WO2012085298A1 - Fibrin gel containing sclerocorneal limbus cells and the use thereof in ocular surface bioengineering - Google Patents

Fibrin gel containing sclerocorneal limbus cells and the use thereof in ocular surface bioengineering Download PDF

Info

Publication number
WO2012085298A1
WO2012085298A1 PCT/ES2010/070865 ES2010070865W WO2012085298A1 WO 2012085298 A1 WO2012085298 A1 WO 2012085298A1 ES 2010070865 W ES2010070865 W ES 2010070865W WO 2012085298 A1 WO2012085298 A1 WO 2012085298A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrin
cep
cells
fibrin gel
ces
Prior art date
Application number
PCT/ES2010/070865
Other languages
Spanish (es)
French (fr)
Inventor
Margarita Calonge Cano
Francisco Javier IGLESIAS MUÑOZ
Elena VUELTA LÓPEZ
Manuel GONZALO ORDEN
Original Assignee
Universidad De Valladolid (40%)
Universidad De Leon (20%)
Fundación Clinica San Francisco De León (40%)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Valladolid (40%), Universidad De Leon (20%), Fundación Clinica San Francisco De León (40%) filed Critical Universidad De Valladolid (40%)
Priority to PCT/ES2010/070865 priority Critical patent/WO2012085298A1/en
Publication of WO2012085298A1 publication Critical patent/WO2012085298A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0621Eye cells, e.g. cornea, iris pigmented cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/225Fibrin; Fibrinogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3813Epithelial cells, e.g. keratinocytes, urothelial cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3886Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells comprising two or more cell types
    • A61L27/3891Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells comprising two or more cell types as distinct cell layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/56Fibrin; Thrombin

Definitions

  • the present invention falls within the field of biomedicine, regenerative medicine and tissue engineering with stem cells (advanced therapies) and refers to a fibrin gel comprising stromal cells of the sclerocorneal limbus (preferably fibroblasts). More preferably said gel further comprises epithelial cells of the sclerocorneal limbus (preferably stem cells).
  • the present invention also relates to different methods of preparing said gels and their use in the elaboration of advanced therapy medications for the treatment and / or prevention of degenerative, inflammatory or genetic lesions or diseases of the ocular surface.
  • tissue engineering techniques have acquired great importance in the development of new therapies for the resolution of various types of pathologies.
  • these techniques have focused mainly on the development of biological substitutes that facilitate the repair of ocular surface defects.
  • This is the case of some of the treatments currently available against various diseases that affect the corneal surface, such as those that are included in the group of pathologies classified as limbic insufficiency syndromes (SIL).
  • SIL limbic insufficiency syndromes
  • Clinically, syndromes characterized by destruction and / or dysfunction of epithelial stem cells or SIL would need a replacement of the corneal-scleral limbus and not just the current approach, a corneal transplant, since donor buttons lack stem cells, due to what these transplants are bound to fail.
  • a certain pathological process could also affect the entire thickness of the cornea and, in these cases, in addition to needing a reconstruction of the limbar niche, a cornea transplant that replaces the stroma (lamellar keratoplasty) will be needed later , the endothelium (endothelial keratoplasty) or both layers (penetrating keratoplasty).
  • SIL cases cannot be solved with a corneal transplant of any kind if, before, the limbar niche is not reconstructed.
  • artificial or biological corneas used as equivalents of the human cornea are those built on substrates of collagen and chondroitin sulfate with glutaraldehyde, containing cell lines developed from cells isolated from the three layers of the cornea, epithelium, stroma and endothelium, which are immortalized by viral transfection (May Griffith, et al., 1999, Science; 286: 2169-2172).
  • Another biological substitute for the cornea is based on fibrin gels with agarose, which requires the cultivation of the three cell layers present in the cornea: epithelial, stromal and endothelial cells.
  • endothelial cells are seeded at the base of a porous culture, a human fibrin gel is developed with agarose containing stroma cells or fibroblasts cultured therein, which is placed on the endothelial cell layer. Finally, epithelial cells grow on the surface of all this support, from the healthy limbus of the recipient subject.
  • the stromal stem cells of the human cornea have been cultured in pellets, in the absence of a rigid support.
  • this cell growth on pellets has been compared with that which occurs on a fibrin gel, from which it has been concluded that these gels are malleable and fragile and do not allow the deposition of a dense matrix (Yiqin Du, et al. , 2007, Investigative Ophthalmology & Visual Science; 48: 1 1, 5038-5045).
  • Yiqin Du, et al. 2007, Investigative Ophthalmology & Visual Science; 48: 1 1, 5038-5045.
  • the stem cells of the corneal epithelium are located in the basal region of the limbar epithelium, in structures known as Vogt palisades. This location is extremely important for the maintenance not only of the phenotype of this cell type but also of its capabilities and functions as an adult stem cell. It is the microenvironment in which said cell population is that determines its potential as an adult stem cell. Said microenvironment or niche is composed of the rest of cell types that are in the vicinity of the population of stem cells of the corneal epithelium, by the surrounding extracellular matrix and, very importantly, by the basal lamina and the underlying stroma in the that are scattered limbal fibroblasts.
  • the population of stem cells of the limbar epithelium which is normally in the quiescent state, is induced to undergo division processes, Migration and differentiation. It is the moment in which the stem cells of the limbar epithelium leave that niche when they begin to differentiate and therefore lose their adult stem cell characteristics.
  • tissue bioengineering techniques developed in this regard are pursuing the search for an adequate support that allows not only the correct expansion of limbar epithelium cells under in vitro culture conditions, but also the subsequent use of said cell population in the treatment of ocular surface alterations.
  • a biomaterial that is biocompatible, biodegradable and that allows cell adhesion and proliferation is required.
  • biomaterials that act as a support for cell growth for clinical purposes is associated with a possible induction of the inflammatory response.
  • said support be biocompatible, and therefore, allow the proliferation of sclerocorneal limb epithelial cells while maintaining the characteristics that define them as stem cells of the corneal epithelium, and therefore, can fulfill the repair function of the tissue, which is very complex, and can trigger immune responses in the transplant patient.
  • the present invention relates to a fibrin gel comprising stromal cells of the sclerocorneal limbus (preferably fibroblasts). More preferably said gel further comprises epithelial cells of the sclerocorneal limbus (preferably stem cells).
  • the present invention also relates to different methods of preparing said gels and their use in the preparation of therapeutic drugs. advanced for the treatment and / or prevention of degenerative, inflammatory or genetic lesions or diseases of the ocular surface.
  • Any gel of the present invention constructed by tissue bioengineering techniques, can be used for the reconstruction of the ocular surface, both of the limbus and of the cornea or conjunctiva, by means of its transplantation into the damaged tissue allowing its regeneration, or It can be used in the preparation of medicines for the treatment of those same diseases for which this technique would also be used as tissue engineering.
  • the gel of the invention is a tissue engineering product consisting of two constructs: 1) a substitute for the limbar niche (corneal stem cell niche) made by a fibrin gel, preferably autologous, comprising two cell types from said limbar niche, namely epithelial cells (in undifferentiated monolayer) and stromal cells, preferably fibroblasts, and 2) a corneal epithelial construct, composed of a fibrin gel, preferably autologous, embedded with the same epithelial cell type described above but in differentiated multilayer.
  • Fibrin in this sense, is an excellent biomaterial because it does not present toxicity, it is able to promote the expansion not only of the epithelial component, but also of cells of a fibroblastic nature, also allowing the construction of three-dimensional tissue substitutes, and due to that its obtaining from plasma isolated from a blood or cryoprecipitate sample is relatively simple, allows the manufacture of a scaffold of a totally autologous nature, which avoids the possible problems of the appearance of inflammatory reactions after implantation, associated with the use of other types of biomaterials.
  • the cells included in the gel can also come from the patient himself.
  • Said stromal cells of the sclerocorneal limbus (ESC) or epithelial cells of the sclerocorneal limbus (CEP) are isolated from the niche of sclerocorneal limbus stem cells.
  • said cells may have stem cell characteristics.
  • the gel of the invention reproduces the microenvironmental conditions in which said epithelial and fibroblast cells are found in the native tissue, thus allowing the maintenance of their characteristics.
  • the gel of the invention can be used as artificial tissue to increase, restore or partially or totally replace the functional activity of a sclerocorneal limbus that exhibits destruction, non-existence or disturbance of the functionality of the stem cells, as is the case. of the pathologies encompassed under the name of limbic insufficiency syndrome (SIL).
  • SIL limbic insufficiency syndrome
  • a first aspect of the invention relates to a fibrin gel, hereinafter "gel of the invention", which comprises stromal cells of the sclerocorneal limbus (hereinafter the acronym CES can be used to refer to these cells ).
  • the ESCs are fibroblasts of said stroma.
  • the fibroblasts express the beta 1 integrin protein.
  • said ESCs come from a human, where preferably their origin is autologous.
  • the integrin beta 1 protein is a known marker of mesenchymal stem cells. As demonstrated in the examples of the present invention, the cells from the stromal of the sclerocorneal limbus expanded in a specific culture medium of fibroblasts, express at least the beta 1 mesenchymal integrin stem cell marker, but they also express typical fibroblast markers and retain their characteristics.
  • fibrillar protein capable of forming three-dimensional networks, which plays an important role in the coagulation process, is shaped like a cane with three globular areas and the property of forming aggregates with other fibrin molecules forming a soft clot.
  • fibrinogen which, by the action of thrombin, is transformed into fibrin, which has the ability to polymerize, in the presence of a cofactor, for example, calcium.
  • “Sclerocorneal limbus” means the circular area, slightly raised above which corresponds to the transition line between the cornea and the conjunctiva-sclera.
  • the sclerocorneal limbus is the corneal stem cell niche.
  • the main cell types of the sclerocorneal limbus are epithelial cells and stromal cells or fibroblasts.
  • the gel of the invention comprises stromal cells of the limbus, preferably fibroblasts, more preferably embedded inside, expanding in the fibrin lattice.
  • the characterization of the cell types of the sclerocorneal limbus can be performed by, for example but not limited to, the identification of surface and / or intracellular proteins, genes, and / or other markers. Methods that can be used for characterization include, but are not limited to: immunocytochemical analysis, northern blot analysis, western blot analysis, RT-PCR, microarray gene expression analysis, or morphological analysis by optical or electron micros
  • the cells of the sclerocorneal limbus comprised in the gel are characterized, but not limited to, by immunocytochemical analysis.
  • fibroblasts are understood as those cells present in the stromal layer of the limbus that are characterized, but not limited to, being positive for staining with the antibodies against the antigens ALDH1A1, ⁇ -SMA (smooth muscle actin alpha), type II collagen, ⁇ 1 and Cx43 integrin ( connexin 43), but not to staining with the pancytokeratin antibody.
  • a “stem cell or stem cell” is a cell capable of dividing indefinitely, of self-renewal and of differentiation into specialized cells, not only morphologically but also from a functional point of view.
  • fibroblasts and epithelial are stem cells and are therefore able to divide and differentiate to replace injured or senescent cells of the ocular surface with new cells, thus maintaining a cell population constant.
  • limbo fibroblasts are very important for the maintenance of the niche in which the stem cells of the corneal epithelium are located.
  • the corneal epithelium has the ability to regenerate rapidly thanks to the sclerocorneal limbus epithelium cells. After an injury, maintenance of the corneal epithelium is achieved by this population of epithelial cells.
  • the stem cells of the sclerocorneal limbus epithelium are located in the basal epithelium of the limbus.
  • the gel of the invention comprises, in addition to CES, sclerocorneal limbus epithelium cells (hereinafter the acronym CEP can be used to refer to these cells).
  • CEP sclerocorneal limbus epithelium cells
  • a Most preferred embodiment of the present invention relates to the fibrin gel in which the CEPs express the beta 1 integrin protein and the pancytokeratin protein.
  • the recovered and expanded CEP express pancytokeratin, however said protein is not expressed in the recovered and expanded CES.
  • the CEPs are stem cells.
  • the CEPs come from a human. Even more preferably, the CEPs are of autologous origin.
  • any of the fibrin gels defined in this paragraph may be referred to as the "CEP gel of the invention".
  • cells from the sclerocorneal limbus epithelium expanded in a specific culture medium of epithelial cells express at least the beta 1 mesenchymal integrin stem cell marker.
  • the CEPs come from the basal region of the limbar epithelium.
  • These cells can be obtained by any method known in the state of the art for this purpose, for example, but not limited to, any of the cell digestion and isolation protocols described in the examples of the present invention.
  • epihelial cells of the sclerocorneal limbus means those cells isolated from the tissue of the limbus that are characterized, but not limited to, being positive for staining with antibodies against the antigens ALDH1A1, ⁇ -SMA (smooth muscle actin alpha), desmoplachin, ⁇ 1 integrin, pancytokeratin and Cx43.
  • the fibrin gel where said gel has a disk shape.
  • the disk has a diameter of at least the sum of the arc curve length of the central curvature of the cornea and the length of the sclerocorneal limbus of the ocular surface
  • an even more preferred embodiment refers to the fibrin gel wherein said disk comprises:
  • the peripheral region of the preceding paragraph further comprises CEP.
  • the central region of section (a) of the gel of the invention comprising the central and peripheral region consists of fibrin and CEP (preferably stem cells), and the peripheral region of section (b) consists of fibrin and CES (preferably fibroblasts) .
  • the central region of section (a) of the gel of the invention comprising the central and peripheral region consists of fibrin and CEP (preferably stem cells), and the peripheral region of section (b) consists of fibrin, CES (preferably fibroblasts) and CEP (preferably stem cells).
  • the fibrin gel wherein said disk comprises: (a) a layer of CEP or a layer of fibrin comprising CEP, and (b) a layer of fibrin comprising CES.
  • the layer of section (b) comprises: (i) a hollow central region having the diameter of the curve arc length of the central curvature of the cornea, and (ii) a region of peripheral fibrin to the central region of section (i) comprising CES.
  • the fibrin layer of section (b) further comprises CEP.
  • Another preferred embodiment relates to the fibrin gel in which said disk further comprises a fibrin layer located between the section layer (a) and section layer (b).
  • the CEPs are stem cells and the ESCs are fibroblasts.
  • the layer of section (a) of the gel of the invention comprising the CEP-CES layers consists of fibrin and CEP (preferably stem cells), and the layer of section (b) consists of fibrin and CES (preferably fibroblasts).
  • the layer of section (a) of the fibrin gel of the invention comprising the CEP-CES layers consists of fibrin and CEP (preferably stem cells), and the layer of section (b) consists of fibrin, CES (preferably fibroblasts) and CEP (preferably stem cells).
  • the gel fibrin of the invention is derived from blood or cryoprecipitate plasma, more preferably from a human.
  • the blood plasma or cryoprecipitate is of autologous origin.
  • blood plasma means the liquid and acellular fraction of blood, composed of water and multiple substances dissolved in it, of which the most abundant are proteins. It also contains carbohydrates and lipids, as well as metabolic waste products.
  • Fibrin could be obtained from plasma by, for example, but not limited to, the action of thrombin on the fibrinogen present in the plasma; or it could be obtained from cryoprecipitate (product obtained from plasma by centrifugation and cryopreservation) by thawing the cryoprecipitate, dissolving it and calculating the amount of fibrinogen to later obtain the fibrin matrix as explained above.
  • cryoprecipitate product obtained from plasma by centrifugation and cryopreservation
  • CES or CEP and the respective fibroblasts or stem cells
  • the blood plasma or cryoprecipitate from which the fibrin is obtained comprised in the gel of the invention could proceed, for example, but not limited to, from any mammal, preferably from a human, the fact that all the components of the gel come from the patient himself who could be transplanted, or who could be given a medication that understands it, eliminates the possibility that he suffers an immune rejection and / or an inflammatory response. Therefore, preferably the gel fibrin of the present invention is autologous, that is, it is derived from the blood plasma or cryoprecipitate of the patient himself.
  • autologous origin means any origin of the sample taken from the tissues, fluids or cells of an individual or patient that is the same in a donor and in the recipient thereof when they are administered after treatment or transplanted after modification.
  • Another aspect of the invention relates to a method of preparing the CES gel of the invention, from now on the term "first method of the invention” can be used to refer to this method, which comprises: (a) putting CES contact with a composition comprising fibrin; and (b) polymerize the mixture from step (a) in a container of sterile culture.
  • the first method of the invention further comprises, between steps (a) and (b), adding an antifibrinolytic agent to the mixture of step (a).
  • the ESCs or, where appropriate, later, the CEPs
  • the cells obtained with digestion are grown under in vitro conditions to achieve an expansion of the cell types sufficient to be able to make the gels.
  • culture media could be, but not limited to, DMEM (Dulbecco ⁇ s Modified Eag / es Medium), RPMI 1640, Ham's F12, Ham's F10, MCDB 131, MEM ⁇ Minimum Essential Media) or DMEM / F12.
  • the culture media may be supplemented with other components suitable for cell growth, such as, but not limited to, serum, serum substitute, amino acids, antibiotics or growth factors, in appropriate proportions.
  • Primary cultures are those from cells that have been broken down from an original tissue taken from an organ of an animal.
  • Secondary cultures are those that come from the reseeding or subculture of one or several types of cells of a primary culture, and which are preferably carried out when the primary cultures are in a preconfluence state by performing an expansion pass or subculture In these secondary cultures the cellular heterogeneity is lower than in the primary ones due, among others, to nutritional factors.
  • fibrin preferably comes from a human, and more preferably it is of autologous origin, whereby blood plasma or cryoprecipitate, which is where fibrin is obtained, also preferably comes from a human and more preferably is of autologous origin.
  • an antifibrinolytic agent is optionally added to the mixture, to prevent fibrinolysis of the gel.
  • Antifibrinolytic agent means any agent that decreases or eliminates fibrinolytic activity that degrades fibrin networks formed during the blood coagulation process.
  • examples of antifibrinolytic agents in the present invention are, without limitation, tranexamic acid, PEPH (p-hydroxybenzoic acid propyl ester) or aprotinin.
  • the antifibrinolytic agent of the first method of the invention is preferably tranexamic acid, being understood as such, the synthetic compound used to neutralize fibrinolysis, whose mechanism of effect involves the inhibition of clot dissolution.
  • a source of calcium is preferably a calcium salt, such as, but not limited to, calcium chloride, calcium gluconate or a combination of both.
  • the calcium salt is calcium chloride or CaCI 2 .
  • Polymerization means the chemical process by which reagents or monomers (compounds of low molecular weight) are chemically grouped together, giving rise to a molecule of greater molecular weight, called polymer.
  • the polymerization of step (b) of the first method of the invention is carried out at a temperature of 37 ° C.
  • the mixture is then deposited in a sterile culture vessel, preferably in a culture plate, such as It is shown in the examples of the present invention, to allow its solidification and gel formation.
  • the composition comprising fibrin of step (a) is blood plasma or cryoprecipitate, more preferably blood plasma.
  • the blood plasma comes from a human.
  • the blood plasma is of autologous origin.
  • Another aspect of the invention relates to a method of preparing the CEP gel of the invention that comprises the steps of the first method of the invention and further comprises sowing CEP on the fibrin gel obtained in step (b).
  • the term "second method of the invention” can be used to refer to this method. Sowing of CEP on the fibrin gel obtained in step (b) is carried out in a sterile culture vessel, preferably a culture plate.
  • Seeding of the second method of the invention can be carried out directly on the fibrin gel obtained in step (b) of the first method of the invention once it has polymerized or on another fibrin gel which, once polymerized, is polymerize the fibrin gel obtained in step (b) of the first method of the invention once both gels show stability.
  • Limb epithelial cells previously cultured in any of the culture media described above, but not limited to, can be seeded on the surface of this fibrin structure with embedded fibroblasts for expansion and proliferation.
  • “Proliferation” means the processes of growth, expansion, adhesion, division, multiplication or differentiation that cells undergo.
  • Another aspect of the invention relates to a method of preparing the gel of the invention comprising the central and peripheral region, which comprises:
  • the term “third method of the invention” can be used to refer to this method.
  • the third method of the invention further comprises, between steps (b) and (c), adding an antifibrinolytic agent to the mixture of step (a) and the mixture of step (b).
  • Another aspect of the invention relates to a method of preparing the gel of the invention comprising the CEP-CES layers, comprising the steps of the third method of the invention, where the polymerization of step (c) is carried out by such that the mixture comprising the ESCs, or comprising said ESCs and CEP, and the mixture comprising the CEPs form two layers.
  • the term “fourth method of the invention” can be used to refer to this method.
  • the preparation of the gel of the invention comprising the CEP-CES layers comprises: (a) polymerizing the mixture comprising CES, or which comprises said ESC and CEP, in the peripheral region (3) of a well without the polymerized gel exceeding the upper part of the central elevation (2); and (b) polymerizing the mixture comprising the CEPs above the polymerized fibrin gel layer according to step (a).
  • the term "above” refers to the polymerized mixture comprising the CEPs according to step (b) being in a position higher than the polymerized fibrin gel layer according to step (a), having as reference the bottom of the well .
  • a fibrin layer is polymerized on the polymerized layer according to step (a) and on this polymerized fibrin layer CEP is deposited, or on said fibrin layer the mixture comprising fibrin and CEP is deposited and polymerized. More preferably, the CEPs are stem cells and the ESCs are fibroblasts.
  • the term "fifth method of the invention" may be used to refer to any of the methods in this paragraph.
  • Another preferred embodiment of the present invention relates to the first, second, third, fourth or fifth method of the invention, wherein the antifibrinolytic agent is tranexamic acid.
  • polymerization is carried out by adding CaCl 2 to the respective mixtures.
  • FIG. 8A and 8 B Another aspect of the present invention relates to a well for carrying out the fifth method of the invention, which comprises a central elevation (2) closed in its upper part, which has the diameter of the curvature curve arc length central cornea, and a peripheral region (3) to the central elevation (2), where the height of the central elevation (2) is less than the wall height of the well (1) and where the well has a diameter of at least the sum of the arc curve length of the central curvature of the cornea and the length of the sclerocorneal limbus of the ocular surface.
  • a graphic representation of said well can be seen in Fig. 8A and 8 B.
  • the well has the diameter corresponding to the sum of the arc curve length of the central curvature of the cornea and the length of the sclerocorneal limbus of the ocular surface.
  • a solid support comprising at least one well described in the preceding paragraph.
  • the solid support is preferably a multiwell plate.
  • Another aspect of the invention relates to the use of the well described in the preceding paragraphs, or of the solid support comprising it, for the preparation of the gel of the invention comprising the CEP-CES layers.
  • a further aspect of the present invention relates to the use of the CES gel of the invention as a support for the proliferation of CEP.
  • the CEPs are stem cells.
  • Fibrin is a biocompatible material that is reabsorbed once it is implanted in vivo, allowing the formation of extracellular matrix and tissue regeneration. Therefore, the transplantation of any gel of the invention involves the proliferation of the corneal epithelium and, as a consequence, tissue regeneration. Thus, preferably, the gel of the invention is used for transplantation on a dysfunctional ocular surface.
  • corneal epithelial repair Insufficient contribution, absence or dysfunction of limb epithelial cells causes alterations in corneal epithelial repair, resulting in persistent epithelial defects, corneal vascularization, scarring, chronic inflammation, ulceration, growth of the conjunctival epithelium on the cornea (conjunctivalization) or a probable corneal perforation, known as limbic insufficiency syndrome.
  • the normal replacement of the corneal epithelial cells and the healing of lesions or diseases that affect the ocular surface such as but not limited to, corneal ulcers or superficial keratitis, depends on the proper functioning of the sclerocorneal limbus, since it is here where the stem cells of the corneal epithelium are housed.
  • any fibrin gel of the invention for the manufacture of a medicament.
  • any fibrin gel of the invention is used for the preparation of a medicament for use in the treatment and / or prevention of ocular surface lesion, degenerative disease of the ocular surface, inflammatory disease of the ocular surface or genetic disease of the ocular surface.
  • ocular surface means the surface of the eye that corresponds to the sclerocorneal limbus, the cornea or the conjunctiva.
  • the ocular surface is the ocular surface that corresponds to the cornea.
  • the medicament referred to in the present invention can be for human or veterinary use.
  • the "medicine for human use” is any substance or combination of substances that is presented as having properties for the treatment or prevention of diseases in humans or that can be used in humans or administered to humans in order to restore, correct or modify physiological functions by exerting a pharmacological, immunological or metabolic action, or establishing a medical diagnosis.
  • the "medicine of veterinary use” means any substance or combination of substances that is presented as having curative or preventive properties with respect to animal diseases or that can be administered to the animal in order to restore, correct or modify its physiological functions by exercising a pharmacological, immunological action or metabolic, or to establish a veterinary diagnosis.
  • treatment refers to combating the effects caused as a result of the disease or pathological condition of interest in a subject (preferably mammal, and more preferably a human) that includes:
  • prevention consists in preventing the onset of the disease, that is, preventing the disease or pathological condition from occurring in a subject (preferably mammal, and more preferably a human), in particularly, when said subject has a predisposition for the pathological condition, but has not yet been diagnosed as having it.
  • Another preferred embodiment of the present invention relates to the use of any fibrin gel of the invention for the preparation of a medicament for the treatment and / or prevention of a limbic insufficiency syndrome (SIL).
  • SIL limbic insufficiency syndrome
  • "Limbic insufficiency syndrome or SIL” is the term used to encompass all pathologies that occur with the disruption of functionality, destruction or non-existence of stem cells of the sclerocorneal limbus.
  • pathologies encompassed under this term are, for example, but not limited to, those caused by chemical or thermal burns, autoimmune healing conjunctivitis (such as, but not limited to, Steven-Johnson syndrome or scarring penfigoid), those caused by surgery or cryotherapy, contact lens-induced keratopathy, microbial infections, ectasia, those caused by ionizing or ultraviolet radiation, those caused by the use of medication such as anti-metabolites or 5-fluorouracil or mitomycin c (iatrogenic) ); those congenital pathologies such as, for example, but not limited to, aniridia, coloboma, neoplasia, corneal dystrophy, hormonal deficiencies, peripheral ulcerative diseases of the cornea, neurotrophic keratopathy, chronic bullous keratopathy, chronic limbitis, pterigium or idiopathic limbar insufficiency, or in general, corneal blindness.
  • autoimmune healing conjunctivitis such as, but not limited to
  • Another preferred embodiment of the present invention relates to the use of any fibrin gel of the invention for the preparation of a medicament for the treatment and / or prevention of corneal blindness.
  • Another aspect of the invention relates to the use of any gel of the invention for in vitro evaluation of the behavior of CEP cells and / or CES.
  • the CEPs are stem cells and the ESCs are fibroblasts.
  • Any gel of the present invention can be useful for studying, for example but not limited to, the growth, proliferation, interaction or phenotypic or genotypic evolution of CEPs (preferably epithelial cells) and / or CES ( preferably of the fibroblasts), so that the analysis of their behavior in vitro can provide evidence of how they behave in I live in the sclerocorneal limbus.
  • said gel could be used, for example but not limited to, for the search for drugs, pharmacological studies, toxicological studies, pharmacogenomic studies and / or genetic studies.
  • Such assays can be used for the identification and / or characterization of biological targets, bioactive compounds and / or pharmacological agents.
  • composition of the invention which comprises any gel of the invention.
  • pharmaceutical composition of the invention further comprises a pharmaceutically acceptable carrier.
  • pharmaceutical composition of the invention comprises, in addition to the pharmaceutically acceptable carrier, another active ingredient.
  • active substance means any component that potentially provides a pharmacological activity or other different effect on the diagnosis, cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals.
  • compositions of the present invention can be formulated for administration in a variety of ways known in the state of the art.
  • compositions and / or their formulations can be administered to an animal, including a mammal and, therefore, to man, in a variety of ways, including, but not limited to, intralesional, intraorbital, intracapsular or surgical implant.
  • the dosage to obtain a therapeutically effective amount depends on a variety of factors, such as age, weight, sex or tolerance, of the mammal, preferably human.
  • the term "therapeutically effective amount” refers to the amount of the pharmaceutical composition of the invention that produces the desired effect and, in general, will be determined, among other causes, by the characteristics of said pharmaceutical composition and the therapeutic effect to be achieved.
  • the "adjuvants" and “pharmaceutically acceptable carriers” that can be used in said compositions are the vehicles known in the state of the art.
  • compositions of the present invention can be used in a treatment method in isolation or in conjunction with other pharmaceutical compounds.
  • Fig. 1 It shows the cell growth of sclerocorneal limbus fibroblasts in primary cultures (PO) and in the first pass or secondary culture (P1).
  • Limbo fibroblasts seeded at an initial density (IN) of 1 x 10 4 cells / cm 2 on culture surfaces of plastic show a good proliferation in both cultures, primary culture (P0) and secondary culture (P1), without differences between the cells obtained by the inverted digestion protocol (Pinv) and the standard (PE) (p> 0, 05).
  • Fig. 2. Shows the growth of fibroblasts in fibrin gels that only contain fibroblasts (GFFs) for 14 days. The number of cells growing in these gels is determined on days 3, 5, 7, 10, 12 and 14 of culture, in 20 GFFs with an initial cell density of 1 x 10 4 cells / GFF.
  • GFFs fibroblasts
  • Fig. 3 Shows the expression of differentiation markers in the central cornea (A-G) and in the sclerocorneal limbus (H-N).
  • the markers studied are ALDH1A1 (A, H), ⁇ -SMA (B, I), type II collagen (C, J), connexin 43 (D, K), desmoplachin (E, L), integrin ⁇ 1 (F, M ) and pancytokein (G, N) (at 20 magnifications).
  • Fig. 4. It shows the expression of differentiation markers in P0 (AG) and P1 (HN) cultures of limbus fibroblasts and in P0 epithelial cells (OU).
  • the markers studied are ALDH1A1 (A, H, O), ⁇ -SMA (B, I, P), type II collagen (C, J, Q), connexin 43 (D, K, R), desmoplachin (E, L , S), integrin ⁇ 1 (F, M, T) and pancytokeratin (G, N, U) (at 20 magnifications).
  • Fig. 5. Represents cell growth in fibrin gels containing fibroblasts (GFFs).
  • Fig. 7 It shows the corneal region and corneoescleral limbus of the human ocular surface.
  • the circle with the largest diameter indicates the corneoescleral limbus region.
  • the smaller circle that is located within the larger circle indicates the corneal region.
  • Fig. 8. Shows the adapted well of the present invention.
  • CME Epithelial Stem Cells of the sclerocorneal limbus.
  • F Fibroblasts of the sclerocorneal limbus.
  • I Intermediate fibrin layer.
  • the well parts are: well wall (1), central elevation (2), peripheral region (3).
  • CME Epithelial Stem Cells of the sclerocorneal limbus.
  • F Fibroblasts of the sclerocorneal limbus.
  • I Intermediate fibrin layer.
  • the well parts are: well wall (1), central elevation (2), peripheral region (3). In A the plan view of the well is shown.
  • B comprises the addition and polymerization of the mixture with F or with F + CME to the peripheral region (2).
  • C comprises the addition and polymerization of the intermediate layer.
  • D comprises the addition of the epithelial stem cell layer of the sclerocorneal limbus or the addition of the mixture comprising fibrin and epithelial stem cells of the sclerocorneal limbus.
  • Example 1 Preparation of the fibrin gel containing two cell types of the sclerocorneal limbus.
  • limbo samples were digested.
  • PE Standard protocol
  • n 50 (where n is the number of samples).
  • the samples were digested using a previously described protocol, consisting of depositing the limbus pieces in 35 mm Petri dishes containing 2.5 mL of 0.25% trypsin / 0.02% EDTA and incubating at 37 ° C and 5% of C0 2 for 2 hours to achieve dissociation of the CEP.
  • the enzyme activity was neutralized every 30 minutes by adding an equivalent volume of DMEM with 10% fetal bovine serum (FBS). Subsequently, the solution was removed and fresh trypsin was added. Finally, the four solutions obtained were mixed and centrifuged at 1,400 rpm for 10 minutes at room temperature. The precipitate was resuspended in an epithelial cell culture medium (MCE), the cells obtained were counted and their viability was determined using the trypan blue staining method (Phillips HJ., 1973, New York: Academic Press; 406-408).
  • MCE epithelial cell culture medium
  • stromal tissue not digested during trypsinization, was introduced into 50 ml_ centrifuge tubes and digested with type I collagenase at a concentration of 2 mg / mL in DMEM, at 37 ° C and 5% CO2 for 18- 24 hours, until a complete disintegration of the tissue was observed.
  • the cell suspension obtained was centrifuged at 1,400 rpm for 10 minutes.
  • the precipitate was resuspended in a fibroblast growth medium (MCF), the cells were counted and viability tests were carried out.
  • Inverted protocol (Pinv): n 50.
  • limbo samples were incubated in a type I collagenase solution (2 mg / mL) for approximately 24 hours, to release CES from limbar tissue. After this incubation, the undigested tissue was removed and deposited in culture plates to be trypsinized, as described above, until complete digestion of the sample. Both cell suspensions obtained in the two steps of digestion were centrifuged at 1,400 rpm and the precipitates were resuspended, counted, and cell viability was determined.
  • SD Standard deviation
  • collagenase, 2 o trypsin / EDTA.
  • This culture medium consisted of a mixture of DMEM / Ham ' s F12 (1: 1) with 5% FBS, 10 ng / mL EGF, 5 mg / mL insulin, 100 ng / mL choleric toxin, penicillin / streptomycin (100 units / 100 Mg / mL) and 2 mM L-Glutamine.
  • the stromal cells obtained from samples of limbar tissue after collagenase digestion were plated in plastic culture plates at a density of 1 x10 4 cells / cm 2 and were cultured in MCF consisting of DMEM supplemented with 10% FBS, penicillin / streptomycin (100 units / 100 Mg / mL) and 2 mM L-Glutamine.
  • Both the P0 of cells of epithelial origin and the P0 of cells of stromal origin were maintained at 37 ° C, 5% CO2 and 95% humidity.
  • the medium was changed every 2 or 3 days and the cultured cells were checked daily by inverted microscopy, until they reached the confluence state. Subsequently, the cells were separated from the culture surface using a 0.05% trypsin / 0.02% EDTA solution, counted and used to establish the secondary cultures (P1) and / or for the gel construction of fibrin containing limbus cells (GFCL).
  • the stromal cells P0 and P1 and the epithelial cells P0 obtained in the Pinv were cultured in cell culture chambers at a cell density of 1x10 4 cells / cm 2 until reaching the preconfluence state.
  • the cells are washed twice in PBS and fixed in a mixture of acetone-methanol (1: 1) at -20 ° C for 20 minutes. Samples were stored at this temperature until use.
  • porcine eyeballs frozen in liquid nitrogen, embedded in OCT (compound of optimum cutting temperature) (Tissue-Tek) were used. 5 to 8 fine sections ( ⁇ ) were fixed in cold acetone at 4 ° C for 10 minutes, mounted on slides, air dried and stored at -20 ° C until stained. Immunofluorescent staining of the fixed sections and cell cultures was carried out as follows: the samples are washed 3 times with PBS, 5 minutes each, and incubated in the 1% Morpho Save solution (Window Mediacal Systems) in water deionized for 15 minutes. After 3 more washes with PBS, the samples were permeabilized with 0.3% Triton X-100 in PBS for 10 minutes and washed again.
  • OCT compound of optimum cutting temperature
  • Non-specific binding sites were blocked with 5% donkey serum in PBS for 1 hour.
  • the samples were incubated with the primary antibodies (Table 2) for 1 hour at room temperature in a humid chamber. After three washes with PBS, the Alexa Fluor 488 conjugated secondary antibody (donkey immunoglobulin G prepared against mouse or rabbit at 1: 300 dilution) was added and incubated for 1 hour in the dark at room temperature.
  • the nucleus was stained with propidium iodide (1: 100) for 10 minutes, for viewing under confocal microscopy (Radiance 2000, BIORAD).
  • 5% donkey serum in PBS was used instead of the primary antibodies.
  • Cell proliferation increased and populations completely colonized the surface of the culture in 3 or 5 days, faster than in P0, indicating that in this time interval the subcultured cells proliferated more slowly compared to the cells of the primary cultures.
  • CEP and CES cells from cultures P0 and P1, respectively, isolated with the inverted digestion protocol were used for the construction of fibrin gels containing limbus cells (GFCLs).
  • fibroblasts a suspension of 1x10 4 fibroblasts from the P1 limbus was resuspended in 400 ⁇ of fresh frozen pork plasma per ml_ of final volume of the fibrin gel.
  • the mixture was supplemented with 4 mg / mL tranexamic acid (Amchafibrin, Rottapharm SL, Spain), and the final volume was adjusted with MCF.
  • 40 ⁇ g / mL of CaCl 2 (Braun Medical SA) was added to initiate the polymerization of the fibrin.
  • the mixture was seeded in 24-well culture plates, 1 ml_ per well, for solidification to take place at 37 ° C for 15-30 minutes.
  • the matrix coagulated in the plastic wells of the culture the cells spread through the fibrin framework.
  • These fibrin gels containing fibroblasts are 1.9 cm 2 in size and approximately 4 mm thick.
  • the P0 limbo CEPs were seeded on top of this structure or GFF, at a cell density of 5x10 4 cells / cm 2 , to construct the fibrin gel containing these two cell types of the limbo or GFCL, and maintained with MCE under in vitro conditions until the cells had completely covered the construction surface, for approximately 14 days, being monitored daily with an inverted microscope.
  • Desmoplaquina-1, -2 (AHP320) Desmosome
  • PSX1060 Rabbit Polyclonal Antibody - Differentiation Type II collagen
  • Table 3 Summary of immunofluorescence results of cell cultures and tissue sections (++, very high detection; +, detection; -, no detection). 1 Basal expression of cytoplasmic actin in all stromal cell cultures. 2 Detection in basal and superficial epithelial cells in the region of the central cornea. No expression is detected in the basal epithelial cells of the limbus. 3 Typical expression pattern of corneal keratocytes or fibroblasts.
  • the basal cells of the cornea were stained for this marker but not the cells of the basal region of the limb epithelium.
  • P0 and P1 limbo fibroblasts and P0 epithelial cells were used ( Figure 4).
  • CES cultured isolated from the stroma showed staining for all antibodies used except for pan-cytokeratin.
  • the expression of differentiation markers such as ALDH1A1, type II collagen, ⁇ 1 integrin and ⁇ -SMA, revealed that these cells maintained their fibroblast phenotype under in vitro culture conditions.
  • the cells in culture showed a strong staining for desmoplaquine and ⁇ 1 integrin, which indicated the existence of adhesion structures to the cell culture surface.
  • Integrin ⁇ 1 is a known marker of mesenchymal stem cells.
  • the epithelial cells in P0 showed a pattern of antigen expression similar to that of stroma cells, differing only in that the former are positive for the pancytokeratin marker.
  • the ESCs embedded in the fibrin gels were determined by counting the number of cells in each gel at days, 3, 5, 7, 10, 12 and 14.
  • Fibrin gels containing CES were digested to determine cell proliferation. Culture medium was removed, fibrin gels were collected and trimmed before being introduced into sterile centrifuge tubes. Then, the gels were digested by adding 5 mL of a 1 mg / mL solution of type I collagenase for 3 hours at 37 ° C. The samples were carefully pipetted and the separated cells were recovered by centrifugation and counted. Epithelial cells grown in fibrin gels containing CES were analyzed daily by inverted microscopy until the cell population formed a confluent monolayer.
  • 20 fibrin gels of 15 days in culture containing fibroblasts in pure ethanol were introduced for 30 minutes, then washed 3 times for 30 minutes with PBS.
  • the gels were embedded in fresh MCF for 30 minutes. The diameter and thickness of the gels were measured before and after being embedded in MCF to determine their possible contraction.
  • the gels easily separated from the surface of the culture wells, demonstrating their elastic capacity, so that they were able to spread without tearing.
  • fibrin gels containing fibroblasts or GFFs of 0, 3, 5, 7, 10, 12 and 14 days and fibrin gels containing the two cell types of limbus (CEP and CES) or GFCLs of 14 days in culture they were fixed in 4% paraformaldehyde.
  • the samples were dehydrated in increasing concentrations of alcohol and Xylene solutions previously embedded in paraffin. Sections of 6 to 8 ⁇ were stained with hematoxylin-eosin and visualized in the optical microscope (Optiphot 2, Nikon) at 10, 20 and 40 magnifications.
  • the samples were dried (Balzers CPD 030), mounted on an aluminum matrix and fired with gold-coated particles (Balzers SCD 004) before being examined in an electron microscope (JEOL 6100).
  • Fig. 8 A and B For the preparation of the fibrin gels, the well described in Fig. 8 A and B was used.
  • the plan view of the well (A) and profile of the well (B) having the following parts are shown: wall of the well (1), central elevation (2), peripheral region (3).
  • the well can be part of a multiwell plate.
  • Fig. 8 C and D shows the well comprising CEP, CES and fibrin.
  • the figure shows as an illustrative example that the components are: CME, Epithelial Stem Cells of the sclerocorneal limbus; F, Fibroblasts of the sclerocorneal limbus; I, Intermediate fibrin layer.
  • Said well has the dimensions suitable for the cornea and for the sclerocorneal limbus indicated in Fig. 7.
  • the fibrin gel of the invention made by using the described well comprises the following steps, graphically indicated in Fig. 9:
  • Step 1 The fibrin gel with the stromal cellular component embedded inside was added to the peripheral region (3) of the well for polymerization without covering the upper surface of the central elevation (2).
  • Step 2 When the previous mixture polymerized a new layer of fibrin was added that covered the entire well without exceeding the well wall (1).
  • Step 3 After complete polymerization of the second fibrin layer, the epithelial component was added.

Abstract

The invention relates to fibrin gel containing sclerocorneal limbus cells and the use thereof in ocular surface bioengineering. The present invention relates to an autologous fibrin gel that includes stroma cells from the sclerocorneal limbus (CES) and epithelial cells from the sclerocorneal limbus (CEP) (corneal stem cell niche) and a method for the production thereof. Said gel is used in the preparation of medications for use in the treatment and/or prevention of degenerative, inflammatory or genetic diseases or lesions affecting the ocular surface or in respect of diseases for which this technique could also be used for tissue engineering.

Description

Gel de fibrina que contiene células del limbo esclerocorneal y su uso en bioinqeniería de la superficie ocular  Fibrin gel containing sclerocorneal limbus cells and their use in ocular surface bioengineering
La presente invención se encuadra en el campo de la biomedicina, la medicina regenerativa y la ingeniería de tejidos con células madre (terapias avanzadas) y se refiere a un gel de fibrina que comprende células del estroma del limbo esclerocorneal (preferiblemente fibroblastos). Más preferiblemente dicho gel comprende además células epiteliales del limbo esclerocorneal (preferiblemente células madre). Así mismo la presente invención también se refiere a diferentes métodos de preparación de dichos geles y a su uso en la elaboración de medicamentos de terapias avanzadas para el tratamiento y/o prevención de lesiones o enfermedades degenerativas, inflamatorias o genéticas de la superficie ocular. ESTADO DE LA TÉCNICA ANTERIOR The present invention falls within the field of biomedicine, regenerative medicine and tissue engineering with stem cells (advanced therapies) and refers to a fibrin gel comprising stromal cells of the sclerocorneal limbus (preferably fibroblasts). More preferably said gel further comprises epithelial cells of the sclerocorneal limbus (preferably stem cells). Likewise, the present invention also relates to different methods of preparing said gels and their use in the elaboration of advanced therapy medications for the treatment and / or prevention of degenerative, inflammatory or genetic lesions or diseases of the ocular surface. STATE OF THE PREVIOUS TECHNIQUE
En los últimos años, las técnicas de ingeniería de tejidos han adquirido gran importancia en el desarrollo de nuevas terapias para la resolución de diversos tipos de patologías. Específicamente, en el campo de la oftalmología, dichas técnicas se han centrado principalmente en el desarrollo de sustitutivos biológicos que faciliten la reparación de defectos de la superficie ocular. Este es el caso de algunos de los tratamientos existentes en la actualidad frente a diversas enfermedades que afectan a la superficie corneal, como por ejemplo aquellas que se engloban en el grupo de patologías clasificadas como síndromes de insuficiencia límbica (SIL). Clínicamente, los síndromes caracterizados por destrucción y/o disfunción de las células madre epiteliales o SIL, necesitarían una reposición del limbo corneo-escleral y no solamente la aproximación actual, un trasplante de córnea, ya que los botones donantes carecen de células madre, por lo que estos trasplantes están abocados al fracaso. Uno de los tratamientos más en auge para la resolución de este grupo de patologías consiste en el trasplante de células epiteliales del limbo (el nicho de las células madre epiteliales de la córnea) cultivadas o expandidas ex vivo. Cuando falla el nicho limbar, sólo se produce un fracaso ulterior del epitelio corneal, no de las demás capas de la córnea, estroma o endotelio. Pero bien es cierto que un determinado proceso patológico también podría afectar a la totalidad del espesor de la córnea y, en estos casos, además de necesitarse una reconstrucción del nicho limbar, se necesitará posteriormente un trasplante de córnea que recambie el estroma (queratoplastia lamelar), el endotelio (queratoplastia endotelial) o ambas capas (queratoplastia penetrante). Los casos de SIL no pueden solucionarse con un trasplante de córnea del tipo que sea si, antes, no se reconstruye el nicho limbar. In recent years, tissue engineering techniques have acquired great importance in the development of new therapies for the resolution of various types of pathologies. Specifically, in the field of ophthalmology, these techniques have focused mainly on the development of biological substitutes that facilitate the repair of ocular surface defects. This is the case of some of the treatments currently available against various diseases that affect the corneal surface, such as those that are included in the group of pathologies classified as limbic insufficiency syndromes (SIL). Clinically, syndromes characterized by destruction and / or dysfunction of epithelial stem cells or SIL, would need a replacement of the corneal-scleral limbus and not just the current approach, a corneal transplant, since donor buttons lack stem cells, due to what these transplants are bound to fail. One of the most booming treatments for the resolution of this group of Pathologies consists of the transplantation of epithelial cells of the limbus (the niche of the epithelial stem cells of the cornea) cultured or expanded ex vivo. When the limbar niche fails, only subsequent failure of the corneal epithelium occurs, not of the other layers of the cornea, stroma or endothelium. But it is true that a certain pathological process could also affect the entire thickness of the cornea and, in these cases, in addition to needing a reconstruction of the limbar niche, a cornea transplant that replaces the stroma (lamellar keratoplasty) will be needed later , the endothelium (endothelial keratoplasty) or both layers (penetrating keratoplasty). SIL cases cannot be solved with a corneal transplant of any kind if, before, the limbar niche is not reconstructed.
Ejemplos de córneas artificiales o biológicas empleadas como equivalentes de la córnea humana, son las construidas sobre sustratos de colágeno y condroitin sulfato con glutaraldehído, conteniendo líneas celulares desarrolladas a partir de células aisladas de las tres capas de la córnea, epitelio, estroma y endotelio, que son inmortalizadas por transfección vírica (May Griffith, et al., 1999, Science; 286: 2169-2172). Otro sustituto biológico de la córnea se basa en geles de fibrina con agarosa, lo que requiere el cultivo de las tres capas celulares presentes en la córnea: células epiteliales, estromales y endoteliales. En este método, se siembran las células endoteliales en la base de un cultivo poroso, se desarrolla un gel de fibrina humana con agarosa conteniendo células del estroma o fibroblastos cultivados en su interior, que se sitúa sobre la capa de células endoteliales. Finalmente, las células epiteliales crecen sobre la superficie de todo este soporte, a partir del limbo sano del sujeto receptor. Aunque en estos estudios se ha postulado que la fibrina pura no siempre es comparable con el estroma de la córnea en cuanto a su transparencia y consistencia, por lo que se propone el uso de los geles de fibrina y agarosa en su lugar (Miguel Alaminos, et al., 2006, Investigative Ophthalmology&Visual Science; 47:8, 331 1 -3317). En otras ocasiones se han cultivado las células madre del estroma de la córnea humana en pellets, en ausencia de un soporte rígido. En este caso se ha comparado este crecimiento celular sobre pellets con el que ocurre sobre un gel de fibrina, de lo que se ha concluido que estos geles son maleables y frágiles y no permiten el depósito de una matriz densa (Yiqin Du, et al., 2007, Investigative Ophthalmology&Visual Science; 48: 1 1 , 5038-5045). Además, en dichos ensayos no ha quedado demostrado que dichas células sean efectivamente células madre. Examples of artificial or biological corneas used as equivalents of the human cornea are those built on substrates of collagen and chondroitin sulfate with glutaraldehyde, containing cell lines developed from cells isolated from the three layers of the cornea, epithelium, stroma and endothelium, which are immortalized by viral transfection (May Griffith, et al., 1999, Science; 286: 2169-2172). Another biological substitute for the cornea is based on fibrin gels with agarose, which requires the cultivation of the three cell layers present in the cornea: epithelial, stromal and endothelial cells. In this method, endothelial cells are seeded at the base of a porous culture, a human fibrin gel is developed with agarose containing stroma cells or fibroblasts cultured therein, which is placed on the endothelial cell layer. Finally, epithelial cells grow on the surface of all this support, from the healthy limbus of the recipient subject. Although in these studies it has been postulated that pure fibrin is not always comparable to the stroma of the cornea in terms of its transparency and consistency, so the use of fibrin and agarose gels is proposed instead (Miguel Alaminos, et al., 2006, Investigative Ophthalmology & Visual Science; 47: 8, 331 1-3317). On other occasions, the stromal stem cells of the human cornea have been cultured in pellets, in the absence of a rigid support. In this case, this cell growth on pellets has been compared with that which occurs on a fibrin gel, from which it has been concluded that these gels are malleable and fragile and do not allow the deposition of a dense matrix (Yiqin Du, et al. , 2007, Investigative Ophthalmology & Visual Science; 48: 1 1, 5038-5045). Furthermore, in these tests it has not been demonstrated that said cells are indeed stem cells.
Sin embargo, como se ha indicado anteriormente, las corneas artificiales o biológicas, como por ejemplo las descritas en el párrafo anterior, precisan de un nicho limbar sano para su éxito tras el trasplante, problema que hoy en día se intenta solventar trasplantando células limbares expandidas en cultivo. However, as indicated above, artificial or biological corneas, such as those described in the previous paragraph, require a healthy limbar niche for their success after transplantation, a problem that is currently being solved by transplanting expanded limbal cells in cultivation
Bajo condiciones fisiológicas normales, las células madre del epitelio corneal se encuentran alojadas en la región basal del epitelio limbar, en unas estructuras conocidas como empalizadas de Vogt. Dicha localización es sumamente importante para el mantenimiento no solo del fenotipo de este tipo celular sino también de sus capacidades y funciones como célula madre adulta. Es el microambiente en el que se encuentra dicha población celular el que determina su potencial como célula madre adulta. Dicho microambiente o nicho está compuesto por el resto de tipos celulares que se encuentran en la vecindad de la población de células madre del epitelio corneal, por la matriz extracelular que las rodea y, muy importante, por la lámina basal y el estroma subyacente en el que se encuentran dispersos los fibroblastos limbares. Se ha descrito que el contacto entre las regiones epitelial y estromal del limbo, así como las comunicaciones que se establecen entre los tipos celulares de ambos componentes, son esenciales para el mantenimiento de las características de las células madre del epitelio limbar. Durante los mecanismos habituales de mantenimiento del epitelio corneal bajo condiciones normales, o bien en casos de alteraciones de la superficie corneal, la población de células madre del epitelio limbar, que normalmente se encuentra en estado quiescente, se ve inducida a sufrir procesos de división, migración y diferenciación. Es el momento en el que las células madre del epitelio limbar abandonan ese nicho cuando comienzan a diferenciarse y por tanto pierden sus características de célula madre adulta. Under normal physiological conditions, the stem cells of the corneal epithelium are located in the basal region of the limbar epithelium, in structures known as Vogt palisades. This location is extremely important for the maintenance not only of the phenotype of this cell type but also of its capabilities and functions as an adult stem cell. It is the microenvironment in which said cell population is that determines its potential as an adult stem cell. Said microenvironment or niche is composed of the rest of cell types that are in the vicinity of the population of stem cells of the corneal epithelium, by the surrounding extracellular matrix and, very importantly, by the basal lamina and the underlying stroma in the that are scattered limbal fibroblasts. It has been described that the contact between the epithelial and stromal regions of the limbus, as well as the communications that established between the cell types of both components, they are essential for maintaining the characteristics of the stem cells of the limbar epithelium. During the usual mechanisms of maintenance of the corneal epithelium under normal conditions, or in cases of alterations of the corneal surface, the population of stem cells of the limbar epithelium, which is normally in the quiescent state, is induced to undergo division processes, Migration and differentiation. It is the moment in which the stem cells of the limbar epithelium leave that niche when they begin to differentiate and therefore lose their adult stem cell characteristics.
Por esta razón, es de vital importancia que durante la expansión ex vivo de este tipo celular (en el laboratorio de cultivos o en las salas blancas, si ya son para uso humano) se consigan reproducir, en la medida de lo posible, las condiciones microambientales en las que se encuentran en el tejido nativo. De este modo, durante los últimos años se han estudiado diferentes tipos de sustratos o soportes sobre los que expandir dicha población celular. Ejemplo de ellos son, la membrana amniótica, las capas sustentadoras de fibroblastos irradiados 3T3 (Pellegrini G., et al., 1997, The Lancet; 345: 990-993) y los geles de fibrina (Han B., et al., 2002, Cornea; 21 : 505-510). Durante los mecanismos de regeneración natural tras una herida las células epiteliales migran a través de una matriz natural compuesta de fibrina y fibronectina. Además, se ha comprobado que los fibroblastos cultivados en geles de fibrina proliferan, migran y son capaces de sintetizar componentes de la matriz extracelular, como el colágeno (Tuan T., et al., 1996, Experimental Cell Research; 223: 127-134). Por ello, una de las aproximaciones ha sido el cultivo in vitro de las células epiteliales del limbo sobre una capa basal de fibroblastos murinos irradiados 3T3, de manera que esta construcción se puede embeber posteriormente en un gel de fibrina. Actualmente, las técnicas de bioingeniería tisular desarrolladas a este respecto, persiguen la búsqueda de un soporte adecuado que permita no sólo la correcta expansión de las células del epitelio limbar bajo condiciones de cultivo in vitro, sino también la posterior utilización de dicha población celular en el tratamiento de alteraciones de la superficie ocular. Como soporte para dicha expansión celular, se precisa de un biomaterial que sea biocompatible, biodegradable y que permita la adhesión y la proliferación celular. For this reason, it is of vital importance that during the ex vivo expansion of this cell type (in the culture laboratory or in the cleanrooms, if they are already for human use) the conditions are reproduced, as far as possible, microenvironments in those found in native tissue. Thus, in recent years different types of substrates or supports have been studied on which to expand said cell population. Examples are the amniotic membrane, the 3T3 irradiated fibroblast support layers (Pellegrini G., et al., 1997, The Lancet; 345: 990-993) and the fibrin gels (Han B., et al., 2002, Cornea; 21: 505-510). During the mechanisms of natural regeneration after an injury the epithelial cells migrate through a natural matrix composed of fibrin and fibronectin. In addition, it has been proven that fibroblasts cultured in fibrin gels proliferate, migrate and are capable of synthesizing extracellular matrix components, such as collagen (Tuan T., et al., 1996, Experimental Cell Research; 223: 127-134 ). Therefore, one of the approaches has been the in vitro culture of epithelial cells of the limbus on a basal layer of 3T3 irradiated murine fibroblasts, so that this construction can be subsequently embedded in a fibrin gel. Currently, tissue bioengineering techniques developed in this regard are pursuing the search for an adequate support that allows not only the correct expansion of limbar epithelium cells under in vitro culture conditions, but also the subsequent use of said cell population in the treatment of ocular surface alterations. As support for said cell expansion, a biomaterial that is biocompatible, biodegradable and that allows cell adhesion and proliferation is required.
Generalmente, el empleo de biomateriales que actúan como soporte para el crecimiento celular con fines clínicos está asociado a una posible inducción de la respuesta inflamatoria. Además de este inconveniente, es necesario que dicho soporte sea biocompatible, y por tanto, permita la proliferación de células epiteliales del limbo esclerocorneal manteniendo las características que las definen como células madre del epitelio corneal, y por tanto, puedan cumplir con la función de reparación del tejido, lo que supone una gran complejidad, y puede desencadenar respuestas inmunológicas en el paciente trasplantado. Generally, the use of biomaterials that act as a support for cell growth for clinical purposes is associated with a possible induction of the inflammatory response. In addition to this drawback, it is necessary that said support be biocompatible, and therefore, allow the proliferation of sclerocorneal limb epithelial cells while maintaining the characteristics that define them as stem cells of the corneal epithelium, and therefore, can fulfill the repair function of the tissue, which is very complex, and can trigger immune responses in the transplant patient.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención se refiere a un gel de fibrina que comprende células del estroma del limbo esclerocorneal (preferiblemente fibroblastos). Más preferiblemente dicho gel comprende además células epiteliales del limbo esclerocorneal (preferiblemente células madre). Así mismo la presente invención también se refiere a diferentes métodos de preparación de dichos geles y a su uso en la elaboración de medicamentos de terapias avanzadas para el tratamiento y/o prevención de lesiones o enfermedades degenerativas, inflamatorias o genéticas de la superficie ocular. Cualquier gel de la presente invención, construido mediante técnicas de bioingeniería de tejidos, puede ser utilizado para la reconstrucción de la superficie ocular, tanto del limbo como de la córnea o conjuntiva, mediante su trasplante en el tejido dañado permitiendo la regeneración del mismo, o puede ser usado en la elaboración de medicamentos para el tratamiento de aquellas mismas enfermedades para las que se utilizaría también esta técnica como ingeniería de tejidos. The present invention relates to a fibrin gel comprising stromal cells of the sclerocorneal limbus (preferably fibroblasts). More preferably said gel further comprises epithelial cells of the sclerocorneal limbus (preferably stem cells). Likewise, the present invention also relates to different methods of preparing said gels and their use in the preparation of therapeutic drugs. advanced for the treatment and / or prevention of degenerative, inflammatory or genetic lesions or diseases of the ocular surface. Any gel of the present invention, constructed by tissue bioengineering techniques, can be used for the reconstruction of the ocular surface, both of the limbus and of the cornea or conjunctiva, by means of its transplantation into the damaged tissue allowing its regeneration, or It can be used in the preparation of medicines for the treatment of those same diseases for which this technique would also be used as tissue engineering.
Preferiblemente, el gel de la invención es un producto de ingeniería de tejidos formado por dos constructos : 1 ) un sustituto del nicho limbar (nicho de células madre corneales) elaborado mediante un gel de fibrina, preferiblemente autóloga, que comprende dos tipos celulares provenientes de dicho nicho limbar, a saber, células epiteliales (en monocapa indiferenciada) y células estromales, preferiblemente fibroblastos, y 2) un constructo del epitelio corneal, compuesto por un gel de fibrina, preferiblemente autólogo, embebido con el mismo tipo celular epitelial descrito anteriormente pero en multicapa diferenciada. Preferably, the gel of the invention is a tissue engineering product consisting of two constructs: 1) a substitute for the limbar niche (corneal stem cell niche) made by a fibrin gel, preferably autologous, comprising two cell types from said limbar niche, namely epithelial cells (in undifferentiated monolayer) and stromal cells, preferably fibroblasts, and 2) a corneal epithelial construct, composed of a fibrin gel, preferably autologous, embedded with the same epithelial cell type described above but in differentiated multilayer.
La fibrina, en este sentido, supone un excelente biomaterial debido a que no presenta toxicidad, es capaz de promover la expansión no sólo del componente epitelial, sino también de células de naturaleza fibroblástica, permitiendo además la construcción de sustitutivos tisulares tridimensionales, y debido a que su obtención a partir de plasma aislado de una muestra de sangre o de crioprecipitado es relativamente sencilla, permite la fabricación de un andamiaje de naturaleza totalmente autóloga, lo que evita los posibles problemas de aparición de reacciones inflamatorias tras su implante, asociados a la utilización de otros tipos de biomateriales. Además, las células comprendidas en el gel también pueden proceder del propio paciente. Dichas células del estroma del limbo esclerocorneal (CES) o las células epiteliales del limbo esclerocorneal (CEP) se aislan del nicho de células madre del limbo esclerocorneal. Como consecuencia, dichas células pueden tener características de células madre. En este sentido, el gel de la invención reproduce las condiciones microambientales en que dichas células epiteliales y fibroblásticas se encuentran en el tejido nativo, permitiendo así el mantenimiento de sus características. De este modo, el gel de la invención puede ser empleado como tejido artificial para incrementar, restaurar o sustituir parcial o totalmente la actividad funcional de un limbo esclerocorneal que presente destrucción, inexistencia o perturbación de la funcionalidad de las células madre, como es el caso de las patologías englobadas bajo la denominación de síndrome de insuficiencia límbica (SIL). Fibrin, in this sense, is an excellent biomaterial because it does not present toxicity, it is able to promote the expansion not only of the epithelial component, but also of cells of a fibroblastic nature, also allowing the construction of three-dimensional tissue substitutes, and due to that its obtaining from plasma isolated from a blood or cryoprecipitate sample is relatively simple, allows the manufacture of a scaffold of a totally autologous nature, which avoids the possible problems of the appearance of inflammatory reactions after implantation, associated with the use of other types of biomaterials. In addition, the cells included in the gel can also come from the patient himself. Said stromal cells of the sclerocorneal limbus (ESC) or epithelial cells of the sclerocorneal limbus (CEP) are isolated from the niche of sclerocorneal limbus stem cells. As a consequence, said cells may have stem cell characteristics. In this sense, the gel of the invention reproduces the microenvironmental conditions in which said epithelial and fibroblast cells are found in the native tissue, thus allowing the maintenance of their characteristics. Thus, the gel of the invention can be used as artificial tissue to increase, restore or partially or totally replace the functional activity of a sclerocorneal limbus that exhibits destruction, non-existence or disturbance of the functionality of the stem cells, as is the case. of the pathologies encompassed under the name of limbic insufficiency syndrome (SIL).
Así, un primer aspecto de la invención se refiere a un gel de fibrina, de ahora en adelante "gel de la invención", que comprende células del estroma del limbo esclerocorneal (en adelante se puede emplear el acrónimo CES para hacer referencia a estas células). En una realización preferida, las CES son fibroblastos de dicho estroma. En una realización más preferida, los fibroblastos expresan la proteína integrina beta 1 . En realizaciones aún más preferidas, dichas CES proceden de un humano, donde preferiblemente su origen es autólogo. En adelante se podrá hacer referencia a cualquiera de los geles de fibrina definidos en este párrafo como "gel CES de la invención". Thus, a first aspect of the invention relates to a fibrin gel, hereinafter "gel of the invention", which comprises stromal cells of the sclerocorneal limbus (hereinafter the acronym CES can be used to refer to these cells ). In a preferred embodiment, the ESCs are fibroblasts of said stroma. In a more preferred embodiment, the fibroblasts express the beta 1 integrin protein. In even more preferred embodiments, said ESCs come from a human, where preferably their origin is autologous. Hereinafter, reference may be made to any of the fibrin gels defined in this paragraph as "CES gel of the invention".
La proteína integrina beta 1 es un conocido marcador de células madre mesenquimales. Tal como se demuestra en los ejemplos de la presente invención, las células procedentes del estroma del limbo esclerocorneal expandidas en un medio de cultivo específico de fibroblastos, expresan al menos el marcador de células madre mesenquimales integrina beta 1 , pero también expresan marcadores típicos de fibroblastos y conservan las características de los mismos. The integrin beta 1 protein is a known marker of mesenchymal stem cells. As demonstrated in the examples of the present invention, the cells from the stromal of the sclerocorneal limbus expanded in a specific culture medium of fibroblasts, express at least the beta 1 mesenchymal integrin stem cell marker, but they also express typical fibroblast markers and retain their characteristics.
En la presente descripción se entiende por "fibrina" la proteína fibrilar con capacidad para formar redes tridimensionales, que desempeña un importante papel en el proceso de coagulación, tiene forma de bastón con tres áreas globulares y la propiedad de formar agregados con otras moléculas de fibrina formando un coágulo blando. Normalmente se encuentra en la sangre en una forma inactiva, el fibrinógeno, el cual, por la acción de la trombina, se transforma en fibrina, que tiene capacidad de polimerizar, en presencia de un cofactor, por ejemplo, el calcio. In the present description "fibrin" is understood as the fibrillar protein capable of forming three-dimensional networks, which plays an important role in the coagulation process, is shaped like a cane with three globular areas and the property of forming aggregates with other fibrin molecules forming a soft clot. Normally found in the blood in an inactive form, fibrinogen, which, by the action of thrombin, is transformed into fibrin, which has the ability to polymerize, in the presence of a cofactor, for example, calcium.
Se entiende por "limbo esclerocorneal" la zona circular, ligeramente sobreelevada que corresponde a la línea de transición entre la córnea y la conjuntiva-esclera. El limbo esclerocorneal es el nicho de células madre de la córnea. Los tipos celulares principales del limbo esclerocorneal son las células epiteliales y las células estromales o fibroblastos. El gel de la invención comprende células estromales del limbo, preferiblemente fibroblastos, más preferiblemente embebidos en su interior, expandiéndose en el entramado de fibrina. La caracterización de los tipos celulares del limbo esclerocorneal se puede realizar mediante, por ejemplo pero sin limitarnos, la identificación de proteínas de superficie y/o intracelulares, genes, y/u otros marcadores. Los métodos que pueden ser utilizados para la caracterización incluyen, pero no se limitan: análisis inmunocitoquímico, análisis por northern blot, análisis por western blot, RT-PCR, análisis de expresión génica en microarrays, o análisis morfológicos por microscopía óptica o electrónica. "Sclerocorneal limbus" means the circular area, slightly raised above which corresponds to the transition line between the cornea and the conjunctiva-sclera. The sclerocorneal limbus is the corneal stem cell niche. The main cell types of the sclerocorneal limbus are epithelial cells and stromal cells or fibroblasts. The gel of the invention comprises stromal cells of the limbus, preferably fibroblasts, more preferably embedded inside, expanding in the fibrin lattice. The characterization of the cell types of the sclerocorneal limbus can be performed by, for example but not limited to, the identification of surface and / or intracellular proteins, genes, and / or other markers. Methods that can be used for characterization include, but are not limited to: immunocytochemical analysis, northern blot analysis, western blot analysis, RT-PCR, microarray gene expression analysis, or morphological analysis by optical or electron microscopy.
En la presente invención las células del limbo esclerocorneal comprendidas en el gel se caracterizan, pero sin limitarnos, mediante análisis inmunocitoquímico. Así, se entiende por "fibroblastos" aquellas células presentes en la capa estromal del limbo que se caracterizan, pero sin limitarnos, por ser positivas a la tinción con los anticuerpos contra los antígenos ALDH1A1 , α-SMA (actina alfa del músculo liso), colágeno tipo I I, integrina β1 y Cx43 (conexina 43), pero no a la tinción con el anticuerpo pancitoqueratina. In the present invention, the cells of the sclerocorneal limbus comprised in the gel are characterized, but not limited to, by immunocytochemical analysis. Thus, "fibroblasts" are understood as those cells present in the stromal layer of the limbus that are characterized, but not limited to, being positive for staining with the antibodies against the antigens ALDH1A1, α-SMA (smooth muscle actin alpha), type II collagen, β1 and Cx43 integrin ( connexin 43), but not to staining with the pancytokeratin antibody.
Una "célula madre o célula troncal" es una célula capaz de dividirse indefinidamente, de autorrenovarse y de diferenciarse en células especializadas, no sólo morfológicamente sino también desde el punto de vista funcional. De las células presentes en el limbo esclerocorneal, algunas de ellas, tanto fibroblastos como epiteliales, son células madre y por tanto son capaces de dividirse y diferenciarse para reemplazar las células lesionadas o senescentes de la superficie ocular por células nuevas, manteniendo así una población celular constante. Tal como se demuestra en la presente invención los fibroblastos del limbo son muy importantes para el mantenimiento del nicho en el que se encuentran alojadas las células madre del epitelio corneal. Estas células pueden obtenerse mediante cualquier método conocido en el estado de la técnica para tal fin, por ejemplo, pero sin limitarnos, cualquiera de los protocolos de digestión y aislamiento celular descritos en los ejemplos de la presente invención. A "stem cell or stem cell" is a cell capable of dividing indefinitely, of self-renewal and of differentiation into specialized cells, not only morphologically but also from a functional point of view. Of the cells present in the sclerocorneal limbus, some of them, both fibroblasts and epithelial, are stem cells and are therefore able to divide and differentiate to replace injured or senescent cells of the ocular surface with new cells, thus maintaining a cell population constant. As demonstrated in the present invention, limbo fibroblasts are very important for the maintenance of the niche in which the stem cells of the corneal epithelium are located. These cells can be obtained by any method known in the state of the art for this purpose, for example, but not limited to, any of the cell digestion and isolation protocols described in the examples of the present invention.
El epitelio corneal tiene la capacidad de regenerarse rápidamente gracias a las células del epitelio del limbo esclerocorneal. Después de una lesión, el mantenimiento del epitelio corneal es logrado por esta población de células del epitelio. Las células madre del epitelio del limbo esclerocorneal están localizadas en el epitelio basal del limbo. The corneal epithelium has the ability to regenerate rapidly thanks to the sclerocorneal limbus epithelium cells. After an injury, maintenance of the corneal epithelium is achieved by this population of epithelial cells. The stem cells of the sclerocorneal limbus epithelium are located in the basal epithelium of the limbus.
En otra realización preferida, el gel de la invención comprende, además de CES, células del epitelio del limbo esclerocorneal (en adelante se puede emplear el acrónimo CEP para hacer referencia a estas células). Una realización más preferida de la presente invención se refiere al gel de fibrina en el que las CEP expresan la proteína integrina beta 1 y la proteína pancitoqueratina. Según puede observarse en los ejemplos de la presente invención, las CEP recuperadas y expandidas expresan pancitoqueratina, sin embargo dicha proteína no es expresada en las CES recuperadas y expandidas. En una realización aún más preferida las CEP son células madre. En otra realización aún más preferida las CEP proceden de un humano. Todavía más preferiblemente, las CEP son de origen autólogo. En adelante se podrá hacer referencia a cualquiera de los geles de fibrina definidos en este párrafo como "gel CEP de la invención". In another preferred embodiment, the gel of the invention comprises, in addition to CES, sclerocorneal limbus epithelium cells (hereinafter the acronym CEP can be used to refer to these cells). A Most preferred embodiment of the present invention relates to the fibrin gel in which the CEPs express the beta 1 integrin protein and the pancytokeratin protein. As can be seen in the examples of the present invention, the recovered and expanded CEP express pancytokeratin, however said protein is not expressed in the recovered and expanded CES. In an even more preferred embodiment the CEPs are stem cells. In another even more preferred embodiment the CEPs come from a human. Even more preferably, the CEPs are of autologous origin. Hereinafter, any of the fibrin gels defined in this paragraph may be referred to as the "CEP gel of the invention".
Tal como se demuestra en los ejemplos de la presente invención, las células procedentes del epitelio del limbo esclerocorneal expandidas en un medio de cultivo específico de células epiteliales, expresan al menos el marcador de células madre mesenquimales integrina beta 1 . As demonstrated in the examples of the present invention, cells from the sclerocorneal limbus epithelium expanded in a specific culture medium of epithelial cells express at least the beta 1 mesenchymal integrin stem cell marker.
Preferiblemente las CEP proceden de la región basal del epitelio limbar. Estas células pueden obtenerse mediante cualquier método conocido en el estado de la técnica para tal fin, por ejemplo, pero sin limitarnos, cualquiera de los protocolos de digestión y aislamiento celular descritos en los ejemplos de la presente invención. Así, en la presente invención se entiende por "células epiteliales del limbo esclerocorneal" aquellas células aisladas a partir del tejido del limbo que se caracterizan, pero sin limitarnos, por ser positivas a la tinción con los anticuerpos contra los antígenos ALDH1A1 , α-SMA (actina alfa del músculo liso), desmoplaquina, integrina β1 , pancitoqueratina y Cx43. Preferably the CEPs come from the basal region of the limbar epithelium. These cells can be obtained by any method known in the state of the art for this purpose, for example, but not limited to, any of the cell digestion and isolation protocols described in the examples of the present invention. Thus, in the present invention "epithelial cells of the sclerocorneal limbus" means those cells isolated from the tissue of the limbus that are characterized, but not limited to, being positive for staining with antibodies against the antigens ALDH1A1, α-SMA (smooth muscle actin alpha), desmoplachin, β1 integrin, pancytokeratin and Cx43.
Otra realización preferida de la presente invención se refiere al gel de fibrina donde dicho gel tiene forma de disco. Preferiblemente el disco tiene un diámetro de al menos la suma de la longitud del arco de curva de la curvatura central de la córnea y de la longitud del limbo esclerocorneal de la superficie ocular. Una realización aún más preferida se refiere al gel de fibrina donde dicho disco comprende: Another preferred embodiment of the present invention relates to the fibrin gel where said gel has a disk shape. Preferably the disk has a diameter of at least the sum of the arc curve length of the central curvature of the cornea and the length of the sclerocorneal limbus of the ocular surface An even more preferred embodiment refers to the fibrin gel wherein said disk comprises:
a. una región central de fibrina que tiene el diámetro de al menos la longitud del arco de curva de la curvatura central de la córnea, que comprende CEP, y  to. a central fibrin region having the diameter of at least the arc curve length of the central curvature of the cornea, comprising CEP, and
b. una región de fibrina periférica a la región central del apartado (a) que comprende CES.  b. a region of peripheral fibrin to the central region of section (a) comprising CES.
Según otra realización preferida, la región periférica del párrafo anterior además comprende CEP. En adelante se podrá hacer referencia a cualquiera de los geles de fibrina definidos en este párrafo como "gel de la invención que comprende la región central y periférica". Preferiblemente la región central del apartado (a) del gel de la invención que comprende la región central y periférica consiste en fibrina y CEP (preferiblemente células madre), y la región periférica del apartado (b) consiste en fibrina y CES (preferiblemente fibroblastos). Según otra realización preferida, la región central del apartado (a) del gel de la invención que comprende la región central y periférica consiste en fibrina y CEP (preferiblemente células madre), y la región periférica del apartado (b) consiste en fibrina, CES (preferiblemente fibroblastos) y CEP (preferiblemente células madre). According to another preferred embodiment, the peripheral region of the preceding paragraph further comprises CEP. Hereinafter, reference may be made to any of the fibrin gels defined in this paragraph as "gel of the invention comprising the central and peripheral region". Preferably the central region of section (a) of the gel of the invention comprising the central and peripheral region consists of fibrin and CEP (preferably stem cells), and the peripheral region of section (b) consists of fibrin and CES (preferably fibroblasts) . According to another preferred embodiment, the central region of section (a) of the gel of the invention comprising the central and peripheral region consists of fibrin and CEP (preferably stem cells), and the peripheral region of section (b) consists of fibrin, CES (preferably fibroblasts) and CEP (preferably stem cells).
Otra realización preferida se refiere al gel de fibrina donde dicho disco comprende: (a) una capa de CEP o una capa de fibrina que comprende CEP, y (b) una capa de fibrina que comprende CES. Según una realización más preferida, la capa del apartado (b) comprende: (i) una región central hueca que tiene el diámetro de la longitud del arco de curva de la curvatura central de la córnea, y (ii) una región de fibrina periférica a la región central del apartado (i) que comprende CES. Según otra realización preferida, la capa de fibrina del apartado (b) además comprende CEP. Otra realización preferida se refiere al gel de fibrina en el que dicho disco además comprende una capa de fibrina situada entre la capa del apartado (a) y la capa del apartado (b). Según otra realización preferida de la presente invención, las CEP son células madre y las CES son fibroblastos. En adelante se podrá hacer referencia a cualquiera de los geles de fibrina definidos en este párrafo como "gel de la invención que comprende las capas CEP-CES". Preferiblemente la capa del apartado (a) del gel de la invención que comprende las capas CEP-CES consiste en fibrina y CEP (preferiblemente células madre), y la capa del apartado (b) consiste en fibrina y CES (preferiblemente fibroblastos). Según otra realización preferida, la capa del apartado (a) del gel de fibrina de la invención que comprende las capas CEP-CES consiste en fibrina y CEP (preferiblemente células madre), y la capa del apartado (b) consiste en fibrina, CES (preferiblemente fibroblastos) y CEP (preferiblemente células madre). En otra realización preferida de este aspecto de la invención, la fibrina del gel de la invención procede del plasma sanguíneo o de crioprecipitado, más preferiblemente de un humano. En una realización aun más preferida el plasma sanguíneo o el crioprecipitado es de origen autólogo. En la presente descripción se entiende por "plasma sanguíneo" la fracción líquida y acelular de la sangre, compuesta por agua y por múltiples sustancias disueltas en ella, de las cuales, las más abundantes son las proteínas. También contiene glúcidos y lípidos, así como los productos de desecho del metabolismo. La fibrina podría obtenerse del plasma mediante, por ejemplo, pero sin limitarnos, la acción de la trombina sobre el fibrinógeno presente en el plasma; o bien podría obtenerse a partir de crioprecipitado (producto obtenido del plasma mediante centrifugación y criopreservación) descongelando el crioprecipitado, disolviéndolo y calculando la cantidad de fibrinógeno para posteriormente obtener la matriz de fibrina como se ha explicado anteriormente. La ventaja de emplear crioprecipitado como fuente de fibrina es que ésta se obtiene con idénticas concentraciones de sus componentes, ya que mientras que en el plasma hay "productos indeseables" que pueden quedar atrapados en el interior de la matriz de fibrina, el crioprecipitado permite obtener la fibrina casi en estado puro. No obstante, ya que el crioprecipitado no posee plaquetas (lo cual podría implicar una ralentización del crecimiento celular), sería recomendable añadir plaquetas al medio de cultivo o incluso a la propia matriz de fibrina obtenida a partir del mismo. Another preferred embodiment relates to the fibrin gel wherein said disk comprises: (a) a layer of CEP or a layer of fibrin comprising CEP, and (b) a layer of fibrin comprising CES. According to a more preferred embodiment, the layer of section (b) comprises: (i) a hollow central region having the diameter of the curve arc length of the central curvature of the cornea, and (ii) a region of peripheral fibrin to the central region of section (i) comprising CES. According to another preferred embodiment, the fibrin layer of section (b) further comprises CEP. Another preferred embodiment relates to the fibrin gel in which said disk further comprises a fibrin layer located between the section layer (a) and section layer (b). According to another preferred embodiment of the present invention, the CEPs are stem cells and the ESCs are fibroblasts. Hereinafter, reference may be made to any of the fibrin gels defined in this paragraph as "gel of the invention comprising the CEP-CES layers". Preferably the layer of section (a) of the gel of the invention comprising the CEP-CES layers consists of fibrin and CEP (preferably stem cells), and the layer of section (b) consists of fibrin and CES (preferably fibroblasts). According to another preferred embodiment, the layer of section (a) of the fibrin gel of the invention comprising the CEP-CES layers consists of fibrin and CEP (preferably stem cells), and the layer of section (b) consists of fibrin, CES (preferably fibroblasts) and CEP (preferably stem cells). In another preferred embodiment of this aspect of the invention, the gel fibrin of the invention is derived from blood or cryoprecipitate plasma, more preferably from a human. In an even more preferred embodiment the blood plasma or cryoprecipitate is of autologous origin. In the present description "blood plasma" means the liquid and acellular fraction of blood, composed of water and multiple substances dissolved in it, of which the most abundant are proteins. It also contains carbohydrates and lipids, as well as metabolic waste products. Fibrin could be obtained from plasma by, for example, but not limited to, the action of thrombin on the fibrinogen present in the plasma; or it could be obtained from cryoprecipitate (product obtained from plasma by centrifugation and cryopreservation) by thawing the cryoprecipitate, dissolving it and calculating the amount of fibrinogen to later obtain the fibrin matrix as explained above. The advantage of using cryoprecipitate as a source of fibrin is that it is obtained with identical concentrations of its components, since while in the plasma there are "undesirable products" that can be trapped inside the fibrin matrix, the cryoprecipitate allows to obtain the fibrin almost in its purest form. However, since the cryoprecipitate does not have platelets (which could imply a slowdown in cell growth), it would be advisable to add platelets to the culture medium or even to the fibrin matrix itself obtained from it.
Aunque las CES o CEP (y los respectivos fibroblastos o células madre), así como el plasma sanguíneo o crioprecipitado de donde se obtiene la fibrina, comprendidos en el gel de la invención podrían proceder, por ejemplo, pero sin limitarnos, de cualquier mamífero, preferiblemente de un humano, el hecho de que todos los componentes del gel procedan del propio paciente al que se le podría trasplantar el mismo, o al que se le podría administrar un medicamento que lo comprenda, elimina la posibilidad de que éste sufra un rechazo inmunológico y/o una respuesta inflamatoria. Por ello, preferiblemente la fibrina del gel de la presente invención es autóloga, es decir, procede del plasma sanguíneo o crioprecipitado del propio paciente. Although CES or CEP (and the respective fibroblasts or stem cells), as well as the blood plasma or cryoprecipitate from which the fibrin is obtained, comprised in the gel of the invention could proceed, for example, but not limited to, from any mammal, preferably from a human, the fact that all the components of the gel come from the patient himself who could be transplanted, or who could be given a medication that understands it, eliminates the possibility that he suffers an immune rejection and / or an inflammatory response. Therefore, preferably the gel fibrin of the present invention is autologous, that is, it is derived from the blood plasma or cryoprecipitate of the patient himself.
En la presente descripción se entiende por "origen autólogo", cualquier procedencia de la muestra tomada de los tejidos, fluidos o células de un individuo o paciente que es la misma en un donante y en el receptor de los mismos cuando le son administrados tras su tratamiento o trasplantados tras su modificación. In the present description, "autologous origin" means any origin of the sample taken from the tissues, fluids or cells of an individual or patient that is the same in a donor and in the recipient thereof when they are administered after treatment or transplanted after modification.
Otro aspecto de la invención se refiere a un método de preparación del gel CES de la invención, de ahora en adelante se puede usar el término "primer método de la invención" para hacer referencia a este método, que comprende: (a) poner en contacto CES con una composición que comprende fibrina; y (b) polimerizar la mezcla del paso (a) en un recipiente de cultivo estéril. En una realización preferida, el primer método de la invención además comprende, entre los pasos (a) y (b), añadir un agente antifibrinolítico a la mezcla del paso (a). Las CES (o en su caso, más adelante, las CEP) se obtienen, por ejemplo, pero sin limitarse, mediante protocolos de digestión del tejido limbar, como se describe en los ejemplos de la presente invención. Another aspect of the invention relates to a method of preparing the CES gel of the invention, from now on the term "first method of the invention" can be used to refer to this method, which comprises: (a) putting CES contact with a composition comprising fibrin; and (b) polymerize the mixture from step (a) in a container of sterile culture. In a preferred embodiment, the first method of the invention further comprises, between steps (a) and (b), adding an antifibrinolytic agent to the mixture of step (a). The ESCs (or, where appropriate, later, the CEPs) are obtained, for example, but not limited, by means of digestion protocols of the limbar tissue, as described in the examples of the present invention.
Las células obtenidas con la digestión se cultivan bajo condiciones in vitro para alcanzar una expansión de los tipos celulares suficiente como para poder elaborar los geles. Ejemplos de medios de cultivo podrían ser, pero sin limitarnos, DMEM (Dulbecco^s Modified Eag/e s Médium), RPMI 1640, Ham's F12, Ham's F10, MCDB 131 , MEM {Mínimum Essential Media) o DMEM/F12. Los medios de cultivo pueden estar suplementados con otros componentes adecuados para el crecimiento celular, como por ejemplo, pero sin limitarnos, suero, sustituto de suero, aminoácidos, antibióticos o factores de crecimiento, en las proporciones adecuadas. Los cultivos primarios son aquellos procedentes de células que han sido disgregadas de un tejido original tomado de un órgano de un animal. Los cultivos secundarios son aquellos que proceden de la resiembra o subcultivo de uno o varios tipos de células de un cultivo primario, y que se llevan a cabo preferiblemente cuando los cultivos primarios se encuentran en estado de preconfluencia mediante la realización de un pase de expansión o subcultivo. En estos cultivos secundarios la heterogeneidad celular es menor que en los primarios debido, entre otros, a factores nutritivos. The cells obtained with digestion are grown under in vitro conditions to achieve an expansion of the cell types sufficient to be able to make the gels. Examples of culture media could be, but not limited to, DMEM (Dulbecco ^ s Modified Eag / es Medium), RPMI 1640, Ham's F12, Ham's F10, MCDB 131, MEM {Minimum Essential Media) or DMEM / F12. The culture media may be supplemented with other components suitable for cell growth, such as, but not limited to, serum, serum substitute, amino acids, antibiotics or growth factors, in appropriate proportions. Primary cultures are those from cells that have been broken down from an original tissue taken from an organ of an animal. Secondary cultures are those that come from the reseeding or subculture of one or several types of cells of a primary culture, and which are preferably carried out when the primary cultures are in a preconfluence state by performing an expansion pass or subculture In these secondary cultures the cellular heterogeneity is lower than in the primary ones due, among others, to nutritional factors.
Para preparar el gel de fibrina conteniendo CES embebidas (preferiblemente fibroblastos), las células, cultivadas previamente, se resuspenden en una composición que comprende fibrina (preferiblemente la solución es plasma o crioprecipitado). Como se ha explicado anteriormente, la fibrina procede preferiblemente de un humano, y más preferiblemente es de origen autólogo, por lo que el plasma sanguíneo o el crioprecipitado, que es de donde se obtiene la fibrina, también procede preferiblemente de un humano y más preferiblemente es de origen autólogo. To prepare the fibrin gel containing embedded CES (preferably fibroblasts), the cells, previously cultured, are resuspended in a composition comprising fibrin (preferably the solution is plasma or cryoprecipitate). As explained above, fibrin preferably comes from a human, and more preferably it is of autologous origin, whereby blood plasma or cryoprecipitate, which is where fibrin is obtained, also preferably comes from a human and more preferably is of autologous origin.
A continuación, opcionalmente se añade a la mezcla un agente antifibrinolítico, para evitar la fibrinolisis del gel. Se entiende por "agente antifibrinolítico" cualquier agente que disminuya o elimine la actividad fibrinolítica que degrada las redes de fibrina formadas durante el proceso de coagulación sanguínea. Ejemplos de agentes antifibrinolíticos en la presente invención son, sin limitarnos, ácido tranexámico, PEPH (éster propílico del ácido p-hidroxibenzoico) o aprotinina. El agente antifibrinolítico del primer método de la invención es, preferiblemente, ácido tranexámico, entendiéndose como tal, el compuesto sintético utilizado para neutralizar la fibrinolisis, cuyo mecanismo de efecto implica la inhibición de la disolución de los coágulos. Next, an antifibrinolytic agent is optionally added to the mixture, to prevent fibrinolysis of the gel. "Antifibrinolytic agent" means any agent that decreases or eliminates fibrinolytic activity that degrades fibrin networks formed during the blood coagulation process. Examples of antifibrinolytic agents in the present invention are, without limitation, tranexamic acid, PEPH (p-hydroxybenzoic acid propyl ester) or aprotinin. The antifibrinolytic agent of the first method of the invention is preferably tranexamic acid, being understood as such, the synthetic compound used to neutralize fibrinolysis, whose mechanism of effect involves the inhibition of clot dissolution.
Para que la mezcla así obtenida comience a polimerizar es necesario añadir un agente capaz de inducir dicha polimerización, como por ejemplo, pero sin limitarnos, una fuente de calcio. Dicha fuente de calcio es, preferiblemente, una sal de calcio como, por ejemplo, pero sin limitarse, cloruro cálcico, gluconato cálcico o una combinación de ambas. En una realización más preferida, la sal de calcio es cloruro cálcico o CaCI2. Se entiende por "polimerización" el proceso químico por el que los reactivos o monómeros (compuestos de bajo peso molecular) se agrupan químicamente entre sí, dando lugar a una molécula de mayor peso molecular, denominada polímero. Preferiblemente, la polimerización del paso (b) del primer método de la invención se lleva a cabo a una temperatura de 37°C. A continuación, la mezcla se deposita en un recipiente de cultivo estéril, preferiblemente, en una placa de cultivo, como se muestra en los ejemplos de la presente invención, para permitir su solidificación y la formación del gel. In order for the mixture thus obtained to begin to polymerize, it is necessary to add an agent capable of inducing said polymerization, such as, but not limited to, a source of calcium. Said calcium source is preferably a calcium salt, such as, but not limited to, calcium chloride, calcium gluconate or a combination of both. In a more preferred embodiment, the calcium salt is calcium chloride or CaCI 2 . "Polymerization" means the chemical process by which reagents or monomers (compounds of low molecular weight) are chemically grouped together, giving rise to a molecule of greater molecular weight, called polymer. Preferably, the polymerization of step (b) of the first method of the invention is carried out at a temperature of 37 ° C. The mixture is then deposited in a sterile culture vessel, preferably in a culture plate, such as It is shown in the examples of the present invention, to allow its solidification and gel formation.
En otra realización preferida, la composición que comprende fibrina del paso (a) es plasma sanguíneo o crioprecipitado, más preferiblemente plasma sanguíneo. Aun más preferiblemente el plasma sanguíneo procede de un humano. En una realización aún más preferida, el plasma sanguíneo es de origen autólogo. Otro aspecto de la invención se refiere a un método de preparación del gel CEP de la invención que comprende los pasos del primer método de la invención y además comprende sembrar CEP sobre el gel de fibrina obtenido en el paso (b). De aquí en adelante se puede usar el término "segundo método de la invención" para hacer referencia a este método. La siembra de CEP sobre el gel de fibrina obtenido en el paso (b) se lleva a cabo en un recipiente de cultivo estéril, preferiblemente una placa de cultivo. La siembra del segundo método de la invención se puede llevar a cabo directamente sobre el gel de fibrina obtenido en el paso (b) del primer método de la invención una vez haya polimerizado o bien sobre otro gel de fibrina que, una vez polimerizado, se adhiera por polimerización al gel de fibrina obtenido en el paso (b) del primer método de la invención una vez que ambos geles presenten estabilidad. Las células epiteliales del limbo, previamente cultivadas en cualquiera de los medios de cultivo descritos anteriormente, aunque sin limitarnos, se pueden sembrar sobre la superficie de esta estructura de fibrina con fibroblastos embebidos para su expansión y proliferación. Se entiende por "proliferación" los procesos de crecimiento, expansión, adhesión, división, multiplicación o diferenciación que sufren las células. Otro aspecto de la invención se refiere un método de preparación del gel de la invención que comprende la región central y periférica, que comprende: In another preferred embodiment, the composition comprising fibrin of step (a) is blood plasma or cryoprecipitate, more preferably blood plasma. Even more preferably the blood plasma comes from a human. In an even more preferred embodiment, the blood plasma is of autologous origin. Another aspect of the invention relates to a method of preparing the CEP gel of the invention that comprises the steps of the first method of the invention and further comprises sowing CEP on the fibrin gel obtained in step (b). Hereinafter the term "second method of the invention" can be used to refer to this method. Sowing of CEP on the fibrin gel obtained in step (b) is carried out in a sterile culture vessel, preferably a culture plate. Seeding of the second method of the invention can be carried out directly on the fibrin gel obtained in step (b) of the first method of the invention once it has polymerized or on another fibrin gel which, once polymerized, is polymerize the fibrin gel obtained in step (b) of the first method of the invention once both gels show stability. Limb epithelial cells, previously cultured in any of the culture media described above, but not limited to, can be seeded on the surface of this fibrin structure with embedded fibroblasts for expansion and proliferation. "Proliferation" means the processes of growth, expansion, adhesion, division, multiplication or differentiation that cells undergo. Another aspect of the invention relates to a method of preparing the gel of the invention comprising the central and peripheral region, which comprises:
a. poner en contacto CES, o dichas CES y CEP, con una composición que comprende fibrina,  to. contacting CES, or said CES and CEP, with a composition comprising fibrin,
b. poner en contacto CEP con una composición que comprende fibrina, y  b. contacting CEP with a composition comprising fibrin, and
c. polimerizar en un recipiente de cultivo estéril las mezclas de los pasos (a) y (b) de forma que la mezcla que comprende CEP ocupa una región central que tiene el diámetro de al menos la longitud del arco de curva de la curvatura central de la córnea, y la mezcla que comprende CES ocupa la región periférica a dicha región central.  C. Polymerize in a sterile culture vessel the mixtures of steps (a) and (b) so that the mixture comprising CEP occupies a central region having the diameter of at least the length of the arc of curve of the central curvature of the cornea, and the mixture comprising CES occupies the peripheral region to said central region.
De aquí en adelante se puede usar el término "tercer método de la invención" para hacer referencia a este método. En una realización preferida, el tercer método de la invención además comprende, entre los pasos (b) y (c), añadir un agente antifibrinolítico a la mezcla del paso (a) y a la mezcla del paso (b). Otro aspecto más de la invención se refiere a un método de preparación del gel de la invención que comprende las capas CEP-CES, que comprende los pasos del tercer método de la invención, donde la polimerización del paso (c) se lleva a cabo de forma que la mezcla que comprende las CES, o que comprende dichas CES y CEP, y la mezcla que comprende las CEP forman sendas capas. De aquí en adelante se puede usar el término "cuarto método de la invención" para hacer referencia a este método.  Hereinafter the term "third method of the invention" can be used to refer to this method. In a preferred embodiment, the third method of the invention further comprises, between steps (b) and (c), adding an antifibrinolytic agent to the mixture of step (a) and the mixture of step (b). Another aspect of the invention relates to a method of preparing the gel of the invention comprising the CEP-CES layers, comprising the steps of the third method of the invention, where the polymerization of step (c) is carried out by such that the mixture comprising the ESCs, or comprising said ESCs and CEP, and the mixture comprising the CEPs form two layers. Hereinafter the term "fourth method of the invention" can be used to refer to this method.
Según una realización preferida del cuarto método de la invención, la preparación del gel de la invención que comprende las capas CEP-CES, comprende: (a) polimerizar la mezcla que comprende CES, o que comprende dichas CES y CEP, en la región periférica (3) de un pocilio sin que el gel polimerizado rebase la parte superior de la elevación central (2); y (b) polimerizar la mezcla que comprende las CEP por encima de la capa del gel de fibrina polimerizada según el paso (a). El término "por encima" hace referencia a que la mezcla polimerizada que comprende las CEP según el paso (b) está en una posición superior a la capa del gel de fibrina polimerizada según el paso (a), teniendo como referencia el fondo del pocilio. Es decir, en contacto con el fondo del pocilio queda la capa del paso (a) y por encima de ésta queda la capa del paso (b). Ambas capas pueden estar en contacto o no, en el caso de no quedar directamente en contacto, quedan separadas por una capa de fibrina. Según una realización preferida, sobre la capa polimerizada según el paso (a) se polimeriza una capa de fibrina y sobre esta capa de fibrina polimerizada se depositan CEP, o sobre dicha capa de fibrina se deposita y polimeriza la mezcla que comprende fibrina y CEP. Más preferiblemente las CEP son células madre y las CES son fibroblastos. De aquí en adelante se puede usar el término "quinto método de la invención" para hacer referencia a cualquiera de los métodos de este párrafo. Otra realización preferida de la presente invención se refiere al primer, segundo, tercer, cuarto o quinto método de la invención, donde el agente antifibrinolítico es ácido tranexámico. En otra realización preferida del primer, segundo, tercer, cuarto o quinto método de la invención, la polimerización se lleva a cabo mediante la adición de CaCl2 a las respectivas mezclas. According to a preferred embodiment of the fourth method of the invention, the preparation of the gel of the invention comprising the CEP-CES layers comprises: (a) polymerizing the mixture comprising CES, or which comprises said ESC and CEP, in the peripheral region (3) of a well without the polymerized gel exceeding the upper part of the central elevation (2); and (b) polymerizing the mixture comprising the CEPs above the polymerized fibrin gel layer according to step (a). The term "above" refers to the polymerized mixture comprising the CEPs according to step (b) being in a position higher than the polymerized fibrin gel layer according to step (a), having as reference the bottom of the well . That is, in contact with the bottom of the well is the layer of the passage (a) and above it is the layer of the passage (b). Both layers can be in contact or not, in the case of not being directly in contact, they are separated by a layer of fibrin. According to a preferred embodiment, a fibrin layer is polymerized on the polymerized layer according to step (a) and on this polymerized fibrin layer CEP is deposited, or on said fibrin layer the mixture comprising fibrin and CEP is deposited and polymerized. More preferably, the CEPs are stem cells and the ESCs are fibroblasts. Hereinafter the term "fifth method of the invention" may be used to refer to any of the methods in this paragraph. Another preferred embodiment of the present invention relates to the first, second, third, fourth or fifth method of the invention, wherein the antifibrinolytic agent is tranexamic acid. In another preferred embodiment of the first, second, third, fourth or fifth method of the invention, polymerization is carried out by adding CaCl 2 to the respective mixtures.
Otro aspecto de la presente invención se refiere a un pocilio para llevar a cabo el quinto método de la invención, que comprende una elevación central (2) cerrada en su parte superior, que tiene el diámetro de la longitud del arco de curva de la curvatura central de la córnea, y una región periférica (3) a la elevación central (2), donde la altura de la elevación central (2) es menor que la altura de pared del pocilio (1 ) y donde el pocilio tiene un diámetro de al menos la suma de la longitud del arco de curva de la curvatura central de la córnea y de la longitud del limbo esclerocorneal de la superficie ocular. Una representación gráfica de dicho pocilio puede observarse en la Fig. 8A y 8 B. Según una realización preferida, el pocilio tiene el diámetro que corresponde con la suma de la longitud del arco de curva de la curvatura central de la córnea y de la longitud del limbo esclerocorneal de la superficie ocular. Otro aspecto de la presente invención se refiere a un soporte sólido que comprende al menos un pocilio descrito en el párrafo anterior. El soporte sólido es preferiblemente una placa multipocillo. Another aspect of the present invention relates to a well for carrying out the fifth method of the invention, which comprises a central elevation (2) closed in its upper part, which has the diameter of the curvature curve arc length central cornea, and a peripheral region (3) to the central elevation (2), where the height of the central elevation (2) is less than the wall height of the well (1) and where the well has a diameter of at least the sum of the arc curve length of the central curvature of the cornea and the length of the sclerocorneal limbus of the ocular surface. A graphic representation of said well can be seen in Fig. 8A and 8 B. According to a preferred embodiment, the well has the diameter corresponding to the sum of the arc curve length of the central curvature of the cornea and the length of the sclerocorneal limbus of the ocular surface. Another aspect of the present invention relates to a solid support comprising at least one well described in the preceding paragraph. The solid support is preferably a multiwell plate.
Otro aspecto de la invención se refiere al uso del pocilio descrito en los párrafos anteriores, o del soporte sólido que lo comprende, para la preparación del gel de la invención que comprende las capas CEP-CES. Another aspect of the invention relates to the use of the well described in the preceding paragraphs, or of the solid support comprising it, for the preparation of the gel of the invention comprising the CEP-CES layers.
Un aspecto más de la presente invención se refiere al uso del gel CES de la invención como soporte para la proliferación de CEP. Preferiblemente las CEP son células madre. A further aspect of the present invention relates to the use of the CES gel of the invention as a support for the proliferation of CEP. Preferably the CEPs are stem cells.
La fibrina es un material biocompatible que se reabsorbe una vez que es implantado in vivo, permitiendo la formación de matriz extracelular y la regeneración tisular. Por ello, el trasplante de cualquier gel de la invención supone la proliferación del epitelio corneal y, como consecuencia, la regeneración del tejido. Así, preferiblemente, el gel de la invención se usa para su trasplante sobre una superficie ocular disfuncional. Fibrin is a biocompatible material that is reabsorbed once it is implanted in vivo, allowing the formation of extracellular matrix and tissue regeneration. Therefore, the transplantation of any gel of the invention involves the proliferation of the corneal epithelium and, as a consequence, tissue regeneration. Thus, preferably, the gel of the invention is used for transplantation on a dysfunctional ocular surface.
El aporte insuficiente, la ausencia o la disfunción de células epiteliales del limbo provoca alteraciones en la reparación epitelial corneal, trayendo como resultado defectos epiteliales persistentes, vascularización corneal, cicatrización, inflamación crónica, ulceración, crecimiento del epitelio conjuntival sobre la córnea (conjuntivalización) o una probable perforación corneal, conocida como síndrome de insuficiencia límbica. El reemplazo normal de las células epiteliales de la córnea y la curación de lesiones o enfermedades que afectan a la superficie ocular, como por ejemplo pero sin limitarse, las úlceras corneales o queratitis superficiales, depende del buen funcionamiento del limbo esclerocorneal, ya que es aquí donde se alojan las células madre del epitelio corneal. El trasplante del gel de la invención conteniendo CEP (preferiblemente células madre de dicho tejido epitelial del limbo) y/o CES (preferiblemente fibroblastos), supone el reestablecimiento de las células epiteliales del limbo, lo cual contribuye a la regeneración de lesiones o enfermedades de la superficie ocular. Por ello, otro aspecto de la invención se refiere al uso de cualquier gel de fibrina de la invención para la elaboración de un medicamento. Según una realización preferida, cualquier gel de fibrina de la invención se utiliza para la elaboración de un medicamento para su uso en el tratamiento y/o prevención de lesión de la superficie ocular, enfermedad degenerativa de la superficie ocular, enfermedad inflamatoria de la superficie ocular o enfermedad genética de la superficie ocular. En la presente invención se entiende por "superficie ocular" la superficie del ojo que corresponde con el limbo esclerocorneal, la córnea o la conjuntiva. Preferiblemente la superficie ocular es la superficie ocular que corresponde con la córnea. Insufficient contribution, absence or dysfunction of limb epithelial cells causes alterations in corneal epithelial repair, resulting in persistent epithelial defects, corneal vascularization, scarring, chronic inflammation, ulceration, growth of the conjunctival epithelium on the cornea (conjunctivalization) or a probable corneal perforation, known as limbic insufficiency syndrome. The normal replacement of the corneal epithelial cells and the healing of lesions or diseases that affect the ocular surface, such as but not limited to, corneal ulcers or superficial keratitis, depends on the proper functioning of the sclerocorneal limbus, since it is here where the stem cells of the corneal epithelium are housed. The transplantation of the gel of the invention containing CEP (preferably stem cells of said epithelial tissue of the limbus) and / or CES (preferably fibroblasts), involves the restoration of epithelial cells of the limbus, which contributes to the regeneration of lesions or diseases of the ocular surface Therefore, another aspect of the invention relates to the use of any fibrin gel of the invention for the manufacture of a medicament. According to a preferred embodiment, any fibrin gel of the invention is used for the preparation of a medicament for use in the treatment and / or prevention of ocular surface lesion, degenerative disease of the ocular surface, inflammatory disease of the ocular surface or genetic disease of the ocular surface. In the present invention, "ocular surface" means the surface of the eye that corresponds to the sclerocorneal limbus, the cornea or the conjunctiva. Preferably the ocular surface is the ocular surface that corresponds to the cornea.
El medicamento al que se refiere la presente invención puede ser de uso humano o veterinario. El "medicamento de uso humano" es toda sustancia o combinación de sustancias que se presente como poseedora de propiedades para el tratamiento o prevención de enfermedades en seres humanos o que pueda usarse en seres humanos o administrarse a seres humanos con el fin de restaurar, corregir o modificar las funciones fisiológicas ejerciendo una acción farmacológica, inmunológica o metabólica, o de establecer un diagnóstico médico. El "medicamento de uso veterinario" es toda sustancia o combinación de sustancias que se presente como poseedora de propiedades curativas o preventivas con respecto a las enfermedades animales o que pueda administrarse al animal con el fin de restablecer, corregir o modificar sus funciones fisiológicas ejerciendo una acción farmacológica, inmunológica o metabólica, o de establecer un diagnóstico veterinario. The medicament referred to in the present invention can be for human or veterinary use. The "medicine for human use" is any substance or combination of substances that is presented as having properties for the treatment or prevention of diseases in humans or that can be used in humans or administered to humans in order to restore, correct or modify physiological functions by exerting a pharmacological, immunological or metabolic action, or establishing a medical diagnosis. The "medicine of veterinary use "means any substance or combination of substances that is presented as having curative or preventive properties with respect to animal diseases or that can be administered to the animal in order to restore, correct or modify its physiological functions by exercising a pharmacological, immunological action or metabolic, or to establish a veterinary diagnosis.
El término "tratamiento" tal como se entiende en la presente invención se refiere a combatir los efectos causados como consecuencia de la enfermedad o condición patológica de interés en un sujeto (preferiblemente mamífero, y más preferiblemente un humano) que incluye: The term "treatment" as understood in the present invention refers to combating the effects caused as a result of the disease or pathological condition of interest in a subject (preferably mammal, and more preferably a human) that includes:
(i) inhibir la enfermedad o condición patológica, es decir, detener su desarrollo;  (i) inhibit the disease or pathological condition, that is, stop its development;
(ii) aliviar la enfermedad o la condición patológica, es decir, causar la regresión de la enfermedad o la condición patológica o su sintomatología; (iii) estabilizar la enfermedad o la condición patológica. (ii) alleviate the disease or the pathological condition, that is, cause the regression of the disease or the pathological condition or its symptomatology; (iii) stabilize the disease or pathological condition.
El término "prevención" tal como se entiende en la presente invención consiste en evitar la aparición de la enfermedad, es decir, evitar que se produzca la enfermedad o la condición patológica en un sujeto (preferiblemente mamífero, y más preferiblemente un humano), en particular, cuando dicho sujeto tiene predisposición por la condición patológica, pero aún no se ha diagnosticado que la tenga. The term "prevention" as understood in the present invention consists in preventing the onset of the disease, that is, preventing the disease or pathological condition from occurring in a subject (preferably mammal, and more preferably a human), in particularly, when said subject has a predisposition for the pathological condition, but has not yet been diagnosed as having it.
Otra realización preferida de la presente invención se refiere al uso de cualquier gel de fibrina de la invención para la elaboración de un medicamento para el tratamiento y/o prevención de un síndrome de insuficiencia límbica (SIL). "Síndrome de insuficiencia límbica o SIL" es el término empleado para englobar a todas las patologías que cursan con la perturbación de la funcionalidad, la destrucción o la inexistencia de las células madre del limbo esclerocorneal. Dentro de las patologías englobadas bajo este término se encuentran, por ejemplo, aunque sin limitarnos, aquellas provocadas por quemaduras químicas o térmicas, conjuntivitis cicatrizantes autoinmunes (como por ejemplo, aunque sin limitarnos, el síndrome de Steven-Johnson o el penfigoide cicatrizal), aquellas provocadas por cirugías o crioterapias, queratopatía inducida por lentes de contacto, infecciones microbianas, ectasias, aquellas provocadas por radiación ionizante o ultravioleta, aquellas provocadas por el uso de medicación como los anti-metabolitos o el 5-fluorouracilo o la mitomicina c (iatrogénicos); aquellas patologías congénitas como, por ejemplo, aunque sin limitarnos, la aniridia, el coloboma, neoplasia, distrofia corneal, deficiencias hormonales, enfermedades ulcerativas periféricas de la córnea, queratopatía neurotrófica, queratopatía bullosa crónica, limbitis crónica, pterigium o insuficiencia limbar idiopática, o en general, la ceguera corneal. Another preferred embodiment of the present invention relates to the use of any fibrin gel of the invention for the preparation of a medicament for the treatment and / or prevention of a limbic insufficiency syndrome (SIL). "Limbic insufficiency syndrome or SIL" is the term used to encompass all pathologies that occur with the disruption of functionality, destruction or non-existence of stem cells of the sclerocorneal limbus. Among the pathologies encompassed under this term are, for example, but not limited to, those caused by chemical or thermal burns, autoimmune healing conjunctivitis (such as, but not limited to, Steven-Johnson syndrome or scarring penfigoid), those caused by surgery or cryotherapy, contact lens-induced keratopathy, microbial infections, ectasia, those caused by ionizing or ultraviolet radiation, those caused by the use of medication such as anti-metabolites or 5-fluorouracil or mitomycin c (iatrogenic) ); those congenital pathologies such as, for example, but not limited to, aniridia, coloboma, neoplasia, corneal dystrophy, hormonal deficiencies, peripheral ulcerative diseases of the cornea, neurotrophic keratopathy, chronic bullous keratopathy, chronic limbitis, pterigium or idiopathic limbar insufficiency, or in general, corneal blindness.
Otra realización preferida de la presente invención se refiere al uso de cualquier gel de fibrina de la invención para la elaboración de un medicamento para el tratamiento y/o prevención de la ceguera corneal. Another preferred embodiment of the present invention relates to the use of any fibrin gel of the invention for the preparation of a medicament for the treatment and / or prevention of corneal blindness.
Otro aspecto de la invención se refiere al uso de cualquier gel de la invención para la evaluación in vitro del comportamiento de las células CEP y/o de las CES. Preferiblemente las CEP son células madre y las CES son fibroblastos. Another aspect of the invention relates to the use of any gel of the invention for in vitro evaluation of the behavior of CEP cells and / or CES. Preferably the CEPs are stem cells and the ESCs are fibroblasts.
Cualquier gel de la presente invención puede ser de utilidad para estudiar, por ejemplo pero sin limitarnos, el crecimiento, la proliferación, la interacción o la evolución fenotípica o genotípica de las CEP (preferiblemente de las células epiteliales) y/o de las CES (preferiblemente de los fibroblastos), de manera que el análisis del comportamiento de las mismas in vitro puede proporcionar evidencias de cómo se comportan in vivo en el limbo esclerocorneal. Además, dicho gel podría ser usado, por ejemplo pero sin limitarnos, para la búsqueda de fármacos, estudios farmacológicos, estudios toxicológicos, estudios farmacogenómicos y/o estudios genéticos. Tales ensayos pueden ser utilizados para la identificación y/o caracterización de dianas biológicas, compuestos bioactivos y/o agentes farmacológicos. Any gel of the present invention can be useful for studying, for example but not limited to, the growth, proliferation, interaction or phenotypic or genotypic evolution of CEPs (preferably epithelial cells) and / or CES ( preferably of the fibroblasts), so that the analysis of their behavior in vitro can provide evidence of how they behave in I live in the sclerocorneal limbus. In addition, said gel could be used, for example but not limited to, for the search for drugs, pharmacological studies, toxicological studies, pharmacogenomic studies and / or genetic studies. Such assays can be used for the identification and / or characterization of biological targets, bioactive compounds and / or pharmacological agents.
Otro aspecto de la invención se refiere a una composición farmacéutica, de ahora en adelante "composición farmacéutica de la invención", que comprende cualquier gel de la invención. En una realización preferida, la composición farmacéutica de la invención comprende, además, un vehículo farmacéuticamente aceptable. En una realización más preferida, la composición farmacéutica de la invención comprende, además del vehículo farmacéuticamente aceptable, otro principio activo. Another aspect of the invention relates to a pharmaceutical composition, hereinafter "pharmaceutical composition of the invention", which comprises any gel of the invention. In a preferred embodiment, the pharmaceutical composition of the invention further comprises a pharmaceutically acceptable carrier. In a more preferred embodiment, the pharmaceutical composition of the invention comprises, in addition to the pharmaceutically acceptable carrier, another active ingredient.
Como se emplea aquí, el término "principio activo", "substancia activa", "substancia farmacéuticamente activa", "ingrediente activo" o "ingrediente farmacéuticamente activo" significa cualquier componente que potencialmente proporcione una actividad farmacológica u otro efecto diferente en el diagnóstico, cura, mitigación, tratamiento, o prevención de una enfermedad, o que afecta a la estructura o función del cuerpo del hombre u otros animales. As used herein, the term "active substance", "active substance", "pharmaceutically active substance", "active ingredient" or "pharmaceutically active ingredient" means any component that potentially provides a pharmacological activity or other different effect on the diagnosis, cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals.
Las composiciones farmacéuticas de la presente invención pueden formularse para su administración en una variedad de formas conocidas en el estado de la técnica. The pharmaceutical compositions of the present invention can be formulated for administration in a variety of ways known in the state of the art.
Tales composiciones y/o sus formulaciones pueden administrarse a un animal, incluyendo un mamífero y, por tanto, al hombre, en una variedad de formas, incluyendo, pero sin limitarse, intralesional, intraorbital, intracapsular o implante quirúrgico. La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores, como por ejemplo, la edad, peso, sexo o tolerancia, del mamífero, preferiblemente humano. En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad de la composición farmacéutica de la invención que produzca el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de dicha composición farmacéutica y el efecto terapéutico a conseguir. Los "adyuvantes" y "vehículos farmacéuticamente aceptables" que pueden ser utilizados en dichas composiciones son los vehículos conocidos en el estado de la técnica. Such compositions and / or their formulations can be administered to an animal, including a mammal and, therefore, to man, in a variety of ways, including, but not limited to, intralesional, intraorbital, intracapsular or surgical implant. The dosage to obtain a therapeutically effective amount depends on a variety of factors, such as age, weight, sex or tolerance, of the mammal, preferably human. In the sense used in this description, the term "therapeutically effective amount" refers to the amount of the pharmaceutical composition of the invention that produces the desired effect and, in general, will be determined, among other causes, by the characteristics of said pharmaceutical composition and the therapeutic effect to be achieved. The "adjuvants" and "pharmaceutically acceptable carriers" that can be used in said compositions are the vehicles known in the state of the art.
Las composiciones farmacéuticas de la presente invención pueden utilizarse en un método de tratamiento de forma aislada o conjuntamente con otros compuestos farmacéuticos. The pharmaceutical compositions of the present invention can be used in a treatment method in isolation or in conjunction with other pharmaceutical compounds.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Fig. 1 . Muestra el crecimiento celular de los fibroblastos del limbo esclerocorneal en los cultivos primarios (PO) y en el primer pase o cultivo secundario (P1 ). Fibroblastos del limbo sembrados a una densidad inicial (IN) de 1 x104 células/cm2 en superficies de cultivo de plástico, muestran una buena proliferación en ambos cultivos, cultivo primario (P0) y cultivo secundario (P1 ), sin que haya diferencias entre las células obtenidas mediante el protocolo de digestión invertido (Pinv) y el estándar (PE) (p>0,05). Fig. 1. It shows the cell growth of sclerocorneal limbus fibroblasts in primary cultures (PO) and in the first pass or secondary culture (P1). Limbo fibroblasts seeded at an initial density (IN) of 1 x 10 4 cells / cm 2 on culture surfaces of plastic, show a good proliferation in both cultures, primary culture (P0) and secondary culture (P1), without differences between the cells obtained by the inverted digestion protocol (Pinv) and the standard (PE) (p> 0, 05).
Fig. 2. Muestra el crecimiento de los fibroblastos en los geles de fibrina que solo contienen fibroblastos (GFFs) durante 14 días. El número de células creciendo en estos geles se determina a los días 3, 5, 7, 10, 12 y 14 de cultivo, en 20 GFFs con una densidad celular inicial de 1 x104 células/GFF. Fig. 2. Shows the growth of fibroblasts in fibrin gels that only contain fibroblasts (GFFs) for 14 days. The number of cells growing in these gels is determined on days 3, 5, 7, 10, 12 and 14 of culture, in 20 GFFs with an initial cell density of 1 x 10 4 cells / GFF.
Fig. 3. Muestra la expresión de los marcadores de diferenciación en la córnea central (A-G) y en el limbo esclerocorneal (H-N). Los marcadores estudiados son ALDH1A1 (A, H), α-SMA (B, I), colágeno tipo I I (C, J), conexina 43 (D, K), desmoplaquina (E, L), integrina β1 (F, M) y pancitoqueratina (G, N) (a 20 aumentos). Fig. 3. Shows the expression of differentiation markers in the central cornea (A-G) and in the sclerocorneal limbus (H-N). The markers studied are ALDH1A1 (A, H), α-SMA (B, I), type II collagen (C, J), connexin 43 (D, K), desmoplachin (E, L), integrin β1 (F, M ) and pancytokein (G, N) (at 20 magnifications).
Fig. 4. Muestra la expresión de los marcadores de diferenciación en cultivos P0 (A-G) y P1 (H-N) de fibroblastos del limbo y en células epiteliales P0 (O-U). Los marcadores estudiados son ALDH1A1 (A, H, O), α-SMA (B, I, P), colágeno tipo I I (C, J, Q), conexina 43 (D, K, R), desmoplaquina (E, L, S), integrina β1 (F, M, T) y pancitoqueratina (G, N, U) (a 20 aumentos). Fig. 5. Representa el crecimiento celular en los geles de fibrina que contienen fibroblastos (GFFs). Secciones teñidas con hematoxilina- eosina de estos geles de 14 días bajo condiciones de cultivo in vitro, 10 aumentos (A) y 20 aumentos (B). Imágenes de microscopía electrónica de un gel de fibrina después de la siembra celular (C), y de los fibroblastos adheridos y creciendo en el entramado de fibrina (D). Fig. 6. Muestra la tinción hematoxilina-eosina, de una sección en parafina del gel de fibrina conteniendo células del limbo (GFCL), en concreto fibroblastos y células epiteliales del limbo esclerocorneal (A), donde se observa una capa de células epiteliales creciendo en la superficie de la construcción. Imagen de microscopía electrónica del crecimiento celular epitelial en los geles de fibrina conteniendo fibroblastos (B) formando una capa con una morfología típica de adoquín. Fig. 4. It shows the expression of differentiation markers in P0 (AG) and P1 (HN) cultures of limbus fibroblasts and in P0 epithelial cells (OU). The markers studied are ALDH1A1 (A, H, O), α-SMA (B, I, P), type II collagen (C, J, Q), connexin 43 (D, K, R), desmoplachin (E, L , S), integrin β1 (F, M, T) and pancytokeratin (G, N, U) (at 20 magnifications). Fig. 5. Represents cell growth in fibrin gels containing fibroblasts (GFFs). Hematoxylin-eosin stained sections of these gels for 14 days under in vitro culture conditions, 10 increases (A) and 20 increases (B). Electron microscopy images of a fibrin gel after cell seeding (C), and of the fibroblasts adhered and growing in the fibrin lattice (D). Fig. 6. It shows the hematoxylin-eosin staining of a paraffin section of the fibrin gel containing limbus cells (GFCL), specifically fibroblasts and epithelial cells of the sclerocorneal limbus (A), where a layer of epithelial cells growing is observed on the construction surface. Electron microscopy image of epithelial cell growth in fibrin gels containing fibroblasts (B) forming a layer with a typical paving stone morphology.
Fig. 7. Muestra la región corneal y limbo corneoescleral de la superficie ocular humana. El círculo de mayor diámetro indica la región limbo corneoescleral. El círculo de menor tamaño que queda ubicado dentro del círculo mayor indica la región corneal. Fig. 7. It shows the corneal region and corneoescleral limbus of the human ocular surface. The circle with the largest diameter indicates the corneoescleral limbus region. The smaller circle that is located within the larger circle indicates the corneal region.
Fig. 8. Muestra el pocilio adaptado de la presente invención. Vista en planta del pocilio (A) y de los componentes del gel en el pocilio (C). Vista en perfil del pocilio (B) y de los componentes del gel en el pocilio (D). CME: Células Madre Epiteliales del limbo esclerocorneal. F: Fibroblastos del limbo esclerocorneal. I: Capa Intermedia de fibrina. Las partes de pocilio son: pared del pocilio (1 ), elevación central (2), región periférica (3). Fig. 8. Shows the adapted well of the present invention. Plan view of the well (A) and the gel components in the well (C). Profile view of the well (B) and the gel components in the well (D). CME: Epithelial Stem Cells of the sclerocorneal limbus. F: Fibroblasts of the sclerocorneal limbus. I: Intermediate fibrin layer. The well parts are: well wall (1), central elevation (2), peripheral region (3).
Fig. 9. Etapas del procedimiento de preparación de gel de fibrina de la invención que comprende las capas CEP-CES. CME: Células Madre Epiteliales del limbo esclerocorneal. F: Fibroblastos del limbo esclerocorneal. I: Capa Intermedia de fibrina. Las partes de pocilio son: pared del pocilio (1 ), elevación central (2), región periférica (3). En A se muestra la vista en planta del pocilio. B comprende la adición y polimerización de la mezcla con F o con F+CME a la región periférica (2). C comprende la adición y polimerización de la capa intermedia. D comprende la adición de la capa de células madre epiteliales del limbo esclerocorneal o la adición de la mezcla que comprende fibrina y células madre epiteliales del limbo esclerocorneal. EJEMPLOS Fig. 9. Stages of the fibrin gel preparation process of the invention comprising the CEP-CES layers. CME: Epithelial Stem Cells of the sclerocorneal limbus. F: Fibroblasts of the sclerocorneal limbus. I: Intermediate fibrin layer. The well parts are: well wall (1), central elevation (2), peripheral region (3). In A the plan view of the well is shown. B comprises the addition and polymerization of the mixture with F or with F + CME to the peripheral region (2). C comprises the addition and polymerization of the intermediate layer. D comprises the addition of the epithelial stem cell layer of the sclerocorneal limbus or the addition of the mixture comprising fibrin and epithelial stem cells of the sclerocorneal limbus. EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto la efectividad del gel de fibrina que contiene Células Epiteliales del limbo esclerocorneal (CEP) y Células EStromales del limbo esclerocorneal (CES), así como del método de preparación de dicho gel. Estos ejemplos específicos que se proporcionan sirven para ilustrar la naturaleza de la presente invención y se incluyen solamente con fines ilustrativos, por lo que no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ilustran la invención sin limitar el campo de aplicación de la misma. The invention will now be illustrated by tests carried out by the inventors, which show the effectiveness of the fibrin gel containing the epithelial cells of the sclerocorneal limbus (CEP) and EStromal cells of the sclerocorneal limbus (CES), as well as the method of preparation of said gel. These specific examples provided serve to illustrate the nature of the present invention and are included for illustrative purposes only, and therefore should not be construed as limitations on the invention claimed herein. Therefore, the examples described below illustrate the invention without limiting its scope of application.
Ejemplo 1. Preparación del gel de fibrina conteniendo dos tipos celulares del limbo esclerocorneal. Example 1. Preparation of the fibrin gel containing two cell types of the sclerocorneal limbus.
PROCESAMIENTO DEL NICHO DE CÉLULAS MADRE DEL LIMBO ESCLEROCORNEAL Las muestras biológicas empleadas en los ejemplos de la presente invención procedían de cerdos, machos y hembras, de 6 meses de edad, de aproximadamente 80 kg. PROCESSING OF THE NICHE OF MOTHER CELLS OF THE ESCLEROCORNEAL LIMBO The biological samples used in the examples of the present invention came from pigs, males and females, 6 months old, approximately 80 kg.
Una vez obtenidos ojos de cerdo frescos, por ejemplo de cualquier matadero, se transportaron en contenedores estériles a 4 °C al laboratorio, inmersos en una mezcla de DMEM suplementado con penicilina y estreptomicina. Una vez en el laboratorio, y bajo una cabina de flujo laminar, se retiró el limbo esclerocorneal de cada globo ocular cortando la esclera y la córnea a 1 ,5 mm del limbo. A continuación, se retiró todo el tejido uveal con un bastoncillo de algodón y se esterilizó el limbo utilizando un protocolo estándar (Allamby D, et al., 1997, IOVS, 38: 2064-2072): en primer lugar, las muestras se sumergieron 2 minutos en DMEM suplementado con antibióticos (10 unidades de penicilina/10 μg estreptomicina/mL), después se lavaron en una mezcla de alcohol 96% en PBS (Phosphate Buffered Saline) (1 : 1 v/v) durante 2 minutos más, y finalmente las muestras se lavaron 3 veces en DMEM fresco con una solución de antibióticos durante 2 minutos cada una. Los limbos esclerocorneales se recortaron para obtener muestras limbares de 1 x3 mm. PROTOCOLOS DE DIGESTIÓN PARA OBTENER LAS CÉLULAS DEL ESTROMA Y EPITELIALES DEL LIMBO Once fresh pig eyes were obtained, for example from any slaughterhouse, they were transported in sterile containers at 4 ° C to the laboratory, immersed in a mixture of DMEM supplemented with penicillin and streptomycin. Once in the laboratory, and under a laminar flow cabinet, the sclerocorneal limbus was removed from each eyeball by cutting the sclera and cornea to 1.5 mm from the limbus. Next, all the uveal tissue was removed with a cotton swab and the limbus was sterilized using a standard protocol (Allamby D, et al., 1997, IOVS, 38: 2064-2072): in First, the samples were immersed for 2 minutes in DMEM supplemented with antibiotics (10 units of penicillin / 10 μg streptomycin / mL), then washed in a 96% alcohol mixture in PBS (Phosphate Buffered Saline) (1: 1 v / v) for 2 more minutes, and finally the samples were washed 3 times in fresh DMEM with a solution of antibiotics for 2 minutes each. The sclerocorneal limbs were trimmed to obtain 1 x 3 mm limbal samples. DIGESTION PROTOCOLS TO OBTAIN THE CELLS OF THE STROMA AND EPITELIALS OF LIMBO
Para aislar los dos principales tipos celulares presentes en el tejido limbar (células del estroma [CES] y células epiteliales [CEP]), se digirieron las muestras del limbo. En el presente ejemplo se llevaron a cabo dos protocolos de digestión enzimáticos distintos, para comparar entre ellos y finalmente seleccionar el más efectivo: a) Protocolo estándar (PE): n=50 (donde n es el número de muestras). Las muestras se digirieron utilizando un protocolo descrito previamente, consistente en depositar las piezas del limbo en discos Petri de 35 mm que contienen 2,5 mL de tripsina al 0,25%/EDTA al 0,02% e incubarlas a 37 °C y 5% de C02 durante 2 horas para conseguir la disociación de las CEP. Cada 30 minutos se neutralizó la actividad enzimática añadiendo un volumen equivalente de DMEM con 10% de suero fetal bovino (FBS). Posteriormente, la solución se retiró y se añadió tripsina fresca. Finalmente, las cuatro soluciones obtenidas se mezclaron y centrifugaron a 1 .400 rpm durante 10 minutos a temperatura ambiente. El precipitado se resuspendió en un medio de cultivo de células epiteliales (MCE), las células obtenidas se contaron y se determinó su viabilidad utilizando el método de tinción con azul tripan (Phillips HJ., 1973, New York: Academic Press; 406-408). El tejido estromal restante, no digerido durante la tripsinización, se introdujo en tubos de centrífuga de 50 ml_ y se digirió con colagenasa tipo I a una concentración de 2 mg/mL en DMEM, a 37 °C y 5% de CO2 durante 18-24 horas, hasta que se observó una completa disgregación del tejido. La suspensión celular obtenida se centrifugó a 1 .400 rpm durante 10 minutos. El precipitado se resuspendió en un medio de crecimiento de fibroblastos (MCF), se contaron las células y se llevaron a cabo ensayos de viabilidad. b) Protocolo invertido (Pinv): n=50. Método alternativo al protocolo estándar. Consiste en la inversión del orden de actuación de las enzimas usadas en el protocolo anterior. En primer lugar, las muestras del limbo se incubaron en una solución de colagenasa tipo I (2 mg/mL) durante aproximadamente 24 horas, para liberar las CES del tejido limbar. Después de esta incubación, se retiró el tejido no digerido y se depositó en placas de cultivo para ser tripsinizado, como se ha descrito anteriormente, hasta alcanzar la digestión completa de la muestra. Ambas suspensiones celulares obtenidas en los dos pasos de la digestión se centrifugaron a 1 .400 rpm y los precipitados se resuspendieron, se contaron, y se determinó la viabilidad celular. To isolate the two main cell types present in limbar tissue (stromal cells [CES] and epithelial cells [CEP]), limbo samples were digested. In the present example two different enzymatic digestion protocols were carried out, to compare them and finally select the most effective: a) Standard protocol (PE): n = 50 (where n is the number of samples). The samples were digested using a previously described protocol, consisting of depositing the limbus pieces in 35 mm Petri dishes containing 2.5 mL of 0.25% trypsin / 0.02% EDTA and incubating at 37 ° C and 5% of C0 2 for 2 hours to achieve dissociation of the CEP. The enzyme activity was neutralized every 30 minutes by adding an equivalent volume of DMEM with 10% fetal bovine serum (FBS). Subsequently, the solution was removed and fresh trypsin was added. Finally, the four solutions obtained were mixed and centrifuged at 1,400 rpm for 10 minutes at room temperature. The precipitate was resuspended in an epithelial cell culture medium (MCE), the cells obtained were counted and their viability was determined using the trypan blue staining method (Phillips HJ., 1973, New York: Academic Press; 406-408). The remaining stromal tissue, not digested during trypsinization, was introduced into 50 ml_ centrifuge tubes and digested with type I collagenase at a concentration of 2 mg / mL in DMEM, at 37 ° C and 5% CO2 for 18- 24 hours, until a complete disintegration of the tissue was observed. The cell suspension obtained was centrifuged at 1,400 rpm for 10 minutes. The precipitate was resuspended in a fibroblast growth medium (MCF), the cells were counted and viability tests were carried out. b) Inverted protocol (Pinv): n = 50. Alternative method to the standard protocol. It consists of the inversion of the order of action of the enzymes used in the previous protocol. First, limbo samples were incubated in a type I collagenase solution (2 mg / mL) for approximately 24 hours, to release CES from limbar tissue. After this incubation, the undigested tissue was removed and deposited in culture plates to be trypsinized, as described above, until complete digestion of the sample. Both cell suspensions obtained in the two steps of digestion were centrifuged at 1,400 rpm and the precipitates were resuspended, counted, and cell viability was determined.
Ambos protocolos de digestión difieren en el número de células totales obtenidas por muestra de tejido del limbo, de manera que se obtuvieron más células con el Pinv (p<0,05), aunque no existieron diferencias significativas en la viabilidad celular (p=0,3634) (Tabla 1 ). Además, con el Pinv se obtuvieron más células de origen epitelial (después de emplear tripsina/EDTA) y menos fibroblastos (después de usar colagenasa) que con el PE. Densidad celular (media ± SD) / Viabilidad celular (media ± SD) (%) Both digestion protocols differ in the number of total cells obtained per limb tissue sample, so that more cells were obtained with Pinv (p <0.05), although there were no significant differences in cell viability (p = 0 , 3634) (Table 1). In addition, more cells of epithelial origin (after using trypsin / EDTA) and less fibroblasts (after using collagenase) were obtained with Pinv than with PE. Cellular density (mean ± SD) / Cell viability (mean ± SD) (%)
Digestión PE (n=50) Pinv (n=50) P valor (PE vs PE digestion (n = 50) Pinv (n = 50) P value (PE vs
Pinv)  Pinv)
Tratamiento 1 ,924 ± 1 ,477 / 56,817 ± 33,479 < 0,05 / 0,14 Treatment 1, 924 ± 1, 477 / 56,817 ± 33,479 <0.05 / 0.14
con 87,76 ± 28,04 / 95,97 ± 8,01  with 87.76 ± 28.04 / 95.97 ± 8.01
Tripsina/EDTA  Trypsin / EDTA
Digestión con 38,476 ± 27,666 1 1 ,007 ± 8,863 / < 0,05 / 0,94 colagenasa / 95,81 ± 10,21 95,38 ±13,79 Digestion with 38,476 ± 27,666 1 1,007 ± 8,863 / <0.05 / 0.94 collagenase / 95.81 ± 10.21 95.38 ± 13.79
Tripsina/EDTA 39,005 ± 27,135 62,825 ± 36,554 < 0,05 / 0,36 + Colagenasa / 93,30 ± 11 ,12 / 95,67 ± 8,40 Trypsin / EDTA 39,005 ± 27,135 62,825 ± 36,554 <0.05 / 0.36 + Collagenase / 93.30 ± 11, 12 / 95.67 ± 8.40
Tabla 1. Media ± Desviación estándar (SD) (microscopía electrónica) de la densidad y la viabilidad celular después de someter a los tejidos del limbo de cerdo a dos protocolos de digestión diferentes: protocolo estándar (PE), 1o: tripsina/EDTA, 2o: colagenasa; protocolo invertido (Pinv), 1o: Table 1. Mean ± Standard deviation (SD) (electron microscopy) of cell density and viability after subjecting pig limbo tissues to two different digestion protocols: standard protocol (PE), 1 o : trypsin / EDTA , 2 o : collagenase; inverted protocol (Pinv), 1 or :
colagenasa, 2o: tripsina/EDTA. collagenase, 2 o : trypsin / EDTA.
EXPANSIÓN CELULAR IN VITRO Y CARACTERIZACIÓN Las CEP y CES obtenidas del nicho de las células madre del limbo mediante los dos protocolos de digestión descritos anteriormente, se expandieron en cultivos primarios, y se calculó el porcentaje de éxito de los cultivos. Para obtener los cultivos primarios (P0), las células de origen epitelial obtenidas después de la tripsinización en cualquiera de los dos protocolos de digestión, se sembraron en placas de cultivo de plástico de 1x104 células/cm2 y se añadió MCE. Este medio de cultivo consistió en una mezcla de DMEM/Ham 's F12 (1 : 1 ) con 5% de FBS, EGF 10 ng/mL, insulina 5 mg/mL, toxina colérica 100 ng/mL, penicilina/estreptomicina (100 unidades/100 Mg/mL) y 2 mM L-Glutamina. IN VITRO CELLULAR EXPANSION AND CHARACTERIZATION The CEP and CES obtained from the limb stem cell niche by means of the two digestion protocols described above, were expanded in primary cultures, and the percentage of crop success was calculated. To obtain the primary cultures (P0), the cells of epithelial origin obtained after trypsinization in either of the two digestion protocols were seeded in 1x10 4 plastic culture plates. cells / cm 2 and MCE was added. This culture medium consisted of a mixture of DMEM / Ham ' s F12 (1: 1) with 5% FBS, 10 ng / mL EGF, 5 mg / mL insulin, 100 ng / mL choleric toxin, penicillin / streptomycin (100 units / 100 Mg / mL) and 2 mM L-Glutamine.
Para obtener el cultivo P0 de CES, las células estromales obtenidas de muestras de tejido limbar después de la digestión con colagenasa (segundo y primer paso del PE y del Pinv, respectivamente), se sembraron en placas de cultivo de plástico en una densidad de 1 x104 células/cm2 y se cultivaron en MCF que consiste en DMEM suplementado con 10% de FBS, penicilina/estreptomicina (100 unidades/100 Mg/mL) y 2 mM L-Glutamina. To obtain the P0 culture of CES, the stromal cells obtained from samples of limbar tissue after collagenase digestion (second and first step of PE and Pinv, respectively), were plated in plastic culture plates at a density of 1 x10 4 cells / cm 2 and were cultured in MCF consisting of DMEM supplemented with 10% FBS, penicillin / streptomycin (100 units / 100 Mg / mL) and 2 mM L-Glutamine.
Tanto el P0 de células de origen epitelial como el P0 de células de origen estromal se mantuvieron a 37 °C, 5% de CO2 y 95% de humedad. El medio se cambió cada 2 ó 3 días y las células en cultivo se revisaron diariamente mediante microscopía invertida, hasta que alcanzaron el estado de confluencia. Posteriormente, las células se separaron de la superficie del cultivo utilizando una solución de tripsina al 0,05%/EDTA al 0,02%, se contaron y se usaron para establecer los cultivos secundarios (P1 ) y/o para la construcción del gel de fibrina que contiene células del limbo (GFCL). Both the P0 of cells of epithelial origin and the P0 of cells of stromal origin were maintained at 37 ° C, 5% CO2 and 95% humidity. The medium was changed every 2 or 3 days and the cultured cells were checked daily by inverted microscopy, until they reached the confluence state. Subsequently, the cells were separated from the culture surface using a 0.05% trypsin / 0.02% EDTA solution, counted and used to establish the secondary cultures (P1) and / or for the gel construction of fibrin containing limbus cells (GFCL).
El ratio de expansión celular (RE) de las células en cultivo se determinó en estado de confluencia de las células epiteliales y estromales en P0 y de los cultivos celulares en P1 . Este ratio se calcula como: RE=densidad celular final/densidad celular inicial. The cell expansion ratio (ER) of the cells in culture was determined at the confluence state of the epithelial and stromal cells in P0 and of the cell cultures in P1. This ratio is calculated as: RE = final cell density / initial cell density.
Para la caracterización, se cultivaron las células estromales P0 y P1 y las células epiteliales P0 obtenidas en el Pinv en cámaras de cultivo celular a una densidad celular de 1x104 células/cm2 hasta alcanzar el estado de preconfluencia. Las células se lavan dos veces en PBS y se fijaron en una mezcla de acetona-metanol (1 : 1 ) a -20 °C durante 20 minutos. Las muestras se almacenaron a esta temperatura hasta su uso. For characterization, the stromal cells P0 and P1 and the epithelial cells P0 obtained in the Pinv were cultured in cell culture chambers at a cell density of 1x10 4 cells / cm 2 until reaching the preconfluence state. The cells are washed twice in PBS and fixed in a mixture of acetone-methanol (1: 1) at -20 ° C for 20 minutes. Samples were stored at this temperature until use.
Como tejido control se emplearon globos oculares porcinos congelados en nitrógeno líquido, embebidos en OCT (compuesto de temperatura de corte óptima) (Tissue-Tek). Se fijaron de 5 a 8 secciones finas (μηπ) en acetona fría a 4 °C durante 10 minutos, se montaron en portaobjetos, se secaron al aire y se almacenaron a -20 °C hasta su tinción. La tinción inmunofluorescente de las secciones fijadas y los cultivos celulares se llevó a cabo como sigue: las muestras se lavan 3 veces con PBS, 5 minutos cada una, y se incubaron en la solución Morpho Save al 1 % (Ventana Mediacal Systems) en agua desionizada durante 15 minutos. Tras 3 lavados más con PBS, las muestras se permeabilizaron con 0,3% de Tritón X-100 en PBS durante 10 minutos y se lavan de nuevo. Los sitios de unión no específicos se bloquearon con suero de burro al 5% en PBS durante 1 hora. Las muestras se incubaron con los anticuerpos primarios (Tabla 2) durante 1 hora a temperatura ambiente en una cámara húmeda. Después de tres lavados con PBS, se añadió el anticuerpo secundario conjugado Alexa Fluor 488 (Inmunoglobulina G de burro preparada contra ratón o contra conejo a una dilución 1 :300) y se incubó durante 1 hora en oscuridad a temperatura ambiente. El núcleo se tiñó con ioduro de propidio (1 : 100) durante 10 minutos, para su visualización bajo microscopía confocal (Radiance 2000, BIORAD). Para los controles negativos, se usó el suero de burro al 5% en PBS en lugar de los anticuerpos primarios. Para los estudios de inmunofluorescencia en los tejidos control solo se analizaron la córnea central y las regiones limbares para la expresión de los antígenos mencionados. Para asegurar la Habilidad de los resultados, todos los estudios de inmunofluorescencia se llevaron a cabo en tres especímenes. Los dos protocolos de digestión empleados difirieron en el ratio de éxito en P0. De las 50 biopsias del limbo digeridas con el PE, solo 24 (48%) produjeron cultivos P0 exitosos de ambos tipos celulares, CEP y CES. Este ratio se incrementó significativamente (p<0,005) cuando se usó el Pinv, como muestran los resultados, en los que 48 biopsias de limbo de las 50 digeridas (96%) tuvieron éxito en los cultivos primarios (P0). As control tissue, porcine eyeballs frozen in liquid nitrogen, embedded in OCT (compound of optimum cutting temperature) (Tissue-Tek) were used. 5 to 8 fine sections (μηπ) were fixed in cold acetone at 4 ° C for 10 minutes, mounted on slides, air dried and stored at -20 ° C until stained. Immunofluorescent staining of the fixed sections and cell cultures was carried out as follows: the samples are washed 3 times with PBS, 5 minutes each, and incubated in the 1% Morpho Save solution (Window Mediacal Systems) in water deionized for 15 minutes. After 3 more washes with PBS, the samples were permeabilized with 0.3% Triton X-100 in PBS for 10 minutes and washed again. Non-specific binding sites were blocked with 5% donkey serum in PBS for 1 hour. The samples were incubated with the primary antibodies (Table 2) for 1 hour at room temperature in a humid chamber. After three washes with PBS, the Alexa Fluor 488 conjugated secondary antibody (donkey immunoglobulin G prepared against mouse or rabbit at 1: 300 dilution) was added and incubated for 1 hour in the dark at room temperature. The nucleus was stained with propidium iodide (1: 100) for 10 minutes, for viewing under confocal microscopy (Radiance 2000, BIORAD). For the negative controls, 5% donkey serum in PBS was used instead of the primary antibodies. For immunofluorescence studies in control tissues, only the central cornea and limbal regions were analyzed for the expression of the aforementioned antigens. To ensure the Skill of the results, all immunofluorescence studies were carried out in three specimens. The two digestion protocols used differed in the success rate in P0. Of the 50 limbo biopsies digested with PE, only 24 (48%) produced successful P0 cultures of both cell types, CEP and CES. This ratio increased significantly (p <0.005) when Pinv was used, as the results show, in which 48 biopsies of the 50 digested limbo (96%) were successful in primary crops (P0).
En cuanto a los resultados del ratio de expansión, la células obtenidas tras el tratamiento con colagenasa de las muestras de tejido sometidas a los dos protocolos y sembradas para P0 en pocilios de plástico, se adhirieron a la superficie del cultivo después de 24 horas y resultaron en cultivos de células viables en el 62% de los casos para el PE y en el 96% de los casos para el Pinv (p<0,005). Estos cultivos adoptaron forma de huso y estrellada cuando se cultivaron en MCF y formaron una red de conexión que alcanzó la confluencia a los 6 ó 10 días, mostrando un ratio de expansión de 6,76 (± 1 ,92, n=31 ) para el PE y de 6,09 (± 1 ,74, n=48) para el Pinv (p=0, 12). La densidad celular final de las células aisladas es de aproximadamente 67,649 (± 19,232, n=31 ) y 60,973 (± 17,476, n=48) células/cm2 para el PE y el Pinv, respectivamente (Figura 1 ). Las células del P1 obtenidas de la digestión con los dos protocolos, mostraron la típica morfología de los fibroblastos y el ratio de expansión fue significativamente mayor (p<0,05) que en P0 con valores de 9,44 (± 2,55, n=31 ) y 10,31 (± 2,93, n=48) para el PE y el Pinv respectivamente, no mostrando diferencias significativas entre ambos protocolos de digestión. La proliferación celular se incrementó y las poblaciones colonizaron totalmente la superficie del cultivo en 3 ó 5 días, más rápidamente que en P0, indicando que en este intervalo de tiempo las células subcultivadas proliferaron más despacio en comparación con las células de los cultivos primarios. Entre los días 6 y 15 los cultivos celulares alcanzaron un número poblacional de más de 5x105 células por cm2 de superficie de cultivo para las células del estroma aisladas por el PE o el Pinv (Figura 1 ). El porcentaje de muestras de las que se obtuvo éxito en los cultivos PO de células epiteliales (después de tripsinizar los tejidos del limbo) es del 48% para el PE y del 96% para el Pinv (p<0,005). En el PO, las células se adhirieron a la superficie del cultivo a las 24 horas posteriores a su siembra y se observaron pequeñas colonias de CEP en estadio temprano del crecimiento (2 días) mostrando una morfología poligonal. El tiempo promedio para que las células de PO, que estaban a una densidad celular inicial de 1 x104 células/cm2, alcanzasen la confluencia en un pocilio de 1 ,9 cm2 fue de entre 10 a 16 días, mostrando valores de ratio de expansión de 6,03 (± 1 ,41 , n=24) y 5,79 (± 1 ,44, n=48) para el PE y el Pinv, respectivamente (p=0,5), alcanzando una densidad poblacional celular de aproximadamente 5x104 células/cm2 al final de P0, para ambos protocolos. As for the results of the expansion ratio, the cells obtained after collagenase treatment of the tissue samples submitted to the two protocols and seeded for P0 in plastic wells, adhered to the culture surface after 24 hours and resulted in viable cell cultures in 62% of cases for PE and in 96% of cases for Pinv (p <0.005). These crops took the form of spindle and starry when they were grown in MCF and formed a connection network that reached the confluence at 6 or 10 days, showing an expansion rate of 6.76 (± 1, 92, n = 31) for the PE and 6.09 (± 1.74, n = 48) for the Pinv (p = 0.12). The final cell density of the isolated cells is approximately 67,649 (± 19,232, n = 31) and 60,973 (± 17,476, n = 48) cells / cm 2 for PE and Pinv, respectively (Figure 1). The P1 cells obtained from the digestion with the two protocols showed the typical morphology of the fibroblasts and the expansion ratio was significantly higher (p <0.05) than in P0 with values of 9.44 (± 2.55, n = 31) and 10.31 (± 2.93, n = 48) for PE and Pinv respectively, showing no significant differences between both digestion protocols. Cell proliferation increased and populations completely colonized the surface of the culture in 3 or 5 days, faster than in P0, indicating that in this time interval the subcultured cells proliferated more slowly compared to the cells of the primary cultures. Between days 6 and 15, cell cultures reached a population number of more than 5x10 5 cells per cm 2 of culture surface for stromal cells isolated by PE or Pinv (Figure 1). The percentage of samples that were successful in PO cultures of epithelial cells (after trypsinizing the tissues of the limbus) is 48% for PE and 96% for Pinv (p <0.005). In the PO, the cells adhered to the surface of the culture 24 hours after planting and small colonies of CEP were observed in the early stage of growth (2 days) showing a polygonal morphology. The average time for PO cells, which were at an initial cell density of 1 x 10 4 cells / cm 2 , to reach the confluence in a well of 1.9 cm 2 was between 10 to 16 days, showing ratio values expansion of 6.03 (± 1, 41, n = 24) and 5.79 (± 1, 44, n = 48) for PE and Pinv, respectively (p = 0.5), reaching a population density cell of approximately 5x10 4 cells / cm 2 at the end of P0, for both protocols.
Por todo esto, y como el Pinv proporcionó resultados superiores en cuanto a establecimiento de P0, los siguientes pasos de esta invención, los estudios de caracterización celular y la construcción de los geles GFFs y de los geles GFCLs, se llevaron a cabo utilizando únicamente las suspensiones de células expandidas obtenidas del Pinv. CONSTRUCCIÓN Y CARACTERIZACIÓN DE LOS SUSTITUTOS DEL NICHO DE CÉLULAS MADRE DEL LIMBO: GELES DE FIBRINA CONTENIENDO CÉLULAS DEL LIMBO (GFCLs) For all this, and since the Pinv provided superior results regarding the establishment of P0, the following steps of this invention, the studies of cellular characterization and the construction of GFFs gels and GFCLs gels, were carried out using only the Expanded cell suspensions obtained from Pinv. CONSTRUCTION AND CHARACTERIZATION OF THE SUBSTITUTES OF THE MOTHER OF LIMBO CELL NICHE: FIBRINE GELS CONTAINING LIMBO CELLS (GFCLs)
Las células CEP y CES de los cultivos P0 y P1 , respectivamente, aislados con el protocolo de digestión invertido se usaron para la construcción de los geles de fibrina conteniendo células del limbo (GFCLs). CEP and CES cells from cultures P0 and P1, respectively, isolated with the inverted digestion protocol were used for the construction of fibrin gels containing limbus cells (GFCLs).
Para preparar los geles de fibrina de origen porcino, se obtuvieron 9 mL de sangre de cerdo y se introdujo en tubos colectores de plasma que contenían 0, 129 M de citrato sódico (BD Vacutainer Systems, UK). La sangre se centrifugó a 1 .800 rpm durante 10 minutos, el plasma se separó, se introdujo en tubos de centrífuga estériles y se almacenó a -20 °C hasta su uso. Para producir el gel de fibrina conteniendo CES, preferiblemente fibroblastos (GFFs) se resuspendió una suspensión de 1x104 fibroblastos del limbo de P1 en 400 μΙ de plasma de cerdo fresco congelado por ml_ de volumen final del gel de fibrina. Para prevenir la fibrinolisis del gel, la mezcla se suplemento con 4 mg/mL de ácido tranexámico (Amchafibrin, Rottapharm S.L., España), y se ajustó el volumen final con MCF. A continuación, se añadieron 40 μg/mL de CaCl2 (Braun Medical S.A.) para iniciar la polimerización de la fibrina. Finalmente, la mezcla se sembró en placas de cultivo de 24 pocilios, 1 ml_ por pocilio, para que tuviera lugar la solidificación a 37 °C durante 15-30 minutos. A medida que la matriz se fue coagulando en los pocilios de plástico del cultivo, las células se fueron extendiendo por el entramado de fibrina. Estos geles de fibrina conteniendo fibroblastos tienen 1 ,9 cm2 de tamaño y un grosor de aproximadamente 4 mm. To prepare the fibrin gels of porcine origin, 9 mL of pig blood were obtained and introduced into plasma collecting tubes containing 0.129 M of sodium citrate (BD Vacutainer Systems, UK). The blood was centrifuged at 1,800 rpm for 10 minutes, the plasma separated, it was introduced into sterile centrifuge tubes and stored at -20 ° C until use. To produce the fibrin gel containing CES, preferably fibroblasts (GFFs) a suspension of 1x10 4 fibroblasts from the P1 limbus was resuspended in 400 µΙ of fresh frozen pork plasma per ml_ of final volume of the fibrin gel. To prevent fibrinolysis of the gel, the mixture was supplemented with 4 mg / mL tranexamic acid (Amchafibrin, Rottapharm SL, Spain), and the final volume was adjusted with MCF. Next, 40 μg / mL of CaCl 2 (Braun Medical SA) was added to initiate the polymerization of the fibrin. Finally, the mixture was seeded in 24-well culture plates, 1 ml_ per well, for solidification to take place at 37 ° C for 15-30 minutes. As the matrix coagulated in the plastic wells of the culture, the cells spread through the fibrin framework. These fibrin gels containing fibroblasts are 1.9 cm 2 in size and approximately 4 mm thick.
Después de 24 horas, tiempo en el que se produjo la estabilización del gel de fibrina conteniendo fibroblastos, las células adquirieron forma de huso y comenzaron a proliferar (Fig. 2), extenderse y migrar, proyectando sus procesos dendríticos en un patrón tridimensional y estableciendo contactos intercelulares que acabaron formando una red celular densa. After 24 hours, during which the fibrin gel stabilization containing fibroblasts occurred, the cells became spindle-shaped and began to proliferate (Fig. 2), spread and migrate, projecting their dendritic processes in a three-dimensional pattern and establishing intercellular contacts that eventually formed a dense cellular network.
A continuación, las CEP del limbo de P0 se sembraron encima de esta estructura o GFF, a una densidad celular de 5x104 células/cm2, para construir el gel de fibrina conteniendo estos dos tipos celulares del limbo o GFCL, y se mantuvo con MCE bajo condiciones in vitro hasta que las células habían recubierto completamente la superficie de la construcción, durante aproximadamente 14 días, siendo supervisado diariamente con un microscopio invertido. Para los estudios de caracterización se tiñeron por inmunofluorescencia indirecta secciones congeladas de globos oculares porcinos, CEP y CES del limbo de cerdo de los cultivos celulares, para estudiar la expresión de los siguientes marcadores: pancitoqueratina, ALDH1A1 , α-SMA (a-smooth muscle actin), colágeno tipo II, conexina 43 (Cx43), desmoplaquina e integrina β1 (Tabla 2). Los resultados de la expresión de estas proteínas se recogen en la Tabla 3. Next, the P0 limbo CEPs were seeded on top of this structure or GFF, at a cell density of 5x10 4 cells / cm 2 , to construct the fibrin gel containing these two cell types of the limbo or GFCL, and maintained with MCE under in vitro conditions until the cells had completely covered the construction surface, for approximately 14 days, being monitored daily with an inverted microscope. For characterization studies, frozen sections of porcine eyeballs, CEP and CES of pig limbo from cell cultures were stained by indirect immunofluorescence to study the expression of the following markers: pancytokeratin, ALDH1A1, α-SMA (a-smooth muscle actin), type II collagen, connexin 43 (Cx43), desmoplachin and integrin β1 (Table 2). The results of the expression of these proteins are shown in Table 3.
Anticuerpo Procedencia Dilución Especificidad Antibody Origin Dilution Specificity
Anticuerpo monoclonal de ratón- Todas las células Mouse monoclonal antibody - All cells
Abcam 1 :50  Abcam 1: 50
Pancitoqueratina (80) epiteliales  Epithelial pancytokein (80)
Anticuerpo monoclonal de ratón-Mouse monoclonal antibody-
Sigma 1 :50 Miofibroblastos (A-5228) a-SMA Sigma 1: 50 Myofibroblasts (A-5228) a-SMA
Anticuerpo policlonal de conejo-Rabbit Polyclonal Antibody
Sigma 1 :500 Uniones Gap Conexina 43 (C-6219) Sigma 1: 500 Gap Connections Connection 43 (C-6219)
Anticuerpo policlonal de conejo- Proteínas del Rabbit polyclonal antibody - Proteins
Serotec 1 :200  Serotec 1: 200
Desmoplaquina-1 ,-2 (AHP320) desmosoma  Desmoplaquina-1, -2 (AHP320) Desmosome
Anticuerpo policlonal de conejo-Rabbit Polyclonal Antibody
Queratocitos de Aldehido deshidrogenasa tipo I Abcam 1 :50 Aldehyde keratocytes dehydrogenase type I Abcam 1: 50
la córnea  the cornea
(ab23375) ALDH1A1  (ab23375) ALDH1A1
Receptor de la superficie celularCell surface receptor
Anticuerpo policlonal de conejo-Rabbit Polyclonal Antibody
Scbt 1 :50 Scbt 1: 50
lntegrina-βΐ (M-106)  lntegrin-βΐ (M-106)
Células mesenquimales  Mesenchymal cells
Monosan 1 :15 Monosan 1:15
Anticuerpo policlonal de conejo- Diferenciación Colágeno tipo II (PSX1060) celular Rabbit Polyclonal Antibody - Differentiation Type II collagen (PSX1060) cell
Síntesis de matriz extracelular Synthesis of extracellular matrix
Tabla 2. Anticuerpos primarios utilizados para la caracterización por inmunofluorescencia de los dos tipos celulares aislados de los dos protocolos de digestión. Table 2. Primary antibodies used for immunofluorescence characterization of the two cell types isolated from the two digestion protocols.
Figure imgf000038_0001
Figure imgf000038_0001
Tabla 3. Resumen de los resultados de inmunofluorescencia de los cultivos celulares y las secciones de tejidos (++, detección muy elevada; +, detección; -, no detección). 1 Expresión basal de actina citoplasmática en todos los cultivos de células del estroma. 2 Detección en células epiteliales básales y superficiales en la región de la córnea central. No se detecta expresión en las células epiteliales básales del limbo. 3 Patrón de expresión típico de los queratocitos o fibroblastos de la córnea. Table 3. Summary of immunofluorescence results of cell cultures and tissue sections (++, very high detection; +, detection; -, no detection). 1 Basal expression of cytoplasmic actin in all stromal cell cultures. 2 Detection in basal and superficial epithelial cells in the region of the central cornea. No expression is detected in the basal epithelial cells of the limbus. 3 Typical expression pattern of corneal keratocytes or fibroblasts.
En las secciones de tejido ocular, se analizó la presencia de estos antígenos en el epitelio y el estroma de la córnea central y de las regiones limbares (Figura 3). Todos los queratocitos de la córnea porcina y los fibroblastos del estroma limbar fueron positivos a la tinción con anticuerpos contra ALDH1A1 , α-SMA, colágeno tipo I I, conexina 43 (Cx43) e integrina β1 , con niveles diferentes de expresión dependiendo del marcador. De manera que los anticuerpos contra α-SMA, colágeno tipo I I, conexina 43 (Cx43) e integrina β1 mostraron una tinción más fuerte que ALDH1A1 . La presencia del antígeno desmoplaquina en el estroma de secciones de tejido sólo se localizó a nivel conjuntivo. No se apreció tinción en el estroma para pancitoqueratina, del cual sólo se obtuvo señal en las células epiteliales, las cuales exhibieron un patrón de expresión distinto en las células superficiales y básales, mostrando una fluorescencia más marcada en la mayoría de las capas superficiales del epitelio. Las células epiteliales presentaron tinción con todos los anticuerpos usados, mostrando una clara expresión de ALDH1A1 , α-SMA, integrina β1 , desmoplaquina y Cx43, tanto en la córnea central como en el limbo. En las regiones epiteliales se apreció una tinción más débil de colágeno tipo I I, lo cual no parece representar una diferencia significativa cuando se comparó la córnea central y la región limbar, excepto para Cx43. Las células básales de la córnea se tiñeron para este marcador pero no así las células de la región basal del epitelio del limbo. Para los estudios de inmunofluorescencia en las células en cultivo, se usaron los fibroblastos del limbo de P0 y P1 y las células epiteliales de P0 (Figura 4). Las CES cultivadas aisladas del estroma mostraron tinción para todos los anticuerpos usados excepto para pan-citoqueratina. La expresión de marcadores de la diferenciación tales como ALDH1A1 , colágeno tipo I I, integrina β1 y α-SMA, reveló que estas células mantenían su fenotipo de fibroblastos bajo condiciones de cultivo in vitro. In the ocular tissue sections, the presence of these antigens in the epithelium and stroma of the central cornea and the limbal regions was analyzed (Figure 3). All porcine cornea keratocytes and limbar stromal fibroblasts were positive for staining with antibodies against ALDH1A1, α-SMA, type II collagen, connexin 43 (Cx43) and β1 integrin, with different levels of expression depending on the marker. So antibodies against α-SMA, type II collagen, connexin 43 (Cx43) and integrin β1 showed a stronger staining than ALDH1A1. The presence of the desmoplachin antigen in the stroma of tissue sections was only located at the conjunctive level. No staining was observed in the stroma for pancytokeratin, of which only signal was obtained in the epithelial cells, which exhibited a different expression pattern in the superficial and basal cells, showing a more marked fluorescence in most of the superficial layers of the epithelium . The epithelial cells stained with all the antibodies used, showing a clear expression of ALDH1A1, α-SMA, integrin β1, desmoplaquine and Cx43, both in the central cornea and in the limbus. In the epithelial regions a weaker staining of type II collagen was observed, which does not appear to represent a significant difference when the central cornea and limbar region were compared, except for Cx43. The basal cells of the cornea were stained for this marker but not the cells of the basal region of the limb epithelium. For immunofluorescence studies in cultured cells, P0 and P1 limbo fibroblasts and P0 epithelial cells were used (Figure 4). CES cultured isolated from the stroma showed staining for all antibodies used except for pan-cytokeratin. The expression of differentiation markers such as ALDH1A1, type II collagen, β1 integrin and α-SMA, revealed that these cells maintained their fibroblast phenotype under in vitro culture conditions.
Las células en cultivo mostraron una fuerte tinción para la desmoplaquina y la integrina β1 , lo que indicó la existencia de estructuras de adhesión a la superficie del cultivo celular. La integrina β1 es un conocido marcador de células madre mesenquimales. Las células epiteliales en P0 mostraron un patrón de expresión de antígenos similar al de las células del estroma, diferenciándose únicamente en que las primeras son positivas para el marcador pancitoqueratina. The cells in culture showed a strong staining for desmoplaquine and β1 integrin, which indicated the existence of adhesion structures to the cell culture surface. Integrin β1 is a known marker of mesenchymal stem cells. The epithelial cells in P0 showed a pattern of antigen expression similar to that of stroma cells, differing only in that the former are positive for the pancytokeratin marker.
Ejemplo 2. Evaluación de los geles de fibrina. Example 2. Evaluation of fibrin gels.
EVALUACIÓN DEL CRECIMIENTO CELULAR EN LOS GELES DE FIBRINA EVALUATION OF CELLULAR GROWTH IN FIBRINE GELS
Las CES embebidas en los geles de fibrina se determinaron contando el número de células de cada gel a los días, 3, 5, 7, 10, 12 y 14. Se digirieron los geles de fibrina conteniendo CES para determinar la proliferación celular. Se eliminó el medio de los cultivos, se recogieron los geles de fibrina y se recortaron antes de ser introducidos en tubos de centrífuga estériles. Entonces, los geles se digirieron añadiendo 5 mL de una solución de 1 mg/mL de colagenasa tipo I durante 3 horas a 37 °C. Las muestras se pipetearon con cuidado y las células separadas se recuperaron por centrifugación y se contaron. Las células epiteliales crecidas en los geles de fibrina conteniendo CES se analizaron diariamente mediante microscopía invertida hasta que la población celular formó una monocapa confluente. Las CES embebidas en la matriz de fibrina muestran una elevada capacidad de proliferación alcanzando una población celular de aproximadamente 1 x106 células/GFF, después de 14 días bajo condiciones de cultivo in vitro (Figura 5), mostrando un ratio de expansión de 1 19,43 (±34,67, n=20). The ESCs embedded in the fibrin gels were determined by counting the number of cells in each gel at days, 3, 5, 7, 10, 12 and 14. Fibrin gels containing CES were digested to determine cell proliferation. Culture medium was removed, fibrin gels were collected and trimmed before being introduced into sterile centrifuge tubes. Then, the gels were digested by adding 5 mL of a 1 mg / mL solution of type I collagenase for 3 hours at 37 ° C. The samples were carefully pipetted and the separated cells were recovered by centrifugation and counted. Epithelial cells grown in fibrin gels containing CES were analyzed daily by inverted microscopy until the cell population formed a confluent monolayer. The ESCs embedded in the fibrin matrix show a high proliferation capacity reaching a cell population of approximately 1 x 10 6 cells / GFF, after 14 days under in vitro culture conditions (Figure 5), showing an expansion rate of 1 19 , 43 (± 34.67, n = 20).
EVALUACIÓN DE LA CONTRACCIÓN DE LOS GELES DE FIBRINA EVALUATION OF THE CONTRACTION OF FIBRINE GELS
Para determinar la posible contracción de los geles de fibrina conteniendo CES, se midió el grosor de los geles de fibrina cultivados durante 0 y 14 días en pocilios de 1 ,9 cm2, antes y después de recuperar los geles de los pocilios (n=20). Se introdujeron 20 geles de fibrina de 15 días en cultivo conteniendo fibroblastos en etanol puro durante 30 minutos, después se lavaron 3 veces durante 30 minutos con PBS. A continuación, los geles se embebieron en MCF fresco durante 30 minutos. Se midió el diámetro y el grosor de los geles antes y después de ser embebidos en MCF para determinar su posible contracción. To determine the possible contraction of the fibrin gels containing CES, the thickness of the fibrin gels cultured for 0 and 14 days in wells of 1, 9 cm 2 , was measured before and after recovering the gels from the wells (n = twenty). 20 fibrin gels of 15 days in culture containing fibroblasts in pure ethanol were introduced for 30 minutes, then washed 3 times for 30 minutes with PBS. Next, the gels were embedded in fresh MCF for 30 minutes. The diameter and thickness of the gels were measured before and after being embedded in MCF to determine their possible contraction.
No se observó retracción de los geles de fibrina conteniendo fibroblastos o GFFs en los pocilios del cultivo, sino que mantuvieron su diámetro inicial de 1 ,6 cm y la adhesión mediada por capilaridad a la pared del pocilio de cultivo. Aunque hubo un ligero estrechamiento de los geles de aproximadamente 1 ,5 mm en la región central, alcanzando un grosor final de 1 mm. Cuando estos GFFs se separaron de los pocilios y se trataron con etanol, mostraron un diámetro de 1 , 1 17 (± 0,09546, n=28) cm, lo cual indicó que sufrieron un porcentaje de contracción del 30,1339% (± 5,96662%, n=28), si se compara con el diámetro inicial del gel. Cuando los GFFs se rehidrataron con MCF, no mostraron variaciones en el diámetro del gel, manteniendo un diámetro de 1 , 1 1428 (± 0,09546, n=28) cm, de manera que no existen diferencias significativas entre el gel desecado y rehidratado (p<0,05). En términos de grosor, los GFFs se separaron de los pocilios y se trataron con etanol y con MCF, manteniéndose la profundidad de 1 mm que mostraban en los pocilios del cultivo después de 14 días. No retraction of fibrin gels containing fibroblasts or GFFs was observed in the culture wells, but maintained their initial diameter of 1.6 cm and capillary-mediated adhesion to the wall of the culture well. Although there was a slight narrowing of the gels of approximately 1.5 mm in the central region, reaching a final thickness of 1 mm. When these GFFs were separated from the wells and treated with ethanol, they showed a diameter of 1,117 (± 0,09546, n = 28) cm, which indicated that they suffered a contraction percentage of 30,1339% (± 5.96662%, n = 28), if compared with the initial diameter of the gel. When the GFFs were rehydrated with MCF, they showed no variations in the gel diameter, maintaining a diameter of 1,128 (± 0.09546, n = 28) cm, so that there are no significant differences between the dried and rehydrated gel (p <0.05). In terms of thickness, the GFFs were separated from the wells and treated with ethanol and with MCF, maintaining the depth of 1 mm that they showed in the culture wells after 14 days.
Los geles se separaron fácilmente de la superficie de los pocilios del cultivo, demostrando su capacidad elástica, de manera que fueron capaces de extenderse sin desgarrarse. The gels easily separated from the surface of the culture wells, demonstrating their elastic capacity, so that they were able to spread without tearing.
EVALUACIÓN MICROSCÓPICA Microscopía óptica MICROSCOPIC EVALUATION Optical microscopy
Para la evaluación histológica, los geles de fibrina conteniendo fibroblastos o GFFs de 0, 3, 5, 7, 10, 12 y 14 días y los geles de fibrina que contienen los dos tipos celulares del limbo (CEP y CES) o GFCLs de 14 días en cultivo, se fijaron en paraformaldehído al 4%. Las muestras se deshidrataron en concentraciones crecientes de alcohol y soluciones de Xileno previamente embebidas en parafina. Se tiñeron secciones de 6 a 8 μηι con hematoxilina-eosina y se visualizaron en el microscopio óptico (Optiphot 2, Nikon) a 10, 20 y 40 aumentos. For histological evaluation, fibrin gels containing fibroblasts or GFFs of 0, 3, 5, 7, 10, 12 and 14 days and fibrin gels containing the two cell types of limbus (CEP and CES) or GFCLs of 14 days in culture, they were fixed in 4% paraformaldehyde. The samples were dehydrated in increasing concentrations of alcohol and Xylene solutions previously embedded in paraffin. Sections of 6 to 8 μηι were stained with hematoxylin-eosin and visualized in the optical microscope (Optiphot 2, Nikon) at 10, 20 and 40 magnifications.
El análisis hematoxilina-eosina de los geles de fibrina conteniendo CES mostró la expansión de los fibroblastos a través de los geles (Figura 5). Hematoxylin-eosin analysis of fibrin gels containing CES showed the expansion of fibroblasts through the gels (Figure 5).
La tinción con hematoxilina-eosina de las secciones embebidas en parafina de los geles de fibrina conteniendo los dos tipos celulares del limbo o GFCLs cultivados durante 14 días mostraron el crecimiento de las células epiteliales en los geles de fibrina conteniendo fibroblastos (Figura 6 A). Hematoxylin-eosin staining of the paraffin embedded sections of the fibrin gels containing the two cell types of the limbus or GFCLs grown for 14 days showed the growth of the epithelial cells in fibrin gels containing fibroblasts (Figure 6A).
Microscopía electrónica Electron microscopy
Los geles de fibrina que contienen CES (preferiblemente fibroblastos (n=5)) y los geles de fibrina que contenían los dos tipos celulares del limbo (células epiteliales y fibroblastos) (n=5) cultivados durante 14 días se fijaron en glutaraldehído al 4%, después se fijaron en tetraóxido de osmio al 2% durante 2 horas, y se pasaron a través de un gradiente creciente de alcohol para su deshidratación. Las muestras se secaron (Balzers CPD 030), se montaron en una matriz de aluminio y se dispararon con partículas recubiertas de oro (Balzers SCD 004) antes de ser examinadas en un microscopio electrónico (JEOL 6100). Fibrin gels containing CES (preferably fibroblasts (n = 5)) and fibrin gels containing the two cell types of limbus (epithelial cells and fibroblasts) (n = 5) grown for 14 days were fixed in glutaraldehyde at 4 %, then fixed in 2% osmium tetraoxide for 2 hours, and passed through an increasing gradient of alcohol for dehydration. The samples were dried (Balzers CPD 030), mounted on an aluminum matrix and fired with gold-coated particles (Balzers SCD 004) before being examined in an electron microscope (JEOL 6100).
La observación en el microscopio electrónico mostró que la morfología de la superficie de los geles de fibrina conteniendo CEP y CES tenía una estructura ondulada con numerosas células poligonales que mostraron rasgos similares a los de la superficie epitelial del tejido epitelial nativo (Figura 6 B). The observation in the electron microscope showed that the surface morphology of the fibrin gels containing CEP and CES had a wavy structure with numerous polygonal cells that showed similar features to those of the epithelial surface of the native epithelial tissue (Figure 6B).
ANÁLISIS ESTADÍSTICO STATISTIC ANALYSIS
Para comparar estadísticamente la eficacia de recuperación de los dos tipos celulares de interés a partir de ambos protocolos de digestión (PE y Pinv) y el valor del ratio de expansión del cultivo, su usó un test bilateral ("two tailed tesf) y el test t-Student independiente de muestra después de revisar la distribución normal de las muestras. Un p valor igual o menor a 0,05 se considera estadísticamente significativo. Para medir las diferencias en la proporción de éxito de los cultivos primarios se utiliza un test Chi2. Ejemplo 3. Elaboración del gel de fibrina de la invención que comprende las capas CEP-CES mediante pocilios adaptados. To statistically compare the recovery efficiency of the two cell types of interest from both digestion protocols (PE and Pinv) and the value of the crop expansion ratio, its use a two-sided test ("two tailed tesf") and the test t-Student independent of the sample after reviewing the normal distribution of the samples A p value equal to or less than 0.05 is considered statistically significant To measure the differences in the success rate of the primary cultures a Chi 2 test is used . Example 3. Preparation of the fibrin gel of the invention comprising the CEP-CES layers by adapted wells.
Para la elaboración de los geles de fibrina se usó el pocilio descrito en la Fig. 8 A y B. En dicha figura se muestra la vista en planta del pocilio (A) y perfil del pocilio (B) que tiene las siguientes partes: pared del pocilio (1 ), elevación central (2), región periférica (3). El pocilio puede formar parte de una placa multipocillo. En la Fig. 8 C y D se muestra el pocilio que comprende CEP, CES y fibrina. En la figura se muestra a modo de ejemplo ilustrativo que los componentes son: CME, Células Madre Epiteliales del limbo esclerocorneal; F, Fibroblastos del limbo esclerocorneal; I, Capa Intermedia de fibrina. Dicho pocilio tiene las dimensiones adecuadas para la córnea y para el limbo esclerocorneal indicadas en la Fig. 7. El gel de fibrina de la invención elaborado mediante el uso del pocilio descrito comprende los siguientes pasos, indicados gráficamente en la Fig. 9: For the preparation of the fibrin gels, the well described in Fig. 8 A and B was used. In this figure the plan view of the well (A) and profile of the well (B) having the following parts are shown: wall of the well (1), central elevation (2), peripheral region (3). The well can be part of a multiwell plate. Fig. 8 C and D shows the well comprising CEP, CES and fibrin. The figure shows as an illustrative example that the components are: CME, Epithelial Stem Cells of the sclerocorneal limbus; F, Fibroblasts of the sclerocorneal limbus; I, Intermediate fibrin layer. Said well has the dimensions suitable for the cornea and for the sclerocorneal limbus indicated in Fig. 7. The fibrin gel of the invention made by using the described well comprises the following steps, graphically indicated in Fig. 9:
Paso 1 : El gel de fibrina con el componente celular estromal embebido en su interior se añadió a la región periférica (3) del pocilio para su polimerización sin llegar a cubrir la superficie superior de la elevación central (2). Step 1: The fibrin gel with the stromal cellular component embedded inside was added to the peripheral region (3) of the well for polymerization without covering the upper surface of the central elevation (2).
Paso 2: Cuando la mezcla anterior polimerizó se añadió una nueva capa de fibrina que cubrió todo el pocilio sin rebasar la pared del pocilio (1 ). Paso 3: Tras la completa polimerización de la segunda capa de fibrina se añadió el componente epitelial.  Step 2: When the previous mixture polymerized a new layer of fibrin was added that covered the entire well without exceeding the well wall (1). Step 3: After complete polymerization of the second fibrin layer, the epithelial component was added.
De esta manera, se consiguió que en la región periférica del pocilio hubiese un estroma con CES (preferiblemente fibroblastos) y CEP (preferiblemente células madre epiteliales) sobre el mismo y que en la región central hubiera solamente componente epitelial, de manera análoga a lo que sucede en la superficie ocular en el limbo y la córnea respectivamente. In this way, it was achieved that in the peripheral region of the well there was a stroma with CES (preferably fibroblasts) and CEP (preferably epithelial stem cells) on it and that in the central region there was only epithelial component, analogously to what happens on the ocular surface in the limbus and cornea respectively.

Claims

REIVINDICACIONES
1 . Gel de fibrina que comprende células del estroma del limbo esclerocorneal (CES). one . Fibrin gel comprising stromal cells of the sclerocorneal limbus (CES).
2. Gel de fibrina según la reivindicación 1 , donde las CES son fibroblastos. 2. Fibrin gel according to claim 1, wherein the ESCs are fibroblasts.
3. Gel según la reivindicación 2, donde los fibroblastos expresan la proteína integrina beta 1 . 3. Gel according to claim 2, wherein the fibroblasts express the beta 1 integrin protein.
4. Gel de fibrina según cualquiera de las reivindicaciones 1 a 3, donde las CES proceden de un humano. 4. Fibrin gel according to any one of claims 1 to 3, wherein the ESCs come from a human.
5. Gel de fibrina según cualquiera de las reivindicaciones 1 a 4, donde las CES son de origen autólogo. 5. Fibrin gel according to any of claims 1 to 4, wherein the ESCs are of autologous origin.
6. Gel de fibrina según cualquiera de las reivindicaciones 1 a 5 que, además, comprende células del epitelio del limbo esclerocorneal (CEP). 6. Fibrin gel according to any one of claims 1 to 5 which further comprises epithelial cells of the sclerocorneal limbus (CEP).
7. Gel de fibrina según la reivindicación 6, donde las CEP expresan la proteína integrina beta 1 y la proteína pancitoqueratina. 7. Fibrin gel according to claim 6, wherein the CEPs express the beta 1 integrin protein and the pancytokeratin protein.
8. Gel de fibrina según la reivindicación 6, donde las CEP son células madre. 8. Fibrin gel according to claim 6, wherein the CEP are stem cells.
9. Gel de fibrina según cualquiera de las reivindicaciones 6 a 8, donde las CEP proceden de un humano. 9. Fibrin gel according to any of claims 6 to 8, wherein the CEPs come from a human.
10. Gel de fibrina según cualquiera de las reivindicaciones 6 a 9, donde las CEP son de origen autólogo. 10. Fibrin gel according to any of claims 6 to 9, wherein the CEPs are of autologous origin.
1 1 . Gel de fibrina según cualquiera de las reivindicaciones 1 a 10, donde dicho gel tiene forma de disco. eleven . Fibrin gel according to any one of claims 1 to 10, wherein said gel is disk-shaped.
12. Gel de fibrina según la reivindicación 1 1 , donde dicho disco tiene un diámetro de al menos la suma de la longitud del arco de curva de la curvatura central de la córnea y de la longitud del limbo esclerocorneal de la superficie ocular. 12. Fibrin gel according to claim 1, wherein said disk has a diameter of at least the sum of the arc curve length of the central curvature of the cornea and the length of the sclerocorneal limbus of the ocular surface.
13. Gel de fibrina según la reivindicación 12, donde dicho disco comprende: 13. Fibrin gel according to claim 12, wherein said disk comprises:
a. una región central de fibrina que tiene el diámetro de al menos la longitud del arco de curva de la curvatura central de la córnea, que comprende CEP, y  to. a central fibrin region having the diameter of at least the arc curve length of the central curvature of the cornea, comprising CEP, and
b. una región de fibrina periférica a la región central del apartado (a) que comprende CES.  b. a region of peripheral fibrin to the central region of section (a) comprising CES.
14. Gel de fibrina según la reivindicación 13, donde la región periférica además comprende CEP. 14. Fibrin gel according to claim 13, wherein the peripheral region further comprises CEP.
15. Gel de fibrina según la reivindicación 12, donde dicho disco comprende: 15. Fibrin gel according to claim 12, wherein said disk comprises:
a. una capa de CEP o una capa de fibrina que comprende CEP, y  to. a layer of CEP or a layer of fibrin comprising CEP, and
b. una capa de fibrina que comprende CES.  b. a fibrin layer comprising CES.
16. Gel de fibrina según la reivindicación 15, donde la capa del apartado (b) comprende: i. una región central hueca que tiene el diámetro de la longitud del arco de curva de la curvatura central de la córnea, y 16. Fibrin gel according to claim 15, wherein the layer of section (b) comprises: i. a hollow central region having the diameter of the curve arc length of the central curvature of the cornea, and
ii. una región de fibrina periférica a la región central del apartado (i) que comprende CES.  ii. a region of peripheral fibrin to the central region of section (i) comprising CES.
17. Gel de fibrina según cualquiera de las reivindicaciones 15 ó 16, donde la capa de fibrina del apartado (b) además comprende CEP. 17. Fibrin gel according to any of claims 15 or 16, wherein the fibrin layer of section (b) further comprises CEP.
18. Gel de fibrina según cualquiera de las reivindicaciones 15 a 17, donde dicho disco además comprende una capa de fibrina situada entre la capa del apartado (a) y la capa del apartado (b). 18. Fibrin gel according to any of claims 15 to 17, wherein said disk further comprises a fibrin layer located between the layer of section (a) and the layer of section (b).
19. Gel según cualquiera de las reivindicaciones 13 a 18, donde las CEP son células madre y las CES son fibroblastos. 19. Gel according to any of claims 13 to 18, wherein the CEPs are stem cells and the ESCs are fibroblasts.
20. Método de preparación del gel de fibrina según cualquiera de las reivindicaciones 1 a 5 que comprende: 20. Method of preparing the fibrin gel according to any one of claims 1 to 5 comprising:
a. poner en contacto CES con una composición que comprende fibrina, y  to. contacting CES with a composition comprising fibrin, and
b. polimerizar la mezcla del paso (a) en un recipiente de cultivo estéril.  b. Polymerize the mixture from step (a) in a sterile culture vessel.
21 . Método según la reivindicación 20 que además comprende, entre los pasos (a) y (b), añadir un agente antifibrinolítico a la mezcla del paso (a). twenty-one . Method according to claim 20 further comprising, between steps (a) and (b), adding an antifibrinolytic agent to the mixture of step (a).
22. Método según cualquiera de las reivindicaciones 20 ó 21 donde la composición que comprende fibrina del paso (a) es plasma sanguíneo. 22. A method according to any of claims 20 or 21 wherein the composition comprising fibrin of step (a) is blood plasma.
23. Método según la reivindicación 22, donde el plasma sanguíneo procede de un humano. 23. Method according to claim 22, wherein the blood plasma is derived from a human.
24. Método según cualquiera de las reivindicaciones 22 ó 23, donde el plasma sanguíneo es de origen autólogo. 24. Method according to any of claims 22 or 23, wherein the blood plasma is of autologous origin.
25. Método de preparación del gel de fibrina según cualquiera de las reivindicaciones 6 a 10 que comprende los pasos del método según cualquiera de las reivindicaciones 20 a 24, y además comprende sembrar CEP sobre el gel de fibrina obtenido en el paso (b). 25. Method of preparing the fibrin gel according to any of claims 6 to 10 comprising the steps of the method according to any of claims 20 to 24, and further comprising sowing CEP on the fibrin gel obtained in step (b).
26. Método de preparación del gel de fibrina según cualquiera de las reivindicaciones 13 ó 14 que comprende: 26. Method of preparing the fibrin gel according to any of claims 13 or 14 comprising:
a. poner en contacto CES, o dichas CES y CEP, con una composición que comprende fibrina,  to. contacting CES, or said CES and CEP, with a composition comprising fibrin,
b. poner en contacto CEP con una composición que comprende fibrina, y  b. contacting CEP with a composition comprising fibrin, and
c. polimerizar en un recipiente de cultivo estéril las mezclas de los pasos (a) y (b) de forma que la mezcla que comprende CEP ocupa una región central descrita en la reivindicación 13, y la mezcla que comprende CES ocupa la región periférica descrita en dicha reivindicación 13.  C. polymerize in a sterile culture vessel the mixtures of steps (a) and (b) so that the mixture comprising CEP occupies a central region described in claim 13, and the mixture comprising CES occupies the peripheral region described in said claim 13.
27. Método según la reivindicación 26 que además comprende, entre los pasos (b) y (c), añadir un agente antifibrinolítico a la mezcla del paso (a) y a la mezcla del paso (b). 27. A method according to claim 26, further comprising, between steps (b) and (c), adding an antifibrinolytic agent to the mixture of step (a) and the mixture of step (b).
28. Método de preparación del gel de fibrina según cualquiera de las reivindicaciones 15 a 17 que comprende los pasos del método según cualquiera de las reivindicaciones 26 ó 27, donde la polimerización del paso (c) se lleva a cabo de forma que la mezcla que comprende las CES, o que comprende dichas CES y CEP, y la mezcla que comprende las CEP forman sendas capas. 28. Method of preparing the fibrin gel according to any of claims 15 to 17 comprising the steps of the method according to any of claims 26 or 27, wherein the polymerization of step (c) is carried out such that the mixing which comprises the ESCs, or which comprises said ESCs and CEP, and the mixture comprising the CEP forms two layers.
29. Método según la reivindicación 28, donde la preparación del gel de fibrina de cualquiera de las reivindicaciones 16 ó 17 comprende: a. polimerizar la mezcla que comprende CES, o que comprende dichas CES y CEP, en la región periférica (3) de un pocilio sin que el gel polimerizado rebase la parte superior de la elevación central (2), y 29. Method according to claim 28, wherein the fibrin gel preparation of any of claims 16 or 17 comprises: a. polymerizing the mixture comprising CES, or comprising said CES and CEP, in the peripheral region (3) of a well without the polymerized gel exceeding the upper part of the central elevation (2), and
b. polimerizar la mezcla que comprende las CEP por encima de la capa del gel de fibrina polimerizada según el paso (a).  b. Polymerize the mixture comprising the CEPs above the polymerized fibrin gel layer according to step (a).
30. Método según la reivindicación 29, donde sobre la capa polimerizada según el paso (a) se polimeriza una capa de fibrina y sobre esta capa de fibrina polimerizada se depositan CEP, o sobre dicha capa de fibrina se deposita y polimeriza la mezcla que comprende fibrina y CEP. 30. A method according to claim 29, wherein a fibrin layer is polymerized on the polymerized layer according to step (a) and on this polymerized fibrin layer CEP is deposited, or on said fibrin layer the mixture comprising is deposited and polymerized fibrin and CEP.
31 . Método según cualquiera de las reivindicaciones 20 a 30, donde las CEP son células madre y las CES son fibroblastos. 31. Method according to any of claims 20 to 30, wherein the CEPs are stem cells and the ESCs are fibroblasts.
32. Método según cualquiera de las reivindicaciones 20 a 31 , donde el agente antifibrinolítico es ácido tranexámico. 32. Method according to any of claims 20 to 31, wherein the antifibrinolytic agent is tranexamic acid.
33. Método según cualquiera de las reivindicaciones 20 a 32, donde la polimerización se lleva a cabo mediante la adición de CaCl2 a las respectivas mezclas. 33. Method according to any one of claims 20 to 32, wherein the polymerization is carried out by adding CaCl 2 to the respective mixtures.
34. Pocilio para llevar a cabo el método descrito en cualquiera de las reivindicaciones 29 ó 30, que comprende una elevación central (2) cerrada en su parte superior, que tiene el diámetro de la longitud del arco de curva de la curvatura central de la córnea, y una región periférica (3) a la elevación central (2), donde la altura de la elevación central (2) es menor que la altura de pared del pocilio (1 ) y donde el pocilio tiene un diámetro de al menos la suma de la longitud del arco de curva de la curvatura central de la córnea y de la longitud del limbo esclerocorneal de la superficie ocular. 34. Well for carrying out the method described in any of claims 29 or 30, comprising a central elevation (2) closed at its upper part, having the diameter of the length of the curve arc of the central curvature of the cornea, and a peripheral region (3) to the central elevation (2), where the height of the central elevation (2) is less than the wall height of the well (1) and where the well has a diameter of at least the sum of the arc curve length of the central curvature of the cornea and the length of the sclerocorneal limbus of the ocular surface.
35. Pocilio según la reivindicación 34, donde dicho pocilio tiene el diámetro que corresponde con la suma de la longitud del arco de curva de la curvatura central de la córnea y de la longitud del limbo esclerocorneal de la superficie ocular. 35. The well according to claim 34, wherein said well has the diameter corresponding to the sum of the arc curve length of the central curvature of the cornea and the length of the sclerocorneal limbus of the ocular surface.
36. Soporte sólido que comprende al menos un pocilio descrito en cualquiera de las reivindicaciones 34 ó 35. 36. Solid support comprising at least one well described in any of claims 34 or 35.
37. Uso del pocilio según cualquiera de las reivindicaciones 34 ó 35, o del soporte según la reivindicación 36, para la preparación del gel de fibrina según cualquiera de las reivindicaciones 16 ó 17. 37. Use of the well according to any of claims 34 or 35, or of the support according to claim 36, for the preparation of the fibrin gel according to any of claims 16 or 17.
38. Uso del gel de fibrina según cualquiera de las reivindicaciones 1 a 5 como soporte para la proliferación de CEP. 38. Use of the fibrin gel according to any one of claims 1 to 5 as a support for the proliferation of CEP.
39. Uso según la reivindicación 38, donde las CEP son células madre. 39. Use according to claim 38, wherein the CEP are stem cells.
40. Uso del gel de fibrina según cualquiera de las reivindicaciones 1 a 19 para la elaboración de un medicamento. 40. Use of the fibrin gel according to any of claims 1 to 19 for the preparation of a medicament.
41 . Uso del gel de fibrina según la reivindicación 40 para la elaboración de un medicamento para su uso en el tratamiento y/o prevención de lesión, enfermedad degenerativa, inflamatoria o genética de la superficie ocular. 41. Use of the fibrin gel according to claim 40 for the preparation of a medicament for use in the treatment and / or prevention of lesion, degenerative, inflammatory or genetic disease of the ocular surface.
42. Uso del gel de fibrina según la reivindicación 41 para el tratamiento y/o prevención de un síndrome de insuficiencia límbica. 42. Use of the fibrin gel according to claim 41 for the treatment and / or prevention of a limbic insufficiency syndrome.
43. Uso del gel de fibrina según cualquiera de las reivindicaciones 41 ó 42 para el tratamiento y/o prevención de la ceguera corneal. 43. Use of the fibrin gel according to any of claims 41 or 42 for the treatment and / or prevention of corneal blindness.
44. Uso del gel de fibrina según cualquiera de las reivindicaciones 1 a 19 para la evaluación in vitro del comportamiento de las CEP y/o CES. 44. Use of the fibrin gel according to any of claims 1 to 19 for the in vitro evaluation of the behavior of the CEP and / or CES.
45. Uso según la reivindicación 44, donde las CEP son células madre y las CES son fibroblastos. 45. Use according to claim 44, wherein the CEPs are stem cells and the ESCs are fibroblasts.
46. Composición farmacéutica que comprende el gel según cualquiera de las reivindicaciones 1 a 19. 46. Pharmaceutical composition comprising the gel according to any one of claims 1 to 19.
47. Composición farmacéutica según la reivindicación 46 que comprende, además, un vehículo farmacéuticamente aceptable. 47. Pharmaceutical composition according to claim 46, further comprising a pharmaceutically acceptable carrier.
48. Composición farmacéutica según cualquiera de las reivindicaciones 46 ó 47 que comprende, además, otro principio activo. 48. Pharmaceutical composition according to any of claims 46 or 47, further comprising another active ingredient.
PCT/ES2010/070865 2010-12-22 2010-12-22 Fibrin gel containing sclerocorneal limbus cells and the use thereof in ocular surface bioengineering WO2012085298A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070865 WO2012085298A1 (en) 2010-12-22 2010-12-22 Fibrin gel containing sclerocorneal limbus cells and the use thereof in ocular surface bioengineering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070865 WO2012085298A1 (en) 2010-12-22 2010-12-22 Fibrin gel containing sclerocorneal limbus cells and the use thereof in ocular surface bioengineering

Publications (1)

Publication Number Publication Date
WO2012085298A1 true WO2012085298A1 (en) 2012-06-28

Family

ID=46313205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070865 WO2012085298A1 (en) 2010-12-22 2010-12-22 Fibrin gel containing sclerocorneal limbus cells and the use thereof in ocular surface bioengineering

Country Status (1)

Country Link
WO (1) WO2012085298A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020117165A1 (en) * 2018-12-03 2020-06-11 Bulut Nebahat Use of animal originated cornea membrane products in treatment of eye and out of eye wounds
CN116687840A (en) * 2023-08-03 2023-09-05 四川省医学科学院·四川省人民医院 Gel preparation for treating eye symptoms and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037752A1 (en) * 1998-01-23 1999-07-29 University Of Ottawa Artificial cornea
US20020039788A1 (en) * 2000-02-29 2002-04-04 Isseroff Roslyn R. Corneal epithelial graft composites
WO2005079821A1 (en) * 2004-02-13 2005-09-01 Intercytex Limited Wound healing profile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037752A1 (en) * 1998-01-23 1999-07-29 University Of Ottawa Artificial cornea
US20020039788A1 (en) * 2000-02-29 2002-04-04 Isseroff Roslyn R. Corneal epithelial graft composites
WO2005079821A1 (en) * 2004-02-13 2005-09-01 Intercytex Limited Wound healing profile

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PROULX, S. ET AL.: "Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types", MOLECULAR VISION, vol. 16, 29 October 2010 (2010-10-29), pages 2192 - 2201 *
STEPP, M.A.: "Corneal integrins and their functions", EXPERIMENTAL EYE RESEARCH, vol. 83, 2006, pages 3 - 15 *
TALBOT, M. ET AL.: "Autologous transplantation of rabbit limbal epithelia cultured on fibrin gels for ocular surface reconstruction", MOLECULAR VISION, vol. 12, 1 February 2006 (2006-02-01), pages 65 - 75 *
VUELTA, E. ET AL.: "''Tissue engineering of the corneoscleral stem cell niche: limbal cell-containing fibrin constructs (LCFC)", ARVO 2010 ANNUAL MEETING, 2 May 2010 (2010-05-02), FL, USA, Retrieved from the Internet <URL:http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=706436e8-a3ac-44fl-8437-Oe8cc2ef7932&cKey=46758c82-9be9-4195-b4aa-6929b11f58a1&mKey=%7b1EA90E66C548-49E0-9F05-30DA7938D511%7d> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020117165A1 (en) * 2018-12-03 2020-06-11 Bulut Nebahat Use of animal originated cornea membrane products in treatment of eye and out of eye wounds
CN116687840A (en) * 2023-08-03 2023-09-05 四川省医学科学院·四川省人民医院 Gel preparation for treating eye symptoms and preparation method thereof
CN116687840B (en) * 2023-08-03 2023-10-20 四川省医学科学院·四川省人民医院 Gel preparation for treating eye symptoms and preparation method thereof

Similar Documents

Publication Publication Date Title
Inatomi et al. Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation
Baiguera et al. Tissue engineered human tracheas for in vivo implantation
AU2004282525B2 (en) Human corneal endothelial cells and methods of obtaining and culturing cells for corneal cell transplantation
ES2667620T3 (en) Method to prepare a corneal endothelial cell
ES2677945T3 (en) Production of artificial tissues by tissue engineering using fibrin and agarose biomaterials
Guasti et al. Chondrogenic differentiation of adipose tissue-derived stem cells within nanocaged POSS-PCU scaffolds: a new tool for nanomedicine
Krishnamurithy et al. Human amniotic membrane as a chondrocyte carrier vehicle/substrate: in vitro study
JP2016093181A (en) Progenitor cells from urine and methods for using the same
KR20080097226A (en) Conjunctival tissue system
Faye et al. Focus on cell therapy to treat corneal endothelial diseases
US20160121023A1 (en) Materials and Methods for Rescue of Ischemic Tissue and Regeneration of Tissue Integrity During Resection, Engraftment and Transplantation
Engelhardt et al. Compressed collagen gel: a novel scaffold for human bladder cells
US20160129044A1 (en) Use of mesothelial cells in tissue bioengineering and artificial tissues
Witt et al. Decellularized porcine conjunctiva as an alternative substrate for tissue-engineered epithelialized conjunctiva
Rolev et al. Experimental models of corneal endothelial cell therapy and translational challenges to clinical practice
Spurrier et al. Vitrification preserves murine and human donor cells for generation of tissue-engineered intestine
CA2559582A1 (en) Corneal epithelial sheet, method of constructing the same and transplantation method using the sheet
CN113056556A (en) Compositions and methods for preserving or culturing ocular cells
ES2679271T3 (en) Cells derived from cardiac tissue
WO2012085298A1 (en) Fibrin gel containing sclerocorneal limbus cells and the use thereof in ocular surface bioengineering
Zhang et al. Tissue-engineered corneal endothelial sheets using ultrathin acellular porcine corneal stroma substrates for endothelial keratoplasty
BRPI0708039A2 (en) feeder cells derived from tissue stem cells
EP3911734A1 (en) Use of mesenchymal stem cell sheets for preventing uterine scar formation
WO2018215684A1 (en) Culture media with platelet lysates
Fuchs et al. Postnatal myocardial augmentation with skeletal myoblast–based fetal tissue engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10861137

Country of ref document: EP

Kind code of ref document: A1