 . It is randomly arranged in a two-dimensional manner in a distributed state. Moreover, it was confirmed by XRD (X-ray diffraction) measurement that each silver ultrafine particle has high crystallinity similar to bulk silver.
〔試料(分析対象物)の担時〕
 ローダミン6G(Rh6G)色素の希薄エタノール溶液を、光増強素子における銀超微粒子単層膜の表面上に3000回転でスピンコートすることにより、色素分子を光増強素子における銀超微粒子の表面上に担持させた。ここに、光増強素子の表面に担持される色素分子の密度とスピンコートに用いた溶液の色素濃度との関係は、ローダミン6Gの濃度が0.3mMである場合に、色素分子の密度は7×1013個/cmである。
[During sample (analysis object)]
A dilute ethanol solution of rhodamine 6G (Rh6G) dye is spin-coated at 3000 revolutions on the surface of the silver ultrafine particle monolayer film in the light enhancement element, thereby supporting the dye molecule on the surface of the silver ultrafine particle in the light enhancement element. I let you. Here, the relationship between the density of the dye molecules carried on the surface of the light enhancement element and the dye concentration of the solution used for spin coating is as follows. When the concentration of rhodamine 6G is 0.3 mM, the density of the dye molecules is 7 × 10 13 pieces / cm 2
〔蛍光およびラマン散乱光の測定〕
 上記のようにして作製した各光増強素子について、励起光照射により試料から発せられる蛍光を図3に示す構成の測定システムにより測定し、ガラス上に同色素を直接スピン担持した場合に測定される蛍光強度を基準とする増強度を算出すると共に、試料からのラマン散乱強度を測定した。結果を下記表1に示す。
 図3において、符号50は、蛍光の測定における励起用光源として用いた出力150Wのキセノンランプであり、当該キセノンランプ50から放射される光を分光器「SPG-120S」(島津製作所製)52により分光して、波長530nmの光を励起光として光増強素子10に照射する。53A,53Bは集光レンズ、54Aはフィルタである。また、51は、ラマン散乱光の測定における励起用光源として用いた、出力1mW未満のHe-Neレーザー(波長632.8nm)であり、フィルタ54Bを介して非集光(エネルギー密度約300mW/cm)もしくは反集光(デフォーカスされた,エネルギー密度約10mW/cm以下)励起光として光増強素子10に照射する。この測定システムにおいて、光増強素子10は回転自在に設けており、励起光の入射角度を設定可能に構成した。蛍光の測定では、励起光を光増強素子10に対して垂直に入射させ、光増強素子10に担持された色素から45°の角度(極角)方向に放射された蛍光を、光増強素子10の表面から約13cm離れた位置に配置した集光レンズ(口径35mm)53Cによって、電子冷却型ダイオードアレイ検出器(浜松ホトニクス製)55の受光ヘッド56にフィルタ54Cを介して集光した。また、ラマン散乱光の測定においては、励起光を光増強素子10に対して45°の入射角度で入射させ、光増強素子10に担持された色素による90°の角度方向に散乱されるラマン散乱光を、集光レンズ53Cによって、電子冷却型ダイオードアレイ検出器55の受光ヘッド56にフィルタ54Cを介して集光した。
[Measurement of fluorescence and Raman scattered light]
For each light enhancement element fabricated as described above, the fluorescence emitted from the sample by irradiation with excitation light is measured by the measurement system having the configuration shown in FIG. 3, and is measured when the same dye is spin-supported directly on the glass. While calculating the increase intensity based on the fluorescence intensity, the Raman scattering intensity from the sample was measured. The results are shown in Table 1 below.
In FIG. 3, reference numeral 50 denotes a xenon lamp with an output of 150 W used as an excitation light source in fluorescence measurement. Light emitted from the xenon lamp 50 is transmitted by a spectroscope “SPG-120S” (manufactured by Shimadzu Corporation) 52. Spectroscopically, the light enhancement element 10 is irradiated with light having a wavelength of 530 nm as excitation light. 53A and 53B are condensing lenses, and 54A is a filter. Reference numeral 51 denotes a He—Ne laser (wavelength 632.8 nm) having an output of less than 1 mW used as an excitation light source in the measurement of Raman scattered light, and is not condensed (energy density is about 300 mW / cm) through the filter 54B. 2 ) or the light enhancement element 10 is irradiated as anti-condensation (defocused, energy density of about 10 mW / cm 2 or less) excitation light. In this measurement system, the light enhancement element 10 is rotatably provided, and the incident angle of the excitation light can be set. In the measurement of fluorescence, excitation light is incident on the light enhancement element 10 perpendicularly, and fluorescence emitted in a 45 ° angle (polar angle) direction from the dye carried on the light enhancement element 10 is converted into the light enhancement element 10. The light was condensed on the light receiving head 56 of the electronically cooled diode array detector (manufactured by Hamamatsu Photonics) 55 through the filter 54C by a condensing lens (caliber 35 mm) 53C disposed at a position approximately 13 cm away from the surface. In the measurement of Raman scattered light, the Raman scattering is performed by causing excitation light to enter the light enhancement element 10 at an incident angle of 45 ° and being scattered in the 90 ° angle direction by the dye carried on the light enhancement element 10. The light was condensed by the condenser lens 53C onto the light receiving head 56 of the electronically cooled diode array detector 55 via the filter 54C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 スライドガラス(基板)上に上記と同様の方法により銀超微粒子単層膜を形成することにより、比較用の光増強素子を作製して、上記実験例1と同様に、蛍光強度およびラマン散乱強度の測定を行ったところ、蛍光増強度は最大20倍程度であり、ラマン散乱強度は測定不能であった。 By forming a silver ultrafine particle monolayer film on a slide glass (substrate) by the same method as described above, a comparative light enhancement element was prepared, and the fluorescence intensity and the Raman scattering intensity were the same as in Experimental Example 1. As a result, the fluorescence enhancement was about 20 times at the maximum, and the Raman scattering intensity was not measurable.
 以上の結果から明らかなように、銀膜(高反射層)、誘電体膜(誘電体層)および銀超微粒子単層膜(増強電磁場形成層)がスライドガラス(基板)上に形成されてなる多層構造とされると共に、誘電体膜の厚みが50nm以上の大きさとされていることにより、高い蛍光増強効果およびラマン散乱光増強効果が得られることが確認された。 As is clear from the above results, a silver film (highly reflective layer), a dielectric film (dielectric layer) and a silver ultrafine particle single layer film (enhanced electromagnetic field forming layer) are formed on a slide glass (substrate). It was confirmed that a high fluorescence enhancement effect and a Raman scattering light enhancement effect can be obtained when the multilayer structure is used and the thickness of the dielectric film is 50 nm or more.
<実験例2>
 実験例1における光増強素子の作製工程において、銀膜(高反射層)における誘電体膜側の表面に対して加熱処理による粗面化処理を行い当該表面を光学的に粗面としたことの他は、上記と同様の方法により、実験例1に係る光増強素子と同一の構成を有する光増強素子を作製した。ここに、銀膜の表面の表面粗さRaは、AFM測定により、10~30nm程度であった。
 そして、実験例1と同様の方法により、蛍光強度およびラマン散乱強度の測定を行った。結果を図4および図5に示す。図4は、実験例2において作製した光増強素子の蛍光スペクトルの一例を示すグラフ、図5は実験例2において作製した光増強素子のラマンスペクトルの一例を示すグラフであり、図4および図5において、(A)が銀膜における誘電体膜側の表面が粗面とされた光増強素子によるものであり、(B)が同表面が光学的に平滑な面とされた光増強素子(実験例1において作製されたもの)によるものである。
<Experimental example 2>
In the manufacturing process of the light enhancement element in Experimental Example 1, the surface of the silver film (high reflection layer) on the dielectric film side was subjected to a roughening treatment by heat treatment, and the surface was optically roughened. Other than that, a light enhancement element having the same configuration as that of the light enhancement element according to Experimental Example 1 was manufactured by the same method as described above. Here, the surface roughness Ra of the surface of the silver film was about 10 to 30 nm by AFM measurement.
Then, the fluorescence intensity and the Raman scattering intensity were measured by the same method as in Experimental Example 1. The results are shown in FIG. 4 and FIG. FIG. 4 is a graph showing an example of the fluorescence spectrum of the light enhancement element produced in Experimental Example 2, and FIG. 5 is a graph showing an example of the Raman spectrum of the light enhancement element produced in Experimental Example 2. FIGS. (A) is due to a light enhancement element having a rough surface on the dielectric film side of the silver film, and (B) is a light enhancement element (experiment) where the surface is an optically smooth surface. Produced in Example 1).
 以上の結果から明らかなように、銀膜(高反射層)における誘電体膜側の表面を粗面とすることにより、銀膜における同表面が光学的に平滑な面とされた構造の光増強素子よりも、蛍光強度およびラマン散乱強度(ラマン信号)がともに高くなり、一層高い光増強効果が得られることが確認された。 As is clear from the above results, the surface of the silver film (highly reflective layer) on the dielectric film side is roughened, so that the surface of the silver film has an optically smooth surface. It was confirmed that both the fluorescence intensity and the Raman scattering intensity (Raman signal) were higher than those of the device, and a higher light enhancement effect was obtained.
 10 光増強素子
 15 基板
 20 高反射層
 30 誘電体層
 40 増強電磁場形成層
 41 金属微粒子
 50 キセノンランプ
 51 He-Neレーザー
 52 分光器
 53A,53B,53C 集光レンズ
 54A,54B,54C フィルタ
 55 電子冷却型ダイオードアレイ検出器
 56 受光ヘッド
DESCRIPTION OF SYMBOLS 10 Light enhancement element 15 Board | substrate 20 High reflection layer 30 Dielectric layer 40 Augmented electromagnetic field formation layer 41 Metal fine particle 50 Xenon lamp 51 He-Ne laser 52 Spectroscope 53A, 53B, 53C Condensing lens 54A, 54B, 54C Filter 55 Electronic cooling Type diode array detector 56 Light receiving head

Claims (4)

  1.  基板と、この基板上に形成された高反射層と、この高反射層上に形成された誘電体層と、この誘電体層上に形成された、多数の金属微粒子による増強電磁場形成層とよりなり、
     前記誘電体層の厚みが50nm以上であることを特徴とする光増強素子。
    A substrate, a highly reflective layer formed on the substrate, a dielectric layer formed on the highly reflective layer, and an enhanced electromagnetic field forming layer formed of a large number of metal fine particles formed on the dielectric layer. Become
    The light enhancement element, wherein the dielectric layer has a thickness of 50 nm or more.
  2.  前記高反射層は、銀、金、アルミニウム、銅のうちから選ばれた金属により構成されることを特徴とする請求項1に記載の光増強素子。 2. The light enhancement element according to claim 1, wherein the highly reflective layer is made of a metal selected from silver, gold, aluminum, and copper.
  3.  前記高反射層の誘電体層側の表面が粗面とされていることを特徴とする請求項1または請求項2に記載の光増強素子。 3. The light enhancement element according to claim 1, wherein a surface of the highly reflective layer on a dielectric layer side is a rough surface.
  4.  前記増強電磁場形成層は、金属微粒子がランダムに配列されてなることを特徴とする請求項1乃至請求項3のいずれかに記載の光増強素子。 The light enhancement element according to any one of claims 1 to 3, wherein the enhanced electromagnetic field forming layer is formed by randomly arranging metal fine particles.
PCT/JP2011/064095 2010-12-22 2011-06-21 Photoenhancement element WO2012086236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-285636 2010-12-22
JP2010285636A JP2012132804A (en) 2010-12-22 2010-12-22 Light enhancement element

Publications (1)

Publication Number Publication Date
WO2012086236A1 true WO2012086236A1 (en) 2012-06-28

Family

ID=46313523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064095 WO2012086236A1 (en) 2010-12-22 2011-06-21 Photoenhancement element

Country Status (2)

Country Link
JP (1) JP2012132804A (en)
WO (1) WO2012086236A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138415A1 (en) * 2017-01-30 2018-08-02 Aalto University Foundation Sr A plasmonic device
CN111157483A (en) * 2018-11-07 2020-05-15 松下知识产权经营株式会社 Resin determination method and apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728449B2 (en) * 2012-09-12 2015-06-03 国立大学法人京都大学 Light enhancement element and method for manufacturing the same
WO2014042146A1 (en) * 2012-09-12 2014-03-20 国立大学法人京都大学 Optical enhancement element and method for producing same
JP2014169955A (en) 2013-03-05 2014-09-18 Seiko Epson Corp Analysis device, analysis method, optical element and electronic apparatus used in them, and design method of optical element
TWI472059B (en) * 2013-10-09 2015-02-01 Cheng Sheng Tsung A method of forming a surface plasma using a microstructure
JP6365817B2 (en) 2014-02-17 2018-08-01 セイコーエプソン株式会社 Analytical device and electronic device
JP2015215178A (en) 2014-05-08 2015-12-03 セイコーエプソン株式会社 Electric field enhancement element, analyzing device and electronic apparatus
WO2017130839A1 (en) * 2016-01-27 2017-08-03 住友化学株式会社 Sensor chip and sensing system
JP6493448B2 (en) * 2017-05-22 2019-04-03 セイコーエプソン株式会社 Sensor substrate, detection device and electronic device
TWI751661B (en) * 2019-09-03 2022-01-01 日商興亞玻璃股份有限公司 Inorganic composition and its producing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271431A (en) * 1995-03-17 1996-10-18 Avl Medical Instr Ag Photochemical fluorescent sensor and measuring method thereof
US20030174384A1 (en) * 2001-10-24 2003-09-18 Wm. Marsh Rice University Nanoparticle-based all-optical sensors
WO2006085515A1 (en) * 2005-02-09 2006-08-17 Kyoto University Reflectance control optical device
JP2007508536A (en) * 2003-10-09 2007-04-05 コミツサリア タ レネルジー アトミーク Surface plasmon microsensors and nanosensors for chemical or biological species
JP2007139540A (en) * 2005-11-17 2007-06-07 Kyoto Univ Fluorescence enhancing element, fluorescence element and fluorescence method
JP2007255947A (en) * 2006-03-20 2007-10-04 Japan Science & Technology Agency Localized surface plasmon sensor
JP2007538264A (en) * 2004-05-19 2007-12-27 ブィピー ホールディング、エルエルシー Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276162A (en) * 2008-05-14 2009-11-26 Fujifilm Corp Fluorescence detecting method
EP2372348A1 (en) * 2010-03-22 2011-10-05 Imec Methods and systems for surface enhanced optical detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271431A (en) * 1995-03-17 1996-10-18 Avl Medical Instr Ag Photochemical fluorescent sensor and measuring method thereof
US20030174384A1 (en) * 2001-10-24 2003-09-18 Wm. Marsh Rice University Nanoparticle-based all-optical sensors
JP2007508536A (en) * 2003-10-09 2007-04-05 コミツサリア タ レネルジー アトミーク Surface plasmon microsensors and nanosensors for chemical or biological species
JP2007538264A (en) * 2004-05-19 2007-12-27 ブィピー ホールディング、エルエルシー Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS
WO2006085515A1 (en) * 2005-02-09 2006-08-17 Kyoto University Reflectance control optical device
JP2007139540A (en) * 2005-11-17 2007-06-07 Kyoto Univ Fluorescence enhancing element, fluorescence element and fluorescence method
JP2007255947A (en) * 2006-03-20 2007-10-04 Japan Science & Technology Agency Localized surface plasmon sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138415A1 (en) * 2017-01-30 2018-08-02 Aalto University Foundation Sr A plasmonic device
CN111157483A (en) * 2018-11-07 2020-05-15 松下知识产权经营株式会社 Resin determination method and apparatus
CN111157483B (en) * 2018-11-07 2022-08-23 松下知识产权经营株式会社 Transparent resin determination method and device

Also Published As

Publication number Publication date
JP2012132804A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
WO2012086236A1 (en) Photoenhancement element
WO2012086586A1 (en) Raman-scattered light intensifying element
Bonyár et al. Investigation of the performance of thermally generated gold nanoislands for LSPR and SERS applications
Tran et al. Reproducible Enhancement of Fluorescence by Bimetal Mediated Surface Plasmon Coupled Emission for Highly Sensitive Quantitative Diagnosis of Double‐Stranded DNA
Chen et al. Self‐assembled large Au nanoparticle arrays with regular hot spots for SERS
Brolo et al. Enhanced fluorescence from arrays of nanoholes in a gold film
EP3574351B1 (en) A plasmonic device
JP4806411B2 (en) Optical sensor for use with a visible light laser excitation beam and a Raman spectroscopic detector and method for detecting chemical groups in an analyte
Sun et al. Critical role of shell in enhanced fluorescence of metal–dielectric core–shell nanoparticles
US8993339B2 (en) Hybrid nanostructures for molecular analysis
US8822228B2 (en) Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence
Jayawardhana et al. Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism
Zhu et al. Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application
EP2459988A1 (en) Nanowire light concentrators for performing raman spectroscopy
Fu et al. Enhancement in SERS intensity with hierarchical nanostructures by bimetallic deposition approach
US20040096981A1 (en) Systems and methods for detection of low concentration of molecules using surface enhanced Raman spectroscopy
Wang et al. Enhance fluorescence study of grating structure based on three kinds of optical disks
CN111356943A (en) Field enhancement device
US20140242573A1 (en) Optical element, analysis device, analysis method and electronic apparatus
Cade et al. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering
Aslan et al. Metal-enhanced fluorescence: progress towards a unified plasmon-fluorophore description
JP2012211839A (en) Method of manufacturing optical field amplifying device
JP6337127B2 (en) Photoelectric field enhancement device and method for producing photoelectric field enhancement device
Kedem et al. Distance-dependent fluorescence of tris (bipyridine) ruthenium (II) on supported plasmonic gold nanoparticle ensembles
Zikmund et al. Electric and magnetic dipole emission of Eu3+: Effect of proximity to a thin aluminum film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851742

Country of ref document: EP

Kind code of ref document: A1