WO2012081589A1 - Power tool - Google Patents

Power tool Download PDF

Info

Publication number
WO2012081589A1
WO2012081589A1 PCT/JP2011/078830 JP2011078830W WO2012081589A1 WO 2012081589 A1 WO2012081589 A1 WO 2012081589A1 JP 2011078830 W JP2011078830 W JP 2011078830W WO 2012081589 A1 WO2012081589 A1 WO 2012081589A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shaft
transmission path
power tool
intermediate shaft
Prior art date
Application number
PCT/JP2011/078830
Other languages
French (fr)
Japanese (ja)
Inventor
周祐 伊藤
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Publication of WO2012081589A1 publication Critical patent/WO2012081589A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/003Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion the gear-ratio being changed by inversion of torque direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/12Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts of drives for circular saw blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/04Driving main working members rotary shafts, e.g. working-spindles
    • B23Q5/12Mechanical drives with means for varying the speed ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B17/00Chain saws; Equipment therefor
    • B27B17/08Drives or gearings; Devices for swivelling or tilting the chain saw

Definitions

  • the present invention relates to a power tool having a speed change mechanism.
  • Japanese Patent Application Laid-Open No. 59-192466 discloses an electric tool provided with a parallel shaft transmission mechanism.
  • the parallel-shaft transmission mechanism described in the above publication is mounted on the drive shaft so that the first and second drive gears having different numbers of teeth are movable on the driven shaft parallel to the drive shaft so as to be movable in the long axis direction.
  • First and second driven gears having different numbers of teeth, and the first and second driven gears are slid along the driven shaft for meshing engagement with the first and second drive gears.
  • the rotational speed of the motor is shifted to two stages, high speed and low speed, and transmitted to the tip tool.
  • This invention is made in view of this point, and it aims at providing the power tool provided with the speed change mechanism which contributes to the improvement of the smoothness of speed change operation
  • a power tool that drives a tip tool to perform a predetermined machining operation is configured.
  • the “predetermined processing operation” in the present invention is an operation of cutting wood or metal with a rotating saw blade or saw chain, an operation of polishing or grinding metal, stone or the like with a rotating sanding disk, or a diamond that rotates.
  • Various machining operations such as drilling a relatively large diameter with a core drill, and trimming a hedge by reciprocating the upper and lower blades in a straight line in opposite directions are widely included.
  • the power tool includes an input shaft, an output shaft that drives the tip tool, and a first transmission path and a second transmission path that transmit rotational force from the input shaft to the output shaft.
  • the rotational force in the first direction is transmitted to the output shaft through the first transmission path at a predetermined transmission ratio, thereby causing the output shaft to move in the predetermined direction.
  • the output shaft passes through the second transmission path at a transmission ratio different from the transmission ratio of the first transmission path.
  • the rotational force in the second direction is transmitted, whereby the output shaft is configured to rotate in a predetermined direction.
  • the rotation speed of the output shaft can be switched by switching the rotation direction of the input shaft. Therefore, it is possible to smoothly perform the operation for switching the rotation speed of the output shaft, that is, the speed change operation.
  • each of the first transmission path and the second transmission path has a plurality of gears, and when the transfer direction of the input shaft is switched, the output shaft rotates while maintaining the meshing engagement of the plurality of gears. It is possible to adopt a configuration for switching the speed.
  • At least one one-way clutch is provided on each of the transmission paths of the first transmission path and the second transmission path.
  • the one-way clutch of the first transmission path transmits only rotation in the first direction
  • the one-way clutch of the second transmission path transmits only rotation in the second direction.
  • the first transmission path when the rotation direction of the input shaft is switched by providing at least one one-way clutch on each of the transmission paths of the first transmission path and the second transmission path. It is possible to construct a speed change mechanism that can smoothly switch the transmission path between the transmission path and the second transmission path.
  • a first intermediate shaft provided separately from the input shaft and the output shaft, a second intermediate shaft integrated with the output shaft, and the input shaft are provided.
  • the first transmission path includes a first gear, a second gear, and a second intermediate shaft.
  • the second transmission path includes a first gear, a third gear, a first intermediate shaft, a fourth gear, a fifth gear, and a second intermediate shaft.
  • first and third intermediate shafts provided separately from the input shaft and the output shaft, a second intermediate shaft integrated with the output shaft, and an input shaft
  • a first gear provided a second gear provided on the first intermediate shaft and constantly meshingly engaged with the first gear, a third gear provided on the first intermediate shaft, and a second intermediate
  • a fourth gear that is provided on the shaft and is always meshed and engaged with the third gear
  • a fifth gear that is provided on the third intermediate shaft and is always meshed and engaged with the second gear
  • a third intermediate shaft and a sixth gear that is always meshed with and engaged with the fourth gear.
  • the first transmission path includes a first gear, a second gear, a first intermediate shaft, a third gear, a fourth gear, and a second intermediate shaft.
  • the second transmission path is configured by the first gear, the second gear, the fifth gear, the third intermediate shaft, the sixth gear, the fourth gear, and the second intermediate shaft.
  • the gears are always engaged with each other. For this reason, as in the case of the three-axis configuration described above, the occurrence of abnormal noise due to tooth interference, missing teeth, or the like found in conventional transmission mechanisms that change gear engagement by changing gear engagement. It is possible to solve strength problems such as wear.
  • a one-way clutch is provided between a predetermined gear other than the first gear and the intermediate shaft, and the one-way clutch is configured to rotate the shaft and the gear in one direction. Both are integrated, and the rotation in the other direction is configured to allow relative rotation between the two. Thereby, the transmission path can be smoothly switched by switching the rotation direction of the input shaft.
  • switching of the rotation direction of an input shaft is performed by manual operation.
  • the “manual operation” in this embodiment includes a mode in which the operation amount of the operation member is changed to switch the rotation direction of the input shaft, a mode in which the operation direction of the operation member is switched to switch the rotation direction of the input shaft, and the like. According to this aspect, by using a switching method by manual operation, when performing a predetermined machining operation using a power tool, the operator can arbitrarily change the speed according to the work situation or the like.
  • the switching of the rotation direction of the input shaft is automatic switching.
  • “Automatic switching” in this form is typically performed according to the load acting on the tip tool. For example, it is switched to the high speed side when the load is low, and is switched to the low speed side when the load is high.
  • the drive source of the power tool is, for example, an electric motor, it is performed according to the current value or the rotation speed of the electric motor, thereby avoiding the tip tool from being driven at high speed in a high load state.
  • the electric motor can be prevented from being burned out.
  • FIG. 1 is a side view partially including a cross section showing an overall configuration of a slide circular saw according to a first embodiment of the present invention. It is a top view which shows the whole structure of a slide circular saw. It is sectional drawing which shows the structure of the speed change mechanism mounted in the slide circular saw. It is a figure which shows the transmission mechanism of a slide circular saw, and shows the state switched to the high speed side. It is a figure which shows the transmission mechanism of a slide circular saw, and shows the state switched to the low speed side. It is a side view which includes a cross section in part which shows the whole structure of the chain saw which concerns on the 2nd Embodiment of this invention.
  • FIGS. 1 and 2 show the overall configuration of the slide circular saw 101.
  • the slide circular saw 101 generally includes a circular saw body portion 103 as a tool body, a base 120, and a connecting portion 125 that connects the circular saw body portion 103 and the base 120. Configured as the subject.
  • the circular saw body 103 includes a housing 105 that houses the drive motor 111 and the transmission mechanism 130, a blade case 106 that covers the upper half of the blade 113, and a safety cover that covers the lower half of the blade 113.
  • 107 mainly composed of a hand grip 109 gripped by an operator, and connected to the connecting portion 125 so as to be swingable in the vertical direction about the swing support point 104.
  • the housing 105, the blade case 106, and the hand grip 109 are connected to each other and formed integrally.
  • the safety cover 107 is pivoted upward in conjunction with the downward swinging motion of the circular saw body 103 to open the lower half of the blade 113, so that the circular saw body 103 swings upward. Closes by interlocking and turning downward.
  • the drive motor 111 is driven by an AC power source and rotationally drives the blade 113 via the speed change mechanism 130.
  • the drive motor 111 is a reversible motor capable of switching the rotation direction, and the rotation direction is switched according to the load acting on the blade 113. For example, a change in the current value or the rotation speed of the drive motor 111 is detected by a predetermined sensor, and the rotation direction is switched when a detection value detected by the sensor detects a predetermined threshold value.
  • the drive motor 111 corresponds to the “motor” in the present invention.
  • the base 120 has a turntable 121 on which a work material can be placed.
  • the base 120 has a sleeve 123, and the sleeve 123 is attached to a slide rod 127 fixed to the connecting portion 125 so as to be relatively movable in the front-rear direction (left-right direction in FIG. 1).
  • the work piece placed on the turntable 121 can be cut by sliding the circular saw body 103 together with the connecting portion 125 backward (to the connecting portion side) with respect to the base 120. .
  • the speed change mechanism 130 includes an input shaft 131 that is coaxially connected to or integrally formed with the motor shaft 112 of the drive motor 111, a blade mounting shaft 133 as an output shaft to which the blade 113 is mounted,
  • the intermediate shaft 135 disposed on the opposite side of the blade mounting shaft 133 across the input shaft 131 is a parallel three-shaft type disposed in parallel to each other, and switches the rotation direction of the drive motor 111, that is, the rotation direction of the input shaft 131
  • the power transmission path is configured as a two-stage switching type that switches from high speed low torque to low speed high torque.
  • the input shaft 131 corresponds to the “input shaft” in the present invention
  • the blade mounting shaft 133 corresponds to the “output shaft” and the “second intermediate shaft” in the present invention
  • the intermediate shaft 135 corresponds to the “input shaft” in the present invention.
  • This corresponds to the “first intermediate shaft”.
  • the blade mounting shaft 133 is referred to as an output shaft.
  • normal rotation when the input shaft 131 is rotated in one direction is referred to as normal rotation, and when the input shaft 131 is rotated in the other direction is referred to as reverse rotation.
  • the forward rotation of the input shaft 131 corresponds to the “first direction” in the present invention
  • the reverse rotation of the input shaft 131 corresponds to the “second direction” in the present invention.
  • the speed change mechanism 130 has a first power transmission path P1 (see FIG. 4) through which the rotational force of the input shaft 131 is transmitted from the first gear 137 to the output shaft 133 via the second gear 139, and the rotational force of the input shaft 131.
  • a second power transmission path P2 (see FIG. 5) is transmitted from the first gear 137 to the output shaft 133 through the third gear 141, the intermediate shaft 135, the fourth gear 143, and the fifth gear 145.
  • the first power transmission path P1 is determined as a high-speed and low-torque power transmission path determined by the gear ratio (reduction ratio) between the first gear 137 and the second gear 139, and the second power transmission path P2 It is defined as a low-speed high-torque power transmission path determined by the gear ratio (reduction ratio) between the first gear 137 and the third gear 141 and the gear ratio (reduction ratio) between the fourth gear 143 and the fifth gear 145.
  • the first power transmission path P1 and the second power transmission path P2 are indicated by thick lines with arrows. Note that the input shaft 131, the output shaft 133, and the intermediate shaft 135 are rotatably supported by the housing 105 via bearings 131a, 133a, and 135a, respectively.
  • the first gear 137 as a drive gear is formed integrally with the input shaft 131.
  • the second gear 139 is attached to the output shaft 133 via the first one-way clutch 151, and is always meshed and engaged with the first gear 137.
  • the fifth gear 145 is fixed to the distal end side (blade 113 side) on the output shaft 133 via a key 155.
  • the third gear 141 is fixed to the intermediate shaft 135 via the key 157, is disposed on the opposite side of the second gear 139 with the first gear 137 interposed therebetween, and is always meshed and engaged with the first gear 137.
  • the fourth gear 143 is attached to the tip end side (blade 113 side) on the intermediate shaft 135 via the second one-way clutch 153, and is always meshed with and engaged with the fifth gear 145.
  • the first one-way clutch 151 and the second one-way clutch 153 are configured such that both the shaft and the gear rotate in one direction, and both rotate in the other direction and allow the relative rotation of both.
  • the first one-way clutch 151 on the output shaft 133 is configured to transmit the rotational force of the second gear 139 to the output shaft 133 when the input shaft 131 rotates in the forward direction, but not when the input shaft 131 rotates in the reverse direction.
  • the second one-way clutch 153 on the intermediate shaft 135 is configured not to transmit the rotational force of the intermediate shaft 135 to the fourth gear 143 when the input shaft 131 rotates forward, but to transmit it when the input shaft 131 rotates reversely. Yes.
  • the transmission mechanism 130 is configured as described above. Therefore, when the drive motor 111 is driven to rotate in order to cut the workpiece, the rotational force of the drive motor 111 is transmitted to the output shaft 133 via the first power transmission path P1. That is, the rotational force of the input shaft 131 is transmitted to the output shaft 133 via the first gear 137, the second gear 139, and the first one-way clutch 151, and the blade 113 is rotationally driven at high speed and low torque.
  • the third gear 141 meshingly engaged with the first gear 131 and the intermediate shaft 135 connected to the third gear 141 and the key 157 are also rotated. However, the intermediate shaft 135 is rotated by the action of the second one-way clutch 153. To the fourth gear 143 is not transmitted. Note that the rotation direction of the output shaft 133 at this time is opposite to the rotation direction of the drive motor 111.
  • the rotational force is not transmitted from the second gear 139 to the output shaft 133 by the action of the first one-way clutch 151, and conversely by the action of the second one-way clutch 153.
  • the rotational force of the intermediate shaft 135 is transmitted to the fourth gear 143. That is, the rotational force of the input shaft 131 is transmitted to the output shaft 133 through the first gear 137, the third gear 141, the intermediate shaft 135, the second one-way clutch 153, the fourth gear 143, and the fifth gear 145, and the blade 113. Is driven to rotate at low speed and high torque. At this time, the rotation direction of the output shaft 133 is the same as the rotation direction of the drive motor 111.
  • the rotation direction of the drive motor 111 when the rotation direction of the drive motor 111 is switched from forward rotation to reverse rotation, the transmission path of the rotational force of the drive motor 111 is switched from the first power transmission path P1 to the second power transmission path P2.
  • the rotation direction of 133 does not change. That is, even if the rotation direction of the input shaft 131 is switched, the rotation direction of the output shaft 133 is kept constant.
  • the cutting work of the workpiece by the blade 113 starts at a high speed and a low torque using the first power transmission path P1 in which the drive motor 111 is driven to rotate forward. Then, when the cutting operation proceeds and the load acting on the blade 113 reaches a predetermined magnitude (when the current value of the drive motor 111 or the rotation speed reaches a predetermined threshold), the drive motor 111 Is switched to the reverse drive to switch to the second power transmission path P2.
  • the driving of the blade 113 can be automatically switched from the driving with the high speed and low torque to the driving with the low speed and high torque.
  • the drive motor 111 is switched from forward rotation to reverse rotation, the drive motor 111 is braked.
  • the transmission path of the rotational force is reduced at high speed by switching the rotation direction of the drive motor 111 according to the load acting on the blade 113 for the power transmission path of the drive motor 111.
  • the first power transmission path P1 for torque can be automatically switched to the second power transmission path P2 for low speed and high torque.
  • the second power is transmitted from the first power transmission path P1 in a state where the meshing engagement of each gear in the gear train constituting the transmission mechanism 130 is maintained, that is, the position of each gear is fixed. Since the transmission path P2 can be switched, the speed change operation can be performed smoothly, and the smoothness of the speed change operation can be improved.
  • FIG. 6 shows the overall configuration of the chain saw 201.
  • the chain saw 201 is mainly composed of a chain saw body 203, a guide bar 220 having one end fixed to the chain saw body 203, and a saw chain 213 arranged in a circular shape along the guide bar 220.
  • the machine body is constituted by the chain saw body 203.
  • the saw chain 213 corresponds to the “tip tool” in the present invention.
  • the chain saw body 203 is mainly composed of a housing 205 (see FIG. 7) that houses the drive motor 211 and the speed change mechanism 230, and a hand grip 209 that is integrally provided in the housing 205 and is gripped by an operator.
  • the handgrip 209 is provided with a trigger 209a that can be pulled by a finger to energize and drive the drive motor 211, and the end of the handgrip 209 in the long axis direction (the left end in FIG. 6) of the drive motor 211 is provided.
  • a rechargeable battery pack 210 serving as a power source is attached.
  • the saw chain 213 includes a drive-side sprocket 215 provided on the base side of the guide bar 220 (connection side with the chain saw body 203) and a driven-side sprocket provided on the tip side of the guide bar 220 (not shown for convenience). ) In a circular fashion. Then, the drive motor 211 is rotationally driven through the speed change mechanism 230, and the rotational motion is guided by the saw chain groove formed in the guide bar 220.
  • the drive motor 211 a reversible motor capable of switching the rotation direction is used as in the first embodiment described above, and in this embodiment, the rotation direction can be arbitrarily switched by an operator's manual operation. It can be configured.
  • the drive motor 211 corresponds to the “motor” in the present invention.
  • the rotation direction of the drive motor 211 can be switched by, for example, a pull-in depth switching method in which the pull-in depth (pulling operation amount) of the trigger 209a as the operation member is changed stepwise.
  • the speed change mechanism 230 includes an input shaft 231 coaxially connected to or integrally formed with the motor shaft 212 of the drive motor 211 and an output shaft to which a drive-side sprocket 215 that drives the saw chain 213 is attached.
  • the first and second intermediate shafts 235 and 236 disposed between the input shaft 231 and the sprocket mounting shaft 233 are configured as a parallel four-shaft type in which the sprocket mounting shaft 233 is arranged in parallel.
  • the power transmission path is configured as a two-stage switching type that switches from high speed low torque to low speed high torque.
  • the input shaft 231 corresponds to the “input shaft” in the present invention
  • the sprocket mounting shaft 233 corresponds to the “output shaft” and the “second intermediate shaft” in the present invention
  • the first intermediate shaft 235 corresponds to the present invention.
  • the second intermediate shaft 236 corresponds to the “third intermediate shaft” in the present invention.
  • the sprocket mounting shaft 233 is referred to as an output shaft.
  • normal rotation when the input shaft 231 is rotated in one direction is referred to as normal rotation, and when the input shaft 231 is rotated in the other direction is referred to as reverse rotation.
  • the forward rotation of the input shaft 231 corresponds to the “first direction” in the present invention
  • the reverse rotation of the input shaft 231 corresponds to the “second direction” in the present invention.
  • the transmission mechanism 230 transmits a first power transmission in which the rotational force of the input shaft 231 is transmitted from the first gear 237 to the output shaft 233 via the second gear 239, the first intermediate shaft 235, the third gear 241 and the fourth gear 243.
  • the path P1 (see FIG. 8) and the rotational force of the input shaft 231 are output from the first gear 237 through the second gear 239, the fifth gear 245, the second intermediate shaft 236, the sixth gear 247 and the fourth gear 243.
  • a second power transmission path P ⁇ b> 2 (see FIG. 9) that is transmitted to 233 is provided.
  • the first power transmission path P1 and the second power transmission path P2 are indicated by thick lines with arrows.
  • the input shaft 231, the output shaft 233, the first intermediate shaft 235, and the second intermediate shaft 236 are rotatably supported by the housing 205 via bearings 231a, 233a, 235a, and 236a, respectively.
  • the first gear 237 as a drive gear is formed integrally with the input shaft 231.
  • the second gear 239 is fixed to the first intermediate shaft 235 by a key 255 and is always meshed and engaged with the first gear 237.
  • the third gear 241 is attached to the first intermediate shaft 235 via the first one-way clutch 251.
  • the fourth gear 243 is fixed to the output shaft 233 by a key 257 and is always meshed with and engaged with the third gear 241.
  • the fifth gear 245 is attached to the second intermediate shaft 236 via the second one-way clutch 253, and is always meshed with and engaged with the second gear 239.
  • the sixth gear 247 is fixed to the second intermediate shaft 236 by a key 259, and is always meshed and engaged with the fourth gear 243.
  • the transmission mechanism 230 is configured as described above. Therefore, when the drive motor 211 is driven to rotate in order to cut the workpiece, the rotational force of the drive motor 211 is transmitted to the output shaft 233 via the first power transmission path P1. That is, the rotational force of the input shaft 231 is transmitted to the output shaft 233 via the first gear 237, the second gear 239, the first intermediate shaft 235, the first one-way clutch 251, the third gear 241 and the fourth gear 243, The saw chain 213 is driven to rotate at high speed and low torque.
  • the fifth gear 245 engaged with and engaged with the second gear 239 is also rotated, but the second one-way clutch 253 acts to transmit the rotational force from the fifth gear 245 to the second intermediate shaft 236. I will not.
  • the rotation direction of the output shaft 233 is the same as the rotation direction of the drive motor 211.
  • the transmission path of the rotational force of the drive motor 211 is switched from the first power transmission path P1 to the second power transmission path P2.
  • the rotation direction of 233 does not change. That is, even if the rotation direction of the input shaft 231 is switched, the rotation direction of the output shaft 233 is kept constant.
  • the meshing engagement of each gear in the gear train constituting the transmission mechanism 230 is maintained, that is, the position of each gear is fixed. Since it is possible to switch between the first power transmission path P1 and the second power transmission path P2, the speed change operation can be performed smoothly, and the smoothness of the speed change operation can be improved.
  • the automatic transmission in which the power transmission path of the speed change mechanism 130 is automatically switched according to the load acting on the blade 113 has been described.
  • the first power transmission path P1 and the second power transmission path P2 may be arbitrarily switched by a manual operation.
  • the power transmission path of the speed change mechanism 230 is configured to be arbitrarily switchable by manual operation, but this is applied to the saw chain 213 as in the first embodiment. It is good also as a structure which carries out automatic transmission according to the load to perform.
  • a method of detecting a mechanical displacement (strain) of a member involved in power transmission with a strain gauge instead of a method of detecting a change in the current value or rotation speed of the drive motor 111 with a sensor.
  • the rotation direction of the drive motors 111 and 211 may be switched when the detection value by the strain gauge detects a predetermined threshold value.
  • power tools other than cutting tools such as sanding disks and grinders that grind or grind workpieces with a rotating sanding disk or grindstone, or drivers and wrench used for tightening operations, or various drills that perform drilling operations
  • the present invention can be widely applied to various power tools such as a hedge trimmer in which two upper and lower blades are reciprocated linearly in opposite directions to perform hedge cutting work and the like.

Abstract

[Problem] To provide a power tool having a gear-shift mechanism that contributes towards improving the smoothness of a gear-shift operation. [Solution] A power tool in which a tip tool (113) is driven and predetermined machining work is performed, the power tool having an input shaft (131), an output shaft (133) for driving the tip tool (113), and a first transmission path (P1) and a second transmission path (P2) for transmitting the rotary force from the input shaft (131) to the output shaft (133). The power tool is configured so that in a case in which the input shaft (131) is caused to rotate in a first direction, the rotary force in the first direction is transmitted via a first transmission path (P1) to the output shaft (133) at a predetermined transmission ratio; and in a case in which the input shaft (131) is caused to rotate in a second direction that is opposite to the first direction, the rotary force in the second direction is transmitted via a second transmission path (P2) to the output shaft (133) at a transmission ratio that is different from the transmission ratio of the first transmission path (P1). Switching the direction of rotation of the input shaft (131) causes the rotation speed of the output shaft (133) to switch while the direction of rotation of the output shaft is maintained.

Description

動力工具Power tools
 本発明は、変速機構を備えた動力工具に関する。 The present invention relates to a power tool having a speed change mechanism.
 特開昭59-192466号公報は、平行軸式変速機構を備えた電動工具を開示している。上記公報に記載の平行軸式変速機構は、駆動軸上に固定した互いに歯数の異なる第1及び第2の駆動ギアと、駆動軸と平行な被動軸上に長軸方向に移動可能に取付けられた互いに歯数の異なる第1及び第2の被動ギアとを備え、第1及び第2の被動ギアを被動軸上に沿ってスライドさせて第1及び第2の駆動ギアに対する噛み合い係合を切替えることによってモータの回転速度を高速と低速の2段に変速して先端工具に伝達する構成である。 Japanese Patent Application Laid-Open No. 59-192466 discloses an electric tool provided with a parallel shaft transmission mechanism. The parallel-shaft transmission mechanism described in the above publication is mounted on the drive shaft so that the first and second drive gears having different numbers of teeth are movable on the driven shaft parallel to the drive shaft so as to be movable in the long axis direction. First and second driven gears having different numbers of teeth, and the first and second driven gears are slid along the driven shaft for meshing engagement with the first and second drive gears. By switching, the rotational speed of the motor is shifted to two stages, high speed and low speed, and transmitted to the tip tool.
 上記公報に記載されている従来の平行軸式変速機構によれば、駆動ギアに対する被動ギアの相対位置を変えて変速する際、駆動ギアと被動ギアの噛み合い係合が円滑に行なわれ難いものであり、変速動作の円滑性という点で、なお改良の余地がある。 According to the conventional parallel shaft transmission mechanism described in the above publication, when the gear is shifted by changing the relative position of the driven gear with respect to the driving gear, the meshing engagement between the driving gear and the driven gear is difficult to perform smoothly. There is still room for improvement in terms of the smoothness of the shifting operation.
 本発明は、かかる点に鑑みてなされたものであり、変速動作の円滑性の向上に資する変速機構を備えた動力工具を提供することを目的とする。 This invention is made in view of this point, and it aims at providing the power tool provided with the speed change mechanism which contributes to the improvement of the smoothness of speed change operation | movement.
 上記課題を達成するため、本発明の好ましい形態によれば、先端工具を駆動させて所定の加工作業を遂行する動力工具が構成される。本発明における「所定の加工作業」とは、回転運動する鋸刃又はソーチェンによって木材あるいは金属等を切断する作業、回転運動するサンディングディスクによって金属、石材等を研磨あるいは研削する作業、回転運動するダイヤコアドリルにより比較的大径の穴明けを行う作業、上下2枚のブレードを互いに逆方向に直線状に往復移動させて行う生垣の刈り込みを行う作業等、各種の加工作業を広く包含する。 To achieve the above object, according to a preferred embodiment of the present invention, a power tool that drives a tip tool to perform a predetermined machining operation is configured. The “predetermined processing operation” in the present invention is an operation of cutting wood or metal with a rotating saw blade or saw chain, an operation of polishing or grinding metal, stone or the like with a rotating sanding disk, or a diamond that rotates. Various machining operations such as drilling a relatively large diameter with a core drill, and trimming a hedge by reciprocating the upper and lower blades in a straight line in opposite directions are widely included.
 本発明に係る動力工具の好ましい形態では、入力軸と、先端工具を駆動する出力軸と、入力軸から出力軸に回転力を伝達する第1伝達経路及び第2伝達経路と、を有する。そして入力軸が第1方向へ回転される場合、第1伝達経路を経由して、所定の伝達比にて出力軸に第1方向の回転力が伝達され、これにより出力軸が所定の方向に回転されるよう構成され、入力軸が第1方向と反対の第2方向へ回転される場合、第2伝達経路を経由して、第1伝達経路の伝達比と異なる伝達比にて出力軸に第2方向の回転力が伝達され、これにより出力軸が所定の方向に回転されるよう構成されており、入力軸の回転方向の切替えによって出力軸は回転方向を一定に維持しつつ回転速度が切替えられる。 In a preferred embodiment of the power tool according to the present invention, the power tool includes an input shaft, an output shaft that drives the tip tool, and a first transmission path and a second transmission path that transmit rotational force from the input shaft to the output shaft. When the input shaft is rotated in the first direction, the rotational force in the first direction is transmitted to the output shaft through the first transmission path at a predetermined transmission ratio, thereby causing the output shaft to move in the predetermined direction. When the input shaft is rotated in the second direction opposite to the first direction, the output shaft passes through the second transmission path at a transmission ratio different from the transmission ratio of the first transmission path. The rotational force in the second direction is transmitted, whereby the output shaft is configured to rotate in a predetermined direction. By switching the input shaft rotational direction, the output shaft maintains the rotational direction at a constant rotational speed. Switched.
 本発明によれば、入力軸の回転方向の切替えによって出力軸の回転速度を切替えることができる。このため、出力軸の回転速度の切替え動作、すなわち変速動作を円滑に行なうことが可能となる。この場合、第1伝達経路及び第2伝達経路それぞれは、複数のギアを有し、入力軸の配転方向が切替えられたとき、当該複数のギアの噛み合い係合を維持した状態で出力軸の回転速度を切替える構成とすることが可能である。 According to the present invention, the rotation speed of the output shaft can be switched by switching the rotation direction of the input shaft. Therefore, it is possible to smoothly perform the operation for switching the rotation speed of the output shaft, that is, the speed change operation. In this case, each of the first transmission path and the second transmission path has a plurality of gears, and when the transfer direction of the input shaft is switched, the output shaft rotates while maintaining the meshing engagement of the plurality of gears. It is possible to adopt a configuration for switching the speed.
 本発明に係る動力工具の更なる形態では、第1伝達経路及び第2伝達経路それぞれの伝達経路上に、それぞれ少なくとも一つのワンウェイクラッチが設けられる。第1伝達経路のワンウェイクラッチは、第1方向への回転のみを伝達し、第2伝達経路のワンウェイクラッチは、第2方向への回転のみを伝達する構成とされる。 In a further form of the power tool according to the present invention, at least one one-way clutch is provided on each of the transmission paths of the first transmission path and the second transmission path. The one-way clutch of the first transmission path transmits only rotation in the first direction, and the one-way clutch of the second transmission path transmits only rotation in the second direction.
 この形態によれば、上記のように、第1伝達経路及び第2伝達経路それぞれの伝達経路上に、それぞれ少なくとも一つのワンウェイクラッチを設けることで、入力軸の回転方向を切替えた場合の第1伝達経路と第2伝達経路間での伝達経路の切替えを円滑に遂行可能な変速機構を構築することができる。 According to this aspect, as described above, the first transmission path when the rotation direction of the input shaft is switched by providing at least one one-way clutch on each of the transmission paths of the first transmission path and the second transmission path. It is possible to construct a speed change mechanism that can smoothly switch the transmission path between the transmission path and the second transmission path.
 本発明に係る動力工具の更なる形態では、入力軸及び前記出力軸とは別に設けられた第1の中間軸と、出力軸と一体化された第2の中間軸と、入力軸に設けられた第1ギアと、第2の中間軸に設けられ、第1ギアと常時に噛み合い係合する第2ギアと、第1の中間軸に設けられ、第1ギアと常時に噛み合い係合する第3ギアと、第1の中間軸に設けられた第4ギアと、第2の中間軸に設けられ、第4ギアと常時に噛み合い係合する第5ギアとを有する。そして、第1伝達経路は、第1ギア、第2ギア及び第2の中間軸によって構成される。また、第2伝達経路は、第1ギア、第3ギア、第1の中間軸、第4ギア、第5ギア及び第2の中間軸によって構成される。 In a further form of the power tool according to the present invention, a first intermediate shaft provided separately from the input shaft and the output shaft, a second intermediate shaft integrated with the output shaft, and the input shaft are provided. A first gear, a second gear provided on the second intermediate shaft and constantly meshingly engaged with the first gear, and a first gear provided on the first intermediate shaft and meshingly engaged with the first gear at all times. Three gears, a fourth gear provided on the first intermediate shaft, and a fifth gear provided on the second intermediate shaft and meshingly engaged with the fourth gear at all times. The first transmission path includes a first gear, a second gear, and a second intermediate shaft. The second transmission path includes a first gear, a third gear, a first intermediate shaft, a fourth gear, a fifth gear, and a second intermediate shaft.
 この形態によれば、入力軸、第1の中間軸、出力軸を兼ねる第2の中間軸の合計3軸と、それら軸間で回転力を伝達する複数のギアによって構成され、複数のギアがそれぞれ常時に噛み合う構成である。このため、ギアの噛み合いを切替えて変速する従来の変速機構に見受けられる、ギアの噛み合いを切替える際の、歯の干渉による異音の発生、歯の欠けあるいは摩耗といった強度上の問題を解決することができる。 According to this aspect, the input shaft, the first intermediate shaft, and the second intermediate shaft that also serves as the output shaft, a total of three shafts, and a plurality of gears that transmit the rotational force between the shafts, It is the structure which always meshes each. For this reason, it solves the problem of strength such as generation of noise due to tooth interference, missing teeth or wear, when switching gear meshing, which can be seen in a conventional speed change mechanism that shifts gear meshing. Can do.
 本発明に係る動力工具の更なる形態では、入力軸及び出力軸とは別に設けられた第1及び第3の中間軸と、出力軸と一体化された第2の中間軸と、入力軸に設けられた第1ギアと、第1の中間軸に設けられ、第1ギアと常時に噛み合い係合する第2ギアと、第1の中間軸に設けられた第3ギアと、第2の中間軸に設けられ、第3ギアと常時に噛み合い係合する第4ギアと、第3の中間軸に設けられ、第2ギアと常時に噛み合い係合する第5ギアと、第3の中間軸に設けられ、第4ギアと常時に噛み合い係合する第6ギアと、を有する。そして、第1伝達経路は、第1ギア、第2ギア、第1の中間軸、第3ギア、第4ギア及び第2の中間軸によって構成される。また、第2伝達経路は、第1ギア、第2ギア、第5ギア、第3の中間軸、第6ギア、第4ギア及び第2の中間軸によって構成される。 In a further embodiment of the power tool according to the present invention, first and third intermediate shafts provided separately from the input shaft and the output shaft, a second intermediate shaft integrated with the output shaft, and an input shaft A first gear provided, a second gear provided on the first intermediate shaft and constantly meshingly engaged with the first gear, a third gear provided on the first intermediate shaft, and a second intermediate A fourth gear that is provided on the shaft and is always meshed and engaged with the third gear, a fifth gear that is provided on the third intermediate shaft and is always meshed and engaged with the second gear, and a third intermediate shaft. And a sixth gear that is always meshed with and engaged with the fourth gear. The first transmission path includes a first gear, a second gear, a first intermediate shaft, a third gear, a fourth gear, and a second intermediate shaft. The second transmission path is configured by the first gear, the second gear, the fifth gear, the third intermediate shaft, the sixth gear, the fourth gear, and the second intermediate shaft.
 この形態によれば、入力軸、第1及び第3の中間軸、出力軸を兼ねる第2の中間軸の合計4軸と、それら軸間で回転力を伝達する複数のギアによって構成され、複数のギアがそれぞれ常時に噛み合う構成である。このため、上述した3軸構成の場合と同様、ギアの噛み合いを切替えて変速する従来の変速機構に見受けられる、ギアの噛み合いを切替える際の、歯の干渉による異音の発生、歯の欠けあるいは摩耗といった強度上の問題を解決することができる。 According to this embodiment, the input shaft, the first and third intermediate shafts, and the second intermediate shaft that also serves as the output shaft, a total of four shafts, and a plurality of gears that transmit the rotational force between these shafts, The gears are always engaged with each other. For this reason, as in the case of the three-axis configuration described above, the occurrence of abnormal noise due to tooth interference, missing teeth, or the like found in conventional transmission mechanisms that change gear engagement by changing gear engagement. It is possible to solve strength problems such as wear.
 本発明に係る動力工具の更なる形態では、第1ギア以外の所定のギアと中間軸との間にワンウェイクラッチが設けられ、当該ワンウェイクラッチは、軸とギアの一方向への回転については、両者を一体化し、他方向への回転については、両者の相対回転を許容する構成とされる。これにより、入力軸の回転方向の切替えによる伝達経路の切替えを円滑に遂行できる。 In a further form of the power tool according to the present invention, a one-way clutch is provided between a predetermined gear other than the first gear and the intermediate shaft, and the one-way clutch is configured to rotate the shaft and the gear in one direction. Both are integrated, and the rotation in the other direction is configured to allow relative rotation between the two. Thereby, the transmission path can be smoothly switched by switching the rotation direction of the input shaft.
 本発明に係る動力工具の更なる形態では、入力軸の回転方向の切替えは、手動操作によって行われる。この形態における「手動操作」としては、操作部材の操作量を変化させて入力軸の回転方向を切替える態様、操作部材の動作方向を切り替えて入力軸の回転方向を切替える態様等を包含する。
 この形態によれば、手動操作による切替え方式とすることで、動力工具を用いて所定の加工作業を遂行する場合、作業者が作業状況等に応じて任意に変速することができる。
In the further form of the power tool which concerns on this invention, switching of the rotation direction of an input shaft is performed by manual operation. The “manual operation” in this embodiment includes a mode in which the operation amount of the operation member is changed to switch the rotation direction of the input shaft, a mode in which the operation direction of the operation member is switched to switch the rotation direction of the input shaft, and the like.
According to this aspect, by using a switching method by manual operation, when performing a predetermined machining operation using a power tool, the operator can arbitrarily change the speed according to the work situation or the like.
 本発明に係る動力工具の更なる形態では、入力軸の回転方向の切替えは、自動切替えである。この形態における「自動切替え」は、典型的には、先端工具に作用する負荷に応じて行われる。例えば、低負荷時には高速側に切替えられ、高負荷時には低速側に切替えられる。このため、動力工具の駆動源が、例えば電動モータであれば、当該電動モータの電流値、あるいは回転数に応じて行われ、これにより先端工具が高負荷状態で高速駆動されることを回避し、電動モータの焼損防止を図ることができる。 In a further embodiment of the power tool according to the present invention, the switching of the rotation direction of the input shaft is automatic switching. “Automatic switching” in this form is typically performed according to the load acting on the tip tool. For example, it is switched to the high speed side when the load is low, and is switched to the low speed side when the load is high. For this reason, if the drive source of the power tool is, for example, an electric motor, it is performed according to the current value or the rotation speed of the electric motor, thereby avoiding the tip tool from being driven at high speed in a high load state. The electric motor can be prevented from being burned out.
 本発明によれば、変速動作の円滑性の向上に資する変速機構を備えた動力工具が提供されることとなった。本発明の他の特質、作用及び効果については、本明細書、特許請求の範囲、添付図面を参照することで直ちに理解可能である。 According to the present invention, a power tool provided with a speed change mechanism that contributes to improvement in smoothness of speed change operation is provided. Other characteristics, operations, and effects of the present invention can be readily understood with reference to the present specification, claims, and accompanying drawings.
本発明の第1の実施形態に係るスライド丸鋸の全体構成を示す一部に断面を含む側面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view partially including a cross section showing an overall configuration of a slide circular saw according to a first embodiment of the present invention. スライド丸鋸の全体構成を示す平面図である。It is a top view which shows the whole structure of a slide circular saw. スライド丸鋸に搭載された変速機構の構成を示す断面図である。It is sectional drawing which shows the structure of the speed change mechanism mounted in the slide circular saw. スライド丸鋸の変速機構を示す図であり、高速側に切替えられた状態を示す。It is a figure which shows the transmission mechanism of a slide circular saw, and shows the state switched to the high speed side. スライド丸鋸の変速機構を示す図であり、低速側に切替えられた状態を示す。It is a figure which shows the transmission mechanism of a slide circular saw, and shows the state switched to the low speed side. 本発明の第2の実施形態に係るチェンソーの全体構成を示す一部に断面を含む側面図である。It is a side view which includes a cross section in part which shows the whole structure of the chain saw which concerns on the 2nd Embodiment of this invention. チェンソーに搭載された変速機構の構成を示す断面図である。It is sectional drawing which shows the structure of the speed change mechanism mounted in the chain saw. チェンソーの変速機構を示す図であり、高速側に切替えられた状態を示す。It is a figure which shows the transmission mechanism of a chain saw, and shows the state switched to the high speed side. チェンソーの変速機構を示す図であり、低速側に切替えられた状態を示す。It is a figure which shows the transmission mechanism of a chain saw, and shows the state switched to the low speed side.
 以上及び以下の記載に係る構成ないし方法は、本発明に係る「動力工具」の製造及び使用、当該「動力工具」の構成要素の使用を実現せしめるべく、他の構成ないし方法と別に、あるいはこれらと組み合わせて用いることができる。本発明の代表的実施形態は、これらの組み合わせも包含し、添付図面を参照しつつ詳細に説明される。以下の詳細な説明は、本発明の好ましい適用例を実施するための詳細情報を当業者に教示するに留まり、本発明の技術的範囲は、当該詳細な説明によって制限されず、特許請求の範囲の記載に基づいて定められる。このため、以下の詳細な説明における構成や方法ステップの組み合わせは、広義の意味において、本発明を実施するのに全て必須であるというものではなく、添付図面の参照番号とともに記載された詳細な説明において、本発明の代表的形態を開示するに留まるものである。 The configurations and methods according to the above and the following description are separately or separately from other configurations and methods in order to realize the manufacture and use of the “power tool” according to the present invention and the use of the components of the “power tool”. Can be used in combination. Exemplary embodiments of the present invention include these combinations and will be described in detail with reference to the accompanying drawings. The following detailed description is only to teach those skilled in the art with detailed information to implement preferred embodiments of the invention, and the scope of the invention is not limited by the detailed description, but is limited by the scope of the claims. It is determined based on the description. For this reason, combinations of configurations and method steps in the following detailed description are not all essential to implement the present invention in a broad sense, but are described in detail with reference numerals in the accompanying drawings. However, only representative embodiments of the present invention are disclosed.
(本発明の第1の実施形態)
 以下、本発明の第1の実施形態に係るスライド丸鋸につき、図1~図5を参照しつつ説明する。本実施の形態は、動力工具の一例としての電動式のスライド丸鋸に適用した場合で説明する。図1及び図2にはスライド丸鋸101の全体構成が示される。図1及び図2に示すようにスライド丸鋸101は、概括的に見て、工具本体としての丸鋸本体部103、ベース120、丸鋸本体部103とベース120とを結合する連接部125を主体として構成される。
(First embodiment of the present invention)
Hereinafter, a sliding circular saw according to a first embodiment of the present invention will be described with reference to FIGS. The present embodiment will be described when applied to an electric slide circular saw as an example of a power tool. 1 and 2 show the overall configuration of the slide circular saw 101. FIG. As shown in FIGS. 1 and 2, the slide circular saw 101 generally includes a circular saw body portion 103 as a tool body, a base 120, and a connecting portion 125 that connects the circular saw body portion 103 and the base 120. Configured as the subject.
 図1~図3に示すように、丸鋸本体部103は、駆動モータ111及び変速機構130を収容するハウジング105、ブレード113の上半分を覆うブレードケース106、ブレード113の下半分を覆うセーフティカバー107、作業者が握るハンドグリップ109を主体に構成され、連接部125に対して揺動支点104を中心として上下方向に揺動可能に連接される。ハウジング105、ブレードケース106及びハンドグリップ109は、相互に接続されて一体状に形成されている。セーフティカバー107は、丸鋸本体部103の下方への揺動動作に連動して上方へ回動することでブレード113の下半分を開放し、丸鋸本体部103の上方への揺動動作に連動して下方へ回動することで閉じる。駆動モータ111は、AC電源で駆動され、変速機構130を介してブレード113を回転駆動する。 As shown in FIGS. 1 to 3, the circular saw body 103 includes a housing 105 that houses the drive motor 111 and the transmission mechanism 130, a blade case 106 that covers the upper half of the blade 113, and a safety cover that covers the lower half of the blade 113. 107, mainly composed of a hand grip 109 gripped by an operator, and connected to the connecting portion 125 so as to be swingable in the vertical direction about the swing support point 104. The housing 105, the blade case 106, and the hand grip 109 are connected to each other and formed integrally. The safety cover 107 is pivoted upward in conjunction with the downward swinging motion of the circular saw body 103 to open the lower half of the blade 113, so that the circular saw body 103 swings upward. Closes by interlocking and turning downward. The drive motor 111 is driven by an AC power source and rotationally drives the blade 113 via the speed change mechanism 130.
 駆動モータ111は、回転方向の切替えが可能な可逆式モータが用いられ、ブレード113に作用する負荷に応じて回転方向が切替わる構成とされる。例えば、駆動モータ111の電流値、又は回転数の変化を所定のセンサーによって検知し、当該センサーによる検知値が予め定めた閾値を検知したときに、回転方向が切替わるように構成される。駆動モータ111は、本発明における「モータ」に対応する。 The drive motor 111 is a reversible motor capable of switching the rotation direction, and the rotation direction is switched according to the load acting on the blade 113. For example, a change in the current value or the rotation speed of the drive motor 111 is detected by a predetermined sensor, and the rotation direction is switched when a detection value detected by the sensor detects a predetermined threshold value. The drive motor 111 corresponds to the “motor” in the present invention.
 ベース120は、上部に被加工材が載置可能なターンテーブル121を有する。またベース120は、スリーブ123を有し、このスリーブ123が連接部125に固定状に設けたスライドロッド127に前後方向(図1の左右方向)への相対移動可能に取り付けられる。 The base 120 has a turntable 121 on which a work material can be placed. The base 120 has a sleeve 123, and the sleeve 123 is attached to a slide rod 127 fixed to the connecting portion 125 so as to be relatively movable in the front-rear direction (left-right direction in FIG. 1).
 作業者は、ハンドグリップ109に設けられたトリガ109aを引き操作し、駆動モータ111を通電駆動してブレード113を回転駆動した状態において、ハンドグリップ109を握り、丸鋸本体部103を下方へ傾動操作するとともに、丸鋸本体部103を連接部125と共にベース120に対して後方(連接部側)へとスライドすることにより、ターンテーブル121上に載置された被加工材を切断することができる。 The operator pulls the trigger 109a provided on the handgrip 109, grips the handgrip 109 and tilts the circular saw body 103 downward while the drive motor 111 is energized and driven to rotate the blade 113. In addition to the operation, the work piece placed on the turntable 121 can be cut by sliding the circular saw body 103 together with the connecting portion 125 backward (to the connecting portion side) with respect to the base 120. .
 次に変速機構130につき、図3~図5を参照して説明する。本実施の形態に係る変速機構130は、駆動モータ111のモータ軸112に同軸で接続された又は一体に形成された入力軸131と、ブレード113が取付けられる出力軸としてのブレード取付軸133と、入力軸131を挟んでブレード取付軸133と反対側に配置された中間軸135が互いに平行に配置された平行3軸式であり、駆動モータ111の回転方向を切替える、すなわち入力軸131の回転方向を切替えることで、動力伝達経路が高速低トルクから低速高トルクに切替わる2段切替式として構成される。入力軸131は、本発明における「入力軸」に対応し、ブレード取付軸133は、本発明における「出力軸」及び「第2の中間軸」に対応し、中間軸135は、本発明における「第1の中間軸」に対応する。なお、以下の説明では、ブレード取付軸133を出力軸という。また、入力軸131を一方向に回転させたときを正転といい、他方向に回転させたときを逆転という。入力軸131の正転が、本発明における「第1方向」に対応し、入力軸131の逆転が、本発明における「第2方向」に対応する。 Next, the speed change mechanism 130 will be described with reference to FIGS. The speed change mechanism 130 according to the present embodiment includes an input shaft 131 that is coaxially connected to or integrally formed with the motor shaft 112 of the drive motor 111, a blade mounting shaft 133 as an output shaft to which the blade 113 is mounted, The intermediate shaft 135 disposed on the opposite side of the blade mounting shaft 133 across the input shaft 131 is a parallel three-shaft type disposed in parallel to each other, and switches the rotation direction of the drive motor 111, that is, the rotation direction of the input shaft 131 By switching, the power transmission path is configured as a two-stage switching type that switches from high speed low torque to low speed high torque. The input shaft 131 corresponds to the “input shaft” in the present invention, the blade mounting shaft 133 corresponds to the “output shaft” and the “second intermediate shaft” in the present invention, and the intermediate shaft 135 corresponds to the “input shaft” in the present invention. This corresponds to the “first intermediate shaft”. In the following description, the blade mounting shaft 133 is referred to as an output shaft. Further, when the input shaft 131 is rotated in one direction is referred to as normal rotation, and when the input shaft 131 is rotated in the other direction is referred to as reverse rotation. The forward rotation of the input shaft 131 corresponds to the “first direction” in the present invention, and the reverse rotation of the input shaft 131 corresponds to the “second direction” in the present invention.
 変速機構130は、入力軸131の回転力が第1ギア137から第2ギア139を経て出力軸133に伝達される第1動力伝達経路P1(図4参照)と、入力軸131の回転力が第1ギア137から第3ギア141、中間軸135、第4ギア143、第5ギア145を経て出力軸133に伝達される第2動力伝達経路P2(図5参照)を有する。そして、第1動力伝達経路P1につき、第1ギア137と第2ギア139のギア比(減速比)で決定される高速低トルクの動力伝達経路として定められ、第2動力伝達経路P2につき、第1ギア137と第3ギア141とのギア比(減速比)、及び第4ギア143と第5ギア145のギア比(減速比)で決定される低速高トルクの動力伝達経路として定められている。第1動力伝達経路P1及び第2動力伝達経路P2が矢印付き太線によって示される。なお、入力軸131、出力軸133及び中間軸135は、それぞれ軸受131a,133a,135aを介してハウジング105に回転自在に支持される。 The speed change mechanism 130 has a first power transmission path P1 (see FIG. 4) through which the rotational force of the input shaft 131 is transmitted from the first gear 137 to the output shaft 133 via the second gear 139, and the rotational force of the input shaft 131. A second power transmission path P2 (see FIG. 5) is transmitted from the first gear 137 to the output shaft 133 through the third gear 141, the intermediate shaft 135, the fourth gear 143, and the fifth gear 145. The first power transmission path P1 is determined as a high-speed and low-torque power transmission path determined by the gear ratio (reduction ratio) between the first gear 137 and the second gear 139, and the second power transmission path P2 It is defined as a low-speed high-torque power transmission path determined by the gear ratio (reduction ratio) between the first gear 137 and the third gear 141 and the gear ratio (reduction ratio) between the fourth gear 143 and the fifth gear 145. . The first power transmission path P1 and the second power transmission path P2 are indicated by thick lines with arrows. Note that the input shaft 131, the output shaft 133, and the intermediate shaft 135 are rotatably supported by the housing 105 via bearings 131a, 133a, and 135a, respectively.
 駆動ギアとしての第1ギア137は、入力軸131に一体状に形成される。第2ギア139は、第1ワンウェイクラッチ151を介して出力軸133に取り付けられ、第1ギア137と常時に噛み合い係合される。第5ギア145は、出力軸133上の先端側(ブレード113側)にキー155を介して固定されている。第3ギア141は、中間軸135にキー157を介して固定され、第1ギア137を挟んで第2ギア139と反対側に配置されるとともに、当該第1ギア137と常時に噛み合い係合される。第4ギア143は、第2ワンウェイクラッチ153を介して中間軸135上の先端側(ブレード113側)に取付けられるとともに、第5ギア145と常時に噛み合い係合される。 The first gear 137 as a drive gear is formed integrally with the input shaft 131. The second gear 139 is attached to the output shaft 133 via the first one-way clutch 151, and is always meshed and engaged with the first gear 137. The fifth gear 145 is fixed to the distal end side (blade 113 side) on the output shaft 133 via a key 155. The third gear 141 is fixed to the intermediate shaft 135 via the key 157, is disposed on the opposite side of the second gear 139 with the first gear 137 interposed therebetween, and is always meshed and engaged with the first gear 137. The The fourth gear 143 is attached to the tip end side (blade 113 side) on the intermediate shaft 135 via the second one-way clutch 153, and is always meshed with and engaged with the fifth gear 145.
 なお、第1ワンウェイクラッチ151及び第2ワンウェイクラッチ153は、軸とギアの一方向への回転については、両者を一体化し、他方向への回転については、両者の相対回転を許容する構成とされる。すなわち、出力軸133上の第1ワンウェイクラッチ151は、入力軸131の正転時には第2ギア139の回転力を出力軸133に伝達するが、入力軸131の逆転時には伝達しないように構成されている。一方、中間軸135上の第2ワンウェイクラッチ153は、入力軸131の正転時には中間軸135の回転力を第4ギア143に伝達しないが、入力軸131の逆転時には伝達するように構成されている。 The first one-way clutch 151 and the second one-way clutch 153 are configured such that both the shaft and the gear rotate in one direction, and both rotate in the other direction and allow the relative rotation of both. The That is, the first one-way clutch 151 on the output shaft 133 is configured to transmit the rotational force of the second gear 139 to the output shaft 133 when the input shaft 131 rotates in the forward direction, but not when the input shaft 131 rotates in the reverse direction. Yes. On the other hand, the second one-way clutch 153 on the intermediate shaft 135 is configured not to transmit the rotational force of the intermediate shaft 135 to the fourth gear 143 when the input shaft 131 rotates forward, but to transmit it when the input shaft 131 rotates reversely. Yes.
 本実施の形態に係る変速機構130は、上記のように構成されている。従って、被加工材の切断作業を行なうべく駆動モータ111が正転駆動された場合には、駆動モータ111の回転力は、第1動力伝達経路P1を経て出力軸133に伝達される。すなわち、入力軸131の回転力は、第1ギア137、第2ギア139及び第1ワンウェイクラッチ151を経て出力軸133に伝達され、ブレード113が高速低トルクで回転駆動される。このとき、第1ギア131と噛み合い係合する第3ギア141、及び当該第3ギア141とキー157によって連結された中間軸135も回転されるが、第2ワンウェイクラッチ153の働きによって中間軸135から第4ギア143への回転力の伝達が行われない。なお、このときの出力軸133の回転方向は、駆動モータ111の回転方向に対しては逆方向となる。 The transmission mechanism 130 according to the present embodiment is configured as described above. Therefore, when the drive motor 111 is driven to rotate in order to cut the workpiece, the rotational force of the drive motor 111 is transmitted to the output shaft 133 via the first power transmission path P1. That is, the rotational force of the input shaft 131 is transmitted to the output shaft 133 via the first gear 137, the second gear 139, and the first one-way clutch 151, and the blade 113 is rotationally driven at high speed and low torque. At this time, the third gear 141 meshingly engaged with the first gear 131 and the intermediate shaft 135 connected to the third gear 141 and the key 157 are also rotated. However, the intermediate shaft 135 is rotated by the action of the second one-way clutch 153. To the fourth gear 143 is not transmitted. Note that the rotation direction of the output shaft 133 at this time is opposite to the rotation direction of the drive motor 111.
 一方、駆動モータ111が逆転駆動された場合には、第1ワンウェイクラッチ151の働きによって第2ギア139から出力軸133への回転力の伝達が行われず、逆に第2ワンウェイクラッチ153の働きによって中間軸135の回転力が第4ギア143に伝達される。すなわち、入力軸131の回転力は、第1ギア137、第3ギア141、中間軸135、第2ワンウェイクラッチ153、第4ギア143及び第5ギア145を経て出力軸133に伝達され、ブレード113が低速高トルクで回転駆動される。このときの出力軸133の回転方向は、駆動モータ111の回転方向と同方向となる。このように、駆動モータ111の回転方向が正転から逆転に切替えられると、駆動モータ111の回転力の伝達経路が第1動力伝達経路P1から第2動
力伝達経路P2に切替えられるが、出力軸133の回転方向は変わらない。すなわち、入力軸131の回転方向が切替わっても、出力軸133の回転方向は一定に維持される。
On the other hand, when the drive motor 111 is driven in reverse, the rotational force is not transmitted from the second gear 139 to the output shaft 133 by the action of the first one-way clutch 151, and conversely by the action of the second one-way clutch 153. The rotational force of the intermediate shaft 135 is transmitted to the fourth gear 143. That is, the rotational force of the input shaft 131 is transmitted to the output shaft 133 through the first gear 137, the third gear 141, the intermediate shaft 135, the second one-way clutch 153, the fourth gear 143, and the fifth gear 145, and the blade 113. Is driven to rotate at low speed and high torque. At this time, the rotation direction of the output shaft 133 is the same as the rotation direction of the drive motor 111. As described above, when the rotation direction of the drive motor 111 is switched from forward rotation to reverse rotation, the transmission path of the rotational force of the drive motor 111 is switched from the first power transmission path P1 to the second power transmission path P2. The rotation direction of 133 does not change. That is, even if the rotation direction of the input shaft 131 is switched, the rotation direction of the output shaft 133 is kept constant.
 ブレード113による被加工材の切断作業は、駆動モータ111が正転駆動される第1動力伝達経路P1を使用しての高速低トルクで開始する。そして、切断作業が進行し、ブレード113に作用する負荷が予め定めた大きさに達したとき(駆動モータ111の電流値、又は回転数が予め定めた閾値に達したとき)に、駆動モータ111が逆転駆動に切替えられて第2動力伝達経路P2に切替わる。これによりブレード113の駆動につき、高速低トルクによる駆動から低速高トルクによる駆動へと自動的に切替えることができる。駆動モータ111が正転から逆転に切替わるとき、駆動モータ111にはブレーキが掛けられるが、このとき、ブレード113が慣性で回転を続けようとするため、第1ワンウェイクラッチ151が空転することになる。このため、ブレード113の高速低トルクによる回転から低速高トルクによる回転への切替わりが都合よく行われる。 The cutting work of the workpiece by the blade 113 starts at a high speed and a low torque using the first power transmission path P1 in which the drive motor 111 is driven to rotate forward. Then, when the cutting operation proceeds and the load acting on the blade 113 reaches a predetermined magnitude (when the current value of the drive motor 111 or the rotation speed reaches a predetermined threshold), the drive motor 111 Is switched to the reverse drive to switch to the second power transmission path P2. Thus, the driving of the blade 113 can be automatically switched from the driving with the high speed and low torque to the driving with the low speed and high torque. When the drive motor 111 is switched from forward rotation to reverse rotation, the drive motor 111 is braked. At this time, since the blade 113 tries to continue rotating due to inertia, the first one-way clutch 151 is idled. Become. For this reason, the rotation of the blade 113 from the high speed and low torque to the low speed and high torque is conveniently switched.
 上記のように、本実施の形態によれば、駆動モータ111の動力伝達経路につき、ブレード113に作用する負荷に応じて駆動モータ111の回転方向を切替えることにより、回転力の伝達経路を高速低トルクの第1動力伝達経路P1から低速高トルクの第2動力伝達経路P2に自動的に切替えることができる。 As described above, according to the present embodiment, the transmission path of the rotational force is reduced at high speed by switching the rotation direction of the drive motor 111 according to the load acting on the blade 113 for the power transmission path of the drive motor 111. The first power transmission path P1 for torque can be automatically switched to the second power transmission path P2 for low speed and high torque.
 また、本実施の形態においては、変速機構130を構成するギア列における各ギアの噛み合い係合を保持した状態、すなわち各ギアの位置を固定した状態で、第1動力伝達経路P1から第2動力伝達経路P2に切替えることができるため、変速動作を円滑に行なうことが可能となり、変速動作の円滑性を向上することができる。 In the present embodiment, the second power is transmitted from the first power transmission path P1 in a state where the meshing engagement of each gear in the gear train constituting the transmission mechanism 130 is maintained, that is, the position of each gear is fixed. Since the transmission path P2 can be switched, the speed change operation can be performed smoothly, and the smoothness of the speed change operation can be improved.
(本発明の第2の実施形態)
 次に本発明の第2の実施形態につき、図6~図9を参照しつつ説明する。本実施の形態は、薪切り作業、枝払い作業等に用いられる充電式のチェンソー201に適用したものである。チェンソー201は、本発明における「動力工具」に対応する。図6にはチェンソー201の全体構成が示される。チェンソー201は、チェンソー本体203と、チェンソー本体203に一端が固定されたガイドバー220、ガイドバー220に沿って周回状に配置されるソーチェン213を主体として構成される。チェンソー本体203によって工具本体が構成される。ソーチェン213は、本発明における「先端工具」に対応する。
(Second embodiment of the present invention)
Next, a second embodiment of the present invention will be described with reference to FIGS. The present embodiment is applied to a rechargeable chain saw 201 used for cutting and pruning operations. The chain saw 201 corresponds to the “power tool” in the present invention. FIG. 6 shows the overall configuration of the chain saw 201. The chain saw 201 is mainly composed of a chain saw body 203, a guide bar 220 having one end fixed to the chain saw body 203, and a saw chain 213 arranged in a circular shape along the guide bar 220. The machine body is constituted by the chain saw body 203. The saw chain 213 corresponds to the “tip tool” in the present invention.
 チェンソー本体203は、駆動モータ211及び変速機構230を収容するハウジング205(図7参照)と、ハウジング205に一体状に設けられた作業者が握るハンドグリップ209を主体として構成される。ハンドグリップ209には、駆動モータ211を通電駆動するための手指による引き操作可能なトリガ209aが設けられ、またハンドグリップ209の長軸方向端部(図6の左端)には、駆動モータ211の電源となる充電式のバッテリパック210が装着されている。ソーチェン213は、ガイドバー220の基部側(チェンソー本体203との連接側)に設けられた駆動側のスプロケット215と、ガイドバー220の先端側に設けられた被動側のスプロケット(便宜上図示を省略する)に周回状に装着されている。そして、駆動モータ211により変速機構230を介して回転駆動されるとともに、ガイドバー220に形成されたソーチェン溝によって回転運動が案内される。 The chain saw body 203 is mainly composed of a housing 205 (see FIG. 7) that houses the drive motor 211 and the speed change mechanism 230, and a hand grip 209 that is integrally provided in the housing 205 and is gripped by an operator. The handgrip 209 is provided with a trigger 209a that can be pulled by a finger to energize and drive the drive motor 211, and the end of the handgrip 209 in the long axis direction (the left end in FIG. 6) of the drive motor 211 is provided. A rechargeable battery pack 210 serving as a power source is attached. The saw chain 213 includes a drive-side sprocket 215 provided on the base side of the guide bar 220 (connection side with the chain saw body 203) and a driven-side sprocket provided on the tip side of the guide bar 220 (not shown for convenience). ) In a circular fashion. Then, the drive motor 211 is rotationally driven through the speed change mechanism 230, and the rotational motion is guided by the saw chain groove formed in the guide bar 220.
 駆動モータ211としては、前述した第1の実施形態と同様に回転方向の切替えが可能な可逆式モータが用いられ、本実施の形態では、作業者の手動操作によって任意に回転方向を切替えることができる構成とされる。駆動モータ211は、本発明における「モータ」に対応する。駆動モータ211の回転方向の切替えは、例えば操作部材としてのトリガ209aの引き込み深さ(引き操作量)を段階的に変化させることによって行う引き込み深さ切替方式で構成することが可能である。 As the drive motor 211, a reversible motor capable of switching the rotation direction is used as in the first embodiment described above, and in this embodiment, the rotation direction can be arbitrarily switched by an operator's manual operation. It can be configured. The drive motor 211 corresponds to the “motor” in the present invention. The rotation direction of the drive motor 211 can be switched by, for example, a pull-in depth switching method in which the pull-in depth (pulling operation amount) of the trigger 209a as the operation member is changed stepwise.
 次に変速機構230につき、図7~図9を参照して説明する。本実施の形態に係る変速機構230は、駆動モータ211のモータ軸212に同軸で接続された又は一体に形成された入力軸231と、ソーチェン213を駆動する駆動側のスプロケット215が取付けられる出力軸としてのスプロケット取付軸233と、入力軸231とスプロケット取付軸233との間に配置された第1及び第2中間軸235,236が互いに平行に配置された平行4軸式として構成されている。そして、駆動モータ211の回転方向を切替える、すなわち入力軸231の回転方向を切替えることで、動力伝達経路が高速低トルクから低速高トルクに切替わる2段切替式として構成される。 Next, the speed change mechanism 230 will be described with reference to FIGS. The speed change mechanism 230 according to the present embodiment includes an input shaft 231 coaxially connected to or integrally formed with the motor shaft 212 of the drive motor 211 and an output shaft to which a drive-side sprocket 215 that drives the saw chain 213 is attached. The first and second intermediate shafts 235 and 236 disposed between the input shaft 231 and the sprocket mounting shaft 233 are configured as a parallel four-shaft type in which the sprocket mounting shaft 233 is arranged in parallel. Then, by switching the rotation direction of the drive motor 211, that is, by switching the rotation direction of the input shaft 231, the power transmission path is configured as a two-stage switching type that switches from high speed low torque to low speed high torque.
 入力軸231は、本発明における「入力軸」に対応し、スプロケット取付軸233は、本発明における「出力軸」及び「第2の中間軸」に対応し、第1中間軸235は、本発明における「第1の中間軸」に対応し、第2中間軸236は、本発明における「第3の中間軸」に対応する。なお、以下の説明では、スプロケット取付軸233を出力軸という。また、入力軸231を一方向に回転させたときを正転といい、他方向に回転させたときを逆転という。入力軸231の正転が、本発明における「第1方向」に対応し、入力軸231の逆転が、本発明における「第2方向」に対応する。 The input shaft 231 corresponds to the “input shaft” in the present invention, the sprocket mounting shaft 233 corresponds to the “output shaft” and the “second intermediate shaft” in the present invention, and the first intermediate shaft 235 corresponds to the present invention. Corresponds to the “first intermediate shaft”, and the second intermediate shaft 236 corresponds to the “third intermediate shaft” in the present invention. In the following description, the sprocket mounting shaft 233 is referred to as an output shaft. Further, when the input shaft 231 is rotated in one direction is referred to as normal rotation, and when the input shaft 231 is rotated in the other direction is referred to as reverse rotation. The forward rotation of the input shaft 231 corresponds to the “first direction” in the present invention, and the reverse rotation of the input shaft 231 corresponds to the “second direction” in the present invention.
 変速機構230は、入力軸231の回転力が第1ギア237から第2ギア239、第1中間軸235、第3ギア241及び第4ギア243を経て出力軸233に伝達される第1動力伝達経路P1(図8参照)と、入力軸231の回転力が第1ギア237から第2ギア239、第5ギア245、第2中間軸236、第6ギア247及び第4ギア243を経て出力軸233に伝達される第2動力伝達経路P2(図9参照)を有する。そして、第1動力伝達経路P1につき、第1ギア237と第2ギア239のギア比(減速比)、及び第3ギア241と第4ギア243のギア比で決定される高速低トルクの動力伝達経路として定められ、第2動力伝達経路P2につき、第1ギア237と第2ギア239のギア比(減速比)、第2ギア239と第5ギア245のギア比(減速比)、及び第6ギア247と第4ギア243とのギア比で決定される低速高トルクの動力伝達経路として定められている。第1動力伝達経路P1及び第2動力伝達経路P2が矢印付き太線によって示される。なお、入力軸231、出力軸233、第1中間軸235、及び第2中間軸236は、それぞれ軸受231a,233a,235a,236aを介してハウジング205に回転自在に支持される。 The transmission mechanism 230 transmits a first power transmission in which the rotational force of the input shaft 231 is transmitted from the first gear 237 to the output shaft 233 via the second gear 239, the first intermediate shaft 235, the third gear 241 and the fourth gear 243. The path P1 (see FIG. 8) and the rotational force of the input shaft 231 are output from the first gear 237 through the second gear 239, the fifth gear 245, the second intermediate shaft 236, the sixth gear 247 and the fourth gear 243. A second power transmission path P <b> 2 (see FIG. 9) that is transmitted to 233 is provided. Then, high-speed and low-torque power transmission determined by the gear ratio (reduction ratio) of the first gear 237 and the second gear 239 and the gear ratio of the third gear 241 and the fourth gear 243 for the first power transmission path P1. The second power transmission path P2, the gear ratio (reduction ratio) between the first gear 237 and the second gear 239, the gear ratio (reduction ratio) between the second gear 239 and the fifth gear 245, and the sixth It is defined as a low-speed and high-torque power transmission path determined by the gear ratio between the gear 247 and the fourth gear 243. The first power transmission path P1 and the second power transmission path P2 are indicated by thick lines with arrows. The input shaft 231, the output shaft 233, the first intermediate shaft 235, and the second intermediate shaft 236 are rotatably supported by the housing 205 via bearings 231a, 233a, 235a, and 236a, respectively.
 駆動ギアとしての第1ギア237は、入力軸231に一体状に形成される。第2ギア239は、第1中間軸235にキー255によって固定され、第1ギア237に常時に噛み合い係合される。第3ギア241は、第1中間軸235に第1ワンウェイクラッチ251を介して取付けられている。第4ギア243は、出力軸233にキー257によって固定され、第3ギア241と常時に噛み合い係合される。第5ギア245は、第2中間軸236に第2ワンウェイクラッチ253を介して取付けられ、第2ギア239と常時に噛み合い係合される。第6ギア247は、第2中間軸236にキー259によって固定され、第4ギア243に常時に噛み合い係合される。 The first gear 237 as a drive gear is formed integrally with the input shaft 231. The second gear 239 is fixed to the first intermediate shaft 235 by a key 255 and is always meshed and engaged with the first gear 237. The third gear 241 is attached to the first intermediate shaft 235 via the first one-way clutch 251. The fourth gear 243 is fixed to the output shaft 233 by a key 257 and is always meshed with and engaged with the third gear 241. The fifth gear 245 is attached to the second intermediate shaft 236 via the second one-way clutch 253, and is always meshed with and engaged with the second gear 239. The sixth gear 247 is fixed to the second intermediate shaft 236 by a key 259, and is always meshed and engaged with the fourth gear 243.
 なお、第1ワンウェイクラッチ251及び第2ワンウェイクラッチ253は、軸とギアの一方向への回転については、両者を一体化し、他方向への回転については、両者の相対回転を許容する構成とされる。すなわち、第1中間軸235上の第1ワンウェイクラッチ251は、入力軸231の正転時には第1中間軸235の回転力を第3ギア241に伝達するが、入力軸231の逆転時には伝達しないように構成されている。一方、第2中間軸236上の第2ワンウェイクラッチ253は、入力軸231の正転時には第5ギア245の回転力を第2中間軸236に伝達しないが、入力軸231の逆転時には伝達するように構成されている。 The first one-way clutch 251 and the second one-way clutch 253 are configured such that both the shaft and the gear are rotated in one direction and the relative rotation of the both is allowed in the other direction. The That is, the first one-way clutch 251 on the first intermediate shaft 235 transmits the rotational force of the first intermediate shaft 235 to the third gear 241 when the input shaft 231 rotates in the forward direction, but does not transmit it when the input shaft 231 rotates in the reverse direction. It is configured. On the other hand, the second one-way clutch 253 on the second intermediate shaft 236 does not transmit the rotational force of the fifth gear 245 to the second intermediate shaft 236 when the input shaft 231 rotates forward, but transmits it when the input shaft 231 rotates reversely. It is configured.
 本実施の形態に係る変速機構230は、上記のように構成されている。従って、被加工材の切断作業を行なうべく駆動モータ211を正転駆動した場合には、駆動モータ211の回転力は、第1動力伝達経路P1を経て出力軸233に伝達される。すなわち、入力軸231の回転力は、第1ギア237、第2ギア239、第1中間軸235、第1ワンウェイクラッチ251、第3ギア241及び第4ギア243を経て出力軸233に伝達され、ソーチェン213が高速低トルクで回転駆動される。このとき、第2ギア239と噛み合い係合している第5ギア245も回転されるが、第2ワンウェイクラッチ253の働きによって第5ギア245から第2中間軸236への回転力の伝達が行われない。このときの出力軸233の回転方向は、駆動モータ211の回転方向に対しては同方向となる。 The transmission mechanism 230 according to the present embodiment is configured as described above. Therefore, when the drive motor 211 is driven to rotate in order to cut the workpiece, the rotational force of the drive motor 211 is transmitted to the output shaft 233 via the first power transmission path P1. That is, the rotational force of the input shaft 231 is transmitted to the output shaft 233 via the first gear 237, the second gear 239, the first intermediate shaft 235, the first one-way clutch 251, the third gear 241 and the fourth gear 243, The saw chain 213 is driven to rotate at high speed and low torque. At this time, the fifth gear 245 engaged with and engaged with the second gear 239 is also rotated, but the second one-way clutch 253 acts to transmit the rotational force from the fifth gear 245 to the second intermediate shaft 236. I will not. At this time, the rotation direction of the output shaft 233 is the same as the rotation direction of the drive motor 211.
 一方、駆動モータ211を逆転駆動した場合には、第1ワンウェイクラッチ251の働きによって第1中間軸235から第3ギア241への回転力の伝達が行われず、逆に第2ワンウェイクラッチ253の働きによって第5ギア245の回転力が第2中間軸236に伝達される。すなわち、入力軸231の回転力は、第1ギア237、第2ギア239、第5ギア245、第2ワンウェイクラッチ253、第2中間軸236、第6ギア247及び第4ギア243を経て出力軸233に伝達され、ソーチェン213が低速高トルクで回転駆動される。このときの出力軸233の回転方向は、駆動モータ211の回転方向と逆方向となる。このように、駆動モータ211の回転方向が正転から逆転に切替えられると、駆動モータ211の回転力の伝達経路が第1動力伝達経路P1から第2動力伝達経路P2に切替えられるが、出力軸233の回転方向は変わらない。すなわち、入力軸231の回転方向が切替わっても、出力軸233の回転方向は一定に維持される。 On the other hand, when the drive motor 211 is driven in reverse, the first one-way clutch 251 does not transmit the rotational force from the first intermediate shaft 235 to the third gear 241, and conversely the second one-way clutch 253 works. Thus, the rotational force of the fifth gear 245 is transmitted to the second intermediate shaft 236. That is, the rotational force of the input shaft 231 passes through the first gear 237, the second gear 239, the fifth gear 245, the second one-way clutch 253, the second intermediate shaft 236, the sixth gear 247, and the fourth gear 243. 233, the saw chain 213 is rotationally driven at a low speed and a high torque. At this time, the rotation direction of the output shaft 233 is opposite to the rotation direction of the drive motor 211. As described above, when the rotation direction of the drive motor 211 is switched from normal rotation to reverse rotation, the transmission path of the rotational force of the drive motor 211 is switched from the first power transmission path P1 to the second power transmission path P2. The rotation direction of 233 does not change. That is, even if the rotation direction of the input shaft 231 is switched, the rotation direction of the output shaft 233 is kept constant.
 本実施の形態においては、前述したように作業者によるトリガ209aの手動操作によって駆動モータ211の回転方向を切替え可能としている。このため、作業者は動力工具を用いて所定の加工作業を遂行する場合、作業状況に応じてソーチェン213を、第1動力伝達経路P1を使用しての高速低トルクでの駆動と、第2動力伝達経路P2を使用しての低速高トルクでの駆動との間で任意に切替えて切断作業を行うことができる。 In this embodiment, as described above, the rotation direction of the drive motor 211 can be switched by manual operation of the trigger 209a by the operator. Therefore, when a worker performs a predetermined machining operation using a power tool, the saw chain 213 is driven at a high speed and a low torque using the first power transmission path P1 according to the work situation, and the second The cutting operation can be performed by arbitrarily switching between driving at low speed and high torque using the power transmission path P2.
 また、本実施の形態によれば、前述した第1の実施形態と同様に変速機構230を構成するギア列における各ギアの噛み合い係合を保持した状態、すなわち各ギアの位置を固定した状態で、第1動力伝達経路P1と第2動力伝達経路P2との間で切替えることが可能なことから、変速動作を円滑に行なうことが可能となり、変速動作の円滑性を向上することができる。 Further, according to the present embodiment, as in the first embodiment described above, the meshing engagement of each gear in the gear train constituting the transmission mechanism 230 is maintained, that is, the position of each gear is fixed. Since it is possible to switch between the first power transmission path P1 and the second power transmission path P2, the speed change operation can be performed smoothly, and the smoothness of the speed change operation can be improved.
 なお、スライド丸鋸101に適用した第1の実施形態において、ブレード113に作用する負荷に応じて変速機構130の動力伝達経路が自動的に切替わる自動変速として説明したが、これを第2の実施形態で説明したように、第1動力伝達経路P1と第2動力伝達経路P2との間で手動操作によって任意に切替え可能に構成してもよい。他方、チェンソー201に適用した第2の実施形態において、変速機構230の動力伝達経路につき、手動操作によって任意に切替え可能に構成したが、これを第1の実施形態のように、ソーチェン213に作用する負荷に応じて自動変速する構成としてもよい。 In the first embodiment applied to the slide circular saw 101, the automatic transmission in which the power transmission path of the speed change mechanism 130 is automatically switched according to the load acting on the blade 113 has been described. As described in the embodiment, the first power transmission path P1 and the second power transmission path P2 may be arbitrarily switched by a manual operation. On the other hand, in the second embodiment applied to the chain saw 201, the power transmission path of the speed change mechanism 230 is configured to be arbitrarily switchable by manual operation, but this is applied to the saw chain 213 as in the first embodiment. It is good also as a structure which carries out automatic transmission according to the load to perform.
 また、自動変速の場合において、駆動モータ111の電流値、又は回転数の変化をセンサーで検知する方式に替えて、動力伝達に関与する部材の機械的変位(歪)を歪ゲージによって検知する方式を採用し、当該歪ゲージによる検知値が予め定めた閾値を検知したときに、駆動モータ111,211の回転方向が切替わるように構成してもよい。 Further, in the case of automatic transmission, a method of detecting a mechanical displacement (strain) of a member involved in power transmission with a strain gauge instead of a method of detecting a change in the current value or rotation speed of the drive motor 111 with a sensor. And the rotation direction of the drive motors 111 and 211 may be switched when the detection value by the strain gauge detects a predetermined threshold value.
 また、上述した実施の形態は、動力工具の例として電動式のスライド丸鋸101と充電式のチェンソー201の場合で説明したが、これに限られるものではない。丸鋸であっても、AC電源の代わりにバッテリを用いる形式の丸鋸、あるいは図示のような卓上スライド丸鋸のほか、卓上丸鋸や手持式の丸鋸に適用できるし、木工用、金工用のいずれにも適用することが可能である。また丸鋸、及びチェンソー以外の切断工具、例えば、電動カッターに適用することが可能であるし、レシプロソーやジクソー等のように先端工具が直線往復運動を行なう切断工具に適用することが可能である。更には切断工具以外の動力工具、例えば回転運動するサンディングディスクや砥石によって被加工材に研磨あるいは研削作業を行なうサンダーやグラインダ、あるいは締め付け作業に用いられるドライバやレンチ、または穴明け作業を行なう各種ドリル、更には上下2枚のブレードを互いに逆方向に直線状に往復移動させ、生垣の刈り込み作業等を遂行するヘッジトリマ等、各種の動力工具に広く適用可能である。 In the above-described embodiment, the electric slide circular saw 101 and the rechargeable chain saw 201 have been described as examples of the power tool. However, the embodiment is not limited thereto. Even a circular saw can be applied to a circular saw that uses a battery instead of an AC power supply, or a tabletop slide circular saw as shown in the figure, a tabletop circular saw, or a handheld circular saw. It can be applied to any of the above. Further, it can be applied to cutting tools other than circular saws and chain saws, for example, electric cutters, and can be applied to cutting tools in which the tip tool performs linear reciprocating motion such as reciprocating saws and jigsaws. . Furthermore, power tools other than cutting tools, such as sanding disks and grinders that grind or grind workpieces with a rotating sanding disk or grindstone, or drivers and wrench used for tightening operations, or various drills that perform drilling operations Furthermore, the present invention can be widely applied to various power tools such as a hedge trimmer in which two upper and lower blades are reciprocated linearly in opposite directions to perform hedge cutting work and the like.
101 スライド丸鋸(動力工具)
103 丸鋸本体部(動力工具本体)
104 揺動支点
105 ハウジング
106 ブレードケース
107 セーフティカバー
109 ハンドグリップ
109a トリガ
111 駆動モータ(モータ)
112 モータ軸
113 ブレード
120 ベース
121 ターンテーブル
123 スリーブ
125 連接部
127 スライドロッド
130 変速機構
131 入力軸
131a 軸受
133 出力軸(第2の中間軸)
133a 軸受
135 中間軸(第1の中間軸)
135a 軸受
137 第1ギア
139 第2ギア
141 第3ギア
143 第4ギア
145 第5ギア
151 第1ワンウェイクラッチ
153 第2ワンウェイクラッチ
155 キー
157 キー
201 充電式チェンソー(動力工具)
203 チェンソー本体
205 ハウジング
209 ハンドグリップ
209a トリガ
210 バッテリパック
211 駆動モータ(モータ)
212 モータ軸
213 ソーチェン(先端工具)
215 駆動側のスプロケット
220 ガイドバー
230 変速機構
231 入力軸
231a 軸受
233 出力軸(第2の中間軸)
233a 軸受
235 第1中間軸(第1の中間軸)
235a 軸受
236 第2中間軸(第3の中間軸)
236a 軸受
237 第1ギア
239 第2ギア
241 第3ギア
243 第4ギア
245 第5ギア
247 第6ギア
251 第1ワンウェイクラッチ
253 第2ワンウェイクラッチ
255 キー
257 キー
259 キー
101 slide circular saw (power tool)
103 Circular saw body (Power tool body)
104 Oscillating fulcrum 105 Housing 106 Blade case 107 Safety cover 109 Hand grip 109a Trigger 111 Drive motor (motor)
112 motor shaft 113 blade 120 base 121 turntable 123 sleeve 125 connecting portion 127 slide rod 130 transmission mechanism 131 input shaft 131a bearing 133 output shaft (second intermediate shaft)
133a Bearing 135 Intermediate shaft (first intermediate shaft)
135a Bearing 137 First gear 139 Second gear 141 Third gear 143 Fourth gear 145 Fifth gear 151 First one-way clutch 153 Second one-way clutch 155 Key 157 Key 201 Rechargeable chain saw (power tool)
203 Chain saw body 205 Housing 209 Hand grip 209a Trigger 210 Battery pack 211 Drive motor (motor)
212 Motor shaft 213 Saw chain (tip tool)
215 Drive-side sprocket 220 Guide bar 230 Transmission mechanism 231 Input shaft 231a Bearing 233 Output shaft (second intermediate shaft)
233a Bearing 235 First intermediate shaft (first intermediate shaft)
235a Bearing 236 Second intermediate shaft (third intermediate shaft)
236a bearing 237 first gear 239 second gear 241 third gear 243 fourth gear 245 fifth gear 247 sixth gear 251 first one-way clutch 253 second one-way clutch 255 key 257 key 259 key

Claims (10)

  1.  先端工具を駆動させて所定の加工作業を遂行する動力工具であって、
     入力軸と、前記先端工具を駆動する出力軸と、前記入力軸から前記出力軸に回転力を伝達する第1伝達経路及び第2伝達経路と、を有し、
     前記入力軸が第1方向へ回転される場合、前記第1伝達経路を経由して、所定の伝達比にて前記出力軸に前記第1方向の回転力が伝達され、これにより前記出力軸が所定の方向に回転されるよう構成され、前記入力軸が前記第1方向と反対の第2方向へ回転される場合、前記第2伝達経路を経由して、前記第1伝達経路の伝達比と異なる伝達比にて前記出力軸に前記第2方向の回転力が伝達され、これにより前記出力軸が前記所定の方向へ回転されるよう構成されており、前記入力軸の回転方向の切替えによって前記出力軸は回転方向を一定に維持しつつ回転速度が切替えられることを特徴とする動力工具。
    A power tool that drives a tip tool to perform a predetermined machining operation,
    An input shaft, an output shaft that drives the tip tool, and a first transmission path and a second transmission path that transmit rotational force from the input shaft to the output shaft,
    When the input shaft is rotated in the first direction, the rotational force in the first direction is transmitted to the output shaft at a predetermined transmission ratio via the first transmission path, whereby the output shaft is When the input shaft is configured to be rotated in a predetermined direction and the input shaft is rotated in a second direction opposite to the first direction, the transmission ratio of the first transmission path is determined via the second transmission path. The rotational force in the second direction is transmitted to the output shaft at different transmission ratios, whereby the output shaft is configured to rotate in the predetermined direction, and by switching the rotational direction of the input shaft, A power tool characterized in that the rotation speed of the output shaft is switched while maintaining the rotation direction constant.
  2.  請求項1に記載の動力工具であって、
     前記第1伝達経路及び第2伝達経路それぞれは、複数のギアを有し、
     前記入力軸の回転方向が切替えられたとき、前記複数のギアの噛み合い係合を維持した状態で前記出力軸の回転速度が切替えられることを特徴とする動力工具。
    The power tool according to claim 1,
    Each of the first transmission path and the second transmission path has a plurality of gears,
    A power tool characterized in that when the rotation direction of the input shaft is switched, the rotation speed of the output shaft is switched while maintaining the meshing engagement of the plurality of gears.
  3.  請求項1又は2に記載の動力工具であって、
     前記第1伝達経路及び第2伝達経路それぞれの伝達経路上に、それぞれ少なくとも一つのワンウェイクラッチが設けられ、
     前記第1伝達経路のワンウェイクラッチは、前記第1方向への回転のみを伝達し、前記第2伝達経路のワンウェイクラッチは、前記第2方向への回転のみを伝達するように構成されていることを特徴とする動力工具。
    The power tool according to claim 1 or 2,
    At least one one-way clutch is provided on each of the transmission paths of the first transmission path and the second transmission path,
    The one-way clutch of the first transmission path is configured to transmit only the rotation in the first direction, and the one-way clutch of the second transmission path is configured to transmit only the rotation in the second direction. Power tool characterized by
  4.  請求項3に記載の動力工具であって、
     前記入力軸及び前記出力軸とは別に設けられた第1の中間軸と、
     前記出力軸と一体化された第2の中間軸と、
     前記入力軸に設けられた第1ギアと、
     前記第2の中間軸に設けられ、前記第1ギアと常時に噛み合い係合する第2ギアと、
     前記第1の中間軸に設けられ、前記第1ギアと常時に噛み合い係合する第3ギアと、
     前記第1の中間軸に設けられた第4ギアと、
     前記第2の中間軸に設けられ、前記第4ギアと常時に噛み合い係合する第5ギアと、
    を有し、
     前記第1伝達経路は、前記第1ギア、第2ギア及び第2の中間軸によって構成され、
     前記第2伝達経路は、前記第1ギア、第3ギア、第1の中間軸、第4ギア、第5ギア及び第2の中間軸によって構成されていることを特徴とする動力工具。
    The power tool according to claim 3,
    A first intermediate shaft provided separately from the input shaft and the output shaft;
    A second intermediate shaft integrated with the output shaft;
    A first gear provided on the input shaft;
    A second gear provided on the second intermediate shaft and meshingly engaged with the first gear at all times;
    A third gear provided on the first intermediate shaft and meshingly engaged with the first gear at all times;
    A fourth gear provided on the first intermediate shaft;
    A fifth gear provided on the second intermediate shaft and meshingly engaged with the fourth gear at all times;
    Have
    The first transmission path is configured by the first gear, the second gear, and a second intermediate shaft,
    The power tool, wherein the second transmission path is constituted by the first gear, the third gear, the first intermediate shaft, the fourth gear, the fifth gear, and the second intermediate shaft.
  5.  請求項3に記載の動力工具であって、
     前記入力軸及び前記出力軸とは別に設けられた第1及び第3の中間軸と、
     前記出力軸と一体化された第2の中間軸と、
     前記入力軸に設けられた第1ギアと、
     前記第1の中間軸に設けられ、前記第1ギアと常時に噛み合い係合する第2ギアと、
     前記第1の中間軸に設けられた第3ギアと、
     前記第2の中間軸に設けられ、前記第3ギアと常時に噛み合い係合する第4ギアと、
     前記第3の中間軸に設けられ、前記第2ギアと常時に噛み合い係合する第5ギアと、
     前記第3の中間軸に設けられ、前記第4ギアと常時に噛み合い係合する第6ギアと、
    を有し、
     前記第1伝達経路は、前記第1ギア、第2ギア、第1の中間軸、第3ギア、第4ギア及び第2の中間軸によって構成され、
     前記第2伝達経路は、前記第1ギア、第2ギア、第5ギア、第3の中間軸、第6ギア、第4ギア及び第2の中間軸によって構成されていることを特徴とする動力工具。
    The power tool according to claim 3,
    First and third intermediate shafts provided separately from the input shaft and the output shaft;
    A second intermediate shaft integrated with the output shaft;
    A first gear provided on the input shaft;
    A second gear provided on the first intermediate shaft and meshingly engaged with the first gear at all times;
    A third gear provided on the first intermediate shaft;
    A fourth gear provided on the second intermediate shaft and meshingly engaged with the third gear at all times;
    A fifth gear provided on the third intermediate shaft and meshingly engaged with the second gear at all times;
    A sixth gear provided on the third intermediate shaft and meshingly engaged with the fourth gear at all times;
    Have
    The first transmission path is configured by the first gear, the second gear, the first intermediate shaft, the third gear, the fourth gear, and the second intermediate shaft,
    The second transmission path is constituted by the first gear, the second gear, the fifth gear, the third intermediate shaft, the sixth gear, the fourth gear, and the second intermediate shaft. tool.
  6.  請求項4又は5に記載の動力工具であって、
     前記ワンウェイクラッチは、前記第1ギア以外の所定のギアと前記中間軸との間に設けられ、当該中間軸とギアの一方向への回転については、両者を一体化し、他方向への回転については、両者の相対回転を許容する構成とされていることを特徴とする動力工具。
    The power tool according to claim 4 or 5,
    The one-way clutch is provided between a predetermined gear other than the first gear and the intermediate shaft, and the rotation of the intermediate shaft and the gear in one direction is integrated and the rotation in the other direction. Is a power tool characterized by allowing the relative rotation of the two.
  7.  請求項1~6のいずれかに記載の動力工具であって、
     前記入力軸の回転方向の切替えは、手動操作によって行われることを特徴とする動力工具。
    The power tool according to any one of claims 1 to 6,
    The power tool according to claim 1, wherein the rotation direction of the input shaft is switched by a manual operation.
  8.  請求項7に記載の動力工具であって、
     前記モータを通電駆動するための手動操作可能な操作部材を有し、
     前記入力軸の回転方向の切替えは、前記操作部材の操作量を変化させることによって行うことを特徴とする動力工具。
    The power tool according to claim 7,
    A manually operable operation member for energizing and driving the motor;
    Switching the direction of rotation of the input shaft is performed by changing an operation amount of the operation member.
  9.  請求項1~6のいずれかに記載の動力工具であって、
     前記入力軸の回転方向の切替えは、自動切替えであることを特徴とする動力工具。
    The power tool according to any one of claims 1 to 6,
    The power tool according to claim 1, wherein the rotation direction of the input shaft is automatically switched.
  10.  請求項9に記載の動力工具であって、
     前記モータの電流値又は回転数を検知するセンサーを有し、
     前記入力軸の回転方向の切替えは、前記センサーにより検知された検知値が予め定めた閾値に達したときに行われることを特徴とする動力工具。

     
    The power tool according to claim 9, wherein
    Having a sensor for detecting the current value or the rotational speed of the motor;
    Switching the direction of rotation of the input shaft is performed when a detection value detected by the sensor reaches a predetermined threshold value.

PCT/JP2011/078830 2010-12-16 2011-12-13 Power tool WO2012081589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010280715A JP2012125898A (en) 2010-12-16 2010-12-16 Power tool
JP2010-280715 2010-12-16

Publications (1)

Publication Number Publication Date
WO2012081589A1 true WO2012081589A1 (en) 2012-06-21

Family

ID=46244687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078830 WO2012081589A1 (en) 2010-12-16 2011-12-13 Power tool

Country Status (2)

Country Link
JP (1) JP2012125898A (en)
WO (1) WO2012081589A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103410930A (en) * 2013-07-23 2013-11-27 无锡市黄氏电器制造有限公司 Gear transmission structure
FR3000694A1 (en) * 2013-01-09 2014-07-11 Seti Tec Automatic or controlled feed speed drilling machine for counterboring of workpieces, has gear box including two ratios, which are alternately actuated by reversal of rotation direction of motor for driving shaft rotating in same direction
CN112901724A (en) * 2021-03-31 2021-06-04 福建兴翼机械有限公司 Bidirectional direction-adjustable gearbox with transition gear and working method thereof
CN113431871A (en) * 2021-06-30 2021-09-24 厦门众力达机械有限公司 One-way transmission gear structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489933B1 (en) * 2013-08-12 2015-02-04 주식회사 하이코어 Gear system for combining inputs
JP2014233778A (en) * 2013-05-31 2014-12-15 日立工機株式会社 Work machine with reciprocal movement
JP2022110220A (en) * 2021-01-18 2022-07-29 株式会社マキタ Electric tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109358A (en) * 1974-02-12 1975-08-28
JPH04251702A (en) * 1991-01-28 1992-09-08 Matsushita Electric Works Ltd Motor-driven saw
JPH10103462A (en) * 1996-09-25 1998-04-21 Matsushita Electric Works Ltd Automatic transmission
JPH1190845A (en) * 1997-09-25 1999-04-06 Matsushita Electric Works Ltd Battery type power tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109358A (en) * 1974-02-12 1975-08-28
JPH04251702A (en) * 1991-01-28 1992-09-08 Matsushita Electric Works Ltd Motor-driven saw
JPH10103462A (en) * 1996-09-25 1998-04-21 Matsushita Electric Works Ltd Automatic transmission
JPH1190845A (en) * 1997-09-25 1999-04-06 Matsushita Electric Works Ltd Battery type power tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000694A1 (en) * 2013-01-09 2014-07-11 Seti Tec Automatic or controlled feed speed drilling machine for counterboring of workpieces, has gear box including two ratios, which are alternately actuated by reversal of rotation direction of motor for driving shaft rotating in same direction
CN103410930A (en) * 2013-07-23 2013-11-27 无锡市黄氏电器制造有限公司 Gear transmission structure
CN112901724A (en) * 2021-03-31 2021-06-04 福建兴翼机械有限公司 Bidirectional direction-adjustable gearbox with transition gear and working method thereof
CN113431871A (en) * 2021-06-30 2021-09-24 厦门众力达机械有限公司 One-way transmission gear structure

Also Published As

Publication number Publication date
JP2012125898A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
WO2012081589A1 (en) Power tool
JP5378964B2 (en) Power tools
EP2678138B1 (en) Right angle impact tool
JP5017185B2 (en) Power tool
TW200515669A (en) Drill powered cable cutter
US10710257B2 (en) Power tool, such as a metal shears
JP5312983B2 (en) Reduction mechanism for power tools
WO2010009480A1 (en) Pipe cutter
EP2486998A3 (en) Cutting tools
CN201295796Y (en) Reciprocating saw
WO2013108556A1 (en) Electric tool
US9962779B2 (en) Counterweight device
JP5017187B2 (en) Power tool
EP2318169B1 (en) Chainless drive system for a band saw
CN100396457C (en) Hand-held electric planer
CN2910442Y (en) Multipurpose swing saw
CN102079061B (en) Power tool
US10328560B2 (en) Multi-mode drive mechanisms and tools incorporating the same
JP5017186B2 (en) Power tool
JP7185472B2 (en) Electric tool
WO2007093959A1 (en) Power tool
JP2014205222A (en) Speed-change attachment for power tool
CN112757231A (en) Hammer drill
KR20110104716A (en) Power transmission structure of metal cutters
JPH0116632B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848488

Country of ref document: EP

Kind code of ref document: A1