WO2012083834A1 - 一种游牧数据接入系统及装置 - Google Patents

一种游牧数据接入系统及装置 Download PDF

Info

Publication number
WO2012083834A1
WO2012083834A1 PCT/CN2011/084268 CN2011084268W WO2012083834A1 WO 2012083834 A1 WO2012083834 A1 WO 2012083834A1 CN 2011084268 W CN2011084268 W CN 2011084268W WO 2012083834 A1 WO2012083834 A1 WO 2012083834A1
Authority
WO
WIPO (PCT)
Prior art keywords
nda
module
base station
layer processing
processing module
Prior art date
Application number
PCT/CN2011/084268
Other languages
English (en)
French (fr)
Inventor
秦飞
王映民
赵建
赵瑾波
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP11852066.7A priority Critical patent/EP2658179A4/en
Priority to US13/996,519 priority patent/US20130337819A1/en
Publication of WO2012083834A1 publication Critical patent/WO2012083834A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/142Reselecting a network or an air interface over the same radio air interface technology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • H04W36/125Reselecting a serving backbone network switching or routing node involving different types of service backbones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices

Definitions

  • the invention relates to a nomadic data access system and device.
  • the application is submitted to the Chinese Patent Office on December 20, 2011, and the application number is 201010597553.1.
  • TECHNICAL FIELD The priority of the Chinese Patent Application for a Nomadic Data Access System, Apparatus, and Data Transmission Method, the entire contents of which is incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of communications, and more particularly to a nomadic data access system and apparatus.
  • WiFi wireless local area network
  • the WiFi system is loosely coupled to the 3G system, and is authenticated and billed in the core network of the 3G system.
  • WiFi Use WiFi for hotspot coverage which can play a better role in data traffic distribution.
  • the WiFi uses the unlicensed ISM (Industrial Scientific and Medical) band, which has interference with various devices such as self-use WiFi devices and microwave ovens. It is difficult for multiple operators to network at the same time. Because the working frequency band is an unlicensed frequency band, if multiple operators are networking in the same area, if there is no good coordination and unified planning, mutual interference will be caused.
  • ISM International Scientific and Medical
  • the home base station can be connected to the core network of the 3G system through a device such as a macro base station.
  • the cost of the home base station is lower, the deployment is more flexible, and it plays a certain role in indoor data distribution, and can also support carrier-class services.
  • the home base station does not further optimize and optimize the characteristics of the indoor service.
  • Embodiments of the present invention provide a nomadic data access system, apparatus, and data transmission method for providing a new communication system and related apparatus and method to reduce system complexity.
  • a nomadic data access DA system comprising: a core network and a DA base station;
  • a core network including an NDA part and a 3GPP part
  • the DA part is used to establish a communication connection with the DA base station Port, and establish a communication link for the NDA terminal through the NDA base station, and transmit the NDA user data service to the 3GPP part in the core network
  • the 3GPP part is used to process the NDA user data service, and implement the 3GPP system function of the version 10 and the previous version
  • the NDA base station is configured to establish a communication interface with the NDA part in the core network, establish a communication link with the NDA part of the core network for the DA terminal, and transmit the NDA user data service, or establish a communication chain with the local area or the wide area interconnection network. Road, the DA user data service is transmitted to the local area or wide area internet.
  • a core network comprising: a DA portion and a 3GPP portion;
  • the NDA part in the core network is used to establish a communication interface with the NDA base station, and establish a communication link for the NDA terminal through the NDA base station, and transmit the NDA user data service to the 3GPP part in the core network;
  • the 3GPP part of the core network is used to process NDA user data services.
  • a DA base station includes: a radio frequency module, a physical layer processing module, a MAC layer processing module, an RLC layer processing module, an RRC layer processing module, a routing module, and a Sl-nda interface module;
  • the Sl-nda interface module is configured to establish a communication interface with the DA part in the core network, establish a communication link with the DA part in the core network for the NDA terminal, and transmit the NDA user data service;
  • the routing module is configured to establish a communication link with the local area/wide area interconnection network, and transmit the NDA user data service to the local/wide area internet network.
  • An NDA gateway including:
  • the DA base station interface module is configured to establish a communication interface with the DA base station, establish a communication link for the DA terminal through the DA base station, and transmit the NDA user data service with the DA base station;
  • a DA base station management module configured to perform one or more processes on the DA base station for authentication, access management, and parameter configuration
  • the Sl-ndu interface module is configured to establish a communication interface with the DA part in the core network, and establish a communication link with the DA part of the core network for the NDA terminal, and transmit the NDA user data service with the NDA part of the core network.
  • An NDA terminal comprising:
  • a radio frequency module for transmitting and receiving data signals
  • a physical layer processing module for encoding/decoding, decoding/demodulating a data signal, one or more transmission processing, multi-antenna transmission processing, link adaptation and retransmission processing;
  • a MAC layer processing module configured to perform one or more processes of scheduling, transmitting, and retransmitting RLC layer data packets in an uplink process, and performing MAC data packet decoding and/or retransmission processing in a downlink process;
  • the RLC layer processing module is configured to perform IP data packet segmentation and IP data packet retransmission processing in an uplink process, perform MAC data packet cascading and reassembly in a downlink process, and retransmit the MAC data packet;
  • An RRC layer processing module configured to control a wireless link, and manage wireless resources;
  • the IP application layer processing module is used to process various types of information and data of the business application layer.
  • a cell access method is applied to the network side, and includes the following steps:
  • control channel After the NDA base station establishes a connection with the core network, the control channel is configured
  • the DA base station transmits a system broadcast message, and the system broadcast message includes identification information indicating that the base station capability attribute is the DA mode.
  • a cell access method is applied to the terminal side, and includes the following steps:
  • the DA terminal receives the system broadcast message
  • the DA terminal configures the DA mode.
  • a cell handover method includes the following steps:
  • the DA terminal supporting the LTE protocol receives the system broadcast message of the neighboring cell in the LTE mode, and the system broadcast message includes the identifier information indicating that the base station capability attribute is the NDA mode;
  • the DA terminal measures the neighboring cell and reports the measurement result
  • the connection with the LTE base station is disconnected, the LTE mode is switched to the ND A mode, and the NDA mode is configured to access the adjacent NDA cell.
  • a DA base station comprising:
  • a configuration module configured to configure a control channel after establishing a connection with the core network
  • the radio frequency module is configured to send a system broadcast message, where the system broadcast message includes identifier information indicating that the base station capability attribute is a DA mode.
  • An NDA terminal comprising:
  • a radio frequency module configured to receive a system broadcast message
  • the configuration module is configured to configure the DA mode when the system broadcast message includes the identifier information indicating that the base station capability attribute is the DA mode.
  • An NDA terminal comprising:
  • a radio frequency module configured to receive a system broadcast message of a neighboring cell in an LTE mode, where the system broadcast message includes identifier information indicating that the base station capability attribute is an NDA mode;
  • a measurement module configured to measure a neighboring cell, and report the measurement result
  • control module configured to: after receiving the handover indication of the LTE base station, disconnect the connection with the LTE base station, and switch from the LTE mode to the D A mode;
  • the RRC layer processing module is configured to access to an adjacent NDA cell.
  • the embodiment of the present invention provides a ND A base station and a trunked interface, and the ND A base station can directly connect to the Internet without going through the core network, and the core network cooperates with the cylindrical DA base station through the trunk interface, thereby improving Data transmission capacity and efficiency, adapting to the needs of nomadic high-speed IP data services.
  • FIG. 1 is a structural diagram of a nomadic data access system according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of a nomadic data access system with a gateway according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of a core network according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a DA base station according to an embodiment of the present invention.
  • FIG. 5 is a main structural diagram of a DA gateway according to an embodiment of the present invention.
  • FIG. 6 is a detailed structural diagram of an NDA gateway in an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a DA terminal according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a main method of a cell access method on a network side according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a main method of a cell access method on a terminal side according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for an NDA terminal to access a cell in an NDA mode according to an embodiment of the present invention
  • FIG. 11 is a flowchart of a method for an LTE+ DA terminal supporting a cell in a DA mode and an LTE mode according to an embodiment of the present invention
  • FIG. 12 is a flowchart of a main method for cell handover according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of a detailed method for cell handover in an embodiment of the present invention.
  • FIG. 14 is a structural diagram of an NDA base station when a cell accesses according to an embodiment of the present invention.
  • FIG. 15 is a structural diagram of an NDA terminal when a cell is accessed according to an embodiment of the present invention.
  • FIG. 16 is a structural diagram of a DA terminal in a cell handover according to an embodiment of the present invention. detailed description
  • the service uses pure IP data.
  • the Internet service is the main one, and the QoS requirement is single.
  • the nomadic data access is proposed in the embodiment of the present invention.
  • NDA Nomadic Data Access
  • the solution is a data transmission system and method based on 3GPP (The 3rd Generation Partnership Project) LTE (Long Term Evolution) physical layer technology, which can realize efficient and low-cost data service transmission in indoor and hotspot areas.
  • 3GPP The 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • the idea of the present invention is: based on the LTE protocol system, further streamlining the wireless access protocol process, supporting nomadic high-speed IP data access, sacrificing certain mobility, QoS (shield and service) and security, and reducing wireless access The cost of entering devices (base stations) and data terminal equipment, improving the ability to access data.
  • the tubular wireless access device and the traditional cellular network core network are merged through a unified interface.
  • the complete LTE terminal supports both the full LTE mode and the unified DA access mode, supporting the work in the LTE cellular mobile network and the LTE nomadic data access network.
  • the nomadic data access system in this embodiment includes: a core network 101 and a DA base station 102.
  • the core network 101 includes an NDA part and a 3GPP part.
  • the DA part of the core network 101 is used to establish a communication interface with the DA base station, and establish a communication link for the NDA terminal through the DA base station, and transmit the DA user data service to the 3GPP part in the core network.
  • the DA part of the core network 101 is a functional module that is further compressed or improved on the basis of the corresponding module of the original LTE system, and may be a separate functional entity in design, or may be a centralized process embedded in the LTE corresponding functional entity and Cylindrical processing mode.
  • the 3GPP part of the core network is used to implement the original functions of the LTE core network except for the embodiment of the embodiment, that is, the implementation of version 10 (R10) and previous versions of the 3GPP system functions, such as the processing of data services.
  • the DA base station 102 is configured to establish a communication interface with the DA part in the core network 101, and establish a communication link with the DA part of the core network for the NDA terminal and transmit the NDA user data service, or establish communication with the local area or the wide area interconnection network.
  • the link transmits the NDA user data service to the local area or wide area internet.
  • the NDA base station 102 has the function of communicating with the core network 101, and also has the function of communicating with the local area or the wide area interconnection network, which can meet the needs of the user to access the core network or the local area or the wide area interconnection network, and is effective. Increase transmission capacity.
  • the system also includes: a DA gateway 103, as shown in FIG.
  • the DA gateway 103 is configured to respectively connect with the DA base station and the DA part in the core network, and forward the DA user data service transmitted between the DA base station and the DA part in the core network.
  • the DA gateway 103 can function to aggregate data and interfaces of multiple NDA base stations and connect to the core network, thereby reducing the capacity burden caused by a large number of DA base stations directly accessing the core network to the core network.
  • the DA gateway 103 is also used for authentication management of the NDA base station, etc., to facilitate system maintenance.
  • the system further includes: an NDA terminal 104, configured to connect with the NDA base station, and transmit the NDA user data service with the NDA base station.
  • the NDA terminal 104 can also support the LTE mode to form an LTE+ NDA terminal.
  • the system further includes: an LTE base station and an LTE terminal.
  • the LTE base station is an existing 3GPP LTE base station, and the specific protocol and function reference 3GPP (The 3rd Generation Partnership Project) protocol.
  • 3GPP The 3rd Generation Partnership Project
  • the LTE terminal is an existing 3GPP LTE terminal, and the specific protocol and function refer to the 3GPP protocol.
  • the network structure of the system is understood by the above description.
  • the following describes the devices in the system in detail.
  • the implementation of the cooperation with other devices involved in each device will also be described, but this does not mean that these devices must be implemented together.
  • these devices when they are implemented separately, they also respectively solve the existence of the devices.
  • the problem is that when they are used together, they will get better technical results.
  • the core network 101 in this embodiment includes an NDA portion 301 and a 3GPP portion 302. NDA part
  • 301 further includes a Sl-nda interface module 3011, an NDA device and a user management module 3012, and an NDA data transmission module.
  • the Sl-nda interface module 3011 is configured to establish a communication interface with the DA base station.
  • the S1 interface is compressed and improved, so that the S1 interface is called the S 1 -nda interface.
  • the NDA device and user management module 3012 is configured to perform NBS terminals access management, authentication authentication, and communication link establishment and management to the 3GPP portion of the core network.
  • the DA data transmission module 3013 is for transmitting NDA user data traffic to the 3GPP part of the core network.
  • the DA base station 102 in this embodiment includes a radio frequency module 401, a physical layer processing module 402, a MAC (Media Access Control) layer processing module 403, and an RLC (Radio Link Control) layer.
  • the ND A base station 102 in the 3GPP LTE standard and protocol system, encapsulates protocol flows and functions, uses lower power, supports fewer users, and implements efficient and low-cost small base stations.
  • the DA base station 102 can also work independently of the core network, through built-in routing functions and Internet network data transmission. The details are as follows:
  • the Sl-nda interface module 407 is configured to establish a communication interface with the DA portion of the core network, establish a communication link with the DA portion of the core network for the DA terminal, and transmit the NDA user data service.
  • the Sl-nda interface module is also used for one or more processes in the access control, encryption authentication, charging, ND A terminal roaming control, and ND A terminal data link control of the DA terminal.
  • the routing module 406 is configured to establish a communication link with the local area or the wide area interconnection network to transmit the NDA user data service to the local area or the wide area internet network.
  • the radio frequency module 401 is configured to transmit and receive data signals. After the DA base station 102 is turned on, the radio frequency module transmitting system The broadcast message, the system broadcast message includes identification information indicating that the base station capability attribute is an NDA mode.
  • the physical layer processing module 402 is operative to encode or decode, decode or demodulate the input data signal, one or more of the multi-antenna transmission processing, the link adaptation and the retransmission processing.
  • the MAC layer processing module 403 is configured to perform one or more processing in the scheduling, transmission, and retransmission processing of the RLC layer data packet in the downlink process, and perform user scheduling, MAC data packet decoding, and retransmission processing in the uplink process. One or more of the processing.
  • the RLC layer processing module 404 is configured to perform IP packet segmentation and IP packet retransmission processing in the downlink process, perform MAC data packet cascading and reassembly, and MAC packet retransmission processing in the uplink process.
  • the RRC layer processing module 405 is used to control the radio link and manage radio resources.
  • the DA base station 102 also includes a data transmission interface 408 for providing physical link transmissions for the final entry and exit of various logical interfaces and data channels. That is, the routing module 406 and the Sl-nda interface module 407 will communicate with the outside world through the data transmission interface 408.
  • this embodiment performs binning on each module in the DA base station to adapt to the transmission requirements of indoor and hotspot areas, and to reduce equipment costs.
  • the radio frequency module 401 has one or more of the following features:
  • the downlink power range used by the RF module is lower than the downlink power range specified by the LTE standard (LTE STANDARD SPECIFIED); for example, the downlink power is lower than 20 dBm.
  • LTE STANDARD SPECIFIED LTE STANDARD SPECIFIED
  • the uplink sensitivity of the RF module is lower than the uplink sensitivity specified by the LTE standard; for example, the uplink sensitivity is lower than -85dBm (the condition is QPSK (Quadature Phase Shift Keying), 1/3 code rate).
  • the adjacent channel rejection ratio of the transmitter filter in the RF module is lower than the adjacent channel rejection ratio specified by the LTE standard; for example, the adjacent channel rejection ratio is lower than 30 dB.
  • the out-of-band emissions of the transmitter in the RF module are higher than the out-of-band emissions specified by the LTE standard; for example, the out-of-band emissions are above -30 dBm/l MHz.
  • the physical layer processing module 402 has one or more of the following features:
  • the multi-antenna transmission mode supported by the physical layer processing module is less than the multi-antenna transmission mode specified by the LTE standard; for example, only mode 1 and mode 3 in the protocol 3GPP TS 36.222 are reserved.
  • the measurement period and feedback period configured in the physical layer processing module correspond to the measurement period and feedback period specified by the LTE standard.
  • the number of control channels and reference symbols configured in the physical layer processing module corresponds to less than the number of control channels and reference symbols specified by the LTE standard.
  • the process related to the NDA is less than the related process specified by the LTE, and specifically refers to the DA phase.
  • the steps performed in the process of the related process are less than the steps in the relevant process of the LTE specification, and the amount of information of the signaling in the NDA-related process is less than the amount of information of the signaling in the related process of the LTE.
  • the MAC layer processing module 403 has one or more of the following features:
  • the MAC layer processing module performs the process of controlling and scheduling QoS, which is less than the process of QoS control and scheduling specified by the LTE standard; for example, does not distinguish the QCI (QoS Class Identifier) level, and is based on waiting for transmission. The amount of data buffered data is queued for transmission, or the packet arrives in time-scheduled transmission.
  • QCI QoS Class Identifier
  • the number of users supported by the MAC layer processing module during scheduling is limited to a number less than the set value, which is small; for example, two users are scheduled at the same time, and the system supports up to eight users.
  • the MAC layer processing module performs the related protection and operation process in the process of data packet transmission, which is less than the related protection and operation process in the data packet transmission process specified by the LTE standard.
  • the RLC layer processing module 404 has the following features:
  • the RLC layer processing module performs the retransmission process less than the retransmission process specified by the LTE standard. For example, only AM (acknowledge mode) is reserved.
  • the RRC layer processing module 405 has one or more of the following features:
  • the process of performing random access and the process of access control by the RRC layer processing module is less than the process of random access and the process of access control specified by the LTE standard;
  • the system information broadcast process of the RRC layer processing module is less than the system information broadcast process specified by the LTE standard;
  • the transmission mode configuration information about the NDA terminal in the RRC layer processing module is less than the transmission mode configuration information specified by the LTE standard;
  • the cell signal measurement and reporting configuration information of the RRC layer processing module corresponds to less than the cell signal measurement and the upper configuration information specified by the LTE standard.
  • the above is an introduction to each module of the communication layer in the NDA base station 102.
  • the NDA base station further includes a control and management module, and further includes: a configuration module, configured to configure a control channel after establishing a connection with the core network.
  • the modules in the DA base station are encapsulated.
  • the DA base station does not include the PDCP (Packet Data Convergence Protocol) layer processing module, and is not connected.
  • the DA gateway 103 in this embodiment includes an ND A base station interface module 501, a DA base station management module 502, and a Sl-ndu interface module 503.
  • the DA base station interface module 501 is configured to establish a communication interface with the DA base station, establish a communication link for the DA terminal through the DA base station, and transmit the NDA user data service with the NDA base station;
  • the DA base station management module 502 is configured to perform one or more processes of performing authentication, access management, and parameter configuration on the NDA base station;
  • the Sl-ndu interface module 503 is configured to establish a communication interface with the DA portion of the core network, establish a communication link with the DA portion of the core network for the NDA terminal, and transmit NDA user data services with the NDA portion of the core network.
  • the DA base station can also be connected to the internetwork through the DA gateway. Therefore, the DA gateway further includes: a routing module 504 and an NDA user management module 505, as shown in FIG. 6.
  • the routing module 504 is configured to encapsulate the DA terminal service data into an IP protocol data packet and transmit the IP protocol data packet to the Internet.
  • the DA User Management Module 505 is used to perform one or more processing of access management, authentication, and charging for the NDA terminal.
  • the NDA User Management Module 505 enables management of NDA terminals when NDA terminals connect to the Internet.
  • the DA Gateway 103 also includes a Data Transfer Interface 506 for providing physical link transmissions for the final entry and exit of various logical interfaces and data channels. That is, the routing module 504 and the Sl-nda interface module 503 will communicate with the outside world through the data transmission interface 506.
  • the interface between the LTE base station and the core network is an S1 interface.
  • the Sl-nda interface has a lot of functions compared to the functions of the original S1 interface.
  • the main functions of the Sl-nda interface are: ND A terminal access control, encryption authentication, accounting function; ND A terminal roaming function; NDA terminal data link management function; NDA terminal data transmission function.
  • the S1 interface is an interface between the base station and the core network defined by 3GPP, and supports functions such as data transmission, QoS management, and mobility management.
  • the NDA terminal 104 in this embodiment includes: a radio frequency module 701, a physical layer processing module 702, a MAC layer processing module 703, an RLC layer processing module 704, an RRC layer processing module 705, and an IP application layer processing module 706.
  • the radio frequency module 701 is for transmitting and receiving data signals. After the DA terminal is powered on, the radio module 701 receives the system broadcast message, and the system broadcast message includes the identifier information indicating that the base station capability attribute is the NDA mode.
  • the system broadcast message received by the radio frequency module 701 is a system broadcast message of the access cell or a system broadcast message of the neighboring cell.
  • the physical layer processing module 702 is for one or more of encoding/decoding, modulation/demodulation, multi-antenna transmission processing, link adaptation, and retransmission processing of data signals.
  • the MAC layer processing module 703 is configured to perform one or more processing of RLC layer data packet scheduling, transmission, and retransmission processing in the uplink process, and perform MAC packet decoding and/or retransmission processing in the downlink process.
  • the RLC layer processing module 704 is configured to perform IP packet segmentation and IP packet retransmission processing in the uplink process, perform MAC data packet cascading and reassembly, and MAC packet retransmission processing in the downlink process.
  • the RRC layer processing module 705 is configured to control the wireless link and manage the wireless resources.
  • the IP application layer processing module 706 is configured to process various types of information and data of the service application layer.
  • the NDA terminal in this embodiment is a high-speed IP data service suitable for nomadic transport, and the internal modules are binarized.
  • the specific instructions are as follows:
  • the radio frequency module 701 has one or more of the following features:
  • the downlink power range used by the RF module is lower than the downlink power range specified by the LTE standard; for example, the downlink power is lower than 20 dBm.
  • the uplink sensitivity of the RF module is lower than the uplink sensitivity specified by the LTE standard; for example, the uplink sensitivity is lower than -85dBm (condition is QPSK, l/3 code rate).
  • the adjacent channel rejection ratio of the transmitter filter in the RF module is lower than the adjacent channel rejection ratio specified by the LTE standard; for example, the adjacent channel rejection ratio is lower than 30 dB.
  • the out-of-band emissions of the transmitter in the RF module are higher than the out-of-band emissions specified by the LTE standard; for example, the out-of-band emissions are above -30 dBm/l MHz.
  • the physical layer processing module 702 has one or more of the following characteristics:
  • the multi-antenna transmission mode supported by the physical layer processing module is less than the multi-antenna transmission mode specified by the LTE standard; for example, only mode 1 and mode 3 in the protocol 3GPP TS 36.222 are reserved.
  • the measurement period and the feedback period configured in the physical layer processing module are corresponding to the measurement period and the feedback period specified by the LTE standard;
  • the number of control channels and reference symbols configured in the physical layer processing module corresponds to less than the number of control channels and reference symbols specified by the LTE standard.
  • the MAC layer processing module 703 has one or more of the following features:
  • the MAC layer processing module performs the process of controlling and scheduling the QoS, which is less than the process of controlling and scheduling the QoS specified by the LTE standard; for example, regardless of the QCI level, the data is buffered based on the data buffer waiting for transmission, or The packet arrives in time sequence to schedule transmission.
  • the MAC layer processing module performs the related protection and operation process in the process of data packet transmission, which is less than the related protection and operation process in the data packet transmission process specified by the LTE standard.
  • the RLC layer processing module 704 has the following features:
  • the RLC layer processing module performs the retransmission process less than the retransmission process specified by the LTE standard. For example, only the AM mode is retained.
  • the RRC layer processing module 705 has one or more of the following features:
  • the process of performing random access and the process of access control by the RRC layer processing module is less than the process of performing random access and the process of access control specified by the LTE standard;
  • the system information broadcast process of the RRC layer processing module is less than the system information broadcast process specified by the LTE standard;
  • the transmission mode configuration information about the NDA terminal in the RRC layer processing module is less than the transmission mode configuration information specified by the LTE standard;
  • the cell signal measurement and reporting configuration information of the RRC layer processing module corresponds to less than the cell signal measurement and the upper configuration information specified by the LTE standard.
  • the interface that is implemented by the radio frequency module to the RRC layer processing module is called a DA-Uu interface, and the DA terminal passes the DA-Uu interface.
  • the interface is connected to the DA base station.
  • the NDA terminal further includes a control and management module, and further includes: a configuration module, configured to: when the radio module receives the system broadcast message of the access cell, the system broadcast message includes the identifier information indicating that the base station capability attribute is the NDA mode. When configuring the NDA mode.
  • the DA terminal further includes: an LTE middle layer processing module, configured to support LTE mode transmission.
  • the NDA terminal further includes:
  • the measurement module is configured to measure neighboring cells and report the measurement results through the radio frequency module.
  • a control module configured to: after receiving the handover indication of the LTE base station, disconnect the connection with the LTE base station, and switch from the LTE mode to the D A mode.
  • the configuration module is also used to configure the DA mode after switching to the DA mode.
  • this embodiment proposes a system and a system for improvement.
  • One of the technologies associated with the new system is the cell access procedure.
  • the cell access procedure is described below.
  • the main method flow of the cell access method on the network side in this embodiment is as follows:
  • Step 801 After the NDA base station establishes a connection with the core network, the control channel is configured.
  • Step 802 The DA base station sends a system broadcast message, where the system broadcast message includes identifier information indicating that the base station capability attribute is a DA mode.
  • the main method of the cell access method on the terminal side in this embodiment is as follows:
  • Step 901 The DA terminal receives a system broadcast message.
  • Step 902 When the system broadcast message includes the identifier information indicating that the base station capability attribute is the DA mode, the DA terminal configures the D A mode.
  • the DA terminal can support only the NDA mode, or support the NDA mode and the LTE mode, and the DA terminal supporting the two modes can be referred to as an LTE+NDA terminal.
  • Step 1002 The NDA base station transmits a synchronization signal and configures various control channels.
  • Step 1003 The DA base station sends a system broadcast message, where the system broadcast message includes identifier information indicating that the base station capability attribute is a DA mode.
  • Steps 1001 to 1003 are processing procedures after the base station side is powered on.
  • Step 1004 The DA terminal is powered on, and the synchronization with the DA base station is completed by searching for the synchronization signal.
  • Step 1005 The DA terminal receives the system broadcast message and obtains the system access parameter.
  • Step 1006 When the system broadcast message includes the identifier information indicating that the base station capability attribute is the DA mode, the DA terminal configures the DA mode, and then camps in the DA cell.
  • Step 1007 The DA terminal application layer triggers the Internet data service communication, and the terminal initiates random access through the RRC module, completes authentication and registration through the RRC protocol process, and completes the data connection establishment through the core network.
  • Step 1008 The DA terminal performs scheduling of the service data packet by using the DA base station scheduling.
  • Step 1009 Perform traffic statistics and accounting on the core network.
  • the method for the LTE+ DA terminal supporting the cell in the DA mode and the LTE mode in this embodiment is as follows:
  • Step 1101 The DA base station is powered on, establishes a communication connection with the core network through the DA gateway, and completes parameter configuration.
  • Step 1102 The NDA base station transmits a synchronization signal and configures various control channels.
  • Step 1103 The DA base station sends a system broadcast message, where the system broadcast message includes identifier information indicating that the base station capability attribute is a DA mode, and specifically, the system broadcast message is sent based on the configured control information.
  • Steps 1101 to 1103 are processing procedures after the NDA base station side is powered on.
  • Step 1104 The LTE base station transmits a synchronization signal according to the protocol, configures a complete LTE control channel, and performs system broadcast according to the protocol.
  • the LTE control channel is configured to perform system broadcast according to the protocol.
  • Step 1105 The LTE+ DA terminal is powered on, and the synchronization establishment with the base station is completed by searching for the synchronization signal.
  • the base station here may be a D A base station or an LTE base station, depending on the actual situation.
  • Step 1106 The LTE+NDA terminal receives the system broadcast message and obtains the system access parameter.
  • Step 1107 The LTE+NDA terminal configures the NDA mode, and then camps in the NDA cell. For subsequent processes, see steps 1007 ⁇ 1009.
  • Step 1108 The LTE+NDA terminal configures the LTE mode (or LTE full mode) and then camps in the LTE cell.
  • the communication process can be completed in the LTE system in accordance with the relevant procedures and protocols of the LTE.
  • This embodiment proposes the concept of a DA cell, and then involves the problem of handover between a DA cell and an LTE cell.
  • the following describes the ' ⁇ , zone switching process.
  • the main method for cell handover in this embodiment is as follows:
  • Step 1201 The NDA terminal supporting the LTE protocol receives the system broadcast message of the neighboring cell in the LTE mode, where the system broadcast message includes the identifier information indicating that the base station capability attribute is the NDA mode.
  • Step 1202 The ND A terminal measures the neighboring cell and extracts the measurement result.
  • Step 1203 After receiving the handover indication of the LTE base station, disconnect the LTE base station, switch from the LTE mode to the NDA mode, and perform NDA mode configuration to access the adjacent NDA cell.
  • Step 1301 The LTE+NDA terminal works in the LTE mode under the LTE base station.
  • Step 1302 The LTE+NDA terminal performs neighbor cell measurement and reports, and learns that the neighbor cell is an NDA cell by reading a system broadcast of the neighboring cell.
  • Step 1303 After receiving the measurement report, the LTE base station determines, by using the handover decision, that the LTE+NDA terminal switches to the adjacent NDA cell.
  • Step 1304 The LTE+NDA terminal maintains a high-level data connection with the network side under the handover indication of the LTE base station, and suspends the transmission and reception of the service data.
  • Step 1305 The LTE+NDA terminal disconnects from the LTE base station and switches to the ND A mode.
  • Step 1306 The LTE+NDA terminal performs synchronization and access with the new NDA cell to establish a wireless connection.
  • Step 1307 The LTE+NDA terminal continues to transmit and receive data in the ND A cell.
  • the internal structure and functions of the NDA base station and the NDA terminal in this process are described below for the cell access and handover procedures.
  • the DA base station in this embodiment includes: a configuration module and a radio frequency module 401.
  • a configuration module is configured to configure a control channel after establishing a connection with the core network.
  • the radio module 401 is configured to send a system broadcast message, where the system broadcast message includes identifier information indicating that the base station capability attribute is a DA mode, and specifically, the system broadcast message is sent based on the configured control channel.
  • the DA terminal in this embodiment includes: a radio frequency module 701 and a configuration module.
  • the radio frequency module 701 is configured to receive a system broadcast message.
  • the configuration module is configured to configure the DA mode when the system broadcast message includes the identifier information indicating that the base station capability attribute is the DA mode.
  • the DA terminal further includes: an LTE middle layer processing module, configured to support LTE mode transmission.
  • an LTE middle layer processing module configured to support LTE mode transmission.
  • the LTE middle layer processing module configures the LTE mode.
  • the DA terminal in the cell handover in this embodiment includes: a radio frequency module 701, a measurement module, a control module, a configuration module, and an RRC layer processing module 705.
  • the radio frequency module 701 is configured to receive a system broadcast message of a neighboring cell in an LTE mode, where the system broadcast message includes identifier information indicating that the base station capability attribute is a D A mode.
  • the measurement module is used to measure neighboring cells and report the measurement results.
  • the control module is configured to disconnect the connection with the LTE base station after receiving the handover indication of the LTE base station, and switch from the LTE mode to the D A mode.
  • the configuration module is used for NDA mode configuration.
  • the RRC layer processing module 705 is configured to access an adjacent NDA cell.
  • the embodiment of the present invention provides a ND A base station and a trunked interface, and the ND A base station can directly connect to the Internet without going through the core network, and the core network cooperates with the cylindrical DA base station through the trunk interface, thereby improving Data transmission capacity and efficiency to meet the needs of nomadic high-speed IP data services.
  • the embodiments of the present invention have been streamlined and improved on the core network, the base station, and the terminal.
  • a DA gateway is added to the DA system.
  • embodiments of the present invention provide an implementation of cell access and handover for a collapsed and improved NDA system.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention is in the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种游牧数据接入系统及装置 本申请要求在 2011年 12月 20日提交中国专利局、 申请号为 201010597553.1、 发明名称为
"一种游牧数据接入系统、 装置及数据传输方法 "的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。 技术领域 本发明涉及通信领域, 特别是涉及游牧数据接入系统及装置。 背景技术 随着移动互联网 ( Mobile Internet )和智能手机的普及, 移动数据流量需求飞速增长。 为提高容量, 目前主要有两种解决方案。
一种方案是釆用无线局域网 (WLAN ( Wireless Local Area Network )或 WiFi ) 系统。 WiFi系统与 3G系统松耦合, 在 3G系统核心网中进行认证和计费。 釆用 WiFi进行热点地区 覆盖, 能够起到较好的数据业务分流作用。 但是由于 WiFi系统与 3G系统是两套不同的标准 体系, 所以通常情况下需要用户手动选择接入的网络, 很难实现业务在两个接入网间的平 滑切换。 并且, 链路盾量不能得到保证, WiFi釆用的是非授权 ISM ( Industrial Scientific and Medical, 工科医)频段, 存在与自用 WiFi设备、 微波炉等各种设备之间的千扰。 多运营商 同时组网困难, 由于其工作频段为非授权频段, 多个运营商在同一区域组网时, 如果没有 很好的协调统一规划, 将造成相互的千扰。
另一种方案是釆用家庭基站(Femto、 HNB或 He B )。 家庭基站可通过宏基站等设备 连接到 3G系统的核心网。 家庭基站的成本更低, 部署更灵活, 起到了一定的室内数据分流 作用, 也能够支持电信级业务。 但是家庭基站并没有针对室内业务特点进行进一步的筒化 和优化, 以 LTE ( Long Term Evolution, 长期演进)为例, 基本釆用了 LTE完整的协议架构 和接口, 与 LTE系统具有相同的物理层设计, 相同的射频要求, 所以实现复杂度并没有很 大的降低。 发明内容
本发明实施例提供一种游牧数据接入系统、 装置及数据传输方法, 用于提供一种新的 通信系统及相关装置和方法, 以降低系统复杂度。
一种游牧数据接入 DA系统, 包括: 核心网和 DA基站; 其中
核心网, 包括 NDA部分和 3GPP部分, 所述 DA部分用于与 DA基站建立通信接 口, 并通过 NDA基站为 NDA终端建立通信链路, 将 NDA用户数据业务传输到核心网中 的 3GPP部分; 3GPP部分用于处理 NDA用户数据业务, 以及实现版本 10及之前版本的 3GPP系统功能;
NDA基站, 用于与核心网中的 NDA部分建立通信接口, 并与核心网中的 NDA部分 为 DA终端建立通信链路并传输 NDA用户数据业务,或者与局域或广域互联网络建立通 信链路, 将 DA用户数据业务传输到局域或广域互联网络。
一种核心网, 包括: DA部分和 3GPP部分; 其中
核心网中的 NDA部分, 用于与 NDA基站建立通信接口, 并通过 NDA基站为 NDA 终端建立通信链路, 将 NDA用户数据业务传输到核心网中的 3GPP部分;
核心网中的 3GPP部分用于处理 NDA用户数据业务。
一种 DA基站, 包括: 射频模块、 物理层处理模块、 MAC层处理模块、 RLC层处理 模块、 RRC层处理模块、 路由模块和 Sl-nda接口模块; 其中
Sl-nda接口模块用于与核心网中的 DA部分建立通信接口,与核心网中的 DA部分 为 NDA终端建立通信链路并传输 NDA用户数据业务;
路由模块, 用于与局域 /广域互联网络建立通信链路, 将 NDA用户数据业务传输到局 域 /广域互联网络。
一种 NDA网关, 包括:
DA基站接口模块,用于与 DA基站建立通信接口, 并通过 DA基站为 DA终端 建立通信链路, 与 DA基站传输 NDA用户数据业务;
DA基站管理模块, 用于对 DA基站进行鉴权、 接入管理和参数配置中的一项或多 项处理;
Sl-ndu接口模块, 用于与核心网中的 DA部分建立通信接口, 并与核心网中的 DA 部分为 NDA终端建立通信链路, 以及与核心网中的 NDA部分传输 NDA用户数据业务。
一种 NDA终端, 包括:
射频模块, 用于发射和接收数据信号;
物理层处理模块, 用于对数据信号进行编码 /译码、 调制 /解调、 关于多天线的传输处 理, 链路自适应和重传处理中的一项或多项处理;
MAC层处理模块, 用于在上行过程中对 RLC层数据包进行调度、 传输和重传处理中 的一项或多项处理, 以及在下行过程中进行 MAC数据包解码和 /或重传处理;
RLC层处理模块, 用于在上行过程中进行 IP数据包分段和 IP数据包的重传处理, 在 下行过程中进行 MAC数据包的级联和重组, 以及 MAC数据包的重传处理; RRC层处理模块, 用于控制无线链路、 及管理无线资源;
IP应用层处理模块, 用于处理业务应用层的各类信息和数据。
一种小区接入方法, 应用于网络侧, 包括以下步骤:
NDA基站与核心网建立连接后, 配置控制信道; 以及
DA基站发送系统广播消息, 系统广播消息包含表示基站能力属性为 DA模式的标 识信息。
一种小区接入方法, 应用于终端侧, 包括以下步骤:
DA终端接收系统广播消息;
当系统广播消息包含表示基站能力属性为 DA模式的标识信息时, DA终端配置 DA模式。
一种小区切换方法, 包括以下步骤:
支持 LTE协议的 DA终端在 LTE模式下接收相邻小区的系统广播消息, 该系统广播 消息包含表示基站能力属性为 NDA模式的标识信息;
DA终端对相邻小区进行测量, 并上报测量结果;
在收到 LTE基站的切换指示后, 断开与 LTE基站的连接,从 LTE模式切换到 ND A模 式, 并进行 NDA模式配置, 接入到相邻的 NDA小区。
一种 DA基站, 包括:
配置模块, 用于在与核心网建立连接后, 配置控制信道;
射频模块, 用于发送系统广播消息, 系统广播消息包含表示基站能力属性为 DA模 式的标识信息。
一种 NDA终端, 包括:
射频模块, 用于接收系统广播消息;
配置模块, 用于当系统广播消息包含表示基站能力属性为 DA模式的标识信息时, 配置 DA模式。
一种 NDA终端, 包括:
射频模块, 用于在 LTE模式下接收相邻小区的系统广播消息, 该系统广播消息包含表 示基站能力属性为 NDA模式的标识信息;
测量模块, 用于对相邻小区进行测量, 并上报测量结果;
控制模块, 用于在收到 LTE基站的切换指示后, 断开与 LTE基站的连接, 从 LTE模 式切换到 D A模式;
配置模块, 用于进行 NDA模式配置; RRC层处理模块, 用于接入到相邻的 NDA小区。
本发明实施例提供了筒化了的 ND A基站和筒化的接口,该 ND A基站可不经过核心网 而直接连接互联网, 以及核心网通过筒化的接口配合该筒化的 DA基站, 从而提高数据 传输容量和效率, 适应游牧的高速 IP数据业务的需求。 附图说明
图 1为本发明实施例中游牧数据接入系统的结构图;
图 2为本发明实施例中带网关的游牧数据接入系统的结构图;
图 3为本发明实施例中核心网的结构图;
图 4为本发明实施例中 DA基站的结构图;
图 5为本发明实施例中 DA网关的主要结构图;
图 6为本发明实施例中 NDA网关的详细结构图;
图 7为本发明实施例中 DA终端的结构图;
图 8为本发明实施例中小区接入方法在网络侧的主要方法流程图;
图 9为本发明实施例中小区接入方法在终端侧的主要方法流程图;
图 10为本发明实施例中只支持 NDA模式的 NDA终端接入小区的方法流程图; 图 11为本发明实施例中支持 DA模式和 LTE模式的 LTE+ DA终端接入小区的方法 流程图;
图 12为本发明实施例中小区切换的主要方法流程图;
图 13为本发明实施例中小区切换的详细方法流程图;
图 14为本发明实施例中小区接入时 NDA基站的结构图;
图 15为本发明实施例中小区接入时 NDA终端的结构图;
图 16为本发明实施例中小区切换时 DA终端的结构图。 具体实施方式
近年来, 随着移动互联网 (Mobile Internet )和智能手机的普及, 移动数据流量需求飞 速增长。 传统的蜂窝移动通信系统主要面向高速移动, 无缝切换和高 QoS (盾量和服务) 要求的电信级业务设计, 当其承载热点地区大流量低速移动的 IP (互联网协议)数据包业 务时, 效率偏低, 成本过高。 蜂窝移动运营商需要找出低成本, 高容量, 适合室内无线数 据接入的解决方案。
针对室内业务低速移动, 带宽需求大, 流量需求更大, 用户数目少, 业务以纯 IP数据 互联网业务为主, QoS 要求单一等特点, 本发明实施例中将提出一种游牧数据接入
( Nomadic Data Access, 本申请中筒称为 NDA )解决方案。 该方案是基于 3GPP ( The 3rd Generation Partnership Project, 第三代移动通信系统) LTE (长期演进)物理层技术设计 的数据传输系统和方法, 可以实现室内和热点地区高效率低成本的数据业务传输。 下面结 合附图对本发明的具体实施方式进行说明。
本发明的构思在于: 基于 LTE协议体系, 经过进一步筒化无线接入协议流程, 支持游 牧的高速 IP数据接入, 牺牲一定的移动性, QoS (盾量和服务)和安全性, 降低无线接入 设备(基站)和数据终端设备的成本, 提高数据接入的能力。 筒化的无线接入设备和传统 蜂窝网络核心网之间通过筒化的接口互相融合。 并且使完整 LTE 终端同时支持完整 LTE 模式和筒化的 DA接入模式,支持在 LTE蜂窝移动网络和 LTE 游牧数据接入网络中工作。
为了更好的从整体上把握本发明实施例提供的技术方案, 首先对涉及本发明的通信系 统的架构进行说明。
参见图 1 , 本实施例中游牧数据接入系统包括: 核心网 101和 DA基站 102。 核心网 101包括 NDA部分和 3GPP部分。
核心网 101中的 DA部分,用于与 DA基站建立通信接口,并通过 DA基站为 NDA 终端建立通信链路, 将 DA用户数据业务传输到核心网中的 3GPP部分。 核心网 101 中 的 DA部分是在原有 LTE系统相应模块基础上进一步筒化或改进的功能模块, 在设计上 可以为单独的功能实体, 也可以是嵌入在 LTE对应功能实体上的筒化流程和筒化处理模 式 。 核 心 网 中 的 3GPP 部 分 用 于 实 现 除 本 实 施 例 筒 化 或 改 进 部分以外的 LTE核心网原有功能, 即实现版本 10 ( R10 )及之前版本的 3GPP系统功能, 如对数据业务的处理等。
DA基站 102用于与核心网 101中的 DA部分建立通信接口,并与核心网中的 DA 部分为 NDA终端建立通信链路并传输 NDA用户数据业务,或者与局域或广域互联网络建 立通信链路, 将 NDA用户数据业务传输到局域或广域互联网络。 本实施例中 NDA基站 102具有与核心网 101通信的功能, 还具有与局域或广域互联网络通信的功能, 可满足用 户接入核心网或局域或广域互联网络的需要, 并有效提高传输容量。
所述系统还包括: DA网关 103 , 参见图 2所示。 DA网关 103用于与 DA基站和 核心网中的 DA部分分别连接,转发 DA基站与核心网中的 DA部分之间传输的 DA 用户数据业务。 DA网关 103可起到将多个 NDA基站的数据和接口汇聚后和核心网连接 的作用, 减少大量 DA基站直接接入核心网给核心网造成的容量负担等。 DA网关 103 还用于对 NDA基站进行认证管理等, 便于系统维护。 所述系统还包括: NDA终端 104, 用于与 NDA基站连接, 并与 NDA基站传输 NDA 用户数据业务。 NDA终端 104还可以支持 LTE模式, 形成 LTE+ NDA终端。
所述系统还包括: LTE基站和 LTE终端。 LTE基站为现有的 3GPP LTE基站, 具体协 议和功能参考 3GPP ( The 3rd Generation Partnership Project, 第三代合作伙伴计划)协议。
LTE终端为现有的 3GPP LTE终端, 具体协议和功能参考 3GPP协议。
通过以上描述了解了系统的网络结构, 下面针对系统中的各装置进行详细介绍。 还会 对各装置涉及到的与其它装置的配合实施进行说明, 但这并不意味着这些装置必须配合实 施, 实际上, 当这些装置分开实施时, 其也各自解决了在该装置上存在的问题, 只是它们 配合使用时, 会获得更好的技术效果。
参见图 3 , 本实施例中核心网 101 包括 NDA部分 301和 3GPP部分 302。 NDA部分
301又包括 Sl-nda接口模块 3011、 NDA设备和用户管理模块 3012和 NDA数据传输模块
3013。
Sl-nda接口模块 3011用于与 DA基站建立通信接口。 本实施例对 S1接口进行了筒 化和改进, 因此称筒化和改进后的 S 1接口为 S 1 -nda接口。
NDA设备和用户管理模块 3012用于对 NDA终端进行到核心网中的 3GPP部分的接入 管理、 认证鉴权和通信链接的建立和管理。
DA数据传输模块 3013用于将 NDA用户数据业务传输到核心网中的 3GPP部分。 参见图 4, 本实施例中 DA基站 102包括射频模块 401、 物理层处理模块 402、 MAC ( Media Access Control, 媒体接入控制)层处理模块 403、 RLC ( Radio Link Control, 无线 链路控制)层处理模块 404、 RRC ( Radio Resource Control, 无线资源控制)层处理模块 405、 路由模块 406和 S 1 -nda接口模块 407。 ND A基站 102在 3 GPP LTE标准和协议体系 下, 筒化了协议流程和功能, 釆用更低功率, 支持更少用户数目, 实现高效低成本的小型 基站。 同时, DA基站 102也可以独立于核心网工作, 通过内置的路由功能和 Internet网 络数据传输。 详细说明如下:
Sl-nda接口模块 407用于与核心网中的 DA部分建立通信接口, 与核心网中的 DA 部分为 DA终端建立通信链路并传输 NDA用户数据业务。 Sl-nda接口模块还用于 DA 终端的接入控制、 加密鉴权、 计费、 ND A终端的漫游控制和 ND A终端数据链接控制中的 一项或多项处理。
路由模块 406用于与局域或广域互联网络建立通信链路, 将 NDA用户数据业务传输 到局域或广域互联网络。
射频模块 401用于发射和接收数据信号。 DA基站 102在开机后,射频模块发送系统 广播消息, 系统广播消息包含表示基站能力属性为 NDA模式的标识信息。
物理层处理模块 402用于对输入的数据信号进行编码或译码、 调制或解调、 关于多天 线的传输处理, 链路自适应和重传处理中的一项或多项处理。
MAC层处理模块 403用于在下行过程中对 RLC层数据包进行调度、 传输和重传处理 中的一项或多项处理, 以及在上行过程中进行用户调度、 MAC 数据包解码和重传处理中 的一项或多项处理。
RLC层处理模块 404用于在下行过程中进行 IP数据包分段和 IP数据包的重传处理, 在上行过程中进行 MAC数据包的级联和重组, 以及 MAC数据包的重传处理。
RRC层处理模块 405用于控制无线链路、 及管理无线资源。
DA基站 102还包括数据传输接口 408 , 用于提供物理链路传输, 为各种逻辑接口和 数据通道的最终出入口。也就是说路由模块 406和 Sl-nda接口模块 407将通过数据传输接 口 408与外界通信。
由于 DA基站主要覆盖室内和热点地区,本实施例对 DA基站中的各模块进行了筒 化, 以适应室内和热点地区的传输需求, 并且降低设备成本。
射频模块 401具有以下一个或多个特征:
射频模块釆用的下行功率范围低于 LTE标准规定(LTE STANDARD SPECIFIED ) 的 下行功率范围; 例如, 下行功率低于 20dBm。
射频模块的上行灵敏度低于 LTE 标准规定的上行灵敏度; 例如, 上行灵敏度低于 -85dBm (条件为 QPSK ( Quadrature Phase Shift Keying, 四相相移键控 ) , 1/3码率)。
射频模块中发射机滤波器的邻道抑制比低于 LTE标准规定的邻道抑制比; 例如, 邻道 抑制比低于 30dB。
射频模块中发射机的带外辐射高于 LTE标准规定的带外辐射; 例如, 带外辐射高于 -30dBm/lMHz。
物理层处理模块 402具有以下一个或多个特征:
物理层处理模块支持的多天线传输模式少于 LTE标准规定的多天线传输模式; 例如, 只保留协议 3GPP TS36.222中的模式 1和模式 3。
物理层处理模块中配置的测量周期和反馈周期,对应大于 LTE标准规定的测量周期和 反馈周期。
物理层处理模块中配置的控制信道和参考符号的数量,对应少于 LTE标准规定的控制 信道和参考符号的数量。
本发明实施例中提到 NDA相关的过程少于 LTE规定的相关过程, 具体是指 DA相 关的过程中执行的步骤少于 LTE规定相关过程中步骤, NDA相关的过程中交互的信令的 信息量少于 LTE规定相关过程中交互的信令的信息量。
MAC层处理模块 403具有以下一个或多个特征:
MAC层处理模块进行关于 QoS的控制和调度的过程, 少于 LTE标准规定的关于 QoS 的控制和调度的过程; 例如, 不区分 QCI ( QoS Class Identifier, Qos类别标识)级别, 釆 用基于等待传输的数据緩存数据量排队传输, 或者数据包到达时间顺序调度传输。
MAC 层处理模块进行调度时支持的用户数目限定在一个小于设定值的数目, 该设定 值较小; 例如, 同时隙调度 2用户, 系统最大支持 8用户。
MAC层处理模块进行数据包传输过程中的相关保护和操作的过程, 少于 LTE标准规 定的数据包传输过程中的相关保护和操作的过程。
RLC层处理模块 404具有以下特征:
RLC层处理模块进行重传的过程少于 LTE标准规定的进行重传的过程。例如,只保留 AM ( acknowledged mode, 应答模式 )。
RRC层处理模块 405具有以下一个或多个特征:
RRC层处理模块进行随机接入的过程和接入控制的过程, 少于 LTE标准规定的随机 接入的过程和接入控制的过程;
RRC层处理模块的系统信息广播过程少于 LTE标准规定的系统信息广播过程;
RRC层处理模块中关于 NDA终端的传输模式配置信息, 少于 LTE标准规定的传输模 式配置信息;
RRC层处理模块的小区信号测量和上报配置信息, 对应少于 LTE标准规定的小区信 号测量和上 4艮配置信息。
以上是对 NDA基站 102中通信层各模块做的介绍。 NDA基站还包括控制和管理层模 块, 如还包括: 配置模块, 用于在与核心网建立连接后, 配置控制信道。
本实施例不仅对各模块的内部功能做了筒化, 还可以筒化 DA基站中的模块, 例如, DA基站不包括 PDCP ( Packet Data Convergence Protocol , 分组数据集中协议 )层处理模 块、 非接入层 NAS ( Non- Access Stratum )处理模块和用于数据包加密的模块。 可大幅度 提高 D A基站的处理容量和速度。
参见图 5 , 本实施例中 DA网关 103包括 ND A基站接口模块 501、 DA基站管理模 块 502和 Sl-ndu接口模块 503。
DA基站接口模块 501用于与 DA基站建立通信接口,并通过 DA基站为 DA终 端建立通信链路, 与 NDA基站传输 NDA用户数据业务; DA基站管理模块 502用于对 NDA基站进行鉴权、 接入管理和参数配置中的一项或 多项处理;
Sl-ndu接口模块 503用于与核心网中的 DA部分建立通信接口,并与核心网中的 DA 部分为 NDA终端建立通信链路, 以及与核心网中的 NDA部分传输 NDA用户数据业务。
DA基站也可以通过 DA网关连接到互联网络, 因此 DA网关还包括: 路由模块 504和 NDA用户管理模块 505 , 参见图 6所示。
路由模块 504用于将 DA终端业务数据封装成 IP协议数据包,并将 IP协议数据包传 输到互联网。
DA用户管理模块 505用于对 NDA终端进行接入管理、 鉴权和计费中的一项或多项 处理。 NDA用户管理模块 505可实现 NDA终端连接到互联网时对 NDA终端的管理。
DA网关 103还包括数据传输接口 506, 用于提供物理链路传输, 为各种逻辑接口和 数据通道的最终出入口。也就是说路由模块 504和 Sl-nda接口模块 503将通过数据传输接 口 506与外界通信。
本实施例中 DA基站与核心网之间的接口、NDA基站与 DA网关之间的接口、 DA 网关与核心网之间的接口, 以上接口均为 Sl-nda接口。 LTE基站与核心网之间的接口为 S1接口。 Sl-nda接口相对原有 S1接口的功能进行了大量的筒化。 Sl-nda接口主要实现的 功能有: ND A终端的接入控制, 加密鉴权, 计费功能; ND A终端的漫游功能; NDA终端 数据链接的管理功能; NDA终端的数据传输功能等。 S1接口为 3GPP现有定义的基站和 核心网之间的接口, 支持数据传输, QoS管理和移动性管理等功能。
参见图 7,本实施例中 NDA终端 104包括:射频模块 701、物理层处理模块 702、 MAC 层处理模块 703、 RLC层处理模块 704、 RRC层处理模块 705和 IP应用层处理模块 706。
射频模块 701用于发射和接收数据信号。 DA终端开机后,射频模块 701接收系统广 播消息, 该系统广播消息包含表示基站能力属性为 NDA模式的标识信息。 射频模块 701 接收的系统广播消息为接入小区的系统广播消息或相邻小区的系统广播消息。
物理层处理模块 702用于对数据信号进行编码 /译码、 调制 /解调、 关于多天线的传输 处理, 链路自适应和重传处理中的一项或多项处理。
MAC层处理模块 703用于在上行过程中对 RLC层数据包进行调度、 传输和重传处理 中的一项或多项处理, 以及在下行过程中进行 MAC数据包解码和 /或重传处理。
RLC层处理模块 704用于在上行过程中进行 IP数据包分段和 IP数据包的重传处理, 在下行过程中进行 MAC数据包的级联和重组, 以及 MAC数据包的重传处理。
RRC层处理模块 705用于控制无线链路、 及管理无线资源。 IP应用层处理模块 706用于处理业务应用层的各类信息和数据。
本实施例中的 NDA终端为适合游牧的高速 IP数据业务传输,对内部模块进行了筒化。 具体说明如下:
射频模块 701具有以下一个或多个特征:
射频模块釆用的下行功率范围低于 LTE标准规定的下行功率范围; 例如, 下行功率低 于 20dBm。
射频模块的上行灵敏度低于 LTE 标准规定的上行灵敏度; 例如, 上行灵敏度低于 -85dBm (条件为 QPSK, l/3码率)。
射频模块中发射机滤波器的邻道抑制比低于 LTE标准规定的邻道抑制比; 例如, 邻道 抑制比低于 30dB。
射频模块中发射机的带外辐射高于 LTE标准规定的带外辐射; 例如, 带外辐射高于 -30dBm/lMHz。
物理层处理模块 702具有以下一个或多个特征:
物理层处理模块支持的多天线传输模式少于 LTE标准规定的多天线传输模式; 例如, 只保留协议 3GPP TS36.222中的模式 1和模式 3。
物理层处理模块中配置的测量周期和反馈周期,对应大于 LTE标准规定的测量周期和 反馈周期;
物理层处理模块中配置的控制信道和参考符号的数量,对应少于 LTE标准规定的控制 信道和参考符号的数量。
MAC层处理模块 703具有以下一个或多个特征:
MAC层处理模块进行关于 QoS的控制和调度的过程, 少于 LTE标准规定的关于 QoS 的控制和调度的过程; 例如, 不区分 QCI级别, 釆用基于等待传输的数据緩存数据量排队 传输, 或者数据包到达时间顺序调度传输。
MAC层处理模块进行数据包传输过程中的相关保护和操作的过程, 少于 LTE标准规 定的数据包传输过程中的相关保护和操作的过程。
RLC层处理模块 704具有以下特征:
RLC层处理模块进行重传的过程少于 LTE标准规定的重传的过程。 例如, 只保留 AM 模式。
RRC层处理模块 705具有以下一个或多个特征:
RRC层处理模块进行随机接入的过程和接入控制的过程, 少于 LTE标准规定的进行 随机接入的过程和接入控制的过程; RRC层处理模块的系统信息广播过程少于 LTE标准规定的系统信息广播过程;
RRC层处理模块中关于 NDA终端的传输模式配置信息, 少于 LTE标准规定的传输模 式配置信息;
RRC层处理模块的小区信号测量和上报配置信息, 对应少于 LTE标准规定的小区信 号测量和上 4艮配置信息。
由于本实施例对 DA终端中的射频模块至 RRC层处理模块进行了筒化, 因此将射频 模块至 RRC层处理模块实现的筒化后的接口称为 DA-Uu接口, DA终端通过 DA-Uu 接口与 DA基站连接。
以上是对 DA终端中通信层各模块做的介绍。 NDA终端还包括控制和管理层模块, 如还包括: 配置模块, 用于在开机后射频模块接收接入小区的系统广播消息时, 尤其是系 统广播消息包含表示基站能力属性为 NDA模式的标识信息时, 配置 NDA模式。
DA终端还包括: LTE中层处理模块, 用于支持 LTE模式传输。 射频模块在 LTE模 式下接收相邻小区的系统广播消息时, NDA终端还包括:
测量模块用于对相邻小区进行测量, 并通过射频模块上报测量结果。
控制模块, 用于在收到 LTE基站的切换指示后, 断开与 LTE基站的连接, 从 LTE模 式切换到 D A模式。
配置模块还用于在切换到 DA模式后, 配置 DA模式。
以上主要介绍了 DA系统及其内部各装置的结构和功能。 本实施例为了适应游牧的 高速 IP数据业务传输,提出了筒化和改进的系统。 与新系统关联的技术之一便是小区接入 过程, 下面对小区接入过程进行介绍。
参见图 8 , 本实施例中小区接入方法在网络侧的主要方法流程如下:
步骤 801 : NDA基站与核心网建立连接后, 配置控制信道。
步骤 802: DA基站发送系统广播消息, 系统广播消息包含表示基站能力属性为 DA 模式的标识信息。
参见图 9, 本实施例中小区接入方法在终端侧的主要方法流程如下:
步骤 901: DA终端接收系统广播消息。
步骤 902: 当系统广播消息包含表示基站能力属性为 DA模式的标识信息时, DA 终端配置 D A模式。
DA终端可以只支持 NDA模式, 或者支持 NDA模式和 LTE模式, 支持两种模式的 DA终端可称为 LTE+NDA终端。 下面针对两种模式的 NDA终端接入小区的过程进行介 绍。 参见图 10, 本实施例中只支持 NDA模式的 NDA终端接入小区的方法流程如下: 步骤 1001: DA基站开机,通过 DA网关和核心网建立通信连接,并完成参数配置。 为了尽量避免和 LTE基站构成的蜂窝网络之间的千扰, 配置 DA基站工作在与 LTE基站 不同的频段上。 当然也可以工作在同一频段。
步骤 1002: NDA基站发射同步信号, 并配置各种控制信道。
步骤 1003: DA基站发送系统广播消息,系统广播消息包含表示基站能力属性为 DA 模式的标识信息。
步骤 1001〜步骤 1003是基站侧开机后的处理过程。
步骤 1004: DA终端开机, 通过搜索同步信号, 完成与 DA基站的同步。
步骤 1005: DA终端接收系统广播消息, 获得系统接入参数。
步骤 1006: 当系统广播消息包含表示基站能力属性为 DA模式的标识信息时, DA 终端配置 DA模式, 然后驻留在 DA小区中。
当有数据业务需求时, 进行下面的步骤。
步骤 1007: DA终端应用层触发 Internet数据业务通信, 终端通过 RRC模块发起随 机接入, 并通过 RRC协议流程, 完成鉴权和注册, 并通过核心网完成数据连接建立。
步骤 1008: DA终端通过 DA基站调度, 进行业务数据包的收发。
步骤 1009: 核心网进行流量统计和计费等。
参见图 11 , 本实施例中支持 DA模式和 LTE模式的 LTE+ DA终端接入小区的方法 流程如下:
步骤 1101: DA基站开机,通过 DA网关与核心网建立通信连接,并完成参数配置。 步骤 1102: NDA基站发射同步信号, 配置各种控制信道。
步骤 1103: DA基站发送系统广播消息,系统广播消息包含表示基站能力属性为 DA 模式的标识信息, 具体地, 基于配置的控制信息发送系统广播消息。
步骤 1101〜步骤 1103是 NDA基站侧开机后的处理过程。
步骤 1104: LTE基站按照协议发射同步信号等, 配置完整的 LTE控制信道, 按照协议 进行系统广播, 具体地, 基于配置的 LTE控制信道按照协议进行系统广播。
步骤 1105: LTE+ DA终端开机, 通过搜索同步信号, 完成与基站的同步建立。 此处 的基站可能是 D A基站也可能是 LTE基站, 视实际情况而定。
步骤 1106: LTE+NDA终端接收系统广播消息, 获得系统接入参数。
如果广播信息指示覆盖小区为 NDA小区, 则继续步骤 1107, 如果广播信息指示覆盖 小区为 LTE小区, 则继续步骤 1108。 步骤 1107: LTE+NDA终端配置 NDA模式, 然后驻留在 NDA小区中。 后续过程可参 见步骤 1007~1009。
步骤 1108: LTE+NDA终端配置 LTE模式(或称 LTE完整模式), 然后驻留在 LTE小 区中。 后续可按照 LTE的相关流程和协议在 LTE系统中完成通信过程。
本实施例提出了 DA小区的概念, 那么就涉及到 DA小区与 LTE小区之间切换的 问题。 下面针对 '』、区切换过程进行介绍。
参见图 12 , 本实施例中小区切换的主要方法流程如下:
步骤 1201: 支持 LTE协议的 NDA终端在 LTE模式下接收相邻小区的系统广播消息, 该系统广播消息包含表示基站能力属性为 NDA模式的标识信息。
步骤 1202: ND A终端对相邻小区进行测量, 并上 ·ί艮测量结果。
步骤 1203: 在收到 LTE基站的切换指示后, 断开与 LTE基站的连接, 从 LTE模式切 换到 NDA模式, 并进行 NDA模式配置, 接入到相邻的 NDA小区。
参见图 13 , 本实施例中小区切换的详细方法流程如下:
步骤 1301: LTE+NDA终端按照 LTE模式工作在 LTE基站下。
步骤 1302: LTE+NDA终端进行相邻小区测量并上报, 通过读取相邻小区的系统广播 获知相邻小区为 NDA小区。
步骤 1303: LTE基站收到测量 4艮告后, 通过切换判决确定 LTE+NDA终端切换到相邻 的 NDA小区。
步骤 1304: LTE+NDA终端在 LTE基站的切换指示下, 与网络侧保持高层数据连接, 暂停业务数据的收发。
步骤 1305: LTE+NDA终端断开与 LTE基站的无线连接, 并切换到 ND A模式。
步骤 1306: LTE+NDA终端进行与新的 NDA小区的同步和接入, 建立无线连接。 步骤 1307: LTE+NDA终端在 ND A小区下继续数据的收发。
下面针对小区接入和切换过程,介绍在该过程下 NDA基站和 NDA终端所具有的内部 结构和功能。
参见图 14, 本实施例中 DA基站包括: 配置模块和射频模块 401。
配置模块, 用于在与核心网建立连接后, 配置控制信道。
射频模块 401 用于发送系统广播消息, 系统广播消息包含表示基站能力属性为 DA 模式的标识信息, 具体地, 基于配置的控制信道发送系统广播消息。
参见图 15 , 本实施例中 DA终端包括: 射频模块 701和配置模块。
射频模块 701用于接收系统广播消息。 配置模块用于当系统广播消息包含表示基站能力属性为 DA模式的标识信息时, 配 置 DA模式。
DA终端还包括: LTE中层处理模块, 用于支持 LTE模式传输。 当系统广播消息未 包含表示基站能力属性为 DA模式的标识信息时, LTE中层处理模块配置 LTE模式。
参见图 16, 本实施例中小区切换时 DA终端包括: 射频模块 701、 测量模块、 控制 模块、 配置模块和 RRC层处理模块 705。
射频模块 701用于在 LTE模式下接收相邻小区的系统广播消息,该系统广播消息包含 表示基站能力属性为 D A模式的标识信息。
测量模块用于对相邻小区进行测量, 并上报测量结果。
控制模块用于在收到 LTE基站的切换指示后, 断开与 LTE基站的连接, 从 LTE模式 切换到 D A模式。
配置模块用于进行 NDA模式配置。
RRC层处理模块 705用于接入到相邻的 NDA小区。
本发明实施例提供了筒化了的 ND A基站和筒化的接口,该 ND A基站可不经过核心网 而直接连接互联网, 以及核心网通过筒化的接口配合该筒化的 DA基站, 从而提高数据 传输容量和效率,适应游牧的高速 IP数据业务的需求。本发明实施例为了大幅度提高数据 传输容量和效率, 对核心网、 基站和终端均进行了筒化和改进。 并且, 为了减少核心网的 容量负担及便于对基站和数据业务的管理, 在 DA系统中增加了 DA网关。 以及, 本发 明实施例针对筒化和改进的 NDA系统, 提供了小区接入和切换的实现方案。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形 式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。 这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种游牧数据接入 DA系统, 其特征在于, 包括: 核心网和 DA基站; 其中 核心网, 包括 NDA部分和 3GPP部分, 所述 DA部分用于与 DA基站建立通信接 口, 并通过 NDA基站为 NDA终端建立通信链路, 将 NDA用户数据业务传输到核心网中 的 3GPP部分; 3GPP部分用于处理 NDA用户数据业务, 以及实现版本 10及之前版本的 3GPP系统功能;
NDA基站, 用于与核心网中的 NDA部分建立通信接口, 并与核心网中的 NDA部分 为 DA终端建立通信链路并传输 NDA用户数据业务,或者与局域或广域互联网络建立通 信链路, 将 DA用户数据业务传输到局域或广域互联网络。
2、 如权利要求 1所述的 DA系统, 其特征在于, 核心网中的 DA部分包括: Sl-nda接口模块, 用于与 DA基站建立通信接口;
DA设备和用户管理模块, 用于对 NDA终端进行到核心网中的 3GPP部分的通信链 接的建立和管理、 接入管理和认证鉴权;
DA数据传输模块, 用于将 NDA用户数据业务传输到核心网中的 3GPP部分。
3、如权利要求 1所述的 DA系统, 其特征在于, DA基站包括: 路由模块和 Sl-nda 接口模块;
其中, S 1 -nda接口模块用于与核心网中的 D A部分建立通信接口,与核心网中的 D A 部分为 NDA终端建立通信链路并传输 NDA用户数据业务;
路由模块, 用于与局域或广域互联网络建立通信链路, 将 NDA用户数据业务传输到 局域或广域互联网络。
4、 如权利要求 3所述的 DA系统, 其特征在于, DA基站还包括: 射频模块、 物 理层处理模块、 MAC层处理模块、 RLC层处理模块、 RRC层处理模块; 其中
射频模块用于发射和接收所述 DA基站的数据信号;
物理层处理模块用于对数据信号进行编码 /译码、 调制 /解调、 关于多天线的传输处理, 链路自适应和重传处理中的一项或多项处理;
MAC层处理模块用于在下行过程中对 RLC层数据包进行调度、 传输和重传处理中的 一项或多项处理, 以及在上行过程中进行用户调度、 MAC数据包解码和重传处理中的一 项或多项处理;
RLC层处理模块用于在下行过程中进行 IP数据包分段和 IP数据包的重传处理, 在上 行过程中进行 MAC数据包的级联和重组, 以及 MAC数据包的重传处理; RRC层处理模块用于控制无线链路、 及管理无线资源;
Sl-nda接口模块还用于 DA终端的接入控制、 加密鉴权、 计费、 NDA终端的漫游控 制和 NDA终端数据链接控制。
5、 如权利要求 4所述的 DA系统, 其特征在于, 射频模块发送的数据信号包括系统 广播消息, 所述系统广播消息包含表示基站能力属性为 ND A模式的标识信息。
6、如权利要求 4所述的 DA系统,其特征在于,射频模块具有以下一个或多个特征: 射频模块釆用的下行功率范围低于 LTE标准规定的下行功率范围;
射频模块的上行灵敏度低于 LTE标准规定的上行灵敏度;
射频模块中发射机滤波器的邻道抑制比低于 LTE标准规定的邻道抑制比;
射频模块中发射机的带外辐射高于 LTE标准规定的带外辐射。
7、 如权利要求 4所述的 DA系统, 其特征在于, 物理层处理模块具有以下一个或多 个特征:
物理层处理模块支持的多天线传输模式少于 LTE标准规定的多天线传输模式; 物理层处理模块中配置的测量周期和反馈周期,对应大于 LTE标准规定的测量周期和 反馈周期;
物理层处理模块中配置的控制信道和参考符号的数量,对应少于 LTE标准规定的控制 信道和参考符号的数量。
8、 如权利要求 4所述的 DA系统, 其特征在于, MAC层处理模块具有以下一个或 多个特征:
MAC层处理模块进行关于 QoS的控制和调度的过程, 少于 LTE标准规定的关于 QoS 的控制和调度的过程;
MAC层处理模块进行调度时支持的用户数目限定在一个小于设定值的数目;
MAC层处理模块进行数据包传输过程中的相关保护和操作的过程, 少于 LTE标准规 定的数据包传输过程中的相关保护和操作的过程。
9、 如权利要求 4所述的 DA系统, 其特征在于, RLC层处理模块具有以下特征: RLC层处理模块进行重传的过程少于 LTE标准规定的过程。
10、 如权利要求 4所述的 DA系统, 其特征在于, RRC层处理模块具有以下一个或 多个特征:
RRC层处理模块进行随机接入的过程和接入控制的过程, 少于 LTE标准规定的随机 接入的过程和接入控制的过程;
RRC层处理模块的系统信息广播过程, 少于 LTE标准规定的系统信息广播过程; RRC层处理模块中关于 NDA终端的传输模式配置信息, 少于 LTE标准规定的传输模 式配置信息;
RRC层处理模块的小区信号测量和上报配置信息, 对应少于 LTE标准规定的小区信 号测量和上 4艮配置信息。
11、 如权利要求 4所述的 DA系统, 其特征在于, DA基站还包括:
配置模块, 用于在与核心网建立连接后, 配置控制信道。
12、 如权利要求 4所述的 DA系统, 其特征在于, NDA基站不包括 PDCP层处理模 块、 非接入层 NAS处理模块和用于数据包加密的模块。
13、 一种 DA网关, 用于与 DA基站和核心网中的 DA部分连接, 转发 DA基 站与核心网中的 DA部分之间传输的 DA用户数据业务, 其特征在于, 所述 DA网关 包括:
DA基站接口模块,用于与 DA基站建立通信接口, 并通过 DA基站为 DA终端 建立通信链路, 与 DA基站传输 NDA用户数据业务;
DA基站管理模块, 用于对 DA基站进行鉴权、 接入管理和参数配置中的一项或多 项处理;
Sl-ndu接口模块, 用于与核心网中的 DA部分建立通信接口, 并与核心网中的 DA 部分为 NDA终端建立通信链路, 以及与核心网中的 NDA部分传输 NDA用户数据业务。
14、 如权利要求 13所述的 DA网关, 其特征在于, 还包括:
路由模块,用于将 D A终端业务数据封装成 IP协议数据包,并将 IP协议数据包传输 到互联网;
DA用户管理模块, 用于对 NDA终端进行接入管理、 鉴权和计费中的一项或多项处 理。
15、 一种 DA终端, 用于与 DA基站连接, 并与 DA基站传输 NDA用户数据业 务, 其特征在于, 所述 DA终端包括:
射频模块, 用于发射和接收所述 DA终端的数据信号;
物理层处理模块, 用于对数据信号进行编码 /译码、 调制 /解调、 关于多天线的传输处 理, 链路自适应和重传处理中的一项或多项处理;
MAC层处理模块, 用于在上行过程中对 RLC层数据包进行调度、 传输和重传处理中 的一项或多项处理, 以及在下行过程中进行 MAC数据包解码和 /或重传处理;
RLC层处理模块, 用于在上行过程中进行 IP数据包分段和 IP数据包的重传处理, 在 下行过程中进行 MAC数据包的级联和重组, 以及 MAC数据包的重传处理; RRC层处理模块, 用于控制无线链路、 及管理无线资源;
IP应用层处理模块, 用于处理业务应用层的各类信息和数据。
16、 如权利要求 15所述的 D A终端, 其特征在于, 射频模块接收的数据信号包括系 统广播消息, 该系统广播消息包含表示基站能力属性为 ND A模式的标识信息。
17、 如权利要求 16所述的 NDA终端, 其特征在于, 所述系统广播消息为接入小区的 系统广播消息或相邻小区的系统广播消息。
18、 如权利要求 17所述的 DA终端, 其特征在于, NDA终端还包括: 配置模块, 用于在开机后射频模块接收接入小区的系统广播消息时, 配置 DA模式。
19、 如权利要求 17所述的 DA终端, 其特征在于, NDA终端还包括: LTE中层处 理模块, 用于支持 LTE模式传输;
射频模块在 LTE模式下接收相邻小区的系统广播消息时, DA终端还包括: 测量模块用于对相邻小区进行测量, 并通过射频模块上报测量结果;
控制模块, 用于在收到 LTE基站的切换指示后, 断开与 LTE基站的连接, 从 LTE模 式切换到 D A模式;
配置模块, 用于在切换到 NDA模式后, 配置 DA模式。
20、 如权利要求 15所述的 D A终端, 其特征在于, 射频模块具有以下一个或多个特 征:
射频模块釆用的下行功率范围低于 LTE标准规定的下行功率范围;
射频模块的上行灵敏度低于 LTE标准规定的上行灵敏度;
射频模块中发射机滤波器的邻道抑制比低于 LTE标准规定的邻道抑制比;
射频模块中发射机的带外辐射高于 LTE标准规定的带外辐射。
21、 如权利要求 15所述的 D A终端, 其特征在于, 物理层处理模块具有以下一个或 多个特征:
物理层处理模块的多天线传输模式少于 LTE标准规定的多天线传输模式;
物理层处理模块中配置的测量周期和反馈周期,对应大于 LTE标准规定的测量周期和 反馈周期;
物理层处理模块中配置的控制信道和参考符号的数量,对应少于 LTE标准规定的控制 信道和参考符号的数量。
22、 如权利要求 15所述的 D A终端, 其特征在于, MAC层处理模块具有以下一个 或多个特征:
MAC层处理模块进行关于 QoS的控制和调度的过程, 少于 LTE标准规定的控制和调 度的过程;
MAC层处理模块进行数据包传输过程中的相关保护和操作的过程, 少于 LTE标准规 定的数据包传输过程中的相关保护和操作的过程。
23、 如权利要求 15所述的 D A终端, 其特征在于, RLC层处理模块具有以下特征: RLC层处理模块进行重传的过程少于 LTE标准规定的重传的过程。
24、 如权利要求 15所述的 D A终端, 其特征在于, RRC层处理模块具有以下一个或 多个特征:
RRC层处理模块进行随机接入的过程和接入控制的过程, 少于 LTE标准规定的随机 接入的过程和接入控制的过程;
RRC层处理模块的系统信息广播过程少于 LTE标准规定的系统信息广播过程;
RRC层处理模块中关于 NDA终端的传输模式配置信息, 少于 LTE标准规定的传输模 式配置信息;
RRC层处理模块的小区信号测量和上报配置信息, 少于 LTE标准规定的小区信号测 量和上报配置信息。
25、 一种核心网, 其特征在于, 包括: DA部分和 3GPP部分; 其中
核心网中的 NDA部分, 用于与 NDA基站建立通信接口, 并通过 NDA基站为 NDA 终端建立通信链路, 将 NDA用户数据业务传输到核心网中的 3GPP部分;
核心网中的 3GPP部分用于处理 NDA用户数据业务, 以及实现版本 10及之前版本的 3GPP系统功能。
26、 一种 DA基站, 其特征在于, 包括: 路由模块和 Sl-nda接口模块; 其中 Sl-nda接口模块用于与核心网中的 DA部分建立通信接口,与核心网中的 DA部分 为 NDA终端建立通信链路并传输 NDA用户数据业务;
路由模块, 用于与局域或广域互联网络建立通信链路, 将 NDA用户数据业务传输到 局域或广域互联网络。
PCT/CN2011/084268 2010-12-20 2011-12-20 一种游牧数据接入系统及装置 WO2012083834A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11852066.7A EP2658179A4 (en) 2010-12-20 2011-12-20 Nomadic data access system and device
US13/996,519 US20130337819A1 (en) 2010-12-20 2011-12-20 Nomadic data access system and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010597553.1 2010-12-20
CN201010597553.1A CN102547892B (zh) 2010-12-20 2010-12-20 一种游牧数据接入系统、装置及数据传输方法

Publications (1)

Publication Number Publication Date
WO2012083834A1 true WO2012083834A1 (zh) 2012-06-28

Family

ID=46313162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084268 WO2012083834A1 (zh) 2010-12-20 2011-12-20 一种游牧数据接入系统及装置

Country Status (4)

Country Link
US (1) US20130337819A1 (zh)
EP (1) EP2658179A4 (zh)
CN (1) CN102547892B (zh)
WO (1) WO2012083834A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3001596A1 (fr) * 2013-01-30 2014-08-01 France Telecom Reseau lte dynamique
US9843959B2 (en) * 2015-09-30 2017-12-12 Intel IP Corporation Interference mitigation by a scalable digital wireless modem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079778A (zh) * 2006-05-16 2007-11-28 皇家Kpn公司 游牧因特网
CN101442745A (zh) * 2007-11-22 2009-05-27 华为技术有限公司 一种WiMAX网络和3GPP网络融合的方法与系统
CN101640889A (zh) * 2008-07-29 2010-02-03 华为技术有限公司 一种固定或游牧用户终端接入网络的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030114158A1 (en) * 2001-12-18 2003-06-19 Lauri Soderbacka Intersystem handover of a mobile terminal
US8451795B2 (en) * 2007-08-08 2013-05-28 Qualcomm Incorporated Handover in a wireless data packet communication system that avoid user data loss
CN101409927A (zh) * 2007-10-11 2009-04-15 华为技术有限公司 发送和获取基站信息的方法、系统、基站和接入设备
US8902805B2 (en) * 2008-10-24 2014-12-02 Qualcomm Incorporated Cell relay packet routing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079778A (zh) * 2006-05-16 2007-11-28 皇家Kpn公司 游牧因特网
CN101442745A (zh) * 2007-11-22 2009-05-27 华为技术有限公司 一种WiMAX网络和3GPP网络融合的方法与系统
CN101640889A (zh) * 2008-07-29 2010-02-03 华为技术有限公司 一种固定或游牧用户终端接入网络的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2658179A4 *

Also Published As

Publication number Publication date
EP2658179A1 (en) 2013-10-30
EP2658179A4 (en) 2017-05-17
CN102547892B (zh) 2014-12-10
US20130337819A1 (en) 2013-12-19
CN102547892A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
US11425595B2 (en) Method and apparatus for configuring PDCP device and SDAP device in next-generation mobile communication system
US10631287B2 (en) Method and apparatus for supporting multi-radio access technology
KR101465417B1 (ko) 기회적 네트워크 관련 메시지 전송 방법
TWI486088B (zh) 在無線網路及蜂巢式網路之間的互通基地台
CN116170315A (zh) 使用网络切片的网络服务配置和选择
US11838790B2 (en) Method and apparatus for configuring PDCP device and SDAP device in next-generation mobile communication system
CN116367156A (zh) 可穿戴设备的网络验证
CN105191428A (zh) 在无线通信系统控制业务导向的方法和设备
JP2016507993A (ja) コアネットワークへのハイブリッドアクセスの方法および機器
WO2014040574A1 (zh) 一种基于多网络联合传输的分流方法、系统及接入网网元
WO2011039571A1 (en) Apparatus and method for providing access to a local area network
CN107079382B (zh) 支持多无线电接入技术的方法和装置
CN105144833A (zh) 在无线通信系统中发送停用指示的方法和设备
JP6797904B2 (ja) デバイス間の送信および受信に関する周波数の決定
WO2016023324A1 (zh) 基于终端的通信方法和终端
WO2014163549A1 (en) Network control of terminals with respect to multiple radio access networks
CN108141739A (zh) 为载波间prose直接发现预备传输池
WO2013185678A1 (zh) 一种实现融合网络数据传输方法、ue和接入网设备
WO2012100702A1 (zh) 一种无线接入系统、装置及数据传输方法
WO2012116623A1 (zh) 一种移动通信系统和组网方法
WO2011097858A1 (zh) 一种能够适应终端差异化的通信方法、系统、控制站及终端
CN102573104B (zh) 一种无线数据接入方法及设备
CN102573005B (zh) 无线数据业务接入方法、系统及装置
WO2012083834A1 (zh) 一种游牧数据接入系统及装置
WO2023207732A1 (zh) 漫游方法、设备及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011852066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13996519

Country of ref document: US