WO2012083694A1 - 自种子光纤激光器及其驱动方法、无源光网络系统及设备 - Google Patents

自种子光纤激光器及其驱动方法、无源光网络系统及设备 Download PDF

Info

Publication number
WO2012083694A1
WO2012083694A1 PCT/CN2011/077690 CN2011077690W WO2012083694A1 WO 2012083694 A1 WO2012083694 A1 WO 2012083694A1 CN 2011077690 W CN2011077690 W CN 2011077690W WO 2012083694 A1 WO2012083694 A1 WO 2012083694A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain medium
data
current
light
self
Prior art date
Application number
PCT/CN2011/077690
Other languages
English (en)
French (fr)
Inventor
徐之光
刘德坤
林华枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/077690 priority Critical patent/WO2012083694A1/zh
Priority to CN201180001394.7A priority patent/CN102334248B/zh
Priority to EP11851682.2A priority patent/EP2731211B1/en
Publication of WO2012083694A1 publication Critical patent/WO2012083694A1/zh
Priority to US14/163,196 priority patent/US9059563B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0656Seeding, i.e. an additional light input is provided for controlling the laser modes, for example by back-reflecting light from an external optical component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present application relates to fiber access technology, and in particular, to a self-seed fiber laser and a driving method thereof, and a passive optical network (PON) system and device using the self-seed fiber laser.
  • PON passive optical network
  • WDM-PON Wavelength Division Multiplexed Passive Optical Network
  • WDM Wavelength Division Multiplexing
  • the transceiver modules of different ONUs need to use different communication wavelengths to communicate with the transceiver modules corresponding to the optical line terminals (optical line terminals). Therefore, The WDM-PON system requires that the light sources of different transceiver modules can respectively emit optical signals of different wavelengths.
  • the industry proposes to use an injection-locked FP-LD (Fabric-Perot) laser or SOA (Reflective Semiconductor Optical Amplifier) based on external seed light injection as a light source for WDM-PON system. .
  • the injection-locked laser scheme based on external seed light injection requires relatively high cost due to the need for one or two high-power, flat wide-spectrum light sources as external seed sources.
  • the pupil of the broad-spectrum light source is split, and the spectral splitting also causes serious power waste problems.
  • the present application provides a low-cost and low power waste self-seating fiber laser and a driving method thereof, and the present application also provides a passive optical network system and apparatus using the self-seed fiber laser.
  • a self-seeded fiber laser comprising: an arrayed waveguide grating; a gain medium coupled to one of the branch ports of the arrayed waveguide grating; a Faraday rotating mirror coupled to the array wave a common port of the grating, configured to reflect a portion of the optical signal emitted by the gain medium and to form an injection light returning to the gain medium; the gain medium, the array waveguide grating and the Faraday rotating mirror constitute a laser cavity, wherein An arrayed waveguide grating is used for wavelength screening in the laser cavity to lock an emission wavelength of the gain medium to a wavelength channel corresponding to the branch port; a compensation device coupled to the gain medium for The power of the injected light selectively provides a compensation current for the gain medium.
  • a driving method for a self-seed fiber laser comprising a laser cavity formed by a gain medium, an arrayed waveguide grating, and a Faraday rotator mirror; the method comprising: a gain medium emitting data light, wherein the data light After performing wavelength screening of the corresponding wavelength channel in the arrayed waveguide grating, part of the data light is reflected by the Faraday rotating mirror and forms an injected light returning to the gain medium; according to the power of the injected light, the rate is selectively The gain medium provides a compensation current.
  • a passive optical network system comprising: an optical line termination, a plurality of optical network units, and a remote node between the optical line termination and the optical network unit; the remote node comprising an arrayed waveguide grating and a Faraday rotation reflection a mirror, wherein the arrayed waveguide grating includes a common port and a plurality of branch ports, wherein the common port is connected to the optical line terminal by a trunk fiber, and the Faraday rotator mirror is coupled to the master kilo fiber, a branch port is respectively connected to the optical network unit by a branch fiber; the optical network unit includes a light emitter having a gain medium, the gain medium, the arrayed waveguide grating, and the Faraday rotator mirror form the self-seed fiber-optic laser.
  • An optical line terminal comprising an arrayed waveguide grating, a Faraday rotator, and a plurality of light emitters having a gain medium, the plurality of optical modules being connected to the trunk fiber through the arrayed waveguide grating, and the Faraday rotator Coupled to the backbone fiber; the gain medium of the light emitter, the arrayed waveguide grating, and the Faraday rotator mirror form the self-seeded fiber laser described above.
  • the self-seed fiber laser provided by the present application generates reflected light by filtering and partially reflecting the output light of the gain medium as a self-injection of the seed light into the gain medium for re-amplification, and multiple round-trip resonance of the output light/reflected light.
  • Amplification locks the wavelength of the output light of the gain medium to a target wavelength, thereby achieving self-injection locking. Since the self-seed fiber laser does not need to use an external wide-ply light source, on the one hand, the cost can be reduced, and on the other hand, the power waste caused by the power split can be avoided.
  • the self-seed fiber laser provided by the present application is also introduced by the gain medium
  • the compensation mechanism selectively supplies a compensation current to the gain medium according to the power of the injected light, effectively reducing a signal quality degradation that may occur due to the injected light being non-direct current light, and improving the emission performance of the self-seed fiber laser.
  • FIG. 1 is a schematic structural diagram of an embodiment of a self-seating fiber laser provided by the present application
  • FIG. 2 is a schematic structural diagram of an embodiment of a passive optical network system provided by the present application
  • FIG. 3 is a schematic diagram applicable to the self-seed provided by the present application.
  • FIG. 4 is a schematic block diagram of an embodiment of a compensation device suitable for use in a seed fiber laser provided by the present application;
  • FIG. 5 is a schematic diagram of an embodiment of a self-seed fiber laser having a light return time measuring device provided by the present application
  • FIG. 6 is a schematic diagram of a first embodiment of a self-seed fiber laser with a compensation device provided by the present application
  • FIG. 7 is a schematic diagram of a second embodiment of a self-seed fiber laser with compensation device provided by the present application.
  • FIG. 8 is a schematic diagram of a third embodiment of a self-seed fiber laser with compensation device provided by the present application.
  • FIG. 9 is a schematic diagram of a fourth embodiment of a self-seed fiber laser with compensation device provided by the present application.
  • Figure 10 is a schematic flow diagram of an embodiment of a method of driving a seed fiber laser of the present application. detailed description
  • the present application provides a self-seed fiber laser that generates reflected light by filtering and partially reflecting the output light of the gain medium.
  • the seed light is injected back into the gain medium for re-amplification, and the wavelength of the output light of the gain medium is locked to the target wavelength by multiple round-trip resonance amplification of the output light/reflected light, thereby achieving self-injection locking.
  • the self-seed fiber laser does not require an external wide-spectrum light source, it can reduce the cost on the one hand, and can avoid power waste caused by power splitting on the other hand.
  • the self-seed fiber laser provided by the present application also selectively supplies a compensation current to the gain medium according to the power of the injected light by introducing a compensation mechanism in the gain medium, thereby effectively reducing the possibility that the injected light is non-direct light.
  • the resulting signal quality is degraded, improving the emission performance of the self-seeded fiber laser.
  • the self-seed fiber laser may be an external cavity laser including a gain medium, an Array Waveguide Grating (AWG), a Faraday Rotator Mirror (FRM), and an optical fiber (not labeled) connected to the above device.
  • the gain medium may be an SOA
  • the AWG may serve as a filter for performing wavelength screening on the self-seed fiber laser.
  • the AWG may include a common port and a plurality of branch ports, and the gain medium is connected to One of the branch ports of the AWG, and the FRM is connected to a common port of the arrayed waveguide grating.
  • the FRM may be a 45 degree rotating mirror that rotates the polarization direction of a portion of the optical signal incident through the fiber by 45 x 2 degrees and reflects back to the fiber.
  • the FRM may include a Faraday Rotator and a partial mirror, wherein the Faraday rotator is a 45 degree rotator that can rotate the polarization direction of incident light by 45 degrees, thus incident light Before and after partial reflection by the partial mirror inside the FRM, it is necessary to pass through the Faraday rotator twice, so that the polarization direction of the reflected light is different from the polarization direction of the incident light by 90 degrees, that is, the polarization of the reflected light.
  • the direction and the polarization direction of the incident light are perpendicular to each other. When the round trip is repeated multiple times, the polarization direction of the reflected light can be kept consistent with the incident light, thereby achieving polarization independence.
  • the gain medium, the AWG and the FRM form a laser cavity through the optical fiber, wherein the AWG functions as a wavelength selection in the laser cavity, and the light emitted by the gain medium reciprocates in the cavity to form a laser The light is emitted, and the wavelength of the lasing light can be locked to a wavelength channel corresponding to the branch port to which the gain medium is connected.
  • FIG. 2 is a schematic structural diagram of a passive optical network system applicable to the self-seed fiber laser shown in FIG. 1 .
  • the passive optical network system may be a WDM-PON system, including an optical line terminal (OLT) located at a central office (CO), a plurality of optical network units (ONUs) located at a user side, and located at the OLT.
  • OLT optical line terminal
  • ONUs optical network units
  • the RN includes a wavelength division multiplexing/demultiplexing module, than an AWG.
  • a common port of the AWG is connected to the trunk fiber for receiving a downlink optical signal from the OLT, and the AWG further includes a plurality of branch ports, each of which corresponds to a wavelength passband (ie, each The branch ports can be equivalent to one filter, and the passbands of the filters are different), and are respectively connected to the ONUs operating in the corresponding wavelength channels through a branch fiber.
  • the AWG can be used to perform wavelength demultiplexing processing on the downlink optical signals from the OLT, and respectively send them to the corresponding ONUs through the respective branch ports, and can also be used to differentiate the uplink optical signals from the respective ONUs.
  • the multiplexing process is sent to the OLT through the public port and the backbone fiber.
  • the ONU may include a light emitter (LD) and a light receiver (Rx) coupled to the branch fiber by a wavelength division multiplexer (Wavelength Division Multiplexer).
  • the light emitter may be a light source module having a modulation function, which may have the above-described gain medium.
  • the remote node may further include an FRM, and the FRM is coupled to a public port of the AWG.
  • the gain medium, the AWG, and the FRM inside the light emitter of the ONU may constitute a self-seeding fiber laser as described above. Through the self-injection locking action of the self-seed fiber laser, the emission wavelength of the ONU can automatically adapt to the wavelength passband of the corresponding AWG branch port.
  • the OLT has a similar structure.
  • the OLT may have multiple optical modules, and each optical module corresponds to one optical network unit.
  • the plurality of optical modules are respectively connected to the trunk optical fiber through the central AWG, and the common port of the central office AWG is also coupled with the FRM.
  • the light emitters of the respective optical modules also have the gain medium as described above, and the gain medium, the central office AWG and the FRM in the light emitter of the optical module can also be composed as described in the above embodiments.
  • the self-injection locking of the self-seed fiber laser can also enable the emission wavelength of the optical module to automatically adapt to the wavelength passband of the corresponding AWG branch port.
  • the self-seed fiber laser used by the user-side ONU or the central office ONU is reflected from the FRM and injected into the gain during normal communication.
  • the injected light of the medium is part of the uplink or downlink emission data transmitted at a certain moment, which means that the injected light injected into the gain medium is not DC light, but has data light of "1" or "0", that is, the power is changed. And, when the power of the injected light is different, the resonance state of the seed fiber laser is also different.
  • the intensity of the signal transmitted from the seed fiber laser is not only related to whether the data to be transmitted is “ ⁇ or "0", but also whether the injected light returned at this time is "1" or "0". Since the returned injected light is a data signal transmitted at a certain time before, which may generally have no correlation with the data signal to be transmitted currently, the transmission power of the self-seed fiber laser is unstable.
  • the present application further selectively supplies a compensation current to the gain medium by introducing a compensation mechanism to the driving current of the gain medium according to the injection light returned to the gain medium. To compensate for the effect of " ⁇ and "0" of the injected light on the transmission power.
  • the signal processing can be performed in the electric domain, and the data to be transmitted is pre-processed. After the pre-transformed electrical signal is applied to the gain medium, interacting with the injected light of the current return gain medium, so that the influence of the emission power of the self-seed fiber laser that directly returns the light of the return medium is reduced, thereby improving The quality of the transmitted signal.
  • the present application proposes to correct the driving current of the gain medium according to the power of the injected light returned to the gain medium, and perform pre-transformation on the data to be transmitted, thereby compensating for the self-seed fiber laser because the injected light is not a direct current light.
  • the impact of the transmit power is not a direct current light.
  • the driving current of the gain medium is increased by a certain amount of correction value, that is, a certain compensation current is provided;
  • the optical signal to be transmitted is "1”, and the injected light returning to the gain medium is “1”, and the driving current of the gain medium is maintained as the current corresponding to the emitted light signal of "1" in the normal state, that is, no compensation is provided.
  • Current here, the magnitude of the specific compensation current value is related to the resonance state between the current gain medium and the FRM.
  • the current corresponding to the gain medium may be maintained at a current corresponding to a state in which the emitted light signal is "0" in a normal state regardless of whether the current return light of the return gain medium is "?" or "0".
  • the self-seed fiber laser may first obtain the light return time At by measuring, that is, measuring the light signal emitted from the gain medium to the Deriving the time when the reflected light generated by the partial reflection of the FRM is injected back into the gain medium, and when the data is transmitted at a certain time, the self-seed fiber laser may be based on the gain medium before a light return time ⁇
  • the transmitted data selectively adjusts the drive current of the gain medium.
  • the definition of the light return time At can be obtained, and the injected light returning to the optical gain medium at the current time is the data transmitted by the gain medium before a light return time ⁇ .
  • the self-seed fiber laser may delay the data to be transmitted according to the measured light return time ⁇ , and the delayed data may be used for ( ⁇ 0+ ⁇ ) The basis for compensating the drive current of the gain medium at the moment.
  • the self-seed fiber laser provided by the present application may include a light return time measuring device and a compensation device, wherein the light return time measuring device is configured to measure a light return time of the self-seed fiber laser; A method for selectively providing a compensation current to the gain medium based on the power of the injected light.
  • the structure of the light return time measuring device and the compensating device will be first described below with reference to FIG. 3 and FIG. 4, and then the specific description of the light return time measuring device and the compensating device in the self-seed fiber laser shown in FIG. 1 will be described. application.
  • FIG. 3 is a schematic block diagram of a light return time measuring device provided by the present application. As shown in FIG. 3, a light return time measuring device 10 provided by the present application includes:
  • test data source 101 configured to generate test data
  • a first Laser Diode Driver (LDD) 102 is coupled to the test data source 101 and a gain medium (not shown) from the seed fiber laser for driving the test data to generate a bias current output to the gain medium. And a modulation current, wherein the bias current is used to cause the gain medium to be in an amplified state, and the modulation current is used to modulate the test data to the optical signal transmitted by the gain medium, such that the gain medium emits an optical signal corresponding to the test data;
  • a monitor photodiode (MPD) 107 connected to the gain medium for proportionally converting the optical power output from the rear end face of the gain medium into a current;
  • a voltage converter 103 connected to the monitoring photodiode for converting the current generated by the monitoring photodiode into a voltage proportionally;
  • An analog to digital converter 104 is connected to the voltage converter 103 for periodically sampling the output voltage of the voltage converter 103;
  • a memory 105 coupled to the analog to digital converter 104 for storing a sampled voltage value of the analog to digital converter 104;
  • the controller 106 is connected to the test data source 101, the analog to digital converter 104 and the memory 105, and the controller is configured to enable the test data source 101 to make the test data in the case where the gain medium resonates with the FRM of the seed fiber laser.
  • the source 101 outputs test data to the first laser diode driver 102 and controls the test data output of the test data source 101 to stop before the optical signal is reflected back from the FRM to the gain medium; enabling the analog data while enabling the test data source 101
  • the converter 104 performs periodic sampling; and calculates a light return time of the self-seed fiber laser based on periodic information of periodic sampling.
  • the controller may calculate the time difference between the time of the first voltage sample data after the first blank period and the time when the test data source 101 is enabled after the test data source 101 is enabled as the light return time.
  • the blank period may be a voltage sample value or may be a period including only the constant flow rate.
  • the above-described light return time measuring device of the present application it is possible to measure the time during which the optical signal emitted from the gain medium is reflected back from the FRM to the gain medium in the case where the gain medium and the FRM are resonant.
  • the above-described light return time may have other uses in addition to the compensation device described hereinafter, and the present application is not intended to limit the present.
  • controller 106 may be further configured to calculate a voltage difference between the high voltage and the low voltage among the stored voltages, and calculate according to the voltage difference, the voltage conversion ratio of the voltage converter, and the current conversion ratio of the monitoring photodiode 107.
  • the compensation device 20 of the present application includes:
  • a delay circuit 201 connected to the data source 200, for delaying data transmitted from the data source;
  • the inverter 202 is connected to the delay circuit 201 for inverting data received from the delay circuit 201;
  • the compensation current generating unit 203 is connected to the inverter 202 for selectively generating a compensation current according to the output data of the delay circuit 201 and supplying the same to the gain medium 205; for example, in an implementation In the example, the compensation current generating circuit 203 may generate a compensation current when the output data of the delay circuit 201 is inverted by the inverter 202, or, in another embodiment, the compensation current generating circuit. 203 can generate a compensation current when the output data of the delay circuit 201 is "0", in this case, the delay circuit 201 and the compensation current generating unit 203 are not required to set the inverter 202;
  • the controller 204 is connected to the delay circuit 201 and the compensation current generating circuit 203 for controlling the delay time of the delay circuit 201 so that the delay circuit 201, the inverter 202 and the compensation current generating unit 203 delay the transmission data.
  • the sum of time is equal to the sum of the optical round trip time from the seed fiber laser and the time at which the data transmitted by the data source 200 reaches the gain medium 205; the magnitude of the compensation current generated by the compensation current generating circuit 203 is controlled, for example, the controller 204 can be based on the return gain.
  • the power difference of the transmitted signals caused by "1" and "0" in the injected optical signal reflected from the FRM can be compensated, thereby greatly improving the emission performance of the self-seeding optical fiber laser.
  • Fig. 5 is a schematic view showing the configuration of a self-seed fiber laser having a light return time measuring device of the present application.
  • test data source laser diode driver (LDD1), transimpedance amplifier (TIA), analog-to-digital converter (ADC:), random access memory (RAMI), central processor (CPU) and monitor photodiode (MPD) correspond to test data source 101, first laser diode driver 102, voltage converter 103, analog to digital converter 104, memory 105, controller 106, and monitor light, respectively, shown in FIG. Diode 107.
  • LDD1 laser diode driver
  • TIA transimpedance amplifier
  • ADC analog-to-digital converter
  • RAMI random access memory
  • CPU central processor
  • monitor photodiode MPD
  • the MPD measurement gain medium and the FRM are disposed in the same Transmitter Optical Subassembly (TOSA) and adjacent to the high reflection surface of the gain medium.
  • TOSA Transmitter Optical Subassembly
  • the magnitude of the MPD output current can be used to infer the optical power value currently received by the MPD.
  • the portion of the backward optical power received by the MPD and the forward transmit power of the gain medium generally have a fixed proportional relationship. Therefore, in general, the power received by the MPD can be used to estimate the forward transmit power of the gain medium.
  • the MPD in addition to monitoring the transmit power of the gain medium, the MPD is also used to measure the accurate time of the reflected light of the gain medium from being emitted to being reflected by the FRM and returned to the gain medium, that is, the self-seed fiber. The light return time of the laser.
  • the CPU enables the test data source to enable the gain medium to transmit a signal of a specific content, that is, a test signal.
  • the CPU needs to control the emission of the test signal to stop before the reflected light reflected back from the FRM is injected into the gain medium.
  • LDD1 still needs to supply a bias current to the gain medium, but since the test signal has stopped transmitting, no modulation current is supplied to the gain medium.
  • the bias current is to ensure that the gain medium is still operating in an amplified state, so that the reflected signal entering from the front end of the gain medium is not absorbed by the gain medium, but can be output from the rear end surface of the gain medium through the gain medium and received by the MPD.
  • the CPU enables the ADC to periodically sample while enabling the test data source to transmit the test signal.
  • the output signal of the MPD, and the sampling result is stored in AM1. It should be understood that although the memory is shown as AM in Figure 5, those skilled in the art will appreciate that the memory can also employ other storage media.
  • each data stored in the RAMI contains time information, and the time information of the first sampled data is that the CPU just starts to enable the ADC. At the moment, it is also the time T0 at which the gain medium starts to emit test data.
  • the time information of the second stored data is T0+(l/k) time
  • the time information of the nth stored data is T0+(n/k) time, where k is the sampling rate of the ADC.
  • the MPD converts the received optical power into a current proportionally to the current and outputs it to the TIA, which converts the current into a voltage in real time. If the current MPD does not receive optical power, the output current is zero and the voltage output from the TIA is also zero.
  • the gain medium starts to send the test data.
  • the ADC starts sampling the voltage of the TIA output, and records the sampled value to the RAML gain medium to transmit the test data. The rear end face of the medium is received by the MPD.
  • the MPD and TIA also convert this portion of the optical energy into corresponding current and voltage signals that are sampled by the ADC. As described above, the test data transmission process of the gain medium is stopped before the light reflected back from the FRM is returned to the gain medium, thereby avoiding the occurrence of overlapping of the test data and the reflected signal in the gain medium.
  • the test data source can be controlled by the CPU such that the gain medium emits test data only for a very short period of time, thereby ensuring that the test data transmission process of the gain medium stops before the reflected signal reaches the gain medium.
  • the MPD Since the transmission process of the test data is stopped before the reflected signal reaches the gain medium, the MPD must have a blank period after responding to the test data in order to respond to the reflected signal. During this blank period, since the gain medium has only DC offset and no modulation data, the MPD response is only a DC amount.
  • both the test data and the reflected signal contain "1" and "0", and the response of the MPD to " ⁇ and "0" is different, the response of the MPD changes in real time before and after the amount of DC. .
  • the sampling value of the ADC recorded by the RAMI is included in the time information, and the CPU can be in accordance with the blank period (ie, the period in which the MPD response is a direct current amount).
  • the position, that is, the first data after the blank period is the first sample value since the start of sampling, to estimate the exact time when the emitted light from the gain medium is reflected from the beginning to its corresponding reflected signal and returned to the gain medium. Thereby obtaining the light return time of the self-seed fiber laser.
  • the power difference caused by the " ⁇ and "0" signals in the reflected signal can be further calculated.
  • the difference can be used as an important parameter for the drive current compensation of the gain medium.
  • the output current of the MPD is proportional to the received optical power
  • the voltage output from the TIA is proportional to the current of the received MPD, so the sampled value of the ADC is received by the MPD.
  • the power is proportional to the power.
  • the CPU can calculate the power difference between " ⁇ and "0" of the injected light returned to the gain medium according to the sample value stored in the AM and the conversion relationship between the MPD and the TIA.
  • the compensation device shown in FIG. 4 can be used from the seed fiber laser.
  • the drive current of the gain medium is compensated to reduce the return gain medium The influence of the power difference between ⁇ and "0" on the emission performance of the self-seed fiber laser in the injected light.
  • the specific application of the compensation device provided by the present application in the self-seed fiber laser will be described in detail below with reference to FIGS. 6-9. .
  • Fig. 6 is a schematic view showing the configuration of a first embodiment of a self-seed fiber laser having a compensating device of the present application.
  • the data source module to be currently transmitted the second programmable delay device (ie, the programmable delay device 2), the inverter, and the CPU correspond to those shown in FIG. 4, respectively.
  • the data source 200, the delay circuit 201, the inverter 202 and the controller 204; the AND gate and the second laser diode driver (LDD2) correspond to the compensation current generating circuit 203 shown in FIG. 6;
  • the self-seed fiber laser shown in FIG. 6 further includes a first programmable delay (ie, programmable delay 1) and a first laser diode driver (LDD1).
  • LDD1 Common for providing a bias current I bias and modulation current I m is the current gain medium in accordance with data to be transmitted.
  • the first programmable delay device is configured to delay the current data to be transmitted after a predetermined time period, and then provide the delay to the LDD1, the preset time is mainly used to compensate the delay of the logical AND operation of the AND gate, so that The bias current I bias and the modulation current I m corresponding to the data to be transmitted currently. d may be output to the gain medium substantially synchronously with a compensation current corresponding to the injected light of the return gain medium.
  • the current data to be transmitted is divided into three portions: a first portion enters LDD1 by the first programmable delay, generates a common bias current I bias and modulation current I m. d ; The second part enters an input of the AND gate; the third part enters the second input of the AND gate after passing through the second programmable delay and the inverter.
  • the signal output from the AND gate enters LDD2 to drive LDD2 to generate a compensation current I COT .
  • the digital signal " ⁇ or "0" is output from the AND gate to the LDD2, which respectively indicate whether the LDD2 provides a compensation current, and the specific value of the compensation current can be injected by the CPU.
  • the power difference between light “1” and “0” and the conversion relationship between current and luminous power are calculated and set for LDD2.
  • the normal current I bias +I m provided by LDD1 is provided.
  • d and LDD2 provide The compensation current I COT is superimposed and supplied to the gain medium to drive the gain medium to emit the optical signal.
  • the circuit composed of the above modules can be mainly used to make the injected light of the return gain medium be "" when the data to be transmitted is "1". 1", the drive current of the gain medium is not compensated, if the injection light is "0", the compensation current U is supplied to the gain medium, and the modulation current of the gain medium is increased; further, the above circuit can also be used to make When the data to be transmitted is "0", the drive current of the gain medium is not compensated regardless of whether the return light of the return gain medium is "or "0".
  • the initial transmitted data is about to return to the gain medium.
  • the second data of the AND gate is reached by the delay processing of the second programmable delay and the reverse processing of the inverter.
  • the length of the delay time of the second programmable delay device is reasonably controlled by the CPU, so that the data entering the second input end of the AND gate is opposite to the injected light of the returning gain medium, that is, the current return
  • the injected light is "1"
  • the data of the second input of the AND gate is "0”
  • the current injected light is "0”
  • the data of the second input of the AND gate is "1".
  • the AND operation with the current data to be transmitted can be made such that when the injected light is "1", whether the data to be transmitted is "0" or " ⁇ ", The compensation current is generated; and when the injection light is "0", the result of "and” is the data to be transmitted itself. That is, when the current data to be transmitted is "1", the LDD2 is instructed to generate the compensation current I COT , and the current emission is "0". when indicating LDD2 no compensation current I c. r.
  • Table 1 is based on the above analysis, summarizing whether it is necessary to provide a compensation current I eOT to the gain medium under different conditions. It can be seen from this table that the compensation device provided by this embodiment is completely consistent with the compensation target to be achieved by the self-seed fiber laser described above, and thus the emission performance of the self-seed fiber laser can be improved.
  • the first programmable delay is to compensate for the delay that the AND gate may generate, such that since the two inputs of the AND gate are respectively transmitted by the data source before the optical round trip time,
  • the "reverse" result of the data that is, the "reverse” result of the injected light of the current return gain medium, and the current data to be transmitted, can be determined to realize the compensation current under different conditions shown in Table 1:)
  • the operation in the gate also takes a certain time, and the first programmable delay can make the compensation operation Make it more precise.
  • the delay of the first programmable delay is T1
  • the light return time is ⁇
  • the data originally sent from the data source reaches the gain medium.
  • the gain medium is the data transmitted from the data source at time TO.
  • the corresponding current transmission data is the data transmitted from the data source at time T0+T
  • the generated compensation current:! ⁇ also corresponds to the data input to the two inputs of the AND gate at time T0 + T, i.e., the data transmitted from the data source at time ⁇ 0 + ⁇ , and the inverted data from the data source at time TO.
  • Figure 7 is a schematic view showing the structure of a second embodiment of a self-seed fiber laser having a compensating device of the present application.
  • the main difference between the self-seed fiber laser shown in Fig. 7 and the self-seed fiber laser shown in Fig. 6 is that an amplifier (Amplifier) is used as a compensation current generating circuit instead of the AND gate and LDD2 shown in Fig. 6.
  • the current data to be transmitted is divided into two portions: a first portion enters LDD1, generating a common bias current I bias and modulation current I m. d ; The second part enters the amplifier through the programmable delay and inverter, and generates the compensation current I eOT .
  • the CPU can control the delay time length of the programmable delay device so that the total time of the data passing through the programmable delay, the inverter and the amplifier is equal to the above-mentioned optical round-trip time.
  • the signal supplied to the amplifier by the inverter is only the digital signal "or "0", indicating whether the compensation current is generated, and the specific current value of the compensation current can be based on the injected light "1" and "0" by the CPU. and a conversion relation between the power difference and a current between light emission power is calculated, and the amplifier is set.
  • the normal current I bias LDD1 provided + compensation current I m. d and I ⁇ r amplifier provides superposed Together, the gain medium is supplied, and the gain medium is driven to emit the optical signal.
  • the delay, inverter, and amplifier are explained in detail below.
  • the data at this time to produce a first portion of the driving LDD1 common bias and modulation currents I bias + I m. d .
  • the data of the second part has not yet reached the input end of the amplifier due to the delay of the programmable delay. Therefore, the input of the amplifier is zero at this time, and the output of the amplifier is also zero, that is, the compensation current I COT is not generated.
  • the injected light returning to the gain medium at this time is the DC light of the previous resonance, and no compensation is needed.
  • the initial transmitted data is about to return to the gain medium, and the second part of the data has passed the delay processing of the delayer and the inverting process of the inverter, entering the input of the amplifier, and Amplification is performed via an amplifier. Due to the reverse action of the inverter, At this time, the current data output from the output of the amplifier is exactly opposite to the injected light data of the return gain medium, that is, the currently returned injection light is "1", and the data source data is "1", so the inverter reaches the amplifier.
  • the data at the input is "0", the amplifier does not output the compensation current; the current injected light is “0”, the data from the data source is “0”, the data at the input of the amplifier is " ⁇ , the amplifier output compensates the current compensation current I eOT
  • the specific value is related to the amplification factor of the amplifier set by the CPU.
  • the compensation current I COT is generated to compensate the drive current of the gain medium. Since the transmission power is "0" when the transmission data is "0", the power difference of the transmission data "0" caused by the injected light of the return gain medium ⁇ and "0" is equal to the average power. It is much smaller than this, so the emission performance of the self-seed fiber laser can still be improved.
  • the data transmitted from the data source at the time of TO needs to generate a compensation current at time ⁇ 2 after the delay of the LDD1 and the optical round trip time ⁇ .
  • the compensation current generated by the amplifier at time T2 is the inverse of the data transmitted from the data source at the time of TO, so that it can be realized when the injected light is "0".
  • the drive current of the gain medium is compensated to improve the emission performance of the seed fiber laser.
  • FIG. 8 is a schematic view showing the structure of a third embodiment of a self-seed fiber laser having a compensating device of the present application.
  • the main difference between the self-seating fiber laser shown in FIG. 8 and the self-seed fiber laser shown in FIG. 6 is that a gain medium having two gain regions is used, wherein the common bias and modulation current I bias + I m od Applied to the front half plated with a highly permeable film (ie, the gain region near the gain medium emitting surface), and the compensation current 1 is applied to the rear half of the gain medium plated with a high reflective film (ie, emitted away from the gain medium) Gain area of the face).
  • the data signal and the compensation signal can be separately controlled to make the control simpler, thereby further improving the emission performance of the self-seed fiber laser.
  • the data currently to be transmitted is divided into three portions: a first portion through the first programmable delay enters LDD1, generating a common bias current I bias and modulation current I m. d ;
  • the second part enters an input of the AND gate;
  • the third part enters the second input of the AND gate after passing through the second programmable delay and the inverter.
  • the signal output from the AND gate enters LDD2, which drives LDD2 to generate a compensation current I ⁇ r . .
  • LDD1 provides the normal current I bias +I m . d is applied to the first half of the gain medium, and the compensation current I COT provided by the LDD 2 is applied to the second half of the gain medium.
  • the roles of the AND gate, the second programmable delay, and the inverter are the same as those of the first example, and unlike the first example, the current is loaded.
  • the following is an example of how a two-stage gain medium works.
  • the injected light returning to the gain medium is "1"
  • the data to be transmitted at this time is "0”
  • the injected light is normally biased and modulated by the current I bias +I m in the first half of the gain medium. d attenuation; after entering the second half of the gain medium, since there is no compensation current I eOT at this time, the injected light will be attenuated again; when the injected light passes through the gain medium, the end face reflects and re-enters the first half of the gain medium, Once again attenuated, it can be seen that the process of injecting light is attenuation-attenuation-attenuation.
  • Table 3 is based on the above analysis, summarizing whether there is a compensation current under different conditions, and the amplification and attenuation of the injected light in the gain. It can be seen from the table that when the current data to be transmitted is "0", the injected light is always attenuated regardless of whether it is “ ⁇ or "0"; when the current data to be transmitted is “1”, the injected light is “0". "Experienced three times of amplification, and the injected light” ⁇ experienced two amplifications and one attenuation, so the gain medium is more amplified with the injected light being "0", so that when the injected light is "1" A substantially similar transmit power improves the emission performance of the seed fiber laser.
  • the magnification of the injected light may be smaller than the magnification of the injection light amplification in the case where the injection light is attenuated; or the actual injection light remains unchanged in the case where the injection light is attenuated, and the above-described injection light
  • the injected light undergoes amplification; or in the case of the above-mentioned injection light amplification, the light protection is injected
  • the light is attenuated in the case of the above-described injection light attenuation, and so on.
  • the drive current compensation of the gain medium is different from the case of no compensation in that the compensation current is amplified and attenuated in the latter half of the gain medium.
  • the compensation current since the compensation current is directly applied to the second half of the gain medium, the power difference caused by the amplification of the injected light by the compensation current is actually the power difference caused by the superimposition of the compensation current. Therefore, by setting the specific value of the compensation current output by LDD2 as described above, it is possible to accurately compensate for the power difference caused by the injection light being "1" and "0".
  • the first programmable delayer also functions to compensate for the delay that the AND gate may generate, and its effect is the same as that of the embodiment shown in Fig. 6, and will not be described here.
  • the above description of the structure and operation of the compensation device for the self-seed fiber laser of FIG. 6 can be applied to the self-seed fiber laser of the present embodiment, and the embodiment of the present invention is not intended to Make any restrictions.
  • FIG. 9 is a schematic structural view of a fourth embodiment of a self-seed fiber laser having a compensating device of the present application.
  • the main difference between the self-seating fiber laser shown in FIG. 8 and the self-seed fiber laser shown in FIG. 7 is that a gain medium having two gain regions is used, wherein the compensation current is applied to the gain medium with a high reflective film.
  • the second half, while the common bias and modulation current I bias +I m . d is applied to the front half of the gain medium plated with a high permeability film.
  • the data signal and the compensation signal can also be separately controlled to make the control simpler, thereby further improving the emission performance of the self-seed fiber laser.
  • the data currently to be transmitted is divided into two portions: a first portion enters LDD1, generating a common bias current I bias and modulation current I m. d ; The second part enters the amplifier after passing through the programmable delay and inverter, and generates the compensation current I COT .
  • LDD1 provides the normal current I bias +I m . d is applied to the first half of the gain medium, and the correction adjustment current I eOT 3 ⁇ 4 provided by the LDD 2 is applied to the second half of the gain medium.
  • the effects of the delay, inverter and amplifier are the same as those of the second example, and unlike the second example, the current is loaded.
  • the following is an example of how a two-stage gain medium works.
  • the injected light returning to the gain medium is "0"
  • the injected light is normally biased and modulated by the current I bias +I m in the first half of the gain medium. d attenuation; after entering the second half of the gain medium, since there is compensation current I eOT at this time, the injected light will be amplified; when the injected light passes through the gain medium, the end face reflects and re-enters the first half of the gain medium, and then It is attenuated once, because the transmission of the data "0" is usually not finished yet. It can be seen that the process of injecting light is attenuation-amplification-attenuation.
  • Table 4 is based on the above analysis, summed up whether there is compensation current under different conditions, and the amplification and attenuation of the injected light in the gain medium.
  • the gain medium is injecting light" "More amplification is achieved, which can achieve a transmission power similar to that of the injection of "1", improving the emission performance of the seed fiber laser.
  • the present application also provides a driving method for a self-seed fiber laser.
  • the self-seed fiber laser driving method provided by the present application can drive the self-injection fiber laser to realize the above process of self-injection locking, optical return time measurement and optical power compensation, and realize the gain medium driving of the self-seed fiber laser according to the power of the injected light.
  • the current is compensated to compensate for the influence of the power difference between the "1" and "0" of the injected light on the transmission power of the seed fiber laser, effectively reducing the signal quality degradation that may occur due to the non-direct current of the injected light, and improving The emission performance of the self-seed fiber laser.
  • the driving method of the seed fiber laser of the present application may include:
  • Step S1 the gain medium emits data light, and receives the injected light that is partially reflected by the data light and returned to the gain medium; wherein the data light is subjected to wavelength screening of a corresponding wavelength channel in the arrayed waveguide grating, and part of the data Light is reflected by the Faraday rotating mirror and forms injected light that is returned to the gain medium;
  • Step S2 selectively providing a compensation current to the gain medium according to the power of the injected light.
  • the selectively providing the compensation medium for the gain medium according to the power of the injected light may include: when the injected light corresponds to the data "0" and the current data to be sent is a compensation current is generated and output to the gain medium; when the injected light corresponds to the data "0" and the current data to be transmitted is “0" or when the injected light corresponds to the data "1", The gain medium provides a compensation current.
  • generating the compensation current and outputting the data to the gain medium may include:
  • the compensation current is generated based on a power difference between data "0" of the injected light and data "1".
  • the driving method may further include:
  • the selectively providing a compensation current for the gain medium according to the power of the injected light generating a compensation current when the injected light corresponds to the data "0" and outputting to the gain medium The compensation current is not supplied to the gain medium when the injected light corresponds to the data "".
  • the generating the compensation current when the injected light corresponds to the data "0" and outputting the compensation current to the gain medium may include: delaying the current data to be transmitted according to the light return time of the self-seed fiber laser, wherein the delay The data after the time is the same as the data corresponding to the injected light to be returned to the gain medium; the delayed data is inverted; the data output by the inverter is amplified, wherein When the inverter outputs data "", the data "1" is amplified by the amplifier and supplied to the gain medium as a compensation current.
  • the gain medium may include a first gain region near the light emitting surface and a second gain region away from the light emitting surface, wherein the modulation current and the bias corresponding to the current data to be transmitted A current is applied to the first gain region, and a compensation current corresponding to the current injected light is applied to the second gain region.
  • the light return time of the self-seed fiber laser can be calculated by: monitoring the injected light returned to the gain medium, periodically sampling the voltage signal corresponding to the injected light, according to the periodicity The period information of the sampled voltage value is calculated, and the light return time of the self-seeded fiber laser is calculated.
  • the optical power of the injected light returning to the gain medium is detected by a monitor photodiode and converted into a current; the current output by the monitor photodiode is proportionally converted into a voltage signal; periodically sampling the output voltage of the voltage converter; and calculating a light return time of the self-seeded fiber laser according to period information of the periodically sampled voltage value of the sampling module.
  • the test signal transmission process of the gain medium stops before the injected light returns to the gain medium.
  • calculating the optical return time of the self-seed fiber laser according to the period information of the periodically sampled voltage value of the sampling module may include: starting to transmit the test signal according to the gain medium to after the sampling blank period The period information corresponding to the sampled voltage value is used to calculate the light return time; wherein the sample blank period is a period during which the monitor photodiode can only monitor the amount of direct current after the gain medium stops transmitting test data.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Computing Systems (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供一种自种子光纤激光器,包括:阵列波导光栅;增益介质,耦合至所述阵列波导光栅的其中一个分支端口;法拉第旋转反射镜,耦合至所述阵列波导光栅的公共端口,用于对增益介质发射的部分光信号进行反射并形成返回至所述增益介质的注入光;所述增益介质、阵列波导光栅和法拉第旋转反射镜构成激光谐振腔,其中所述阵列波导光栅用于在所述激光谐振腔进行波长筛选,以使所述增益介质的发射波长锁定在所述分支端口所对应的波长通道;补偿装置,耦合至所述增益介质,用于根据注入光的功率选择性地为所述增益介质提供补偿电流。本申请还提供一种自种子光纤激光器的驱动方法以及采用所述自种子光纤激光器的无源光网络系统和设备。

Description

自种子光纤激光器及其驱动方法、 无源光网络系统及设备 技术领域
本申请涉及光纤接入技术, 特别地, 涉及一种自种子光纤激光器及其驱 动方法, 以及一种采用所述自种子光纤激光器的无源光网络( Passive Optical Network, PON ) 系统和设备。 背景技术
随着用户对带宽需求的不断增长, 目前光纤接入已经是接入网的主流, 其中尤其以无源光网络更具竟争力。 目前, 在众多无源光网络解决方案中, 基于波分复用(Wavelength Division Multiplexing, WDM)技术的 WDM-PON (波分复用无源光网络)由于其更为巨大的带宽容量、 类似点对点通信的信 息安全性等优点而备受关注。
在 WDM-PON系统中, 不同 ONU (Optical Network Unit, 光网络单元) 的收发模块需要采用不同的通信波长与局端 OLT (Optical Line Terminal, 光 线路终端)对应的收发模块进行通信, 因此, 所述 WDM-PON系统要求不同 收发模块的光源分别可以发射不同波长的光信号。 为实现光源无色化, 业界 提出采用基于外部种子光注入的注入锁定 FP-LD (法布里-珀罗) 激光器或 SOA ( Reflective Semiconductor Optical Amplifier: 反射半导体光放大器) 作为 WDM-PON系统的光源。
不过,基于外部种子光注入的注入锁定激光器方案由于需要一个或两个 大功率、 平坦的宽谱光源作为外部种子光源, 成本比较高, 同时, 为使得各 个 ONU的通信波长各不相同, 需要对所述宽谱光源的光昝进行分割, 所述 光谱分割还会带来严重的功率浪费问题。 发明内容
本申请提供一种低成本且降低功率浪费的自种子光纤激光器及其驱动 方法, 并且, 本申请还提供一种釆用所述自种子光纤激光器的无源光网络系 统和设备。
一种自种子光纤激光器, 包括: 阵列波导光栅; 增益介质, 耦合至所述 阵列波导光栅的其中一个分支端口; 法拉第旋转反射镜, 耦合至所述阵列波 导光栅的公共端口, 用于对增益介质发射的部分光信号进行反射并形成返回 至所述增益介质的注入光; 所述增益介质、 阵列波导光栅和法拉第旋转反射 镜构成激光谐振腔, 其中所述阵列波导光栅用于在所述激光谐振腔进行波长 筛选, 以使所述增益介质的发射波长锁定在所述分支端口所对应的波长通 道; 补偿装置, 耦合至所述增益介质, 用于根据注入光的功率选择性地为所 述增益介质提供补偿电流。
一种自种子光纤激光器的驱动方法, 所述自种子激光器包括由增益介 质、 阵列波导光栅和法拉第旋转反射镜形成的激光谐振腔; 所述方法包括: 增益介质发射数据光, 其中所述数据光进行阵列波导光栅中对应的波长通道 的波长筛选之后, 部分数据光被法拉第旋转反射镜反射并形成返回至所述增 益介质的注入光; 根据所述注入光的功率, 率选择性地为所述增益介质提供 补偿电流。
一种无源光网络系统, 包括: 光线路终端、 多个光网络单元以及在所述 光线路终端和所述光网络单元之间的远程节点; 所述远程节点包括阵列波导 光栅和法拉第旋转反射镜, 其中所述阵列波导光栅包括公共端口和多个分支 端口, 其中所述公共端口通过主干光纤连接至所述光线路终端, 且所述法拉 第旋转反射镜耦合至所述主千光纤, 所述分支端口分别通过分支光纤连接至 所述光网络单元; 所述光网络单元包括具有增益介质的光发射器, 所述增益 介质、 所述阵列波导光栅以及所述法拉第旋转反射镜形成上述的自种子光纤 激光器。
一种光线路终端, 包括阵列波导光栅、 法拉第旋转发射镜和多个具有增 益介质的光发射器, 所述多个光模块通过所述阵列波导光栅连接至主干光 纤, 且所述法拉第旋转发射镜耦合至所述主干光纤; 所述光发射器的增益介 质、 所述阵列波导光栅以及所述法拉第旋转反射镜形成上述的自种子光纤激 光器。
本申请提供的自种子光纤激光器通过将增益介质的输出光经过滤波和 部分反射而产生反射光作为自种子光注入回所述增益介质进行再次放大, 并 通过输出光 /反射光的多次往返谐振放大将所述增益介质的输出光的波长锁 定在目标波长, 从而实现自注入锁定。 由于所述自种子光纤激光器不需要采 用外部宽普光源, 其一方面可以降低成本, 另一方面还可以避免功率分割造 成的功率浪费。本申请提供的自种子光纤激光器还通过在所述增益介质引入 补偿机制, 根据注入光的功率选择性地为所述增益介质提供补偿电流, 有效 降低由于注入光为非直流光而可能出现的信号质量下降, 提高所述自种子光 纤激光器的发射性能。 附图说明
为了更清楚地说明本申请的技术方案, 下面将对实施例或现有技术描述 中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动 的前提下, 还可以根据这些附图获得其他的附图。
图 1是本申请提供的自种子光纤激光器一种实施例的结构示意图; 图 2是本申请提供的无源光网络系统一种实施例的结构示意图; 图 3是本申请提供的适用于自种子光纤激光器的光返回时间测量装置一 种实施例的示意性框图;
图 4是本申请提供的适用于自种子光纤激光器的补偿装置一种实施例的 示意性框图;
图 5是本申请提供的具有光返回时间测量装置的自种子光纤激光器一种 实施例的示意图;
图 6是本申请提供的具有补偿装置的自种子光纤激光器第一种实施例的 示意图;
图 7是本申请提供的具有补偿装置的自种子光纤激光器第二种实施例的 示意图;
图 8是本申请提供的具有补偿装置的自种子光纤激光器第三种实施例的 示意图;
图 9是本申请提供的具有补偿装置的自种子光纤激光器第四种实施例的 示意图;
图 10是本申请的自种子光纤激光器的驱动方法一种实施例的示意性流 程图。 具体实施方式
下面将结合本申请中的附图, 对本申请中的技术方案进行清楚、 完整地 描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下 所获得的所有其他实施例, 都属于本发明保护的范围。
为解决采用外部种子光注入的注入锁定激光器存在的成本高以及功率 浪费的问题, 本申请提供一种自种子光纤激光器, 其通过将增益介质的输出 光经过滤波和部分反射而产生反射光作为自种子光注入回所述增益介质进 行再次放大,并通过输出光 /反射光的多次往返谐振放大将所述增益介质的输 出光的波长锁定在目标波长, 从而实现自注入锁定。 由于所述自种子光纤激 光器不需要采用外部宽谱光源, 其一方面可以降低成本, 另一方面还可以避 免功率分割造成的功率浪费。 并且, 本申请提供的自种子光纤激光器还通过 在所述增益介质引入补偿机制, 根据注入光的功率选择性地为所述增益介质 提供补偿电流,从而有效降低由于注入光为非直流光而可能出现的信号质量 下降, 提高所述自种子光纤激光器的发射性能。
请参阅图 1 , 其为本申请提供的自种子光纤激光器一种实施例的结构示 意图。 所述自种子光纤激光器可以是包括增益介质、 阵列波导光栅 (Array Waveguide Grating, AWG)、 法拉第旋转反射镜 (Faraday Rotator Mirror, FRM) 和连接上述器件的光纤 (未标示)的外腔激光器。 其中, 所述增益介质可以是 SOA, 所述 AWG可以作为滤波器, 对所述自种子光纤激光器进行波长筛 选, 具体地, 其可以包括一个公共端口和多个分支端口, 所述增益介质连接 到所述 AWG的其中一个分支端口, 且所述 FRM连接到所述阵列波导光栅 的公共端口。 所述 FRM可以为 45度旋转反射镜 , 其可将通过光纤入射的一 部分光信号的偏振方向旋转 45 X 2度并反射回所述光纤。 在具体实施例中, 所述 FRM可以包括法拉第旋转器 (Faraday Rotator)和部分反射镜, 其中所述 法拉第旋转器为 45度旋转器, 其可以将入射光的偏振方向旋转 45度, 因此 入射光被所述 FRM内部的部分反射镜进行部分反射的前后需要穿过所述法 拉第旋转器两次, 因此反射光的偏振方向与所述入射光的偏振方向相差 90 度, 即所述反射光的偏振方向与所述入射光的偏振方向相互垂直, 往返多次 则反射光的偏振方向可以与入射光保持一致, 从而实现偏振无关。
所述增益介质、 AWG及 FRM通过所述光纤构成一个激光谐振腔, 其中 所述 AWG在激光谐振腔内起波长 选的作用, 所述增益介质发出的光在所 述谐振腔内往返谐振形成激射光, 且所述激射光的波长可以被锁定至所述增 益介质所连接的分支端口所对应的波长通道。 请参阅图 2, 其为图 1所示自种子光纤激光器可以适用的无源光网络系 统的结构示意图。 所述无源光网络系统可以是 WDM-PON 系统, 其包括位 于局端 (Central Office , CO)的光线路终端 (OLT)、位于用户侧的多个光网络单 元 (ONU)以及位于所述 OLT和所述 ONU之间用于进行波分复用 /解复用的远 程节点 (Remote Node, RN)。 所述 RN包括波分复用 /解复用模块, 比 AWG。 所述 AWG的公共端口连接所述主干光纤,用于接收来自所述 OLT的下行光 信号, 并且, 所述 AWG还包括多个分支端口, 每个分支端口分别对应于一 个波长通带(即每个分支端口可相当于一个滤波器, 且各个滤波器的通带不 同), 并且分别通过一个分支光纤连接到工作在对应波长通道的 ONU。 所述 AWG可用于将来自所述 OLT的下行光信号进行波长解复用处理, 并分别通 过各个分支端口发送给对应的 ONU, 并且, 其还可用于将来自各个 ONU的 上行光信号进行波分复用处理, 并通过所述公共端口和主干光纤上发给所述 OLT。
所述 ONU可以包括光发射器 (LD)和光接收器 (Rx), 所述光发射器和光 接收器通过波分复用器 (Wavelength Division Multiplexer)耦合到所述分支光 纤。 其中, 所述光发射器可以为具有调制功能的光源模块, 其可以具有上述 增益介质。 并且,在本实施例中,所述远程节点还可以包括 FRM, 所述 FRM 耦合在 AWG的公共端口。所述 ONU的光发射器内部的增益介质、所述 AWG 以及所述 FRM可组成如上所述的自种子光纤激光器。 通过所述自种子光纤 激光器的自注入锁定作用 , 所述 ONU的发射波长能够自动适应其所对应的 AWG分支端口的波长通带。
另外, 所述 OLT具有相类似的结构, 比如, 所述 OLT可以具有多个光 模块, 每个光模块分别对应于一个光网络单元。 所述多个光模块分别通过局 端 AWG连接到主干光纤, 且所述局端 AWG的公共端口同样耦合有 FRM。 在所述 OLT 中, 各个光模块的光发射器同样具有如上所述的增益介质, 所 述光模块的光发射器中的增益介质、 局端 AWG和 FRM同样可以组成如以 上实施例所述的自种子光纤激光器, 通过该自种子光纤激光器自注入锁定同 样可以使得所述光模块的发射波长能够自动适应其所对应的 AWG分支端口 的波长通带。
在上述 WDM-PON系统中, 不管是用户侧 ONU还是局端 ONU所采用 的自种子光纤激光器, 在正常通信时, 由于从 FRM反射回来并注入到增益 介质的注入光是之前某个时刻发射的上行或者下行发射数据的一部分, 这意 味着注入增益介质的注入光不是直流光, 而是有 "1" 或 "0" 的数据光, 即 功率是变化的, 并且, 当注入光的功率不一样时, 自种子光纤激光器的谐振 状态也不相同。 比如, 当返回的注入光是之前某个时刻发射的 " , 并且当 前待发射的数据也是 " , 所述自种子光纤激光器当前发射的 " 的功率 就会高一些; 而当返回的注入光是之前某个时刻发射的 "0" , 并且当前待发 射的数据是 "Γ , 所述自种子光纤激光器发射的 " 1" 功率就会低一些。 从 以上分析可以看出, 所述自种子光纤激光器发射信号的强度不仅与当前待发 射的数据是 "Γ 还是 "0" 有关, 还与此时返回的注入光是 " 1" 还是 "0" 有关。 因为返回的注入光是之前某个时刻发射的数据信号, 其通常来说可能 与当前待发射的数据信号之间没有任何关联性, 因此所述自种子光纤激光器 的发射功率不稳定。
为进一步提高所述自种子光纤激光器的发射性能, 本申请还根据返回至 增益介质的注入光, 通过在所述增益介质的驱动电流引入补偿机制, 选择性 地为所述增益介质提供补偿电流, 来补偿所述注入光的 "Γ 和 "0" 对发射 功率造成的影响。
在具体实施例中, 考虑自种子光纤激光器, 如果在发射数据时, 能够知 道此时返回增益介质的注入光是 "Γ 还是 "0", 就可以在电域通过信号处 理, 对待发射数据进行预变换。 经过预变换的电信号施加到增益介质之后, 与当前返回增益介质的注入光相互作用,使得当前返回增益介质的注入光的 所述自种子光纤激光器的发射功率的影响得到降低,从而提高发射信号的质 量。
基于上述考虑, 本申请提出根据返回至增益介质的注入光的功率, 对所 述增益介质的驱动电流进行修正, 实现对待发射数据进行预变换, 从而补偿 由于注入光不是直流光对自种子光纤激光器的发射功率的影响。 具体地, 如 果当前待发射的光信号是 " , 并且返回增益介质的注入光是 " 0" , 则所述 增益介质的驱动电流增加一定数量的修正值, 即提供一定的补偿电流; 而如 果当前待发射的光信号为 " 1" , 并且返回增益介质的注入光是 "1", 则增益 介质的驱动电流保持为普通状态下发射光信号为 " 1" 时所对应的电流, 即 不提供补偿电流。这里,具体的补偿电流值的大小与当前的增益介质和 FRM 之间的谐振状态相关。 此外, 可选地, 如杲当前待发送的光信号是 "0" , 则 可以不论当前返回增益介质的注入光是 " Γ 还是 "0" , 将所述增益介质的 驱动电流保持为普通状态下发射光信号为 "0" 时所对应的电流。
在一种实施例中, 为实现对自种子光纤激光器的增益介质的驱动电流进 行补偿, 所述自种子光纤激光器可以首先通过测量获取到光返回时间 At, 即 测量从增益介质发射光信号至所述光信号在 FRM发生部分反射而生成的反 射光注入回所述增益介质的时间, 在某一时刻进行数据发射时, 所述自种子 光纤激光器可以根据在一个光返回时间 Δΐ以前所述增益介质发射的数据, 对所述增益介质的驱动电流进行选择性调整。 其中, 从光返回时间 At 的定 义可以得到 , 当前时刻返回所述光增益介质的注入光便是在一个光返回时间 Δΐ以前所述增益介质发射的数据。 在具体实施例中, 所述增益介质在 TO时 刻发射光信号之后, 所述自种子光纤激光器可以根据测量得到的光返回时间 Δΐ 对待发射数据进行延时, 所述延时的数据便可用于对 (Τ0+Δί)时刻所述增 益介质的驱动电流进行补偿的依据。
在一种实施例中,本申请提供的自种子光纤激光器可以包括光返回时间 测量装置和补偿装置, 其中, 光返回时间测量装置用来测量出所述自种子光 纤激光器的光返回时间; 补偿装置用于根据注入光的功率选择性地为所述增 益介质提供补偿电流。 为便于理解, 以下首先结合图 3和图 4介绍所述光返 回时间测量装置和补偿装置的结构,之后介绍所述光返回时间测量装置和补 偿装置在图 1所示的自种子光纤激光器的具体应用。
图 3是本申请提供的一种光返回时间测量装置的示意性框图。如图 3所 示, 本申请提供的一种光返回时间测量装置 10包括:
测试数据源 101, 用于产生测试数据;
第一激光二极管驱动器 (Laser Diode Driver, LDD)102,与测试数据源 101 和自种子光纤激光器的增益介质(图未示)连接, 用于由测试数据驱动, 产生 输出到增益介质的偏置电流和调制电流, 其中, 偏置电流用于使得增益介质 处于放大状态, 调制电流用于将测试数据调制到增益介质发送的光信号, 使 得增益介质发射与测试数据相对应的光信号;
监控光二极管 (Monitor Photodiode, MPD)107, 连接至增益介质, 用于将 从增益介质的后端面输出的光功率成比例地转换为电流;
电压转换器 103 , 与监控光二极管连接, 用于将监控光二极管产生的电 流成比例地转换为电压; 模拟数字转换器 104, 作为采样模块, 与电压转换器 103连接, 用于周 期性采样电压转换器 103的输出电压;
存储器 105 ,与模拟数字转换器 104连接,用于存储模拟数字转换器 104 的采样电压值;
控制器 106, 与测试数据源 101、 模拟数字转换器 104和存储器 105连 接, 所述控制器用于在增益介质与自种子光纤激光器的 FRM实现谐振的情 况下使能测试数据源 101, 使测试数据源 101向第一激光二极管驱动器 102 输出测试数据, 并控制测试数据源 101的测试数据输出在光信号从 FRM反 射回来到达增益介质之前停止; 在使能测试数据源 101的同时, 使能模拟数 字转换器 104以进行周期性的采样; 基于周期性采样的周期信息, 计算出所 述自种子光纤激光器的光返回时间。 比如, 所述控制器可以将在使能测试数 据源 101之后,在第一个空白期后第一个电压采样数据的时间与使能测试数 据源 101的时间之间的时间差计算为光返回时间, 其中, 空白期可以是电压 采样值可以是仅包括一直流量的时期。
通过上述本申请的光返回时间测量装置 ,可以测量出在增益介质和 FRM 实现谐振的情况下, 从增益介质发射的光信号从 FRM反射回来到达增益介 质的时间。 这里, 本领域技术人员可以理解, 上述光返回时间除了用在下文 中描述的补偿装置中以外, 还可以有其它用途, 本申请并不意在对此进行任 何限制。
此外, 控制器 106可以进一步用于计算所存储的电压中高电压和低电压 之间的电压差, 并且根据该电压差、 电压转换器的电压转换比例, 以及监控 光二极管 107的电流转换比例, 计算出从 FRM反射回来并返回至增益介质 的注入光的 "Γ 和 "0" 信号之间的功率差。
图 4是本申请提供的一种补偿装置的示意性框图。 如图 4所示, 本申请 的补偿装置 20包括:
延时电路 201 , 与数据源 200连接, 用于将从数据源发射的数据进行延 时;
反相器 202, 与延时电路 201连接, 用于将从延时电路 201接收的数据 进行反相;
补偿电流产生单元 203 , 与反相器 202连接, 用于根据延时电路 201的 输出数据选择性地产生补偿电流并提供给增益介质 205; 比如, 在一种实施 例中,补偿电流产生电路 203可以在延时电路 201的输出数据经过反相器 202 反相处理之后的数据是 "Γ 时产生补偿电流, 或者, 在另一种实施例中, 补偿电流产生电路 203可以在延时电路 201 的输出数据是 "0" 时产生补偿 电流, 在这种情况下, 无需延时电路 201和补偿电流产生单元 203设置反相 器 202;
控制器 204, 与延时电路 201和补偿电流产生电路 203连接, 用于控制 延时电路 201的延迟时间, 以使得延时电路 201、 反相器 202和补偿电流产 生单元 203对发射数据的延时之和等于自种子光纤激光器的光往返时间与数 据源 200发射的数据到达增益介质 205的时间之和; 控制补偿电流产生电路 203产生的补偿电流的大小, 比如, 控制器 204可以根据返回增益介质的注 入光的 " 和 "0" 信号之间的功率差以及所述增益介质的电流与发光功率 之间的比例系数, 计算补偿电流的大小, 并控制补偿电流产生电路 203产生 相应大小的补偿电流。
通过本申请的功率补偿装置, 可以对从 FRM反射回来的注入光信号中 "1" 和 "0" 引起的发射信号的功率差进行补偿, 从而大幅度提升自种子光 纤激光器的发射性能。
接下来, 将结合图 5对于本申请提供的光返回时间测量装置在自种子光 纤激光器中的具体应用进行描述。
图 5是本申请具有光返回时间测量装置的自种子光纤激光器的结构示意 图。在图 5的自种子光纤激光器中,测试数据源、激光二极管驱动器 (LDD1)、 跨阻放大器 (Tran Impendence Amplifier, TIA)、 模拟数字转换器 (ADC:)、 随机 存储器 (RAMI)、 中央处理器 (CPU)和监控光二极管 (MPD)分别对应于图 3所 示的测试数据源 101、 第一激光二极管驱动器 102、 电压转换器 103、模拟数 字转换器 104、 存储器 105、 控制器 106和监控光二极管 107。
在图 5所示的自种子光纤激光器中, 利用和增益介质封装在同一个光发 射次模块 (Transmitter Optical Subassembly, TOSA)内、并且邻近于增益介质高 反射面设置的 MPD测量增益介质和 FRM之间的距离,其中所述高反射面为 与增益介质的光出射面 (通常为前端面)相对的表面 (通常为后端面)。 增益介 质在发光时, 大部分光的能量都从其前端面输出, 但由于其后端面为高反射 面而非 100%的全反射面, 所以也会有少量的光从后端面输出,被 MPD接收 到。 MPD 会将接收到光功率成比例地转换为电流并输出。 因此, 通过检测 MPD输出电流的大小, 就可以推断出 MPD当前接收到的光功率值。 并且, MPD接收到的这部分后向光功率与增益介质的前向发射功率通常有固定的 比例关系, 所以一般情况下, 可以利用 MPD接收到的功率来推算出增益介 质的前向发射功率。 在本实施例中, MPD 除了用来监控增益介质的发射功 率之外, 还用于测量增益介质的反射光从发出后至被 FRM反射并返回到增 益介质的准确时间, 即所述自种子光纤激光器的光返回时间。
在增益介质和 FRM已经实现谐振的前提下, CPU使能测试数据源, 使 得增益介质发射特定内容的信号, 即测试信号。 在本实施例中, CPU需要控 制测试信号的发射在从 FRM反射回来的反射光注入到增益介质之前停止。 增益介质发送完毕后, LDD1仍旧需要向增益介质提供偏置电流, 但此时由 于测试信号已经停止发射, 因此没有调制电流提供到增益介质。 偏置电流是 为了确保增益介质仍然工作在放大状态, 这样从增益介质前端面进入的反射 信号就不会被增益介质吸收, 而是能够通过增益介质从增益介质的后端面输 出, 并被 MPD接收到。
CPU 在使能测试数据源发射测试信号的同时, 使能 ADC 周期性采样
MPD的输出信号, 并将采样结果存储到 AM1。 应当理解, 虽然在图 5 中 示出存储器为 AM, 但本领域技术人员可以理解所述存储器也可以采用其 它存储介质。
在本发明的实施例中, 因为 ADC采样是周期性的, 因此, 每个存储到 RAMI中的数据都是含有时间信息, 其中第一个采样的数据的时间信息就是 CPU刚开始使能 ADC的时刻, 也是增益介质开始发射测试数据的时刻 T0。 第二个存储的数据的时间信息就是 T0+(l/k)时刻, 第 n个存储的数据的时间 信息就是 T0+(n/k)时刻, 其中 k为 ADC的采样率。 通过分析 RAMI 中存储 的数据, 就可以得到反射信号到达 MPD的时间, 从而计算出所述自种子光 纤激光器的光返回时间, 具体请参见以下描述。
下面结合图 5具体描述本申请的自种子光纤激光器测量光返回时间的工 作过程。 MPD 每时每刻都将接收到的光功率成比例地转换为电流, 输出给 TIA, TIA实时地将电流转换为电压。 如果当前 MPD没有接收到光功率, 则 输出的电流为零, TIA输出的电压也为零。 TO时刻, 增益介质开始发送测试 数据, 与此同时, ADC开始采样 TIA输出的电压, 并将采样的数值记录到 RAML 增益介质发射测试数据时, 测试数据的一部分光能量必然透过增益 介质的后端面被 MPD接收。 MPD和 TIA也会将该部分光能量转换成相应的 电流和电压信号, 而被 ADC采样到。 如上所述, 增益介质的测试数据发射 过程在从 FRM反射回来的光返回至增益介质之前停止, 从而避免测试数据 和反射信号两者在增益介质重叠出现。
在具体实施例中, 可选地, 可以由 CPU来控制测试数据源使得增益介 质仅在极短的时间内发射测试数据,从而保证增益介质的测试数据发射过程 在反射信号到达增益介质之前停止。 由于测试数据的发射过程在反射信号到 达增益介质之前停止, 那么 MPD在响应了测试数据之后必然有一段空白期 才能响应反射信号。 在这个空白期内, 由于增益介质只有直流偏置, 而无调 制数据, MPD 的响应也只是一个直流量。 另一方面, 因为测试数据和反射 信号都包含 "1" 和 "0" , 且 MPD对 "Γ 和 "0" 的响应是不同的, 因此在 直流量的前后, MPD的响应均是实时变化的。
如上所述, 由于 ADC的采样是周期性的, 因此 RAMI记录的 ADC的 采样值是包含时间信息的, CPU可以根据空白期(即 MPD响应是直流量的时 段)后第一个数据所处的位置, 即所述空白期之后的第一个数据是从开始采 样以来的第几个采样值, 来推算出从增益介质的发射光从开始反射至其对应 的反射信号返回至增益介质的准确时间,从而获取到所述自种子光纤激光器 的光返回时间。
此外, 根据上述 ADC的采样结果, 除了光从增益介质发射出后返回增 益介质的准确时间之外, 还可以进一步计算出反射信号中的 "Γ 和 "0" 信 号的引起的功率差别, 这个功率差别可以作为增益介质的驱动电流补偿的重 要参数。 因为 MPD输出的电流和接收到的光功率成正比, TIA输出的电压 和接收到的 MPD的电流成正比, 因此 ADC的采样值就和 MPD接收到的功 率成正比。 当返回增益介质的注入光是 "1" 时, 到达 MPD的光功率高, 而 当返回增益介质的注入光是 "0" 时, 到达 MPD的光功率低。 在本申请的自 种子光纤激光器中, CPU可以才艮据 AM存储的采样值以及 MPD和 TIA的 转换关系, 来推算出返回至增益介质的注入光的 " Γ 和 "0" 之间的功率差 别。
在本申请中,根据自种子光纤激光器的光往返时间以及反射回来的注入 光在 "Γ 和 "0" 之间的功率差别之后, 采用图 4所示的补偿装置, 就可以 自种子光纤激光器中增益介质的驱动电流进行补偿,从而降低返回增益介质 的注入光中 " Γ和 "0" 的功率差对所述自种子光纤激光器发射性能的影响。 下面将参考图 6-图 9, 详细描述本申请提供的补偿装置在自种子光纤激 光器中具体应用。
图 6是本申请的具有补偿装置的自种子光纤激光器的第一实施例的结构 示意图。 在图 6所示的自种子光纤激光器中, 当前要发射的数据源模块、 第 二可编程延时器 (即可编程延时器 2)、 反相器和 CPU分别对应于图 4所示的 数据源 200、 延时电路 201、 反相器 202和控制器 204; 与门 (AND)和第二激 光二极管驱动器 (LDD2)对应于图 6所示的补偿电流产生电路 203;
另外, 图 6 所示的自种子光纤激光器中还包括有第一可编程延时器 (即 可编程延时器 1)和第一激光二极管驱动器 (LDD1)。 其中, LDD1用于根据当 前待发射数据为增益介质提供普通的偏置电流 Ibias和调制电流 Imd; 第一可 编程延时器用于将当前待发射数据延时一预设时间之后再提供给 LDD1, 所 述预设时间主要用于补偿与门的逻辑 "与" 运算过程的延迟, 以使当前待发 射数据所对应的偏置电流 Ibias和调制电流 Imd可以与返回增益介质的注入光 所对应的补偿电流 基本同步地输出至所述增益介质。
在图 6所示的自种子光纤激光器中, 当前待发射的数据分成三个部分: 第一部分通过第一可编程延时器进入 LDD1, 产生普通的偏置电流 Ibias和调 制电流 Imd; 第二部分进入与门的一个输入端; 第三部分通过第二可编程延 时器和反相器之后, 进入与门的第二个输入端。 从与门输出的信号进入 LDD2, 以驱动 LDD2产生补偿电流 ICOT。 在图 6所示的实施例中 , 从与门输 出给 LDD2的只是数字信号 "Γ 或者 "0" , 二者分别指示 LDD2是否提供 补偿电流, 而补偿电流的具体数值, 可以是由 CPU根据注入光 " 1"和 "0" 之间的功率差别以及电流与发光功率之间的转换关系计算得到, 并对 LDD2 设定。这样,将 LDD1提供的正常电流 Ibias+Imd和 LDD2提供的补偿电流 ICOT 叠加在一起, 提供给增益介质, 驱动增益介质进行光信号的发射。
下面具体解释与门、 第二可编程延时器和反相器的作用, 上述模块组成 的电路可以主要用于使得在当前待发射数据是 " 1" 时, 如果返回增益介质 的注入光是 " 1", 则不对增益介质的驱动电流进行补偿, 如果注入光是 "0", 则为增益介质提供补偿电流 U、增大所述增益介质的调制电流; 进一步地, 上述电路还可用于使得在当前待发射的数据是 "0" 时, 不论返回增益介质 的注入光是 " 还是 "0" , 都不对增益介质的驱动电流进行补偿。 当最初开始发射数据时, 此时第一部分的数据经过第一可编程延时器并 驱动 LDD1产生普通的偏置和调制电流 Ibias+Imd, 第二部分的数据进入与门 的第一个输入端, 第三部分的数据由于延时还没有到达与门的第二个输入 端, 因此与门的第二个输入端为零。 此时, 与门的输出也为零, 即不产生补 偿电流 IeOT, 实际上此时返回增益介质的注入光是之前谐振的直流光, 也不 需要进行补偿。
经过大约一个光返回时间之后, 最初的发射数据即将返回增益介质, 此 时, 通过第二可编程延时器的延迟处理以及反相器的反向处理的第二数据到 达与门的第二个输入端, 利用 CPU合理控制所述第二可编程延时器的延时 时间长度, 可以使得此时进入与门第二个输入端的数据, 正好与即将返回增 益介质的注入光相反, 即当前返回的注入光是 " 1" , 与门第二个输入端的数 据是 "0" ; 当前返回的注入光是 "0" , 与门第二个输入端的数据是 "1 "。
即将返回增益介质的注入光取 "反"之后, 与当前待发射数据进行 "与" 运算, 可以使得当注入光是 " 1" 时, 不论当待发射数据是 "0" 还是 "Γ , 都不产生补偿电流; 而当注入光是 "0" 时, "与" 的结果就是当前待发射数 据本身。 即当前待发射数据为 "1" 时, 指示 LDD2产生补偿电流 ICOT, 当前 发射 "0" 时, 指示 LDD2不产生补偿电流 Icr
表 1是根据上面的分析, 总结出的不同条件下是否需要给增益介质提供 补偿电流 IeOT。 从这个表可以看出, 本实施例提供的补偿装置与上述自种子 光纤激光器所要实现的补偿目标是完全一致的, 因此可以实现提升所述自种 子光纤激光器的发射性能。
【表 1】 不同条件下的补偿电流
Figure imgf000015_0001
在图 6所示的实施例中, 第一可编程延时器是为了补偿与门可能产生的 延迟, 这样, 由于 "与" 门的两个输入分别是在光往返时间之前由数据源发 射的数据的取 "反"结果, 即是当前返回增益介质的注入光的取 "反"结果, 以及当前待发射数据, 可以确定实现表 1所示的不同条件下的补偿电流:) 并 且由于在与门中的运算也需要一定时间, 第一可编程延时器可以使得补偿操 作变得更加精确。
具体解释, 假设在时间 TO数据源开始初始数据, 第一可编程延时器的 延时是 T1 , 且光返回时间是 Δΐ, 则在时间 T0+T1 , 从数据源初始发出的数 据到达增益介质, 并在时间 Τ0+Τ1+Δΐ返回增益介质, 且这时返回增益介质 的注入光是在时间 TO从数据源发送的数据。 并且, 针对在时间 Τ0+Τ1+Δΐ 返回增益介质的注入光, 其对应的当前发射数据是在时间 T0+T从数据源发 射的数据, 而产生的补偿电流:!^也对应于在时间 T0+T输入与门的两个输 入端的数据, 即, 在时间 Τ0+Δί从数据源发射的数据, 和在时间 TO从数据 源发射的数据的反相。
图 7是本申请的具有补偿装置的自种子光纤激光器的第二实施例的结构 示意图。 图 7所示的自种子光纤激光器与图 6所示的自种子光纤激光器的主 要区别在于釆用放大器 (Amplifier)来作为补偿电流产生电路, 来替换图 6所 示的与门和 LDD2。
在图 7所示的自种子光纤激光器中, 当前待发射数据分为两部分: 第一 部分进入 LDD1 , 产生普通的偏置电流 Ibias和调制电流 Imd; 第二部分通过 可编程延时器和反相器后, 进入放大器, 产生补偿电流 IeOT。 其中, CPU可 以通过合理控制可编程延时器的延时时间长度, 使得数据经过可编程延时 器、 反相器和放大器的总时间, 等于上述光往返时间。 另夕卜, 反相器提供给 放大器的信号只是数字信号 " 或者 "0" , 指示是否产生补偿电流, 而补 偿电流的具体电流值, 可以是由 CPU根据注入光 "1 "和" 0"之间的功率差别 以及电流与发光功率之间的转换关系计算得到,并对放大器进行设定。这样, 将 LDD1提供的正常电流 Ibias+Imd和放大器提供的补偿电流 I∞r叠加在一起, 提供给增益介质, 驱动增益介质进行光信号的发射。
下面具体解释延时器、反相器和放大器的作用。当最初开始发射数据时, 此时第一部分的数据驱动 LDD1产生普通的偏置和调制电流 Ibias+Imd, 第二 部分的数据由于可编程延时器的延时作用, 还没有到达放大器的输入端, 因 此此时放大器的输入端为零, 放大器的输出也为零, 即不产生补偿电流 ICOT。 实际上此时返回增益介质的注入光是之前谐振的直流光, 也不需要进行补 偿。 经过大约一个光返回时间之后, 最初的发射数据即将返回增益介质, 此 时第二部分的数据已经通过了延时器的延时处理和反相器的反相处理, 进入 放大器的输入端, 并经由放大器进行了放大。 由于所述反相器的反向作用, 此时从放大器的输出端输出的电流数据正好与返回增益介质的注入光数据 相反, 即当前返回的注入光是 "1", 数据源发出的数据是 "1", 因此经过反 相器到达放大器输入端的数据是 "0" , 放大器不输出补偿电流; 当前返回的 注入光是 "0" , 数据源发出的数据是 "0" , 放大器输入端的数据是 " Γ , 放 大器输出补偿电流 补偿电流 IeOT的具体数值和 CPU设置的放大器的放 大倍数有关。
也即是说, 当注入光是 "Γ 时, 放大器输出 "0", 无补偿电流产生, 即是不论当前发射什么数据, 都不产生补偿电流。 当注入光是 "0" 时, 放 大器输出某一个数值的电流,即是不论当前发射什么数据,都产生补偿电流, 从而增益介质获得更大的调制电流, 可以达到和注入 "Γ 同样的发射功率, 提高发射性能。 表 2是根据上面的分析, 总结出的不同条件下是否存在补偿 电流。
【表 2】 不同条件下的补偿电流
Figure imgf000017_0001
与第一实施例不同的是, 在第二实施例中, 只要返回增益介质的注入光 数据是 "0" , 便产生补偿电流 ICOT对增益介质的驱动电流进行补偿。 由于当 发射数据是 "0" 时, 其发射功率相对发射数据是 "Γ 时小很多, 因此返回 增益介质的注入光 "Γ 和 "0" 引起的发射数据 "0" 的功率差别与平均功 率相比小很多, 因此仍然可以改进自种子光纤激光器的发射性能。
并且, 如之前关于第一实施例所述的, 在考虑从数据源发射的数据驱动 LDD1 以产生普通的偏置和调制电流 Ibias+Imd的延时的情况下, 数据经过放 大器、 反相器和可编程延时器所需的时间应该等于上述光往返时间加上在 LDD1 中的延时, 从而保证普通的偏置和调制电流 Ibias+Imd和补偿电流 ICOT 是基于同一时间的源数据而产生的。 这样, 假设在 TO时刻, 从数据源发射 数据, 经过 LDD1的延时在 T1时刻到达增益介质, 并在经过光往返时间 Δΐ 之后, 在 Τ2时刻返回到增益介质。 此时, 在 TO时刻从数据源发射的数据在 经过 LDD1的延时和光往返时间 Δί之后, 需要在 Τ2时刻产生补偿电流。 如 上所述,由于在 TO时刻从数据源发射的数据与在 T1时刻到达增益介质的数 据相同, 也与在 T2时刻返回到增益介质的数据相同, 而放大器在 T2时刻产 生的补偿电流是 TO时刻从数据源发射的数据的反相, 因此可以实现在注入 光为 "0" 时对增益介质的驱动电流进行补偿, 从而提高自种子光纤激光器 的发射性能。
图 8是本申请的具有补偿装置的自种子光纤激光器的第三实施例的结构 示意图。 图 8所示的自种子光纤激光器与如图 6所示的自种子光纤激光器的 主要区别在于使用有两段增益区的增益介廣, 其中, 普通的偏置和调制电流 Ibias+Imod施加在在镀有高透膜的前半部(即靠近所述增益介质发射面的增益 区),而补偿电流 1 施加在增益介质镀有高反膜的后半部 (即远离所述增益介 质发射面的增益区)。 通过图 8 所示的自种子光纤激光器, 数据信号和补偿 信号可以实现分开控制, 使控制更简单, 从而进一步改进自种子光纤激光器 的发射性能。
在图 8所示的自种子光纤激光器中, 当前待发射的数据分成三个部分: 第一部分经过第一可编程延时器进入 LDD1 , 产生普通的偏置电流 Ibias和调 制电流 Imd; 第二部分进入与门的一个输入端; 第三部分通过第二可编程延 时器和反相器之后, 进入与门的第二个输入端。 从与门输出的信号进入 LDD2,驱动 LDD2产生补偿电流 I∞r。。其中, LDD1提供的正常电流 Ibias+Imd 被施加在增益介质的前半部, 而 LDD2提供的补偿电流 ICOT被施加在增益介 质的后半部。
与门、 第二可编程延时器和反相器的作用与第一示例的相同, 与第一示 例不同的是电流的加载方式。 下面举例说明两段式增益介质的工作方式。
当返回增益介质的注入光是 "0" 时, 如果此时要发射的数据是 " 1", 那么注入光在增益介质的前半段被普通偏置和调制电流 Ibias+Imd放大; 在进 入增益介质的后半段后, 由于此时有补偿电流 I∞r, 则注入光会被再次放大; 当注入光经过增益介质后端面反射, 重新进入增益介质的前半段后, 会再一 次被普通偏置和调制电流放大 Ibias+Imd, 因为此时数据 "Γ 的发射 通常还 没有结束, 可见, 注入光经历的过程就是放大-放大-放大。
当返回增益介质的注入光是 "0" 时, 如果此时要发射的数据是 "0", 那么注入光在增益介质的前半段被普通偏置和调制电流 Ibias+Imd衰减; 在进 入增益介质的后半段后, 由于此时没有补偿电流 IeOT, 则注入光会被再次衰 减; 当注入光经过增益介质后端面反射, 重新进入增益介质的前半段后, 会 再一次被衰减, 因为此时数据 "0" 的发射通常还没有结束, 可见注入光经 历的过程; tfc是衰减-衰减-衰减。
当返回增益介质的注入光是 "1" 时, 如果此时要发射的数据是 " 1" , 那么注入光在增益介质的前半段被普通偏置和调制电流 Ibias+Imd放大; 在进 入增益介质的后半段后, 由于此时没有补偿电流 IeOT, 则注入光会被衰减; 当注入光经过增益介质后端面反射, 重新进入增益介质的前半段后, 会再一 次被普通偏置和调制电流 Ibias+Imd放大, 可见, 注入光经历的过程就是放大 -衰减-放大。
当返回增益介质的注入光是 "1" 时, 如果此时要发射的数据是 "0" , 那么注入光在增益介质的前半段被普通偏置和调制电流 Ibias+Imd衰减; 在进 入增益介质的后半段后, 由于此时没有补偿电流 IeOT, 则注入光会被再次衰 减; 当注入光经过增益介质后端面反射, 重新进入增益介质的前半段后, 会 再一次被衰减, 可见, 注入光经历的过程就是衰减-衰减-衰减。
表 3是根据上面的分析, 总结出的不同条件下是否存在补偿电流, 以及 注入光在增益介庸一个来回的放大和衰减。 从表中可以看出, 在当前待发射 数据是 "0" 时, 不论注入光是 " Γ 还是 "0" , 都一直受到衰减; 在当前待 发射数据是 "1 " 时, 注入光是 "0" 经历了三次放大, 而注入光 "Γ 经历 了两次放大和一次衰减, 所以增益介质在注入光是 "0" 的情况下得到了更 多的放大, 从而达到和注入光是 "1" 时基本相似的发射功率, 提高自种子 光纤激光器的发射性能。
【表 3】 不同条件下的补偿电流和注入光的放大和衰减情况
Figure imgf000019_0001
在上述实施例的描述中, 为了便于说明, 仅列举了注入光在增益介质被 放大和衰减的情况。 应当理解, 实际上, 这里注入光的放大和衰减仅是相对 的概念, 并不一定代表注入光的实际的放大和衰减。 例如, 可能在上述注入 光衰减的情况下注入光的放大倍数小于上述注入光放大的情况下的放大倍 数; 或者在上述注入光衰减的情况下实际上注入光保持不变, 而在上述注入 光放大的情况下注入光经历放大; 或者在上述注入光放大的情况下注入光保 持不变, 而在上述注入光衰減的情况下注入光衰减, 等等。 本领域技术人员 可以理解上述示例仅是说明性的, 本发明的实施例并不意在对此进行任意限 制。
另夕卜,在上述实施例中,增益介质的驱动电流补偿与不补偿的情况相比, 差别在于在增益介质的后半段中被补偿电流放大和衰减。 这里, 由于补偿电 流是直接加到增益介质的后半段, 因此注入光被补偿电流放大和衰减所造成 的功率差异实际就是叠加补偿电流所造成的功率差异。 因此, 通过如上所述 地设置 LDD2 所输出的补偿电流的具体数值, 就可以精确地补偿注入光是 "1" 和 "0" 所造成的功率差异。
另外, 第一可编程延时器的作用也在于补偿与门可能产生的延时, 其作 用与如图 6所示的实施例相同, 在此便不再赞述。 此外, 本领域技术人员可 以理解, 上述关于图 6的自种子光纤激光器的补偿装置的结构和工作过程的 描述可以适用于本实施例的自种子光纤激光器, 本发明的实施例并不意在对 此进行任何限制。
图 9是本申请的具有补偿装置的自种子光纤激光器的第四实施例的结构 示意图。 图 8所示的自种子光纤激光器与如图 7所示的自种子光纤激光器的 主要区别在于使用有两段增益区的增益介质, 其中, 补偿电流 1^施加在增 益介质镀有高反膜的后半部, 而普通的偏置和调制电流 Ibias+Imd施加在增益 介质镀有高透膜的前半部。 通过图 9所示的自种子光纤激光器, 数据信号和 补偿信号同样可以实现分开控制, 使控制更简单, 从而进一步改进自种子光 纤激光器的发射性能。
在图 8所示的自种子光纤激光器中, 当前待发射的数据分为两个部分: 第一部分进入 LDD1 , 产生普通的偏置电流 Ibias和调制电流 Imd; 第二部分 通过可编程延时器和反相器之后, 进入放大器, 产生补偿电流 ICOT。 其中, LDD1提供的正常电流 Ibias+Imd被施加在增益介质的前半部, 而 LDD2提供 的修正调整电流 IeOT¾施加在增益介质的后半部。
延时器、 反相器和放大器的作用与第二示例的相同, 与第二示例不同的 是电流的加载方式。 下面举例说明两段式增益介质的工作方式。
当返回增益介质的注入光是 "0" 时, 如果此时要发射的数据是 " 1" , 那么注入光在增益介质的前半段被普通偏置和调制电流 Ibias+Imd放大; 在进 入增益介质的后半段后, 由于此时有补偿电流 IeOT, 则注入光会被再次放大; 当注入光经过增益介质后端面反射, 重新进入增益介质的前半段后, 会再一 次被普通偏置和调制电流 Ibias+Imd放大, 因为此时 数据 " 1" 的发射通常还 没有结束。 可见, 注入光经历的过程就是放大-放大-放大。
当返回增益介质的注入光是 "0" 时, 如果此时要发射的数据是 "0" , 那么注入光在增益介质的前半段被普通偏置和调制电流 Ibias+Imd衰减; 在进 入增益介质的后半段后, 由于此时有补偿电流 IeOT, 则注入光会被放大; 当 注入光经过增益介质后端面反射, 重新进入增益介质的前半段后, 会再一次 被衰减, 因为此时数据 "0" 的发射通常还没有结束。 可见, 注入光经历的 过程就是衰减 -放大 -衰减。
当返回增益介质的注入光是 "Γ 时, 如果此时要发射的数据是 " 1" , 那么注入光在增益介质的前半段被普通偏置和调制电流 Ibias+Imd放大; 在进 入增益介质的后半段后, 由于此时没有补偿电流 I∞r, 则注入光会被衰减; 当注入光经过增益介质后端面反射, 重新进入增益介质的前半段后, 会再一 次被普通偏置和调制电流放大。 可见, 注入光经历的过程就是放大-衰减-放 大。
当返回增益介质的注入光是 "Γ 时, 如果此时要发射的数据是 "0" , 那么注入光在增益介质的前半段被普通偏置和调制电流 Ibias+Imd衰减; 在进 入增益介质的后半段后, 由于此时没有补偿电流 I∞r, 则注入光会被再次衰 减; 当注入光经过增益介质后端面反射, 重新进入增益介质的前半段后, 会 再一次被衰减。 可见, 注入光经历的过程就是衰减-衰减-衰减。
表 4是根据上面的分析, 总结出的不同条件下是否存在补偿电流, 以及 注入光在增益介质一个来回的放大和衰减。 从表中可以看出, 在当前待发射 数据是 "1" 时, 注入光是 "0" 经历了三次放大, 而注入光 " 经历了两 次放大和一次衰减。 所以增益介质在注入光 "0" 得到了更多的放大, 可以 达到和注入 "1"基本相似的发射功率, 提高自种子光纤激光器的发射性能。
【表 4】 不同条件下的补偿电流和注入光的放大和衰减情况
Figure imgf000021_0001
这里, 本领域技术人员可以理解, 上述关于图 6的自种子光纤激光器的 补偿装置的结构和工作过程的描述可以适用于本实施例的自种子光纤激光 器, 本发明的实施例并不意在对此进行任何限制。
基于上述自种子光纤激光器及其光返回时间测量和光功率补偿过程, 本 申请还提供一种自种子光纤激光器的驱动方法。。 采用本申请提供的自种子 光纤激光器的驱动方法, 可以驱动自种子光纤激光器实现上述自注入锁定、 光返回时间测量和光功率补偿的过程, 实现根据注入光的功率对自种子光纤 激光器的增益介质驱动电流进行补偿, 从而补偿注入光的 "1" 和 "0" 的功 率差可能对自种子光纤激光器的发射功率造成的影响,有效降低由于注入光 为非直流光而可能出现的信号质量下降,提高所述自种子光纤激光器的发射 性能。
具体而言,请参照图 10, 本申请的自种子光纤激光器的驱动方法可以包 括:
步骤 Sl、 增益介质发射数据光, 并接收所述数据光被部分反射而返回 至所述增益介质的注入光; 其中所述数据光进行阵列波导光栅中对应的波长 通道的波长筛选之后,部分数据光被法拉第旋转反射镜反射并形成返回至所 述增益介质的注入光;
步骤 S2、 根据注入光的功率, 选择性地为所述增益介质提供补偿电流。 比如, 在一种实施例中, 所述根据注入光的功率, 选择性地为所述增益 介质提供补偿电流可以包括: 在所述注入光对应于数据 "0" 且当前待发送 数据为 " 时, 生成补偿电流并输出给所述增益介质; 在所述注入光对应 于数据 "0" 且当前待发送数据为 "0" 时或者在所述注入光对应于数据 " 1" 时, 不向所述增益介质提供补偿电流。
在具体实施例中, 上述在所述注入光对应于数据 "0" 且当前待发送数 据为 " 1" 时, 生成补偿电流并输出给所述增益介质可以包括:
根据所述自种子光纤激光器的光返回时间将当前待发射数据进行延时, 其中经过延时后的数据与即将返回所述增益介质的注入光所对应的数据相 同; 将所述经过延时后的数据进行反相处理; 根据所述经过反相处理后的数 据以及当前待发射数据, 选择性地产生补偿电流并提供给所述增益介质, 其 中, 在所述反相处理后的数据为 "1" 且当前待发送数据为 " 1" 时, 生成补 偿电流并输出给所述增益介质。 比如, 将所述反向器进行反向处理之后的输 出数据和所述当前待发射数据进行逻辑 "与" 运算; 在所述逻辑 "与" 运算 结果是 'τ' 时, 生成补偿电流并输出给所述增益介质。
在具体实施例中, 所述补偿电流根据述注入光的数据 "0" 和数据 "1" 之间的功率差生成。
进一步地, 所述驱动方法还可以包括:
根据当前待发送数据产生调制电流和偏置电流, 并将所述调制电流和偏 置电流输出给所述增益介质; 其中, 所述当前待发送数据延时预设时间之后 再提供给激光二极管驱动器生成所述调制电流和所述偏置电流, 其中所述预 设时间用于补偿所述逻辑 "与" 运算过程的延迟。
在另一种实施例中, 所述根据注入光的功率, 选择性地为所述增益介质 提供补偿电流: 在所述注入光对应于数据 "0" 时产生补偿电流并输出给所 述增益介质; 当所述注入光对应于数据 " Γ 时不向所述增益介质提供补偿 电流。
其中, 所述在注入光对应于数据 "0" 时产生补偿电流并输出给所述增 益介质可以包括: 根据所述自种子光纤激光器的光返回时间将当前待发射数 据进行延时, 其中经过延时后的数据与即将返回所述增益介质的注入光所对 应的数据相同; 将所述经过延时后的数据进行反相处理; 将所述反相器输出 的数据进行放大, 其中, 在所述反相器输出数据 " Γ 时, 所述数据 "1" 经 过所述放大器放大之后作为补偿电流提供给所述增益介质。
进一步地, 在上述实施例中, 所述增益介质可以包括靠近光发射面的第 一增益区和远离所述光发射面的第二增益区, 其中与当前待发射数据相对应 的调制电流和偏置电流施加至所述第一增益区, 而与当前注入光相对应的补 偿电流施加至所述第二增益区。
另一方面, 所述自种子光纤激光器的光返回时间可以通过以下方法计算 得到: 监测返回至所述增益介质的注入光, 对所述注入光所对应的电压信号 进行周期性采样, 根据周期性采样电压值的周期信息, 计算出所述自种子光 纤激光器的光返回时间。
比如, 在所述增益介质开始发射测试信号之后, 利用监控光二极管检测 返回所述增益介质的注入光的光功率并将其转换为电流; 将所述监控光二极 管输出的电流成比例地转换为电压信号; 对所述电压转换器的输出电压进行 周期性采样; 根据所述采样模块的周期性采样电压值的周期信息, 计算出所 述自种子光纤激光器的光返回时间。 在具体实施例中, 所述增益介质的测试信号发射过程在所述注入光返回 至所述增益介质之前停止。
进一步地, 所述根据采样模块的周期性采样电压值的周期信息, 计算出 所述自种子光纤激光器的光返回时间可以包括: 根据所述增益介质开始发射 所述测试信号至采样空白期之后第一个采样电压值所对应的周期信息, 计算 出所述光返回时间; 其中采样空白期是所述增益介质停止发射测试数据之后 所述监控光二极管仅能监测到直流量的时段。
应当理解, 上述自种子光纤激光器的驱动方法各个步骤 (包括光功率补 偿和光返回时间测量)的具体过程可以参照上述关于自种子光纤激光器的结 构和工作过程的描述, 以下不再赘述。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赞述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。 另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以采用软件功 能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory )、 随机存耳又存储器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1. 一种自种子光纤激光器, 其特征在于, 包括:
阵列波导光栅;
增益介质, 耦合至所述阵列波导光栅的其中一个分支端口;
法拉第旋转反射镜, 耦合至所述阵列波导光栅的公共端口, 用于对增益 介质发射的部分光信号进行反射并形成返回至所述增益介质的注入光; 所述 增益介质、 阵列波导光栅和法拉第旋转反射镜构成激光谐振腔, 其中所述阵 列波导光栅用于在所述激光谐振腔进行波长 选, 以使所述增益介质的发射 波长锁定在所述分支端口所对应的波长通道;
补偿装置, 耦合至所述增益介质, 用于根据注入光的功率选择性地为所 述增益介质提供补偿电流。
2. 如权利要求 1 所述的自种子光纤激光器, 其特征在于, 在所述注入 光对应于数据 "0" 且当前待发送数据为 " 1 " 时, 所述补偿装置产生补偿电 流并输出给所述增益介庸; 而在所述注入光对应于数据 "0" 且当前待发送 数据为 "0" 时或者在所述注入光对应于数据 " 1 " 时, 所述补偿装置不向所 述增益介质提供补偿电流。
3. 如权利要求 2所述的自种子光纤激光器, 其特征在于, 所述补偿装 置包括第一延时电路和补偿电流产生电路;
其中, 所述第一延时电路, 用于根据所述自种子光纤激光器的光返回时 间将当前待发射数据进行延时, 其中经过延时后输出至所述补偿电流产生电 路的数据与即将返回所述增益介质的注入光所对应的数据相同;
所述补偿电流产生电路, 连接至所述第一延时电路, 用于根据所述第一 延时电路的输出数据以及当前待发射数据, 选择性地产生补偿电流并提供所 述给增益介质。
4. 根据权利要求 3所述的自种子光纤激光器, 其特征在于, 所述补偿 装置还包括控制器, 用于根据所述光返回时间控制所述第一延时电路的延时 时间, 并根据所述注入光的数据 "0" 和数据 "1 " 之间的功率差, 控制所述 补偿电流产生电路相应电流值的补偿电流。
5. 如权利要求 3所述的自种子光纤激光器,其特征在于, 所述补偿装置 还包括反相器, 连接在所述第一延时电路和所述补偿电流产生电路之间, 用 于将所述第一延时电路的输出数据进行反向处理并进一步提供给所述补偿 电流产生电路。
6. 如权利要求 5所述的自种子光纤激光器, 其特征在于, 所述补偿电 流产生电路包括逻辑与门和第一激光二极管驱动器;
其中, 所述逻辑与门的其中一个输入端连接至所述反相器, 另一个输入 端接收所述当前待发射数据, 用于将所述反向器进行反相处理之后的输出数 据和所述当前待发射数据进行逻辑 "与" 运算, 并将运算结果输出给所述激 光器二极管驱动器;
所述第一激光二极管驱动器, 用于根据所述运算结果的指示, 选择性地 生成补偿电流并输出给所述增益介质。
7. 如权利要求 6所述的自种子光纤激光器, 其特征在于, 还包括第二 延时电路和第二激光二极管驱动器;
其中, 所述第二激光二极管驱动器, 用于根据当前待发送数据产生调制 电流和偏置电流, 并将所述调制电流和偏置电流输出给所述增益介质;
所述第二延时电路用于将当前待发送数据量延时预设时间再提供给所 述第二激光二极管驱动器,其中所述预设时间用于补偿所述与门的逻辑 "与" 运算过程的延迟, 以使第二激光二极管驱动器提供的当前待发射数据所对应 的偏置电流和调制电流与所述第一激光二极管驱动器提供的补偿电流同步 地输出至所述增益介质。
8. 如权利要求 1 所述的自种子光纤激光器, 其特征在于, 当所述注入 光对应于数据 "0" 时, 所述补偿装置产生补偿电流并输出给所述增益介质; 而当所述注入光对应于数据 " Γ 时, 所述补偿装置不向所述增益介质提供 补偿电流。
9. 如权利要求 8所述的自种子光纤激光器, 其特征在于, 所述补偿装 置包括延时电路、 反相器和放大器;
其中, 所述延时电路, 用于根据所述自种子光纤激光器的光返回时间将 当前待发射数据进行延时, 其中经过延时后输出至所述补偿电流产生电路的 数据与即将返回所述增益介质的注入光所对应的数据相同;
所述反相器, 连接至所述延时电路, 用于将所述延时电路的输出数据进 行反相处理;
所述放大器, 连接至所述反相器, 用于将所述反相器输出的数据进行放 大, 其中, 在所述反相器输出数据 "1 " 时, 所述数据 " 1" 经过所述放大器 放大之后作为补偿电流提供给所述增益介质。
10. 根据权利要求 1至 9中任一项所述的自种子光纤激光器, 其特征在 于, 所述增益介质包括靠近光发射面的第一增益区和远离所述光发射面的第 二增益区, 其中与当前待发射数据相对应的调制电流和偏置电流施加至所述 第一增益区, 而与当前注入光相对应的补偿电流施加至所述第二增益区。
11. 根据权利要求 1至 9中任一项所述的自种子光纤激光器, 其特征在 于, 还包括:
光返回时间测量装置, 其用于监测返回至所述增益介 的注入光, 对所 述注入光所对应的电压信号进行周期性采样,根据周期性采样电压值的周期 信息, 计算出所述自种子光纤激光器的光返回时间。
12. 根据权利要求 11 所述的自种子光纤激光器, 其特征在于, 所述光 返回时间测量装置包括:
监控光二极管, 连接至所述增益介质, 用于在所述增益介质开始发射测 试信号之后, 检测返回所述增益介质的注入光的光功率并将其转换为电流; 电压转换器, 连接至所述监控光二极管, 用于将所述监控光二极管输出 的电流成比例地转换为电压信号;
采样模块, 连接至所述电压转换器, 用于对所述电压转换器的输出电压 进行周期性采样;
控制器, 用于根据所述采样模块的周期性采样电压值的周期信息, 计算 出所述自种子光纤激光器的光返回时间。
13. 根据权利要求 12所述的自种子光纤激光器, 其特征在于, 所述控 制器还用于控制所述增益介质的测试信号发射过程在所述注入光返回至所 述增益介质之前停止。
14. 根据权利要求 13所述的自种子光纤激光器, 其特征在于, 所述控 制器根据所述增益介质开始发射所述测试信号至采样空白期之后第一个采 样电压值所对应的周期信息, 计算出所述光返回时间, 其中采样空白期是所 述增益介质停止发射测试数据之后所述监控光二极管仅能监测到直流量的 时段。
15. 一种自种子光纤激光器的驱动方法, 其特征在于, 所述自种子激光 器包括由增益介质、 阵列波导光栅和法拉第旋转反射镜形成的激光谐振腔; 所述方法包括:
增益介质发射数据光, 其中所述数据光进行阵列波导光栅中对应的波长 通道的波长筛选之后,部分数据光被法拉第旋转反射镜反射并形成返回至所 述增益介质的注入光;
根据所述注入光的功率, 选择性地为所述增益介质提供补偿电流。
16. 如权利要求 15所述的方法, 其特征在于, 所述根据注入光的功率, 选择性地为所述增益介质提供补偿电流包括:
在所述注入光对应于数据 "0" 且当前待发送数据为 "1" 时, 生成补偿 电流并输出给所述增益介质;
在所述注入光对应于数据 "0" 且当前待发送数据为 "0" 时或者在所述 注入光对应于数据 "1" 时, 不向所述增益介质提供补偿电流。
17. 如权利要求 16所述的方法, 其特征在于, 所述根据注入光的功率, 选择性地为所述增益介质提供补偿电流包括:
根据所述自种子光纤激光器的光返回时间将当前待发射数据进行延时, 其中经过延时后的数据与即将返回所述增益介质的注入光所对应的数据相 同;
将所述经过延时后的数据进行反相处理;
根据所述经过反相处理后的数据以及当前待发射数据, 选择性地产生补 偿电流并提供给所述增益介质, 其中, 在所述反相处理后的数据为 "1 " 且 当前待发送数据为 "Γ 时, 生成补偿电流并输出给所述增益介质。
18. 如权利要求 17所述的方法, 其特征在于, 所述补偿电流根据述注 入光的数据 "0" 和数据 "1 " 之间的功率差生成。
19. 如权利要求 17所述的方法, 其特征在于, 所述根据经过反相处理 后的数据以及当前待发射数据, 选择性地产生补偿电流并提供给所述增益介 质包括:
将所述反向器进行反向处理之后的输出数据和所述当前待发射数据进 行逻辑 "与" 运算;
在所述逻辑 "与" 运算结果是 "Γ 时, 生成补偿电流并输出给所述增 益介质。
20. 如权利要求 19所述的方法, 其特征在于, 还包括:
根据当前待发送数据产生调制电流和偏置电流, 并将所述调制电流和偏 置电流输出给所述增益介质; 其中, 所述当前待发送数据延时预设时间之后 再提供给激光二极管驱动器生成所述调制电流和所述偏置电流, 其中所述预 设时间用于补偿所述逻辑 "与" 运算过程的延迟。
21. 如权利要求 15所述的方法, 其特征在于, 所述根据注入光的功率, 选择性地为所述增益介质提供补偿电流包括:
在所述注入光对应于数据 "0" 时产生补偿电流并输出给所述增益介质; 当所述注入光对应于数据 " 1 " 时不向所述增益介质提供补偿电流。
22. 如权利要求 21 所述的方法, 其特征在于, 所述在注入光对应于数 据 "0" 时产生补偿电流并输出给所述增益介质包括:
根据所述自种子光纤激光器的光返回时间将当前待发射数据进行延时, 其中经过延时后的数据与即将返回所述增益介质的注入光所对应的数据相 同;
将所述经过延时后的数据进行反相处理;
将所述反相器输出的数据进行放大, 其中, 在所述反相器输出数据 " 1 " 时, 所述数据 " Γ 经过所述放大器放大之后作为补偿电流提供给所述增益 介质。
23. 根据权利要求 15至 22中任一项所述的方法, 其特征在于, 所述增 益介质包括靠近光发射面的第一增益区和远离所述光发射面的第二增益区, 其中与当前待发射数据相对应的调制电流和偏置电流施加至所述第一增益 区, 而与当前注入光相对应的补偿电流施加至所述第二增益区。
24. 根据权利要求 15至 22中任一项所述的方法,其特征在于,还包括: 监测返回至所述增益介质的注入光, 对所述注入光所对应的电压信号进 行周期性采样, 根据周期性采样电压值的周期信息, 计算出所述自种子光纤 激光器的光返回时间。
25. 根据权利要求 24所述的方法, 其特征在于, 所述监测返回至所述 增益介质的注入光, 对所述注入光所对应的电压信号进行周期性采样, 根据 周期性采样电压值的周期信息, 计算出所述自种子光纤激光器的光返回时间 包括:
在所述增益介质开始发射测试信号之后, 利用监控光二极管检测返回所 述增益介质的注入光的光功率并将其转换为电流;
将所述监控光二极管输出的电流成比例地转换为电压信号; 对所述电压转换器的输出电压进行周期性采样;
根据所述釆样模块的周期性采样电压值的周期信息,计算出所述自种子 光纤激光器的光返回时间。
26. 根据权利要求 25所述的方法, 其特征在于, 所述增益介质的测试 信号发射过程在所述注入光返回至所述增益介质之前停止。
27. 根据权利要求 26所述的方法, 其特征在于, 所述根据所述采样模 块的周期性釆样电压值的周期信息, 计算出所述自种子光纤激光器的光返回 时间包括:
根据所述增益介质开始发射所述测试信号至采样空白期之后第一个采 样电压值所对应的周期信息, 计算出所述光返回时间;
其中采样空白期是所述增益介质停止发射测试数据之后所述监控光二 极管仅能监测到直流量的时段。
28. 一种无源光网络系统, 其特征在于, 包括: 光线路终端、 多个光网 络单元以及在所述光线路终端和所述光网络单元之间的远程节点;
所述远程节点包括阵列波导光栅和法拉第旋转反射镜, 其中所述阵列波 导光栅包括公共端口和多个分支端口 , 其中所述公共端口通过主干光纤连接 至所述光线路终端, 且所述法拉第旋转反射镜耦合至所述主干光纤, 所述分 支端口分别通过分支光纤连接至所述光网络单元;
所述光网络单元包括具有增益介质的光发射器, 所述增益介质、 所述阵 列波导光栅以及所述法拉第旋转反射镜形成如权利要求 1至 14中任一项所 述的自种子光纤激光器。
29. 一种光线路终端, 其特征在于, 包括阵列波导光栅、 法拉第旋转发 射镜和多个具有增益介质的光发射器, 所述多个光模块通过所述阵列波导光 栅连接至主干光纤, 且所述法拉第旋转发射镜耦合至所述主千光纤;
所述光发射器的增益介质、 所述阵列波导光栅以及所述法拉第旋转反射 镜形成如权利要求 1至 14中任一项所述的自种子光纤激光器。
PCT/CN2011/077690 2011-07-27 2011-07-27 自种子光纤激光器及其驱动方法、无源光网络系统及设备 WO2012083694A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2011/077690 WO2012083694A1 (zh) 2011-07-27 2011-07-27 自种子光纤激光器及其驱动方法、无源光网络系统及设备
CN201180001394.7A CN102334248B (zh) 2011-07-27 2011-07-27 自种子光纤激光器及其驱动方法、无源光网络系统及设备
EP11851682.2A EP2731211B1 (en) 2011-07-27 2011-07-27 Self-seeding fiber laser device and driving method thereof, passive optical network system and device
US14/163,196 US9059563B2 (en) 2011-07-27 2014-01-24 Self-seeding fiber laser, method for driving self-seeding fiber laser, passive optical network system and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077690 WO2012083694A1 (zh) 2011-07-27 2011-07-27 自种子光纤激光器及其驱动方法、无源光网络系统及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/163,196 Continuation US9059563B2 (en) 2011-07-27 2014-01-24 Self-seeding fiber laser, method for driving self-seeding fiber laser, passive optical network system and device

Publications (1)

Publication Number Publication Date
WO2012083694A1 true WO2012083694A1 (zh) 2012-06-28

Family

ID=45485000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077690 WO2012083694A1 (zh) 2011-07-27 2011-07-27 自种子光纤激光器及其驱动方法、无源光网络系统及设备

Country Status (4)

Country Link
US (1) US9059563B2 (zh)
EP (1) EP2731211B1 (zh)
CN (1) CN102334248B (zh)
WO (1) WO2012083694A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9502858B2 (en) * 2011-07-14 2016-11-22 Applied Optoelectronics, Inc. Laser array mux assembly with external reflector for providing a selected wavelength or multiplexed wavelengths
JP6096296B2 (ja) * 2012-07-30 2017-03-15 オプリンク コミュニケーションズ エルエルシー 外部キャビティファブリペローレーザ
CN104767584B (zh) * 2014-01-07 2018-05-22 上海诺基亚贝尔股份有限公司 一种用于twdm-pon系统的光网络单元的反射光调制器
EP3402093B1 (en) * 2016-01-28 2021-09-29 Huawei Technologies Co., Ltd. Light emission device with tunable wavelength
US9923630B2 (en) * 2016-04-20 2018-03-20 Lockheed Martin Corporation Analyzing optical networks
US20170371110A1 (en) * 2016-06-23 2017-12-28 Futurewei Technologies, Inc. Optical Transceiver With a Mirrored Submount and a Laser Diode for Laser-to-Fiber Coupling
CN109361472B (zh) * 2018-11-22 2020-05-12 武汉邮电科学研究院有限公司 一种偏振无关的相干光接入方法及系统
WO2020237624A1 (zh) * 2019-05-31 2020-12-03 华为技术有限公司 一种激光器二极管驱动电路、方法及激光扫描装置
CN113644971B (zh) * 2020-05-11 2023-04-28 华为技术有限公司 端口检测方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084822A2 (en) * 2001-04-10 2002-10-24 Hrl Laboratories, Llc Bandwidth enhanced self-injection locked dfb laser with narrow linewidth
CN1497894A (zh) * 2002-10-01 2004-05-19 使用Fabry-Perot光二极管自注入锁定的密集波分复用无源光网络系统
US20060083515A1 (en) * 2004-10-20 2006-04-20 Kwangju Institute Of Science And Technology WDM-PON having optical source of self-injection locked fabry-perot laser diode
CN201608423U (zh) * 2010-01-18 2010-10-13 华为技术有限公司 激光器和光收发机
CN102082610A (zh) * 2009-12-01 2011-06-01 华为技术有限公司 自注入锁定光源、光源自注入锁定方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070108422A (ko) 2006-01-09 2007-11-12 한국전자통신연구원 동적 전류 주입에 의한 하향 광신호를 재활용하는 반도체광 증폭기 및 그 구동장치
KR100889861B1 (ko) * 2007-05-09 2009-03-24 광주과학기술원 자체 잠김을 이용한 파장분할다중 방식의 수동형 광통신시스템, 이에 사용되는 중앙 기지국 및 데이터 전송 방법
WO2009123572A1 (en) * 2008-03-31 2009-10-08 Agency For Science, Technology And Research Remote node for wavelength-division-multiplexed passive optical network
CN101426154B (zh) * 2008-12-10 2011-07-20 张哲民 一种可用作wdm-pon光源的外腔激光器
US8417118B2 (en) * 2009-08-14 2013-04-09 Futurewei Technologies, Inc. Colorless dense wavelength division multiplexing transmitters
US8559821B2 (en) * 2009-12-02 2013-10-15 Futurewei Technologies, Inc. Wavelength stabilization and locking for colorless dense wavelength division multiplexing transmitters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084822A2 (en) * 2001-04-10 2002-10-24 Hrl Laboratories, Llc Bandwidth enhanced self-injection locked dfb laser with narrow linewidth
CN1497894A (zh) * 2002-10-01 2004-05-19 使用Fabry-Perot光二极管自注入锁定的密集波分复用无源光网络系统
US20060083515A1 (en) * 2004-10-20 2006-04-20 Kwangju Institute Of Science And Technology WDM-PON having optical source of self-injection locked fabry-perot laser diode
CN102082610A (zh) * 2009-12-01 2011-06-01 华为技术有限公司 自注入锁定光源、光源自注入锁定方法和系统
CN201608423U (zh) * 2010-01-18 2010-10-13 华为技术有限公司 激光器和光收发机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2731211A4 *

Also Published As

Publication number Publication date
US20140161144A1 (en) 2014-06-12
CN102334248B (zh) 2013-06-05
EP2731211A1 (en) 2014-05-14
CN102334248A (zh) 2012-01-25
US9059563B2 (en) 2015-06-16
EP2731211A4 (en) 2014-10-15
EP2731211B1 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2012083694A1 (zh) 自种子光纤激光器及其驱动方法、无源光网络系统及设备
WO2008022579A1 (fr) Dispositif et procédé d'alignement du mode d'une source lumineuse, ainsi que système de réseau optique passif
US8543001B2 (en) Cascaded injection locking of fabry-perot laser for wave division multiplexing passive optical networks
TWI452852B (zh) Optical transceivers and wavelength division multiplexing passive optical network system
KR101087263B1 (ko) 파장 가변 레이저의 발진 파장을 조절하는 장치 및 방법, 및 이를 구비한 파장 분할 다중방식 수동형 광 가입자망
JP3850866B2 (ja) 光変調装置
EP2637266A1 (en) External cavity laser and wavelength division multiplexing passive optical network system
US20050041971A1 (en) Multi-wavelength optical transmitter and bi-directional wavelength division multiplexing system using the same
US20110188859A1 (en) Wdm-pon architecture based on externally seeded optical source
WO2011066775A1 (zh) 自注入锁定光源、光源自注入锁定方法和系统
WO2011140953A1 (zh) 点到多点光纤网络的检测方法、系统和装置
US20100322624A1 (en) Bidirectional transmission network apparatus based on tunable rare-earth-doped fiber laser
WO2013097183A1 (zh) 可调激光器波长初始化方法、装置和系统
US20120155879A1 (en) Method and arrangement for receiving an optical input signal and transmitting an optical output signal
US9866318B2 (en) Method, apparatus, and system for adjusting emission parameter of laser in WDM-PON
KR100914559B1 (ko) 발진 파장을 자동으로 조절하는 파장 가변 레이저 장치 및방법, 및 이를 구비한 파장 분할 다중방식 광전송 시스템및 수동형 광 가입자망
JP2010166279A (ja) 光通信システムおよび光集線装置
US9287989B2 (en) Optical data transmission device
US7848652B2 (en) Wavelength division multiplexing passive optical network system and method of generating optical source
WO2011050612A1 (zh) 一种锁定光信号的波长的方法、装置和系统
JP4234065B2 (ja) 多チャンネル光送信装置
KR101038219B1 (ko) 파장 분할 다중 방식 수동형 광 네트워크용 광대역 광원
WO2015184593A1 (zh) 发射机和用于发射光信号的方法
US11621778B2 (en) Optical communication system and optical communication method
KR100525041B1 (ko) 수동형 광 가입자 망의 가입자측 광 접속기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001394.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011851682

Country of ref document: EP