WO2012086135A1 - Transmission device and transmission control method - Google Patents
Transmission device and transmission control method Download PDFInfo
- Publication number
- WO2012086135A1 WO2012086135A1 PCT/JP2011/006766 JP2011006766W WO2012086135A1 WO 2012086135 A1 WO2012086135 A1 WO 2012086135A1 JP 2011006766 W JP2011006766 W JP 2011006766W WO 2012086135 A1 WO2012086135 A1 WO 2012086135A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- base station
- control information
- transmission control
- terminal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
- H04W16/16—Spectrum sharing arrangements between different networks for PBS [Private Base Station] arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/22—TPC being performed according to specific parameters taking into account previous information or commands
- H04W52/225—Calculation of statistics, e.g. average, variance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
- H04W52/244—Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
Definitions
- the present invention relates to a transmission device and a transmission control method.
- a heterogeneous network is a “macro cell (Macro cell)” that covers a large area (for example, a coverage area with a cell radius of several kilometers) in order to cope with an increase in capacity in a cellular network.
- “Pico ⁇ ⁇ cell” (sometimes called a small cell base station) that covers a small area (for example, a cover area with a cell radius of several tens of meters) It is a network used together.
- one or more pico base stations (“Pico” shown in FIG. 1) are arranged in the service area of a macro base station (“Macro” shown in FIG. 1). Is done.
- the macro base station covers a larger service area than the pico base station, it is effective in improving the area coverage rate.
- the pico base station covers a smaller service area than the macro base station, the distance (frequency reuse distance) in which the same frequency can be reused is shortened, and more cells are arranged per certain area. This is effective in improving frequency utilization efficiency. That is, the purpose of the heterogeneous network is to achieve both high area coverage and high frequency utilization efficiency by arranging macro base stations and pico base stations in a complementary manner.
- a base station that connects only a group of terminals (Closed subscriber ⁇ group) to which access rights have been given in advance is distinguished from a pico base station as a “femto base station (femtocell : Femto cell) ".
- pico base station the pico base station and the femto base station are not distinguished from each other and are simply referred to as “pico base station”.
- a macro base station and a pico base station may configure a service area using the same frequency.
- interference between the macro cell and the pico cell becomes a problem.
- the macro base station in addition to a desired signal (not shown) from a terminal (macro terminal (Macro UE)) connected to the macro base station, the macro base station is within the service area of the macro base station. 1 receives interference (solid arrow shown in FIG. 1) from a terminal (pico terminal (Pico UE)) connected to a pico base station existing in the network.
- the pico base station receives interference (broken arrows shown in FIG. 1) from the macro terminal.
- it is considered to perform transmission control of pico terminals and macro terminals in the uplink channel.
- the transmission control includes, for example, increase / decrease in transmission power, increase / decrease in transmission frequency, increase / decrease in frequency band used for transmission, etc., but in the following description, it is simply referred to as “transmission control”.
- the pico base station individually controls transmission to the macro base station or the macro terminal based on individual interference information regarding interference received from each macro terminal in the uplink channel.
- a method of instructing is conceivable.
- the pico base station must individually notify the macro base station or the macro terminal of the interference information for each macro terminal, and there is a problem that the overhead of transmission control increases.
- the pico base station performs transmission control for all the macro base stations or all the macro terminals based on interference information related to the total interference received from each macro terminal in the uplink channel.
- a method of instructing uniformly can be considered.
- this transmission control method can suppress an increase in transmission control overhead, transmission control for each macro terminal cannot be performed, and as a result, there is a problem that transmission control for each macro terminal is not optimized. is there.
- the above-described problems are transmission control for suppressing interference (uplink interference) in the uplink channel from the pico terminal to the macro base station, and the downlink channel from the macro base station (pico base station) to the pico terminal (macro terminal). This is a common problem in transmission control for suppressing interference (downlink interference).
- An object of the present invention is to perform appropriate transmission control for each macro terminal while suppressing an increase in the amount of transmission control information from the pico base station to the macro base station or the macro terminal, for example, when performing macro terminal transmission control.
- An object of the present invention is to provide a transmission device and a transmission control method that can be used.
- the transmission device has a correspondence relationship in which a transmission control guideline is associated with each of a reception unit that receives control information regarding interference in an interfered station and a plurality of history patterns of the control information.
- the priority of each of the plurality of different correspondences is updated based on the control information, and the control guideline is identified from the received history of the control information and the correspondences having a high priority.
- a control unit that controls transmission.
- the transmission control method of one aspect of the present invention is a correspondence relationship in which control information related to interference in an interfered station is received, and a transmission control guideline is associated with each of the plurality of history patterns of the control information, The priority of each of the plurality of different correspondence relationships is updated based on the control information, and based on the control guideline specified from the received history of the control information and the correspondence relationship having a high priority. To control transmission.
- the present invention when performing transmission control of a macro terminal, it is possible to perform appropriate transmission control for each macro terminal while suppressing an increase in the amount of transmission control information from the pico base station to the macro base station or the macro terminal. it can.
- Diagram showing an example of a heterogeneous network Main block diagram of terminal (transmitting apparatus) according to one embodiment of the present invention The block diagram which shows the structure of the base station (pico base station) which concerns on one embodiment of this invention
- the block diagram which shows the structure of the other base station (macro base station) which concerns on one embodiment of this invention The block diagram which shows the structure of the terminal (macro terminal) which concerns on one embodiment of this invention
- the figure which shows an example of the strategy group which the macro terminal which concerns on one embodiment of this invention has The figure which shows the computer simulation result which concerns on one embodiment of this invention
- the figure which shows the computer simulation result which concerns on one embodiment of this invention The figure which shows an example of the strategy group which the macro terminal which concerns on other embodiment of this invention has.
- the communication system includes a base station 100, another base station 200, and a terminal (sometimes referred to as a “mobile station”) 300.
- the base station 100 is a pico base station
- the other base station 200 is a macro base station
- the terminal 300 is a macro terminal connected to the other base station 200 (macro base station).
- a plurality of base stations 100 (pico base stations) are installed in a service area covered by another base station 200 (macro base station).
- a plurality of terminals 300 are connected to another base station 200 (macro base station).
- At least a part of the frequency band is shared between base station 100 and other base station 200. Therefore, there is a possibility that interference between the base station 100 and another base station 200 occurs in the downlink channel and the uplink channel.
- a terminal connected to the base station 100 (pico base station) may receive interference from another base station 200 (macro base station) in the downlink channel.
- terminal 300 may receive interference from base station 100 (pico base station) in the downlink channel.
- the terminal 300 does not grasp all the information related to the base station 100 (pico base station), and merely recognizes that “it is receiving interference from somewhere”.
- the base station 100 may receive interference from the terminal 300 (macro terminal) connected to another base station 200 (macro base station) in the uplink channel.
- another base station 200 may receive interference from a terminal (pico terminal, not shown) connected to the base station 100 (pico base station) in the uplink channel.
- the other base station 200 (macro base station) and the base station 100 (pico base station) are connected by a backhaul line (for example, a wired line such as an optical fiber or a wireless line)
- the base station 100 (pico base station) and another base station 200 (macro base station) hold information related to “base stations sharing at least some frequency bands” existing in the vicinity.
- terminal 300 for suppressing interference received by base station 100 (pico base station) from a plurality of terminals 300 (macro terminals) will be described. That is, base station 100 is an interfered station, and terminal 300 is a transmission apparatus that performs transmission control according to the present embodiment.
- base station 100 (pico base station) generates transmission control information indicating interference information related to the amount of interference that the mobile station receives from the outside, and transmits the transmission control information to another base station 200 (macro base station).
- a plurality of terminals 300 (macro terminals) are notified.
- Each terminal 300 (macro terminal) is based on transmission control information notified directly from the base station 100 (pico base station) or transmission control information notified via another base station 200 (macro base station). , Perform transmission control of own machine.
- FIG. 2 is a main configuration diagram of terminal 300 according to the present embodiment.
- control information receiving section 301 receives transmission control information related to interference in base station 100 (interfered station).
- the transmission control unit 302 has a correspondence relationship in which a transmission control guideline is associated with each of the plurality of history patterns of the transmission control information, and the transmission control unit 302 determines the priority of each of the plurality of different correspondence relationships.
- the transmission is updated based on the information, and the transmission is controlled based on the control guideline specified from the history of the transmission control information and the high priority correspondence.
- FIG. 3 is a block diagram showing a configuration of base station 100 according to the present embodiment.
- the base station 100 is, for example, a pico base station.
- the RF unit 102 performs reception radio processing (down-conversion, analog-digital (A / D) conversion, etc.) on the signal received via the antenna 101, and the received signal after reception radio processing is sent to the reception baseband unit 103. Output.
- the received signal received via the antenna 101 includes transmission data (uplink data, that is, desired signal) for the own device transmitted from a terminal (for example, a pico terminal) connected to the own device. And signals from a plurality of terminals 300 located in the vicinity of the own device (that is, interference signals) are included. Further, the RF unit 102 performs transmission radio processing (up-conversion, digital analog (D / A) conversion, etc.) on the signal input from the transmission baseband unit 107, and transmits the signal after transmission radio processing from the antenna 101. Send.
- the reception baseband unit 103 performs reception baseband processing on the reception signal input from the RF unit 102, and outputs the signal after reception baseband processing to the interference measurement unit 104.
- Interference measurement section 104 detects an interference signal (a signal from terminal 300, that is, a signal other than a signal (desired signal) from a pico terminal) from the signal input from reception baseband section 103, and the detected interference signal The power (interference power) is measured as the amount of interference that the aircraft receives. Then, the interference measurement unit 104 outputs the measured interference amount to the transmission control information generation unit 105.
- an interference signal a signal from terminal 300, that is, a signal other than a signal (desired signal) from a pico terminal
- transmission control information generating section 105 Based on the amount of interference input from interference measuring section 104, transmission control information generating section 105 generates interference information related to the amount of interference received by itself as transmission control information for terminal 300 (or other base station 200). To do. In base station 100, the resource group to be used is grouped in advance into several groups (resource groups), and transmission control information is generated for each group. The transmission control information is represented by 1 bit for each group, for example. Then, transmission control information generation section 105 outputs the generated transmission control information to modulation section 106. Details of the transmission control information generation processing in the transmission control information generation unit 105 will be described later.
- Modulation section 106 modulates transmission data (downlink data) for a pico terminal (not shown) to which the own apparatus is connected and transmission control information input from transmission control information generation section 105, and after modulation Is output to the transmission baseband unit 107.
- the transmission baseband unit 107 performs transmission baseband processing on the signal input from the modulation unit 106 and outputs the transmission signal after the transmission baseband processing to the RF unit 102.
- FIG. 4 is a block diagram showing a configuration of another base station 200 according to the present embodiment.
- the other base station 200 is, for example, a macro base station.
- Modulation section 201 modulates transmission data (downlink data) for terminal 300 (macro terminal) connected to itself and outputs the modulated transmission data to transmission baseband section 202.
- the transmission baseband unit 202 performs transmission baseband processing on the transmission data input from the modulation unit 201, and outputs the transmission data after the transmission baseband processing to the RF unit 203.
- the RF unit 203 performs transmission radio processing (up-conversion, digital analog (D / A) conversion, etc.) on the transmission data input from the transmission baseband unit 202, and transmits the transmission data after the transmission radio processing from the antenna 204. Send.
- transmission radio processing up-conversion, digital analog (D / A) conversion, etc.
- FIG. 5 is a block diagram showing a configuration of terminal 300 according to the present embodiment.
- the terminal 300 is a macro terminal, for example.
- the control information receiving unit 301 receives transmission control information for each resource group that is notified (notified) from the base station 100 (or notified (notified) via the base station 200).
- the control information receiving unit 301 outputs the received transmission control information to the transmission control unit 302.
- each terminal 300 recognizes in advance a resource group that can be used by itself, and includes transmission control information for each resource group transmitted from the base station 100 (or relayed by the base station 200).
- the transmission control information corresponding to the resource group that can be used by the machine is received.
- the transmission control unit 302 determines its own transmission control method based on the transmission control information input from the control information receiving unit 301. Then, the transmission control unit 302 controls the transmission baseband unit 304 and the RF unit 305 according to the determined transmission control method. Details of the transmission control process in the transmission control unit 302 will be described later.
- Modulation section 303 modulates transmission data (uplink data) for another base station 200 (macro base station), and outputs the modulated transmission data to transmission baseband section 304.
- the transmission baseband unit 304 performs transmission baseband processing on transmission data input from the modulation unit 303 in accordance with an instruction from the transmission control unit 302, and outputs the transmission data after transmission baseband processing to the RF unit 305. .
- the RF unit 305 performs transmission radio processing (up-conversion, digital analog (D / A) conversion, etc.) on transmission data input from the transmission baseband unit 304 in accordance with an instruction from the transmission control unit 302, and transmits transmission radio.
- the processed transmission data is transmitted from the antenna 306.
- the base station 100 notifies the other base station 200 of transmission control information in advance via a backhaul line (or a wireless line via a reception RF unit (not shown)), and the other base station 200 transmits it.
- the configuration of the terminal 300 is the same when reporting the control information to the terminal 300. That is, another base station 200 shown in FIG. 4 performs transmission processing on transmission control information from base station 100 in addition to transmission data (downlink data).
- Terminals 300 are grouped into a plurality of groups in advance according to the amount of interference given to base station 100 by the terminal 300, that is, the degree of influence of each terminal 300 on the total interference in base station 100. For example, a plurality of terminals 300 having the same distance from the base station 100 are considered to have the same degree of influence on the interference sum in the base station 100. Therefore, as an example of grouping for the terminals 300, the plurality of terminals 300 are grouped into a plurality of groups according to the distance from the base station 100. For example, the distance between the base station 100 and the terminal 300 is measured using GPS (Global Positioning System).
- GPS Global Positioning System
- the means for grouping the terminals 300 is not limited to the means for using the distance between the base station 100 and the terminal 300, and other means described below may be used.
- (1) Means using the received power of the transmission signal of the terminal 300 in the base station 100. In this means, the base station 100 (interfered station) receiving the interference groups the terminals 300 according to the reception power of the transmission signal of each terminal 300, and clearly shows the formed group to each terminal 300. .
- each terminal 300 estimates the path loss from the intensity of the downlink signal received from the base station 100 and the transmission power information of the base station 100 (for example, information notified by the other base station 200 to the terminal 300). Then, the group to which the aircraft belongs should be determined according to the estimated path loss.
- each terminal 300 is grouped in advance into a plurality of groups, and a resource group to be used by each terminal 300 is designated for each group.
- Base station 100 groups resources to be used in advance into a plurality of groups (resource groups). In each resource group, transmission control is performed on interference information regarding the amount of interference received by the own station, which is an interfered station, in the uplink channel. Information is generated at regular time intervals. Specifically, the transmission control information generation unit 105 has a certain amount of interference (for example, the sum of interference power from the plurality of terminals 300) that the own device receives from the plurality of terminals 300 (hereinafter referred to as an interference threshold). ) Is generated as transmission control information.
- a certain amount of interference for example, the sum of interference power from the plurality of terminals 300 that the own device receives from the plurality of terminals 300
- the interference threshold value may be a value set in advance in the specification, or a different value for each base station 100 may be used.
- the maximum interference amount allowable in the base station 100 may be set as the interference threshold.
- the amount of interference received by the base station 100 may be a total value of the amount of interference (interference power) received from the plurality of terminals 300, and the base station 100 does not necessarily receive information on the plurality of terminals 300. There is no need to hold it.
- the transmission control information is generated based on the amount of interference received by the base station 100 (interfered station) from the terminal 300 (transmitting apparatus). Then, the base station 100 broadcasts the generated transmission control information to the plurality of terminals 300 as common transmission control information.
- the information amount of the transmission control information is 1 bit for each resource group.
- Each terminal 300 uses the transmission control information corresponding to the resource group used by itself from among the transmission control information broadcast for each resource group from the base station 100 (or via another base station 200). The terminal 300 performs transmission control based on a “strategy” that each terminal 300 has uniquely.
- the “strategy” is a correspondence relationship in which a transmission control policy of the terminal 300 is associated with each of a plurality of history pattern candidates of transmission control information (patterns of reception results of transmission control information for the past several times).
- “strategy” is mapped with what kind of action (transmission control policy) is performed when transmission control information ( ⁇ [k]: 1 or ⁇ 1) at a certain time (k) is received.
- Transmission control policy transmission control policy
- each terminal 300 includes a strategy group including a plurality of different strategies (here, three strategies of strategy a, strategy b, and strategy c).
- transmission control information ( ⁇ [k ⁇ 1] and ⁇ [k]) for the past two times from the base station 100 from the transmission control information received last time to the transmission control information received this time.
- a history pattern candidate (history length 2) of four types of transmission control information representing a reception result pattern is associated with a transmission control policy ("transmission +" or "transmission-").
- each “strategy” is represented by a collection of correspondences between each of a plurality of history pattern candidates of transmission control information constituting a history pattern candidate group of transmission control information and a transmission control policy.
- transmission + represents an operation for increasing the transmission of the terminal 300, that is, transmission control for actively transmitting the terminal 300.
- transmission- represents an operation for reducing the transmission of the terminal 300, that is, transmission control for passively transmitting the terminal 300. That is, the transmission control policy indicates whether the transmission (transmission opportunity) of the terminal 300 is increased or decreased.
- transmission control corresponding to “transmission +” (transmission control for actively transmitting terminal 300)
- transmission control for increasing transmission power of terminal 300 power control
- transmission of downlink data for terminal 300 Transmission control for increasing the frequency (frequency of subframes in which downlink data is transmitted) (control in the time domain), transmission control for increasing the frequency band (frequency resource) used for transmission of the terminal 300 (control in the frequency domain)
- transmission control control in the spatial domain in which the terminal 300 performs transmission.
- transmission control corresponding to “transmission ⁇ ” operation opposite to “transmission +”, that is, transmission control in which transmission of terminal 300 is passively performed
- transmission control for reducing transmission power of terminal 300 is performed.
- Power control transmission control for reducing downlink data transmission frequency of terminal 300 (frequency of subframes for transmitting downlink data) (control in time domain), frequency band used for transmission of terminal 300
- a plurality of different strategies (strategy groups) that each terminal 300 has uniquely are generated in association with, for example, IDs unique to the terminals. That is, the contents of the strategy group (strategy a, strategy b, strategy c) shown in FIG. 6 (operations associated with the reception results of the transmission control information for the past two times) are different for each terminal 300.
- each of the plurality of different strategies possessed by each terminal 300 has priority (priority a [k] for strategy a, priority b [k] for strategy b, priority for strategy c).
- c [k]) is set. The terminal 300 selects a strategy with a higher priority at each time.
- priority a [k] of the strategy a is the highest among the strategies a to c at time k will be described.
- the transmission control policy “transmission +” is specified. Therefore, the transmission control unit 302 performs transmission control for increasing transmission of the terminal 300 (transmission control that actively performs transmission of the terminal 300) based on the specified transmission control policy “transmission +” at time k. .
- the transmission control unit 302 updates the priority of each of a plurality of different strategies based on the transmission control information transmitted from the base station 100. Specifically, each terminal 300 determines that transmission control based on the history pattern of transmission control information at time k-1 and time k (that is, the transmission control policy specified at time k) is correct from the viewpoint of the system. Is determined using transmission control information ⁇ [k + 1] received at time k + 1.
- the transmission control unit 302 of each terminal 300 at time k + 1 (not shown), the transmission control information history pattern ( ⁇ [k], ⁇ [k + 1]) and the strategy (priority) selected at time k + 1.
- the transmission of the terminal 300 is controlled based on the transmission control policy specified by the high-level strategy. In this way, each terminal 300 sequentially performs the transmission control described above, and continues to update the priorities of a plurality of different strategies that each terminal has.
- each terminal 300 keeps updating the priority of each strategy, thereby suppressing “interference with the base station 100 (pico base station) in each of a plurality of history pattern candidates of the transmission control information.
- the network is finally configured in an autonomous and distributed manner so that each terminal 300 uses a unique strategy (a strategy suitable for each terminal 300).
- the target of the transmission control of the terminal 300 in the present embodiment is “maximizing the transmission opportunity of the terminal 300 while keeping the interference value given to the base station 100 below a certain value (allowable value)”.
- the terminal 300 performs transmission control such that “the transmission opportunity of the terminal 300 is maximized while satisfying the constraint condition regarding interference in the base station 100 (that is, interference on the uplink channel)”.
- each terminal 300 (macro terminal) updates the priority of each unique strategy group (a plurality of different strategies) based on the transmission control information, and autonomously distributed transmission control ( Interference control based on Minority Game concept).
- each terminal 300 updates the priority of each unique strategy group (a plurality of different strategies) based on the transmission control information, and autonomously distributed transmission control ( Interference control based on Minority Game concept).
- the above features can also be read from, for example, the computer simulation result shown in FIG.
- the macro terminal terminal 300 applies a minority game (game theory) to “transmit (transmit +)” or “do not transmit (transmit ⁇ ).
- game theory game theory
- FIG. 7 shows each state when the number of macro terminals is constant 100 and the variation in distance from the macro terminal to the pico base station is changed.
- the horizontal axis indicates the outage probability in the pico base station (base station 100) (that is, the rate at which the amount of interference exceeds the allowable value in the base station 100), and the vertical axis indicates the transmission probability of the macro terminal (that is, The rate at which the terminal 300 is allowed to transmit). That is, in FIG. 7, the better the characteristic is, the higher the upper left (the characteristic that the outage probability is low and the transmission probability is high).
- a plurality of terminals 300 are grouped into a plurality of groups, and a minority game is applied to each group, thereby comparing with a case where no grouping is performed. This makes it easier to obtain the characteristics (effects) of the minority game described above.
- the computer simulation shown in FIG. 8 shows the characteristics (triangle mark) when the macro terminals are grouped into two groups at an optimum distance, and transmission control is performed by applying a minority game for each group.
- the characteristic (circle) when not grouping is shown. That is, when grouping, a plurality of terminals 300 whose distance to the base station 100 is equal to or greater than a certain threshold (optimum distance) are set as the first group, and the distance to the base station 100 is less than the threshold (optimum distance).
- a plurality of terminals 300 are defined as the second group.
- the “optimum distance” here is a distance that bisects all the terminals 300 when the number of resource groups allocated to the first group is the same as the number of resource groups allocated to the second group. Become.
- the horizontal axis indicates the dispersion value from the target interference amount at the pico base station (base station 100), and the vertical axis indicates the transmission probability of the macro terminal (that is, the terminal 300 may transmit). Ratio).
- the smaller the variance value of the target interference amount the better the convergence characteristic of the actual interference amount with respect to the target interference amount at the pico base station. That is, in FIG. 8, the better the state is, the closer to the upper left (characteristic that the dispersion value is low and the transmission probability is high).
- each terminal 300 performs transmission control based on the concept of minority game (Minority ⁇ ⁇ ⁇ Game) as shown in the above document, for example, randomly transmitting Compared with the case where control is performed, transmission control can be effectively performed from the viewpoint of the system. Specifically, each terminal 300 (macro terminal) updates the priority of its own strategy group (a plurality of different strategies) based on the transmission control information, and each terminal 300 (macro terminal) performs independent and distributed transmission control ( Interference control based on the concept of minority games). Thereby, for example, when performing transmission control of a plurality of macro terminals in a heterogeneous network, it is possible to perform appropriate transmission control for each macro terminal while suppressing an increase in the complexity of the entire system. .
- a plurality of terminals 300 are assigned to a plurality of terminals 300 (macro terminals) in accordance with the magnitude of influence (degree of influence of interference) on the amount of interference in base station 100 (pico base station).
- the base station 100 generates transmission control information for each group, and the terminal 300 performs transmission control using transmission control information corresponding to the group to which the mobile station belongs. I do.
- the effect obtained by applying the minority game that is, the effect of suppressing the amount of interference on the interfered side to be smaller while increasing the transmission probability on the transmission side
- Get bigger Get bigger.
- the information amount of the transmission control information of each resource group (information common to all terminals 300 belonging to the same group) notified from the base station 100 to the terminal 300 is 1 bit. That is, in each group, the amount of transmission control information from base station 100 (pico base station) to terminal 300 (macro terminal) can be minimized (1 bit). Further, the base station 100 (pico base station) only needs to measure the total interference (total interference power) from the plurality of terminals 300 (macro terminals), and minimizes the measurement load (measurement load) at the base station 100. To the limit.
- an increase in the amount of transmission control information from a pico base station to a macro base station or a macro terminal is suppressed, and appropriate for each macro terminal. Transmission control can be performed.
- the transmission opportunity (or transmission power, transmission band, etc.) of the macro terminal is maximized while suppressing uplink interference from the macro terminal in the pico base station.
- this embodiment can also be applied to the following cases.
- (1) A case where the transmission opportunity of the pico terminal is maximized while suppressing uplink interference from the pico terminal in the macro base station.
- the macro base station generates transmission control information, and the pico terminal performs transmission control using a minority game.
- the pico terminal generates transmission control information, and the macro base station performs transmission control using a minority game.
- (3) A case where the transmission opportunity of the pico base station is maximized while suppressing downlink interference from the pico base station in the macro terminal. In this case, the macro terminal generates transmission control information, and the pico base station performs transmission control using a minority game.
- the above-described device grouping effect can be obtained more when there are more interference sources (transmitting devices according to the present embodiment). For this reason, considering the situation where many terminals are connected to one base station, the effect of device grouping is that when downlink interference control is performed (that is, the base station (macro base station or pico base It is considered that when uplink interference control is performed (that is, when grouping is applied to a terminal (macro terminal or pico terminal)) is larger than when grouping is applied to a station). It is done.
- each terminal 300 may be adaptively changed.
- the total interference is the total sum of interference amounts in each resource group.
- channels are not explicitly divided, such as OFDMA (Orthogonal Frequency Division Multiple Access) and SC-FDMA (Single Carrier-Frequency Frequency Division Multiple Access)
- the total interference is a resource that can be used by each group. It is a value obtained by integrating the amount of interference within (that is, the frequency (subcarrier) range).
- the same amount of resource group is allocated to each of the “groups formed according to the distance to the base station 100” (that is, the distance that bisects all the terminals 300 is
- the above-mentioned “optimum distance” is the resource for each group. Varies according to the group quota. For example, if more resources are assigned to the first group than the second group, a threshold (that is, “optimum distance”) is set so that more terminals belong to the first group. Thus, the plurality of terminals 300 may be grouped.
- the so-called Weighted in which the ratio of the transmission control policies (“transmission +” and “transmission ⁇ ”) associated with the history pattern candidates of each transmission control information is different for each strategy
- the weighted table is set so that the transmission control (transmission control policy) associated with the history pattern of the transmission control information is biased to one (either “transmission +” or “transmission ⁇ ”). Is a table to be played.
- An example in which Weighted table is applied to the strategy is shown in FIG.
- the strategy c illustrated in FIG. 9 is a strategy (Weighted table) in which a transmission control policy biased toward “transmission +” is set.
- the base station 100 transmits signals more actively, the base station It is considered that the amount of interference at 100 does not increase. For this reason, it is preferable to apply, for example, a weighted table that is biased toward “transmission +” like strategy c shown in FIG. 9 to a group of terminals to which the former (terminal 300 far from the base station 100) belongs. It is.
- the base station 100 sets the notification transmission control information to the terminal 300 to 1 bit for each resource group.
- the transmission control information notified by the base station 100 is not limited to 1 bit for each resource group, and may be expressed by 2 bits or more. Thereby, the amount of interference in the base station 100 can be fed back more accurately.
- each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
- the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
- An FPGA Field Programmable Gate Array
- a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
- the present invention is useful for a macro base station / macro terminal, a pico base station / pico terminal, a femto base station / femto terminal, and the like introduced into a heterogeneous network.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A transmission device of the present invention, when performing transmission control of a macro terminal, can suppress increase in the amount of transmission control information from a pico base station to a macro base station or a macro terminal while performing suitable transmission control for each macro terminal. In the device, a control information receiving unit (301) receives control information related to interference at an interfered station, whereupon a transmission control unit (302) updates, on the basis of the control information, priority degrees which are possessed by each of a plurality of different correspondence relationships, which are correspondence relationships such that control guidelines for transmission have been associated with each of a plurality of history patterns of the control information, so as to control transmission on the basis of the control guidelines which have been identified by the history of the control information which has been received and the correspondence relationships of high priority.
Description
本発明は、送信装置及び送信制御方法に関する。
The present invention relates to a transmission device and a transmission control method.
近年、3GPP-LTE(3rd Generation Partnership Project Radio Access Network Long Term Evolution)(例えば、非特許文献1、2、3、4参照)において、ヘテロジニアスネットワーク(Heterogeneous Network)が注目を集めている。
Recently, in 3GPP-LTE (3rd Generation Partnership Project Project Radio Access Network Network Long Term Evolution) (for example, see Non-Patent Documents 1, 2, 3, and 4), heterogeneous networks have attracted attention.
ヘテロジニアスネットワークは、セルラーネットワークにおけるキャパシティ増大に対応するため、大きなエリア(例えば、セル半径が数キロメートルのカバーエリア)をカバーする「マクロ基地局(マクロセル:Macro cell)」(大セル基地局と呼ばれることもある)のみでなく、小さなエリア(例えば、セル半径が数十メートルのカバーエリア)をカバーする「ピコ基地局(ピコセル:Pico cell)」(小セル基地局と呼ばれることもある)を併用するネットワークである。
A heterogeneous network is a “macro cell (Macro cell)” that covers a large area (for example, a coverage area with a cell radius of several kilometers) in order to cope with an increase in capacity in a cellular network. "Pico 呼 ば cell" (sometimes called a small cell base station) that covers a small area (for example, a cover area with a cell radius of several tens of meters) It is a network used together.
例えば、ヘテロジニアスネットワークでは、図1に示すように、マクロ基地局(図1に示す「Macro」)のサービスエリア内に、1つ以上のピコ基地局(図1に示す「Pico」)が配置される。ここで、マクロ基地局は、ピコ基地局に比べて大きなサービスエリアをカバーするため、エリアカバー率の向上に有効である。一方、ピコ基地局は、マクロ基地局に比べて小さなサービスエリアをカバーするため、同一周波数を再利用できる距離(周波数再利用距離)が短くなり、或るエリアあたりにより多くのセルを配置することができ、周波数利用効率の向上に有効である。すなわち、ヘテロジニアスネットワークは、マクロ基地局とピコ基地局とを相補的に配置することによって、高いエリアカバー率と高い周波数利用効率とを両立させることを目的としている。
For example, in a heterogeneous network, as shown in FIG. 1, one or more pico base stations (“Pico” shown in FIG. 1) are arranged in the service area of a macro base station (“Macro” shown in FIG. 1). Is done. Here, since the macro base station covers a larger service area than the pico base station, it is effective in improving the area coverage rate. On the other hand, since the pico base station covers a smaller service area than the macro base station, the distance (frequency reuse distance) in which the same frequency can be reused is shortened, and more cells are arranged per certain area. This is effective in improving frequency utilization efficiency. That is, the purpose of the heterogeneous network is to achieve both high area coverage and high frequency utilization efficiency by arranging macro base stations and pico base stations in a complementary manner.
なお、小セルをカバーエリアとする基地局の中で、予めアクセス権の与えられた端末群(Closed subscriber group)のみを接続する基地局は、ピコ基地局と区別して「フェムト基地局(フェムトセル:Femto cell)」と呼ばれることもある。なお、以下の説明では、説明を簡略するため、ピコ基地局とフェムト基地局とを区別せずに、単に「ピコ基地局」と表記する。
In addition, among base stations that cover small cells, a base station that connects only a group of terminals (Closed subscriber の group) to which access rights have been given in advance is distinguished from a pico base station as a “femto base station (femtocell : Femto cell) ". In the following description, in order to simplify the description, the pico base station and the femto base station are not distinguished from each other and are simply referred to as “pico base station”.
ところで、ヘテロジニアスネットワークでは、マクロ基地局とピコ基地局とが同一周波数を用いてサービスエリアを構成する場合がある。この場合、上りチャネルにおいて、マクロセルとピコセルとの間の干渉が問題となる。例えば、図1に示すように、マクロ基地局は、マクロ基地局に接続された端末(マクロ端末(Macro UE))からの所望信号(図示せず)の他に、マクロ基地局のサービスエリア内に存在するピコ基地局に接続された端末(ピコ端末(Pico UE))から干渉(図1に示す実線矢印)を受ける。同様に、ピコ基地局は、マクロ端末から干渉(図1に示す破線矢印)を受ける。このため、ヘテロジニアスネットワークでは、上りチャネルにおけるピコ端末及びマクロ端末の送信制御を行うことが検討されている。
By the way, in a heterogeneous network, a macro base station and a pico base station may configure a service area using the same frequency. In this case, in the uplink channel, interference between the macro cell and the pico cell becomes a problem. For example, as shown in FIG. 1, in addition to a desired signal (not shown) from a terminal (macro terminal (Macro UE)) connected to the macro base station, the macro base station is within the service area of the macro base station. 1 receives interference (solid arrow shown in FIG. 1) from a terminal (pico terminal (Pico UE)) connected to a pico base station existing in the network. Similarly, the pico base station receives interference (broken arrows shown in FIG. 1) from the macro terminal. For this reason, in a heterogeneous network, it is considered to perform transmission control of pico terminals and macro terminals in the uplink channel.
なお、上記送信制御としては、例えば、送信電力の増減、送信頻度の増減、送信に用いる周波数帯域の増減等が挙げられるが、以下の説明では、単に「送信制御」と呼ぶ。
The transmission control includes, for example, increase / decrease in transmission power, increase / decrease in transmission frequency, increase / decrease in frequency band used for transmission, etc., but in the following description, it is simply referred to as “transmission control”.
例えば、マクロ端末の送信制御方法の1つとして、ピコ基地局が、上りチャネルにおいて各マクロ端末からそれぞれ受ける干渉に関する個別の干渉情報に基づいて、マクロ基地局又はマクロ端末に対して個別に送信制御を指示する方法が考えられる。しかしながら、この送信制御方法では、ピコ基地局がマクロ端末毎の干渉情報をマクロ基地局又はマクロ端末に個別に通知しなければならないため、送信制御のオーバーヘッドが増大してしまう問題がある。
For example, as one transmission control method for a macro terminal, the pico base station individually controls transmission to the macro base station or the macro terminal based on individual interference information regarding interference received from each macro terminal in the uplink channel. A method of instructing is conceivable. However, in this transmission control method, the pico base station must individually notify the macro base station or the macro terminal of the interference information for each macro terminal, and there is a problem that the overhead of transmission control increases.
これに対して、マクロ端末の他の送信制御方法として、ピコ基地局が、上りチャネルにおいて各マクロ端末から受ける干渉の総和に関する干渉情報に基づいて、全マクロ基地局又は全マクロ端末に対する送信制御を一律に指示する方法が考えられる。しかしながら、この送信制御方法では、送信制御のオーバーヘッドの増大を抑えることができるものの、マクロ端末毎の送信制御を行うことができず、結果として、各マクロ端末に対する送信制御が最適化されないという問題がある。
On the other hand, as another transmission control method of the macro terminal, the pico base station performs transmission control for all the macro base stations or all the macro terminals based on interference information related to the total interference received from each macro terminal in the uplink channel. A method of instructing uniformly can be considered. However, although this transmission control method can suppress an increase in transmission control overhead, transmission control for each macro terminal cannot be performed, and as a result, there is a problem that transmission control for each macro terminal is not optimized. is there.
従って、マクロ端末の送信制御を行う際、ピコ基地局からマクロ基地局又はマクロ端末への送信制御情報量の増大を抑えつつ、マクロ端末毎に適切な送信制御を行うことができる方法が望まれる。上述した課題は、ピコ端末からマクロ基地局への上りチャネルでの干渉(上り干渉)を抑えるための送信制御、及び、マクロ基地局(ピコ基地局)からピコ端末(マクロ端末)への下りチャネルでの干渉(下り干渉)を抑えるための送信制御にも共通の課題である。
Therefore, when performing transmission control of a macro terminal, a method capable of performing appropriate transmission control for each macro terminal while suppressing an increase in the amount of transmission control information from the pico base station to the macro base station or the macro terminal is desired. . The above-described problems are transmission control for suppressing interference (uplink interference) in the uplink channel from the pico terminal to the macro base station, and the downlink channel from the macro base station (pico base station) to the pico terminal (macro terminal). This is a common problem in transmission control for suppressing interference (downlink interference).
本発明の目的は、例えばマクロ端末の送信制御を行う際、ピコ基地局からマクロ基地局又はマクロ端末への送信制御情報量の増大を抑えつつ、マクロ端末毎に適切な送信制御を行うことができる送信装置及び送信制御方法を提供することを目的とする。
An object of the present invention is to perform appropriate transmission control for each macro terminal while suppressing an increase in the amount of transmission control information from the pico base station to the macro base station or the macro terminal, for example, when performing macro terminal transmission control. An object of the present invention is to provide a transmission device and a transmission control method that can be used.
本発明の一態様の送信装置は、被干渉局における干渉に関する制御情報を受信する受信部と、前記制御情報の複数の履歴パターンのそれぞれに、送信の制御指針が対応付けられた対応関係であって、複数の異なる前記対応関係のそれぞれが有する優先度を、前記制御情報に基づいて更新し、受信された前記制御情報の履歴と前記優先度の高い前記対応関係とから特定される前記制御指針に基づいて、送信を制御する制御部と、を具備する構成を採る。
The transmission device according to one aspect of the present invention has a correspondence relationship in which a transmission control guideline is associated with each of a reception unit that receives control information regarding interference in an interfered station and a plurality of history patterns of the control information. The priority of each of the plurality of different correspondences is updated based on the control information, and the control guideline is identified from the received history of the control information and the correspondences having a high priority. And a control unit that controls transmission.
本発明の一態様の送信制御方法は、被干渉局における干渉に関する制御情報を受信し、前記制御情報の複数の履歴パターンのそれぞれに、送信の制御指針が対応付けられた対応関係であって、複数の異なる前記対応関係のそれぞれが有する優先度を、前記制御情報に基づいて更新し、受信された前記制御情報の履歴と前記優先度の高い前記対応関係とから特定される前記制御指針に基づいて、送信を制御する。
The transmission control method of one aspect of the present invention is a correspondence relationship in which control information related to interference in an interfered station is received, and a transmission control guideline is associated with each of the plurality of history patterns of the control information, The priority of each of the plurality of different correspondence relationships is updated based on the control information, and based on the control guideline specified from the received history of the control information and the correspondence relationship having a high priority. To control transmission.
本発明によれば、例えばマクロ端末の送信制御を行う際、ピコ基地局からマクロ基地局又はマクロ端末への送信制御情報量の増大を抑えつつ、マクロ端末毎に適切な送信制御を行うことができる。
According to the present invention, for example, when performing transmission control of a macro terminal, it is possible to perform appropriate transmission control for each macro terminal while suppressing an increase in the amount of transmission control information from the pico base station to the macro base station or the macro terminal. it can.
以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiment, the same components are denoted by the same reference numerals, and the description thereof will be omitted because it is duplicated.
[システムの概要]
本実施の形態に係る通信システムは、基地局100と他の基地局200と端末(「移動局」と呼ばれることもある)300とを有する。例えば、基地局100はピコ基地局であり、他の基地局200はマクロ基地局であり、端末300は他の基地局200(マクロ基地局)に接続するマクロ端末である。本実施の形態に係る通信システムでは、例えば、図1と同様、他の基地局200(マクロ基地局)のカバーするサービスエリア内に複数の基地局100(ピコ基地局)が設置されている。また、他の基地局200(マクロ基地局)には複数の端末300(マクロ端末)が接続されている。 [System Overview]
The communication system according to the present embodiment includes abase station 100, another base station 200, and a terminal (sometimes referred to as a “mobile station”) 300. For example, the base station 100 is a pico base station, the other base station 200 is a macro base station, and the terminal 300 is a macro terminal connected to the other base station 200 (macro base station). In the communication system according to the present embodiment, for example, as in FIG. 1, a plurality of base stations 100 (pico base stations) are installed in a service area covered by another base station 200 (macro base station). In addition, a plurality of terminals 300 (macro terminals) are connected to another base station 200 (macro base station).
本実施の形態に係る通信システムは、基地局100と他の基地局200と端末(「移動局」と呼ばれることもある)300とを有する。例えば、基地局100はピコ基地局であり、他の基地局200はマクロ基地局であり、端末300は他の基地局200(マクロ基地局)に接続するマクロ端末である。本実施の形態に係る通信システムでは、例えば、図1と同様、他の基地局200(マクロ基地局)のカバーするサービスエリア内に複数の基地局100(ピコ基地局)が設置されている。また、他の基地局200(マクロ基地局)には複数の端末300(マクロ端末)が接続されている。 [System Overview]
The communication system according to the present embodiment includes a
また、本実施の形態に係る通信システムでは、基地局100と他の基地局200との間では、少なくとも一部の周波数帯域を共用している。よって、基地局100と他の基地局200との間では互いに下りチャネル及び上りチャネルでの干渉が発生する可能性がある。
In the communication system according to the present embodiment, at least a part of the frequency band is shared between base station 100 and other base station 200. Therefore, there is a possibility that interference between the base station 100 and another base station 200 occurs in the downlink channel and the uplink channel.
すなわち、基地局100(ピコ基地局)に接続している端末(ピコ端末。図示せず)は、下りチャネルにおいて他の基地局200(マクロ基地局)からの干渉を受ける可能性がある。また、端末300(マクロ端末)は、下りチャネルにおいて基地局100(ピコ基地局)からの干渉を受ける可能性がある。ただし、端末300(マクロ端末)は、基地局100(ピコ基地局)に関する情報を全て把握しておらず、単に「どこかから干渉を受けている」ということを認識するのみである。
That is, a terminal (pico terminal, not shown) connected to the base station 100 (pico base station) may receive interference from another base station 200 (macro base station) in the downlink channel. In addition, terminal 300 (macro terminal) may receive interference from base station 100 (pico base station) in the downlink channel. However, the terminal 300 (macro terminal) does not grasp all the information related to the base station 100 (pico base station), and merely recognizes that “it is receiving interference from somewhere”.
同様に、基地局100(ピコ基地局)は、上りチャネルにおいて他の基地局200(マクロ基地局)に接続している端末300(マクロ端末)からの干渉を受ける可能性がある。また、他の基地局200(マクロ基地局)は、上りチャネルにおいて基地局100(ピコ基地局)に接続している端末(ピコ端末。図示せず)からの干渉を受ける可能性がある。ただし、他の基地局200(マクロ基地局)と基地局100(ピコ基地局)とはバックホール回線(例えば、光ファイバ等の有線回線、又は、無線回線)により接続されているので、基地局100(ピコ基地局)及び他の基地局200(マクロ基地局)は、周辺に存在する「少なくとも一部の周波数帯域を共用している基地局」に関する情報を保持している。
Similarly, the base station 100 (pico base station) may receive interference from the terminal 300 (macro terminal) connected to another base station 200 (macro base station) in the uplink channel. Further, another base station 200 (macro base station) may receive interference from a terminal (pico terminal, not shown) connected to the base station 100 (pico base station) in the uplink channel. However, since the other base station 200 (macro base station) and the base station 100 (pico base station) are connected by a backhaul line (for example, a wired line such as an optical fiber or a wireless line), the base station 100 (pico base station) and another base station 200 (macro base station) hold information related to “base stations sharing at least some frequency bands” existing in the vicinity.
以下では、基地局100(ピコ基地局)が複数の端末300(マクロ端末)から受ける干渉を抑えるための、端末300(マクロ端末)における送信制御について説明する。すなわち、基地局100は被干渉局であり、端末300は本実施の形態に係る送信制御を行う送信装置である。
Hereinafter, transmission control in terminal 300 (macro terminal) for suppressing interference received by base station 100 (pico base station) from a plurality of terminals 300 (macro terminals) will be described. That is, base station 100 is an interfered station, and terminal 300 is a transmission apparatus that performs transmission control according to the present embodiment.
上述した通信システムにおいて、基地局100(ピコ基地局)は、自機が外部から受ける干渉量に関する干渉情報を示す送信制御情報を生成し、送信制御情報を他の基地局200(マクロ基地局)又は複数の端末300(マクロ端末)に通知する。
In the communication system described above, base station 100 (pico base station) generates transmission control information indicating interference information related to the amount of interference that the mobile station receives from the outside, and transmits the transmission control information to another base station 200 (macro base station). Alternatively, a plurality of terminals 300 (macro terminals) are notified.
各端末300(マクロ端末)は、基地局100(ピコ基地局)から直接通知される送信制御情報、又は、他の基地局200(マクロ基地局)を介して通知される送信制御情報に基づいて、自機の送信制御を行う。
Each terminal 300 (macro terminal) is based on transmission control information notified directly from the base station 100 (pico base station) or transmission control information notified via another base station 200 (macro base station). , Perform transmission control of own machine.
図2は、本実施の形態に係る端末300の主要構成図である。端末300において、制御情報受信部301は、基地局100(被干渉局)における干渉に関する送信制御情報を受信する。そして、送信制御部302は、送信制御情報の複数の履歴パターンのそれぞれに、送信の制御指針が対応付けられた対応関係であって、複数の異なる対応関係のそれぞれが有する優先度を、送信制御情報に基づいて更新し、送信制御情報の履歴と優先度の高い対応関係とから特定される制御指針に基づいて、送信を制御する。
FIG. 2 is a main configuration diagram of terminal 300 according to the present embodiment. In terminal 300, control information receiving section 301 receives transmission control information related to interference in base station 100 (interfered station). Then, the transmission control unit 302 has a correspondence relationship in which a transmission control guideline is associated with each of the plurality of history patterns of the transmission control information, and the transmission control unit 302 determines the priority of each of the plurality of different correspondence relationships. The transmission is updated based on the information, and the transmission is controlled based on the control guideline specified from the history of the transmission control information and the high priority correspondence.
[基地局100の構成]
図3は、本実施の形態に係る基地局100の構成を示すブロック図である。ここでは、基地局100は、例えば、ピコ基地局である。 [Configuration of Base Station 100]
FIG. 3 is a block diagram showing a configuration ofbase station 100 according to the present embodiment. Here, the base station 100 is, for example, a pico base station.
図3は、本実施の形態に係る基地局100の構成を示すブロック図である。ここでは、基地局100は、例えば、ピコ基地局である。 [Configuration of Base Station 100]
FIG. 3 is a block diagram showing a configuration of
RF部102は、アンテナ101を介して受信した信号に対して受信無線処理(ダウンコンバート、アナログディジタル(A/D)変換等)を施し、受信無線処理後の受信信号を受信ベースバンド部103に出力する。なお、アンテナ101を介して受信される受信信号には、自機と接続している端末(例えば、ピコ端末)から送信される、自機向けの送信データ(上り回線データ。つまり、所望信号)、及び、自機近傍に位置する複数の端末300からの信号(つまり、干渉信号)が含まれる。また、RF部102は、送信ベースバンド部107から入力される信号に対して送信無線処理(アップコンバート、ディジタルアナログ(D/A)変換等)を施し、送信無線処理後の信号をアンテナ101から送信する。
The RF unit 102 performs reception radio processing (down-conversion, analog-digital (A / D) conversion, etc.) on the signal received via the antenna 101, and the received signal after reception radio processing is sent to the reception baseband unit 103. Output. The received signal received via the antenna 101 includes transmission data (uplink data, that is, desired signal) for the own device transmitted from a terminal (for example, a pico terminal) connected to the own device. And signals from a plurality of terminals 300 located in the vicinity of the own device (that is, interference signals) are included. Further, the RF unit 102 performs transmission radio processing (up-conversion, digital analog (D / A) conversion, etc.) on the signal input from the transmission baseband unit 107, and transmits the signal after transmission radio processing from the antenna 101. Send.
受信ベースバンド部103は、RF部102から入力される受信信号に対して受信ベースバンド処理を施し、受信ベースバンド処理後の信号を干渉測定部104に出力する。
The reception baseband unit 103 performs reception baseband processing on the reception signal input from the RF unit 102, and outputs the signal after reception baseband processing to the interference measurement unit 104.
干渉測定部104は、受信ベースバンド部103から入力される信号から干渉信号(端末300からの信号、つまり、ピコ端末からの信号(所望信号)以外の信号)を検出し、検出した干渉信号の電力(干渉電力)を自機が受ける干渉量として測定する。そして、干渉測定部104は、測定した干渉量を送信制御情報生成部105に出力する。
Interference measurement section 104 detects an interference signal (a signal from terminal 300, that is, a signal other than a signal (desired signal) from a pico terminal) from the signal input from reception baseband section 103, and the detected interference signal The power (interference power) is measured as the amount of interference that the aircraft receives. Then, the interference measurement unit 104 outputs the measured interference amount to the transmission control information generation unit 105.
送信制御情報生成部105は、干渉測定部104から入力される干渉量に基づいて、自機が受ける干渉量に関する干渉情報を、端末300(又は、他の基地局200)に対する送信制御情報として生成する。なお、基地局100では、使用するリソース群が幾つかのグループ(リソースグループ)に予めグループ化されており、送信制御情報をグループ毎に生成する。送信制御情報は、例えば、各グループに対して1ビットで表される。そして、送信制御情報生成部105は、生成した送信制御情報を変調部106に出力する。なお、送信制御情報生成部105における送信制御情報生成処理の詳細については後述する。
Based on the amount of interference input from interference measuring section 104, transmission control information generating section 105 generates interference information related to the amount of interference received by itself as transmission control information for terminal 300 (or other base station 200). To do. In base station 100, the resource group to be used is grouped in advance into several groups (resource groups), and transmission control information is generated for each group. The transmission control information is represented by 1 bit for each group, for example. Then, transmission control information generation section 105 outputs the generated transmission control information to modulation section 106. Details of the transmission control information generation processing in the transmission control information generation unit 105 will be described later.
変調部106は、自機が接続しているピコ端末(図示せず)向けの送信データ(下り回線データ)、及び、送信制御情報生成部105から入力される送信制御情報を変調し、変調後の信号を送信ベースバンド部107に出力する。
Modulation section 106 modulates transmission data (downlink data) for a pico terminal (not shown) to which the own apparatus is connected and transmission control information input from transmission control information generation section 105, and after modulation Is output to the transmission baseband unit 107.
送信ベースバンド部107は、変調部106から入力される信号に対して送信ベースバンド処理を施し、送信ベースバンド処理後の送信信号をRF部102に出力する。
The transmission baseband unit 107 performs transmission baseband processing on the signal input from the modulation unit 106 and outputs the transmission signal after the transmission baseband processing to the RF unit 102.
[他の基地局200の構成]
図4は、本実施の形態に係る他の基地局200の構成を示すブロック図である。他の基地局200は、例えば、マクロ基地局である。 [Configuration of Other Base Station 200]
FIG. 4 is a block diagram showing a configuration of anotherbase station 200 according to the present embodiment. The other base station 200 is, for example, a macro base station.
図4は、本実施の形態に係る他の基地局200の構成を示すブロック図である。他の基地局200は、例えば、マクロ基地局である。 [Configuration of Other Base Station 200]
FIG. 4 is a block diagram showing a configuration of another
変調部201は、自機に接続された端末300(マクロ端末)向けの送信データ(下り回線データ)を変調し、変調後の送信データを送信ベースバンド部202に出力する。
Modulation section 201 modulates transmission data (downlink data) for terminal 300 (macro terminal) connected to itself and outputs the modulated transmission data to transmission baseband section 202.
送信ベースバンド部202は、変調部201から入力される送信データに対して送信ベースバンド処理を施し、送信ベースバンド処理後の送信データをRF部203に出力する。
The transmission baseband unit 202 performs transmission baseband processing on the transmission data input from the modulation unit 201, and outputs the transmission data after the transmission baseband processing to the RF unit 203.
RF部203は、送信ベースバンド部202から入力される送信データに対して送信無線処理(アップコンバート、ディジタルアナログ(D/A)変換等)を施し、送信無線処理後の送信データをアンテナ204から送信する。
The RF unit 203 performs transmission radio processing (up-conversion, digital analog (D / A) conversion, etc.) on the transmission data input from the transmission baseband unit 202, and transmits the transmission data after the transmission radio processing from the antenna 204. Send.
[端末300の構成]
図5は、本実施の形態に係る端末300の構成を示すブロック図である。端末300は、例えば、マクロ端末である。 [Configuration of terminal 300]
FIG. 5 is a block diagram showing a configuration ofterminal 300 according to the present embodiment. The terminal 300 is a macro terminal, for example.
図5は、本実施の形態に係る端末300の構成を示すブロック図である。端末300は、例えば、マクロ端末である。 [Configuration of terminal 300]
FIG. 5 is a block diagram showing a configuration of
制御情報受信部301は、基地局100から通知(報知)(又は基地局200を介して通知(報知))される、リソースグループ毎の送信制御情報を受信する。制御情報受信部301は、受信した送信制御情報を送信制御部302に出力する。ここで、各端末300は、自機が利用できるリソースグループを予め認識しており、基地局100から送信される(又は基地局200によって中継される)リソースグループ毎の送信制御情報のうち、自機が利用できるリソースグループに対応する送信制御情報を受信する。
The control information receiving unit 301 receives transmission control information for each resource group that is notified (notified) from the base station 100 (or notified (notified) via the base station 200). The control information receiving unit 301 outputs the received transmission control information to the transmission control unit 302. Here, each terminal 300 recognizes in advance a resource group that can be used by itself, and includes transmission control information for each resource group transmitted from the base station 100 (or relayed by the base station 200). The transmission control information corresponding to the resource group that can be used by the machine is received.
送信制御部302は、制御情報受信部301から入力される送信制御情報に基づいて、自機の送信制御方法を決定する。そして、送信制御部302は、決定した送信制御方法に従って、送信ベースバンド部304及びRF部305を制御する。なお、送信制御部302における送信制御処理の詳細については後述する。
The transmission control unit 302 determines its own transmission control method based on the transmission control information input from the control information receiving unit 301. Then, the transmission control unit 302 controls the transmission baseband unit 304 and the RF unit 305 according to the determined transmission control method. Details of the transmission control process in the transmission control unit 302 will be described later.
変調部303は、他の基地局200(マクロ基地局)向けの送信データ(上り回線データ)を変調し、変調後の送信データを送信ベースバンド部304に出力する。
Modulation section 303 modulates transmission data (uplink data) for another base station 200 (macro base station), and outputs the modulated transmission data to transmission baseband section 304.
送信ベースバンド部304は、送信制御部302からの指示に従って、変調部303から入力される送信データに対して送信ベースバンド処理を施し、送信ベースバンド処理後の送信データをRF部305に出力する。
The transmission baseband unit 304 performs transmission baseband processing on transmission data input from the modulation unit 303 in accordance with an instruction from the transmission control unit 302, and outputs the transmission data after transmission baseband processing to the RF unit 305. .
RF部305は、送信制御部302からの指示に従って、送信ベースバンド部304から入力される送信データに対して送信無線処理(アップコンバート、ディジタルアナログ(D/A)変換等)を施し、送信無線処理後の送信データをアンテナ306から送信する。
The RF unit 305 performs transmission radio processing (up-conversion, digital analog (D / A) conversion, etc.) on transmission data input from the transmission baseband unit 304 in accordance with an instruction from the transmission control unit 302, and transmits transmission radio. The processed transmission data is transmitted from the antenna 306.
なお、ここでは主に、端末300(マクロ端末)が受信する送信制御情報は、基地局100(ピコ基地局)から直接報知される場合について説明した。しかし、基地局100がバックホール回線(又は、図示しない受信RF部を介した無線回線)を介して、他の基地局200に対して送信制御情報を予め通知し、他の基地局200が送信制御情報を端末300に報知する場合についても、端末300の構成は同様である。すなわち、図4に示す他の基地局200は、送信データ(下り回線データ)に加え、基地局100からの送信制御情報に対して送信処理を行う。
In addition, here, the case where the transmission control information received by the terminal 300 (macro terminal) is mainly reported directly from the base station 100 (pico base station) has been described. However, the base station 100 notifies the other base station 200 of transmission control information in advance via a backhaul line (or a wireless line via a reception RF unit (not shown)), and the other base station 200 transmits it. The configuration of the terminal 300 is the same when reporting the control information to the terminal 300. That is, another base station 200 shown in FIG. 4 performs transmission processing on transmission control information from base station 100 in addition to transmission data (downlink data).
[基地局100、他の基地局200及び端末300の動作]
上述のように構成された、基地局100、他の基地局200及び端末300の動作について説明する。 [Operations ofBase Station 100, Other Base Station 200, and Terminal 300]
Operations of thebase station 100, the other base station 200, and the terminal 300 configured as described above will be described.
上述のように構成された、基地局100、他の基地局200及び端末300の動作について説明する。 [Operations of
Operations of the
[端末300が利用できるリソースグループの決定]
端末300は、自機が基地局100へ与える干渉量、つまり、基地局100における干渉総和に対する各端末300の影響度に応じて、予め複数のグループにグループ化される。例えば、基地局100との距離が同程度の複数の端末300は、基地局100における干渉総和に対する影響度が同程度であると考えられる。そこで、端末300に対するグルーピングの一例として、複数の端末300が基地局100との距離に応じて複数のグループにグループ化される。例えば、基地局100と端末300との間の距離は、GPS(Global Positioning System)を用いて測定される。 [Determination of Resource Group Available to Terminal 300]
Terminals 300 are grouped into a plurality of groups in advance according to the amount of interference given to base station 100 by the terminal 300, that is, the degree of influence of each terminal 300 on the total interference in base station 100. For example, a plurality of terminals 300 having the same distance from the base station 100 are considered to have the same degree of influence on the interference sum in the base station 100. Therefore, as an example of grouping for the terminals 300, the plurality of terminals 300 are grouped into a plurality of groups according to the distance from the base station 100. For example, the distance between the base station 100 and the terminal 300 is measured using GPS (Global Positioning System).
端末300は、自機が基地局100へ与える干渉量、つまり、基地局100における干渉総和に対する各端末300の影響度に応じて、予め複数のグループにグループ化される。例えば、基地局100との距離が同程度の複数の端末300は、基地局100における干渉総和に対する影響度が同程度であると考えられる。そこで、端末300に対するグルーピングの一例として、複数の端末300が基地局100との距離に応じて複数のグループにグループ化される。例えば、基地局100と端末300との間の距離は、GPS(Global Positioning System)を用いて測定される。 [Determination of Resource Group Available to Terminal 300]
また、端末300をグループ化する手段は、基地局100と端末300との間の距離を用いる手段に限らず、以下の他の手段も挙げられる。
(1)基地局100における端末300の送信信号の受信電力を用いる手段。この手段では、干渉を受けている基地局100(被干渉局)が、各端末300の送信信号の受信電力に応じて端末300をグループ化し、形成されたグループを各端末300に対して明示する。
(2)端末300における基地局100の受信電力値を用いる手段。この手段では、各端末300が、基地局100から受信する下り信号の強度(又は品質)を測定し、測定した値に従って自機が属すべきグループを決定する。測定した下り信号の強度と上りチャネルで自機が基地局100に与える干渉との間に強い相関があるため、このような方法を用いたグループ化も有効である。
(3)端末300から基地局100に与える干渉量の推定値を用いる手段。この手段では、各端末300が、基地局100から受信する下り信号の強度と、基地局100の送信電力情報(例えば、他の基地局200が端末300に通知する情報)とから、パスロスを推定し、推定したパスロスに従って自機が属すべきグループを決定する。 Further, the means for grouping theterminals 300 is not limited to the means for using the distance between the base station 100 and the terminal 300, and other means described below may be used.
(1) Means using the received power of the transmission signal of the terminal 300 in thebase station 100. In this means, the base station 100 (interfered station) receiving the interference groups the terminals 300 according to the reception power of the transmission signal of each terminal 300, and clearly shows the formed group to each terminal 300. .
(2) Means using the received power value of thebase station 100 in the terminal 300. In this means, each terminal 300 measures the strength (or quality) of a downlink signal received from the base station 100, and determines a group to which the own device belongs according to the measured value. Since there is a strong correlation between the measured downlink signal strength and the interference that the own device gives to the base station 100 in the uplink channel, grouping using such a method is also effective.
(3) Means using an estimated value of the amount of interference given from the terminal 300 to thebase station 100. In this means, each terminal 300 estimates the path loss from the intensity of the downlink signal received from the base station 100 and the transmission power information of the base station 100 (for example, information notified by the other base station 200 to the terminal 300). Then, the group to which the aircraft belongs should be determined according to the estimated path loss.
(1)基地局100における端末300の送信信号の受信電力を用いる手段。この手段では、干渉を受けている基地局100(被干渉局)が、各端末300の送信信号の受信電力に応じて端末300をグループ化し、形成されたグループを各端末300に対して明示する。
(2)端末300における基地局100の受信電力値を用いる手段。この手段では、各端末300が、基地局100から受信する下り信号の強度(又は品質)を測定し、測定した値に従って自機が属すべきグループを決定する。測定した下り信号の強度と上りチャネルで自機が基地局100に与える干渉との間に強い相関があるため、このような方法を用いたグループ化も有効である。
(3)端末300から基地局100に与える干渉量の推定値を用いる手段。この手段では、各端末300が、基地局100から受信する下り信号の強度と、基地局100の送信電力情報(例えば、他の基地局200が端末300に通知する情報)とから、パスロスを推定し、推定したパスロスに従って自機が属すべきグループを決定する。 Further, the means for grouping the
(1) Means using the received power of the transmission signal of the terminal 300 in the
(2) Means using the received power value of the
(3) Means using an estimated value of the amount of interference given from the terminal 300 to the
このようにして、各端末300は予め複数のグループにグループ化され、各端末300が使用すべきリソースグループがグループ毎に指定されている。
In this way, each terminal 300 is grouped in advance into a plurality of groups, and a resource group to be used by each terminal 300 is designated for each group.
[基地局100による送信制御情報の生成]
基地局100は、使用するリソースを予め複数のグループ(リソースグループ)にグループ化しており、各々のリソースグループにおいて、上りチャネルで、被干渉局である自機が受ける干渉量に関する干渉情報を送信制御情報として、一定時間間隔毎に生成する。具体的には、送信制御情報生成部105は、自機が複数の端末300から受ける干渉量(例えば、複数の端末300からの干渉電力の合計)が或る所定値(以下、干渉閾値と呼ぶ)以内であるか否かを示す干渉情報を、送信制御情報として生成する。 [Generation of Transmission Control Information by Base Station 100]
Base station 100 groups resources to be used in advance into a plurality of groups (resource groups). In each resource group, transmission control is performed on interference information regarding the amount of interference received by the own station, which is an interfered station, in the uplink channel. Information is generated at regular time intervals. Specifically, the transmission control information generation unit 105 has a certain amount of interference (for example, the sum of interference power from the plurality of terminals 300) that the own device receives from the plurality of terminals 300 (hereinafter referred to as an interference threshold). ) Is generated as transmission control information.
基地局100は、使用するリソースを予め複数のグループ(リソースグループ)にグループ化しており、各々のリソースグループにおいて、上りチャネルで、被干渉局である自機が受ける干渉量に関する干渉情報を送信制御情報として、一定時間間隔毎に生成する。具体的には、送信制御情報生成部105は、自機が複数の端末300から受ける干渉量(例えば、複数の端末300からの干渉電力の合計)が或る所定値(以下、干渉閾値と呼ぶ)以内であるか否かを示す干渉情報を、送信制御情報として生成する。 [Generation of Transmission Control Information by Base Station 100]
なお、干渉閾値としては、仕様で予め設定されている値でもよく、基地局100毎に異なる値を用いてもよい。例えば、干渉閾値として、基地局100において許容できる最大の干渉量を設定してもよい。また、前述したように、基地局100が受ける干渉量としては、複数の端末300から受ける干渉量(干渉電力)の合計値であればよく、基地局100は、複数の端末300に関する情報を必ずしも保持している必要は無い。
Note that the interference threshold value may be a value set in advance in the specification, or a different value for each base station 100 may be used. For example, the maximum interference amount allowable in the base station 100 may be set as the interference threshold. Further, as described above, the amount of interference received by the base station 100 may be a total value of the amount of interference (interference power) received from the plurality of terminals 300, and the base station 100 does not necessarily receive information on the plurality of terminals 300. There is no need to hold it.
このように、送信制御情報は、端末300(送信装置)から基地局100(被干渉局)が受ける干渉量に基づいて生成される。そして、基地局100は、生成した送信制御情報を、複数の端末300に対して共通の送信制御情報として報知する。送信制御情報の情報量は、各リソースグループあたり1ビットである。
Thus, the transmission control information is generated based on the amount of interference received by the base station 100 (interfered station) from the terminal 300 (transmitting apparatus). Then, the base station 100 broadcasts the generated transmission control information to the plurality of terminals 300 as common transmission control information. The information amount of the transmission control information is 1 bit for each resource group.
[端末300による送信制御]
各端末300は、基地局100から(又は他の基地局200を介して)、リソースグループ毎に報知される送信制御情報のうち、自機が利用するリソースグループに対応する送信制御情報を用いて、各端末300が独自に有する「戦略(Strategy)」に基づいて、自機の送信制御を行う。 [Transmission control by terminal 300]
Each terminal 300 uses the transmission control information corresponding to the resource group used by itself from among the transmission control information broadcast for each resource group from the base station 100 (or via another base station 200). The terminal 300 performs transmission control based on a “strategy” that each terminal 300 has uniquely.
各端末300は、基地局100から(又は他の基地局200を介して)、リソースグループ毎に報知される送信制御情報のうち、自機が利用するリソースグループに対応する送信制御情報を用いて、各端末300が独自に有する「戦略(Strategy)」に基づいて、自機の送信制御を行う。 [Transmission control by terminal 300]
Each terminal 300 uses the transmission control information corresponding to the resource group used by itself from among the transmission control information broadcast for each resource group from the base station 100 (or via another base station 200). The terminal 300 performs transmission control based on a “strategy” that each terminal 300 has uniquely.
「戦略」とは、送信制御情報の複数の履歴パターン候補(過去数回分の送信制御情報の受信結果のパターン)のそれぞれに、端末300の送信の制御方針が対応付けられた対応関係である。つまり、「戦略」は、或る時間(k)における送信制御情報(μ[k]:1又は-1)を受信した場合にどのような行動を行うか(送信の制御方針)がマッピングされたテーブルで表すことができる。
The “strategy” is a correspondence relationship in which a transmission control policy of the terminal 300 is associated with each of a plurality of history pattern candidates of transmission control information (patterns of reception results of transmission control information for the past several times). In other words, “strategy” is mapped with what kind of action (transmission control policy) is performed when transmission control information (μ [k]: 1 or −1) at a certain time (k) is received. Can be represented by a table.
例えば、或る端末300における「戦略」を表すテーブルを図6に示す。図6に示すように、各端末300は、複数の異なる戦略(ここでは、戦略a、戦略b及び戦略cの3つの戦略)から成る戦略群を有する。図6に示す各戦略では、前回受信した送信制御情報から今回受信した送信制御情報までの、基地局100からの過去2回分の送信制御情報(μ[k-1]及びμ[k])の受信結果のパターンを表す4種類の送信制御情報の履歴パターン候補(履歴長2)と、送信の制御方針(「送信+」又は「送信-」)とがそれぞれ対応付けられている。すなわち、各「戦略」は、送信制御情報の履歴パターン候補群を構成する送信制御情報の複数の履歴パターン候補のそれぞれと、送信の制御方針との対応付けの集まりで表される。
For example, a table representing “strategy” in a certain terminal 300 is shown in FIG. As illustrated in FIG. 6, each terminal 300 includes a strategy group including a plurality of different strategies (here, three strategies of strategy a, strategy b, and strategy c). In each strategy shown in FIG. 6, transmission control information (μ [k−1] and μ [k]) for the past two times from the base station 100 from the transmission control information received last time to the transmission control information received this time. A history pattern candidate (history length 2) of four types of transmission control information representing a reception result pattern is associated with a transmission control policy ("transmission +" or "transmission-"). In other words, each “strategy” is represented by a collection of correspondences between each of a plurality of history pattern candidates of transmission control information constituting a history pattern candidate group of transmission control information and a transmission control policy.
なお、図6では、時刻kにおいて、基地局100が受ける干渉量(複数の端末300からの干渉電力の合計)が干渉閾値を超える場合には、送信制御情報μ[k]=1となり、時刻kにおいて、基地局100が受ける干渉量が干渉閾値以内である場合には、送信制御情報μ[k]=-1となる。
In FIG. 6, when the amount of interference received by base station 100 at time k (the sum of interference power from a plurality of terminals 300) exceeds the interference threshold, transmission control information μ [k] = 1, and time In k, when the amount of interference received by the base station 100 is within the interference threshold, the transmission control information μ [k] = − 1.
また、送信の制御方針において、「送信+」は、端末300の送信を増加させる動作、つまり、端末300の送信を積極的に行う送信制御を表す。一方、「送信-」は、端末300の送信を減少させる動作、つまり、端末300の送信を消極的に行う送信制御を表す。つまり、送信の制御方針は、端末300の送信(送信機会)を増やすか減らすかを示す。
Also, in the transmission control policy, “transmission +” represents an operation for increasing the transmission of the terminal 300, that is, transmission control for actively transmitting the terminal 300. On the other hand, “transmission-” represents an operation for reducing the transmission of the terminal 300, that is, transmission control for passively transmitting the terminal 300. That is, the transmission control policy indicates whether the transmission (transmission opportunity) of the terminal 300 is increased or decreased.
例えば、「送信+」に対応する送信制御(端末300の送信を積極的に行う送信制御)として、端末300の送信電力を高くする送信制御(電力の制御)、端末300の下り回線データの送信頻度(下り回線データが送信されるサブフレームの頻度)を高くする送信制御(時間領域での制御)、端末300の送信に用いる周波数帯域(周波数リソース)を増やす送信制御(周波数領域での制御)、又は、端末300の送信を行う送信制御(空間領域での制御)がある。
For example, as transmission control corresponding to “transmission +” (transmission control for actively transmitting terminal 300), transmission control for increasing transmission power of terminal 300 (power control), transmission of downlink data for terminal 300 Transmission control for increasing the frequency (frequency of subframes in which downlink data is transmitted) (control in the time domain), transmission control for increasing the frequency band (frequency resource) used for transmission of the terminal 300 (control in the frequency domain) Alternatively, there is transmission control (control in the spatial domain) in which the terminal 300 performs transmission.
これに対して、「送信-」に対応する送信制御(「送信+」と逆の動作。つまり、端末300の送信を消極的に行う送信制御)として、端末300の送信電力を低くする送信制御(電力の制御)、端末300の下り回線データの送信頻度(下り回線データが送信されるサブフレームの頻度)を低くする送信制御(時間領域での制御)、端末300の送信に用いる周波数帯域(周波数リソース)を減らす送信制御(周波数領域での制御)、又は、端末300の送信を行わない送信制御(空間領域での制御)がある。
On the other hand, as transmission control corresponding to “transmission−” (operation opposite to “transmission +”, that is, transmission control in which transmission of terminal 300 is passively performed), transmission control for reducing transmission power of terminal 300 is performed. (Power control), transmission control for reducing downlink data transmission frequency of terminal 300 (frequency of subframes for transmitting downlink data) (control in time domain), frequency band used for transmission of terminal 300 ( There is transmission control (frequency domain control) for reducing (frequency resources) or transmission control (spatial domain control) in which terminal 300 does not perform transmission.
また、各端末300が独自に有する複数の異なる戦略(戦略群)は、例えば、端末固有のID等に関連付けられて生成される。すなわち、図6に示す戦略群(戦略a、戦略b、戦略c)の内容(過去2回分の送信制御情報の受信結果に対応付けられている動作)は、端末300毎に異なる。
Further, a plurality of different strategies (strategy groups) that each terminal 300 has uniquely are generated in association with, for example, IDs unique to the terminals. That is, the contents of the strategy group (strategy a, strategy b, strategy c) shown in FIG. 6 (operations associated with the reception results of the transmission control information for the past two times) are different for each terminal 300.
また、図6に示すように、各端末300が有する複数の異なる戦略には、それぞれ優先度(戦略aに対する優先度a[k]、戦略bに対する優先度b[k]、戦略cに対する優先度c[k])が設定される。端末300は、各時刻において優先度がより高い戦略を選択する。
Further, as shown in FIG. 6, each of the plurality of different strategies possessed by each terminal 300 has priority (priority a [k] for strategy a, priority b [k] for strategy b, priority for strategy c). c [k]) is set. The terminal 300 selects a strategy with a higher priority at each time.
そして、各端末300の送信制御部302は、基地局100から(又は他の基地局200を介して)受信した送信制御情報の履歴と、選択した戦略(優先度の高い戦略)とから特定される送信の制御方針(「送信+」又は「送信-」)に基づいて、自機の送信を制御する。具体的には、送信制御情報の履歴パターンが、所定数(例えば、N個。つまり、履歴長=2)の送信制御情報のパターンで表されるとすると、送信制御部302は、今回受信した送信制御情報に基づいて各戦略の優先度を更新し、(N-1)回前に受信した送信制御情報から今回受信した送信制御情報までのN個分の送信制御情報の履歴と、優先度の高い戦略とから特定される制御方針に基づいて、自機の送信を制御する。
Then, the transmission control unit 302 of each terminal 300 is identified from the history of the transmission control information received from the base station 100 (or via another base station 200) and the selected strategy (high priority strategy). Based on the transmission control policy (“transmission +” or “transmission−”). Specifically, assuming that a history pattern of transmission control information is represented by a predetermined number (for example, N, ie, history length = 2) of transmission control information patterns, the transmission control unit 302 has received this time. The priority of each strategy is updated based on the transmission control information, and history of N pieces of transmission control information from the transmission control information received (N-1) times before to the transmission control information received this time, and the priority Based on the control strategy specified by the high strategy, the transmission of its own device is controlled.
例えば、図6に示す戦略群(履歴長=2)を有する端末300において、時刻k-1の送信制御情報μ[k-1]=1、時刻kの送信制御情報μ[k]=-1であり、かつ、時刻kでは戦略a~cのうち戦略aの優先度a[k]が最も高い場合について説明する。
For example, in terminal 300 having the strategy group (history length = 2) shown in FIG. 6, transmission control information μ [k−1] = 1 at time k−1, and transmission control information μ [k] = − 1 at time k−1. A case where the priority a [k] of the strategy a is the highest among the strategies a to c at time k will be described.
この場合、送信制御部302は、図6に示すように、戦略aのうち、送信制御情報の履歴パターン候補(μ[k-1]=1、μ[k]=-1)に対応付けられた送信の制御方針「送信+」を特定する。よって、送信制御部302は、時刻kでは、特定した送信の制御方針「送信+」に基づいて、端末300の送信を増加させる送信制御(端末300の送信を積極的に行う送信制御)を行う。
In this case, as shown in FIG. 6, the transmission control unit 302 is associated with the history pattern candidate (μ [k−1] = 1, μ [k] = − 1) of the transmission control information in the strategy a. The transmission control policy “transmission +” is specified. Therefore, the transmission control unit 302 performs transmission control for increasing transmission of the terminal 300 (transmission control that actively performs transmission of the terminal 300) based on the specified transmission control policy “transmission +” at time k. .
次いで、送信制御部302は、基地局100から送信される送信制御情報に基づいて、複数の異なる戦略のそれぞれが有する優先度を更新する。具体的には、各端末300は、時刻k-1及び時刻kにおける送信制御情報の履歴パターンに基づく送信制御(すなわち、時刻kにおいて特定した送信の制御方針)の決定がシステムの観点で正しい決定であったか否かを、時刻k+1で受信する送信制御情報μ[k+1]を用いて判定する。
Next, the transmission control unit 302 updates the priority of each of a plurality of different strategies based on the transmission control information transmitted from the base station 100. Specifically, each terminal 300 determines that transmission control based on the history pattern of transmission control information at time k-1 and time k (that is, the transmission control policy specified at time k) is correct from the viewpoint of the system. Is determined using transmission control information μ [k + 1] received at time k + 1.
例えば、上記同様、図6に示すように、送信制御情報の履歴パターンが(μ[k-1]=1、μ[k]=-1)であり、端末300が時刻kにおいて戦略aを選択したとき、次のタイミング(時刻k+1)において基地局100から通知される送信制御情報μ[k+1]が-1である場合について説明する。この場合、端末300は、「送信制御情報の履歴パターンが(μ[k-1]=1、μ[k]=-1)である場合に自機が時刻kにおいて「送信+」の送信制御(端末300の送信を積極的に行う送信制御)を行うことは正しかった」と学習する。
For example, as shown in FIG. 6, the history pattern of the transmission control information is (μ [k−1] = 1, μ [k] = − 1), and the terminal 300 selects the strategy a at time k, as shown above. Then, a case will be described where transmission control information μ [k + 1] notified from base station 100 at the next timing (time k + 1) is −1. In this case, the terminal 300 determines that “when the history pattern of the transmission control information is (μ [k−1] = 1, μ [k] = − 1), the terminal 300 performs“ transmission + ”transmission control at time k. “It was correct to perform (transmission control for actively transmitting the terminal 300)”.
そこで、送信制御部302は、送信制御情報の履歴パターン候補(μ[k-1]=1、μ[k]=-1)に対応付けられた送信の制御方針が「送信+」である戦略の優先度を一定量増加させる。逆に、送信制御部302は、送信制御情報の履歴パターン候補(μ[k-1]=1、μ[k]=-1)に対応付けられた送信の制御方針が「送信-」である戦略の優先度を一定量減少させる。例えば、図6において、送信制御部302は、時刻kで実際に選択された戦略aの優先度a[k+1]を一定量増加させるとともに、送信制御情報の履歴パターン候補(μ[k-1]=1、μ[k]=-1)に対応付けられた送信の制御方針が「送信+」である戦略cの優先度c[k+1]も一定量増加させる。一方、図6において、送信制御部302は、送信制御情報の履歴パターン候補(μ[k-1]=1、μ[k]=-1)に対応付けられた送信の制御方針が「送信-」である戦略bの優先度b[k+1]を一定量減少させる。
Therefore, the transmission control unit 302 has a strategy in which the transmission control policy associated with the history pattern candidate (μ [k−1] = 1, μ [k] = − 1) of the transmission control information is “transmission +”. Increase the priority of a certain amount. Conversely, the transmission control unit 302 has a transmission control policy “transmission−” associated with the history pattern candidate (μ [k−1] = 1, μ [k] = − 1) of the transmission control information. Reduce strategy priority by a certain amount. For example, in FIG. 6, the transmission control unit 302 increases the priority a [k + 1] of the strategy a actually selected at the time k by a certain amount, and the history pattern candidate (μ [k− The priority c [k + 1] of the strategy c whose transmission control policy associated with 1] = 1, μ [k] = − 1) is “transmission +” is also increased by a certain amount. On the other hand, in FIG. 6, the transmission control unit 302 sets the transmission control policy associated with the history pattern candidate (μ [k−1] = 1, μ [k] = − 1) of the transmission control information to “transmission- The priority b [k + 1] of the strategy b that is “is decreased by a certain amount.
換言すると、上記動作は、「端末300が時刻kにおいて戦略a(「送信+」の送信制御)に基づいて端末300の送信を積極的に行う送信制御を行ったにもかかわらず、基地局100における干渉量が許容値(干渉閾値)以下という結果(μ[k+1]=-1)を維持することができた」と言える。すなわち、時刻kにおいて、端末300にとっての戦略aは、「基地局100に対する干渉を抑えつつ、端末300の送信機会を最大化する」という目的に対して効果的であったと言える。
In other words, the above operation is performed even though the base station 100 performs the transmission control in which the terminal 300 actively transmits the terminal 300 based on the strategy a (“transmission +” transmission control) at the time k. It was possible to maintain the result (μ [k + 1] = − 1) that the amount of interference at is less than the allowable value (interference threshold) ”. That is, at time k, the strategy a for the terminal 300 can be said to be effective for the purpose of “maximizing the transmission opportunity of the terminal 300 while suppressing interference with the base station 100”.
一方、図6に示すように、送信制御情報の履歴パターンが(μ[k-1]=1、μ[k]=-1)であり、端末300が時刻kにおいて戦略aを選択したとき、次のタイミング(時刻k+1)において基地局100から通知される送信制御情報μ[k+1]が1である場合について説明する。この場合、端末300は、「送信制御情報の履歴パターンが(μ[k-1]=1、μ[k]=-1)である場合に自機が時刻kにおいて「送信+」の送信制御(端末300の送信を積極的に行う送信制御)を行うことは誤っていた」と学習する。
On the other hand, as shown in FIG. 6, when the history pattern of the transmission control information is (μ [k−1] = 1, μ [k] = − 1) and the terminal 300 selects the strategy a at time k, A case where the transmission control information μ [k + 1] notified from the base station 100 at the next timing (time k + 1) is 1 will be described. In this case, the terminal 300 determines that “when the history pattern of the transmission control information is (μ [k−1] = 1, μ [k] = − 1), the terminal 300 performs“ transmission + ”transmission control at time k. “It was wrong to perform (transmission control that actively transmits the terminal 300)”.
そこで、送信制御部302は、送信制御情報の履歴パターン候補(μ[k-1]=1、μ[k]=-1)に対応付けられた送信の制御方針が「送信+」である戦略の優先度を一定量減少させる。逆に、送信制御部302は、送信制御情報の履歴パターン候補(μ[k-1]=1、μ[k]=-1)に対応付けられた送信の制御方針が「送信-」である戦略の優先度を一定量増加させる。例えば、図6において、送信制御部302は、時刻kで実際に選択された戦略aの優先度a[k+1]を一定量減少させるとともに、送信制御情報の履歴パターン候補(μ[k-1]=1、μ[k]=-1)に対応付けられた送信の制御方針が「送信+」である戦略cの優先度c[k+1]も一定量減少させる。一方、図6において、送信制御部302は、送信制御情報の履歴パターン候補(μ[k-1]=1、μ[k]=-1)に対応付けられた送信の制御方針が「送信-」である戦略bの優先度b[k+1]を一定量増加させる。
Therefore, the transmission control unit 302 has a strategy in which the transmission control policy associated with the history pattern candidate (μ [k−1] = 1, μ [k] = − 1) of the transmission control information is “transmission +”. Decrease the priority of by a certain amount. Conversely, the transmission control unit 302 has a transmission control policy “transmission−” associated with the history pattern candidate (μ [k−1] = 1, μ [k] = − 1) of the transmission control information. Increase strategy priority by a certain amount. For example, in FIG. 6, the transmission control unit 302 decreases the priority a [k + 1] of the strategy a actually selected at time k by a certain amount, and the history pattern candidate (μ [k− The priority c [k + 1] of the strategy c whose transmission control policy associated with 1] = 1, μ [k] = − 1) is “transmission +” is also decreased by a certain amount. On the other hand, in FIG. 6, the transmission control unit 302 sets the transmission control policy associated with the history pattern candidate (μ [k−1] = 1, μ [k] = − 1) of the transmission control information to “transmission- The priority b [k + 1] of the strategy b which is “is increased by a certain amount.
換言すると、上記動作は、「端末300が時刻kにおいて戦略a(「送信+」の送信制御)に基づいて端末300の送信を積極的に行う送信制御を行ったことが原因の一部となり、基地局100における干渉量が許容値(干渉閾値)を超えるという結果(μ[k+1]=1)になった」と言える。すなわち、時刻kにおいて、端末300にとっての戦略aは、「基地局100に対する干渉を抑えつつ、端末300の送信機会を最大化する」という目的に対して効果的ではなかった(誤った選択であった)と言える。
In other words, the above operation is partly caused by the fact that “the terminal 300 has performed transmission control that actively transmits the terminal 300 based on the strategy a (“ transmission + ”transmission control) at time k, It can be said that the amount of interference in the base station 100 exceeds the allowable value (interference threshold) (μ [k + 1] = 1) ”. That is, at time k, the strategy a for the terminal 300 is not effective for the purpose of “maximizing the transmission opportunity of the terminal 300 while suppressing interference with the base station 100” (incorrect selection). It can be said.
そして、各端末300の送信制御部302は、時刻k+1(図示せず)では、送信制御情報の履歴パターン(μ[k]、μ[k+1])と、時刻k+1において選択した戦略(優先度の高い戦略)とから特定される送信の制御方針に基づいて、端末300の送信を制御する。このように、各端末300は、上述した送信制御を逐次的に行い、各々が有する複数の異なる戦略の優先度を更新し続ける。
Then, the transmission control unit 302 of each terminal 300, at time k + 1 (not shown), the transmission control information history pattern (μ [k], μ [k + 1]) and the strategy (priority) selected at time k + 1. The transmission of the terminal 300 is controlled based on the transmission control policy specified by the high-level strategy. In this way, each terminal 300 sequentially performs the transmission control described above, and continues to update the priorities of a plurality of different strategies that each terminal has.
つまり、各端末300(マクロ端末)は、各戦略の優先度を更新し続けることにより、送信制御情報の複数の履歴パターン候補のそれぞれにおいて、「基地局100(ピコ基地局)に対する干渉を抑えつつ、自機の送信機会を最大化する」という目的に対して効果的であった送信の制御方針をより多く含む戦略を特定していく。これにより、最終的には、各端末300が独自の戦略(各端末300それぞれに適した戦略)を用いるようにネットワークが自律分散的に構成されていく。
That is, each terminal 300 (macro terminal) keeps updating the priority of each strategy, thereby suppressing “interference with the base station 100 (pico base station) in each of a plurality of history pattern candidates of the transmission control information. We will identify strategies that include more transmission control policies that were effective for the purpose of maximizing the transmission opportunity of the device. As a result, the network is finally configured in an autonomous and distributed manner so that each terminal 300 uses a unique strategy (a strategy suitable for each terminal 300).
ここで、端末300の上記動作を別の視点で説明すると以下のようになる。
Here, the above operation of the terminal 300 will be described from another viewpoint as follows.
本実施の形態における端末300の送信制御のターゲットは、「基地局100に与える干渉値を一定値(許容値)以下に保ちつつ、端末300の送信機会を最大化すること」である。換言すると、端末300は、「基地局100での干渉(つまり、上りチャネルでの干渉)に関する制約条件を満たしつつ、端末300の送信機会を最大化する」という送信制御を行う。
The target of the transmission control of the terminal 300 in the present embodiment is “maximizing the transmission opportunity of the terminal 300 while keeping the interference value given to the base station 100 below a certain value (allowable value)”. In other words, the terminal 300 performs transmission control such that “the transmission opportunity of the terminal 300 is maximized while satisfying the constraint condition regarding interference in the base station 100 (that is, interference on the uplink channel)”.
これに対して、本実施の形態における端末300の上記動作と比較して、「端末が基地局に与える干渉の度合に応じて、複数の端末をグループ化する点」において相違するものの、「或る一定の干渉に関する制約条件を満たしつつ、自機の送信機会を最大化する」という送信制御に対して、少数派ゲーム(Minority Game:MG)の考え方に基づく手法を有効に活用できることは、例えば、文献「山本高至、木村和也、村田英一、吉田進、“少数派ゲームを用いた自己組織的干渉制御手法の特性評価”、IEICE Technical Report、SR2009-106、2010年3月(K.Yamamoto, K.Kimura, H.Murata, S.Yoshida, "Performance Evaluation of Minority Game-based Self-organized Interference Management," IEICE Technical Report, SR2009-106, March 2010)」でも示されている。
On the other hand, compared with the above operation of terminal 300 in the present embodiment, it is different in “a point in which a plurality of terminals are grouped according to the degree of interference that the terminal gives to the base station”. For example, the ability to effectively use a technique based on the Minority Game (MG) concept for the transmission control of “maximizing the transmission opportunity of its own device while satisfying the constraint condition regarding a certain interference” , "Koji Yamamoto, Kazuya Kimura, Eiichi Murata, Susumu Yoshida," Characteristic Evaluation of Self-Organized Interference Control Method Using Minority Games ", IEICE Technical Report, SR2009-106, March 2010 (K .Yamamoto, K.Kimura, H.Murata, S.Yoshida, oshi "Performance Evaluation of Minority Game-based Self-organized Interference Management," IEICE Technical Report, SR2009-106, March 2010) ".
このように、本実施の形態では、各端末300(マクロ端末)の送信制御は、上記文献に示されるようなMinority Gameの考え方に基づいているので、例えばランダムに送信制御を行う場合と比較して、システムの観点で効果的に送信制御を行うことが可能となる。具体的には、各端末300(マクロ端末)は、送信制御情報に基づいて、各々で独自の戦略群(複数の異なる戦略)の優先度を更新して、各自で自律分散的な送信制御(Minority Gameの考え方に基づいた干渉制御)を行う。これにより、例えば、ヘテロジニアスネットワークにおいて、複数のマクロ端末の送信制御を行う際には、システム全体の複雑さ(complexity)の増加を抑えつつ、マクロ端末毎に適切な送信制御を行うことができる。
As described above, in the present embodiment, the transmission control of each terminal 300 (macro terminal) is based on the Minority Game concept as described in the above document. Thus, transmission control can be effectively performed from the viewpoint of the system. Specifically, each terminal 300 (macro terminal) updates the priority of each unique strategy group (a plurality of different strategies) based on the transmission control information, and autonomously distributed transmission control ( Interference control based on Minority Game concept). Thereby, for example, when performing transmission control of a plurality of macro terminals in a heterogeneous network, it is possible to perform appropriate transmission control for each macro terminal while suppressing an increase in the complexity of the entire system. .
また、少数派ゲームには、結果(基地局100に与える干渉量)への影響度が同程度の装置間で、上記「少数派ゲームの考え方に基づく手法」を行うほど、収束後の状態において、送信側の送信確率をより高くしつつ、被干渉側での干渉量をより小さく抑えることができるという特徴がある。
In addition, in a minority game, the more the effect on the result (the amount of interference given to the base station 100) is the same, the more the “method based on the concept of the minority game” is performed, There is a feature that it is possible to further reduce the amount of interference on the interfered side while further increasing the transmission probability on the transmitting side.
上記特徴は、例えば、図7に示す計算機シミュレーション結果からも読み取れる。図7に示す計算機シミュレーション結果は、送信制御の一例として、マクロ端末(端末300)が少数派ゲーム(ゲーム理論)を適用して、「送信する(送信+)」又は「送信しない(送信-)」の2択の送信制御を行うと仮定し、十分に時間が経過して各マクロ端末における戦略が収束した後の状態を示す。なお、図7は、マクロ端末の数を一定の100個とし、マクロ端末からピコ基地局までの距離のばらつきを変化させた場合の各状態を示す。
The above features can also be read from, for example, the computer simulation result shown in FIG. As a result of the computer simulation shown in FIG. 7, as an example of transmission control, the macro terminal (terminal 300) applies a minority game (game theory) to “transmit (transmit +)” or “do not transmit (transmit −). Assuming that two-choice transmission control is performed, a state after a sufficient time has elapsed and the strategy in each macro terminal has converged is shown. FIG. 7 shows each state when the number of macro terminals is constant 100 and the variation in distance from the macro terminal to the pico base station is changed.
また、図7において、横軸はピコ基地局(基地局100)におけるアウテージ確率(つまり、基地局100において干渉量が許容値を超える割合)を示し、縦軸はマクロ端末の送信確率(つまり、端末300が送信してもよいと認められた割合)を示す。すなわち、図7では、左上(アウテージ確率が低く、送信確率が高い特性)に行くほど、良好な特性を表す。
In FIG. 7, the horizontal axis indicates the outage probability in the pico base station (base station 100) (that is, the rate at which the amount of interference exceeds the allowable value in the base station 100), and the vertical axis indicates the transmission probability of the macro terminal (that is, The rate at which the terminal 300 is allowed to transmit). That is, in FIG. 7, the better the characteristic is, the higher the upper left (the characteristic that the outage probability is low and the transmission probability is high).
図7に示すように、マクロ端末(端末300)からピコ基地局(基地局100)までの距離のばらつきが大きいほど、戦略が収束後の特性がより劣化することが分かる。すなわち、図7に示すように、マクロ端末(端末300)からピコ基地局(基地局100)までの距離のばらつきが小さいほど、つまり、ピコ基地局との距離が複数のマクロ端末(100個のマクロ端末)間で同程度であるほど、戦略が収束後の特性がより良好であることが分かる。
As shown in FIG. 7, it can be seen that the greater the variation in the distance from the macro terminal (terminal 300) to the pico base station (base station 100), the more the characteristics after the strategy converges. That is, as shown in FIG. 7, the smaller the variation in the distance from the macro terminal (terminal 300) to the pico base station (base station 100), that is, the distance from the pico base station becomes a plurality of macro terminals (100 It can be seen that the more the same degree between the macro terminals), the better the characteristics after the strategy converges.
すなわち、本実施の形態のように、基地局100までの距離に応じて、複数の端末300を複数のグループにグループ化し、グループ毎に少数派ゲームを適用することにより、グループ化しない場合と比較して、上述した少数派ゲームの特徴(効果)が得やすくなる。
That is, as in the present embodiment, according to the distance to the base station 100, a plurality of terminals 300 are grouped into a plurality of groups, and a minority game is applied to each group, thereby comparing with a case where no grouping is performed. This makes it easier to obtain the characteristics (effects) of the minority game described above.
更に、上記少数派ゲームの特徴は、図8に示す計算機シミュレーション結果からも読み取れる。図8に示す計算機シミュレーションは、マクロ端末を最適な距離で2つのグループにグループ化して、グループ毎に少数派ゲームを適用して送信制御を行った場合の特性(三角印)と、マクロ端末をグループ化しない場合の特性(丸印)とを示す。つまり、グループ化の際、基地局100までの距離が或る閾値(最適な距離)以上となる複数の端末300を第1グループとし、基地局100までの距離が閾値(最適な距離)未満となる複数の端末300を第2グループとする。そして、第1グループ及び第2グループのそれぞれで異なるリソース群を用いつつ、グループ毎に少数派ゲームを適用した送信制御が行われる。ただし、ここでの、「最適な距離」は、第1グループに割り当てられるリソース群の数と第2グループに割り当てられるリソース群の数とが同一の場合には、全端末300を二分する距離となる。
Furthermore, the characteristics of the above-mentioned minority game can also be read from the computer simulation results shown in FIG. The computer simulation shown in FIG. 8 shows the characteristics (triangle mark) when the macro terminals are grouped into two groups at an optimum distance, and transmission control is performed by applying a minority game for each group. The characteristic (circle) when not grouping is shown. That is, when grouping, a plurality of terminals 300 whose distance to the base station 100 is equal to or greater than a certain threshold (optimum distance) are set as the first group, and the distance to the base station 100 is less than the threshold (optimum distance). A plurality of terminals 300 are defined as the second group. And the transmission control which applied the minority game for every group is performed, using a different resource group by each of a 1st group and a 2nd group. However, the “optimum distance” here is a distance that bisects all the terminals 300 when the number of resource groups allocated to the first group is the same as the number of resource groups allocated to the second group. Become.
また、図8において、横軸はピコ基地局(基地局100)でのターゲット干渉量からの分散値を示し、縦軸はマクロ端末の送信確率(つまり、端末300が送信してもよいと認められた割合)を示す。ここで、ターゲット干渉量の分散値が小さいほど、ピコ基地局でのターゲット干渉量に対する実際の干渉量の収束特性は良好になる。すなわち、図8では、左上(分散値が低く、送信確率が高い特性)に行くほど、良好な状態を表す。
In FIG. 8, the horizontal axis indicates the dispersion value from the target interference amount at the pico base station (base station 100), and the vertical axis indicates the transmission probability of the macro terminal (that is, the terminal 300 may transmit). Ratio). Here, the smaller the variance value of the target interference amount, the better the convergence characteristic of the actual interference amount with respect to the target interference amount at the pico base station. That is, in FIG. 8, the better the state is, the closer to the upper left (characteristic that the dispersion value is low and the transmission probability is high).
図8に示すように、マクロ端末を最適な距離で2つのグループにグループ化した場合の方が、マクロ端末をグループ化しない場合よりも、より良い収束特性(より低い分散値)かつより高い送信確率が得られることが示されている。
As shown in FIG. 8, when the macro terminals are grouped into two groups at an optimum distance, better convergence characteristics (lower dispersion value) and higher transmission are obtained than when the macro terminals are not grouped. Probability is shown.
このように、本実施の形態では、各端末300(マクロ端末)は、上記文献に示されるような少数派ゲーム(Minority Game)の考え方に基づいて送信制御を行うことで、例えば、ランダムに送信制御を行う場合と比較して、システムの観点で効果的に送信制御を行うことが可能となる。具体的には、各端末300(マクロ端末)は、送信制御情報に基づいて、各々で独自の戦略群(複数の異なる戦略)の優先度を更新して、各自で自立分散的な送信制御(少数派ゲームの考え方に基づいた干渉制御)を行う。これにより、例えば、ヘテロジニアスネットワークにおいて、複数のマクロ端末の送信制御を行う際には、システム全体の複雑さ(complexity)の増加を抑えつつ、マクロ端末毎に適切な送信制御を行うことができる。
As described above, in this embodiment, each terminal 300 (macro terminal) performs transmission control based on the concept of minority game (Minority よ う な Game) as shown in the above document, for example, randomly transmitting Compared with the case where control is performed, transmission control can be effectively performed from the viewpoint of the system. Specifically, each terminal 300 (macro terminal) updates the priority of its own strategy group (a plurality of different strategies) based on the transmission control information, and each terminal 300 (macro terminal) performs independent and distributed transmission control ( Interference control based on the concept of minority games). Thereby, for example, when performing transmission control of a plurality of macro terminals in a heterogeneous network, it is possible to perform appropriate transmission control for each macro terminal while suppressing an increase in the complexity of the entire system. .
更に、本実施の形態では、各端末300(マクロ端末)が基地局100(ピコ基地局)における干渉量に与える影響の大きさ(干渉の影響度)に応じて、複数の端末300を複数のグループ(リソースグループ)にグループ化する。そして、それぞれのグループ毎に異なるリソースを用いるという前提で、基地局100は、グループ毎に送信制御情報を生成し、端末300は、自機が属するグループに対応する送信制御情報を用いて送信制御を行う。これにより、少数派ゲームを適用して得られる効果(つまり、送信側の送信確率をより高くしつつ、被干渉側での干渉量をより小さく抑える効果)が、グループ化しない場合と比較して、より大きくなる。
Further, in the present embodiment, a plurality of terminals 300 are assigned to a plurality of terminals 300 (macro terminals) in accordance with the magnitude of influence (degree of influence of interference) on the amount of interference in base station 100 (pico base station). Group into groups (resource groups). Then, on the premise that different resources are used for each group, the base station 100 generates transmission control information for each group, and the terminal 300 performs transmission control using transmission control information corresponding to the group to which the mobile station belongs. I do. As a result, the effect obtained by applying the minority game (that is, the effect of suppressing the amount of interference on the interfered side to be smaller while increasing the transmission probability on the transmission side) is compared to the case of not grouping. , Get bigger.
また、基地局100から端末300に通知される、各リソースグループの送信制御情報(同一グループに属する全端末300に共通の情報)の情報量は、1ビットとなる。つまり、各グループにおいて、基地局100(ピコ基地局)から端末300(マクロ端末)への送信制御情報量を最小限(1ビット)に抑えることができる。また、基地局100(ピコ基地局)では複数の端末300(マクロ端末)からの干渉の総和(干渉電力の合計)のみを測定すればよく、基地局100での測定負荷(measurement負荷)を最小限に抑えることができる。
Also, the information amount of the transmission control information of each resource group (information common to all terminals 300 belonging to the same group) notified from the base station 100 to the terminal 300 is 1 bit. That is, in each group, the amount of transmission control information from base station 100 (pico base station) to terminal 300 (macro terminal) can be minimized (1 bit). Further, the base station 100 (pico base station) only needs to measure the total interference (total interference power) from the plurality of terminals 300 (macro terminals), and minimizes the measurement load (measurement load) at the base station 100. To the limit.
以上のように、本実施の形態によれば、マクロ端末の送信制御を行う際、ピコ基地局からマクロ基地局又はマクロ端末への送信制御情報量の増大を抑えつつ、マクロ端末毎に適切な送信制御を行うことができる。
As described above, according to the present embodiment, when performing macro terminal transmission control, an increase in the amount of transmission control information from a pico base station to a macro base station or a macro terminal is suppressed, and appropriate for each macro terminal. Transmission control can be performed.
なお、本実施の形態では、ピコ基地局におけるマクロ端末からの上り干渉を抑えつつ、マクロ端末の送信機会(又は、送信電力、送信帯域等)を最大化する場合について説明した。しかし、本実施の形態は、以下の場合についても適用することができる。
(1)マクロ基地局におけるピコ端末からの上り干渉を抑えつつ、ピコ端末の送信機会を最大化する場合。この場合、マクロ基地局が送信制御情報を生成し、ピコ端末が少数派ゲームを適用した送信制御を行う。
(2)ピコ端末におけるマクロ基地局からの下り干渉を抑えつつ、マクロ基地局の送信機会を最大化する場合。この場合、ピコ端末が送信制御情報を生成し、マクロ基地局が少数派ゲームを適用した送信制御を行う。
(3)マクロ端末におけるピコ基地局からの下り干渉を抑えつつ、ピコ基地局の送信機会を最大化する場合。この場合、マクロ端末が送信制御情報を生成し、ピコ基地局が少数派ゲームを適用した送信制御を行う。 In the present embodiment, a case has been described in which the transmission opportunity (or transmission power, transmission band, etc.) of the macro terminal is maximized while suppressing uplink interference from the macro terminal in the pico base station. However, this embodiment can also be applied to the following cases.
(1) A case where the transmission opportunity of the pico terminal is maximized while suppressing uplink interference from the pico terminal in the macro base station. In this case, the macro base station generates transmission control information, and the pico terminal performs transmission control using a minority game.
(2) The case of maximizing the transmission opportunity of the macro base station while suppressing downlink interference from the macro base station in the pico terminal. In this case, the pico terminal generates transmission control information, and the macro base station performs transmission control using a minority game.
(3) A case where the transmission opportunity of the pico base station is maximized while suppressing downlink interference from the pico base station in the macro terminal. In this case, the macro terminal generates transmission control information, and the pico base station performs transmission control using a minority game.
(1)マクロ基地局におけるピコ端末からの上り干渉を抑えつつ、ピコ端末の送信機会を最大化する場合。この場合、マクロ基地局が送信制御情報を生成し、ピコ端末が少数派ゲームを適用した送信制御を行う。
(2)ピコ端末におけるマクロ基地局からの下り干渉を抑えつつ、マクロ基地局の送信機会を最大化する場合。この場合、ピコ端末が送信制御情報を生成し、マクロ基地局が少数派ゲームを適用した送信制御を行う。
(3)マクロ端末におけるピコ基地局からの下り干渉を抑えつつ、ピコ基地局の送信機会を最大化する場合。この場合、マクロ端末が送信制御情報を生成し、ピコ基地局が少数派ゲームを適用した送信制御を行う。 In the present embodiment, a case has been described in which the transmission opportunity (or transmission power, transmission band, etc.) of the macro terminal is maximized while suppressing uplink interference from the macro terminal in the pico base station. However, this embodiment can also be applied to the following cases.
(1) A case where the transmission opportunity of the pico terminal is maximized while suppressing uplink interference from the pico terminal in the macro base station. In this case, the macro base station generates transmission control information, and the pico terminal performs transmission control using a minority game.
(2) The case of maximizing the transmission opportunity of the macro base station while suppressing downlink interference from the macro base station in the pico terminal. In this case, the pico terminal generates transmission control information, and the macro base station performs transmission control using a minority game.
(3) A case where the transmission opportunity of the pico base station is maximized while suppressing downlink interference from the pico base station in the macro terminal. In this case, the macro terminal generates transmission control information, and the pico base station performs transmission control using a minority game.
ただし、上述した、装置のグループ化の効果をより得られるのは、干渉源(本実施の形態に係る送信装置)がより多く存在する場合である。このため、1つの基地局に対して多くの端末が接続されるという状況を鑑みると、装置のグループ化の効果は、下りの干渉制御を行う場合(すなわち、基地局(マクロ基地局又はピコ基地局)に対してグループ化を適用する場合)よりも、上りの干渉制御を行う場合(すなわち、端末(マクロ端末又はピコ端末)に対してグループ化を適用する場合)の方がより大きくなると考えられる。
However, the above-described device grouping effect can be obtained more when there are more interference sources (transmitting devices according to the present embodiment). For this reason, considering the situation where many terminals are connected to one base station, the effect of device grouping is that when downlink interference control is performed (that is, the base station (macro base station or pico base It is considered that when uplink interference control is performed (that is, when grouping is applied to a terminal (macro terminal or pico terminal)) is larger than when grouping is applied to a station). It is done.
[他の実施の形態]
(1)なお、上記実施の形態において、各端末300が有する戦略の数(図6では3個)を、適応的に変更させてもよい。 [Other embodiments]
(1) In the above embodiment, the number of strategies (three in FIG. 6) of each terminal 300 may be adaptively changed.
(1)なお、上記実施の形態において、各端末300が有する戦略の数(図6では3個)を、適応的に変更させてもよい。 [Other embodiments]
(1) In the above embodiment, the number of strategies (three in FIG. 6) of each terminal 300 may be adaptively changed.
(2)また、本実施の形態では、基地局100が受ける干渉の総和に応じて送信制御情報を生成する場合について説明したが、例えばTDMA(Time Division Multiple Access)及びFDMA(Frequency Division Multiple Access)のように複数のチャネルが明示的に分けられている場合には、この干渉の総和は、各リソースグループにおける干渉量の総和となる。また、OFDMA(Orthogonal Frequency Division Multiple Access)及びSC-FDMA(Single Carrier - Frequency Division Multiple Access)のようにチャネルが明示的に分けられていない場合には、干渉の総和は、各グループが利用できるリソース(すなわち周波数(サブキャリア)の範囲)内で干渉量を積分した値となる。
(2) Further, in the present embodiment, a case has been described in which transmission control information is generated in accordance with the total interference received by base station 100. For example, TDMA (Time Division Multiple Access) and FDMA (Frequency Division Multiple Access) are used. In the case where a plurality of channels are explicitly divided as in the above, the total sum of interference is the total sum of interference amounts in each resource group. In addition, when channels are not explicitly divided, such as OFDMA (Orthogonal Frequency Division Multiple Access) and SC-FDMA (Single Carrier-Frequency Frequency Division Multiple Access), the total interference is a resource that can be used by each group. It is a value obtained by integrating the amount of interference within (that is, the frequency (subcarrier) range).
(3)また、上記実施の形態では、「基地局100までの距離に応じて形成されたグループ」のそれぞれに対して同一量のリソース群を割り当てること(つまり、全端末300を二分する距離を「最適な距離)とすること)を前提とした。しかし、各グループに対して異なる量のリソース群を割り当てることも可能である。この場合、上述した「最適な距離」は、各グループに対するリソース群の割当量に応じて変化する。例えば、第1グループに対して、第2グループよりも多くのリソースが割り当てられている場合には、第1グループにより多くの端末が属するような閾値(つまり、「最適な距離」)を設定して、複数の端末300をグループ分けすればよい。
(3) In the above embodiment, the same amount of resource group is allocated to each of the “groups formed according to the distance to the base station 100” (that is, the distance that bisects all the terminals 300 is However, it is also possible to allocate a different amount of resource group to each group. In this case, the above-mentioned “optimum distance” is the resource for each group. Varies according to the group quota. For example, if more resources are assigned to the first group than the second group, a threshold (that is, “optimum distance”) is set so that more terminals belong to the first group. Thus, the plurality of terminals 300 may be grouped.
(4)また、上記実施の形態において、各送信制御情報の履歴パターン候補に対応付けられた送信の制御方針(「送信+」及び「送信-」)の割合を戦略毎に異ならせる、所謂Weighted tableを適用してもよい。この場合、Weighted tableとは、送信制御情報の履歴パターンに対応付けられた送信制御(送信の制御方針)が一方((「送信+」及び「送信-」のいずれか一方))に偏って設定されるテーブルである。Weighted tableを戦略に適用した一例を図9に示す。図9に示す戦略cは、送信制御情報の4種類の履歴パターン候補のうち、3種類の履歴パターン候補に「送信+」が対応付けられ、残りの1種類の履歴パターンに「送信-」が対応付けられている。すなわち、図9に示す戦略cは、「送信+」に偏った送信の制御方針が設定された戦略(Weighted table)となる。
(4) Also, in the above embodiment, the so-called Weighted, in which the ratio of the transmission control policies (“transmission +” and “transmission−”) associated with the history pattern candidates of each transmission control information is different for each strategy You may apply table. In this case, the weighted table is set so that the transmission control (transmission control policy) associated with the history pattern of the transmission control information is biased to one (either “transmission +” or “transmission −”). Is a table to be played. An example in which Weighted table is applied to the strategy is shown in FIG. In the strategy c shown in FIG. 9, among the four types of history pattern candidates of the transmission control information, “transmission +” is associated with three types of history pattern candidates, and “transmission−” is associated with the remaining one type of history pattern. It is associated. That is, the strategy c illustrated in FIG. 9 is a strategy (Weighted table) in which a transmission control policy biased toward “transmission +” is set.
例えば、基地局100からの距離が遠い端末300と、基地局100からの距離が近い端末300とでは、前者の方がより積極的に信号を送信しても、後者と比較して、基地局100での干渉量は増加しないと考えられる。このため、前者(基地局100からの距離が遠い端末300)が属する端末のグループには、例えば、図9に示す戦略cのような「送信+」に偏ったWeighted tableを適用することが好適である。
For example, in the terminal 300 that is far from the base station 100 and the terminal 300 that is close to the base station 100, even if the former transmits signals more actively, the base station It is considered that the amount of interference at 100 does not increase. For this reason, it is preferable to apply, for example, a weighted table that is biased toward “transmission +” like strategy c shown in FIG. 9 to a group of terminals to which the former (terminal 300 far from the base station 100) belongs. It is.
(5)また、上記実施の形態では、基地局100が端末300へ通知送信制御情報を、リソースグループ毎に1ビットとする場合について説明した。しかし、基地局100が通知する送信制御情報は、リソースグループ毎に1ビットとする場合に限らず、2ビット以上で表してもよい。これにより、基地局100における干渉量をより精度良くフィードバックすることができる。
(5) Further, in the above embodiment, a case has been described in which the base station 100 sets the notification transmission control information to the terminal 300 to 1 bit for each resource group. However, the transmission control information notified by the base station 100 is not limited to 1 bit for each resource group, and may be expressed by 2 bits or more. Thereby, the amount of interference in the base station 100 can be fed back more accurately.
(6)上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連係においてソフトウェアでも実現することも可能である。
(6) Although cases have been described with the above embodiments as examples where the present invention is configured by hardware, the present invention can also be realized by software in conjunction with hardware.
また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
Further, each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
Furthermore, if integrated circuit technology that replaces LSI emerges as a result of progress in semiconductor technology or other derived technology, it is naturally possible to integrate functional blocks using this technology. Biotechnology can be applied.
2010年12月21日出願の特願2010-284618の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2010-284618 filed on Dec. 21, 2010 is incorporated herein by reference.
本発明は、ヘテロジニアスネットワークに導入されるマクロ基地局/マクロ端末、ピコ基地局/ピコ端末、及びフェムト基地局/フェムト端末等に有用である。
The present invention is useful for a macro base station / macro terminal, a pico base station / pico terminal, a femto base station / femto terminal, and the like introduced into a heterogeneous network.
100 基地局
101,204,306 アンテナ
102,203,305 RF部
103 受信ベースバンド部
104 干渉測定部
105 送信制御情報生成部
106,201,303 変調部
107,202,304 送信ベースバンド部
200 他の基地局
300 端末
301 制御情報受信部
302 送信制御部 100 base station 101, 204, 306 antenna 102, 203, 305 RF unit 103 reception baseband unit 104 interference measurement unit 105 transmission control information generation unit 106, 201, 303 modulation unit 107, 202, 304 transmission baseband unit 200 other Base station 300 Terminal 301 Control information receiving unit 302 Transmission control unit
101,204,306 アンテナ
102,203,305 RF部
103 受信ベースバンド部
104 干渉測定部
105 送信制御情報生成部
106,201,303 変調部
107,202,304 送信ベースバンド部
200 他の基地局
300 端末
301 制御情報受信部
302 送信制御部 100
Claims (12)
- 被干渉局における干渉に関する制御情報を受信する受信部と、
前記制御情報の複数の履歴パターンのそれぞれに、送信の制御指針が対応付けられた対応関係であって、複数の異なる前記対応関係のそれぞれが有する優先度を、前記制御情報に基づいて更新し、受信された前記制御情報の履歴と前記優先度の高い前記対応関係とから特定される前記制御指針に基づいて、送信を制御する制御部と、
を有する、送信装置。 A receiver for receiving control information related to interference in the interfered station;
A correspondence relationship in which a control guideline for transmission is associated with each of the plurality of history patterns of the control information, and the priority of each of the plurality of different correspondence relationships is updated based on the control information, A control unit for controlling transmission based on the control guideline specified from the history of the received control information and the correspondence relationship having a high priority;
A transmitter. - 複数の前記送信装置が、複数のグループにグループ化され、
前記制御情報は、前記グループ毎に生成される、
請求項1記載の送信装置。 A plurality of the transmitting devices are grouped into a plurality of groups;
The control information is generated for each group.
The transmission device according to claim 1. - 複数の前記送信装置が、前記被干渉局に与える干渉の影響度に応じて複数のグループにグループ化され、
前記制御情報は、前記グループ毎に生成される、
請求項1に記載の送信装置。 A plurality of the transmission devices are grouped into a plurality of groups according to the degree of influence of interference on the interfered station,
The control information is generated for each group.
The transmission device according to claim 1. - 複数の前記送信装置が、前記被干渉局との距離に応じて複数のグループにグループ化され、
前記制御情報は、前記グループ毎に生成される、
請求項1に記載の送信装置。 A plurality of the transmission devices are grouped into a plurality of groups according to the distance to the interfered station,
The control information is generated for each group.
The transmission device according to claim 1. - 前記制御情報は、前記送信装置から前記被干渉局が受ける干渉量に基づいて生成される、
請求項1に記載の送信装置。 The control information is generated based on the amount of interference received by the interfered station from the transmission device.
The transmission device according to claim 1. - 前記制御情報は、前記干渉量が所定値以内か否かを示す、
請求項5に記載の送信装置。 The control information indicates whether or not the interference amount is within a predetermined value.
The transmission device according to claim 5. - 前記制御情報は、1ビットである、
請求項1に記載の送信装置。 The control information is 1 bit.
The transmission device according to claim 1. - 前記制御指針は、送信を増やすか減らすかを示す、
請求項1に記載の送信装置。 The control guidelines indicate whether to increase or decrease transmissions;
The transmission device according to claim 1. - 前記制御指針は、送信電力を高くするか低くするか、送信に用いる時間リソースを増やすか減らすか、送信に用いる周波数リソースを増やすか減らすか、又は、送信を行うか行わないか、を示す、
請求項1に記載の送信装置。 The control guideline indicates whether to increase or decrease transmission power, increase or decrease time resources used for transmission, increase or decrease frequency resources used for transmission, or perform transmission.
The transmission device according to claim 1. - 前記被干渉局は、基地局である、
請求項1に記載の送信装置。 The interfered station is a base station.
The transmission device according to claim 1. - 請求項1から10のいずれかに記載の送信装置を備えた移動局。 A mobile station comprising the transmission device according to any one of claims 1 to 10.
- 被干渉局における干渉に関する制御情報を受信し、
前記制御情報の複数の履歴パターンのそれぞれに、送信の制御指針が対応付けられた対応関係であって、複数の異なる前記対応関係のそれぞれが有する優先度を、前記制御情報に基づいて更新し、受信された前記制御情報の履歴と前記優先度の高い前記対応関係とから特定される前記制御指針に基づいて、送信を制御する、
送信制御方法。 Receive control information related to interference at the interfered station,
A correspondence relationship in which a control guideline for transmission is associated with each of the plurality of history patterns of the control information, and the priority of each of the plurality of different correspondence relationships is updated based on the control information, Control transmission based on the control guideline specified from the received history of the control information and the correspondence relationship with the high priority.
Transmission control method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-284618 | 2010-12-21 | ||
JP2010284618 | 2010-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012086135A1 true WO2012086135A1 (en) | 2012-06-28 |
Family
ID=46313430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/006766 WO2012086135A1 (en) | 2010-12-21 | 2011-12-02 | Transmission device and transmission control method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012086135A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014162826A1 (en) * | 2013-04-02 | 2014-10-09 | 株式会社Nttドコモ | Radio base station, user terminal and radio communication method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009509386A (en) * | 2005-09-16 | 2009-03-05 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method for clustering devices in a wireless communication network |
JP2010171885A (en) * | 2009-01-26 | 2010-08-05 | Ntt Docomo Inc | Mobile communication method and radio base station |
-
2011
- 2011-12-02 WO PCT/JP2011/006766 patent/WO2012086135A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009509386A (en) * | 2005-09-16 | 2009-03-05 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method for clustering devices in a wireless communication network |
JP2010171885A (en) * | 2009-01-26 | 2010-08-05 | Ntt Docomo Inc | Mobile communication method and radio base station |
Non-Patent Citations (1)
Title |
---|
SAITO, Y. ET AL.: "Robust Interference Management to Satisfy Allowable Outage Probability Using Minority Game", PERSONAL INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2010 IEEE 21ST INTERNATIONAL SYMPOSIUM, 30 September 2010 (2010-09-30) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014162826A1 (en) * | 2013-04-02 | 2014-10-09 | 株式会社Nttドコモ | Radio base station, user terminal and radio communication method |
JP2014204200A (en) * | 2013-04-02 | 2014-10-27 | 株式会社Nttドコモ | Radio base station, user terminal, and radio communication method |
CN105103588A (en) * | 2013-04-02 | 2015-11-25 | 株式会社Ntt都科摩 | Radio base station, user terminal and radio communication method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109644400B (en) | Signaling mechanism for enabling local operation for multi-antenna wireless communication systems | |
Peng et al. | Interference avoidance mechanisms in the hybrid cellular and device-to-device systems | |
US20180249453A1 (en) | Restricted set indication in multi-beam operation | |
US8731576B2 (en) | Wireless communication system, wireless communication method, base station, mobile station, base station control method, mobile station control method, and control program | |
EP2761797B1 (en) | Methods and apparatus for interference management | |
US9049714B2 (en) | Inter-cell interference coordination method and apparatus for an OFDM-based heterogeneous cellular system | |
US9253794B2 (en) | Efficient spectrum utilization with almost blank subframes | |
EP2826277B1 (en) | Hierarchical network and interference management | |
JP6219110B2 (en) | Radio base station, user terminal, and communication control method | |
US20130172001A1 (en) | Method for inter-cell interference coordination in a cellular communication network, network element of a cellular communication network, and cellular communication network | |
US11871439B2 (en) | Inter-cell fractional frequency reuse scheduler | |
US20220303108A1 (en) | Cross Link Interference Handling | |
JP5512793B2 (en) | base station | |
US8411646B2 (en) | Opportunistic uplink scheduling | |
US20160255631A1 (en) | Frequency Selective Almost Blank Subframes | |
US20240080132A1 (en) | Enhanced fast crs rate matching selection in dss | |
JP2014168311A (en) | Communication control method, base station, and radio terminal | |
JP5367158B2 (en) | Low power base station and communication control method | |
US9107199B2 (en) | Method for transmitting signal in multi-node system | |
ES2649891T3 (en) | Concept for coordination of interference between cells in a cellular communication network | |
WO2012086135A1 (en) | Transmission device and transmission control method | |
US20150358098A1 (en) | Radio base station, user terminal and radio communication method | |
JP5671541B2 (en) | Base station apparatus and transmission control method | |
KR102612167B1 (en) | Method and apparatus for determining transmission priority of beam component carriers in communication system | |
WO2023193876A1 (en) | Network node and method in a wireless communications network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11851812 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11851812 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |