WO2012085564A1 - NOx ABSORBER CATALYST - Google Patents
NOx ABSORBER CATALYST Download PDFInfo
- Publication number
- WO2012085564A1 WO2012085564A1 PCT/GB2011/052539 GB2011052539W WO2012085564A1 WO 2012085564 A1 WO2012085564 A1 WO 2012085564A1 GB 2011052539 W GB2011052539 W GB 2011052539W WO 2012085564 A1 WO2012085564 A1 WO 2012085564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxide
- component
- absorber catalyst
- layer
- catalyst according
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 84
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 61
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 353
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 73
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 60
- 238000003860 storage Methods 0.000 claims abstract description 56
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 37
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 239000010970 precious metal Substances 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 25
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 22
- 239000011232 storage material Substances 0.000 claims abstract description 20
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000002131 composite material Substances 0.000 claims abstract description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000010949 copper Substances 0.000 claims abstract description 12
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 7
- 239000010941 cobalt Substances 0.000 claims abstract description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 7
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 7
- 229910052718 tin Inorganic materials 0.000 claims abstract description 7
- 239000011135 tin Substances 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims description 35
- 239000010948 rhodium Substances 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 21
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 20
- 229910052703 rhodium Inorganic materials 0.000 claims description 18
- 239000002808 molecular sieve Substances 0.000 claims description 17
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 17
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 17
- 229910052788 barium Inorganic materials 0.000 claims description 15
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 15
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 10
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 10
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 9
- -1 magnesium aluminate Chemical class 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims description 7
- 150000001340 alkali metals Chemical class 0.000 claims description 7
- 150000002910 rare earth metals Chemical class 0.000 claims description 7
- 229910052712 strontium Inorganic materials 0.000 claims description 7
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 7
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 6
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 claims description 6
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 6
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 5
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 5
- 239000000395 magnesium oxide Substances 0.000 claims description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 2
- 239000011959 amorphous silica alumina Substances 0.000 claims description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 2
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 229910021536 Zeolite Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 53
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 40
- 238000006243 chemical reaction Methods 0.000 description 28
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 22
- 229910000420 cerium oxide Inorganic materials 0.000 description 22
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 22
- 230000000694 effects Effects 0.000 description 18
- 238000010926 purge Methods 0.000 description 13
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 150000002430 hydrocarbons Chemical class 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 11
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Inorganic materials [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 6
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 230000010757 Reduction Activity Effects 0.000 description 4
- GANNOFFDYMSBSZ-UHFFFAOYSA-N [AlH3].[Mg] Chemical compound [AlH3].[Mg] GANNOFFDYMSBSZ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 239000013618 particulate matter Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229910000836 magnesium aluminium oxide Inorganic materials 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910004625 Ce—Zr Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910018967 Pt—Rh Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001553 barium compounds Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910001959 inorganic nitrate Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9422—Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/62—Platinum group metals with gallium, indium, thallium, germanium, tin or lead
- B01J23/622—Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
- B01J23/626—Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0246—Coatings comprising a zeolite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
- B01D2255/2042—Barium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/2073—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20746—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2094—Tin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9022—Two layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9025—Three layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/91—NOx-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
- B01J29/85—Silicoaluminophosphates [SAPO compounds]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/06—Ceramic, e.g. monoliths
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
- F01N2370/04—Zeolitic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/068—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
- F01N2510/0684—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
Definitions
- the present invention relates to a NO x absorber catalyst comprising a nitrogen oxide storage component and at least one precious metal, and its use in treating exhaust gas from vehicles powered by lean burn internal combustion engines including vehicles powered by hybrid power sources, e.g., both an electric motor and a lean burn internal combustion engine.
- NO x absorber catalysts according to the invention have particular application for treating exhaust gas from vehicular compression ignition engines such as Diesel engines.
- NO x absorber catalysts are known, e.g. from U.S. Pat. No. 5,473,887, and are designed to adsorb nitrogen oxides (NO x ) from lean exhaust gas (lambda >1) and to desorb the NO x when the oxygen concentration in the exhaust gas is actively - as opposed to passively - decreased.
- NO x nitrogen oxides
- Such active decrease in oxygen concentration is known as "regeneration" of the NAC's NO x adsorption activity or a "purge” of NO x adsorbed on a NAC.
- Desorbed NO x may be reduced to N 2 with a suitable reductant, e.g.
- the oxygen concentration can be adjusted by a number of means, e.g. throttling, injection of additional hydrocarbon fuel into an engine cylinder such as during the exhaust stroke or injecting hydrocarbon fuel directly into exhaust gas downstream of an engine manifold.
- a typical NAC formulation disclosed in the prior art includes a catalytic oxidation component, such as platinum, a significant quantity, i.e. substantially more than is required for a promoter, of a NO x -storage component, such as barium, and a reduction catalyst, e.g. rhodium.
- a catalytic oxidation component such as platinum
- a significant quantity i.e. substantially more than is required for a promoter
- a reduction catalyst e.g. rhodium
- reaction (1) the nitric oxide reacts with oxygen on active oxidation sites on the platinum to form N0 2 .
- Reaction (2) involves adsorption of the N0 2 by the storage material in the form of an inorganic nitrate.
- reaction (3) At lower oxygen concentrations and/or at elevated temperatures, the nitrate species become thermodynamically unstable and decompose, producing NO and/or N0 2 according to reaction (3) below. In the presence of a suitable reductant, these nitrogen oxides are subsequently reduced by carbon monoxide, hydrogen and hydrocarbons to N 2 , which can take place over the reduction catalyst (see reaction (4)).
- the reactive barium species is given as the oxide. However, it is understood that in the presence of air most of the barium is in the form of the carbonate or possibly the hydroxide. The skilled person can adapt the above reaction schemes accordingly for species of barium other than the oxide and sequence of catalytic coatings in the exhaust stream.
- MO was MgO, wherein n is 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 with values of n > 1.5 yielding a pure phase product.
- the resulting Mg0.nAl 2 0 3 product is combined with the alkali metal potassium or lithium, both platinum and rhodium or palladium alone and barium to produce a NO x absorber catalyst.
- U.S. Pat. No. 6,350,421 discloses a nitrogen oxide storage material which contains at least one storage component for nitrogen oxides in the form of an oxide, mixed oxide, carbonate or hydroxide of the alkaline earth metals magnesium, calcium, strontium and barium and the alkali metals potassium and caesium on a high surface area support material.
- the support material can be doped cerium oxide, cerium/zirconium mixed oxide, calcium titanate, strontium titanate etc.
- the purpose of the cerium oxide dopant is to stabilize the specific surface area of the cerium oxide. Dopants are selected from silicon, scandium etc. In a majority of the examples the dopant is zirconium and the support for the storage component is a
- cerium/zirconium mixed oxide A representative example consists of a mixture of three powders: barium on a cerium/zirconium mixed oxide; platinum on an aluminium oxide; and rhodium on an aluminium oxide. Barium on pure cerium oxide is used in a comparison example (see US 6,350,421, Comparison Example 4).
- EP 1317953 discloses a NO x absorber catalyst that combines the teachings of JP 8- 117601 and US 6,350,421.
- the catalyst comprises a homogenous mixed oxide of magnesium oxide and aluminium oxide in a concentration of 1 to 40 wt% based on the total weight of the mixed oxide supporting one or both of platinum and palladium and a nitrogen oxide storage component, such as an oxide, carbonate or hydroxide of magnesium, calcium, strontium or barium, an alkali metal, a rare earth metal or a mixture thereof supported on a metal oxide such as cerium oxide or a cerium mixed oxide, e.g. cerium/zirconium mixed oxide.
- strontium or barium as nitrogen oxide storage components fixed on a support material of cerium oxide or cerium mixed oxides is said to be especially advantageous.
- Another partial amount of platinum (see Catalyst Clb) or palladium (see Catalyst C2b) can be deposited directly on the nitrogen oxide storage material.
- platinum see Catalyst Clb
- palladium see Catalyst C2b
- WO 2005/092481 discloses a variant of the nitrogen oxide storage material of EP 1317953 which variant comprises a nitrogen oxide storage material which is based on storage compounds of elements selected from the group consisting of magnesium, calcium, strontium, barium, the alkali metals, the rare earth metals and mixtures thereof, wherein a homogeneous magnesium-aluminium mixed oxide doped with cerium oxide is support material for the storage compounds and platinum, wherein the platinum is present either on a different homogeneous magnesium-aluminium mixed oxide doped with cerium oxide from the storage compounds (which is referred to as an oxidation-active component) or the same homogeneous magnesium- aluminium mixed oxide doped with cerium oxide as the storage compounds.
- a nitrogen oxide storage material which is based on storage compounds of elements selected from the group consisting of magnesium, calcium, strontium, barium, the alkali metals, the rare earth metals and mixtures thereof, wherein a homogeneous magnesium-aluminium mixed oxide doped with cerium oxide
- the nitrogen oxide storage material includes an oxygen- storing material based on cerium, in particular Ce-Zr mixed oxide.
- palladium can be carried on the oxidation-active component.
- rhodium can be carried on a further support material, such as optionally stabilised aluminium oxide.
- no platinum group metal is supported on the oxygen-storing material based on cerium, nor is there any suggestion so to do.
- a nitrogen oxide storage catalyst comprises a coating on a substrate comprising a nitrogen oxide storage material comprising ceria particles having an alkaline earth oxide, such as barium oxide, supported on the particles, the ceria having a crystallite size of between about 10 and 20 nm and the alkaline earth oxide having a crystallite size of between 20 and 40 nm.
- the coating further comprises a catalytic component, which comprises at least one member of platinum group metals supported on refractory oxide particles, i.e. not on the ceria particles.
- Refractory oxide particles screened for use in the Examples include aluminas doped with cerium oxide or a mixture of cerium oxide and zirconium oxide, including 90% A1 2 0 3 , 10% Ce0 2 ; 82% A1 2 0 3 , 11% Ce0 2 , 7% Zr0 2 ; and 80% A1 2 0 3 , 20% Ce0 2 .
- none of the refractory oxides tested is based on cerium oxide.
- US 2002/0053202 discloses an exhaust gas purifying system for a Diesel engine comprising a mixture of a H 2 supplying catalyst (Pt/Ce0 2 ) and a soluble organic fraction (SOF) adsorbing-oxidising catalyst (Pt/La-Si0 2 ) disposed on a first flow through substrate monolith and NO x absorbing catalyst (Ba/Pt-Rh/Al 2 0 3 ) disposed on a second flow-through substrate monolith located downstream of the first substrate monolith.
- a H 2 supplying catalyst Pt/Ce0 2
- SOF soluble organic fraction
- WO 2004/025093 discloses a substrate monolith comprising a NO x absorber, palladium supported on a first support material associated with at least one base metal promoter and platinum supported on a second support material.
- the base metal promoter can be a reducible oxide, such as an oxide of manganese, iron, copper, tin, cobalt or cerium, and the reducible oxide may be dispersed on the first support material or the support material per se may comprise particulate bulk reducible oxide.
- the NO x absorber can be at least one alkali metal, at least one alkaline earth metal, at least one rare earth metal e.g. lanthanum or yttrium or any two or more thereof.
- the NO x absorber includes both Pt and Rh, the latter for catalysing NO x reduction to N 2 , although the Rh can be disposed downstream of the NO x absorber.
- the supported Pt component is in a first layer and the supported Pd component and the associated at least one base metal promoter is in a second layer overlying the first layer.
- all components can be present in a single washcoat layer.
- the substrate monolith can be a flow-through substrate monolith or a filter. Historically, vehicular Diesel engines have been designed to meet some combination of four features: fuel efficiency; control of NO x emissions; power output; and particulate matter control.
- a typical exhaust system arrangement for a light-duty Diesel vehicle comprises a NO x absorber catalyst on a flow-through substrate monolith and a catalysed soot filter (CSF) disposed downstream (i.e. in the ordinary flow direction) thereof.
- CSF catalysed soot filter
- Modern Diesel vehicles generally use an engineering solution known as exhaust gas recirculation (EGR) in order better to control NO x emissions, wherein a portion of the exhaust gas is recirculated to the engine inlet during at least some of an internally
- NO x absorber catalysts comprising a first component of PtPd supported on a homogeneous mixed oxide of magnesium oxide and aluminium oxide (i.e. magnesium aluminate) and a second component of a barium compound supported on a Ce- Zr mixed oxide according to the Examples and Table 3 in EP 1317953.
- Each component was prepared separately. What we found was that when the first and second components were each prepared separately and the catalyst components were physically mixed, the NO x storage of the fresh NO x storage activity of the reconstituted catalyst was poor. However, when the separately prepared components were combined in a washcoat the NO x storage activity markedly improved.
- a NO x absorber catalyst comprising Pt, Pd or a combination of both Pt and Pd supported on a bulk reducible oxide that is substantially free of nitrogen oxide storage material provides a beneficially active NO x absorber catalyst.
- the NO x absorber catalysts according to the invention are particularly active: (i) for converting both desorbed NO x and NO x contained in rich exhaust gas when the NO x absorber catalyst has been aged (compared with fresh activity); and (ii) for oxidation of carbon monoxide and hydrocarbon at relatively low temperature in lean exhaust gas.
- Preferred embodiments of bulk reducible oxides include bulk cerium oxide (Ce0 2 also referred to as ceria) or bulk mixed oxide or composite oxide based on cerium oxide.
- Ce0 2 also referred to as ceria
- An aspect of this discovery is believed to reside in that the Pt, Pd or PtPd supported on the bulk reducible oxide generates a significant exotherm and/or hydrogen gas (H 2 ) via the water-gas shift reaction (CO + H 2 0 ⁇ C0 2 + H 2 (mildly exothermic)) as the exhaust gas is enriched with oxidisable
- the invention is a NO x absorber catalyst comprising a substrate monolith coated with one or more washcoat layers and comprising a first component comprising a nitrogen oxide storage component, at least one precious metal and a dispersed rare earth oxide supported on a refractory support material, and a second component comprising a precious metal supported on a bulk reducible oxide that is substantially free of nitrogen oxide storage material, wherein the precious metal present in the second component comprises Pt, Pd or a combination of both Pt and Pd and wherein the bulk reducible oxide is an oxide, a composite oxide or a mixed oxide comprising at least one of manganese, iron, cobalt, copper, tin or cerium.
- the term "bulk” to refer to a reducible oxide such as ceria (or any other component) means that the ceria is present as solid particles thereof. These particles are usually very fine, of the order of at least 90 percent of the particles being from about 0.5 to 15 microns in diameter.
- the term “bulk” is intended to distinguish from the situation in which reducible oxide such as ceria is "dispersed” on a refractory support material e.g. by being impregnated into the support material from a solution of e.g.
- cerium nitrate or some other liquid dispersion of the component and then dried and calcined to convert the impregnated cerium nitrate to a dispersion of ceria particles on a surface of the refractory support.
- the resultant ceria is thus "dispersed" onto and, to a greater or lesser extent, within a surface layer of the refractory support.
- the dispersed ceria is not present in bulk form, because bulk ceria comprises fine, solid particles of ceria.
- the dispersion can also take the form of a sol, i.e. finely divided particles of e.g. ceria on the nanometer scale.
- a NO x absorber catalyst comprising a substrate monolith coated with one or more washcoat layers comprising a first component comprising a nitrogen oxide storage component, at least one precious metal and a dispersed rare earth oxide supported on a refractory support material, and a second component comprising a precious metal supported on a bulk reducible oxide that is substantially free of nitrogen oxide storage material, wherein the precious metal present in the second component comprises Pt, Pd or a combination of both Pt and Pd and wherein the bulk reducible oxide is an oxide, a composite oxide or a mixed oxide comprising at least one of manganese, iron, cobalt, copper, tin or cerium.
- the NO x storage, release and reduction process can be divided into (a) NO x storage; and (b) NO x release and reduction phases.
- the NO x absorber catalyst according to the invention benefits both phases.
- reaction (1) hereinabove may be promoted. This is because net CO and hydrocarbon oxidation is favoured selectively over net NO oxidation at lower temperatures (competing reactions include N0 2 + CO ⁇ C0 2 + NO (facile); N0 2 + "HC" ⁇ H 2 0, C0 2 + NO (occurring at about 100°C); and N0 2 + particulate matter ⁇ NO + CO).
- a nitrogen storage material in contact with the precious metal supported on a bulk reducible oxide reduces the activity of the second component to oxidise CO and HC.
- the first component and the second component are present in the same washcoat layer. In a preferred arrangement of this embodiment, the first component is present in a different zone of the washcoat layer from the second component.
- the second component is in a different layer from the first component.
- the layer comprising the first component comprises a fourth component comprising a precious metal supported on a bulk reducible oxide, wherein the precious metal present in the second
- the bulk reducible oxide may be an oxide, a composite oxide or a mixed oxide comprising at least one of manganese, iron, cobalt, copper, tin or cerium.
- the precious metal/reducible oxide e.g. Pd/Ce0 2 or PtPd/Ce0 2 can contribute to passive NO x storage in the NO x absorber catalyst (see WO 2008/041470).
- the second component can be obtained using standard techniques including incipient wetness impregnation of e.g. a precious metal salt on a bulk ceria support, solid state chemistry or co -precipitation etc.
- a particularly active catalyst has been obtained by co-precipitation according to EP 0602865.
- Pt plays an important role in NO x absorber catalyst activity because it is highly active for reaction (1). However, in use Pt can sinter, thus reducing surface area and its catalyst activity as a consequence. By combining Pt with Pd, Pt surface area can be maintained, resulting in a more stable N0 2 production and consequent maintenance of catalytic activity as the NO x absorber catalyst becomes aged in use. However, we have found, very surprisingly, that the Pd can promote NO x storage when the Pd is present on the bulk reducible oxide.
- substantially the only precious metal present in the second component is Pd or a combination of both Pt and Pd.
- the precious metal present in the second component consists essentially of Pd or a combination of both Pt and Pd.
- the precious metal present in the second component consists of Pd or a combination of both Pt and Pd.
- the bulk reducible oxide is Mn0 2 , Fe 2 0 3 , CuO, CoO, Sn0 2 and Ce0 2 .
- Ce0 2 or mixed oxides or composite oxides based on Ce0 2 are preferred.
- the bulk reducible oxide can be doped with 0.5 to 80 wt.-% of at least one oxide of an element selected from the group consisting of zirconium, silicon, scandium, yttrium, lanthanum and the rare earth metals or mixtures thereof, based on the total weight of the storage material.
- zirconium, silicon, scandium, yttrium, lanthanum and the rare earth metals or mixtures thereof based on the total weight of the storage material.
- ceria-zirconia mixed oxides having a Ce mole% content of about 60% is more reducible than other mixed oxides having higher e.g. 90mol% Ce, or lower e.g. 30mol% Ce and is hence preferred for promoting the NO x reduction process.
- the bulk reducible mixed oxide or composite oxide comprising at least one of manganese, iron, cobalt, copper, tin or cerium further comprises zirconium oxide, wherein optionally the zirconium content in the mixed oxide or composite oxide is 1 to 25 wt.- %, based on the total weight of the mixed oxide or composite oxide.
- Preferred bulk reducible mixed oxides or composite oxides include cerium oxide/zirconium oxide and manganese oxide/zirconium oxide.
- the refractory support material in the first component can be alumina, magnesia, amorphous silica-alumina, titania, zirconia, a molecular sieve or a mixture, composite oxide or mixed oxide of any two or more thereof, and is preferably a homogeneous magnesium aluminate.
- the dispersed rare earth oxide in the first component can assist in reducing NO x slip during a purge.
- Our investigations show that in rich exhaust gas rare earth oxides (bulk or dispersed) can generate hydrogen via the water gas shift, a mildly exothermic reaction.
- the NAC is regenerated by contacting the NAC containing adsorbed NO x with an exhaust gas having a lower oxygen concentration than normal running conditions, e.g. rich of stoichiometric.
- an exhaust gas having a lower oxygen concentration than normal running conditions e.g. rich of stoichiometric.
- the exhaust gas is rich NO x cannot be adsorbed in the NAC.
- the dispersed rare earth oxides e.g. dispersed cerium oxide
- the bulk reducible oxide e.g. ceria
- NACs present in engine fuel and lubricants can become adsorbed on the active sites of the NAC blocking them and, over time, the capacity of the NAC to perform its primary purpose is eroded.
- exhaust systems comprising NACs are generally configured intermittently to run a desulfation regime, wherein the NAC is exposed to higher temperatures and/or richer exhaust gases than during a normal NO x purge.
- desulfation regimes come at a fuel penalty.
- the dispersed rare earth oxide in the first component comprises oxides of elements selected from the group consisting of cerium, praseodymium, neodymium, lanthanum, samarium and mixtures thereof.
- the rare earth oxides are cerium oxide and/or praseodymium oxide and most preferably cerium oxide.
- the nitrogen oxide storage component for use in the present invention can be selected from the group consisting of alkaline earth metals e.g. magnesium, calcium, barium and strontium, alkali metals such as potassium and caesium, rare earth metals and combinations of any two or more thereof, with one or both of barium and strontium preferred and barium particularly preferred.
- Methods of fixing the NO x storage component to the refractory support material include impregnation such as incipient wetness impregnation and drying, optionally spray drying, co -precipitation, solid state chemistry, etc.
- the first and second components comprise a combination of both platinum and palladium
- the combined total mass ratio of Pt:Pd in the first and second components is ⁇ 3 at constant platinum group metal cost: is ⁇ 3 : 1 , such as 2: 1 , 1.5:1 or even 1 : 1.
- the first component (i) oxidises CO and hydrocarbon to meet a relevant emission standard for these species; (ii) contributes to NO oxidation and NO x storage (reactions (1) and (2)) (iii) NO x release during active rich purge as a result of exotherm generation (e.g.
- H 2 generation derived from the water-gas shift reaction
- NO x reduction promoted by H 2 generation
- NH 3 generation of ammonia (NH 3 ), possibly resulting from H 2 generation, which can be used to reduce NO x on a suitable downstream selective catalytic reduction catalyst, e.g. CuCHA.
- the second component (a) also oxidises CO and hydrocarbons; (ii) provides lean NO x storage; (iii) (through interaction of the PGM and the NO x storage material) promotes NO x release; (iv) assists in reducing NO x slip during a purge; and (v) may enhance desulfation of the NAC at above 550°C through additional H 2 generation.
- the NO x absorber catalyst comprises a plurality of layers, wherein a lower layer comprises the first component and wherein a layer overlying the lower layer comprises a third component comprising rhodium supported on a refractory support material.
- the rhodium support material can be selected from the group consisting of alumina, a composite oxide or a mixed oxide based on cerium oxide and a composite oxide or a mixed oxide based on zirconium oxide optionally doped with one or more rare earth elements.
- Preferred composite or mixed oxides are based on cerium oxide include ceria/zirconia mixed oxides.
- a zirconium-based composite or mixed oxide is used to combine it with a reducible oxide, such as a sol, e.g. a ceria sol.
- a reducible oxide such as a sol, e.g. a ceria sol.
- the supported Rh component is generally active for promoting NO x reduction in a fresh NO x absorber catalyst and at greater than about 300°C in an aged NO x absorber catalyst.
- One method of avoiding NO x storage component migration is to pre-fix the NO x storage component to the refractory support material e.g. by spray drying and then carefully to adjust and maintain the pH of the washcoat to the isoelectric point of the NO x storage component, thereby substantially preventing the NO x storage component (even when pre-fixed) from migrating from its support.
- this method is only available where the pH used does not promote migration of other components within the washcoat layer.
- the second component layer overlies the third component layer, i.e. the lowest layer (the layer coated directly onto the substrate monolith) comprises the first component, overlying which is the above-mentioned third component-containing layer such that an outer layer comprises the second component.
- a three layer NAC construct wherein the first (lower) layer comprises PtPd, Ba, bulk Ce0 2 and dispersed ceria (from a cerium salt) and a second layer catalyst comprising a ceria-zirconia mixed oxide supporting rhodium and a third layer (over the rhodium layer) comprising Pt/Ce0 2 shows improved NO x conversion during a NO x purge than the same NAC, but without the third layer.
- the first (lower) layer comprises PtPd, Ba, bulk Ce0 2 and dispersed ceria (from a cerium salt) and a second layer catalyst comprising a ceria-zirconia mixed oxide supporting rhodium and a third layer (over the rhodium layer) comprising Pt/Ce0 2
- the third layer shows improved NO x conversion during a NO x purge than the same NAC, but without the third layer.
- Rh/CeZr0 2 made an identical three layer catalyst but left out the rhodium. Comparing the NO x reduction activity of the catalysts at 250°C, it was found that they had similar NO x reduction activity during a NO x purge. Hence, it is concluded that the presence of a precious metal supported on a bulk reducible oxide that is substantially free of nitrogen oxide storage material benefits NO x reduction performance as well as NO x storage, as it promotes NO oxidation.
- a layer overlying a lower layer comprising the first component can comprise at least one molecular sieve.
- One such preferred arrangement comprises three layers, wherein a layer comprising the molecular sieve is disposed between a layer comprising the lower layer and a layer comprising the third component.
- This arrangement is particularly beneficial where the precious metal in the lower layer comprises palladium. This is because palladium can poison the catalytic reduction activity of the rhodium.
- the molecular sieve present in a layer between the lower layer and the layer comprising rhodium can, in certain washcoat compositions, substantially prevent the palladium from contacting the rhodium, i.e.
- the palladium is held within the molecular sieve layer.
- molecular sieve layer Pd migration may be prevented by use of a Pd salt complexed with a bulky ligand or by appropriate choice of precious metal salts so that the washcoat pH is at or close to the isoelectric point of the precious metal salt, thereby reducing or preventing metal migration.
- a layer comprising the molecular sieve overlies a layer comprising the third component.
- Preferred molecular sieves include those having the CHA and BEA frameworks, and can contain promoted metals such as copper and/or iron.
- the molecular sieve can also be a silicoaluminophosphate (SAPO), such as SAPO-34 (a).
- SAPO silicoaluminophosphate
- Alumino silicate zeolites such as SSZ-13 (also a CHA) can also be used.
- SSZ-13 also a CHA
- copper-promoted molecular sieves in the arrangement wherein the molecular sieve is present in an outer-most layer is particularly beneficial, in that the catalyst is better able to treat NO x during high temperature rich conditions.
- Cu/SAPO-34 is more active than Cu/SSZ-13, and we speculate that the phosphorus in the SAPO CHA framework is playing a role in Cu the location of the copper in active sites within the framework.
- an exhaust system for a lean-burn internal combustion engine comprising a NO x storage catalyst according to the invention.
- a vehicle comprising an exhaust system according to the invention.
- EXAMPLE 1 PREPARATION OF CATALYZED SUBSTRATES Comparative Substrate 1A: A 400 cells per square inch (cpsi) flow-through cordierite substrate monolith is coated with a NO x absorber catalyst formulation comprising (1) 94 g/ft 3 Pt and 19 g/ft 3 Pd, 2 g/in 3 cerium dispersed alumina, 1 g/in 3 particulate ceria, and 400 g/ft 3 Ba; and (2) 10 g/ft 3 Rh supported on 0.5 g/in 3 85 wt .% zirconia doped with rare earth elements.
- the NO : absorber catalyst is coated on the virgin substrate monolith using the method disclosed in WO 99/47260, followed by drying for 30 minutes in a forced air drier at 100°C and then firing at 500°C for 2 hours.
- Substrate IB A 400 cells per square inch (cpsi) flow-through cordierite substrate monolith is coated with a NO x absorber catalyst formulation comprising (1) 84 g/ft 3 Pt and 19 g/ft 3 Pd, 1 g/in 3 cerium dispersed alumina, 1 g/in 3 particulate ceria, and 400 g/ft 3 Ba; (2) a further 10 g/ft 3 Pt supported on lg/in 3 particulate ceria; plus (3) 10 g/ft 3 Rh supported on 0.5 g/in 3 85 wt.% zirconia doped with rare earth elements.
- NO x absorber catalyst formulation comprising (1) 84 g/ft 3 Pt and 19 g/ft 3 Pd, 1 g/in 3 cerium dispersed alumina, 1 g/in 3 particulate ceria, and 400 g/ft 3 Ba; (2) a further 10 g/ft 3 Pt supported on lg
- Substrate 1C is prepared according to the procedure of Substrate IB with the exception that the first component of the NO x absorber catalyst formulation comprises 74 g/ft 3 Pt and the second component comprises 20 g/ft 3 Pt.
- Substrate ID is prepared according to the procedure of Substrate IB with the exception that the first component of the NO x absorber catalyst formulation comprises 64 g/ft 3 and the second component comprises 30 g/ft 3 Pt.
- Example 1 The substrates of Example 1 are tested for NO x storage on a synthetic gas rig at 250°C using a synthetic gas stream to imitate the exhaust of a Diesel engine.
- the lean-rich cycle is for of 210 seconds lean and then 30 seconds rich.
- the results are shown in Table 1, and demonstrate that the substrates of the invention have significantly higher NO x storage under lean conditions and much lower NO x slippage during rich conditions.
- the lower NO x slippage demonstrates more complete conversion of the desorbed nitrogen oxides during the rich/regeneration phase.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Environmental & Geological Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11808296.5A EP2665545A1 (en) | 2010-12-21 | 2011-12-21 | No, absorber catalyst |
JP2013545498A JP5826285B2 (en) | 2010-12-21 | 2011-12-21 | NOx absorption catalyst |
US13/996,637 US9114385B2 (en) | 2010-12-21 | 2011-12-21 | NOx absorber catalyst |
KR1020137018716A KR101953402B1 (en) | 2010-12-21 | 2011-12-21 | NOx ABSORBER CATALYST |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1021649.7 | 2010-12-21 | ||
GBGB1021649.7A GB201021649D0 (en) | 2010-12-21 | 2010-12-21 | NOx Absorber catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012085564A1 true WO2012085564A1 (en) | 2012-06-28 |
Family
ID=43598733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2011/052539 WO2012085564A1 (en) | 2010-12-21 | 2011-12-21 | NOx ABSORBER CATALYST |
Country Status (6)
Country | Link |
---|---|
US (1) | US9114385B2 (en) |
EP (1) | EP2665545A1 (en) |
JP (1) | JP5826285B2 (en) |
KR (1) | KR101953402B1 (en) |
GB (1) | GB201021649D0 (en) |
WO (1) | WO2012085564A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2769760A1 (en) * | 2013-02-21 | 2014-08-27 | Umicore AG & Co. KG | Catalyst for reducing nitrogen oxides |
EP2860367A1 (en) * | 2013-10-11 | 2015-04-15 | Peugeot Citroën Automobiles Sa | Device for treating exhaust gas for an exhaust line of a diesel vehicle including a pollution-cleaning conversion element |
WO2016141142A1 (en) * | 2015-03-03 | 2016-09-09 | Basf Corporation | LEAN NOx TRAP WITH ENHANCED HIGH AND LOW TEMPERATURE PERFORMANCE |
US9662638B2 (en) | 2013-01-08 | 2017-05-30 | Umicore Ag & Co. Kg | Catalyst for reducing nitrogen oxides |
GB2550064A (en) * | 2016-05-05 | 2017-11-08 | Johnson Matthey Plc | NOx Adsorber catalyst |
GB2554859A (en) * | 2016-10-04 | 2018-04-18 | Johnson Matthey Plc | NOx adsorber catalyst |
GB2560925A (en) * | 2017-03-28 | 2018-10-03 | Johnson Matthey Plc | NOx adsorber catalyst |
GB2560942A (en) * | 2017-03-29 | 2018-10-03 | Johnson Matthey Plc | NOx Adsorber catalyst |
CN114433201A (en) * | 2020-11-04 | 2022-05-06 | 现代自动车株式会社 | NOXStorage catalyst and preparation method thereof |
US11439952B2 (en) * | 2018-11-16 | 2022-09-13 | Umicore Ag & Co. Kg | Low temperature nitrogen oxide adsorber |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105358249B (en) * | 2013-07-08 | 2018-04-10 | 优美科触媒日本有限公司 | Nitrogen oxides removal catalyst |
EP2878368B1 (en) * | 2013-11-29 | 2019-05-22 | Umicore Ag & Co. Kg | Oxygen storage materials |
EP2878359B1 (en) * | 2013-11-29 | 2016-04-13 | Umicore Ag & Co. Kg | Use of mixed oxides as oxygen storage components |
GB201401115D0 (en) | 2014-01-23 | 2014-03-12 | Johnson Matthey Plc | Diesel oxidation catalyst and exhaust system |
WO2016094399A1 (en) | 2014-12-08 | 2016-06-16 | Basf Corporation | Nitrous oxide removal catalysts for exhaust systems |
BR112017018826A2 (en) * | 2015-03-03 | 2018-04-24 | Basf Corp | exhaust treatment article, gas treatment system and catalyst aging monitoring method |
US20160310933A1 (en) * | 2015-04-23 | 2016-10-27 | Ut-Battelle, Llc | Catalyst for low temperature emission control and methods for using same |
MX2017016112A (en) * | 2015-06-12 | 2018-02-21 | Basf Corp | Exhaust gas treatment system. |
US10058819B2 (en) | 2015-11-06 | 2018-08-28 | Paccar Inc | Thermally integrated compact aftertreatment system |
DE102016101761A1 (en) | 2016-02-02 | 2017-08-03 | Umicore Ag & Co. Kg | Catalyst for the reduction of nitrogen oxides |
KR20180102196A (en) | 2016-02-03 | 2018-09-14 | 바스프 코포레이션 | Multi-layer catalyst composition for internal combustion engine |
WO2018162434A1 (en) | 2017-03-06 | 2018-09-13 | Umicore Ag & Co. Kg | Diesel oxidation catalyst containing manganese |
GB2560940A (en) * | 2017-03-29 | 2018-10-03 | Johnson Matthey Plc | Three layer NOx Adsorber catalyst |
JP6408062B1 (en) * | 2017-04-28 | 2018-10-17 | 株式会社キャタラー | Exhaust gas purification catalyst |
US10427100B2 (en) | 2017-05-08 | 2019-10-01 | Cummins Emission Solutions Inc. | Sorption enhanced reaction technology for increased performance from automotive catalysts |
US10675586B2 (en) | 2017-06-02 | 2020-06-09 | Paccar Inc | Hybrid binary catalysts, methods and uses thereof |
US10835866B2 (en) * | 2017-06-02 | 2020-11-17 | Paccar Inc | 4-way hybrid binary catalysts, methods and uses thereof |
CN111201075B (en) | 2017-10-12 | 2023-02-03 | 巴斯夫公司 | Combined NOx absorber and SCR catalyst |
CN111315476A (en) * | 2017-11-13 | 2020-06-19 | 三井金属矿业株式会社 | Nitrogen oxide storage material and exhaust gas purification catalyst |
US10906031B2 (en) | 2019-04-05 | 2021-02-02 | Paccar Inc | Intra-crystalline binary catalysts and uses thereof |
US11007514B2 (en) | 2019-04-05 | 2021-05-18 | Paccar Inc | Ammonia facilitated cation loading of zeolite catalysts |
US10934918B1 (en) | 2019-10-14 | 2021-03-02 | Paccar Inc | Combined urea hydrolysis and selective catalytic reduction for emissions control |
CN110822461A (en) * | 2019-11-01 | 2020-02-21 | 华电电力科学研究院有限公司 | Method for realizing wide-load denitration by bypass grading economizer |
KR20220110760A (en) | 2019-12-13 | 2022-08-09 | 바스프 코포레이션 | Lean NOx trap plus low temperature NOx adsorption system for low temperature NOx trapping |
US20220088575A1 (en) * | 2020-09-18 | 2022-03-24 | Johnson Matthey Public Limited Company | Catalysts for gasoline engine exhaust gas treatments and their novel syntheses |
KR102585782B1 (en) * | 2021-08-11 | 2023-10-05 | 고려대학교 산학협력단 | Metal oxide-supported platinum/gamma-alumina catalyst-based low-temperature nitrogen oxide adsorber and manufacturing method thereof |
CN113828149A (en) * | 2021-09-01 | 2021-12-24 | 浙江海亮环境材料有限公司 | Coating method for improving denitration efficiency of catalytic fiber filter tube and filter tube |
CN114669323B (en) * | 2022-04-21 | 2023-03-24 | 中国科学院广州能源研究所 | Preparation method of bio-based aviation fuel oil hydrofining catalyst |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0602865A1 (en) | 1992-12-18 | 1994-06-22 | Johnson Matthey Public Limited Company | Catalyst |
US5473887A (en) | 1991-10-03 | 1995-12-12 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification device of internal combustion engine |
JPH08117601A (en) | 1994-10-21 | 1996-05-14 | Toyota Central Res & Dev Lab Inc | Exhaust gas purification catalyst and method for purifying exhaust gas |
WO1999047260A1 (en) | 1998-03-19 | 1999-09-23 | Johnson Matthey Public Limited Company | Monolith coating apparatus and method therefor |
US6350421B1 (en) | 1998-08-24 | 2002-02-26 | Dmc2 Degussa Metals Catalysts Cerdec Ag | Nitrogen oxide storage material and nitrogen oxide storing catalyst prepared therefrom |
US20020053202A1 (en) | 2000-09-08 | 2002-05-09 | Nissan Motor Co., Ltd | Exhaust gas purifying system and method |
EP1316354A1 (en) * | 2001-11-30 | 2003-06-04 | OMG AG & Co. KG | Catalyst for the reduction of nitrogen oxides in exhaust gas of lean burn engines |
WO2004025093A1 (en) | 2002-09-13 | 2004-03-25 | Johnson Matthey Public Limited Company | Compression ignition engine and exhaust system therefor |
US20040182071A1 (en) * | 2003-03-21 | 2004-09-23 | Gopichandra Surnilla | Device and method for internal combustion engine control |
WO2005092481A1 (en) | 2004-03-27 | 2005-10-06 | Umicore Ag & Co. Kg | Nitrogen oxide storage material and nitrogen oxide storage catalyst produced therefrom |
WO2008041470A1 (en) | 2006-09-27 | 2008-04-10 | Tg Corporation | Method for treatment of ballast water for ship |
WO2008047170A1 (en) * | 2006-10-20 | 2008-04-24 | Johnson Matthey Public Limited Company | Thermally regenerable nitric oxide adsorbent |
WO2008067375A1 (en) | 2006-11-29 | 2008-06-05 | Basf Catalysts Llc | Nox storage materials and traps resistant to thermal aging |
WO2009118593A1 (en) * | 2008-03-25 | 2009-10-01 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying catalyst |
WO2009158453A1 (en) * | 2008-06-27 | 2009-12-30 | Basf Catalyst Llc | Nox adsorber catalyst with superior low temperature performance |
WO2010101219A1 (en) * | 2009-03-06 | 2010-09-10 | 株式会社アイシーティー | Catalyst for purification of exhaust gas |
US20110305612A1 (en) * | 2010-06-10 | 2011-12-15 | Basf Se | Nox storage catalyst with improved hydrocarbon conversion activity |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3374569B2 (en) * | 1995-01-10 | 2003-02-04 | 株式会社日立製作所 | Exhaust gas purification catalyst and purification method |
JP3799651B2 (en) * | 1995-04-28 | 2006-07-19 | マツダ株式会社 | Exhaust gas purification catalyst |
KR100319922B1 (en) * | 1999-03-05 | 2002-01-09 | 이형도 | catalyst for reduction of exhaust gas from diesel engine |
US6497848B1 (en) * | 1999-04-02 | 2002-12-24 | Engelhard Corporation | Catalytic trap with potassium component and method of using the same |
US6294140B1 (en) * | 1999-04-23 | 2001-09-25 | Degussa Ag | Layered noble metal-containing exhaust gas catalyst and its preparation |
DE60035880T2 (en) * | 2000-02-22 | 2007-12-20 | Mazda Motor Corp. | CATALYST FOR EXHAUST PURIFICATION AND METHOD FOR THE PRODUCTION THEREOF |
GB0022786D0 (en) * | 2000-09-16 | 2000-11-01 | Johnson Matthey Plc | NOx-Trap composition |
US6777370B2 (en) * | 2001-04-13 | 2004-08-17 | Engelhard Corporation | SOx tolerant NOx trap catalysts and methods of making and using the same |
JP2004209324A (en) * | 2002-12-27 | 2004-07-29 | Nissan Motor Co Ltd | Catalyst for cleaning exhaust gas |
US20050164879A1 (en) * | 2004-01-28 | 2005-07-28 | Engelhard Corporation | Layered SOx tolerant NOx trap catalysts and methods of making and using the same |
US7576031B2 (en) * | 2006-06-09 | 2009-08-18 | Basf Catalysts Llc | Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function |
KR20080047950A (en) * | 2006-11-27 | 2008-05-30 | 나노스텔라 인코포레이티드 | Engine exhaust catalysts containing palladium-gold |
JP5113082B2 (en) * | 2007-01-26 | 2013-01-09 | 株式会社キャタラー | Exhaust gas purification catalyst |
US8598110B2 (en) * | 2008-10-30 | 2013-12-03 | International Flavors & Fragrances Inc. | 1,3-oxathiane compounds and their use in flavor and fragrance compositions |
US8252258B2 (en) * | 2009-01-16 | 2012-08-28 | Basf Corporation | Diesel oxidation catalyst with layer structure for improved hydrocarbon conversion |
US8211392B2 (en) * | 2009-01-16 | 2012-07-03 | Basf Corporation | Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion |
US8329607B2 (en) * | 2009-01-16 | 2012-12-11 | Basf Corporation | Layered diesel oxidation catalyst composites |
US8568675B2 (en) * | 2009-02-20 | 2013-10-29 | Basf Corporation | Palladium-supported catalyst composites |
US8637426B2 (en) * | 2009-04-08 | 2014-01-28 | Basf Corporation | Zoned catalysts for diesel applications |
GB0922195D0 (en) * | 2009-12-21 | 2010-02-03 | Johnson Matthey Plc | Improvements in NOx traps |
KR101846593B1 (en) * | 2010-06-10 | 2018-04-06 | 바스프 에스이 | Nox storage catalyst with improved hydrocarbon conversion activity |
US8557204B2 (en) * | 2010-11-22 | 2013-10-15 | Umicore Ag & Co. Kg | Three-way catalyst having an upstream single-layer catalyst |
-
2010
- 2010-12-21 GB GBGB1021649.7A patent/GB201021649D0/en not_active Ceased
-
2011
- 2011-12-21 WO PCT/GB2011/052539 patent/WO2012085564A1/en active Application Filing
- 2011-12-21 US US13/996,637 patent/US9114385B2/en active Active
- 2011-12-21 EP EP11808296.5A patent/EP2665545A1/en not_active Ceased
- 2011-12-21 JP JP2013545498A patent/JP5826285B2/en active Active
- 2011-12-21 KR KR1020137018716A patent/KR101953402B1/en active IP Right Grant
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5473887A (en) | 1991-10-03 | 1995-12-12 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification device of internal combustion engine |
EP0602865A1 (en) | 1992-12-18 | 1994-06-22 | Johnson Matthey Public Limited Company | Catalyst |
JPH08117601A (en) | 1994-10-21 | 1996-05-14 | Toyota Central Res & Dev Lab Inc | Exhaust gas purification catalyst and method for purifying exhaust gas |
WO1999047260A1 (en) | 1998-03-19 | 1999-09-23 | Johnson Matthey Public Limited Company | Monolith coating apparatus and method therefor |
US6350421B1 (en) | 1998-08-24 | 2002-02-26 | Dmc2 Degussa Metals Catalysts Cerdec Ag | Nitrogen oxide storage material and nitrogen oxide storing catalyst prepared therefrom |
US20020053202A1 (en) | 2000-09-08 | 2002-05-09 | Nissan Motor Co., Ltd | Exhaust gas purifying system and method |
EP1316354A1 (en) * | 2001-11-30 | 2003-06-04 | OMG AG & Co. KG | Catalyst for the reduction of nitrogen oxides in exhaust gas of lean burn engines |
EP1317953A1 (en) | 2001-11-30 | 2003-06-11 | OMG AG & Co. KG | Catalyst for lowering the amount of nitrogen oxides in the exhaust gas from lean burn engines |
WO2004025093A1 (en) | 2002-09-13 | 2004-03-25 | Johnson Matthey Public Limited Company | Compression ignition engine and exhaust system therefor |
US20040182071A1 (en) * | 2003-03-21 | 2004-09-23 | Gopichandra Surnilla | Device and method for internal combustion engine control |
WO2005092481A1 (en) | 2004-03-27 | 2005-10-06 | Umicore Ag & Co. Kg | Nitrogen oxide storage material and nitrogen oxide storage catalyst produced therefrom |
WO2008041470A1 (en) | 2006-09-27 | 2008-04-10 | Tg Corporation | Method for treatment of ballast water for ship |
WO2008047170A1 (en) * | 2006-10-20 | 2008-04-24 | Johnson Matthey Public Limited Company | Thermally regenerable nitric oxide adsorbent |
WO2008067375A1 (en) | 2006-11-29 | 2008-06-05 | Basf Catalysts Llc | Nox storage materials and traps resistant to thermal aging |
WO2009118593A1 (en) * | 2008-03-25 | 2009-10-01 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying catalyst |
WO2009158453A1 (en) * | 2008-06-27 | 2009-12-30 | Basf Catalyst Llc | Nox adsorber catalyst with superior low temperature performance |
WO2010101219A1 (en) * | 2009-03-06 | 2010-09-10 | 株式会社アイシーティー | Catalyst for purification of exhaust gas |
EP2404669A1 (en) * | 2009-03-06 | 2012-01-11 | ICT Co., Ltd. | Catalyst for purification of exhaust gas |
US20110305612A1 (en) * | 2010-06-10 | 2011-12-15 | Basf Se | Nox storage catalyst with improved hydrocarbon conversion activity |
Non-Patent Citations (1)
Title |
---|
See also references of EP2665545A1 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9662638B2 (en) | 2013-01-08 | 2017-05-30 | Umicore Ag & Co. Kg | Catalyst for reducing nitrogen oxides |
WO2014128236A1 (en) * | 2013-02-21 | 2014-08-28 | Umicore Ag & Co. Kg | Catalyst and method for the reduction of nitrogen oxides |
EP2769760A1 (en) * | 2013-02-21 | 2014-08-27 | Umicore AG & Co. KG | Catalyst for reducing nitrogen oxides |
EP2860367A1 (en) * | 2013-10-11 | 2015-04-15 | Peugeot Citroën Automobiles Sa | Device for treating exhaust gas for an exhaust line of a diesel vehicle including a pollution-cleaning conversion element |
FR3011877A1 (en) * | 2013-10-11 | 2015-04-17 | Peugeot Citroen Automobiles Sa | EXHAUST GAS TREATMENT DEVICE FOR A DIESEL VEHICLE EXHAUST LINE COMPRISING A DEPOLLUTION CONVERSION ELEMENT |
US10226754B2 (en) | 2015-03-03 | 2019-03-12 | Basf Corporation | Lean NOx trap with enhanced high and low temperature performance |
WO2016141142A1 (en) * | 2015-03-03 | 2016-09-09 | Basf Corporation | LEAN NOx TRAP WITH ENHANCED HIGH AND LOW TEMPERATURE PERFORMANCE |
GB2550064A (en) * | 2016-05-05 | 2017-11-08 | Johnson Matthey Plc | NOx Adsorber catalyst |
US11358127B2 (en) | 2016-05-05 | 2022-06-14 | Johnson Matthey Public Limited Company | NOx adsorber catalyst |
GB2550064B (en) * | 2016-05-05 | 2020-12-16 | Johnson Matthey Plc | NOx Adsorber catalyst |
US11117097B2 (en) | 2016-10-04 | 2021-09-14 | Johnson Matthey Public Limited Company | NOx adsorber catalyst |
GB2554859A (en) * | 2016-10-04 | 2018-04-18 | Johnson Matthey Plc | NOx adsorber catalyst |
GB2560925A (en) * | 2017-03-28 | 2018-10-03 | Johnson Matthey Plc | NOx adsorber catalyst |
GB2562609A (en) * | 2017-03-29 | 2018-11-21 | Johnson Matthey Plc | NOx Adsorber catalyst |
GB2560942A (en) * | 2017-03-29 | 2018-10-03 | Johnson Matthey Plc | NOx Adsorber catalyst |
US10974228B2 (en) | 2017-03-29 | 2021-04-13 | Johnson Matthey Public Limited Company | NOx adsorber catalyst |
GB2562609B (en) * | 2017-03-29 | 2021-04-21 | Johnson Matthey Plc | NOx adsorber catalyst |
US11439952B2 (en) * | 2018-11-16 | 2022-09-13 | Umicore Ag & Co. Kg | Low temperature nitrogen oxide adsorber |
CN114433201A (en) * | 2020-11-04 | 2022-05-06 | 现代自动车株式会社 | NOXStorage catalyst and preparation method thereof |
US12083510B2 (en) | 2020-11-04 | 2024-09-10 | Hyundai Motor Company | NOx storage catalyst and method for preparing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2014501613A (en) | 2014-01-23 |
GB201021649D0 (en) | 2011-02-02 |
KR20140015295A (en) | 2014-02-06 |
JP5826285B2 (en) | 2015-12-02 |
US20130336865A1 (en) | 2013-12-19 |
EP2665545A1 (en) | 2013-11-27 |
KR101953402B1 (en) | 2019-02-28 |
US9114385B2 (en) | 2015-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9114385B2 (en) | NOx absorber catalyst | |
RU2736939C2 (en) | Catalysts for removal of nitrous oxide for exhaust systems | |
US9611773B2 (en) | Zoned catalysed substrate monolith | |
RU2570197C1 (en) | Oxidation catalyst for internal combustion engine exhaust gas treatment | |
US8959894B2 (en) | Manganese-based oxides promoted lean NOx trap (LNT) catalyst | |
US20030175192A1 (en) | SOx trap for enhancing NOx trap performance and methods of making and using the same | |
US20020103078A1 (en) | SOx trap for enhancing NOx trap performance and methods of making and using the same | |
EP2629881B1 (en) | NOx STORAGE COMPONENT | |
JP2007534467A (en) | Noble metal catalyst stabilized with iron oxide for removing pollutants from exhaust gas from lean burn engine | |
KR20130138203A (en) | Catalytic converter for removing nitrogen oxides from the exhaust gas of diesel engines | |
EP2723476A1 (en) | Catalyzed substrate and exhaust system for internal combustion engines | |
EP1307279A2 (en) | Sox tolerant nox trap catalysts and methods of making and using the same | |
US6585945B2 (en) | SOx tolerant NOx trap catalysts and methods of making and using the same | |
JP5490342B2 (en) | Catalytic trap with potassium component and method of use thereof | |
JP2004230241A (en) | Exhaust gas cleaning catalyst and manufacturing method therefor | |
JP2004322022A (en) | Catalyst for cleaning exhaust gas | |
JP2007084391A (en) | Exhaust gas purifying device for automobile and hydrogen producing catalyst | |
JP3477982B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP2000042370A (en) | Catalyst device for purifying exhaust gas and its using method | |
Cooper et al. | NO x storage component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11808296 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013545498 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011808296 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137018716 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13996637 Country of ref document: US |