WO2012086085A1 - Variable valve device for internal combustion engine - Google Patents

Variable valve device for internal combustion engine Download PDF

Info

Publication number
WO2012086085A1
WO2012086085A1 PCT/JP2010/073441 JP2010073441W WO2012086085A1 WO 2012086085 A1 WO2012086085 A1 WO 2012086085A1 JP 2010073441 W JP2010073441 W JP 2010073441W WO 2012086085 A1 WO2012086085 A1 WO 2012086085A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
valve
retard
advance
release
Prior art date
Application number
PCT/JP2010/073441
Other languages
French (fr)
Japanese (ja)
Inventor
横山 友
治仁 藤村
慶 遠藤
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to JP2012513799A priority Critical patent/JP5288044B2/en
Priority to PCT/JP2010/073441 priority patent/WO2012086085A1/en
Publication of WO2012086085A1 publication Critical patent/WO2012086085A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/185Overhead end-pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34463Locking position intermediate between most retarded and most advanced positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34466Locking means between driving and driven members with multiple locking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers

Definitions

  • the present invention relates to a variable valve operating apparatus for an internal combustion engine, and more particularly to a variable valve operating apparatus including a hydraulically driven variable mechanism that changes valve timing and a lock mechanism that locks the valve timing at a specific time.
  • FIG. 9A shows the internal structure of the variable mechanism 100 with the cover of the variable mechanism 100 removed
  • FIG. 9B shows a cross-sectional structure taken along line BB in FIG. 9A. Indicates.
  • FIG. 9A the rotation direction of the camshaft 200 is indicated by an arrow RC.
  • a variable mechanism 100 shown in FIG. 9 includes two rotating bodies that rotate around the same rotation axis, and one rotating body is sprocket 101 that is drivingly connected to a crankshaft via a chain (not shown).
  • the other rotating body is a vane rotor 103 that is drivingly connected to the camshaft 200.
  • a plurality of vanes 103A provided in the vane rotor 103 are accommodated in a plurality of accommodating chambers 105 formed in the housing 102, and each of the accommodating chambers 105 is advanced and retarded by a vane 103A. It is divided into and.
  • the vane 103A is displaced in the storage chamber 105 by the hydraulic pressure supplied to the advance chamber 106 and the retard chamber 107, and relative rotation occurs between the housing 102 and the vane rotor 103. Relative rotation phase, in other words, the valve timing is changed.
  • variable mechanism 100 is provided with a lock mechanism 110 that locks the valve timing at an intermediate timing between the most retarded angle timing and the most advanced angle timing (hereinafter referred to as “specific timing”).
  • the lock mechanism 110 includes a recess 112 formed in the sprocket 101 and a pin 111 accommodated in the vane 103 ⁇ / b> A so as to be close to and away from the recess 112. Yes.
  • a spring 113 for biasing the pin 111 is provided in a space for accommodating the pin 111 in the vane 103A, and a release chamber 114 to which hydraulic oil is supplied is formed.
  • the pin 111 is biased by the spring 113 in the direction of fitting into the recess 112, while the pin 111 is released from the recess 112 by a force based on the pressure of the hydraulic oil supplied to the release chamber 114, that is, the pin 111 is released. Biased in the direction.
  • the pin of the advance angle limiting mechanism (hereinafter referred to as “advance limit pin”) is inserted into the corresponding recess, thereby permitting the delay from the specific timing of the valve timing, but only the advance angle. Is regulated.
  • a pin of the retard limit mechanism (hereinafter referred to as “retard limit pin”) into the corresponding recess, the advance from the specific timing of the valve timing is allowed, but only the retard is allowed. Is regulated. That is, in such a lock mechanism, the advance angle and retard angle of the valve timing are regulated by inserting the pin of the advance angle limiting mechanism and the pin of the retard angle limiting mechanism into the corresponding recesses respectively, and the valve timing is locked at a specific time. On the other hand, when both the pins are released, the locked state is released.
  • FIG. 10C shows a change in the valve lift amount when only the retard limit pin is released in a state where the advance limit pin is fitted in the recess.
  • the lock mechanism is in the locked state (a broken line) because relative rotation occurs between the two rotating bodies so that the valve timing changes from the specific timing to the retard side due to the positive torque acting on the cam shaft.
  • the valve lift amount is reduced as compared with FIG.
  • the relative rotation between the two rotating bodies in the direction in which the valve timing changes from the specific timing to the advance side is regulated by the advance limit pin. The lift amount does not change.
  • FIG. 10 (d) shows a change in the valve lift amount when only the advance limit pin is released while the retard limit pin is inserted in the recess.
  • the lock mechanism is in a locked state (a broken line) because relative rotation occurs between the two rotating bodies so that the valve timing changes from the specific timing to the advance side due to negative torque acting on the camshaft.
  • the valve lift amount is reduced as compared with FIG.
  • the relative rotation between the two rotating bodies in the direction in which the valve timing changes from the specific timing to the retard side is restricted by the retard limit pin. The lift amount does not change.
  • the engine operating state such as the engine rotation speed or the intake air amount may change accordingly. Therefore, every time the lock mechanism is switched from the locked state to the released state, if the release order of the advance angle limit pin and the retard angle limit pin is different, the engine operating state also changes in a different manner each time.
  • an oil passage control valve that controls the supply / discharge state of hydraulic oil to / from the release chamber of the advance angle limiting mechanism and the supply / discharge state of hydraulic oil to the release chamber of the retardation limit mechanism It is also possible to control the advance angle limit pin and the retard angle limit pin by separate oil path control valves by providing separate oil path control valves for controlling. However, in this case, it is necessary to provide an oil passage control valve corresponding to each pin, and an increase in manufacturing cost is inevitable.
  • the present invention has been made in view of such circumstances, and an object thereof is to enable hydraulic oil to be supplied and discharged by a common oil passage control valve to each release chamber of the advance angle limiting mechanism and the retard angle limiting mechanism.
  • An object of the present invention is to provide a variable valve operating apparatus for an internal combustion engine that can suppress the engine operating state from changing in a different manner every time the lock mechanism is switched from the locked state to the released state.
  • a variable valve operating apparatus for an internal combustion engine includes a first rotating body that rotates in synchronization with a crankshaft and a second rotating body that rotates in synchronization with a camshaft. And a hydraulically driven variable mechanism that changes the valve timing of the valve that is driven to open and close by the camshaft by the relative rotation generated between the two rotating bodies based on the hydraulic oil pressure, and the valve timing is the most retarded An advance that limits the relative rotation between the two rotating bodies so as to restrict the change to the advance side while allowing the change to the retard side relative to the specific time between the timing and the most advanced angle time.
  • Each of the advance angle limiting mechanism and the retard angle limiting mechanism includes a pin provided on one of the rotating bodies, a recess provided on the other of the rotating bodies and into which the pin fits, and the pin serving as the recess.
  • a spring for urging the pin in a direction to be fitted into the pin, and a release chamber to which hydraulic oil for urging the pin in a direction in which the pin is removed from the recess is supplied.
  • the pins By reducing the hydraulic pressure of the chamber, the pins are fitted into the recesses to restrict relative rotation between the rotating bodies, while increasing the hydraulic pressure of the release chambers to the release hydraulic pressure.
  • the pin is removed from each of the recesses, and the restriction on the relative rotation between the two rotating bodies is released.
  • the advance angle limit mechanism and the retard angle limit mechanism are configured such that the supply / discharge state of the hydraulic oil with respect to the release chamber is controlled through a common oil passage control valve, and the variable valve apparatus includes the advance angle limit mechanism And the oil path control of the supply / discharge state of the hydraulic oil with respect to the release chambers of the two restriction mechanisms so that the pin of the same restriction mechanism is always pulled out before the other pin among the retardation restriction mechanisms. It has a control part which controls through a valve.
  • the supply / discharge state of the hydraulic fluid to the release chambers of both limiting mechanisms is common so that the pin of the same limiting mechanism is always pulled out of the advance angle limiting mechanism and the retard angle limiting mechanism before the other pin. It is controlled through the oil passage control valve. Therefore, when the lock mechanism is switched from the locked state in which the valve timing is mechanically locked at a specific time to the released state, the pin of the same limiting mechanism is always removed from the recess first. That is, the pin of the same restriction mechanism is always released first. Therefore, when the lock mechanism is switched from the locked state to the released state, the change mode of the valve lift amount generated before and after the lock mechanism is suppressed from being different every time the switch is performed.
  • the engine operating state can be supplied and discharged with the common oil passage control valve to each release chamber of the advance angle limiting mechanism and the retard angle limiting mechanism. Can be prevented from changing in a different manner each time.
  • the control unit described above is configured so that a positive torque that causes a relative rotation between the two rotating bodies so that the valve timing changes to the retarded angle side during the increase period of the valve lift amount that acts on the camshaft.
  • the first supply mode for supplying hydraulic oil to each release chamber and the valve timing change to the advance side so that the hydraulic pressure is raised and the pin of the advance angle limiting mechanism is removed from the recess.
  • a negative torque that causes a relative rotation between the two rotating bodies raises the hydraulic pressure in each release chamber during a decrease period of the valve lift amount that acts on the camshaft, so that the pin of the retardation limiting mechanism becomes the recess.
  • the oil passage control valve is set so that the hydraulic oil is supplied to each release chamber in one of the second supply modes for supplying the hydraulic oil to each release chamber so as to be removed from the release chamber. Control.
  • the oil passage control valve when the oil passage control valve is controlled with the first supply mode for supplying the hydraulic oil so as to increase the hydraulic pressure of each release chamber during the increase period of the valve lift amount in which the positive torque acts on the camshaft, the advance angle The limit pin is released before the retard limit pin.
  • the oil passage control valve is controlled with the second supply mode for supplying the hydraulic oil so as to increase the hydraulic pressure of each release chamber during the decrease period of the valve lift amount in which the negative torque acts on the cam shaft, The limit pin is released before the advance angle limit pin.
  • the supply of hydraulic oil to each release chamber is started during a period in which a positive torque is applied to the camshaft. It is preferable that supply of hydraulic oil to each release chamber is started during a period in which negative torque is acting on the camshaft.
  • the pins of the both limit mechanisms are inserted into the recesses, respectively.
  • the change in the engine operating state that occurs when only the pin of the first limiting mechanism is switched to the state of being removed from the recess is that the pin of the both limiting mechanisms is inserted into the recess from the second limit.
  • the control unit Only when the pin of the mechanism is switched to the state where it is removed from the recess, the control unit is configured so that the pin of the first limiting mechanism is always ahead of the pin of the second limiting mechanism.
  • the oil passage control valve is controlled so as to be removed from the recess.
  • the advance angle limit pin is released before the delay angle limit pin. This is different from the change in the engine operating state and the change in the engine operating state when the retard limit pin is released before the advance limit pin. For this reason, when the change in the engine operating state when the advance limit pin is released before the retard limit pin is small, the oil passage control valve is controlled so that the advance limit pin is released first. On the other hand, if the change in the engine operating state when the retard limit pin is released before the advance limit pin is small, the oil passage control valve should be controlled so that the retard limit pin is released first. Is desirable. As a result, when the lock mechanism is switched from the locked state to the released state, it is possible to suppress a significant change in the engine operating state and to stabilize the engine operating state.
  • the oil passage is set so that the advance angle limit pin is released first.
  • the oil passage control valve is set so that the retard limit pin is released first. It is desirable to control.
  • the variable mechanism changes the valve timing of the intake valve.
  • the intake valve opens when the piston of the internal combustion engine is near top dead center.
  • FIG. 3 is a cross-sectional view showing a cross-sectional structure along the line AA in FIG. 2.
  • A shows the corresponding relationship between the hydraulic oil supply state and each mode of the oil passage control valve in the variable valve operating device, and
  • A shows the corresponding relationship between the hydraulic oil supply state and each mode of the oil passage control valve in the variable valve operating device
  • (b) shows the state of the variable mechanism and the limit pin and each mode of the oil passage control valve.
  • FIG. 6 is a graph showing a difference between a valve lift amount when the lock mechanism is in a locked state and a valve lift amount when one of the advance angle limit pin and the retard angle limit pin is released first; ) Shows the change in the valve lift when only the retard limit pin is released, and (b) is a graph showing the change in the valve lift when only the advance limit pin is released.
  • the timing chart which shows transition of the valve lift amount and the torque which acts on a cam shaft, and transition of each releasable period of an advance limit pin and a retard limit pin.
  • the timing chart which shows the mode of the torque which acts on a cam shaft after engine starting, the state of the hydraulic fluid supply to a cancellation
  • (A) is an end view showing the internal structure of a conventional variable mechanism, and (b) is a cross-sectional view showing a cross-sectional structure taken along line BB in (A).
  • (A) is a graph showing the torque acting on the camshaft,
  • (b) is a graph showing the valve lift when the lock mechanism is in the locked state, and
  • (c) is the release of only the retard limit pin.
  • 6 is a graph showing a change in the valve lift when the advance limit pin is released only.
  • FIG. 1 a crankshaft 12 that converts a reciprocating motion into a rotational motion is connected to a piston 11 that is accommodated in a cylinder of the internal combustion engine 10 so as to be able to reciprocate.
  • a combustion chamber 13 is defined by the top surface of the piston 11 and the inner peripheral surface of the cylinder.
  • An intake camshaft 22 that opens and closes the intake valve 21 and an exhaust camshaft 24 that opens and closes the exhaust valve 23 are provided on the upper portion of the internal combustion engine 10.
  • an oil pan 15 that stores hydraulic oil is attached to the lower part of the internal combustion engine 10, and an oil pump 14 that is driven by the rotational force of the crankshaft 12 to assemble the hydraulic oil of the oil pan 15 is provided.
  • the variable valve operating device 20 is provided at the tip of the camshaft 22 to change the valve timing of the intake valve 21 and a specific intermediate timing (hereinafter referred to as the most advanced timing). And a hydraulic mechanism 60 that controls the hydraulic pressure of each oil chamber provided in the variable valve operating apparatus 20.
  • the sprocket 31 of the variable mechanism 25 is drivingly connected to the crankshaft 12 through a timing chain (not shown). Further, the cover 30 of the variable mechanism 25 is provided on the surface opposite to the side on which the sprocket 31 is provided.
  • the hydraulic mechanism 60 includes a hydraulic oil passage 61 and an oil passage control valve (hereinafter referred to as “OCV (Oil Control Valve)”) 62.
  • the hydraulic oil passage 61 includes a plurality of oil passages that supply the hydraulic oil of the oil pan 15 to each oil chamber, and a plurality of oil passages that return the hydraulic oil from each oil chamber to the oil pan 15. Further, the OCV 62 controls the supply / discharge state of the hydraulic oil with respect to each oil chamber provided in the variable valve apparatus 20.
  • the hydraulic oil stored in the oil pan 15 functions as a hydraulic oil for lubricating each part of the internal combustion engine 10 in addition to a function as a hydraulic oil that generates a hydraulic pressure for driving the variable valve device 20. It has also.
  • the internal combustion engine 10 is provided with various sensors for detecting the operating state of the internal combustion engine 10.
  • various sensors include a crank angle sensor 16 provided in the vicinity of the crankshaft 12 for detecting the crank angle and the engine rotational speed, and a cam provided in the vicinity of the camshaft 22 for detecting the position of the camshaft 22.
  • the control unit 18 is provided with a storage device for storing calculation results of various controls, a function map used for the calculation, and the like in addition to the calculation device and the drive circuit. And this control part 18 detects the driving
  • the valve timing of the intake valve 21 is made to match the target valve timing suitable for the engine operating state by appropriately changing the spool position of the OCV 62 based on the engine operating state. To control this.
  • FIG. 2 shows the internal structure of the variable mechanism 25 with the sprocket 31 removed.
  • the sprocket 31, the housing 32, and the cover 30 described above are fixed to each other by bolts (not shown) and rotate integrally around the rotation axis of the cam shaft 22.
  • the cover 30, the sprocket 31, and the housing 32 function as a first rotating body that is drivingly connected to the crankshaft 12.
  • the cam shaft 22 and the housing 32 are assumed to rotate in the rotational direction RC shown in FIG.
  • the housing 32 is provided with three partition portions 34 extending radially inward.
  • a vane rotor 33 that rotates about the same rotation axis as the housing 32 is accommodated in the housing 32 so as to be rotatable with respect to the housing 32.
  • the vane rotor 33 includes a boss 33A coupled to the camshaft 22 so as to be integrally rotatable, and three vanes 33B projecting radially outward from the boss 33A.
  • the boss 33 ⁇ / b> A is fixed to the end of the camshaft 22 by a center bolt 38.
  • Three housing chambers 35 are defined by the three partition portions 34 of the housing 32 and the boss 33A of the vane rotor 33, and each housing chamber 35 is divided into an advance chamber 36 and a retard chamber 37 by each vane 33B. It is partitioned.
  • the vane rotor 33 functions as a second rotating body that is drivingly connected to the cam shaft 22.
  • the variable mechanism 25 is provided with a lock mechanism 26 that holds the valve timing at a specific time suitable for engine start.
  • the lock mechanism 26 includes an advance angle limiting mechanism 40 and a retard angle limiting mechanism 50 provided in each of the separate vanes 33B.
  • the advance angle limiting mechanism 40 allows the housing 32 and the vane rotor 33 to rotate relative to each other in a manner that restricts the valve timing from changing to the advance angle side while allowing the valve timing to change from the specific time. Restrict.
  • the retard angle limiting mechanism 50 allows the housing 32 and the vane rotor 33 to rotate relative to each other in a manner that restricts the valve timing from changing to the retarded angle side while allowing the valve timing to change from the specific timing. Limit that.
  • advance angle limiting mechanism 40 and the retard angle limiting mechanism 50 are provided with a ratchet function that advances the valve timing stepwise from a timing that is behind the specific timing to a specific timing.
  • the valve timing is held at a specific time by the cooperation of the advance angle limiting mechanism 40 and the retard angle limiting mechanism 50.
  • the OCV 62 described above is built in the center bolt 38.
  • the variable mechanism 25 has a plurality of oil passages (operating oil passages 61) extending in the radial direction of the vane rotor 33 from the OCV 62 to the oil chambers of the advance chamber 36, the retard chamber 37, and the lock mechanism 26. Is provided.
  • the hydraulic oil passage 61 includes a supply oil passage 63, an advance oil passage 66, a retard oil passage 67, a release oil passage 68, and a discharge oil passage 69.
  • the OCV 62 functions as a common oil passage control valve that controls the supply / discharge state of hydraulic fluid to the advance chamber 36 and the retard chamber 37 and the first release chamber 47 and the second release chamber 57.
  • the supply oil passage 63 communicates with the oil pump 14 and the OCV 62.
  • the supply oil passage 63 has a first supply oil passage 64 connected to the advance / retard angle supply port 64P of the OCV 62 and a second supply oil connected to the release supply port 65P of the OCV 62. It branches off to the road 65.
  • the advance oil passage 66 communicates the advance port 66P of the OCV 62 and the advance chamber 36.
  • the retard oil passage 67 communicates the retard port 67P of the OCV 62 and the retard chamber 37.
  • the release oil passage 68 is configured as an oil passage that is independent of the advance oil passage 66 and the retard oil passage 67 described above, and is used for releasing the first release chamber 47 and the OCV 62 of the advance angle limiting mechanism 40 in the middle.
  • the first release oil passage 68A that communicates with the port 68P and the second release oil passage 68B that communicates between the second release chamber 57 of the retard restriction mechanism 50 and the release port 68P of the OCV 62 are branched. Yes.
  • the discharge oil passage 69 is connected to the discharge port 69 ⁇ / b> P of the OCV 62 and extends to the oil pan 15.
  • the advance angle limiting mechanism 40 includes a cylindrical advance angle limit pin 41, a first recess 43 into which the advance angle limit pin 41 is fitted, and a first spring 42 that biases the advance angle limit pin 41 toward the distal end side ZA. And a first release chamber 47 into which hydraulic oil is supplied or discharged.
  • the advance angle limiting pin 41, the first spring 42, and the first release chamber 47 are all provided in the vane 33B, while the first recess 43 is formed in the cover 30.
  • the advance angle limiting pin 41 reciprocates to the distal end side ZA and the proximal end side ZB in the vane hole 46 formed in the vane 33B, and a part of the advance angle limiting pin 41 projects to the outside of the vane 33B and fits into the first recess 43. .
  • the vane hole 46 is partitioned by the advance limit pin 41 into a first spring chamber 48 on the base end side ZB and a first release chamber 47 on the front end side ZA.
  • the first spring chamber 48 accommodates a first spring 42 that biases the advance limit pin 41 toward the distal end ZA.
  • hydraulic oil is supplied to the first release chamber 47 through the first release oil passage 68A (see FIGS. 2 and 3) described above. When the hydraulic pressure in the first release chamber 47 rises higher than the first release hydraulic pressure P1, the advance limit pin 41 is released by the urging force based on this hydraulic pressure and moves to the proximal side ZB.
  • the first recess 43 has an arc shape along the circumferential direction of the cover 30.
  • the first concave portion 43 includes a first upper step portion 44 formed with a relatively shallow depth and a first lower step portion 45 formed with a relatively deep depth.
  • the first upper stage 44 is formed on the retard side with respect to the first lower stage 45.
  • the retard limit mechanism 50 includes a cylindrical retard limit pin 51, a second recess 53 into which the retard limit pin 51 is fitted, and a second spring 52 that biases the retard limit pin 51 toward the distal end ZA. And a second release chamber 57 into which hydraulic oil is supplied or discharged.
  • the retard limit pin 51, the second spring 52, and the second release chamber 57 are all provided in the vane 33B, while the second recess 53 is formed in the cover 30.
  • the retard limit pin 51 reciprocates to the distal end side ZA and the proximal end side ZB in a vane hole 56 formed in the vane 33B, and a part of the retard angle limiting pin 51 protrudes outside the vane 33B and fits into the second recess 53. .
  • the vane hole 56 is partitioned by the retard limit pin 51 into a second spring chamber 58 on the proximal end side ZB and a second release chamber 57 on the distal end side ZA.
  • the second spring chamber 58 accommodates a second spring 52 that biases the retard limit pin 51 toward the distal end side ZA.
  • hydraulic oil is supplied to the second release chamber 57 through the above-described second release oil passage 68B (see FIGS. 2 and 3). When the hydraulic pressure in the second release chamber 57 rises above the second release hydraulic pressure P2, the retard limit pin 51 moves to the base end side ZB by the urging force based on this hydraulic pressure.
  • the second recess 53 has an arc shape along the circumferential direction of the cover 30.
  • the second concave portion 53 includes a second upper step portion 54 formed with a relatively shallow depth and a second lower step portion 55 formed with a relatively deep depth.
  • the second upper step portion 54 is formed on the retard side with respect to the second lower step portion 55.
  • Advance limit pin 41, retard limit pin 51, first upper step 44 and first lower step 45 formed in first recess 43, and second upper step formed in second recess 53 54 and the second lower stage portion 55 function as a ratchet mechanism that gradually advances the valve timing to a specific time by an alternating torque acting on the cam shaft 22. That is, the first upper step portion 44 and the first lower step portion 45 formed in the first concave portion 43 have the delay of each step portion when the advance angle limiting pin 41 is fitted into these step portions 44 and 45.
  • the angle-side inner wall restricts the displacement of the limit pin 41 toward the retard side.
  • the second upper step portion 54 and the second lower step portion 55 formed in the second recess 53 are restricted by the inner wall on the retard side of each step portion when the retard limit pin 51 is fitted.
  • the displacement of the pin 51 toward the retard angle side is regulated.
  • FIG. 4 shows a state where the lock mechanism 26 is in a locked state and the valve timing is locked at a specific time.
  • the advance limit pin 41 remains fitted in the first lower step 45 and the first lower step 45. Until it comes into contact with the inner wall 45A on the retarded side. In other words, the valve timing is allowed to change to the retard side from the specific time by an amount corresponding to the amount of displacement.
  • the retard limit pin 51 remains on the advance side of the second lower step portion 55 while being fitted into the second lower step portion 55. It can be displaced to the advance side until it comes into contact with the inner wall 55B. That is, the valve timing is allowed to change from the specific timing to the advance side by an amount corresponding to the amount of displacement.
  • each mode (spool position) of the OCV 62 and the supply / discharge state of the hydraulic oil to the advance chamber 36, the retard chamber 37, and the release chambers 47 and 57 The relationship will be described. Specifically, when the OCV 62 is switched between modes such as the first mode, the second mode, the third mode, the fourth mode, and the fifth mode through the control of the spool position of the OCV 62, the OCV 62 described above is controlled. The opening area of each port changes. Thereby, the supply / discharge state of the hydraulic oil to the advance chamber 36, the retard chamber 37, and the release chambers 47 and 57 is changed.
  • the advance / retard angle supply port 64P and the advance port 66P are communicated, and hydraulic oil is supplied from the first supply oil passage 64 to the advance oil passage 66.
  • the retard port 67P and the discharge port 69P are communicated, and the hydraulic oil is discharged from the retard oil passage 67 to the discharge oil passage 69.
  • the release port 68 ⁇ / b> P and the discharge port 69 ⁇ / b> P are communicated, and the hydraulic oil is discharged from the release oil passage 68 to the discharge oil passage 69.
  • the communication area between the advance / retard angle supply port 64P and the advance port 66P in the second mode is set to be smaller than the communication area in the first mode. For this reason, the amount of hydraulic fluid supplied from the first supply oil passage 64 to the advance oil passage 66 in the second mode is smaller than that in the first mode.
  • variable mechanism 25 advances the valve timing. Further, the advance limit pin 41 and the retard limit pin 51 are urged in the direction of fitting into the first recess 43 and the second recess 53, respectively.
  • the OCV 62 is set to the first mode when the engine is started, and is set to the second mode when the engine operation is stopped and during idle operation.
  • the release supply port 65P and the release port 68P are communicated with each other, and the first release chamber 47 and the first release port are connected from the second supply oil passage 65 through the release oil passage 68 (68A, 68B).
  • the hydraulic oil is supplied to the two release chambers 57 respectively.
  • the advance limit pin 41 and the retard limit pin 51 are released from the first recess 43 and the second recess 53, respectively, by the urging force based on the hydraulic pressure of the hydraulic oil supplied to the release chambers 47 and 57. Then, the lock mechanism 26 is released.
  • the advance / retard angle supply port 64P and the advance angle port 66P are communicated, and hydraulic oil is supplied from the first supply oil passage 64 to the advance chambers 36 via the advance oil passage 66. Further, the retard port 67P and the discharge port 69P are communicated, and the hydraulic oil in each retard chamber 37 is discharged from the retard oil passage 67 through the discharge oil passage 69. As a result, the valve timing is advanced. That is, the OCV 62 is set to the third mode when executing the advance control of the valve timing.
  • the release supply port 65P and the release port 68P are communicated with each other, and the first release chamber 47 and the first release port are connected from the second supply oil passage 65 through the release oil passage 68 (68A, 68B).
  • the hydraulic oil is supplied to the two release chambers 57 respectively.
  • the advance limit pin 41 and the retard limit pin 51 are released from the first recess 43 and the second recess 53, respectively, by the urging force based on the hydraulic pressure of the hydraulic oil supplied to the release chambers 47 and 57.
  • the lock mechanism 26 is released. Further, the advance port 66P and the retard port 67P are closed.
  • the OCV 62 is set to the fourth mode when the valve timing is maintained at the target valve timing and when the lock mechanism 26 is switched from the locked state to the released state.
  • the release supply port 65P and the release port 68P are communicated with each other, and the first release chamber 47 and the first release chamber 65 are connected from the second supply oil passage 65 through the release oil passage 68 (68A, 68B).
  • the hydraulic oil is supplied to the two release chambers 57 respectively.
  • the advance limit pin 41 and the retard limit pin 51 are released by the urging force based on the hydraulic pressure of the hydraulic oil supplied to the release chambers 47 and 57, and the lock mechanism 26 is released.
  • the advance port 66P and the discharge port 69P are communicated, and the hydraulic oil in each advance chamber 36 is discharged from the advance oil passage 66 through the discharge oil passage 69.
  • the advance / retard angle supply port 64P and the retard angle port 67P are communicated, and hydraulic oil is supplied from the first supply oil path 64 to the respective retard angle chambers 37 via the retard angle oil path 67.
  • the valve timing is retarded. That is, the OCV 62 is set to the fifth mode when executing the valve timing retardation control.
  • variable valve gear 20 When the crankshaft 12 rotates as the engine operates, the driving force is transmitted to the variable mechanism 25 via a timing chain (not shown), and the camshaft 22 rotates together with the variable mechanism 25. Thus, the intake valve 21 is opened and closed by a cam (not shown) provided on the cam shaft 22.
  • the vane 33 ⁇ / b> B is formed in the storage chamber 35 based on the hydraulic pressure of the advance chamber 36 and the retard chamber 37. Displace. Thereby, the relative rotational position of the vane rotor 33 with respect to the sprocket 31 and the housing 32, that is, the relative rotational position of the cam shaft 22 with respect to the crankshaft 12 is changed, and the valve timing of the intake valve 21 is changed.
  • the vane rotor 33 rotates relative to the housing 32 in the advance side direction. Is advanced.
  • the valve timing becomes the most advanced timing.
  • the valve timing is retarded when the vane rotor 33 rotates relative to the housing 32 in the retard angle direction.
  • the vane 33B comes into contact with the retarded side inner wall of the advance chamber 36, the valve timing becomes the most retarded timing.
  • the valve timing is retarded from the specific timing in this way, the engine operation in the combustion cycle in which the closing timing of the intake valve 21 is retarded relatively larger than the bottom dead center BDC of the piston 11, so-called “Atkinson cycle”, is performed. Will be made. Thereby, an expansion ratio can be made larger than a compression ratio, and a fuel consumption can be improved.
  • the lock mechanism 26 is switched to the locked state at the time of engine stop request so that the valve timing is locked at a specific time that is a valve timing suitable for engine start.
  • the engine stop request is executed after the internal combustion engine 10 shifts to idle operation. Therefore, when the internal combustion engine 10 shifts during idle operation, the OCV 62 is controlled so that the lock mechanism 26 is switched to the locked state. That is, when the valve timing is on the retard side with respect to the specific timing, the OCV 62 is set to the second mode. On the other hand, when the valve timing is more advanced than the specific timing, the OCV 62 is once set to the fifth mode, and the valve timing is retarded. Thereafter, the OCV 62 is set to the second mode. Accordingly, the valve timing is gradually advanced, and the hydraulic oil is discharged from the first release chamber 47 and the second release chamber 57, respectively.
  • the advance angle limit pin 41 is displaced toward the advance side by the advance side inner wall 45B of the first lower step 45, and the retard angle limit pin 51 is displaced toward the retard side by the second angle.
  • the lock mechanism 26 is locked by being regulated by the inner wall 55A on the retard side of the lower step portion 55. That is, the valve timing is locked at a specific time.
  • cranking is started with the valve timing locked at a specific time.
  • the valve timing is set to a specific timing in this way, as shown in FIG. 6, when the piston 11 is at the top dead center (exhaust top dead center or intake top dead center) TDC.
  • the intake valve 21 is opened at the same time, and the valve is closed on the retard side from the bottom dead center (intake bottom dead center) BDC. Further, the valve overlap between the exhaust valve 23 and the intake valve 21 is kept small. As a result, the compression ratio becomes a value suitable for starting the engine, the combustibility at the time of starting the engine is stabilized, and the internal combustion engine 10 can be started well.
  • the lock mechanism 26 is switched to the release state. Specifically, when the OCV 62 is set to the fourth mode, the hydraulic oil is supplied to the first release chamber 47 and the second release chamber 57 through the release oil passage 68, respectively. As described above, since the release oil passage 68 is branched into the first release oil passage 68A and the second release oil passage 68B in the middle thereof, the hydraulic oil supplied to the release oil passage 68 is These release oil passages 68A and 68B are equally supplied to both release chambers 47 and 57.
  • the engine operating state changes when the advance angle limit pin 41 is released before the retard angle limit pin 51 and the engine when the delay angle limit pin 51 is released before the advance angle limit pin 41. It is different from the change of the driving state. Specifically, under the situation where each hydraulic pressure of the advance chamber 36 and the retard chamber 37 is not sufficiently increased, one of the advance angle limit pin 41 and the retard angle limit pin 51 is not recessed. When the other is released first while being fitted in the valve, the valve lift amount changes as follows according to the pins 41 and 51 released earlier.
  • FIG. 6A shows a change in the valve lift amount when the retard limit pin 51 is released before the advance limit pin 41.
  • the retard limit pin 51 is released first, the advancement is performed during the period in which the lift amount of the intake valve 21 increases and the positive torque acts on the camshaft 22. While the angle limit pin 41 is fitted in the first lower step portion 45, the advance angle limit pin 41 is displaced toward the retard side until it contacts the inner wall 45A on the retard side of the first lower step portion 45 (FIG. 4). reference).
  • FIG. 6B shows a change in the valve lift when the advance limit pin 41 is released before the retard limit pin 51.
  • the advance angle limiting pin 41 when the advance angle limiting pin 41 is released first, it is delayed in a period in which the lift amount of the intake valve 21 is reduced and negative torque is acting on the camshaft 22.
  • the angle limiting pin 51 is displaced toward the advance side until it contacts the inner wall 55B on the advance side of the second lower step portion 55 while being fitted in the second lower step portion 55 (see FIG. 4).
  • the vane rotor 33 and the housing 32 rotate relative to each other in the direction in which the valve timing advances, the lift change of the intake valve 21 becomes faster than when the lock mechanism 26 is in the locked state (illustrated by a broken line).
  • valve lift is reduced. Therefore, compared with the case where the lock mechanism 26 is in the locked state, the engine output is reduced by reducing the amount of intake air introduced into the combustion chamber 13.
  • the retard limit pin 51 is connected to the inner wall 55A on the retard side of the second lower stage portion 55. Therefore, the displacement of the valve is restricted, so that the valve lift amount changes as in the case where the lock mechanism 26 is in the locked state.
  • the valve timing of the intake valve 21 is at a specific time, the valve timing is set so that the intake valve 21 opens at the top dead center TDC and closes on the retard side from the bottom dead center BDC.
  • the amount of intake air per hour flowing into the combustion chamber 13 when the intake valve 21 is opened the amount is reduced during the period when the valve lift amount of the intake valve 21 is increased. Becomes larger. This is because the negative pressure generated in the combustion chamber 13 is smaller and the inertial force of the intake air is smaller in the period in which the valve lift amount increases than in the period in which the valve lift amount decreases, so the average flow velocity of the intake air flowing into the combustion chamber 13 becomes smaller. It is.
  • the period in which the valve lift amount decreases and the negative torque acts on the camshaft becomes a dominant period in determining the intake air amount. Therefore, the change in the engine operating state that occurs before and after switching from the state in which the lock mechanism 26 is in the locked state to the state in which only the retard limit pin 51 is released first (FIG. 6A) is greater. This is smaller than the change in the engine operating state (FIG. 6B) that occurs before and after the state where only the advance angle limiting pin 41 is switched from the locked state to the previously released state. In other words, the degree of decrease in engine output that occurs before and after switching from the state in which the lock mechanism 26 is in the locked state to the state in which only the retard limit pin 51 is released first (FIG. 6 (a)), the lock mechanism 26 is locked. This is smaller than the degree of reduction in engine output (FIG. 6B) that occurs before and after switching from the state where only the advance angle limiting pin 41 is released to the state previously released.
  • FIG. 7 shows an example in which three cams are formed on the cam shaft 22 and the valve opening period of the intake valve 21 that is driven to open and close by the cams is 240 ° CA. The transition of the acting torque is shown respectively.
  • the lock mechanism 26 when the lock mechanism 26 is in the locked state, if a positive torque acts on the camshaft 22 as the valve lift amount increases, a force is exerted in a direction in which the vane rotor 33 is displaced toward the retard side with respect to the cover 30. Act. For this reason, the pressing force between the retard-side inner wall 55A of the second lower step portion 55 and the retard limit pin 51 is such that the advance side inner wall 45B and the advance limit pin 41 of the first lower step portion 45 It becomes larger than the pressing force. That is, a larger pressing force acts on the retard limit pin 51 than the advance limit pin 41.
  • the OCV 62 when the OCV 62 is controlled with the first supply mode for supplying the hydraulic oil so as to increase the hydraulic pressure in the release chambers 47 and 57 during the increase period of the valve lift amount in which the positive torque acts on the camshaft 22, the OCV 62 advances.
  • the angle limit pin 41 is released before the retard limit pin 51.
  • the OCV 62 is controlled with the second supply mode in which the hydraulic oil is supplied so as to increase the hydraulic pressure of the release chambers 47 and 57 during the period in which the valve lift amount on which the negative torque acts on the camshaft 22 is reduced, the OCV 62 is delayed.
  • the angle limit pin 51 is released before the advance angle limit pin 41.
  • the OCV 62 is controlled with the second supply mode. Specifically, the OCV 62 is set to the fourth mode during a period in which a negative torque is acting on the camshaft 22, whereby the hydraulic oil is supplied to the first release chamber 47 and the second release chamber 57. Supply is performed.
  • the valve timing of the intake valve 21 is set to a target valve timing suitable for the engine operating state through the control of the OCV 62.
  • the retard limit pin 51 is more advanced than the advance limit pin 41 compared to the change in the engine operating state when the advance limit pin 41 is released before the retard limit pin 51.
  • the change in the engine operating state when it is first released is smaller. Therefore, the OCV 62 is controlled so that the retard limit pin 51 is released first. Thereby, when the lock mechanism 26 is switched from the locked state to the released state, it is possible to suppress a significant change in the engine operating state and to stabilize it.
  • variable valve operating apparatus 20 is provided with a single OCV 62, and hydraulic fluid for the advance chamber 36, the retard chamber 37, the first release chamber 47, and the second release chamber 57 is provided by this OCV 62.
  • the supply / discharge state is controlled. Therefore, the number of parts can be reduced and the manufacturing cost of the variable valve operating apparatus 20 can be reduced as compared with a configuration in which a plurality of OCVs are provided.
  • variable valve operating apparatus for an internal combustion engine is not limited to the configuration exemplified in the above-described embodiment, and may be implemented as, for example, the following form obtained by appropriately modifying this embodiment. it can.
  • the OCV 62 is set to the fourth mode during the period in which the negative torque is acting on the camshaft 22 in order to release the retard limit pin 51 before the advance limit pin 41.
  • An example is shown in which the supply of hydraulic oil to the first release chamber 47 and the second release chamber 57 is started.
  • the hydraulic pressures of the first release chamber 47 and the second release chamber 57 are changed from the first release hydraulic pressure P1 and the second release hydraulic pressure P2 during a period in which a positive torque is applied to the camshaft 22.
  • the pressure may be increased to a low value, and after that, after the negative torque starts to act on the camshaft 22, it may be increased to the release hydraulic pressure.
  • each mode of OCV62 shown in the said embodiment is set to the fourth mode during the period in which the negative torque is acting on the camshaft 22 to release the retard limit pin 51 before the advance limit pin 41, Thereafter, an example in which the advance angle limiting pin 41 is released while the mode of the OCV 62 is maintained in the fourth mode is shown.
  • the mode of the OCV 62 may be changed after the retard limit pin 51 is released. For example, after only the retard limit pin 51 is released, the OCV 62 may be set to the fifth mode and the advance angle limit pin 41 may be released.
  • the OCV 62 is set to the fourth mode during the period in which the negative torque is acting on the camshaft 22 in order to release the retard limit pin 51 before the advance limit pin 41.
  • the example in which the advance angle limiting pin 41 is released during the period in which the positive torque is applied to the camshaft 22 by maintaining the fourth mode is shown.
  • the hydraulic oil is not supplied to the release chambers 47 and 57 after the OCV 62 is set to the fourth mode and the retard limit pin 51 is released during a period in which negative torque is acting on the camshaft 22.
  • the OCV 62 is once set to the first mode or the second mode, and then the OCV 62 is set to the fourth mode again during a period in which the positive torque is acting on the camshaft 22 to advance the advance angle limiting pin 41. May be canceled.
  • the first release chamber has a first supply mode in which hydraulic oil is supplied so as to increase the hydraulic pressure of each release chamber 47, 57 during the increase period of the valve lift amount in which positive torque acts on the camshaft 22.
  • the OCV 62 may be controlled such that hydraulic oil is supplied to the 47 and the second release chamber 57. For example, a change in the engine operating state that occurs before and after the advance angle limit pin 41 is switched from a state in which the lock mechanism 26 is in a locked state to a state in which the advance angle limit pin 41 is released before the delay angle limit pin 51 causes the delay angle limit pin 51 to advance.
  • the OCV 62 is controlled with the first supply mode described above, whereby the advance angle limiting pin 41 is controlled. May be canceled first. Thereby, when the lock mechanism 26 is switched from the locked state to the released state, it is possible to suppress a significant change in the engine operating state and to stabilize it.
  • the opening timing and closing timing of the intake valve when the valve timing of the intake valve is at a specific timing are not limited to those exemplified in the above embodiment, but may be engine demand characteristics such as engine output characteristics and fuel consumption characteristics. It can also be changed accordingly. Then, based on the opening timing and closing timing of the intake valve thus set, the engine operating state should be canceled first when the lock mechanism 26 is shifted from the locked state to the released state.
  • the pins 41 and 51 it is possible to achieve operational effects according to the operational effects shown in the above (1), (2), and (4).
  • the advance angle limiting pin 41 in consideration of the change in the engine operating state that occurs before and after the lock mechanism 26 is switched from the locked state to the released state of one of the pins 41, 51, the advance angle limiting pin 41 and The example in which the pin to be released first among the retard limit pins 51 is determined is shown. However, even if such a change in the engine operating state is not taken into consideration, the hydraulic oil supply / discharge state is controlled to release the advance angle limit pin 41 and the retard angle limit pin 51 at different timings. Each effect shown in 1) and (4) can be exhibited.
  • a plurality of step portions 44, 45, 54, and 55 are formed in the first recess 43 of the advance angle limiting mechanism 40 and the second recess 53 of the retard angle limiting mechanism 50, respectively.
  • An example in which the angle limiting mechanism 40 and the retardation limiting mechanism 50 function also as a ratchet mechanism is shown.
  • the functions and effects shown in (1) to (4) above can be achieved.
  • the ratchet mechanism is configured as a mechanism for advancing the valve timing that is on the retard side with respect to the specific time.
  • the ratchet mechanism may be configured to also have a mechanism for retarding the valve timing that is on the more advanced side than the specific time.
  • the advance angle limit pin 41 is provided on the vane rotor 33 and the first recess 43 is provided on the cover 30, while the retard limit pin 51 is provided on the cover 30 and the second recess 53 is provided on the vane rotor 33. You may do it.
  • variable valve gear 20 may be configured such that the sprocket 31 is drivingly connected to the camshaft 22 and the vane rotor 33 is drivingly connected to the crankshaft 12. Even in this case, the above-described effects can be achieved.
  • valve timing of the intake valve 21 is changed is shown as an example of the variable valve operating device 20, but the present invention is realized as a variable valve operating device that changes the valve timing of the exhaust valve 23. It is also possible. The present invention can also be applied to each of a variable valve operating device that changes the valve timing of the intake valve 21 and a variable valve operating device that changes the valve timing of the exhaust valve 23.

Abstract

A variable valve device (20) equipped with a hydraulically actuated variable mechanism (25) that changes the valve timing, and a lock mechanism (26) that locks the valve timing during a prescribed period between the most retarded angle period and the most advanced angle period. The lock mechanism (26) has an advanced angle restriction mechanism and a retarded angle restriction mechanism, and the valve timing is mechanically locked for a prescribed period by means of the cooperation of these mechanisms. The advanced angle restriction mechanism and the retarded angle restriction mechanism each have a release chamber to which operating oil is supplied to control the operations of said mechanisms. The supply/discharge of operating oil for these release chambers is controlled by a common OCV (62). A control unit (18) controls the supply/discharge of operating oil for the release chambers of both restriction mechanisms by means of the common OCV (62) so as to always release the pin of the same restriction mechanism, either the advanced angle restriction mechanism or the retarded angle restriction mechanism, before releasing the pin of the other restriction mechanism.

Description

内燃機関の可変動弁装置Variable valve operating device for internal combustion engine
 本発明は、内燃機関の可変動弁装置に関し、詳しくはバルブタイミングを変更する油圧駆動式の可変機構と同バルブタイミングを特定時期にロックするロック機構とを備える可変動弁装置に関する。 The present invention relates to a variable valve operating apparatus for an internal combustion engine, and more particularly to a variable valve operating apparatus including a hydraulically driven variable mechanism that changes valve timing and a lock mechanism that locks the valve timing at a specific time.
 内燃機関に搭載される装置として、カム軸により開閉駆動される吸気バルブや排気バルブのバルブタイミングを機関運転状態に応じて変更する油圧駆動式の可変機構を備えた可変動弁装置が知られている。こうした可変動弁装置の可変機構についてその構成を図9に示す。図9(a)は、可変機構100のカバーを取り外した状態での可変機構100の内部構造を示し、同図9(b)は、図9(a)のB-B線に沿った断面構造を示す。なお、同図9(a)ではカム軸200の回転方向を矢印RCにて示している。 As a device mounted on an internal combustion engine, a variable valve operating device having a hydraulically driven variable mechanism that changes valve timing of an intake valve and an exhaust valve driven to open and close by a camshaft according to an engine operating state is known. Yes. The configuration of the variable mechanism of such a variable valve operating apparatus is shown in FIG. FIG. 9A shows the internal structure of the variable mechanism 100 with the cover of the variable mechanism 100 removed, and FIG. 9B shows a cross-sectional structure taken along line BB in FIG. 9A. Indicates. In FIG. 9A, the rotation direction of the camshaft 200 is indicated by an arrow RC.
 同図9に示す可変機構100は、同一の回転軸線周りに回転する二つの回転体を備え、一方の回転体は、クランク軸にチェーン(いずれも図示略)を介して駆動連結されたスプロケット101及びこれに固定されたハウジング102よりなるアセンブリであり、他方の回転体はカム軸200に駆動連結されたベーンロータ103である。ハウジング102の内部に形成された複数の収容室105の内部には、ベーンロータ103に設けられた複数のベーン103Aがそれぞれ収容され、各収容室105はベーン103Aによって進角室106と遅角室107とに区画されている。そして、これら進角室106及び遅角室107に供給される油圧により収容室105でベーン103Aが変位し、ハウジング102とベーンロータ103との間に相対回転が生じることにより、クランク軸に対するカム軸200の相対回転位相、換言すればバルブタイミングが変更される。 A variable mechanism 100 shown in FIG. 9 includes two rotating bodies that rotate around the same rotation axis, and one rotating body is sprocket 101 that is drivingly connected to a crankshaft via a chain (not shown). The other rotating body is a vane rotor 103 that is drivingly connected to the camshaft 200. A plurality of vanes 103A provided in the vane rotor 103 are accommodated in a plurality of accommodating chambers 105 formed in the housing 102, and each of the accommodating chambers 105 is advanced and retarded by a vane 103A. It is divided into and. The vane 103A is displaced in the storage chamber 105 by the hydraulic pressure supplied to the advance chamber 106 and the retard chamber 107, and relative rotation occurs between the housing 102 and the vane rotor 103. Relative rotation phase, in other words, the valve timing is changed.
 また、この可変機構100には、バルブタイミングを最遅角時期と最進角時期との間の中間時期(以下、「特定時期」という)にロックするロック機構110が設けられている。図9(b)に示すように、このロック機構110は、スプロケット101に形成された凹部112と、この凹部112に対して近接離間可能な態様でベーン103Aに収容されたピン111とを備えている。さらに、ベーン103Aにおいてピン111を収容する空間には、ピン111を付勢するばね113が設けられるとともに、作動油が供給される解除室114が形成されている。ピン111は、ばね113により凹部112に嵌入する方向に付勢される一方、解除室114に供給される作動油の圧力に基づく力により凹部112から抜脱する方向、すなわちピン111が解除される方向に付勢される。 In addition, the variable mechanism 100 is provided with a lock mechanism 110 that locks the valve timing at an intermediate timing between the most retarded angle timing and the most advanced angle timing (hereinafter referred to as “specific timing”). As shown in FIG. 9B, the lock mechanism 110 includes a recess 112 formed in the sprocket 101 and a pin 111 accommodated in the vane 103 </ b> A so as to be close to and away from the recess 112. Yes. Further, a spring 113 for biasing the pin 111 is provided in a space for accommodating the pin 111 in the vane 103A, and a release chamber 114 to which hydraulic oil is supplied is formed. The pin 111 is biased by the spring 113 in the direction of fitting into the recess 112, while the pin 111 is released from the recess 112 by a force based on the pressure of the hydraulic oil supplied to the release chamber 114, that is, the pin 111 is released. Biased in the direction.
 そして、機関停止要求時等、バルブタイミングを特定時期にロックする条件が成立した場合には、解除室114から作動油がそれぞれ排出される。これに伴い解除室114の油圧が解除油圧よりも低下すると、ばね113の付勢力によりピン111が凹部112に嵌入する。このようにピン111が凹部112に嵌入することにより、ベーンロータ103とハウジング102との相対回転が機械的にロックされる。その結果、バルブタイミングが特定時期にロックされたロック状態となる。 Then, when a condition for locking the valve timing at a specific time is satisfied, such as when an engine stop is requested, the hydraulic oil is discharged from the release chamber 114. Accordingly, when the hydraulic pressure in the release chamber 114 is lower than the release hydraulic pressure, the pin 111 is fitted into the recess 112 by the urging force of the spring 113. Thus, when the pin 111 fits into the recess 112, the relative rotation between the vane rotor 103 and the housing 102 is mechanically locked. As a result, the valve timing is locked at a specific time.
 一方、バルブタイミングの変更要求時等、バルブタイミングを特定時期から解除する条件が成立した場合には、解除室114に作動油が供給される。これに伴い解除室114の油圧が解除油圧よりも上昇すると、この油圧に基づく付勢力によりピン111が凹部112から抜脱する。こうしてピン111が解除されることにより、ベーンロータ103とハウジング102との相対回転のロックが解除された解除状態となる。そして、作動油が進角室106及び遅角室107に対して選択的に給排されることで、特定時期にロックされていたバルブタイミングが機関運転状態に適した時期に変更される。なお、可変機構100の進角室106及び遅角室107、並びにロック機構110の解除室114に対する作動油の給排状態は油路制御弁によって制御される。 On the other hand, when a condition for releasing the valve timing from a specific time is satisfied, such as when a change in valve timing is requested, hydraulic fluid is supplied to the release chamber 114. Accordingly, when the hydraulic pressure in the release chamber 114 rises higher than the release hydraulic pressure, the pin 111 is pulled out of the recess 112 by the biasing force based on the hydraulic pressure. By releasing the pin 111 in this manner, the locked state of the relative rotation between the vane rotor 103 and the housing 102 is released. The hydraulic oil is selectively supplied to and discharged from the advance chamber 106 and the retard chamber 107, so that the valve timing locked at the specific time is changed to a time suitable for the engine operating state. In addition, the supply / discharge state of the hydraulic oil with respect to the advance chamber 106 and the retard chamber 107 of the variable mechanism 100 and the release chamber 114 of the lock mechanism 110 is controlled by an oil passage control valve.
 また、例えば特許文献1に記載されるように、バルブタイミングの進角及び遅角を各別に制限する二つの機構(以下、それぞれ「進角制限機構」、「遅角制限機構」という)の協働によりロック機構におけるロック機能を実現するようにした可変動弁装置も提案されている。こうしたロック機構にあっては、上述したようなピン、ばね、解除室が、進角制限機構と遅角制限機構とではベーンロータの異なるベーンにそれぞれ設けられる一方、各ピンが嵌入可能な凹部がスプロケットにそれぞれ形成されている。そして、進角制限機構のピン(以下、「進角制限ピン」という)がこれに対応する凹部に嵌入することにより、バルブタイミングの特定時期からの遅角については許容しつつ、その進角のみが規制される。また、遅角制限機構のピン(以下、「遅角制限ピン」という)がこれに対応する凹部に嵌入することにより、バルブタイミングの特定時期からの進角については許容しつつ、その遅角のみが規制される。すなわち、こうしたロック機構では、進角制限機構のピン及び遅角制限機構のピンが対応する凹部にそれぞれ嵌入することによりバルブタイミングの進角及び遅角が規制されて同バルブタイミングが特定時期にロックされたロック状態となる一方、両ピンがいずれも解除されることにより、こうしたロックが解除された解除状態となる。 In addition, as described in Patent Document 1, for example, two mechanisms for individually limiting the advance angle and the retard angle of the valve timing (hereinafter, referred to as “advance angle limiting mechanism” and “retard angle limiting mechanism”), respectively. There has also been proposed a variable valve apparatus that realizes a lock function in a lock mechanism by operation. In such a lock mechanism, the pin, spring, and release chamber as described above are provided in different vanes of the vane rotor in the advance angle limit mechanism and the retard angle limit mechanism, respectively, while the recess into which each pin can be inserted is a sprocket. Are formed respectively. And, the pin of the advance angle limiting mechanism (hereinafter referred to as “advance limit pin”) is inserted into the corresponding recess, thereby permitting the delay from the specific timing of the valve timing, but only the advance angle. Is regulated. In addition, by inserting a pin of the retard limit mechanism (hereinafter referred to as “retard limit pin”) into the corresponding recess, the advance from the specific timing of the valve timing is allowed, but only the retard is allowed. Is regulated. That is, in such a lock mechanism, the advance angle and retard angle of the valve timing are regulated by inserting the pin of the advance angle limiting mechanism and the pin of the retard angle limiting mechanism into the corresponding recesses respectively, and the valve timing is locked at a specific time. On the other hand, when both the pins are released, the locked state is released.
特開2006-9673号公報Japanese Patent Laid-Open No. 2006-9673
 ところで、機関運転中には、カム軸のカムによりバルブが開閉駆動されるため、図10(a)に示すように、バルブタイミングが遅角側に変化する方向に両回転体を相対回転させようとする正トルクと、バルブタイミングが進角側に変化する方向に両回転体を相対回転させようとする負トルクとがカム軸に交互に作用する。すなわち、図10(a),(b)に示すように、バルブの開弁期間において、バルブリフト量が増大するときには正トルクがカム軸に対して作用する一方、バルブリフト量が減少するときには負トルクがカム軸に対して作用する。 By the way, during the engine operation, the valve is driven to open and close by the cam of the camshaft. Therefore, as shown in FIG. 10 (a), let both rotors rotate relative to each other in the direction in which the valve timing changes to the retard side. And a negative torque that relatively rotates both rotating bodies in the direction in which the valve timing changes to the advance side alternately act on the camshaft. That is, as shown in FIGS. 10A and 10B, during the valve opening period, positive torque acts on the camshaft when the valve lift amount increases, while negative torque when the valve lift amount decreases. Torque acts on the camshaft.
 ここで、こうした進角制限機構及び遅角制限機構を備えるロック機構では、これをロック状態から解除状態に切り替える際に、進角制限ピンと遅角制限ピンとが同一のタイミングで解除されることはほとんどなく、多くの場合、それらピンのいずれか一方が先に解除される。そして、上述した進角室及び遅角室の各油圧が十分に上昇していない状況のもとで、進角制限ピン及び遅角制限ピンの一方が凹部に嵌入したまま、他方が先に解除された場合には、その先に解除されるピンに応じてバルブリフト量が以下のように変化することとなる。 Here, in such a lock mechanism including the advance angle limit mechanism and the retard angle limit mechanism, when the lock mechanism is switched from the locked state to the released state, the advance angle limit pin and the delay angle limit pin are rarely released at the same timing. In many cases, one of these pins is released first. Then, under the situation where each hydraulic pressure of the advance angle chamber and the retard angle chamber is not sufficiently increased, one of the advance angle limit pin and the retard angle limit pin is fitted in the recess and the other is released first. If this is done, the valve lift will change as follows according to the pin released earlier.
 図10(c)には、進角制限ピンが凹部に嵌入している状態で、遅角制限ピンのみが解除された場合のバルブリフト量の変化を示している。この場合、カム軸に対して作用する正トルクによりバルブタイミングが特定時期から遅角側に変化するように両回転体の間に相対回転が生じることにより、ロック機構がロック状態にある場合(破線にて図示)と比較してバルブリフト量が減少するようになる。一方、カム軸に対して負トルクが作用しても、バルブタイミングが特定時期から進角側に変化する方向への両回転体の間の相対回転が進角制限ピンにより規制されるため、バルブリフト量が変化することはない。 FIG. 10C shows a change in the valve lift amount when only the retard limit pin is released in a state where the advance limit pin is fitted in the recess. In this case, when the lock mechanism is in the locked state (a broken line) because relative rotation occurs between the two rotating bodies so that the valve timing changes from the specific timing to the retard side due to the positive torque acting on the cam shaft. The valve lift amount is reduced as compared with FIG. On the other hand, even if negative torque acts on the camshaft, the relative rotation between the two rotating bodies in the direction in which the valve timing changes from the specific timing to the advance side is regulated by the advance limit pin. The lift amount does not change.
 図10(d)には、遅角制限ピンが凹部に嵌入している状態で、進角制限ピンのみが解除された場合のバルブリフト量の変化を示している。この場合、カム軸に対して作用する負トルクによりバルブタイミングが特定時期から進角側に変化するように両回転体の間に相対回転が生じることにより、ロック機構がロック状態にある場合(破線にて図示)と比較してバルブリフト量が減少する。一方、カム軸に対して正トルクが作用しても、バルブタイミングが特定時期から遅角側に変化する方向への両回転体の間の相対回転が遅角制限ピンにより規制されるため、バルブリフト量が変化することはない。 FIG. 10 (d) shows a change in the valve lift amount when only the advance limit pin is released while the retard limit pin is inserted in the recess. In this case, when the lock mechanism is in a locked state (a broken line) because relative rotation occurs between the two rotating bodies so that the valve timing changes from the specific timing to the advance side due to negative torque acting on the camshaft. The valve lift amount is reduced as compared with FIG. On the other hand, even if positive torque is applied to the camshaft, the relative rotation between the two rotating bodies in the direction in which the valve timing changes from the specific timing to the retard side is restricted by the retard limit pin. The lift amount does not change.
 そして、上述したように吸気バルブや排気バルブのバルブリフト量が変化すると、それに伴って機関回転速度や吸入空気量等、機関運転状態が変化する場合がある。そのため、ロック機構をロック状態から解除状態に切り替える毎に進角制限ピン及び遅角制限ピンの解除順序が異なる場合には、機関運転状態もその度に異なる態様をもって変化するようになる。 As described above, when the valve lift amount of the intake valve or the exhaust valve changes, the engine operating state such as the engine rotation speed or the intake air amount may change accordingly. Therefore, every time the lock mechanism is switched from the locked state to the released state, if the release order of the advance angle limit pin and the retard angle limit pin is different, the engine operating state also changes in a different manner each time.
 なお、上記特許文献1に記載されるように、進角制限機構の解除室に対する作動油の給排状態を制御する油路制御弁と、遅角制限機構の解除室に対する作動油の給排状態を制御する油路制御弁とを各別に設けることにより、進角制限ピンと遅角制限ピンとを各別の油路制御弁により制御することも可能である。しかし、この場合には、各ピンに対応した油路制御弁をそれぞれ設けることが必要となり、製造コストの増大が避けられない。 Note that, as described in Patent Document 1, an oil passage control valve that controls the supply / discharge state of hydraulic oil to / from the release chamber of the advance angle limiting mechanism and the supply / discharge state of hydraulic oil to the release chamber of the retardation limit mechanism It is also possible to control the advance angle limit pin and the retard angle limit pin by separate oil path control valves by providing separate oil path control valves for controlling. However, in this case, it is necessary to provide an oil passage control valve corresponding to each pin, and an increase in manufacturing cost is inevitable.
 本発明は、こうした実情に鑑みてなされたものであり、その目的は、進角制限機構及び遅角制限機構の各解除室に対して共通の油路制御弁により作動油を給排可能としつつ、ロック機構をロック状態から解除状態に切り替える際に機関運転状態が都度異なる態様で変化することを抑制することのできる内燃機関の可変動弁装置を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to enable hydraulic oil to be supplied and discharged by a common oil passage control valve to each release chamber of the advance angle limiting mechanism and the retard angle limiting mechanism. An object of the present invention is to provide a variable valve operating apparatus for an internal combustion engine that can suppress the engine operating state from changing in a different manner every time the lock mechanism is switched from the locked state to the released state.
 上記目的を達成するため、本発明に従う内燃機関の可変動弁装置は、クランク軸と同期して回転する第1の回転体と、カム軸と同期して回転する第2の回転体とを有し、前記カム軸にて開閉駆動されるバルブのバルブタイミングを、作動油の油圧に基づき前記両回転体の間で生じる相対回転により変更する油圧駆動式の可変機構と、バルブタイミングが最遅角時期と最進角時期との間の特定時期よりも遅角側に変化することを許容しつつ進角側に変化することを規制するように前記両回転体の間の相対回転を制限する進角制限機構と、バルブタイミングが前記特定時期よりも進角側に変化することを許容しつつ遅角側に変化することを規制するように前記両回転体の間の相対回転を制限する遅角制限機構とを有し、それら両制限機構の協働によりバルブタイミングを前記特定時期に機械的にロックするロック機構と、を備える。前記進角制限機構及び前記遅角制限機構の各々は、前記両回転体の一方に設けられたピンと、前記両回転体の他方に設けられて前記ピンが嵌入する凹部と、前記ピンが前記凹部に嵌入する方向に前記ピンを付勢するばねと、前記ピンが前記凹部から抜脱する方向に前記ピンを付勢するための作動油が供給される解除室とをそれぞれ有し、前記各解除室の油圧を低下させることにより前記各ピンを前記各凹部に嵌入させて前記両回転体の間の相対回転を制限する一方、前記各解除室の油圧を解除油圧にまで上昇させることにより前記各ピンを前記各凹部から抜脱させて前記両回転体の間の相対回転にかかる制限を解除するように構成される。前記進角制限機構及び前記遅角制限機構は、それら解除室に対する作動油の給排状態が共通の油路制御弁を通じて制御されるものであり、前記可変動弁装置は、前記進角制限機構及び前記遅角制限機構のうち常に同じ制限機構の前記ピンを他方の前記ピンよりも先に抜脱するように前記両制限機構の前記各解除室に対する作動油の給排状態を前記油路制御弁を通じて制御する制御部を有している。 In order to achieve the above object, a variable valve operating apparatus for an internal combustion engine according to the present invention includes a first rotating body that rotates in synchronization with a crankshaft and a second rotating body that rotates in synchronization with a camshaft. And a hydraulically driven variable mechanism that changes the valve timing of the valve that is driven to open and close by the camshaft by the relative rotation generated between the two rotating bodies based on the hydraulic oil pressure, and the valve timing is the most retarded An advance that limits the relative rotation between the two rotating bodies so as to restrict the change to the advance side while allowing the change to the retard side relative to the specific time between the timing and the most advanced angle time. An angle limiting mechanism and a retard angle that restricts relative rotation between the rotating bodies so as to restrict the valve timing from changing to the retarded angle side while allowing the valve timing to change to the advanced angle side relative to the specific time. And the cooperation of these two restriction mechanisms And a locking mechanism for mechanically locking more the valve timing to the specific timing. Each of the advance angle limiting mechanism and the retard angle limiting mechanism includes a pin provided on one of the rotating bodies, a recess provided on the other of the rotating bodies and into which the pin fits, and the pin serving as the recess. A spring for urging the pin in a direction to be fitted into the pin, and a release chamber to which hydraulic oil for urging the pin in a direction in which the pin is removed from the recess is supplied. By reducing the hydraulic pressure of the chamber, the pins are fitted into the recesses to restrict relative rotation between the rotating bodies, while increasing the hydraulic pressure of the release chambers to the release hydraulic pressure. The pin is removed from each of the recesses, and the restriction on the relative rotation between the two rotating bodies is released. The advance angle limit mechanism and the retard angle limit mechanism are configured such that the supply / discharge state of the hydraulic oil with respect to the release chamber is controlled through a common oil passage control valve, and the variable valve apparatus includes the advance angle limit mechanism And the oil path control of the supply / discharge state of the hydraulic oil with respect to the release chambers of the two restriction mechanisms so that the pin of the same restriction mechanism is always pulled out before the other pin among the retardation restriction mechanisms. It has a control part which controls through a valve.
 この発明では、進角制限機構及び遅角制限機構のうち常に同じ制限機構のピンを他方のピンよりも先に抜脱するように両制限機構の各解除室に対する作動油の給排状態が共通の油路制御弁を通じて制御される。そのため、バルブタイミングが特定時期に機械的にロックされているロック状態から解除状態にロック機構を切り替える際には、常に同じ制限機構のピンが先に凹部から抜脱する。すなわち、常に同じ制限機構のピンが先に解除される。したがって、ロック機構をロック状態から解除状態に切り替える際にその前後において生じるバルブリフト量の変化態様が、その切り替えの都度異なった態様になることが抑制される。これにより、進角制限機構及び遅角制限機構の各解除室に対して共通の油路制御弁により作動油を給排可能としつつ、ロック機構をロック状態から解除状態に切り替える際に機関運転状態が都度異なる態様で変化することを抑制することができる。 In this invention, the supply / discharge state of the hydraulic fluid to the release chambers of both limiting mechanisms is common so that the pin of the same limiting mechanism is always pulled out of the advance angle limiting mechanism and the retard angle limiting mechanism before the other pin. It is controlled through the oil passage control valve. Therefore, when the lock mechanism is switched from the locked state in which the valve timing is mechanically locked at a specific time to the released state, the pin of the same limiting mechanism is always removed from the recess first. That is, the pin of the same restriction mechanism is always released first. Therefore, when the lock mechanism is switched from the locked state to the released state, the change mode of the valve lift amount generated before and after the lock mechanism is suppressed from being different every time the switch is performed. As a result, when the lock mechanism is switched from the locked state to the released state, the engine operating state can be supplied and discharged with the common oil passage control valve to each release chamber of the advance angle limiting mechanism and the retard angle limiting mechanism. Can be prevented from changing in a different manner each time.
 上述した制御部は、バルブタイミングが遅角側に変化するように前記両回転体の間に相対回転を生じさせる正トルクが前記カム軸に作用するバルブリフト量の増大期間に前記各解除室の油圧を上昇させて前記進角制限機構の前記ピンが前記凹部から抜脱するように、前記各解除室に作動油を供給する第1の供給態様と、バルブタイミングが進角側に変化するように前記両回転体の間に相対回転を生じさせる負トルクが前記カム軸に作用するバルブリフト量の減少期間に前記各解除室の油圧を上昇させて前記遅角制限機構の前記ピンが前記凹部から抜脱するように、前記各解除室に作動油を供給する第2の供給態様とのいずれか一方の供給態様をもって前記各解除室に作動油が供給されるように前記油路制御弁を制御する。 The control unit described above is configured so that a positive torque that causes a relative rotation between the two rotating bodies so that the valve timing changes to the retarded angle side during the increase period of the valve lift amount that acts on the camshaft. The first supply mode for supplying hydraulic oil to each release chamber and the valve timing change to the advance side so that the hydraulic pressure is raised and the pin of the advance angle limiting mechanism is removed from the recess. Further, a negative torque that causes a relative rotation between the two rotating bodies raises the hydraulic pressure in each release chamber during a decrease period of the valve lift amount that acts on the camshaft, so that the pin of the retardation limiting mechanism becomes the recess. The oil passage control valve is set so that the hydraulic oil is supplied to each release chamber in one of the second supply modes for supplying the hydraulic oil to each release chamber so as to be removed from the release chamber. Control.
 ここで、ロック機構がロック状態にあるときにカム軸に対して正トルクが作用すると、遅角制限ピンが嵌入している凹部の内壁と遅角制限ピンとの押圧力の方が、進角制限ピンが嵌入している凹部の内壁と進角制限ピンとの押圧力よりも大きくなる。一方、ロック機構がロック状態にあるときにカム軸に対して負トルクが作用すると、進角制限ピンが嵌入している凹部の内壁と進角制限ピンとの押圧力の方が、遅角制限ピンが嵌入している凹部の内壁と遅角制限ピンとの押圧力よりも大きくなる。 Here, if a positive torque is applied to the camshaft when the lock mechanism is in the locked state, the pressing force between the inner wall of the recess into which the retard limit pin is inserted and the retard limit pin is more advanced. It becomes larger than the pressing force between the inner wall of the concave portion in which the pin is inserted and the advance angle limiting pin. On the other hand, if a negative torque is applied to the camshaft when the lock mechanism is in the locked state, the pressing force between the inner wall of the recess into which the advance limit pin is inserted and the advance limit pin is more retarded. Becomes larger than the pressing force between the inner wall of the recessed portion in which is inserted and the retard limit pin.
 したがって、正トルクがカム軸に作用するバルブリフト量の増大期間に各解除室の油圧を上昇させるように作動油を供給する第1の供給態様をもって油路制御弁が制御されると、進角制限ピンが遅角制限ピンよりも先に解除される。一方、負トルクがカム軸に作用するバルブリフト量の減少期間に各解除室の油圧を上昇させるように作動油を供給する第2の供給態様をもって油路制御弁が制御されると、遅角制限ピンが進角制限ピンよりも先に解除される。 Therefore, when the oil passage control valve is controlled with the first supply mode for supplying the hydraulic oil so as to increase the hydraulic pressure of each release chamber during the increase period of the valve lift amount in which the positive torque acts on the camshaft, the advance angle The limit pin is released before the retard limit pin. On the other hand, when the oil passage control valve is controlled with the second supply mode for supplying the hydraulic oil so as to increase the hydraulic pressure of each release chamber during the decrease period of the valve lift amount in which the negative torque acts on the cam shaft, The limit pin is released before the advance angle limit pin.
 なお、解除室の油圧を上昇させて一方の制限機構のピンが凹部から抜脱するように作動油を各解除室に供給する上述した供給態様には、正トルク又は負トルクがカム軸に作用している所定期間に油路制御弁による各解除室に対する作動油の供給を開始するとともにこの所定期間において解除室の油圧を解除油圧にまで上昇させる制御の他、上記所定期間よりも以前に油路制御弁により解除室に対する作動油の供給を開始して解除室の油圧を解除油圧よりも低い圧力にまで上昇させ、所定期間において解除室の油圧を解除油圧にまで上昇させる制御を含むものとする。 In the above-described supply mode in which hydraulic oil is supplied to each release chamber so that the hydraulic pressure in the release chamber is raised and the pin of one of the limiting mechanisms is removed from the recess, positive torque or negative torque acts on the camshaft. In addition to starting the supply of hydraulic oil to each release chamber by the oil passage control valve during the predetermined period and increasing the hydraulic pressure of the release chamber to the release hydraulic pressure during this predetermined period, the oil is controlled before the predetermined period. It includes control for starting supply of hydraulic oil to the release chamber by the passage control valve to increase the hydraulic pressure in the release chamber to a pressure lower than the release hydraulic pressure, and increasing the hydraulic pressure in the release chamber to the release hydraulic pressure in a predetermined period.
 具体的には、上記第1の供給態様は、カム軸に対して正トルクが作用している期間に各解除室に対する作動油の供給を開始するものであり、上記第2の供給態様は、カム軸に対して負トルクが作用している期間に各解除室に対する作動油の供給を開始するものであることが好ましい。 Specifically, in the first supply mode, the supply of hydraulic oil to each release chamber is started during a period in which a positive torque is applied to the camshaft. It is preferable that supply of hydraulic oil to each release chamber is started during a period in which negative torque is acting on the camshaft.
 前記進角制限機構及び前記遅角制限機構のうちの一方を第1制限機構とし、他方を第2制限機構とした場合、前記両制限機構の前記ピンが前記凹部にそれぞれ嵌入された状態から前記第1制限機構の前記ピンのみが前記凹部から抜脱された状態に切り替わるときに生じる機関運転状態の変化は、前記両制限機構の前記ピンが前記凹部にそれぞれ嵌入された状態から前記第2制限機構の前記ピンのみが前記凹部から抜脱された状態に切り替わるときのそれよりも小さく、前記制御部は、前記第1制限機構の前記ピンが前記第2制限機構の前記ピンよりも常に先に前記凹部から抜脱するように前記油路制御弁を制御する。 When one of the advance angle limit mechanism and the retard angle limit mechanism is a first limit mechanism and the other is a second limit mechanism, the pins of the both limit mechanisms are inserted into the recesses, respectively. The change in the engine operating state that occurs when only the pin of the first limiting mechanism is switched to the state of being removed from the recess is that the pin of the both limiting mechanisms is inserted into the recess from the second limit. Only when the pin of the mechanism is switched to the state where it is removed from the recess, the control unit is configured so that the pin of the first limiting mechanism is always ahead of the pin of the second limiting mechanism. The oil passage control valve is controlled so as to be removed from the recess.
 上述したように、進角制限機構及び遅角制限機構の一方のピンが解除されることに伴い機関運転状態が変化する場合、進角制限ピンが遅角制限ピンよりも先に解除されたときの機関運転状態の変化と遅角制限ピンが進角制限ピンよりも先に解除されたときの機関運転状態の変化とは異なるものとなる。このため、進角制限ピンを遅角制限ピンよりも先に解除させたときの機関運転状態の変化が小さい場合には、進角制限ピンが先に解除するように油路制御弁を制御する一方、遅角制限ピンを進角制限ピンよりも先に解除させたときの機関運転状態の変化が小さい場合には、遅角制限ピンが先に解除するように油路制御弁を制御することが望ましい。これにより、ロック機構をロック状態から解除状態に切り替える際に機関運転状態が大きく変化することを抑えることができ、その安定化を図ることができるようになる。 As described above, when the engine operating state changes as one pin of the advance angle limit mechanism and the retard angle limit mechanism is released, the advance angle limit pin is released before the delay angle limit pin. This is different from the change in the engine operating state and the change in the engine operating state when the retard limit pin is released before the advance limit pin. For this reason, when the change in the engine operating state when the advance limit pin is released before the retard limit pin is small, the oil passage control valve is controlled so that the advance limit pin is released first. On the other hand, if the change in the engine operating state when the retard limit pin is released before the advance limit pin is small, the oil passage control valve should be controlled so that the retard limit pin is released first. Is desirable. As a result, when the lock mechanism is switched from the locked state to the released state, it is possible to suppress a significant change in the engine operating state and to stabilize the engine operating state.
 特にこうした機関運転状態の変化として、進角制限ピンを遅角制限ピンよりも先に解除させたときの機関出力の変化が小さい場合には、進角制限ピンが先に解除するように油路制御弁を制御する一方、遅角制限ピンを進角制限ピンよりも先に解除させたときの機関出力の変化が小さい場合には、遅角制限ピンが先に解除するように油路制御弁を制御することが望ましい。 In particular, as a change in the engine operating state, when the change in engine output when the advance angle limit pin is released before the retard angle limit pin is small, the oil passage is set so that the advance angle limit pin is released first. While controlling the control valve, if the change in engine output when the retard limit pin is released before the advance limit pin is small, the oil passage control valve is set so that the retard limit pin is released first. It is desirable to control.
 上記可変機構は吸気バルブのバルブタイミングを変更するものであり、前記吸気バルブのバルブタイミングが前記特定時期にある状態では、同吸気バルブは内燃機関のピストンが上死点近傍にあるときに開弁するとともに下死点よりも遅角側で閉弁することが好ましい。 The variable mechanism changes the valve timing of the intake valve. When the valve timing of the intake valve is at the specific time, the intake valve opens when the piston of the internal combustion engine is near top dead center. In addition, it is preferable to close the valve on the retard side with respect to the bottom dead center.
 ロック機構をロック状態から解除状態に移行させるときの吸気バルブがピストンの上死点近傍で開弁するとともに下死点よりも遅角側で閉弁するように同バルブタイミングを設定した内燃機関にあっては、次の傾向が一般に存在する。すなわち、吸気バルブの開弁時に内燃機関の燃焼室に流入する時間当たりの吸気の量についてみたとき、その量は吸気バルブのバルブリフト量が増大する期間よりも減少する期間の方が大きくなる。これは、バルブリフト量が増大する期間では減少する期間と比較して燃焼室に発生する負圧が小さく、吸気の慣性力も小さいため、燃焼室に流入する吸気の平均流速が小さくなるからである。したがって、こうした内燃機関においては遅角制限ピンが進角制限ピンよりも先に解除するように油路制御弁を制御する構成を採用することにより、バルブリフト量が減少してカム軸に負トルクが作用する期間、換言すれば吸入空気量を決定するうえで支配的な期間において、実際のバルブリフト量が本来のバルブリフト量よりも大きく低下することを抑制することでき、吸入空気量の減少に起因する機関出力の低下を抑えることができるようになる。 An internal combustion engine in which the valve timing is set so that the intake valve when the lock mechanism is shifted from the locked state to the released state opens near the top dead center of the piston and closes on the retard side from the bottom dead center If so, the following tendencies generally exist. That is, when looking at the amount of intake air per hour flowing into the combustion chamber of the internal combustion engine when the intake valve is opened, the amount is larger during the period when the valve lift amount of the intake valve increases than during the period when the valve lift amount of the intake valve increases. This is because the negative pressure generated in the combustion chamber is smaller and the inertia force of the intake air is smaller in the period in which the valve lift amount increases than in the period in which the valve lift amount decreases, so the average flow velocity of the intake air flowing into the combustion chamber becomes smaller. . Therefore, in such an internal combustion engine, by adopting a configuration in which the oil passage control valve is controlled so that the retard limit pin is released before the advance limit pin, the valve lift amount is reduced and negative torque is applied to the camshaft. In the period during which the valve operates, in other words, in the period dominant in determining the intake air amount, it is possible to suppress the actual valve lift amount from being significantly lower than the original valve lift amount, thereby reducing the intake air amount. It is possible to suppress a decrease in engine output caused by the engine.
本発明の実施形態にかかる内燃機関の可変動弁装置及びこれを備える内燃機関を示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram which shows the variable valve operating apparatus of the internal combustion engine concerning embodiment of this invention, and an internal combustion engine provided with the same. 同可変動弁装置の可変機構について、同可変機構のスプロケットを取り外した状態でその内部構造を示す端面図。The end view which shows the internal structure about the variable mechanism of the variable valve apparatus in the state which removed the sprocket of the variable mechanism. 油圧機構の作動油通路についてその構成を示す概略図。Schematic which shows the structure about the hydraulic-fluid channel | path of a hydraulic mechanism. 図2のA-A線に沿う断面構造を示す断面図。FIG. 3 is a cross-sectional view showing a cross-sectional structure along the line AA in FIG. 2. (a)は可変動弁装置における作動油の供給状態と油路制御弁の各モードとの対応関係を示し、(b)は可変機構及び制限ピンの状態と油路制御弁の各モードとの対応関係を示す図。(A) shows the corresponding relationship between the hydraulic oil supply state and each mode of the oil passage control valve in the variable valve operating device, and (b) shows the state of the variable mechanism and the limit pin and each mode of the oil passage control valve. The figure which shows a correspondence. ロック機構がロック状態にあるときのバルブリフト量と、進角制限ピン及び遅角制限ピンのいずれか一方が先に解除されたときのバルブリフト量との違いを示すグラフであって、(a)は遅角制限ピンのみが解除されたときのバルブリフト量の変化を示し、(b)は進角制限ピンのみが解除されたときのバルブリフト量の変化を示すグラフ。FIG. 6 is a graph showing a difference between a valve lift amount when the lock mechanism is in a locked state and a valve lift amount when one of the advance angle limit pin and the retard angle limit pin is released first; ) Shows the change in the valve lift when only the retard limit pin is released, and (b) is a graph showing the change in the valve lift when only the advance limit pin is released. バルブリフト量及びカム軸に作用するトルクの推移と、進角制限ピン及び遅角制限ピンのそれぞれの解除可能期間の推移とを示すタイミングチャート。The timing chart which shows transition of the valve lift amount and the torque which acts on a cam shaft, and transition of each releasable period of an advance limit pin and a retard limit pin. 機関始動後においてカム軸に作用するトルクの態様、解除室への作動油供給の状態、並びに進角制限ピン及び遅角制限ピンの状態を示すタイミングチャート。The timing chart which shows the mode of the torque which acts on a cam shaft after engine starting, the state of the hydraulic fluid supply to a cancellation | release chamber, and the state of an advance angle limit pin and a retard angle limit pin. (a)は従来一般の可変機構についてその内部構造を示す端面図であり、(b)は(A)のB-B線に沿う断面構造を示す断面図。(A) is an end view showing the internal structure of a conventional variable mechanism, and (b) is a cross-sectional view showing a cross-sectional structure taken along line BB in (A). (a)はカム軸に作用するトルクを示すグラフであり、(b)はロック機構がロック状態にあるときのバルブリフト量を示すグラフであり、(c)は遅角制限ピンのみが解除されたときのバルブリフト量の変化を示すグラフであり、(d)は進角制限ピンのみが解除されたときのバルブリフト量の変化を示すグラフ。(A) is a graph showing the torque acting on the camshaft, (b) is a graph showing the valve lift when the lock mechanism is in the locked state, and (c) is the release of only the retard limit pin. 6 is a graph showing a change in the valve lift when the advance limit pin is released only. FIG.
 以下、図1~図8を参照して、本発明を吸気バルブのバルブタイミングを変更する内燃機関の可変動弁装置として具体化した一実施形態を説明する。
 図1に示すように、内燃機関10の気筒内に往復動可能に収容されたピストン11には、その往復運動を回転運動に変換するクランク軸12が連結されている。また、ピストン11の頂面と気筒の内周面とによって燃焼室13が区画形成されている。内燃機関10の上部には、吸気バルブ21を開閉する吸気用のカム軸22と、排気バルブ23を開閉する排気用のカム軸24とが設けられている。一方、内燃機関10の下部には、作動油を貯留するオイルパン15が取り付けられるとともに、クランク軸12の回転力により駆動されてオイルパン15の作動油を組み上げるオイルポンプ14が設けられている。
Hereinafter, an embodiment in which the present invention is embodied as a variable valve operating apparatus for an internal combustion engine that changes the valve timing of an intake valve will be described with reference to FIGS.
As shown in FIG. 1, a crankshaft 12 that converts a reciprocating motion into a rotational motion is connected to a piston 11 that is accommodated in a cylinder of the internal combustion engine 10 so as to be able to reciprocate. A combustion chamber 13 is defined by the top surface of the piston 11 and the inner peripheral surface of the cylinder. An intake camshaft 22 that opens and closes the intake valve 21 and an exhaust camshaft 24 that opens and closes the exhaust valve 23 are provided on the upper portion of the internal combustion engine 10. On the other hand, an oil pan 15 that stores hydraulic oil is attached to the lower part of the internal combustion engine 10, and an oil pump 14 that is driven by the rotational force of the crankshaft 12 to assemble the hydraulic oil of the oil pan 15 is provided.
 可変動弁装置20は、カム軸22の先端に設けられて吸気バルブ21のバルブタイミングを変更する可変機構25と、最遅角時期と最進角時期との間の特定の中間時期(以下、「特定時期」とする)にバルブタイミングを保持するロック機構26と、可変動弁装置20に設けられた各油室の油圧を制御する油圧機構60とを備えている。なお、可変機構25のスプロケット31は、図示しないタイミングチェーンを介して、クランク軸12と駆動連結されている。また、可変機構25のカバー30は、スプロケット31が設けられている側とは反対側の面に設けられている。 The variable valve operating device 20 is provided at the tip of the camshaft 22 to change the valve timing of the intake valve 21 and a specific intermediate timing (hereinafter referred to as the most advanced timing). And a hydraulic mechanism 60 that controls the hydraulic pressure of each oil chamber provided in the variable valve operating apparatus 20. The sprocket 31 of the variable mechanism 25 is drivingly connected to the crankshaft 12 through a timing chain (not shown). Further, the cover 30 of the variable mechanism 25 is provided on the surface opposite to the side on which the sprocket 31 is provided.
 油圧機構60は、作動油通路61と油路制御弁(以下、「OCV(Oil Control Valve)」とする)62とを備えている。作動油通路61は、オイルパン15の作動油を各油室に供給する複数の油路、及び各油室から作動油をオイルパン15に戻す複数の油路から構成される。また、OCV62は、可変動弁装置20に設けられた各油室に対する作動油の給排状態を制御する。なお、オイルパン15に貯留される作動油は、可変動弁装置20を駆動するための油圧を発生する作動油としての機能の他、内燃機関10の各部を潤滑するための潤滑油としての機能も併せ有している。 The hydraulic mechanism 60 includes a hydraulic oil passage 61 and an oil passage control valve (hereinafter referred to as “OCV (Oil Control Valve)”) 62. The hydraulic oil passage 61 includes a plurality of oil passages that supply the hydraulic oil of the oil pan 15 to each oil chamber, and a plurality of oil passages that return the hydraulic oil from each oil chamber to the oil pan 15. Further, the OCV 62 controls the supply / discharge state of the hydraulic oil with respect to each oil chamber provided in the variable valve apparatus 20. The hydraulic oil stored in the oil pan 15 functions as a hydraulic oil for lubricating each part of the internal combustion engine 10 in addition to a function as a hydraulic oil that generates a hydraulic pressure for driving the variable valve device 20. It has also.
 内燃機関10には、同内燃機関10の運転状態を検出するための各種センサが設けられている。例えば、こうした各種センサとしては、クランク軸12の近傍に設けられてクランク角及び機関回転速度を検出するクランク角センサ16、カム軸22の近傍に設けられて同カム軸22の位置を検出するカム角センサ17等がある。これら各種センサから出力される信号は、内燃機関10の各種装置を総括して制御する制御部18に取り込まれる。 The internal combustion engine 10 is provided with various sensors for detecting the operating state of the internal combustion engine 10. For example, such various sensors include a crank angle sensor 16 provided in the vicinity of the crankshaft 12 for detecting the crank angle and the engine rotational speed, and a cam provided in the vicinity of the camshaft 22 for detecting the position of the camshaft 22. There is an angle sensor 17 or the like. Signals output from these various sensors are taken into the control unit 18 that collectively controls various devices of the internal combustion engine 10.
 制御部18は、演算装置、駆動回路の他、各種制御の演算結果やその演算に用いられる関数マップ等を記憶する記憶装置等を備えている。そして、この制御部18は、各種センサからの出力信号に基づき内燃機関10の運転状態を検出し、その検出結果に基づいて各種制御を実行する。こうした制御の一つであるバルブタイミング可変制御では、機関運転状態に基づいてOCV62のスプール位置を適宜変更することにより、吸気バルブ21のバルブタイミングが機関運転状態に適した目標バルブタイミングと一致するようにこれを制御する。 The control unit 18 is provided with a storage device for storing calculation results of various controls, a function map used for the calculation, and the like in addition to the calculation device and the drive circuit. And this control part 18 detects the driving | running state of the internal combustion engine 10 based on the output signal from various sensors, and performs various control based on the detection result. In such variable valve timing control, the valve timing of the intake valve 21 is made to match the target valve timing suitable for the engine operating state by appropriately changing the spool position of the OCV 62 based on the engine operating state. To control this.
 次に、図2を参照して、可変機構25の構成について説明する。同図2は、スプロケット31を取り外した状態の可変機構25の内部構造を示している。上述したスプロケット31、ハウジング32、カバー30は図示しないボルトによって互いに固定され、カム軸22の回転軸線周りに一体回転する。これらカバー30、スプロケット31及びハウジング32は、クランク軸12に駆動連結された第1の回転体として機能する。なお、カム軸22及びハウジング32は、図2に示す回転方向RCに回転するものとする。 Next, the configuration of the variable mechanism 25 will be described with reference to FIG. FIG. 2 shows the internal structure of the variable mechanism 25 with the sprocket 31 removed. The sprocket 31, the housing 32, and the cover 30 described above are fixed to each other by bolts (not shown) and rotate integrally around the rotation axis of the cam shaft 22. The cover 30, the sprocket 31, and the housing 32 function as a first rotating body that is drivingly connected to the crankshaft 12. The cam shaft 22 and the housing 32 are assumed to rotate in the rotational direction RC shown in FIG.
 ハウジング32には、その径方向内側に延びる3つの区画部34が設けられている。また、ハウジング32には、ハウジング32と同一の回転軸線周りに回転するベーンロータ33がハウジング32に対して回動可能に収容されている。ベーンロータ33は、カム軸22に一体回転可能に連結されるボス33Aと、ボス33Aから径方向外側に突出する3つのベーン33Bとを有している。ボス33Aは、センターボルト38によりカム軸22の端部に固定されている。そして、ハウジング32の3つの区画部34とベーンロータ33のボス33Aとによって3つの収容室35が区画形成されるとともに、各収容室35は各ベーン33Bにより進角室36と遅角室37とに区画されている。なお、ベーンロータ33は、カム軸22に駆動連結された第2の回転体として機能する。 The housing 32 is provided with three partition portions 34 extending radially inward. In addition, a vane rotor 33 that rotates about the same rotation axis as the housing 32 is accommodated in the housing 32 so as to be rotatable with respect to the housing 32. The vane rotor 33 includes a boss 33A coupled to the camshaft 22 so as to be integrally rotatable, and three vanes 33B projecting radially outward from the boss 33A. The boss 33 </ b> A is fixed to the end of the camshaft 22 by a center bolt 38. Three housing chambers 35 are defined by the three partition portions 34 of the housing 32 and the boss 33A of the vane rotor 33, and each housing chamber 35 is divided into an advance chamber 36 and a retard chamber 37 by each vane 33B. It is partitioned. The vane rotor 33 functions as a second rotating body that is drivingly connected to the cam shaft 22.
 可変機構25には、バルブタイミングを機関始動に適した特定時期に保持するロック機構26が設けられている。このロック機構26は、各別のベーン33Bにそれぞれ設けられた進角制限機構40と遅角制限機構50とを備えている。進角制限機構40は、バルブタイミングが特定時期よりも遅角側に変化することを許容しつつ進角側に変化することを規制する態様にてハウジング32とベーンロータ33とが相対回転することを制限する。一方、遅角制限機構50は、バルブタイミングが特定時期よりも進角側に変化することを許容しつつ遅角側に変化することを規制する態様にてハウジング32とベーンロータ33とが相対回転することを制限する。さらに、進角制限機構40及び遅角制限機構50は、バルブタイミングを特定時期よりも遅角側の時期から特定時期まで段階的に進角させるラチェット機能を備えている。そして、これら進角制限機構40及び遅角制限機構50の協働によりバルブタイミングが特定時期に保持される。 The variable mechanism 25 is provided with a lock mechanism 26 that holds the valve timing at a specific time suitable for engine start. The lock mechanism 26 includes an advance angle limiting mechanism 40 and a retard angle limiting mechanism 50 provided in each of the separate vanes 33B. The advance angle limiting mechanism 40 allows the housing 32 and the vane rotor 33 to rotate relative to each other in a manner that restricts the valve timing from changing to the advance angle side while allowing the valve timing to change from the specific time. Restrict. On the other hand, the retard angle limiting mechanism 50 allows the housing 32 and the vane rotor 33 to rotate relative to each other in a manner that restricts the valve timing from changing to the retarded angle side while allowing the valve timing to change from the specific timing. Limit that. Further, the advance angle limiting mechanism 40 and the retard angle limiting mechanism 50 are provided with a ratchet function that advances the valve timing stepwise from a timing that is behind the specific timing to a specific timing. The valve timing is held at a specific time by the cooperation of the advance angle limiting mechanism 40 and the retard angle limiting mechanism 50.
 上述したOCV62は、センターボルト38に内蔵されている。そして、可変機構25には、OCV62から進角室36、遅角室37、及びロック機構26の各油室に対して、ベーンロータ33の径方向に延びる複数の油路(作動油通路61)が設けられている。 The OCV 62 described above is built in the center bolt 38. The variable mechanism 25 has a plurality of oil passages (operating oil passages 61) extending in the radial direction of the vane rotor 33 from the OCV 62 to the oil chambers of the advance chamber 36, the retard chamber 37, and the lock mechanism 26. Is provided.
 次に、図2及び図3を併せて参照し、作動油通路61の構成について説明する。作動油通路61は、供給油路63、進角油路66、遅角油路67、解除油路68、及び排出油路69により構成されている。このOCV62は、進角室36及び遅角室37、並びに第1の解除室47及び第2の解除室57に対する作動油の給排状態を制御する共通の油路制御弁として機能する。 Next, the configuration of the hydraulic oil passage 61 will be described with reference to FIGS. 2 and 3 together. The hydraulic oil passage 61 includes a supply oil passage 63, an advance oil passage 66, a retard oil passage 67, a release oil passage 68, and a discharge oil passage 69. The OCV 62 functions as a common oil passage control valve that controls the supply / discharge state of hydraulic fluid to the advance chamber 36 and the retard chamber 37 and the first release chamber 47 and the second release chamber 57.
 供給油路63は、オイルポンプ14とOCV62とを連通している。また、この供給油路63は、その途中において、OCV62の進遅角供給ポート64Pに接続された第1の供給油路64と、OCV62の解除用供給ポート65Pに接続された第2の供給油路65とに分岐している。 The supply oil passage 63 communicates with the oil pump 14 and the OCV 62. In addition, the supply oil passage 63 has a first supply oil passage 64 connected to the advance / retard angle supply port 64P of the OCV 62 and a second supply oil connected to the release supply port 65P of the OCV 62. It branches off to the road 65.
 進角油路66は、OCV62の進角ポート66Pと進角室36とを連通している。遅角油路67は、OCV62の遅角ポート67Pと遅角室37とを連通している。
 解除油路68は、上述した進角油路66及び遅角油路67とは独立した油路として構成され、その途中で、進角制限機構40の第1の解除室47とOCV62の解除用ポート68Pとを連通する第1の解除油路68Aと、遅角制限機構50の第2の解除室57とOCV62の解除用ポート68Pとを連通する第2の解除油路68Bとに分岐している。
The advance oil passage 66 communicates the advance port 66P of the OCV 62 and the advance chamber 36. The retard oil passage 67 communicates the retard port 67P of the OCV 62 and the retard chamber 37.
The release oil passage 68 is configured as an oil passage that is independent of the advance oil passage 66 and the retard oil passage 67 described above, and is used for releasing the first release chamber 47 and the OCV 62 of the advance angle limiting mechanism 40 in the middle. The first release oil passage 68A that communicates with the port 68P and the second release oil passage 68B that communicates between the second release chamber 57 of the retard restriction mechanism 50 and the release port 68P of the OCV 62 are branched. Yes.
 排出油路69は、OCV62の排出ポート69Pに接続されるとともに、オイルパン15まで延びている。
 次に、図4を参照して、ロック機構26の詳細な構成について説明する。以下では、カム軸22の軸方向において可変機構25のカバー30が配置される側を「先端側ZA」とし、スプロケット31が配置される側を「基端側ZB」とする。
The discharge oil passage 69 is connected to the discharge port 69 </ b> P of the OCV 62 and extends to the oil pan 15.
Next, a detailed configuration of the lock mechanism 26 will be described with reference to FIG. Hereinafter, the side where the cover 30 of the variable mechanism 25 is disposed in the axial direction of the camshaft 22 is referred to as “front end side ZA”, and the side where the sprocket 31 is disposed is referred to as “base end side ZB”.
 進角制限機構40は、円筒状の進角制限ピン41と、進角制限ピン41が嵌入する第1の凹部43と、進角制限ピン41を先端側ZAに付勢する第1のばね42と、作動油が供給又は排出される第1の解除室47とを備えている。進角制限ピン41、第1のばね42、及び第1の解除室47はいずれもベーン33Bに設けられる一方、第1の凹部43は、カバー30に形成されている。 The advance angle limiting mechanism 40 includes a cylindrical advance angle limit pin 41, a first recess 43 into which the advance angle limit pin 41 is fitted, and a first spring 42 that biases the advance angle limit pin 41 toward the distal end side ZA. And a first release chamber 47 into which hydraulic oil is supplied or discharged. The advance angle limiting pin 41, the first spring 42, and the first release chamber 47 are all provided in the vane 33B, while the first recess 43 is formed in the cover 30.
 進角制限ピン41は、ベーン33Bに形成されたベーン孔46において先端側ZA及び基端側ZBに往復動するとともに、その一部がベーン33Bの外部に突出して第1の凹部43に嵌入する。ベーン孔46は、進角制限ピン41により、基端側ZBの第1のばね室48と、先端側ZAの第1の解除室47とに区画されている。第1のばね室48には、進角制限ピン41を先端側ZAに付勢する第1のばね42が収容されている。一方、第1の解除室47には、上述した第1の解除油路68A(図2及び図3参照)を通じて作動油が供給される。そして、第1の解除室47の油圧が第1の解除油圧P1よりも上昇すると、この油圧に基づく付勢力により進角制限ピン41が解除されて基端側ZBに移動する。 The advance angle limiting pin 41 reciprocates to the distal end side ZA and the proximal end side ZB in the vane hole 46 formed in the vane 33B, and a part of the advance angle limiting pin 41 projects to the outside of the vane 33B and fits into the first recess 43. . The vane hole 46 is partitioned by the advance limit pin 41 into a first spring chamber 48 on the base end side ZB and a first release chamber 47 on the front end side ZA. The first spring chamber 48 accommodates a first spring 42 that biases the advance limit pin 41 toward the distal end ZA. On the other hand, hydraulic oil is supplied to the first release chamber 47 through the first release oil passage 68A (see FIGS. 2 and 3) described above. When the hydraulic pressure in the first release chamber 47 rises higher than the first release hydraulic pressure P1, the advance limit pin 41 is released by the urging force based on this hydraulic pressure and moves to the proximal side ZB.
 第1の凹部43は、カバー30においてその周方向に沿った円弧状をなしている。詳しくは、第1の凹部43は、相対的に深さが浅く形成された第1の上段部44と、相対的に深さが深く形成された第1の下段部45とから構成されている。第1の上段部44は、第1の下段部45よりも遅角側に形成されている。 The first recess 43 has an arc shape along the circumferential direction of the cover 30. Specifically, the first concave portion 43 includes a first upper step portion 44 formed with a relatively shallow depth and a first lower step portion 45 formed with a relatively deep depth. . The first upper stage 44 is formed on the retard side with respect to the first lower stage 45.
 遅角制限機構50は、円筒状の遅角制限ピン51と、遅角制限ピン51が嵌入する第2の凹部53と、遅角制限ピン51を先端側ZAに付勢する第2のばね52と、作動油が供給又は排出される第2の解除室57とを備えている。遅角制限ピン51、第2のばね52、及び第2の解除室57はいずれもベーン33Bに設けられる一方、第2の凹部53は、カバー30に形成されている。 The retard limit mechanism 50 includes a cylindrical retard limit pin 51, a second recess 53 into which the retard limit pin 51 is fitted, and a second spring 52 that biases the retard limit pin 51 toward the distal end ZA. And a second release chamber 57 into which hydraulic oil is supplied or discharged. The retard limit pin 51, the second spring 52, and the second release chamber 57 are all provided in the vane 33B, while the second recess 53 is formed in the cover 30.
 遅角制限ピン51は、ベーン33Bに形成されたベーン孔56において先端側ZA及び基端側ZBに往復動するとともに、その一部がベーン33Bの外部に突出して第2の凹部53に嵌入する。ベーン孔56は、遅角制限ピン51により、基端側ZBの第2のばね室58と、先端側ZAの第2の解除室57とに区画されている。第2のばね室58には、遅角制限ピン51を先端側ZAに付勢する第2のばね52が収容されている。一方、第2の解除室57には、上述した第2の解除油路68B(図2及び図3参照)を通じて作動油が供給される。そして、第2の解除室57の油圧が第2の解除油圧P2よりも上昇すると、この油圧に基づく付勢力により遅角制限ピン51が基端側ZBに移動する。 The retard limit pin 51 reciprocates to the distal end side ZA and the proximal end side ZB in a vane hole 56 formed in the vane 33B, and a part of the retard angle limiting pin 51 protrudes outside the vane 33B and fits into the second recess 53. . The vane hole 56 is partitioned by the retard limit pin 51 into a second spring chamber 58 on the proximal end side ZB and a second release chamber 57 on the distal end side ZA. The second spring chamber 58 accommodates a second spring 52 that biases the retard limit pin 51 toward the distal end side ZA. On the other hand, hydraulic oil is supplied to the second release chamber 57 through the above-described second release oil passage 68B (see FIGS. 2 and 3). When the hydraulic pressure in the second release chamber 57 rises above the second release hydraulic pressure P2, the retard limit pin 51 moves to the base end side ZB by the urging force based on this hydraulic pressure.
 第2の凹部53は、カバー30においてその周方向に沿った円弧状をなしている。詳しくは、第2の凹部53は、相対的に深さが浅く形成された第2の上段部54と、相対的に深さが深く形成された第2の下段部55とから構成されている。第2の上段部54は、第2の下段部55よりも遅角側に形成されている。 The second recess 53 has an arc shape along the circumferential direction of the cover 30. Specifically, the second concave portion 53 includes a second upper step portion 54 formed with a relatively shallow depth and a second lower step portion 55 formed with a relatively deep depth. . The second upper step portion 54 is formed on the retard side with respect to the second lower step portion 55.
 進角制限ピン41、遅角制限ピン51、第1の凹部43に形成された第1の上段部44及び第1の下段部45、並びに第2の凹部53に形成された第2の上段部54及び第2の下段部55は、カム軸22に作用する交番トルクによりバルブタイミングを特定時期にまで段階的に進角させるラチェット機構として機能する。すなわち、第1の凹部43に形成された第1の上段部44及び第1の下段部45は、進角制限ピン41がこれら段部44,45に嵌入したときに、それら各段部の遅角側の内壁により同制限ピン41の遅角側への変位をそれぞれ規制する。一方、第2の凹部53に形成された第2の上段部54及び第2の下段部55は、遅角制限ピン51が嵌入したときに、それら各段部の遅角側の内壁により同制限ピン51の遅角側への変位をそれぞれ規制する。 Advance limit pin 41, retard limit pin 51, first upper step 44 and first lower step 45 formed in first recess 43, and second upper step formed in second recess 53 54 and the second lower stage portion 55 function as a ratchet mechanism that gradually advances the valve timing to a specific time by an alternating torque acting on the cam shaft 22. That is, the first upper step portion 44 and the first lower step portion 45 formed in the first concave portion 43 have the delay of each step portion when the advance angle limiting pin 41 is fitted into these step portions 44 and 45. The angle-side inner wall restricts the displacement of the limit pin 41 toward the retard side. On the other hand, the second upper step portion 54 and the second lower step portion 55 formed in the second recess 53 are restricted by the inner wall on the retard side of each step portion when the retard limit pin 51 is fitted. The displacement of the pin 51 toward the retard angle side is regulated.
 さらに、進角制限ピン41が第1の下段部45に嵌入するとともに遅角制限ピン51が第2の下段部55に嵌入したときには、第1の下段部45の進角側の内壁45Bにより進角制限ピン41の進角側への変位が規制される。また、併せて第2の下段部55の遅角側の内壁55Aにより遅角制限ピン51の遅角側への変位が規制される。そしてこれにより、バルブタイミングが上述した特定時期でロックされることとなる。なお、図4には、ロック機構26がロック状態となって、バルブタイミングが特定時期でロックされた状態を示している。 Further, when the advance angle limiting pin 41 is fitted into the first lower step portion 45 and the retard limit pin 51 is fitted into the second lower step portion 55, the advance angle limit pin 51 is advanced by the inner wall 45B on the advance side of the first lower step portion 45. Displacement of the angle limiting pin 41 toward the advance side is restricted. In addition, displacement of the retard restriction pin 51 to the retard side is regulated by the retard inner wall 55A of the second lower step portion 55. As a result, the valve timing is locked at the specific time described above. FIG. 4 shows a state where the lock mechanism 26 is in a locked state and the valve timing is locked at a specific time.
 ここで、図4に示すロック機構26のロック状態から、遅角制限ピン51のみが解除されると、進角制限ピン41は、第1の下段部45に嵌入したまま第1の下段部45の遅角側の内壁45Aに接触するまで、遅角側に変位することができる。すなわちその変位量に対応する分だけ、バルブタイミングが特定時期よりも遅角側に変化することが許容されることとなる。 Here, when only the retard limit pin 51 is released from the locked state of the lock mechanism 26 shown in FIG. 4, the advance limit pin 41 remains fitted in the first lower step 45 and the first lower step 45. Until it comes into contact with the inner wall 45A on the retarded side. In other words, the valve timing is allowed to change to the retard side from the specific time by an amount corresponding to the amount of displacement.
 一方、ロック機構26のロック状態から、進角制限ピン41のみが解除されると、遅角制限ピン51は、第2の下段部55に嵌入したまま第2の下段部55の進角側の内壁55Bに接触するまで、進角側に変位することができる。すなわちその変位量に対応する分だけ、バルブタイミングが特定時期よりも進角側に変化することが許容されることとなる。 On the other hand, when only the advance limit pin 41 is released from the locked state of the lock mechanism 26, the retard limit pin 51 remains on the advance side of the second lower step portion 55 while being fitted into the second lower step portion 55. It can be displaced to the advance side until it comes into contact with the inner wall 55B. That is, the valve timing is allowed to change from the specific timing to the advance side by an amount corresponding to the amount of displacement.
 次に、先の図3及び図5を併せて参照して、OCV62の各モード(スプール位置)と、進角室36、遅角室37及び解除室47,57に対する作動油の給排状態との関係について説明する。具体的には、OCV62のスプール位置の制御を通じてOCV62が第1のモード、第2のモード、第3のモード、第4のモード及び第5のモードといったモード間で切り替えられると、上述したOCV62の各ポートの開口面積が変化する。これにより、進角室36、遅角室37及び解除室47,57に対する作動油の給排状態が変更される。 Next, referring to FIG. 3 and FIG. 5 together, each mode (spool position) of the OCV 62 and the supply / discharge state of the hydraulic oil to the advance chamber 36, the retard chamber 37, and the release chambers 47 and 57, The relationship will be described. Specifically, when the OCV 62 is switched between modes such as the first mode, the second mode, the third mode, the fourth mode, and the fifth mode through the control of the spool position of the OCV 62, the OCV 62 described above is controlled. The opening area of each port changes. Thereby, the supply / discharge state of the hydraulic oil to the advance chamber 36, the retard chamber 37, and the release chambers 47 and 57 is changed.
 第1のモード及び第2のモードでは、進遅角供給ポート64Pと進角ポート66Pが連通されて、第1の供給油路64から進角油路66に対して作動油が供給される。また、遅角ポート67Pと排出ポート69Pとが連通されて、遅角油路67から排出油路69に対して作動油が排出される。さらに、解除用ポート68Pと排出ポート69Pが連通されて、解除油路68から排出油路69に対して作動油が排出される。 In the first mode and the second mode, the advance / retard angle supply port 64P and the advance port 66P are communicated, and hydraulic oil is supplied from the first supply oil passage 64 to the advance oil passage 66. Further, the retard port 67P and the discharge port 69P are communicated, and the hydraulic oil is discharged from the retard oil passage 67 to the discharge oil passage 69. Further, the release port 68 </ b> P and the discharge port 69 </ b> P are communicated, and the hydraulic oil is discharged from the release oil passage 68 to the discharge oil passage 69.
 なお、第2のモードにおける進遅角供給ポート64Pと進角ポート66Pとの連通面積は、第1のモードにおける連通面積と比較して小さく設定されている。このため、第2のモードにおいて第1の供給油路64から進角油路66に対して供給される作動油の量は、第1のモードと比較して少ない。 Note that the communication area between the advance / retard angle supply port 64P and the advance port 66P in the second mode is set to be smaller than the communication area in the first mode. For this reason, the amount of hydraulic fluid supplied from the first supply oil passage 64 to the advance oil passage 66 in the second mode is smaller than that in the first mode.
 OCV62が第1のモード又は第2のモードに設定されると、可変機構25ではバルブタイミングが進角される。また、進角制限ピン41及び遅角制限ピン51は、第1の凹部43及び第2の凹部53にそれぞれ嵌入する方向に付勢される。OCV62は、機関始動時に第1のモードに設定される一方、機関運転を停止するとき及びアイドル運転中に第2のモードに設定される。 When the OCV 62 is set to the first mode or the second mode, the variable mechanism 25 advances the valve timing. Further, the advance limit pin 41 and the retard limit pin 51 are urged in the direction of fitting into the first recess 43 and the second recess 53, respectively. The OCV 62 is set to the first mode when the engine is started, and is set to the second mode when the engine operation is stopped and during idle operation.
 第3のモードでは、解除用供給ポート65Pと解除用ポート68Pとが連通されて、第2の供給油路65から解除油路68(68A,68B)を介して第1の解除室47及び第2の解除室57に作動油がそれぞれ供給される。その結果、各解除室47,57に供給される作動油に油圧に基づく付勢力により、進角制限ピン41及び遅角制限ピン51は、第1の凹部43及び第2の凹部53からそれぞれ解除され、ロック機構26は解除状態となる。また、進遅角供給ポート64Pと進角ポート66Pとが連通され、第1の供給油路64から進角油路66を介して各進角室36に対して作動油がそれぞれ供給される。さらに、遅角ポート67Pと排出ポート69Pとが連通され、各遅角室37の作動油が遅角油路67から排出油路69を通じて排出される。その結果、バルブタイミングが進角される。すなわち、OCV62は、バルブタイミングの進角制御を実行するときにこの第3のモードに設定される。 In the third mode, the release supply port 65P and the release port 68P are communicated with each other, and the first release chamber 47 and the first release port are connected from the second supply oil passage 65 through the release oil passage 68 (68A, 68B). The hydraulic oil is supplied to the two release chambers 57 respectively. As a result, the advance limit pin 41 and the retard limit pin 51 are released from the first recess 43 and the second recess 53, respectively, by the urging force based on the hydraulic pressure of the hydraulic oil supplied to the release chambers 47 and 57. Then, the lock mechanism 26 is released. Further, the advance / retard angle supply port 64P and the advance angle port 66P are communicated, and hydraulic oil is supplied from the first supply oil passage 64 to the advance chambers 36 via the advance oil passage 66. Further, the retard port 67P and the discharge port 69P are communicated, and the hydraulic oil in each retard chamber 37 is discharged from the retard oil passage 67 through the discharge oil passage 69. As a result, the valve timing is advanced. That is, the OCV 62 is set to the third mode when executing the advance control of the valve timing.
 第4のモードでは、解除用供給ポート65Pと解除用ポート68Pとが連通されて、第2の供給油路65から解除油路68(68A,68B)を介して第1の解除室47及び第2の解除室57に作動油がそれぞれ供給される。その結果、各解除室47,57に供給される作動油に油圧に基づく付勢力により、進角制限ピン41及び遅角制限ピン51は、第1の凹部43及び第2の凹部53からそれぞれ解除され、ロック機構26は解除状態となる。また、進角ポート66P及び遅角ポート67Pが閉鎖される。このため、進角油路66を介した各進角室36への作動油の給排、及び遅角油路67を介した各遅角室37への作動油の給排はいずれも停止される。その結果、バルブタイミングが保持される。なお、OCV62は、バルブタイミングを目標バルブタイミングに保持するとき、及びロック機構26をロック状態から解除状態に切り替えるときにこの第4のモードに設定される。 In the fourth mode, the release supply port 65P and the release port 68P are communicated with each other, and the first release chamber 47 and the first release port are connected from the second supply oil passage 65 through the release oil passage 68 (68A, 68B). The hydraulic oil is supplied to the two release chambers 57 respectively. As a result, the advance limit pin 41 and the retard limit pin 51 are released from the first recess 43 and the second recess 53, respectively, by the urging force based on the hydraulic pressure of the hydraulic oil supplied to the release chambers 47 and 57. Then, the lock mechanism 26 is released. Further, the advance port 66P and the retard port 67P are closed. For this reason, both the supply and discharge of the hydraulic fluid to each advance chamber 36 through the advance oil passage 66 and the supply and discharge of the hydraulic oil to each retard chamber 37 through the retard oil passage 67 are stopped. The As a result, the valve timing is maintained. The OCV 62 is set to the fourth mode when the valve timing is maintained at the target valve timing and when the lock mechanism 26 is switched from the locked state to the released state.
 第5のモードでは、解除用供給ポート65Pと解除用ポート68Pとが連通されて、第2の供給油路65から解除油路68(68A,68B)を介して第1の解除室47及び第2の解除室57に作動油がそれぞれ供給される。その結果、各解除室47,57に供給される作動油に油圧に基づく付勢力により、進角制限ピン41及び遅角制限ピン51がそれぞれ解除され、ロック機構26は解除状態となる。また、進角ポート66Pと排出ポート69Pとが連通され、各進角室36の作動油が進角油路66から排出油路69を通じて排出される。さらに、進遅角供給ポート64Pと遅角ポート67Pとが連通され、第1の供給油路64から遅角油路67を介して各遅角室37に対して作動油がそれぞれ供給される。その結果、バルブタイミングが遅角される。すなわち、OCV62は、バルブタイミングの遅角制御を実行するときにこの第5のモードに設定される。 In the fifth mode, the release supply port 65P and the release port 68P are communicated with each other, and the first release chamber 47 and the first release chamber 65 are connected from the second supply oil passage 65 through the release oil passage 68 (68A, 68B). The hydraulic oil is supplied to the two release chambers 57 respectively. As a result, the advance limit pin 41 and the retard limit pin 51 are released by the urging force based on the hydraulic pressure of the hydraulic oil supplied to the release chambers 47 and 57, and the lock mechanism 26 is released. Further, the advance port 66P and the discharge port 69P are communicated, and the hydraulic oil in each advance chamber 36 is discharged from the advance oil passage 66 through the discharge oil passage 69. Further, the advance / retard angle supply port 64P and the retard angle port 67P are communicated, and hydraulic oil is supplied from the first supply oil path 64 to the respective retard angle chambers 37 via the retard angle oil path 67. As a result, the valve timing is retarded. That is, the OCV 62 is set to the fifth mode when executing the valve timing retardation control.
 次に、可変動弁装置20の作用について説明する。
 機関運転に伴いクランク軸12が回転するとその駆動力がタイミングチェーン(図示略)を介して可変機構25に伝達され、この可変機構25とともに、カム軸22が回転する。これにより、吸気バルブ21はカム軸22に設けられたカム(図示略)により開閉される。
Next, the operation of the variable valve gear 20 will be described.
When the crankshaft 12 rotates as the engine operates, the driving force is transmitted to the variable mechanism 25 via a timing chain (not shown), and the camshaft 22 rotates together with the variable mechanism 25. Thus, the intake valve 21 is opened and closed by a cam (not shown) provided on the cam shaft 22.
 また、可変機構25の進角室36及び遅角室37に対する作動油の給排状態がOCV62を通じて制御されると、進角室36及び遅角室37の油圧に基づき収容室35でベーン33Bが変位する。これにより、スプロケット31及びハウジング32に対するベーンロータ33の相対回転位置、すなわちクランク軸12に対するカム軸22の相対回転位置が変更され、吸気バルブ21のバルブタイミングが変更される。 Further, when the supply / discharge state of the hydraulic fluid to the advance chamber 36 and the retard chamber 37 of the variable mechanism 25 is controlled through the OCV 62, the vane 33 </ b> B is formed in the storage chamber 35 based on the hydraulic pressure of the advance chamber 36 and the retard chamber 37. Displace. Thereby, the relative rotational position of the vane rotor 33 with respect to the sprocket 31 and the housing 32, that is, the relative rotational position of the cam shaft 22 with respect to the crankshaft 12 is changed, and the valve timing of the intake valve 21 is changed.
 具体的には、OCV62が上述した第1のモード、第2のモード、又は第3のモードに設定されることにより、ベーンロータ33がハウジング32に対して進角側方向に相対回転すると、バルブタイミングが進角される。そして、ベーン33Bが遅角室37の進角側の内壁に接触すると、バルブタイミングは最進角時期となる。こうしてバルブタイミングが進角されると、排気バルブ23と吸気バルブ21とのバルブオーバーラップが大きくなるため、吸気の充填効率が高められ、内燃機関10の出力の向上を図ることができる。 Specifically, when the OCV 62 is set to the above-described first mode, second mode, or third mode, the vane rotor 33 rotates relative to the housing 32 in the advance side direction. Is advanced. When the vane 33B comes into contact with the inner wall on the advance side of the retard chamber 37, the valve timing becomes the most advanced timing. When the valve timing is advanced in this manner, the valve overlap between the exhaust valve 23 and the intake valve 21 increases, so that the intake charging efficiency is increased and the output of the internal combustion engine 10 can be improved.
 また、OCV62が第5のモードに設定されることにより、ベーンロータ33がハウジング32に対して遅角側方向に相対回転すると、バルブタイミングは遅角される。そして、ベーン33Bが進角室36の遅角側内壁に接触すると、バルブタイミングは最遅角時期となる。こうしてバルブタイミングが特定時期よりも遅角されると、吸気バルブ21の閉じ時期がピストン11の下死点BDCよりも比較的大きく遅角された燃焼サイクル、いわゆる「アトキンソンサイクル」での機関運転がなされることになる。これにより、圧縮比よりも膨張比を大きくすることができ、燃費を向上させることができるようになる。 Further, when the OCV 62 is set to the fifth mode, the valve timing is retarded when the vane rotor 33 rotates relative to the housing 32 in the retard angle direction. When the vane 33B comes into contact with the retarded side inner wall of the advance chamber 36, the valve timing becomes the most retarded timing. When the valve timing is retarded from the specific timing in this way, the engine operation in the combustion cycle in which the closing timing of the intake valve 21 is retarded relatively larger than the bottom dead center BDC of the piston 11, so-called “Atkinson cycle”, is performed. Will be made. Thereby, an expansion ratio can be made larger than a compression ratio, and a fuel consumption can be improved.
 ところで、内燃機関10の始動時においてバルブタイミングが最遅角時期に設定されると、圧縮比が十分ではないため、機関始動が不能となったり、機関始動に長期間を要したりする等、機関始動性の悪化を招くこととなる。そこで、本実施形態では、機関始動に際して、バルブタイミングが機関始動に適したバルブタイミングである特定時期にロックすべく、機関停止要求時には、ロック機構26をロック状態に切り替えるようにしている。 By the way, when the valve timing is set to the most retarded timing at the start of the internal combustion engine 10, the compression ratio is not sufficient, so that the engine cannot be started, or a long time is required for starting the engine, etc. The engine startability will be deteriorated. Thus, in the present embodiment, when the engine is started, the lock mechanism 26 is switched to the locked state at the time of engine stop request so that the valve timing is locked at a specific time that is a valve timing suitable for engine start.
 一般に、機関停止要求は内燃機関10がアイドル運転に移行した後に実行される。そこで、内燃機関10がアイドル運転時に移行すると、ロック機構26がロック状態に切り替わるようにOCV62が制御される。すなわち、バルブタイミングが特定時期よりも遅角側にある場合には、OCV62が第2のモードに設定される。一方、バルブタイミングが特定時期よりも進角側にある場合には、OCV62が一旦第5のモードに設定されて、バルブタイミングが遅角される。その後、OCV62が第2のモードに設定される。これにより、バルブタイミングが徐々に進角するとともに、第1の解除室47、第2の解除室57からそれぞれ作動油が排出される。そして、進角制限機構40の第1の解除室47から作動油が排出されてこの第1の解除室47の油圧が第1の解除油圧P1よりも低くなると、第1のばね42の付勢力によって付勢されることで進角制限ピン41が第1の凹部43(第1の下段部45)に嵌入する。併せて、遅角制限機構50の第2の解除室57から作動油が排出されてこの第2の解除室57の油圧が第2の解除油圧P2よりも低下すると、第2のばね52の付勢力によって付勢されることで遅角制限ピン51が第2の凹部53(第2の下段部55)に嵌入する。これにより、進角制限ピン41の進角側への変位が第1の下段部45の進角側の内壁45Bで規制されるとともに、遅角制限ピン51の遅角側への変位が第2の下段部55の遅角側の内壁55Aで規制されて、ロック機構26がロック状態になる。すなわち、バルブタイミングが特定時期にロックされる。 Generally, the engine stop request is executed after the internal combustion engine 10 shifts to idle operation. Therefore, when the internal combustion engine 10 shifts during idle operation, the OCV 62 is controlled so that the lock mechanism 26 is switched to the locked state. That is, when the valve timing is on the retard side with respect to the specific timing, the OCV 62 is set to the second mode. On the other hand, when the valve timing is more advanced than the specific timing, the OCV 62 is once set to the fifth mode, and the valve timing is retarded. Thereafter, the OCV 62 is set to the second mode. Accordingly, the valve timing is gradually advanced, and the hydraulic oil is discharged from the first release chamber 47 and the second release chamber 57, respectively. When the hydraulic oil is discharged from the first release chamber 47 of the advance angle limiting mechanism 40 and the hydraulic pressure in the first release chamber 47 becomes lower than the first release hydraulic pressure P1, the urging force of the first spring 42 is applied. The advance angle limiting pin 41 is fitted into the first recess 43 (first lower step 45). At the same time, when the hydraulic oil is discharged from the second release chamber 57 of the retard restriction mechanism 50 and the hydraulic pressure in the second release chamber 57 is lower than the second release hydraulic pressure P2, the second spring 52 is attached. By being energized by the force, the retard limit pin 51 is fitted into the second recess 53 (second lower step portion 55). As a result, the advance angle limit pin 41 is displaced toward the advance side by the advance side inner wall 45B of the first lower step 45, and the retard angle limit pin 51 is displaced toward the retard side by the second angle. The lock mechanism 26 is locked by being regulated by the inner wall 55A on the retard side of the lower step portion 55. That is, the valve timing is locked at a specific time.
 その後、内燃機関10の始動要求があったときには、バルブタイミングが特定時期にロックされた状態でクランキングが開始される。こうしてバルブタイミングが特定時期に設定されているときに機関始動が開始されると、図6に示すように、ピストン11が上死点(排気上死点、或いは吸気上死点)TDCにあるときに吸気バルブ21が開弁するとともに、下死点(吸気下死点)BDCよりも遅角側で閉弁する。また、排気バルブ23と吸気バルブ21とのバルブオーバーラップが小さく抑えられている。これにより、圧縮比が機関始動に適した値になるとともに機関始動時における燃焼性が安定し、内燃機関10は良好に始動することができる。 After that, when the internal combustion engine 10 is requested to start, cranking is started with the valve timing locked at a specific time. When the engine start is started when the valve timing is set to a specific timing in this way, as shown in FIG. 6, when the piston 11 is at the top dead center (exhaust top dead center or intake top dead center) TDC. The intake valve 21 is opened at the same time, and the valve is closed on the retard side from the bottom dead center (intake bottom dead center) BDC. Further, the valve overlap between the exhaust valve 23 and the intake valve 21 is kept small. As a result, the compression ratio becomes a value suitable for starting the engine, the combustibility at the time of starting the engine is stabilized, and the internal combustion engine 10 can be started well.
 そして、機関始動後にバルブタイミングを特定時期から解除する解除条件が成立すると、ロック機構26が解除状態に切り替えられる。具体的には、OCV62が第4のモードに設定されることにより、第1の解除室47及び第2の解除室57に対して、解除油路68を通じて作動油がそれぞれ供給される。なお、上述したように、解除油路68はその途中において第1の解除油路68Aと第2の解除油路68Bとに分岐しているため、解除油路68に供給された作動油は、これら解除油路68A,68Bを通じて両解除室47,57に対して等しく供給される。 When the release condition for releasing the valve timing from the specific time is established after the engine is started, the lock mechanism 26 is switched to the release state. Specifically, when the OCV 62 is set to the fourth mode, the hydraulic oil is supplied to the first release chamber 47 and the second release chamber 57 through the release oil passage 68, respectively. As described above, since the release oil passage 68 is branched into the first release oil passage 68A and the second release oil passage 68B in the middle thereof, the hydraulic oil supplied to the release oil passage 68 is These release oil passages 68A and 68B are equally supplied to both release chambers 47 and 57.
 ところで、このようにロック機構26をロック状態から解除状態に切り替える際に、進角制限ピン41と遅角制限ピン51とが同一のタイミングでそれぞれ解除されることはほとんどなく、多くの場合、それらピン41,51のいずれか一方が先に解除される。 By the way, when the lock mechanism 26 is switched from the locked state to the released state in this way, the advance angle limit pin 41 and the retard angle limit pin 51 are rarely released at the same timing. Either one of the pins 41 and 51 is released first.
 そして、進角制限ピン41が遅角制限ピン51よりも先に解除されたときの機関運転状態の変化と、遅角制限ピン51が進角制限ピン41よりも先に解除されたときの機関運転状態の変化とは異なるものとなる。具体的には、上述した進角室36及び遅角室37の各油圧が十分に上昇していない状況のもとで、進角制限ピン41及び遅角制限ピン51の一方が凹部43,53に嵌入したまま、他方が先に解除された場合には、その先に解除されるピン41,51に応じてバルブリフト量が以下のように変化することとなる。 The engine operating state changes when the advance angle limit pin 41 is released before the retard angle limit pin 51 and the engine when the delay angle limit pin 51 is released before the advance angle limit pin 41. It is different from the change of the driving state. Specifically, under the situation where each hydraulic pressure of the advance chamber 36 and the retard chamber 37 is not sufficiently increased, one of the advance angle limit pin 41 and the retard angle limit pin 51 is not recessed. When the other is released first while being fitted in the valve, the valve lift amount changes as follows according to the pins 41 and 51 released earlier.
 図6(a)には、遅角制限ピン51が進角制限ピン41よりも先に解除されたときのバルブリフト量の変化を示している。同図に示すように、遅角制限ピン51が先に解除されると、吸気バルブ21のリフト量が増大する期間であってカム軸22に対して正トルクが作用している期間では、進角制限ピン41が第1の下段部45に嵌入したまま、同進角制限ピン41が第1の下段部45の遅角側の内壁45Aに接触するまで、遅角側に変位する(図4参照)。こうしてバルブタイミングが遅角する方向にベーンロータ33とハウジング32とが相対回転すると、ロック機構26がロック状態にある場合(破線にて図示)と比較して、吸気バルブ21のリフト変化が遅れるためバルブリフト量が減少するようになる。したがって、ロック機構26がロック状態にある場合と比較して、燃焼室13に導入される吸入空気量が減少することにより機関出力が低下する。一方、吸気バルブ21のリフト量が減少する期間であってカム軸22に対して負トルクが作用している期間では、進角制限ピン41は第1の下段部45の進角側の内壁45Bによりその変位が規制されるため、ロック機構26がロック状態にある場合と同様に、バルブリフト量が変化することとなる。 FIG. 6A shows a change in the valve lift amount when the retard limit pin 51 is released before the advance limit pin 41. As shown in the figure, when the retard limit pin 51 is released first, the advancement is performed during the period in which the lift amount of the intake valve 21 increases and the positive torque acts on the camshaft 22. While the angle limit pin 41 is fitted in the first lower step portion 45, the advance angle limit pin 41 is displaced toward the retard side until it contacts the inner wall 45A on the retard side of the first lower step portion 45 (FIG. 4). reference). When the vane rotor 33 and the housing 32 rotate relative to each other in the direction in which the valve timing is retarded in this way, the lift change of the intake valve 21 is delayed as compared with the case where the lock mechanism 26 is in the locked state (shown by a broken line). The lift amount decreases. Therefore, compared with the case where the lock mechanism 26 is in the locked state, the engine output is reduced by reducing the amount of intake air introduced into the combustion chamber 13. On the other hand, in the period in which the lift amount of the intake valve 21 is reduced and the negative torque is acting on the camshaft 22, the advance limit pin 41 is the inner wall 45B on the advance side of the first lower stage 45. Therefore, the displacement of the valve is restricted, so that the valve lift amount changes as in the case where the lock mechanism 26 is in the locked state.
 これに対し、図6(b)には、進角制限ピン41が遅角制限ピン51よりも先に解除されたときのバルブリフト量の変化を示している。同図に示すように、進角制限ピン41が先に解除されると、吸気バルブ21のリフト量が減少する期間であってカム軸22に対して負トルクが作用している期間では、遅角制限ピン51は、第2の下段部55に嵌入したまま、第2の下段部55の進角側の内壁55Bに接触するまで、進角側に変位する(図4参照)。こうしてバルブタイミングが進角する方向にベーンロータ33とハウジング32とが相対回転すると、ロック機構26がロック状態にある場合(破線にて図示)と比較して、吸気バルブ21のリフト変化が早くなるためバルブリフト量が減少するようになる。したがって、ロック機構26がロック状態にある場合と比較して、燃焼室13に導入される吸入空気量が減少することにより機関出力が低下する。一方、吸気バルブ21のリフト量が増大する期間であってカム軸22に対して正トルクが作用している期間では、遅角制限ピン51は第2の下段部55の遅角側の内壁55Aによりその変位が規制されるため、ロック機構26がロック状態にある場合と同様に、バルブリフト量が変化することとなる。 On the other hand, FIG. 6B shows a change in the valve lift when the advance limit pin 41 is released before the retard limit pin 51. As shown in the figure, when the advance angle limiting pin 41 is released first, it is delayed in a period in which the lift amount of the intake valve 21 is reduced and negative torque is acting on the camshaft 22. The angle limiting pin 51 is displaced toward the advance side until it contacts the inner wall 55B on the advance side of the second lower step portion 55 while being fitted in the second lower step portion 55 (see FIG. 4). Thus, when the vane rotor 33 and the housing 32 rotate relative to each other in the direction in which the valve timing advances, the lift change of the intake valve 21 becomes faster than when the lock mechanism 26 is in the locked state (illustrated by a broken line). The valve lift is reduced. Therefore, compared with the case where the lock mechanism 26 is in the locked state, the engine output is reduced by reducing the amount of intake air introduced into the combustion chamber 13. On the other hand, in the period in which the lift amount of the intake valve 21 is increased and the positive torque is acting on the camshaft 22, the retard limit pin 51 is connected to the inner wall 55A on the retard side of the second lower stage portion 55. Therefore, the displacement of the valve is restricted, so that the valve lift amount changes as in the case where the lock mechanism 26 is in the locked state.
 ここで、吸気バルブ21のバルブタイミングが特定時期にあるとき、吸気バルブ21が上死点TDCで開弁するとともに下死点BDCよりも遅角側で閉弁するように同バルブタイミングが設定される内燃機関10では、吸気バルブ21の開弁時に燃焼室13に流入する時間当たりの吸気の量についてみたとき、その量は吸気バルブ21のバルブリフト量が増大する期間よりも減少する期間の方が大きくなる。これは、バルブリフト量が増大する期間では減少する期間と比較して燃焼室13に発生する負圧が小さく、吸気の慣性力も小さいため、燃焼室13に流入する吸気の平均流速が小さくなるからである。したがって、バルブリフト量が減少してカム軸に負トルクが作用する期間が吸入空気量を決定するうえで支配的な期間となる。そのため、ロック機構26がロック状態にある状態から遅角制限ピン51のみが先に解除された状態に切り替わる前後において生じる機関運転状態の変化の方が(図6(a))、ロック機構26がロック状態にある状態から進角制限ピン41のみが先に解除された状態に切り替わる前後において生じる機関運転状態の変化(図6(b))よりも小さくなる。換言すると、ロック機構26がロック状態にある状態から遅角制限ピン51のみが先に解除された状態に切り替わる前後において生じる機関出力の低下度合いは(図6(a))、ロック機構26がロック状態にある状態から進角制限ピン41のみが先に解除された状態に切り替わる前後において生じる機関出力の低下度合い(図6(b))よりも小さくなる。 Here, when the valve timing of the intake valve 21 is at a specific time, the valve timing is set so that the intake valve 21 opens at the top dead center TDC and closes on the retard side from the bottom dead center BDC. In the internal combustion engine 10, when the amount of intake air per hour flowing into the combustion chamber 13 when the intake valve 21 is opened, the amount is reduced during the period when the valve lift amount of the intake valve 21 is increased. Becomes larger. This is because the negative pressure generated in the combustion chamber 13 is smaller and the inertial force of the intake air is smaller in the period in which the valve lift amount increases than in the period in which the valve lift amount decreases, so the average flow velocity of the intake air flowing into the combustion chamber 13 becomes smaller. It is. Therefore, the period in which the valve lift amount decreases and the negative torque acts on the camshaft becomes a dominant period in determining the intake air amount. Therefore, the change in the engine operating state that occurs before and after switching from the state in which the lock mechanism 26 is in the locked state to the state in which only the retard limit pin 51 is released first (FIG. 6A) is greater. This is smaller than the change in the engine operating state (FIG. 6B) that occurs before and after the state where only the advance angle limiting pin 41 is switched from the locked state to the previously released state. In other words, the degree of decrease in engine output that occurs before and after switching from the state in which the lock mechanism 26 is in the locked state to the state in which only the retard limit pin 51 is released first (FIG. 6 (a)), the lock mechanism 26 is locked. This is smaller than the degree of reduction in engine output (FIG. 6B) that occurs before and after switching from the state where only the advance angle limiting pin 41 is released to the state previously released.
 次に、図7を参照して、吸気バルブ21のバルブリフト量及びカム軸22に作用するトルクの推移と、進角制限ピン41及び遅角制限ピン51のそれぞれの解除可能期間の推移とについて説明する。なお図7は、カム軸22に3つのカムがそれぞれ形成され、それらカムにより開閉駆動される吸気バルブ21の開弁期間が240°CAである場合を例に、バルブリフト量及びカム軸22に作用するトルクの推移をそれぞれ示している。 Next, referring to FIG. 7, the transition of the valve lift amount of the intake valve 21 and the torque acting on the camshaft 22 and the transition of the releasable period of each of the advance limit pin 41 and the retard limit pin 51 are described. explain. FIG. 7 shows an example in which three cams are formed on the cam shaft 22 and the valve opening period of the intake valve 21 that is driven to open and close by the cams is 240 ° CA. The transition of the acting torque is shown respectively.
 ここで、ロック機構26がロック状態にあるときに、バルブリフト量の増大に伴いカム軸22に対して正トルクが作用すると、ベーンロータ33がカバー30に対して遅角側に変位する方向に力が作用する。このため、第2の下段部55の遅角側の内壁55Aと遅角制限ピン51との押圧力の方が、第1の下段部45の進角側の内壁45Bと進角制限ピン41との押圧力よりも大きくなる。すなわち、遅角制限ピン51には、進角制限ピン41と比較してより大きい押圧力が作用することとなる。したがって、正トルクがカム軸22に作用するバルブリフト量の増大期間に各解除室47,57の油圧を上昇させるように作動油を供給する第1の供給態様をもってOCV62が制御されると、進角制限ピン41が遅角制限ピン51よりも先に解除される。 Here, when the lock mechanism 26 is in the locked state, if a positive torque acts on the camshaft 22 as the valve lift amount increases, a force is exerted in a direction in which the vane rotor 33 is displaced toward the retard side with respect to the cover 30. Act. For this reason, the pressing force between the retard-side inner wall 55A of the second lower step portion 55 and the retard limit pin 51 is such that the advance side inner wall 45B and the advance limit pin 41 of the first lower step portion 45 It becomes larger than the pressing force. That is, a larger pressing force acts on the retard limit pin 51 than the advance limit pin 41. Therefore, when the OCV 62 is controlled with the first supply mode for supplying the hydraulic oil so as to increase the hydraulic pressure in the release chambers 47 and 57 during the increase period of the valve lift amount in which the positive torque acts on the camshaft 22, the OCV 62 advances. The angle limit pin 41 is released before the retard limit pin 51.
 一方、ロック機構26がロック状態にあるときに、バルブリフト量の減少に伴いカム軸22に対して負トルクが作用すると、ベーンロータ33がカバー30に対して進角側に変位する方向に力が作用する。このため、第1の下段部45の進角側の内壁45Bと進角制限ピン41との押圧力の方が、第2の下段部55の遅角側の内壁55Aと遅角制限ピン51との押圧力よりも大きくなる。すなわち、進角制限ピン41には、遅角制限ピン51と比較してより大きい押圧力が作用することとなる。したがって、負トルクがカム軸22に作用するバルブリフト量の減少期間に各解除室47,57の油圧を上昇させるように作動油を供給する第2の供給態様をもってOCV62が制御されると、遅角制限ピン51が進角制限ピン41よりも先に解除される。 On the other hand, when the lock mechanism 26 is in the locked state, if a negative torque acts on the camshaft 22 as the valve lift amount decreases, a force is applied in a direction in which the vane rotor 33 is displaced toward the advance side with respect to the cover 30. Works. Therefore, the pressing force between the advance side inner wall 45B of the first lower step portion 45 and the advance limit pin 41 is such that the retard side inner wall 55A and the retard limit pin 51 of the second lower step portion 55 are It becomes larger than the pressing force. In other words, a larger pressing force acts on the advance limit pin 41 than on the retard limit pin 51. Accordingly, when the OCV 62 is controlled with the second supply mode in which the hydraulic oil is supplied so as to increase the hydraulic pressure of the release chambers 47 and 57 during the period in which the valve lift amount on which the negative torque acts on the camshaft 22 is reduced, the OCV 62 is delayed. The angle limit pin 51 is released before the advance angle limit pin 41.
 そこで、本実施形態では、第2の供給態様をもってOCV62が制御される。具体的には、カム軸22に対して負トルクが作用している期間において、OCV62が第4のモードに設定され、これにより第1の解除室47及び第2の解除室57に対する作動油の供給が実行される。 Therefore, in the present embodiment, the OCV 62 is controlled with the second supply mode. Specifically, the OCV 62 is set to the fourth mode during a period in which a negative torque is acting on the camshaft 22, whereby the hydraulic oil is supplied to the first release chamber 47 and the second release chamber 57. Supply is performed.
 次に、図8を参照して、機関始動時における各解除室47,57に対する作動油の供給状態と進角制限ピン41及び遅角制限ピン51の状態との関係を説明する。
 タイミングT1において内燃機関10が始動された後、タイミングT2においてカム軸22に対して負トルクが作用し始めると、OCV62が第4のモードに設定されて第1の解除室47及び第2の解除室57への作動油の供給が開始される。このようにカム軸22に対して負トルクが作用している期間は、遅角制限ピン51の解除可能期間であるため、タイミングT3において遅角制限ピン51が進角制限ピン41よりも先に解除される。その後、タイミングT4においてカム軸22に対して正トルクが作用し始めると、このようにカム軸22に対して正トルクが作用している期間は進角制限ピン41の解除可能期間であるため、タイミングT5において進角制限ピン41が解除される。これにより、ロック機構26は解除状態となる。その後、OCV62の制御を通じて、吸気バルブ21のバルブタイミングが機関運転状態に適した目標バルブタイミングに設定される。
Next, with reference to FIG. 8, the relationship between the supply state of the hydraulic fluid to the release chambers 47 and 57 and the states of the advance angle limit pin 41 and the retard angle limit pin 51 at the time of starting the engine will be described.
After the internal combustion engine 10 is started at the timing T1, when the negative torque starts to act on the camshaft 22 at the timing T2, the OCV 62 is set to the fourth mode, and the first release chamber 47 and the second release are set. Supply of hydraulic oil to the chamber 57 is started. Since the period during which negative torque is acting on the camshaft 22 in this way is the period during which the retard limit pin 51 can be released, the retard limit pin 51 comes before the advance limit pin 41 at timing T3. Canceled. Thereafter, when a positive torque starts to act on the camshaft 22 at timing T4, the period in which the positive torque is acting on the camshaft 22 is a period in which the advance limit pin 41 can be released. At timing T5, the advance angle limit pin 41 is released. As a result, the lock mechanism 26 is released. Thereafter, the valve timing of the intake valve 21 is set to a target valve timing suitable for the engine operating state through the control of the OCV 62.
 以上説明した本実施形態によれば、以下の作用効果を奏することができる。
 (1)進角制限機構40及び遅角制限機構50の各ピン41,51のうち常に同じピンを他方のピン41,51よりも先に解除するように、各解除室47,57に対する作動油の給排状態が共通のOCV62を通じて制御される。そのため、ロック機構26をロック状態から解除状態に切り替える際に、常に同じピン41,51が先に解除される。したがって、ロック機構26をロック状態から解除状態に切り替える際にその前後において生じるバルブリフト量の変化態様が、その切り替えの都度異なった態様になることが抑制される。これにより、進角制限機構40及び遅角制限機構50の各解除室47,57に対して共通のOCV62により作動油を給排可能としつつ、ロック機構26をロック状態から解除状態に切り替える際に機関運転状態が都度異なる態様で変化することを抑制することができる。
According to this embodiment described above, the following effects can be obtained.
(1) Hydraulic oil for the release chambers 47 and 57 so that the same pin among the pins 41 and 51 of the advance angle limiting mechanism 40 and the retard angle limiting mechanism 50 is always released before the other pins 41 and 51. Are controlled through the common OCV 62. Therefore, when the lock mechanism 26 is switched from the locked state to the released state, the same pins 41 and 51 are always released first. Therefore, when the lock mechanism 26 is switched from the locked state to the released state, the change mode of the valve lift amount that occurs before and after the lock mechanism 26 is suppressed from being different every time the switch is performed. Thus, when the lock mechanism 26 is switched from the locked state to the released state while allowing the hydraulic oil to be supplied and discharged by the common OCV 62 to the release chambers 47 and 57 of the advance angle limiting mechanism 40 and the retard angle limiting mechanism 50. It is possible to suppress the engine operating state from changing in a different manner each time.
 (2)内燃機関10では、進角制限ピン41が遅角制限ピン51よりも先に解除されたときの機関運転状態の変化と比較して、遅角制限ピン51が進角制限ピン41よりも先に解除されたときの機関運転状態の変化の方が小さい。そのため、遅角制限ピン51が先に解除されるようにOCV62が制御される。これにより、ロック機構26をロック状態から解除状態に切り替える際に機関運転状態が大きく変化することを抑えることができ、その安定化を図ることができるようになる。 (2) In the internal combustion engine 10, the retard limit pin 51 is more advanced than the advance limit pin 41 compared to the change in the engine operating state when the advance limit pin 41 is released before the retard limit pin 51. The change in the engine operating state when it is first released is smaller. Therefore, the OCV 62 is controlled so that the retard limit pin 51 is released first. Thereby, when the lock mechanism 26 is switched from the locked state to the released state, it is possible to suppress a significant change in the engine operating state and to stabilize it.
 (3)また、上述したように遅角制限ピン51が進角制限ピン41よりも先に解除されるため、バルブリフト量が減少してカム軸22に負トルクが作用する期間、換言すれば吸入空気量を決定するうえで支配的な期間において、実際のバルブリフト量が本来のバルブリフト量よりも大きく低下することを抑制することでき、吸入空気量の減少に起因する機関出力の低下を抑えることができるようになる。 (3) Further, as described above, since the retard limit pin 51 is released before the advance limit pin 41, in other words, a period during which the valve lift amount decreases and negative torque acts on the camshaft 22. During the dominant period for determining the intake air amount, it is possible to suppress the actual valve lift amount from greatly decreasing from the original valve lift amount, and to reduce the engine output due to the decrease in the intake air amount. It will be possible to suppress.
 (4)可変動弁装置20には、単一のOCV62が設けられるとともに、このOCV62により進角室36、遅角室37、第1の解除室47、及び第2の解除室57に対する作動油の給排状態が制御される。したがって、複数のOCVが設けられる構成と比較して、部品点数を削減することができ、可変動弁装置20の製造コストを削減することができる。 (4) The variable valve operating apparatus 20 is provided with a single OCV 62, and hydraulic fluid for the advance chamber 36, the retard chamber 37, the first release chamber 47, and the second release chamber 57 is provided by this OCV 62. The supply / discharge state is controlled. Therefore, the number of parts can be reduced and the manufacturing cost of the variable valve operating apparatus 20 can be reduced as compared with a configuration in which a plurality of OCVs are provided.
 (その他の実施形態)
 なお、この発明にかかる内燃機関の可変動弁装置は、上述した実施形態にて例示した構成に限定されるものではなく、この実施形態を適宜変更した例えば次のような形態として実施することもできる。
(Other embodiments)
The variable valve operating apparatus for an internal combustion engine according to the present invention is not limited to the configuration exemplified in the above-described embodiment, and may be implemented as, for example, the following form obtained by appropriately modifying this embodiment. it can.
 ・上記実施形態では、遅角制限ピン51を進角制限ピン41よりも先に解除すべく、カム軸22に対して負トルクが作用している期間にOCV62が第4のモードに設定されて第1の解除室47及び第2の解除室57に対する作動油の供給が開始される例を示した。これに対し、カム軸22に対して正トルクが作用している期間に、第1の解除室47及び第2の解除室57の油圧を第1の解除油圧P1及び第2の解除油圧P2よりもそれぞれ低い値となるまで上昇させておき、その後カム軸22に対して負トルクが作用し始めた後に解除油圧にまで上昇させるようにしてもよい。なお、第1の解除室47及び第2の解除室57に対する作動油の供給開始時期については、OCV62の応答性、作動油の粘性等を考慮して決定することが望ましい。この場合であっても、上述した各作用効果を奏することができる。 In the above embodiment, the OCV 62 is set to the fourth mode during the period in which the negative torque is acting on the camshaft 22 in order to release the retard limit pin 51 before the advance limit pin 41. An example is shown in which the supply of hydraulic oil to the first release chamber 47 and the second release chamber 57 is started. On the other hand, the hydraulic pressures of the first release chamber 47 and the second release chamber 57 are changed from the first release hydraulic pressure P1 and the second release hydraulic pressure P2 during a period in which a positive torque is applied to the camshaft 22. Alternatively, the pressure may be increased to a low value, and after that, after the negative torque starts to act on the camshaft 22, it may be increased to the release hydraulic pressure. Note that it is desirable to determine the supply start timing of the hydraulic oil to the first release chamber 47 and the second release chamber 57 in consideration of the responsiveness of the OCV 62, the viscosity of the hydraulic oil, and the like. Even in this case, the above-described effects can be achieved.
 ・上記実施形態で示したOCV62の各モードと作動油通路61における作動油の給排状態との関係は一例であって、適宜変更することができる。
 ・上記実施形態では、遅角制限ピン51を進角制限ピン41よりも先に解除すべく、カム軸22に対して負トルクが作用している期間にOCV62が第4のモードに設定され、その後、OCV62のモードを第4のモードに保持しつつ進角制限ピン41を解除する例を示した。これに対し、遅角制限ピン51が解除された後にOCV62のモードを変更するようにしてもよい。例えば、遅角制限ピン51のみが解除された後、OCV62を第5のモードに設定して進角制限ピン41を解除するようにしてもよい。すなわち、OCV62が第5のモードに設定されてバルブタイミングの遅角制御が開始されると、第1の下段部45の進角側の内壁45Bと進角制限ピン41との押圧力が減少する。また、併せて解除室47,57に対して作動油が供給されるため、進角制限ピン41を解除することができる。さらに、ロック機構26がロック状態から解除状態に切り替えた後、バルブタイミングを特定時期よりも遅角側により迅速に変更することができるようになる。
-The relationship between each mode of OCV62 shown in the said embodiment and the supply-and-discharge state of the hydraulic fluid in the hydraulic fluid passage 61 is an example, and can be changed suitably.
In the above embodiment, the OCV 62 is set to the fourth mode during the period in which the negative torque is acting on the camshaft 22 to release the retard limit pin 51 before the advance limit pin 41, Thereafter, an example in which the advance angle limiting pin 41 is released while the mode of the OCV 62 is maintained in the fourth mode is shown. On the other hand, the mode of the OCV 62 may be changed after the retard limit pin 51 is released. For example, after only the retard limit pin 51 is released, the OCV 62 may be set to the fifth mode and the advance angle limit pin 41 may be released. That is, when the OCV 62 is set to the fifth mode and the valve timing retardation control is started, the pressing force between the advance side inner wall 45B of the first lower stage 45 and the advance limit pin 41 decreases. . In addition, since the hydraulic oil is supplied to the release chambers 47 and 57, the advance limit pin 41 can be released. Furthermore, after the lock mechanism 26 switches from the locked state to the released state, the valve timing can be changed more quickly on the retard side than the specific time.
 ・上記実施形態では、遅角制限ピン51を進角制限ピン41よりも先に解除すべく、カム軸22に対して負トルクが作用している期間にOCV62が第4のモードに設定されるとともにこの第4のモードが維持されることにより、カム軸22に対して正トルクが作用している期間において進角制限ピン41が解除される例を示した。これに対し、上記実施形態において実行されるピン41,51の各々の解除の間隔よりも、長い間隔をもってピン41,51をそれぞれ解除する構成を採用することもできる。例えば、カム軸22に対して負トルクが作用している期間にOCV62を第4のモードに設定して遅角制限ピン51を解除した後、解除室47,57に対する作動油の供給が実行されない第1のモード又は第2のモードにOCV62を一旦設定し、さらにその後、カム軸22に対して正トルクが作用している期間にOCV62を再度第4のモードに設定して進角制限ピン41を解除するようにしてもよい。 In the above embodiment, the OCV 62 is set to the fourth mode during the period in which the negative torque is acting on the camshaft 22 in order to release the retard limit pin 51 before the advance limit pin 41. In addition, the example in which the advance angle limiting pin 41 is released during the period in which the positive torque is applied to the camshaft 22 by maintaining the fourth mode is shown. On the other hand, it is also possible to adopt a configuration in which the pins 41 and 51 are released with a longer interval than the release intervals of the pins 41 and 51 executed in the embodiment. For example, the hydraulic oil is not supplied to the release chambers 47 and 57 after the OCV 62 is set to the fourth mode and the retard limit pin 51 is released during a period in which negative torque is acting on the camshaft 22. The OCV 62 is once set to the first mode or the second mode, and then the OCV 62 is set to the fourth mode again during a period in which the positive torque is acting on the camshaft 22 to advance the advance angle limiting pin 41. May be canceled.
 ・上記実施形態では、OCV62による作動油の供給態様として第2の供給態様を採用する例を示した。これに対し、正トルクがカム軸22に作用するバルブリフト量の増大期間に各解除室47,57の油圧を上昇させるように作動油を供給する第1の供給態様をもって、第1の解除室47及び第2の解除室57に作動油が供給されるようにOCV62を制御するようにしてもよい。例えば、ロック機構26がロック状態にある状態から進角制限ピン41が遅角制限ピン51よりも先に解除された状態に切り替わる前後において生じる機関運転状態の変化が、遅角制限ピン51が進角制限ピン41よりも先に解除された状態に切り替わる前後において生じる機関運転状態の変化よりも小さい内燃機関では、上述した第1の供給態様をもってOCV62が制御されることにより、進角制限ピン41が先に解除されるようにすればよい。これにより、ロック機構26をロック状態から解除状態に切り替える際に機関運転状態が大きく変化することを抑えることができ、その安定化を図ることができるようになる。 In the above embodiment, the example in which the second supply mode is adopted as the hydraulic oil supply mode by the OCV 62 is shown. In contrast, the first release chamber has a first supply mode in which hydraulic oil is supplied so as to increase the hydraulic pressure of each release chamber 47, 57 during the increase period of the valve lift amount in which positive torque acts on the camshaft 22. The OCV 62 may be controlled such that hydraulic oil is supplied to the 47 and the second release chamber 57. For example, a change in the engine operating state that occurs before and after the advance angle limit pin 41 is switched from a state in which the lock mechanism 26 is in a locked state to a state in which the advance angle limit pin 41 is released before the delay angle limit pin 51 causes the delay angle limit pin 51 to advance. In an internal combustion engine that is smaller than the change in the engine operating state that occurs before and after switching to the released state before the angle limiting pin 41, the OCV 62 is controlled with the first supply mode described above, whereby the advance angle limiting pin 41 is controlled. May be canceled first. Thereby, when the lock mechanism 26 is switched from the locked state to the released state, it is possible to suppress a significant change in the engine operating state and to stabilize it.
 ・吸気バルブのバルブタイミングが特定時期にあるときの同吸気バルブの開弁時期と閉弁時期については、上記実施形態において例示したものに限らず、機関出力特性や燃費特性等々の機関要求特性に応じて適宜変更することもできる。そして、こうして設定された吸気バルブの開弁時期及び閉弁時期のもと、ロック機構26をロック状態から解除状態に移行させるときにおける機関運転状態の変化態様を考慮して、先に解除すべきピン41,51を決定することにより、上記(1)、(2)、(4)に示した各作用効果に準じた作用効果を奏することができる。 The opening timing and closing timing of the intake valve when the valve timing of the intake valve is at a specific timing are not limited to those exemplified in the above embodiment, but may be engine demand characteristics such as engine output characteristics and fuel consumption characteristics. It can also be changed accordingly. Then, based on the opening timing and closing timing of the intake valve thus set, the engine operating state should be canceled first when the lock mechanism 26 is shifted from the locked state to the released state. By determining the pins 41 and 51, it is possible to achieve operational effects according to the operational effects shown in the above (1), (2), and (4).
 ・上記実施形態では、ロック機構26をロック状態がある状態からいずれか一方のピン41,51が解除された状態に切り替わる前後において生じる機関運転状態の変化を考慮して、進角制限ピン41及び遅角制限ピン51のうち先に解除すべきピンが決定される例を示した。しかし、こうした機関運転状態の変化を考慮しない場合であっても、進角制限ピン41と遅角制限ピン51とを異なるタイミングで解除するべく作動油の給排状態を制御することにより、上記(1)、(4)に示した各作用効果を奏することができる。 In the above embodiment, in consideration of the change in the engine operating state that occurs before and after the lock mechanism 26 is switched from the locked state to the released state of one of the pins 41, 51, the advance angle limiting pin 41 and The example in which the pin to be released first among the retard limit pins 51 is determined is shown. However, even if such a change in the engine operating state is not taken into consideration, the hydraulic oil supply / discharge state is controlled to release the advance angle limit pin 41 and the retard angle limit pin 51 at different timings. Each effect shown in 1) and (4) can be exhibited.
 ・上記実施形態では、進角制限機構40の第1の凹部43、及び遅角制限機構50の第2の凹部53のそれぞれに複数の段部44,45,54,55が形成されて、進角制限機構40及び遅角制限機構50がラチェット機構としても機能する例を示した。しかし、第1の凹部43及び第2の凹部に複数の段部が形成されていない構成を採用することも可能である。この場合であっても、進角制限ピン41が第1の凹部43に嵌入するとともに、遅角制限ピン51が第2の凹部53に嵌入することにより、バルブタイミングが特定時期にロックされてロック機構26がロック状態となる。また、上記(1)~(4)に示した各作用効果を奏することができる。 In the above embodiment, a plurality of step portions 44, 45, 54, and 55 are formed in the first recess 43 of the advance angle limiting mechanism 40 and the second recess 53 of the retard angle limiting mechanism 50, respectively. An example in which the angle limiting mechanism 40 and the retardation limiting mechanism 50 function also as a ratchet mechanism is shown. However, it is also possible to employ a configuration in which a plurality of steps are not formed in the first recess 43 and the second recess. Even in this case, the advance angle limit pin 41 is fitted into the first recess 43 and the retard angle limit pin 51 is fitted into the second recess 53, so that the valve timing is locked and locked at a specific time. The mechanism 26 is locked. In addition, the functions and effects shown in (1) to (4) above can be achieved.
 ・また、上記各実施形態では、特定時期よりも遅角側にあるバルブタイミングを進角させる機構としてラチェット機構を構成する例を示した。これに対し、特定時期よりも進角側にあるバルブタイミングを遅角させる機構も併せて有するようにラチェット機構を構成するようにしてもよい。 In each of the above embodiments, an example in which the ratchet mechanism is configured as a mechanism for advancing the valve timing that is on the retard side with respect to the specific time has been shown. On the other hand, the ratchet mechanism may be configured to also have a mechanism for retarding the valve timing that is on the more advanced side than the specific time.
 ・上記実施形態では、可変動弁装置20の各油室に対する作動油の給排状態が単一のOCV62により制御される例を示した。これに対し、可変機構25の進角室36及び遅角室37に対する作動油の給排状態を制御する油路制御弁と、ロック機構26の第1の解除室47及び第2の解除室57に対する作動油の給排状態を制御する油路制御弁とを各別に設けるようにしてもよい。この場合であっても、上記(1)~(3)に示した各作用効果を奏することができる。 In the above-described embodiment, the example in which the supply / discharge state of the hydraulic oil with respect to each oil chamber of the variable valve apparatus 20 is controlled by the single OCV 62 has been described. On the other hand, an oil passage control valve for controlling the supply / discharge state of hydraulic oil to / from the advance chamber 36 and the retard chamber 37 of the variable mechanism 25, and the first release chamber 47 and the second release chamber 57 of the lock mechanism 26. An oil passage control valve for controlling the supply / discharge state of the hydraulic oil with respect to the oil may be provided separately. Even in this case, the effects shown in the above (1) to (3) can be achieved.
 ・上記実施形態では、進角制限機構40及び遅角制限機構50を各別のベーン33Bにそれぞれ設ける例を示した。これに対し、同一のベーン33Bに進角制限機構40及び遅角制限機構50を設ける構成を採用することもできる。 In the above embodiment, an example in which the advance angle limiting mechanism 40 and the retard angle limiting mechanism 50 are provided in the respective vanes 33B has been described. On the other hand, a configuration in which the advance angle limiting mechanism 40 and the retard angle limiting mechanism 50 are provided in the same vane 33B may be employed.
 ・上記実施形態では、凹部43,53がカバー30に形成された例を示したが、凹部43,53をスプロケット31に形成するようにしてもよい。
 ・上記実施形態では、進角制限ピン41及び遅角制限ピン51がいずれもベーンロータ33に設けられる一方、第1の凹部43及び第2の凹部53がいずれもカバー30に設けられる例を示した。これに対し、ピン41,51がいずれもカバー30に設けられる一方、凹部43,53がいずれもベーンロータ33に設けられる構成を採用してもよい。また、ピン41,51が互いに異なる回転体に設けられる構成を採用してもよい。例えば、進角制限ピン41はベーンロータ33に設けられるとともに第1の凹部43がカバー30に設けられる一方、遅角制限ピン51はカバー30に設けられるとともに第2の凹部53がベーンロータ33に設けられるようにしてもよい。
In the above embodiment, an example in which the concave portions 43 and 53 are formed in the cover 30 is shown, but the concave portions 43 and 53 may be formed in the sprocket 31.
In the above embodiment, an example in which both the advance angle limiting pin 41 and the retard angle limiting pin 51 are provided in the vane rotor 33 while the first recess 43 and the second recess 53 are both provided in the cover 30 is shown. . On the other hand, a configuration in which both the pins 41 and 51 are provided in the cover 30 and the recesses 43 and 53 are both provided in the vane rotor 33 may be adopted. Moreover, you may employ | adopt the structure by which the pins 41 and 51 are provided in a mutually different rotary body. For example, the advance angle limit pin 41 is provided on the vane rotor 33 and the first recess 43 is provided on the cover 30, while the retard limit pin 51 is provided on the cover 30 and the second recess 53 is provided on the vane rotor 33. You may do it.
 ・上記実施形態では、スプロケット31がクランク軸12に駆動連結され、ベーンロータ33がカム軸22に駆動連結された例を示した。しかし、スプロケット31がカム軸22に駆動連結され、ベーンロータ33がクランク軸12に駆動連結されるように可変動弁装置20を構成してもよい。この場合であっても、上述した各作用効果を奏することができる。 In the above embodiment, an example in which the sprocket 31 is drivingly connected to the crankshaft 12 and the vane rotor 33 is drivingly connected to the camshaft 22 has been described. However, the variable valve gear 20 may be configured such that the sprocket 31 is drivingly connected to the camshaft 22 and the vane rotor 33 is drivingly connected to the crankshaft 12. Even in this case, the above-described effects can be achieved.
 ・上記実施形態では、吸気バルブ21のバルブタイミングを変更する可変動弁装置20として具体化した例を示したが、排気バルブ23のバルブタイミングを変更する可変動弁装置として本発明を具体化することも可能である。また、吸気バルブ21のバルブタイミングを変更する可変動弁装置、及び排気バルブ23のバルブタイミングを変更する可変動弁装置のそれぞれに本発明を適用することも可能である。 In the above-described embodiment, an example in which the valve timing of the intake valve 21 is changed is shown as an example of the variable valve operating device 20, but the present invention is realized as a variable valve operating device that changes the valve timing of the exhaust valve 23. It is also possible. The present invention can also be applied to each of a variable valve operating device that changes the valve timing of the intake valve 21 and a variable valve operating device that changes the valve timing of the exhaust valve 23.
 10…内燃機関、11…ピストン、12…クランク軸、13…燃焼室、14…オイルポンプ、15…オイルパン、16…クランク角センサ、17…カム角センサ、18…制御部、20…可変動弁装置、21…吸気バルブ、22,200…(吸気用)カム軸、23…排気バルブ、24…(排気用)カム軸、25,100…可変機構、26,110…ロック機構、30…カバー(第1の回転体)、31,101…スプロケット(第1の回転体)、32,102…ハウジング(第1の回転体)、33,103…ベーンロータ(第2の回転体)、33A…ボス、33B,103A…ベーン、34…区画部、35,105…収容室、36,106…進角室、37,107…遅角室、38…センターボルト、40…進角制限機構、41…進角制限ピン、42…第1のばね、43…第1の凹部、44…第1の上段部、45…第1の下段部、45A,55A…遅角側の内壁、45B,55B…進角側の内壁、46,56…ベーン孔、47…第1の解除室、48…第1のばね室、50…遅角制限機構、51…遅角制限ピン、52…第2のばね、53…第2の凹部、54…第2の上段部、55…第2の下段部、57…第2の解除室、58…第2のばね室、60…油圧機構、61…作動油通路、62…OCV(油路制御弁)、63…供給油路、64…第1の供給油路、64P…進遅角供給ポート、65…第2の供給油路、65P…解除用供給ポート、66…進角油路、66P…進角ポート、67…遅角油路、67P…遅角ポート、68…解除油路、68A…第1の解除油路、68B…第2の解除油路、68P…解除用ポート、69…排出油路、69P…排出ポート、111…ピン、112…凹部、113…ばね、114…解除室。 DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 11 ... Piston, 12 ... Crankshaft, 13 ... Combustion chamber, 14 ... Oil pump, 15 ... Oil pan, 16 ... Crank angle sensor, 17 ... Cam angle sensor, 18 ... Control part, 20 ... Variable motion Valve device, 21 ... intake valve, 22, 200 ... (for intake) camshaft, 23 ... exhaust valve, 24 ... (for exhaust) camshaft, 25, 100 ... variable mechanism, 26, 110 ... lock mechanism, 30 ... cover (First rotating body), 31, 101 ... sprocket (first rotating body), 32, 102 ... housing (first rotating body), 33, 103 ... vane rotor (second rotating body), 33A ... boss 33B, 103A ... vane, 34 ... compartment, 35, 105 ... storage chamber, 36, 106 ... advance chamber, 37, 107 ... retard chamber, 38 ... center bolt, 40 ... advance limit mechanism, 41 ... advance Angle limit pin, 2 ... 1st spring, 43 ... 1st recessed part, 44 ... 1st upper step part, 45 ... 1st lower step part, 45A, 55A ... Inner wall on the retard side, 45B, 55B ... Inner wall on the advance side, 46, 56 ... vane hole, 47 ... first release chamber, 48 ... first spring chamber, 50 ... retard angle limiting mechanism, 51 ... retard angle limiting pin, 52 ... second spring, 53 ... second recess. 54 ... second upper step portion, 55 ... second lower step portion, 57 ... second release chamber, 58 ... second spring chamber, 60 ... hydraulic mechanism, 61 ... hydraulic oil passage, 62 ... OCV (oil passage) Control valve), 63 ... supply oil passage, 64 ... first supply oil passage, 64P ... advance delay angle supply port, 65 ... second supply oil passage, 65P ... release supply port, 66 ... advance angle oil passage, 66P ... Advance angle port, 67 ... Delay angle oil path, 67P ... Delay angle port, 68 ... Release oil path, 68A ... First release oil path, 68B ... Second release oil path, 6 P ... release port, 69 ... discharge oil passage, 69P ... exhaust port, 111 ... pin, 112 ... recessed portion, 113 ... spring 114 ... release chamber.

Claims (8)

  1.  内燃機関の可変動弁装置であって、
     クランク軸と同期して回転する第1の回転体と、カム軸と同期して回転する第2の回転体とを有し、前記カム軸にて開閉駆動されるバルブのバルブタイミングを、作動油の油圧に基づき前記両回転体の間で生じる相対回転により変更する油圧駆動式の可変機構と、
     バルブタイミングが最遅角時期と最進角時期との間の特定時期よりも遅角側に変化することを許容しつつ進角側に変化することを規制するように前記両回転体の間の相対回転を制限する進角制限機構と、バルブタイミングが前記特定時期よりも進角側に変化することを許容しつつ遅角側に変化することを規制するように前記両回転体の間の相対回転を制限する遅角制限機構とを有し、それら両制限機構の協働によりバルブタイミングを前記特定時期に機械的にロックするロック機構と、を備え、
     前記進角制限機構及び前記遅角制限機構の各々は、前記両回転体の一方に設けられたピンと、前記両回転体の他方に設けられて前記ピンが嵌入する凹部と、前記ピンが前記凹部に嵌入する方向に前記ピンを付勢するばねと、前記ピンが前記凹部から抜脱する方向に前記ピンを付勢するための作動油が供給される解除室とをそれぞれ有し、前記各解除室の油圧を低下させることにより前記各ピンを前記各凹部に嵌入させて前記両回転体の間の相対回転を制限する一方、前記各解除室の油圧を解除油圧にまで上昇させることにより前記各ピンを前記各凹部から抜脱させて前記両回転体の間の相対回転にかかる制限を解除するように構成され、
     前記進角制限機構及び前記遅角制限機構は、それら解除室に対する作動油の給排状態が共通の油路制御弁を通じて制御されるものであり、
     前記進角制限機構及び前記遅角制限機構のうち常に同じ制限機構の前記ピンを他方の前記ピンよりも先に抜脱するように前記両制限機構の前記各解除室に対する作動油の給排状態を前記油路制御弁を通じて制御する制御部を有している
     ことを特徴とする内燃機関の可変動弁装置。
    A variable valve operating device for an internal combustion engine,
    A valve timing of a valve that has a first rotating body that rotates in synchronization with the crankshaft and a second rotating body that rotates in synchronization with the camshaft and that is driven to open and close by the camshaft is determined by operating oil. A hydraulically driven variable mechanism that changes by relative rotation generated between the two rotating bodies based on the hydraulic pressure of
    The valve timing between the rotating bodies is regulated so as to restrict the valve timing from changing to the advance side while allowing the valve timing to change from the specific timing between the most retarded timing and the most advanced timing. An advance angle limiting mechanism that limits relative rotation, and a relative angle between the two rotating bodies so as to restrict the valve timing from changing to the retarded angle side while allowing the valve timing to change to the advanced angle side from the specific time. A delay angle limiting mechanism that limits rotation, and a lock mechanism that mechanically locks the valve timing at the specific time by the cooperation of both the limiting mechanisms,
    Each of the advance angle limiting mechanism and the retard angle limiting mechanism includes a pin provided on one of the rotating bodies, a recess provided on the other of the rotating bodies and into which the pin fits, and the pin serving as the recess. A spring for urging the pin in a direction to be fitted into the pin, and a release chamber to which hydraulic oil for urging the pin in a direction in which the pin is removed from the recess is supplied. By reducing the hydraulic pressure of the chamber, the pins are fitted into the recesses to restrict relative rotation between the rotating bodies, while increasing the hydraulic pressure of the release chambers to the release hydraulic pressure. It is configured to release the restriction on the relative rotation between the two rotating bodies by removing the pin from each recess,
    The advance angle limiting mechanism and the retard angle limiting mechanism are such that the supply / discharge state of the hydraulic oil to the release chamber is controlled through a common oil passage control valve,
    The supply / discharge state of the hydraulic fluid to the release chambers of the two restriction mechanisms so that the pin of the same restriction mechanism is always pulled out of the advance restriction mechanism and the retard restriction mechanism before the other pin. A variable valve operating apparatus for an internal combustion engine, comprising: a control unit that controls the engine through the oil passage control valve.
  2.  前記制御部は、バルブタイミングが遅角側に変化するように前記両回転体の間に相対回転を生じさせる正トルクが前記カム軸に作用するバルブリフト量の増大期間に前記各解除室の油圧を上昇させて前記進角制限機構の前記ピンが前記凹部から抜脱するように、前記各解除室に作動油を供給する第1の供給態様と、バルブタイミングが進角側に変化するように前記両回転体の間に相対回転を生じさせる負トルクが前記カム軸に作用するバルブリフト量の減少期間に前記各解除室の油圧を上昇させて前記遅角制限機構の前記ピンが前記凹部から抜脱するように、前記各解除室に作動油を供給する第2の供給態様とのいずれか一方の供給態様をもって前記各解除室に作動油が供給されるように前記油路制御弁を制御する
     請求項1に記載の内燃機関の可変動弁装置。
    The controller controls the hydraulic pressure in each release chamber during an increase period of a valve lift amount in which a positive torque that causes relative rotation between the two rotating bodies acts on the camshaft so that the valve timing changes to the retard side. So that the pin of the advance limit mechanism is pulled out of the recess, and the valve timing is changed to the advance side. A negative torque that causes a relative rotation between the two rotating bodies increases the hydraulic pressure in each release chamber during a period in which the valve lift amount acting on the camshaft is reduced, so that the pin of the retardation limiting mechanism is released from the recess. The oil passage control valve is controlled so that the hydraulic oil is supplied to each release chamber according to any one of the second supply modes for supplying the hydraulic oil to each release chamber so as to be removed. The internal combustion engine according to claim 1 Variable valve gear.
  3.  前記第1の供給態様は、前記カム軸に対して正トルクが作用している期間に前記各解除室に対する作動油の供給を開始するものであり、前記第2の供給態様は、前記カム軸に対して負トルクが作用している期間に前記各解除室に対する作動油の供給を開始するものである
     請求項2に記載の内燃機関の可変動弁装置。
    The first supply mode starts supply of hydraulic oil to the release chambers during a period in which a positive torque is acting on the cam shaft, and the second supply mode is the cam shaft. The variable valve operating apparatus for an internal combustion engine according to claim 2, wherein supply of hydraulic oil to each of the release chambers is started during a period in which negative torque is applied to the internal combustion engine.
  4.  前記進角制限機構及び前記遅角制限機構のうちの一方を第1制限機構とし、他方を第2制限機構とした場合、
     前記両制限機構の前記ピンが前記凹部にそれぞれ嵌入された状態から前記第1制限機構の前記ピンのみが前記凹部から抜脱された状態に切り替わるときに生じる機関運転状態の変化は、前記両制限機構の前記ピンが前記凹部にそれぞれ嵌入された状態から前記第2制限機構の前記ピンのみが前記凹部から抜脱された状態に切り替わるときのそれよりも小さく、
     前記制御部は、前記第1制限機構の前記ピンが前記第2制限機構の前記ピンよりも常に先に前記凹部から抜脱するように前記油路制御弁を制御する
     請求項1~3のいずれか1項に記載の内燃機関の可変動弁装置。
    When one of the advance limit mechanism and the retard limit mechanism is a first limit mechanism and the other is a second limit mechanism,
    The change in the engine operating state that occurs when only the pins of the first limiting mechanism are removed from the recesses from the state where the pins of the limiting mechanisms are respectively inserted into the recesses, Smaller than that when only the pin of the second restriction mechanism is switched from the state where the pin of the mechanism is inserted into the recess, respectively,
    The control unit controls the oil passage control valve so that the pin of the first limiting mechanism is always withdrawn from the recess first before the pin of the second limiting mechanism. A variable valve operating apparatus for an internal combustion engine according to claim 1.
  5.  前記機関運転状態は機関出力である
     請求項4に記載の内燃機関の可変動弁装置。
    The variable valve operating apparatus for an internal combustion engine according to claim 4, wherein the engine operating state is an engine output.
  6.  前記制御部は、前記遅角制限機構の前記ピンが前記進角制限機構の前記ピンよりも常に先に前記凹部から抜脱するように前記油路制御弁を制御する
     請求項4又は5に記載の内燃機関の可変動弁装置。
    The said control part controls the said oil path control valve so that the said pin of the said retard restriction mechanism may always be extracted from the said recessed part always before the said pin of the said advance restriction mechanism. The variable valve operating apparatus for an internal combustion engine.
  7.  前記制御部は、前記進角制限機構の前記ピンが前記遅角制限機構の前記ピンよりも常に先に前記凹部から抜脱するように前記油路制御弁を制御する
     請求項4又は5に記載の内燃機関の可変動弁装置。
    The said control part controls the said oil path control valve so that the said pin of the said advance angle limiting mechanism may always be extracted from the said recessed part ahead of the said pin of the said retard angle limiting mechanism. The variable valve operating apparatus for an internal combustion engine.
  8.  前記可変機構は吸気バルブのバルブタイミングを変更するものであり、
     前記吸気バルブのバルブタイミングが前記特定時期にある状態では、同吸気バルブは内燃機関のピストンが上死点近傍にあるときに開弁するとともに下死点よりも遅角側で閉弁する
     請求項6に記載の内燃機関の可変動弁装置。
    The variable mechanism changes the valve timing of the intake valve,
    The intake valve is opened when the piston of the internal combustion engine is in the vicinity of the top dead center and closed on the retard side from the bottom dead center when the valve timing of the intake valve is at the specific time. 6. A variable valve operating apparatus for an internal combustion engine according to 6.
PCT/JP2010/073441 2010-12-24 2010-12-24 Variable valve device for internal combustion engine WO2012086085A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012513799A JP5288044B2 (en) 2010-12-24 2010-12-24 Variable valve operating device for internal combustion engine
PCT/JP2010/073441 WO2012086085A1 (en) 2010-12-24 2010-12-24 Variable valve device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073441 WO2012086085A1 (en) 2010-12-24 2010-12-24 Variable valve device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2012086085A1 true WO2012086085A1 (en) 2012-06-28

Family

ID=46313381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073441 WO2012086085A1 (en) 2010-12-24 2010-12-24 Variable valve device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5288044B2 (en)
WO (1) WO2012086085A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105026702A (en) * 2013-07-31 2015-11-04 爱信精机株式会社 Control device for internal combustion engine
US10989079B2 (en) 2018-02-27 2021-04-27 Mitsubishi Electric Corporation Control device and control method for valve timing adjustment device
US11098618B2 (en) 2018-02-27 2021-08-24 Mitsubishi Electric Corporation Valve timing adjustment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357106A (en) * 2001-03-28 2002-12-13 Denso Corp Valve timing adjusting device
JP2004257313A (en) * 2003-02-26 2004-09-16 Aisin Seiki Co Ltd Valve opening and closing timing control device
JP2006009673A (en) * 2004-06-25 2006-01-12 Hitachi Ltd Valve timing controller of internal combustion engine
JP2007255258A (en) * 2006-03-22 2007-10-04 Hitachi Ltd Variable valve timing control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357106A (en) * 2001-03-28 2002-12-13 Denso Corp Valve timing adjusting device
JP2004257313A (en) * 2003-02-26 2004-09-16 Aisin Seiki Co Ltd Valve opening and closing timing control device
JP2006009673A (en) * 2004-06-25 2006-01-12 Hitachi Ltd Valve timing controller of internal combustion engine
JP2007255258A (en) * 2006-03-22 2007-10-04 Hitachi Ltd Variable valve timing control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105026702A (en) * 2013-07-31 2015-11-04 爱信精机株式会社 Control device for internal combustion engine
JPWO2015015824A1 (en) * 2013-07-31 2017-03-02 アイシン精機株式会社 Control device for internal combustion engine
US9874156B2 (en) 2013-07-31 2018-01-23 Aisin Seiki Kabushiki Kaisha Control device for internal combustion engine
US10989079B2 (en) 2018-02-27 2021-04-27 Mitsubishi Electric Corporation Control device and control method for valve timing adjustment device
US11098618B2 (en) 2018-02-27 2021-08-24 Mitsubishi Electric Corporation Valve timing adjustment device

Also Published As

Publication number Publication date
JP5288044B2 (en) 2013-09-11
JPWO2012086085A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
US6439184B1 (en) Valve timing adjusting system of internal combustion engine
JP5873339B2 (en) Valve timing control device for internal combustion engine
JP5550480B2 (en) Valve timing control device for internal combustion engine
JP4358180B2 (en) Valve timing control device for internal combustion engine
JP4411814B2 (en) Valve timing adjustment device
JP4776447B2 (en) Variable valve operating device for internal combustion engine
US20070251475A1 (en) Valve timing control apparatus of internal combustion engine
JP5763432B2 (en) Valve timing control device for internal combustion engine
JP4609729B2 (en) Valve timing control device
JP5321911B2 (en) Valve timing control device
JP2002070596A (en) Intake valve drive control device for internal combustion engine
JP5288044B2 (en) Variable valve operating device for internal combustion engine
JP2009264133A (en) Variable cam phase type internal combustion engine
JP5288043B2 (en) Variable valve operating device for internal combustion engine
JP6036600B2 (en) Valve timing control device
JP4932761B2 (en) Valve timing control device for internal combustion engine
US9157342B2 (en) Valve timing control apparatus for internal combustion engine
US20130032108A1 (en) Valve timing controller for internal combustion engine
JP2013096376A (en) Valve opening and closing control apparatus
JP5282850B2 (en) Variable valve operating device for internal combustion engine
JP5793107B2 (en) Variable valve operating device for internal combustion engine
JP4645561B2 (en) Valve timing control device
JP2008184952A (en) Variable operating valve apparatus for engine
JPH10159515A (en) Valve timing controlling device for internal combustion engine
JP3817065B2 (en) Valve timing control device for internal combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012513799

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860911

Country of ref document: EP

Kind code of ref document: A1