WO2012085689A1 - Improved method for obtaining fermentable sugars based on microalgae and macroalgae - Google Patents

Improved method for obtaining fermentable sugars based on microalgae and macroalgae Download PDF

Info

Publication number
WO2012085689A1
WO2012085689A1 PCT/IB2011/052398 IB2011052398W WO2012085689A1 WO 2012085689 A1 WO2012085689 A1 WO 2012085689A1 IB 2011052398 W IB2011052398 W IB 2011052398W WO 2012085689 A1 WO2012085689 A1 WO 2012085689A1
Authority
WO
WIPO (PCT)
Prior art keywords
methanol
acid
concentration
microalgae
biomass
Prior art date
Application number
PCT/IB2011/052398
Other languages
Spanish (es)
French (fr)
Inventor
Laura Liliana GARZON FUENTES
Kafarov VIATCHESLAV
Andrés Fernando BARAJAS SOLANO
Manuel Laureano NUÑEZ ISAZA
Original Assignee
Ecopetrol S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecopetrol S.A. filed Critical Ecopetrol S.A.
Publication of WO2012085689A1 publication Critical patent/WO2012085689A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • C07H1/08Separation; Purification from natural products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/06Lysis of microorganisms
    • C12N1/066Lysis of microorganisms by physical methods
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention is in the field of obtaining fermentable sugars from the biomass of microalgae and macroalgae grown in natural or artificial media.
  • the obtaining of fermentable sugars is carried out through physical-chemical processes capable of extracting the total carbohydrate content present in algal biomass.
  • Microalgae are photosynthetic, non-vascular microorganisms that contain chlorophyll, have simple reproductive structures and float freely, but with limited mobility. Depending on the way in which their nutrients are obtained, algae can be autotrophic, auxotrophic and heterotrophic.
  • the microalgae are rich in carbohydrates, which are mainly found in the cell wall, do not contain lignin, which facilitates the extraction of reducing sugars, avoiding later stages of hydrolysis, requiring only one stage to release the carbohydrates used in the stage of fermentation.
  • an amount of an organic solvent such as methanol or ethanol is not used in the hydrolysis process to promote the separation of hydrolyzed carbohydrates in a solid phase at a later stage than Hydrolysis process, there is no solids separation process and the process does not include the possibility of mixing the treated stream of oligosaccharides from the algae with a stream of sugar cane molasses.
  • WO 2009/067771 is directed to a process for obtaining alcohol from the fermentation of hydrolyzed sugars from gelling agents and / or polysaccharides from algae grown in natural or artificial aquatic environments, eutrophied or not.
  • the main steps of the process disclosed there are: collection, cleaning and treatment of the algae for the removal of toxic elements and / or inhibitory microorganisms, fragmentation, drying, hydrolysis of the total sugars produced by the algae, fermentation of the sugars resulting from the hydrolysis of the algae polysaccharides using a yeast capable of promoting the fermentation of galactosides and finally, the distillation of alcohol.
  • the macroalgae used are of the species Gelidium, Gigardina, Gracilaria, Encheuma and Pterocladia.
  • patent application WO / 2007/101 172 discloses a process for the production of ethanol from algae biomass starch, a process that begins with the rupture of biomass, then fermentation in the presence of yeast and the separation of the ethanol produced.
  • the invention further relates to the processing of residual biomass from ethanol production for the recovery of biodiesel and / or generation of heat and carbon dioxide by combustion.
  • the selected algae belong to the family Zygnemataceae, Cladophoraceae, Oedogoniales, Ulvophyceae, Charophyceae, or combinations thereof or selected algae from Spirogyra, Cladophora, Oedogonium, or combinations thereof.
  • WO2010046619A1 patent presents a process for the production of ethanol from cellulosic material.
  • Said process comprises the following steps (i) hydrolysis of the cellulosic material with an aqueous solution of an acid to produce a hydrolyzate, (ii) extraction of the acid and water from the hydrolyzate with an organic solvent of water-miscible extraction to produce (a) an aqueous acid solution containing the extraction solvent and (b) a residue containing the sugars, (iii) a cleavage process of the residue containing the sugars to produce an aqueous solution of fermentable sugars, (iv) a fermentation step of the sugars and distillation of the alcohol produced from the fermented mixture, (v) a stage of evaporation of the solvent for extraction of the solution (a) and of the solution resulting from the fermentation process that does not have more than 10% by weight of the solvent of extraction, and finally (vi) a condensation stage of the extraction solvent for recycling.
  • the sludge precipitated after solvent extraction and removal is passed through a second stage of hydrolysis of the oligosaccharides to a temperature of 140 C and a pressure between 5 - 6 bar for approximately 120 minutes, to finally go to the fermentation stage.
  • the mentioned patent uses only lignocellulosic materials
  • Figure 1 Presents the flow chart of the stages that allow obtaining ethanol from the algae biomass through the improved process of the present invention, the process contemplates reaction stages, circulation, solvent recovery, residual biomass separation and fermentation of carbohydrate-rich liquor.
  • Figure 2. Shows the level contour obtained from the results of experimental designs, taking as a response variable the concentration of reducing sugars as a function of variables such as (a) acid vs methanol, (b) time vs methanol, (c) Time vs. Acid ; maintaining time, acid concentration, methanol concentration at the central point, respectively.
  • Figure 3. Presents the level contour of the second design of experiments taking as a response variable the concentration of reducing sugars as a function of variables such as (a) acid vs methanol, (b) time vs methanol, (c) time vs. acid; maintaining time, acid concentration, methanol concentration at the central point, respectively.
  • Figure 4 Illustrates the cell count performed on algal biomass treated at different methanol concentrations, keeping the fixed acid concentration and time variables.
  • the present patent application refers to a new improved process that maximizes the extraction of fermentable sugars present in biomass from unicellular microorganisms such as microalgae and macroalgae.
  • the product obtained from the improved process is subsequently fermented for the production of alcohols.
  • the claimed process comprises the steps of:
  • the product obtained by this process is the main input for the industries producing ethanol and / or other alcohols.
  • the algae that can be used in the alcohol production process are microalgae and macroalgae, which are grown in an artificial or natural environment, preferably in a natural environment, diluted in liquid media in containers that maintain reduced culture media (Guillard F / 2) and a space of 1/3 free with air to allow the exchange of oxygen.
  • microalgae and macroalgae which are grown in an artificial or natural environment, preferably in a natural environment, diluted in liquid media in containers that maintain reduced culture media (Guillard F / 2) and a space of 1/3 free with air to allow the exchange of oxygen.
  • the composition of the macroalgae and microalgae used in this process can be altered with environmental conditions, such as: nutrient concentration, temperature, light intensity and physiological state.
  • the carbohydrate composition can vary considerably between different types of algae, which are generally composed of a greater proportion of galactose followed by glucose, mannose and ribose.
  • the algae that can be used in this process are microscopic and macroscopic, among them preferably are: Botryococcus braunni, Chlorella vulgaris, Scenedesmus sp, Chaetoceros gracillis, Chaetoceros calcitrans.
  • the first step of this improved algal biomass processing process involves the addition of mixtures of organic solvents and inorganic solutions, such as acids, methanol, ethanol, acetone, glycol, ethylene.
  • Weak and / or strong acids such as hydrochloric acid, sulfuric acid, phosphoric acid are used.
  • Sulfuric acid is used in concentrations of 0.05 to 3 M, preferably 0.05 to 1 M.
  • concentrations of organic solvents range from: 1 to 30% (v / v), preferably between 1 to 20%.
  • the processing time is carried out in ranges of 10 to 300 min, preferably between 150 and 270 min.
  • Figure 1 shows the flow chart of the steps that allow obtaining Ethanol from algae biomass by means of the improved process of the present invention that includes mixtures of methanol with acid and water that allow maximizing carbohydrate extraction of microalgae and macroalgae.
  • the algal biomass (1) filtration product is subjected to an improved treatment of the present invention (2), the liquid obtained from this treatment is separated from the solid by conventional separation methods (3), part of the residual biomass from The separation stage with a certain carbohydrate content is recirculated by means of stream 101 to the treatment reactor (2), and the solvent is recovered by conventional solvent recovery methods and is recycled by stream 102 to the treatment reactor (2 ), the liquid of the separation stage can be used pure or it can be mixed mixed with carbohydrate-rich currents such as: cane juice, corn syrup, beet juices, among others and mixtures thereof (6) and taken to a fermentation process (4) where microorganisms such as fungi, bacteria, among others (5) are added, subsequently the fermented liquor is separated from the microorganis
  • Example 1 Improved treatment with mixtures of inorganic and organic solvents of algal biomass using methanol-sulfuric acid mixtures.
  • the biomass used in this example is the Chaetoceros gracillis microalgae species, which was characterized in the main components, as shown in Table 1. Table 1 . Characteristics of the Chaetoceros gracillis microalgae.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Improved method for obtaining fermentable sugars based on microalgae and macroalgae. The method comprises treating the algal biomass with a mixture of methanol and sulphuric acid at a temperature of between 100 and 200°C and at a pressure of between 101.14 kPa and 303.42 kPa. This treatment breaks down the cell wall, thereby facilitating extraction of carbohydrates and increasing the fermentable-sugar hydrolysis yield.

Description

PROCESO MEJORADO DE OBTENCION DE AZUCARES FERMENTABLES A PARTIR DE MICROALGAS Y MACROALGAS  IMPROVED PROCESS OF OBTAINING FERMENTABLE SUGARS FROM MICROALGAS AND MACROALGAS
SECTOR TECNOLOGICO TECHNOLOGICAL SECTOR
La presente invención se encuentra en el campo de la obtención de azucares fermentables a partir de la biomasa de microalgas y macroalgas cultivadas en medios naturales o artificiales. La obtención de azucares fermentables se realiza mediante procesos físico-químicos capaces de extraer el contenido total de carbohidratos presentes en la biomasa algal. The present invention is in the field of obtaining fermentable sugars from the biomass of microalgae and macroalgae grown in natural or artificial media. The obtaining of fermentable sugars is carried out through physical-chemical processes capable of extracting the total carbohydrate content present in algal biomass.
El proceso mejorado de esta invención debilita la pared celular, facilitando así la extracción de los carbohidratos y aumentando el rendimiento en la hidrólisis de los azucares fermentables. The improved process of this invention weakens the cell wall, thus facilitating the extraction of carbohydrates and increasing the hydrolysis performance of fermentable sugars.
ESTADO DEL ARTE STATE OF ART
El constante cambio en los precios de los combustibles fósiles, la incertidumbre del agotamiento de las reservas de crudo en los pozos petroleros y la liberación de grandes cantidades de gases contaminantes que estos combustibles emiten a la atmósfera, han llevado al desarrollo de nuevas tecnologías que promuevan la degradación y aprovechamiento de biomasa vegetal, sin comprometer la producción alimentaria para la producción de biocombustibles. The constant change in the prices of fossil fuels, the uncertainty of the depletion of oil reserves in oil wells and the release of large amounts of pollutant gases that these fuels emit into the atmosphere, have led to the development of new technologies that promote the degradation and exploitation of plant biomass, without compromising food production for the production of biofuels.
En esta búsqueda se ha iniciado el estudio de las microalgas como materia prima potencial para desarrollar nuevas fuentes de energía, lo cual resulta ventajoso ya que estos microorganismos no requieren de grandes extensiones para su cultivo, y reducen las concentraciones de gases de efecto invernadero, pues captan el dióxido de carbono como nutriente para su crecimiento. In this search, the study of microalgae as a potential raw material to develop new energy sources has begun, which is advantageous since these microorganisms do not require large areas for cultivation, and reduce greenhouse gas concentrations, as They capture carbon dioxide as a nutrient for their growth.
Las microalgas son microorganismos fotosintéticos, no vasculares que contienen clorofila, poseen estructuras reproductoras simples y flotan libremente, pero con movilidad limitada. Según la forma de obtención de sus nutrientes las algas pueden ser autótrofas, auxótrofas y heterótrofas. Microalgae are photosynthetic, non-vascular microorganisms that contain chlorophyll, have simple reproductive structures and float freely, but with limited mobility. Depending on the way in which their nutrients are obtained, algae can be autotrophic, auxotrophic and heterotrophic.
Las microalgas son ricas en carbohidratos, los cuales se encuentran principalmente en la pared celular, no contienen lignina, lo que facilita la extracción de los azúcares reductores, evitando etapas posteriores de hidrólisis, requiriendo solo una etapa para liberar los carbohidratos utilizados en la etapa de fermentación. The microalgae are rich in carbohydrates, which are mainly found in the cell wall, do not contain lignin, which facilitates the extraction of reducing sugars, avoiding later stages of hydrolysis, requiring only one stage to release the carbohydrates used in the stage of fermentation.
La composición química de las microalgas varía dependiendo de la especie, nutrientes, temperatura, fuente de carbono, intensidad y color de la luz, entre otros. Se ha encontrado que en una composición química promedio ellas contienen 30% proteína, 25% carbohidratos, 21 % lípidos y lo demás de compuestos no clasificados. The chemical composition of microalgae varies depending on the species, nutrients, temperature, carbon source, intensity and color of light, among others. It has been found that in an average chemical composition they contain 30% protein, 25% carbohydrates, 21% lipids and the rest of unclassified compounds.
La extracción de almidones contenidos en las algas se realiza mediante la sacarificación o hidrólisis con acido sulfúrico en una concentración de del 5% a 25% respecto al almidón a ser tratado. The extraction of starches contained in the algae is carried out by saccharification or hydrolysis with sulfuric acid in a concentration of 5% to 25% with respect to the starch to be treated.
Existen diferentes reportes de procesos cuya materia prima son algas. Entre ellos esta la solicitud de patente GB1493480A, describe un proceso para producir etanol a partir almidón obtenido por el cultivo de un alga unicelular con un medio de cultivo que contiene una fuente de carbono y nitrógeno asimilable y sales inorgánicas. Después del cultivo se realiza la ruptura de las células y posteriormente se extrae el almidón que es sacarificado. El almidón sacarificado es luego fermentado con un microorganismo productor de etanol. Las especies de algas preferidas son Chlorella vulgaris, Chlamydomonas sp., y Scenedesmus basilensis cultivadas entre 25 y 42 °C entre un pH 5 a 9. El medio de cultivo contiene glucosa, maltosa ó ácido acético proveniente de un residuo industrial. El almidón puede ser sacarificado con ácido sulfúrico ó a través de un proceso enzimático. El proceso de sacarificación del almidón se realiza con temperatura y acido sulfúrico diluido. Específicamente en el pretratamiento con ácido sulfúrico acuoso (con una relación en peso agua: ácido sulfúrico 2:1 a 5:1 ) se adiciona en una cantidad de 5 - 25% de acido sulfúrico respecto a la cantidad de almidón a ser tratado. El medio acidificado es calentado en un baño de agua a 100 °C por 30 minutos. La solución acida es luego diluida de 2 a 5 veces y la operación de sacarificación es completada por calentamiento a 120 °C bajo presión de 2 kg/cm2 por 30 minutos. El licor obtenido es luego neutralizado a un pH de 5 con una suspensión de partículas finas de hidróxido de calcio en agua. There are different process reports whose raw material is algae. Among them is patent application GB1493480A, describes a process for producing ethanol from starch obtained by the cultivation of a unicellular algae with a culture medium containing a source of carbon and assimilable nitrogen and inorganic salts. After the culture, the cells are broken and subsequently the starch that is saccharified is extracted. The saccharified starch is then fermented with an ethanol producing microorganism. Preferred algae species are Chlorella vulgaris, Chlamydomonas sp., And Scenedesmus basilensis grown between 25 and 42 ° C between pH 5 to 9. The culture medium contains glucose, maltose or acetic acid from an industrial residue. The starch can be saccharified with sulfuric acid or through an enzymatic process. The saccharification process of starch is carried out with temperature and dilute sulfuric acid. Specifically in the Pretreatment with aqueous sulfuric acid (with a ratio of 2: 1 to 5: 1 water: sulfuric acid) is added in an amount of 5-25% sulfuric acid with respect to the amount of starch to be treated. The acidified medium is heated in a water bath at 100 ° C for 30 minutes. The acid solution is then diluted 2 to 5 times and the saccharification operation is completed by heating at 120 ° C under a pressure of 2 kg / cm2 for 30 minutes. The liquor obtained is then neutralized to a pH of 5 with a suspension of fine particles of calcium hydroxide in water.
A pesar de este proceso de emplear tratamientos físico-químicos capaz de hidrolizar carbohidratos no se utiliza en el proceso de hidrólisis una cantidad de un solvente orgánico como metanol ó etanol para fomentar la separación de los carbohidratos hidrolizados en una fase sólida en un paso posterior al proceso de hidrólisis, no se tiene una proceso de separación de sólidos y el proceso no incluye la posibilidad de mezclar la corriente tratada de oligosacáridos provenientes de las algas con una corriente de melaza de caña de azúcar. Despite this process of using physical-chemical treatments capable of hydrolyzing carbohydrates, an amount of an organic solvent such as methanol or ethanol is not used in the hydrolysis process to promote the separation of hydrolyzed carbohydrates in a solid phase at a later stage than Hydrolysis process, there is no solids separation process and the process does not include the possibility of mixing the treated stream of oligosaccharides from the algae with a stream of sugar cane molasses.
Otra solicitud de patente relacionada con algas es WO 2009/067771 que está dirigida a un proceso para obtener alcohol a partir de la fermentación de azúcares hidrolizados de gelificantes y/o polisacáridos de algas cultivadas en ambientes acuáticos naturales o artificiales, eutrofizados o no. Los principales pasos del proceso allí divulgado son: recolección, limpieza y tratamiento del alga para la remoción de elementos tóxicos y/o microorganismos inhibidores, fragmentación, secado, hidrólisis de los azúcares totales producidos por el alga, fermentación de los azúcares resultantes de la hidrólisis de los polisacáridos del alga utilizando una levadura capaz de promover la fermentación de galactósidos y por último, la destilación del alcohol. Another patent application related to algae is WO 2009/067771 which is directed to a process for obtaining alcohol from the fermentation of hydrolyzed sugars from gelling agents and / or polysaccharides from algae grown in natural or artificial aquatic environments, eutrophied or not. The main steps of the process disclosed there are: collection, cleaning and treatment of the algae for the removal of toxic elements and / or inhibitory microorganisms, fragmentation, drying, hydrolysis of the total sugars produced by the algae, fermentation of the sugars resulting from the hydrolysis of the algae polysaccharides using a yeast capable of promoting the fermentation of galactosides and finally, the distillation of alcohol.
La hidrólisis fisicoquímica o tratamiento utilizado en este proceso es hidrólisis ácida a una temperatura entre 60 y 120 °C y presión entre 1 y 3 atm. Preferiblemente la hidrólisis ocurre a una presión entre 1 y 2 atm. El proceso fisicoquímico de la hidrólisis ácida emplea una solución con un contenido promedio de 20 % de sustrato fermentable, 5 % de ácido en una concentración ajustada de acuerdo al tipo de polímero y 75 % agua. El ácido puede ser ácido clorhídrico u otros ácidos que no alteren la estructura química de los monómeros resultantes. The physicochemical hydrolysis or treatment used in this process is acid hydrolysis at a temperature between 60 and 120 ° C and pressure between 1 and 3 atm. Preferably hydrolysis occurs at a pressure between 1 and 2 atm. The physicochemical process of acid hydrolysis employs a solution with an average content of 20% fermentable substrate, 5% acid in a concentration adjusted according to the type of polymer and 75% water. The acid may be hydrochloric acid or other acids that do not alter the chemical structure of the resulting monomers.
En este caso, las macroalgas utilizadas son de las especies Gelidium, Gigardina, Gracilaria, Encheuma y Pterocladia. In this case, the macroalgae used are of the species Gelidium, Gigardina, Gracilaria, Encheuma and Pterocladia.
Dentro de éste contexto también se encontró la solicitud de patente WO/2009/058471 , la cual describe un proceso para obtener etanol y biodiesel a partir de celulosa que comprende; a. Enviar una corriente de celulosa a uno o más contenedores y a un tanque de mezcla de residuos de celulosa y celulosa de algas; b. hidrolizar la celulosa para formar celulosa hidrolizada por acción de uno o más hongos de la familia Neocallimastigomycota; c. llevar a cabo una licuefacción de la celulosa hidrolizada para lograr separar las hexosas y pentosas hidrolizadas; d. separar los azúcares para formar xilitol y azúcares reducidos; e. fermentar los azúcares reducidos para obtener etanol combustible; f. Alimentar el cultivo de algas con la corriente de xilitol y con dióxido de carbono generado durante la hidrólisis del material celulósico ; g. Enviar el cultivo algal regenerado a un reactor de biodiesel para producir biodiesel y obtener biomasa residual rica en carbohidratos para la producción etanol. Within this context, patent application WO / 2009/058471 was also found, which describes a process for obtaining ethanol and biodiesel from cellulose comprising; to. Send a stream of cellulose to one or more containers and a mixing tank of cellulose and algae cellulose residues; b. hydrolyze cellulose to form hydrolyzed cellulose by the action of one or more fungi of the Neocallimastigomycota family; C. carry out a liquefaction of the hydrolyzed cellulose in order to separate the hydrolyzed hexoses and pentoses; d. separate the sugars to form xylitol and reduced sugars; and. ferment the reduced sugars to obtain fuel ethanol; F. Feed the algal culture with the xylitol stream and with carbon dioxide generated during the hydrolysis of the cellulosic material; g. Send the regenerated algal culture to a biodiesel reactor to produce biodiesel and obtain residual carbohydrate biomass for ethanol production.
Sumado a los documentos antes mencionados, la solicitud de patente WO/2007/101 172 divulga un proceso para la producción de etanol a partir del almidón de la biomasa de algas, proceso que inicia con la ruptura de la biomasa, posteriormente la fermentación en presencia de levadura y la separación del etanol producido. La invención se refiere además al procesamiento de la biomasa residual de la producción de etanol para la recuperación de biodiesel y/o generación de calor y dióxido de carbono por combustión. Las algas seleccionadas pertenecen a la familia Zygnemataceae, Cladophoraceae, Oedogoniales, Ulvophyceae, Charophyceae, o combinaciones de las mismas o algas seleccionadas de Spirogyra, Cladophora, Oedogonium, o combinaciones de las mismas. In addition to the aforementioned documents, patent application WO / 2007/101 172 discloses a process for the production of ethanol from algae biomass starch, a process that begins with the rupture of biomass, then fermentation in the presence of yeast and the separation of the ethanol produced. The invention further relates to the processing of residual biomass from ethanol production for the recovery of biodiesel and / or generation of heat and carbon dioxide by combustion. The selected algae belong to the family Zygnemataceae, Cladophoraceae, Oedogoniales, Ulvophyceae, Charophyceae, or combinations thereof or selected algae from Spirogyra, Cladophora, Oedogonium, or combinations thereof.
Finalmente, la patente WO2010046619A1 presenta un proceso para la producción de etanol a partir de material celulósico. Dicho proceso comprende los siguientes pasos (i) hidrólisis del material celulósico con una solución acuosa de un ácido para producir un hidrolizado, (ii) extracción del acido y el agua del hidrolizado con un solvente orgánico de extracción miscible con agua para producir (a) una solución ácida acuosa conteniendo el solvente de extracción y (b) un residuo que contiene los azucares, (iii) un proceso de clivaje del residuo que contiene los azucares para producir una solución acuosa de azucares fermentables, (iv) un paso de fermentación de los azucares y destilación del alcohol producido de la mezcla fermentada, (v) una etapa de evaporación del solvente de extracción de la solución (a) y de la solución resultante del proceso de fermentación que no posee más del 10% en peso del solvente de extracción, y finalmente (vi) una etapa de condensación del solvente de extracción para reciclaje. El solvente de extracción preferido es dimetileter ó etanol. El proceso de hidrólisis, remoción del ácido y remoción del solvente ocurre en una sola etapa. El solvente de extracción del ácido y agua hace que los oligosacáridos precipiten. El ácido usado para hidrólisis en esta invención es preferiblemente ácido sulfúrico. El ácido y el agua pueden ser adicionados por separado iniciando con el ácido y posteriormente diluyendo el ácido a la concentración deseada. El proceso de hidrólisis se hace a una temperatura entre 50 - 55 °C. La relación solución de acido: material celulósico está entre 2:1 a 4:1 por peso y la duración preferida es de 120 minutos. Así los oligosacáridos producidos por la hidrólisis de la celulosa pueden ser precipitados por el solvente de extracción para producir lodos de azúcar / lignina. El lodo precipitado después de la extracción y eliminación del solvente se hace pasar por una segunda etapa de hidrólisis de los oligosacáridos a una temperatura de 140 C y una presión entre 5 - 6 bar por aproximadamente 120 minutos, para finalmente pasar a la etapa de fermentación. La patente mencionada emplea solo materiales lignocelulósico Finally, WO2010046619A1 patent presents a process for the production of ethanol from cellulosic material. Said process comprises the following steps (i) hydrolysis of the cellulosic material with an aqueous solution of an acid to produce a hydrolyzate, (ii) extraction of the acid and water from the hydrolyzate with an organic solvent of water-miscible extraction to produce (a) an aqueous acid solution containing the extraction solvent and (b) a residue containing the sugars, (iii) a cleavage process of the residue containing the sugars to produce an aqueous solution of fermentable sugars, (iv) a fermentation step of the sugars and distillation of the alcohol produced from the fermented mixture, (v) a stage of evaporation of the solvent for extraction of the solution (a) and of the solution resulting from the fermentation process that does not have more than 10% by weight of the solvent of extraction, and finally (vi) a condensation stage of the extraction solvent for recycling. The preferred extraction solvent is dimethyl ether or ethanol. The process of hydrolysis, acid removal and solvent removal occurs in a single stage. Acid and water extraction solvent causes oligosaccharides to precipitate. The acid used for hydrolysis in this invention is preferably sulfuric acid. The acid and water can be added separately starting with the acid and then diluting the acid to the desired concentration. The hydrolysis process is done at a temperature between 50-55 ° C. The acid-cellulosic material solution ratio is between 2: 1 to 4: 1 by weight and the preferred duration is 120 minutes. Thus oligosaccharides produced by cellulose hydrolysis can be precipitated by the extraction solvent to produce sugar sludge / lignin. The sludge precipitated after solvent extraction and removal is passed through a second stage of hydrolysis of the oligosaccharides to a temperature of 140 C and a pressure between 5 - 6 bar for approximately 120 minutes, to finally go to the fermentation stage. The mentioned patent uses only lignocellulosic materials
Como se puede observar, los procesos anteriormente descritos de pretratamiento e hidrólisis aplicado a macroalgas y microalgas, no evidencian resultados tangibles de eficiencias de extracción de azúcares fermentables, ni tampoco el uso de mezclas de metanol-acido en biomasa algal. Por lo tanto, existe la necesidad en el estado de la técnica de contar con nuevos procesos que además de reducir etapas como la hidrólisis (requeridos en biomasas lignocelulósicas), a su vez aumenten la producción de alcohol carburante sin la degradación de los carbohidratos con un eficiente pretratamiento. El solicitante ha logrado aumentar la obtención total de los carbohidratos presentes en las micro y macroalgas con utilizando mezclas de solventes orgánicos e inorgánicos, lo cual es la esencia de la presente invención. As can be seen, the previously described processes of pretreatment and hydrolysis applied to macroalgae and microalgae, do not show tangible results of fermentation sugar extraction efficiencies, nor the use of methanol-acid mixtures in algal biomass. Therefore, there is a need in the state of the art to have new processes that in addition to reducing stages such as hydrolysis (required in lignocellulosic biomass), in turn increase the production of fuel alcohol without the degradation of carbohydrates with a Efficient pretreatment The applicant has managed to increase the total obtaining of the carbohydrates present in the micro and macroalgae with using mixtures of organic and inorganic solvents, which is the essence of the present invention.
DESCRIPCION DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Figura 1. Presenta el diagrama de flujo de las etapas que permiten la obtención de etanol a partir de la biomasa de algas mediante el proceso mejorado de la presente invención, el proceso contempla etapas de reacción, circulación, recuperación de solvente, separación de biomasa residual y fermentación del licor rico en carbohidratos. Figure 1. Presents the flow chart of the stages that allow obtaining ethanol from the algae biomass through the improved process of the present invention, the process contemplates reaction stages, circulation, solvent recovery, residual biomass separation and fermentation of carbohydrate-rich liquor.
Figura 2. Muestra el contorno de nivel obtenido de resultados de diseños experimentales, tomando como variable de respuesta la concentración de azucares reductores en función de variables como (a) acido vs metanol, (b) tiempo vs metanol, (c) Tiempo vs Ácido; manteniendo el tiempo, la concentración de acido, concentración de metanol en el punto central, respectivamente. Figura 3. Presenta el contorno de nivel del segundo diseño de experimentos tomando como variable de respuesta la concentración de azucares reductores en función de variables como (a) acido vs metanol, (b) tiempo vs metanol, (c) tiempo vs Ácido; manteniendo el tiempo, la concentración de acido, concentración de metanol en el punto central, respectivamente. Figure 2. Shows the level contour obtained from the results of experimental designs, taking as a response variable the concentration of reducing sugars as a function of variables such as (a) acid vs methanol, (b) time vs methanol, (c) Time vs. Acid ; maintaining time, acid concentration, methanol concentration at the central point, respectively. Figure 3. Presents the level contour of the second design of experiments taking as a response variable the concentration of reducing sugars as a function of variables such as (a) acid vs methanol, (b) time vs methanol, (c) time vs. acid; maintaining time, acid concentration, methanol concentration at the central point, respectively.
Figura 4. Ilustra el recuento de células realizado a biomasa algal tratada a diferentes concentraciones de metanol, conservando las variables de concentración de acido y tiempo fijos. Figure 4. Illustrates the cell count performed on algal biomass treated at different methanol concentrations, keeping the fixed acid concentration and time variables.
DESCRIPCIÓN GENERAL DE LA INVENCION GENERAL DESCRIPTION OF THE INVENTION
La presente solicitud de patente hace referencia a un nuevo proceso mejorado que permite maximizar la extracción de azucares fermentables presente en biomasa proveniente de microorganismos unicelulares como son las microalgas y macroalgas. El producto obtenido del proceso mejorado es posteriormente fermentado para la producción de alcoholes. En general el proceso reivindicado comprende las etapas de: The present patent application refers to a new improved process that maximizes the extraction of fermentable sugars present in biomass from unicellular microorganisms such as microalgae and macroalgae. The product obtained from the improved process is subsequently fermented for the production of alcohols. In general, the claimed process comprises the steps of:
a. Cosecha o filtración de biomasa algal  to. Harvest or filtration of algal biomass
b. Tratamiento de la biomasa algal con mezclas de solventes orgánicos e inorgánicas como ácidos y alcoholes.  b. Treatment of algal biomass with mixtures of organic and inorganic solvents such as acids and alcohols.
c. Separación del licor o insumo de la biomasa residual  C. Separation of liquor or input from residual biomass
d. Recuperación y recirculación del solvente utilizado.  d. Recovery and recirculation of the solvent used.
El producto obtenido por el presente proceso es el principal insumo para las industrias productoras de etanol y/o otros alcoholes. The product obtained by this process is the main input for the industries producing ethanol and / or other alcohols.
Es un objeto de la presente invención proporcionar un proceso mejorado donde se maximiza la obtención de azucares reductores provenientes de microalgas y macroalgas para la industria alcoholera DESCRIPCIÓN DETALLADA DE LA INVENCION It is an object of the present invention to provide an improved process where the obtaining of reducing sugars from microalgae and macroalgae for the alcohol industry is maximized DETAILED DESCRIPTION OF THE INVENTION
Las algas que pueden ser empleadas en el proceso de producción de alcohol son microalgas y macroalgas, las cuales son cultivadas en un medio artificial o natural, preferiblemente en medio natural, diluidas en medios líquidos en recipientes que mantienen medios de cultivos reducidos (Guillard F/2) y un espacio de 1 /3 libre con aire para permitir el intercambio de oxígeno. The algae that can be used in the alcohol production process are microalgae and macroalgae, which are grown in an artificial or natural environment, preferably in a natural environment, diluted in liquid media in containers that maintain reduced culture media (Guillard F / 2) and a space of 1/3 free with air to allow the exchange of oxygen.
Las cepas ya establecidas en tubos de ensayo y en placas de agar son replicadas a medios de cultivo líquidos con Guillard F/2 para condiciones interiores y con medio Guillard modificado con reactivos grado industrial para tanques exteriores. The strains already established in test tubes and agar plates are replicated to liquid culture media with Guillard F / 2 for indoor conditions and with Guillard medium modified with industrial grade reagents for outdoor tanks.
La composición de las macroalgas y microalgas utilizadas en este proceso puede alterarse con las condiciones ambientales, tales como: concentración de nutrientes, temperatura, intensidad lumínica y estado fisiológico. La composición de carbohidratos puede variar considerablemente entre los diferentes tipos de algas, las cuales generalmente están compuestas en mayor proporción de galactosa seguida por glucosa, mañosa y ribosa. Las algas que pueden ser utilizadas en este proceso son microscópicas y macroscópicas, entre ellas preferiblemente están: Botryococcus braunni, Chlorella vulgaris, Scenedesmus sp, Chaetoceros gracillis, Chaetoceros calcitrans. The composition of the macroalgae and microalgae used in this process can be altered with environmental conditions, such as: nutrient concentration, temperature, light intensity and physiological state. The carbohydrate composition can vary considerably between different types of algae, which are generally composed of a greater proportion of galactose followed by glucose, mannose and ribose. The algae that can be used in this process are microscopic and macroscopic, among them preferably are: Botryococcus braunni, Chlorella vulgaris, Scenedesmus sp, Chaetoceros gracillis, Chaetoceros calcitrans.
El primer paso de este proceso mejorado de procesamiento de biomasa algal consiste en la adición de mezclas de solventes orgánicos y soluciones inorgánicas, tales como ácidos, metanol, etanol, acetona, glicol, etileno. Se utilizan ácidos débiles y/o fuertes tales como ácido clorhídrico, ácido sulfúrico, acido fosfórico. El ácido sulfúrico se emplea en concentraciones de 0.05 a 3 M, preferiblemente de 0.05 a 1 M. Las concentraciones de los solventes orgánicos oscila entre: 1 a 30 %(v/v), preferiblemente entre 1 a 20 %. El tiempo de procesamiento se lleva a cabo en rangos de 10 a 300 min, preferiblemente entre 150 y 270 min. En la figura 1 se observa el diagrama de flujo de las etapas que permiten la obtención de Etanol a partir de la biomasa de algas mediante el proceso mejorado de la presente invención que contempla mezclas de metanol con acido y agua que permiten maximizar la extracción de carbohidratos de las microalgas y macroalgas. La biomasa algal (1 ) producto de la filtración es sometida a un tratamiento mejorado de la presente invención (2), el líquido obtenido de este tratamiento es separado del sólido por métodos convencionales de separación (3), parte de la biomasa residual proveniente de la etapa de separación con cierto contenido de carbohidratos es recirculada por medio de la corriente 101 al reactor de tratamiento (2), y el solvente es recuperado por métodos convencionales de recuperación de solventes y es recirculado por la corriente 102 al reactor de tratamiento (2), el líquido de la etapa de separación puede ser empleado puro o puede mezclarse mezclado con corrientes ricas en carbohidratos tales como: jugo de caña , jarabe de maíz, jugos de remolacha, entre otros y mezclas de los mismos (6) y llevado a un proceso de fermentación (4) donde se adiciona microorganismos como: hongos, bacterias, entre otros (5), posteriormente se realiza la separación del licor fermentado de los microorganismos por medios de separación convencionales (7), eliminando por medio de la corriente 103 los residuos de los microorganismos (A), por último se realiza la destilación del licor fermentado (8) para la obtención de etanol, acido ascórbico u otros (B). The first step of this improved algal biomass processing process involves the addition of mixtures of organic solvents and inorganic solutions, such as acids, methanol, ethanol, acetone, glycol, ethylene. Weak and / or strong acids such as hydrochloric acid, sulfuric acid, phosphoric acid are used. Sulfuric acid is used in concentrations of 0.05 to 3 M, preferably 0.05 to 1 M. The concentrations of organic solvents range from: 1 to 30% (v / v), preferably between 1 to 20%. The processing time is carried out in ranges of 10 to 300 min, preferably between 150 and 270 min. Figure 1 shows the flow chart of the steps that allow obtaining Ethanol from algae biomass by means of the improved process of the present invention that includes mixtures of methanol with acid and water that allow maximizing carbohydrate extraction of microalgae and macroalgae. The algal biomass (1) filtration product is subjected to an improved treatment of the present invention (2), the liquid obtained from this treatment is separated from the solid by conventional separation methods (3), part of the residual biomass from The separation stage with a certain carbohydrate content is recirculated by means of stream 101 to the treatment reactor (2), and the solvent is recovered by conventional solvent recovery methods and is recycled by stream 102 to the treatment reactor (2 ), the liquid of the separation stage can be used pure or it can be mixed mixed with carbohydrate-rich currents such as: cane juice, corn syrup, beet juices, among others and mixtures thereof (6) and taken to a fermentation process (4) where microorganisms such as fungi, bacteria, among others (5) are added, subsequently the fermented liquor is separated from the microorganisms isms by conventional separation means (7), eliminating through the current 103 the residues of the microorganisms (A), finally the distillation of the fermented liquor (8) is carried out to obtain ethanol, ascorbic acid or others (B ).
Ejemplo 1. Tratamiento mejorado con mezclas de solventes inorgánicos y orgánicos de la biomasa algal utilizando mezclas metanol-ácido sulfúrico. Example 1. Improved treatment with mixtures of inorganic and organic solvents of algal biomass using methanol-sulfuric acid mixtures.
La siguiente descripción es un típico ejemplo de la presente invención: The following description is a typical example of the present invention:
Las biomasa utilizada en este ejemplo es la especie de microalga Chaetoceros gracillis, la cual fue caracterizada en los componentes principales, como se muestra en la Tabla 1 . Tabla 1 . Características de la microalga Chaetoceros gracillis. The biomass used in this example is the Chaetoceros gracillis microalgae species, which was characterized in the main components, as shown in Table 1. Table 1 . Characteristics of the Chaetoceros gracillis microalgae.
Análisis Resultado  Analysis Result
%Humedad 1 1 .53  % Humidity 1 1 .53
%Cenizas 61 .74  % Ashes 61 .74
%Bulk, Roca total NaCI,CaCI2 % Bulk, Total Rock NaCI, CaCI 2
% Proteína 9.19  % Protein 9.19
%Nitrógeno 1 .502  % Nitrogen 1 .502
%Grasa 0.061  % Fat 0.061
%Calorías 107.2  % Calories 107.2
%Fibra Bruta 0.18  % Gross Fiber 0.18
%Carbohidratos 17.47  % Carbs 17.47
Se realizó el estudio de liberación de azúcares en algas empleando un diseño factorial 23 central compuesto. Este diseño plantea barrer una mayor área de respuesta con el uso de puntos axiales que permiten abarcar mayor rango de estudio de las variables del proceso como: concentración de metanol en el licor (% v/v), concentración H2S04 (M) y tiempo de reacción (min). Los rangos inicialmente explorados son: tiempo: 60-180 min; Concentración metanol: 30- 70% v/v; Concentración de acido: 0.05-0.1 M. Los puntos axiales de las variables fueron: 19 y 221 min; 16 y 84% v de metanol; 0.03 y 012 M de H2S04. The study of the release of sugars in algae was carried out using a composite central 2 3 factorial design. This design raises a greater area of response with the use of axial points that allow to cover a greater range of study of the process variables such as: concentration of methanol in the liquor (% v / v), concentration H2S04 (M) and time of reaction (min). The ranges initially explored are: time: 60-180 min; Methanol concentration: 30-70% v / v; Acid concentration: 0.05-0.1 M. The axial points of the variables were: 19 and 221 min; 16 and 84% v of methanol; 0.03 and 012 M of H 2 S0 4 .
Muestras de 20 g de microalga seca caracterizada previamente (Tabla 1 ) fueron tratadas con 200 mL de una mezcla de metanol-acido sulfúrico y agua a condiciones proporcionadas para cada experimento (según tabla 2). Esta mezcla fue llevada a un autoclave a 103,4 kPa y 121 °C, durante el tiempo de reacción especificado para cada corrida. Luego de la cocción en autoclave, se separaron por filtración al vacío el licor rico en carbohidratos y la biomasa residual. Samples of 20 g of dry microalgae previously characterized (Table 1) were treated with 200 mL of a mixture of methanol-sulfuric acid and water at conditions provided for each experiment (according to table 2). This mixture was taken in an autoclave at 103.4 kPa and 121 ° C, during the reaction time specified for each run. After autoclaving, the carbohydrate-rich liquor and residual biomass were filtered off under vacuum.
Para cuantificar los azucares reductores totales (ART) en el licor rico de carbohidratos, se mezclaron 0,5 mL de las diferentes muestras de licor con 0,5 mL de reactivo acido 3,5 Dinitrosalicilico (DNS) en tubos de ensayo. Esta mezcla se mantuvo durante 5 minutos en un baño a 95 °C. Posteriormente se sumergió en un baño con hielo para detener la reacción y se adicionó 5 mL de agua destilada. Seguidamente, se realizó las lecturas de absorbancia en espectrofotómetro a 540 nm. To quantify the total reducing sugars (ART) in the carbohydrate-rich liquor, 0.5 mL of the different liquor samples were mixed with 0.5 mL of 3.5 Dinitrosalicylic acid (DNS) reagent in test tubes. This mixture was kept for 5 minutes in a 95 ° C bath. Subsequently immersed in an ice bath to stop the reaction and 5 mL of distilled water was added. Next, absorbance readings were performed on a spectrophotometer at 540 nm.
Seguido de la cuantificacion de ART, se elaboró una superficie de respuesta del los resultados obtenidos del tratamiento mejorado utilizando los datos del diseño central compuesto (Tabla 2) donde el porcentaje de ART fue analizado en función de las variables operacionales por medio del programa computacional STATISTIC 9.0 Following the quantification of ART, a response surface of the results obtained from the improved treatment was developed using the data of the central composite design (Table 2) where the percentage of ART was analyzed based on the operational variables through the STATISTIC computer program 9.0
Tabla 2. Primer Diseño de experimentos 23 compuesto central Table 2. First Design of Experiments 2 3 Central Compound
ART Licor de Rendimiento ART Performance Liquor
# de Metanol H2S04 Tiempo Methanol # H2S04 Time
Pretratamiento Extracción Experimento [%v/v] [M] (min)  Pretreatment Extraction Experiment [% v / v] [M] (min)
[gART/gBS*]*100 (%) [gART / gBS *] * 100 (%)
1 30 0.050 0.54 1 30 0.050 0.54
60 3.13 60 3.13
2 30 0.050 1 .55 2 30 0.050 1 .55
180 8.98 180 8.98
3 30 0.10 1 .84 3 30 0.10 1 .84
60 10.65 60 10.65
4 30 0.10 1 .30 4 30 0.10 1 .30
180 7.53 180 7.53
5 70 0.050 0.58 5 70 0.050 0.58
60 3.36 60 3.36
6 70 0.050 1 .25 6 70 0.050 1 .25
180 7.24 180 7.24
7 70 0.10 0.95 7 70 0.10 0.95
60 5.50 60 5.50
8 70 0.10 0.77 8 70 0.10 0.77
180 4.46 180 4.46
9 16 0.075 2.60 9 16 0.075 2.60
120 15.06 120 15.06
10 84 0.075 0.39 10 84 0.075 0.39
120 2.26 120 2.26
11 50 0.03 0.62 11 50 0.03 0.62
120 3.59 120 3.59
12 50 0.12 1 .46 12 50 0.12 1 .46
120 8.45 120 8.45
13 50 0.075 1 .04 13 50 0.075 1 .04
19 6.02 19 6.02
14 50 0.075 3.41 14 50 0.075 3.41
221 19.75 221 19.75
15C 50 0.075 1 .08 15C 50 0.075 1 .08
120 6.25 120 6.25
16C 50 0.075 1 .01 16C 50 0.075 1 .01
120 5.85 120 5.85
17C 50 0.075 1 .04 17C 50 0.075 1 .04
120 6.02 De acuerdo a los resultados obtenidos en la matriz experimental (Tabla 2) se gráfico las superficies de contorno (Figura 2), donde la variable de respuesta fue ART en función de las variables tiempo, concentración metanol y acido. 120 6.02 According to the results obtained in the experimental matrix (Table 2), the contour surfaces are plotted (Figure 2), where the response variable was ART based on the variables time, methanol concentration and acid.
De acuerdo con la Figura 2, la tendencia de la superficie evidencia mayores rendimientos en zonas rojas y bajos rendimientos en las zonas verdes. Los rendimientos máximos de ART obtenidos (2% ART) para este diseño se logran con mayor concentración de ácido y menor concentración de metanol y sugiere además que para mejorar los rendimientos, un aumento de acido y una disminución de concentraciones de los rangos de trabajo de las variables respectivamente mencionadas. Este comportamiento es igual cuando se grafican las superficies de respuesta en el punto mínimo y máximo de tiempo de reacción. According to Figure 2, the surface trend shows higher yields in red areas and low yields in green areas. The maximum ART yields obtained (2% ART) for this design are achieved with higher acid concentration and lower methanol concentration and also suggests that to improve yields, an increase in acid and a decrease in concentrations of the working ranges of the variables respectively mentioned. This behavior is the same when the response surfaces are plotted at the minimum and maximum reaction time point.
De acuerdo con los resultados obtenidos en el primer diseño experimental, se realiza un segundo diseño aumentando el rango de estudio, donde: el tiempo empleado para el tratamiento se encuentra en el rango de 15-247min y la concentración de acido sulfúrico es de 0.1 -0.6 M, y el rango empleado de metanol disminuyó de 0 - 16.36%(v/v) como se muestra en la tabla 3. According to the results obtained in the first experimental design, a second design is made increasing the range of study, where: the time used for the treatment is in the range of 15-247min and the concentration of sulfuric acid is 0.1 - 0.6 M, and the range of methanol used decreased from 0 - 16.36% (v / v) as shown in table 3.
Tabla 3. Segundo Diseño de experimentos 23 compuesto central Table 3. Second Design of Experiments 2 3 Central Compound
ART Licor de Rendimiento ART Performance Liquor
# de Metanol H2S04 Tiempo Methanol # H2S04 Time
Pretratamiento de Experimento [%v/v] [M] (min)  Experiment Pretreatment [% v / v] [M] (min)
[gART/gBS*]*100 extracción[gART / gBS * ] * 100 extraction
1 3.32 0.202 62 4.92 28.491 3.32 0.202 62 4.92 28.49
2 3.32 0.202 200 9.1 1 52.752 3.32 0.202 200 9.1 1 52.75
3 3.32 0.50 62 9.30 53.853 3.32 0.50 62 9.30 53.85
4 3.32 0.50 200 15.79 91 .434 3.32 0.50 200 15.79 91 .43
5 13.04 0.202 62 4.32 25.015 13.04 0.202 62 4.32 25.01
6 13.04 0.202 200 8.48 49.106 13.04 0.202 200 8.48 49.10
7 13.04 0.50 62 6.90 39.957 13.04 0.50 62 6.90 39.95
8 13.04 0.50 200 14.85 85.99 9 0 0.35 131 9.74 56.408 13.04 0.50 200 14.85 85.99 9 0 0.35 131 9.74 56.40
10 16.36 0.35 131 10.45 60.5110 16.36 0.35 131 10.45 60.51
11 8.18 0.1 131 3.41 19.7511 8.18 0.1 131 3.41 19.75
12 8.18 0.6 131 10.39 60.1612 8.18 0.6 131 10.39 60.16
13 8.18 0.35 15 2.62 15.1713 8.18 0.35 15 2.62 15.17
14 8.18 0.35 247 14.03 81 .2414 8.18 0.35 247 14.03 81 .24
15C 8.18 0.35 131 7.74 44.8215C 8.18 0.35 131 7.74 44.82
16C 8.18 0.35 131 7.13 41 .2916C 8.18 0.35 131 7.13 41 .29
17C 8.18 0.35 131 7.00 40.53 17C 8.18 0.35 131 7.00 40.53
Con los resultados presentados en la tabla 3, se puede inferir que el mayor porcentaje de ART obtenido en el tratamiento mejorado se registra el ensayo 4, siendo este valor de 15.79% ART. With the results presented in table 3, it can be inferred that the highest percentage of ART obtained in the improved treatment is recorded in trial 4, this value being 15.79% ART.
Comparando los resultados del ensayo 2 con el 4, donde se fija la variable tiempo y metanol y variada la concentración de acido, se observó la alta influencia del acido, donde se favoreció el rendimiento de extracción pasando de 52% de extracción a 91 %. Comparing the results of test 2 with 4, where the time and methanol variable was set and the acid concentration varied, the high influence of the acid was observed, where the extraction yield was favored from 52% extraction to 91%.
Al comparar los resultados obtenidos de los ensayos 9 y 10 se puede observar que al disminuir la concentración de metanol y manteniendo constante la concentración de ácido y el tiempo, se obtienen menores porcentajes de ART (de 10.45 a 9.74%). Este efecto tiene menor predominio comparado con la variable tiempo y concentración de acido. When comparing the results obtained from tests 9 and 10, it can be observed that by decreasing the methanol concentration and keeping the acid concentration and time constant, lower percentages of ART are obtained (from 10.45 to 9.74%). This effect is less prevalent compared to the variable time and acid concentration.
De acuerdo a la Figura 3, la tendencia que presenta los resultados en los gráficos de contorno, corroboran los resultados obtenidos en el diseño experimental anterior, además de mostrar la necesidad de trabajar los tratamientos en una concentración de acido hasta 0.6 M, tiempos mayores de 260 min y poder emplearse concentraciones de metanol de 0 a 16%(v/v) ya que no presenta influencia en el rango estudiado, y para lograr rendimientos de extracción mayor al 90% Ejemplo 2. Efecto de la concentración de metanol en el pretratamiento en microalgas para la extracción de azúcar. According to Figure 3, the trend that presents the results in the contour graphs, corroborate the results obtained in the previous experimental design, in addition to showing the need to work the treatments in an acid concentration up to 0.6 M, times greater than 260 min and to be able to use methanol concentrations of 0 to 16% (v / v) since it has no influence on the range studied, and to achieve extraction yields greater than 90% Example 2. Effect of methanol concentration on microalgae pretreatment for sugar extraction.
De acuerdo con los resultados de los ensayos realizados en el ejemplo 1 (diseño de experimentos 2) y con las gráficas de contorno obtenidas, se realizó el estudio del efecto del metanol en el pretratamiento de las microalgas, se establecieron valores fijos de tiempo y concentración de acido para este estudio, donde los valores tomados fueron aquellos en los que la tendencia evidenció mayor extracción de azucares (247 min y 0.6 M). Las concentraciones de metanol fueron variadas de 0 a 100%. According to the results of the tests carried out in example 1 (design of experiments 2) and with the contour graphs obtained, the study of the effect of methanol on the pre-treatment of microalgae was carried out, fixed values of time and concentration were established of acid for this study, where the values taken were those in which the trend showed greater extraction of sugars (247 min and 0.6 M). Methanol concentrations were varied from 0 to 100%.
Los resultados se presentan en la tabla 4, para la mezcla metanol-ácido se obtiene un mayor porcentaje de azúcares reductores comparado con el ensayo 1 donde se adicionó solamente ácido sulfúrico. Sin embargo, altas concentraciones de metanol disminuye la producción de ART. En condiciones de pretratamiento de 3 (%v/v) de metanol, 0.6 M H2S04, durante tiempos de 247 min, son logrados rendimientos de pretratamiento hasta el 100%. The results are presented in table 4, for the methanol-acid mixture a higher percentage of reducing sugars is obtained compared to test 1 where only sulfuric acid was added. However, high concentrations of methanol decreases the production of ART. Under pretreatment conditions of 3 (% v / v) methanol, 0.6 MH 2 S0 4 , during times of 247 min, pretreatment yields up to 100% are achieved.
Tabla 4. Porcentaje de ART en el pretratamiento con una concentración constante de ácido sulfúrico y variación en la concentración de metanol durante 247 minutos. Table 4. Percentage of ART in the pretreatment with a constant concentration of sulfuric acid and variation in the concentration of methanol for 247 minutes.
Ensayo Metanol H2S04 Tiempo ART (% ) Rendimiento Test Methanol H 2 S0 4 Time ART (%) Yield
(%V/V) (M) (min)  (% V / V) (M) (min)
1 0 0.6 247 9.54±0.04 54.99  1 0 0.6 247 9.54 ± 0.04 54.99
2 3 0.6 247 17.21 ±0.02 99.19 2 3 0.6 247 17.21 ± 0.02 99.19
3 10 0.6 247 17.20±0.00 99.14 3 10 0.6 247 17.20 ± 0.00 99.14
4 16 0.6 247 16.02±0.00 92.33 4 16 0.6 247 16.02 ± 0.00 92.33
5 20 0.6 247 16.03±0.08 92.39 5 20 0.6 247 16.03 ± 0.08 92.39
6 40 0.6 247 15.73±0.03 90.66 7 60 0.6 247 12.03±0.09 69.34 6 40 0.6 247 15.73 ± 0.03 90.66 7 60 0.6 247 12.03 ± 0.09 69.34
8 80 0.6 247 1 1 .17±0.08 64.38 8 80 0.6 247 1 1 .17 ± 0.08 64.38
9 100 0.6 247 10.80±0.02 62.25 9 100 0.6 247 10.80 ± 0.02 62.25
Se realizó una etapa de hidrólisis acida severa a la biomasa residual del tratamiento mejorado, con el fin de cuantificar los azúcares residuales en la biomasa. La hidrólisis se llevo a condiciones estándares. Adición de ácido sulfúrico al 72%, durante 1 h a 30 °C en un baño termostatado, posteriormente se diluye el ácido al 4% y se lleva al autoclave durante 1 h a 121 QC. Se obtiene un licor rico en carbohidratos residuales, el cual se lleva a análisis de ART. En la Tabla 5 se presentan los resultados obtenidos en la hidrólisis con acido concentrado. A stage of severe acid hydrolysis to the residual biomass of the improved treatment was performed, in order to quantify the residual sugars in the biomass. The hydrolysis was brought to standard conditions. Addition of 72% sulfuric acid, for 1 h at 30 ° C in a thermostated bath, subsequently the 4% acid is diluted and autoclaved for 1 h at 121 Q C. A liquor rich in residual carbohydrates is obtained, which It takes ART analysis. The results obtained in the hydrolysis with concentrated acid are presented in Table 5.
Tabla 5. Carbohidratos presentes en las microalgas después del tratamiento mejorado. Table 5. Carbohydrates present in the microalgae after the improved treatment.
Carbohidrato Perdida de  Lost Carbohydrate
Ensayo  Test
Residual (%) carbohidratos  Residual (%) carbohydrates
1 7.2±0.01 4.83  1 7.2 ± 0.01 4.83
2 0.38±0.05 0  2 0.38 ± 0.05 0
3 0.27±0.02 0.68  3 0.27 ± 0.02 0.68
4 0.43±0.06 6.48  4 0.43 ± 0.06 6.48
5 0.53±0.07 5.86  5 0.53 ± 0.07 5.86
6 0.39±0.05 8.36  6 0.39 ± 0.05 8.36
7 0.12±0.03 30.93  7 0.12 ± 0.03 30.93
8 4.03±0.02 13.59  8 4.03 ± 0.02 13.59
9 4.50±0.07 13.02  9 4.50 ± 0.07 13.02
En los ensayos 1 , 8 y 9 aun se evidencia contenido de carbohidratos en la biomasa residual de la etapa de tratamiento con valores de 7.2, 4.03 y 3.50% de ART, respectivamente. El menor rendimiento obtenido en la etapa de pretratamiento es para el ensayo 1 , seguido de los ensayos 8 y 9 con valores del 55, 64 y 62% de rendimiento. Sin querer ceñirnos a una teoría en particular creemos que: estos bajos rendimientos se deben a: (1 ) en el ensayo 1 no se adicionó metanol durante la etapa de pretratamiento, esto ocasionó una disminución en la eficiencia del proceso, dando como resultado una menor liberación de carbohidratos y (2) en los ensayos 6 y 7 se adicionó mayor concentración de metanol causando mayor degradación de carbohidratos en posibles compuestos tales como: furfural, hidroximetilfurfural y ácido acético. Sin embargo, cuando se emplean concentraciones superiores al 80% de metanol, se observa menor degradación de carbohidratos y menor extracción, una explicación a esto, es la necesidad de tener contenidos de agua suficiente en la mezcla para que los alcoholes como el metanol sean eficientes en el rompimiento de la pared celular. In trials 1, 8 and 9 there is still evidence of carbohydrate content in the residual biomass of the treatment stage with values of 7.2, 4.03 and 3.50% of ART, respectively. The lowest yield obtained in the pretreatment stage is for test 1, followed by tests 8 and 9 with values 55, 64 and 62% yield. Without wanting to stick to a particular theory we believe that: these low yields are due to: (1) in test 1 no methanol was added during the pretreatment stage, this caused a decrease in the efficiency of the process, resulting in a lower Release of carbohydrates and (2) in trials 6 and 7, a higher concentration of methanol was added causing greater degradation of carbohydrates in possible compounds such as: furfural, hydroxymethylfurfural and acetic acid. However, when concentrations higher than 80% of methanol are used, less degradation of carbohydrates and less extraction is observed, an explanation for this is the need to have sufficient water content in the mixture so that alcohols such as methanol are efficient in the breakdown of the cell wall.
Para comprobar la mayor degradación de la pared celular con incrementos de metanol fue realizado el método de recuento de células de microalgas en cámara de Neubauer, como se puede observar en la Figura 4, este experimento permite evidenciar la mayor degradación de la pared celular con mayores concentraciones de metanol, y consecuentemente se podría afirmar que mayores contenidos de carbohidratos quedarían expuestos a mayores concentraciones de acido(por no consumir acido en la ruptura de la pared celular) logrando así la degradación de los mismos. To verify the greater degradation of the cell wall with methanol increments, the method of counting microalgae cells in Neubauer chamber was performed, as can be seen in Figure 4, this experiment allows to demonstrate the greater degradation of the cell wall with greater methanol concentrations, and consequently it could be affirmed that higher carbohydrate contents would be exposed to higher concentrations of acid (by not consuming acid in the cell wall rupture) thus achieving their degradation.
Con este ejemplo es posible evidenciar la necesidad de adicionar pequeñas concentraciones de metanol al proceso de obtención de azúcares fermentables a partir de biomasa de micro y macroalgas para obtener rendimientos próximos al 100% de ART. A su vez se puede observar que excesos de metanol pueden causar degradación en los carbohidratos alcanzado valores de degradación del 30% como fue el caso del ensayo 8. With this example it is possible to demonstrate the need to add small concentrations of methanol to the process of obtaining fermentable sugars from microalgae and macroalgae biomass to obtain yields close to 100% ART. In turn, it can be seen that excess methanol can cause degradation in carbohydrates, reaching degradation values of 30%, as was the case in trial 8.

Claims

REIVINDICACIONES
1 . Un proceso mejorado de tratamiento aplicado a biomasa proveniente de microalgas y macroalgas, que comprende un tratamiento físico-químico de la biomasa algal mediante mezclas de solventes orgánicos con ácidos inorgánicos, a una temperatura entre 100°C y 200 °C, presión entre 101 ,14 kPa y 303,42 kPa durante un tiempo entre 10 y 300 minutos, caracterizado porque el solvente orgánico es metanol y el ácido inorgánico es ácido sulfúrico. one . An improved treatment process applied to biomass from microalgae and macroalgae, which includes a physical-chemical treatment of algal biomass through mixtures of organic solvents with inorganic acids, at a temperature between 100 ° C and 200 ° C, pressure between 101, 14 kPa and 303.42 kPa for a time between 10 and 300 minutes, characterized in that the organic solvent is methanol and the inorganic acid is sulfuric acid.
2. El proceso de la reivindicación 1 caracterizado por que la concentración de metanol está entre 1 % y 30% v/v y la concentración de ácido sulfúrico se encuentra entre 0.05. M y 3 M. 2. The process of claim 1 characterized in that the methanol concentration is between 1% and 30% v / v and the sulfuric acid concentration is between 0.05. M and 3 M.
3. El proceso de acuerdo con la reivindicación 2 caracterizado porque la concentración de ácido sulfúrico se encuentra preferiblemente entre 0,075 y 1 M. 3. The process according to claim 2 characterized in that the concentration of sulfuric acid is preferably between 0.075 and 1 M.
4. El proceso de acuerdo a cualquiera de las reivindicaciones anteriores, caracterizado porque la concentración de metanol se encuentra preferiblemente entre 1 y 20 % v/v. 4. The process according to any of the preceding claims, characterized in that the concentration of methanol is preferably between 1 and 20% v / v.
5. El proceso de acuerdo con la reivindicación 1 , caracterizado porque el tiempo de tratamiento se lleva a cabo preferiblemente en intervalos de 150 y 270 min. 5. The process according to claim 1, characterized in that the treatment time is preferably carried out at intervals of 150 and 270 min.
6. El proceso de acuerdo con la reivindicación 1 , caracterizado porque la temperatura utilizada está en rango de 100°C a 150°C. 6. The process according to claim 1, characterized in that the temperature used is in the range of 100 ° C to 150 ° C.
7. El proceso de acuerdo con la reivindicación 1 , caracterizado porque la biomasa algal es seleccionada del grupo que consiste de Botryococcus braunni, Chiorella vulgaris, Scenedesmus sp, Chaetoceros gracillis, Chaetoceros calcitrans. 7. The process according to claim 1, characterized in that the algal biomass is selected from the group consisting of Botryococcus braunni, Chiorella vulgaris, Scenedesmus sp, Chaetoceros gracillis, Chaetoceros calcitrans.
8. Un proceso de fermentación que comprende el producto del proceso de las reivindicaciones 1 al 7 y bacterias, levaduras y hongos o mezclas de los mismos. 8. A fermentation process comprising the product of the process of claims 1 to 7 and bacteria, yeasts and fungi or mixtures thereof.
PCT/IB2011/052398 2010-12-23 2011-05-31 Improved method for obtaining fermentable sugars based on microalgae and macroalgae WO2012085689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO10161624A CO6470093A1 (en) 2010-12-23 2010-12-23 IMPROVED PROCESS OF OBTAINING FERMENTABLE SUGARS FROM MICROALGAS AND MACROALGAS.
CO10-161624 2010-12-23

Publications (1)

Publication Number Publication Date
WO2012085689A1 true WO2012085689A1 (en) 2012-06-28

Family

ID=46313239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/052398 WO2012085689A1 (en) 2010-12-23 2011-05-31 Improved method for obtaining fermentable sugars based on microalgae and macroalgae

Country Status (2)

Country Link
CO (1) CO6470093A1 (en)
WO (1) WO2012085689A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1493480A (en) * 1975-12-15 1977-11-30 Muramatsu M Method of producing ethanol
US20080241902A1 (en) * 2007-04-02 2008-10-02 Inventure Chemical, Inc. Production of biodiesel, cellulosic sugars, and peptides from the simultaneous esterification and alcoholysis/hydrolysis of oil-containing materials with cellulosic and peptidic content
WO2009067771A1 (en) * 2007-11-26 2009-06-04 Universidade Federal Do Rio De Janeiro Production of ethanol from algae
US20090234146A1 (en) * 2008-03-14 2009-09-17 University Of Hawaii Methods and compositions for extraction and transesterification of biomass components
US20100233761A1 (en) * 2009-03-10 2010-09-16 Czartoski Thomas J Algae biomass fractionation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1493480A (en) * 1975-12-15 1977-11-30 Muramatsu M Method of producing ethanol
US20080241902A1 (en) * 2007-04-02 2008-10-02 Inventure Chemical, Inc. Production of biodiesel, cellulosic sugars, and peptides from the simultaneous esterification and alcoholysis/hydrolysis of oil-containing materials with cellulosic and peptidic content
WO2009067771A1 (en) * 2007-11-26 2009-06-04 Universidade Federal Do Rio De Janeiro Production of ethanol from algae
US20090234146A1 (en) * 2008-03-14 2009-09-17 University Of Hawaii Methods and compositions for extraction and transesterification of biomass components
US20100233761A1 (en) * 2009-03-10 2010-09-16 Czartoski Thomas J Algae biomass fractionation

Also Published As

Publication number Publication date
CO6470093A1 (en) 2012-06-29

Similar Documents

Publication Publication Date Title
Toor et al. An overview on bioethanol production from lignocellulosic feedstocks
da Maia et al. Microalgae starch: A promising raw material for the bioethanol production
Khammee et al. The immobilization of yeast for fermentation of macroalgae Rhizoclonium sp. for efficient conversion into bioethanol
Özçimen et al. An overview of bioethanol production from algae
Rajak et al. A holistic zero waste biorefinery approach for macroalgal biomass utilization: a review
Neto et al. Third-generation biofuels: An overview
Candra Study on bioethanol production using red seaweed Eucheuma cottonii from Bontang sea water
Lamb et al. Fermentative bioethanol production using enzymatically hydrolysed Saccharina latissima
Martín-Juárez et al. Breakthroughs in bioalcohol production from microalgae: Solving the hurdles
US7803601B2 (en) Production and secretion of glucose in photosynthetic prokaryotes (cyanobacteria)
WO2010077170A2 (en) Process and system for production of organic solvents
Qiao et al. Industrial bioethanol production: status and bottlenecks
Timung et al. Bio‐Butanol as Biofuels: The Present and Future Scope
CN103740768A (en) Full resource biological utilization process of lignocellulose material
WO2012085689A1 (en) Improved method for obtaining fermentable sugars based on microalgae and macroalgae
TWI579381B (en) A method for preparing bio-ethanol
ES2552603B2 (en) Procedure for the transformation of dried Opuntia ficus-indica cactus cladodes to produce second generation bioethanol
Christy et al. Bioethanol production from Chara globularis using yeast and yield improvement by optimization of conditions
Sun et al. Use of hemicellulose-derived xylose for environmentally sustainable starch production by mixotrophic duckweed
TWI748198B (en) Method of producing the fuel precursor
Zainuddin et al. Biodegradation Efficiency of Fungi for Lignocellulosic Biomass of Water Hyacinth (Eichhornia crassipes)
Bhagea et al. Isolation and characterisation of microalgae from University of Mauritius farm for bioethanol production
US20230348943A1 (en) Bioplastic production method
Aderibigbe et al. Optimized Production of Bioethanol by Fermentation of Acid Hydrolyzed-Corn Stover Employing Saccharomyces Cerevisiae Yeast Strain
Senatore et al. Ethanol: A Brief Review of the Major Production Methods in the World

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851023

Country of ref document: EP

Kind code of ref document: A1