WO2012081567A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012081567A1
WO2012081567A1 PCT/JP2011/078759 JP2011078759W WO2012081567A1 WO 2012081567 A1 WO2012081567 A1 WO 2012081567A1 JP 2011078759 W JP2011078759 W JP 2011078759W WO 2012081567 A1 WO2012081567 A1 WO 2012081567A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
crystal layer
layer
guide plate
Prior art date
Application number
PCT/JP2011/078759
Other languages
French (fr)
Japanese (ja)
Inventor
柴田 諭
豪 鎌田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012081567A1 publication Critical patent/WO2012081567A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources

Definitions

  • the present invention relates to a liquid crystal device.
  • This application claims priority based on Japanese Patent Application No. 2010-279737 filed in Japan on December 15, 2010, the contents of which are incorporated herein by reference.
  • a liquid crystal device described in Patent Document 1 is known as an edge light type liquid crystal device in which a light source is disposed on an end face of a light guide plate and light emitted from the light source is spread over the entire light guide plate to form a surface light source.
  • the liquid crystal device of Patent Document 1 includes a plurality of light guide plates separated from each other and a plurality of light sources that make light incident on the light guide plates, and partially drives the light sources for each light guide plate.
  • the liquid crystal device of Patent Document 1 is a method of spreading light from the end face of the light guide plate to the entire surface of the light guide plate, light cannot be emitted only from a specific region of the light guide plate. Therefore, area active drive that controls the amount of emitted light according to the brightness of the image cannot be performed.
  • An object of the present invention is to provide an edge light type liquid crystal device capable of emitting light only from a specific region of a light guide plate.
  • a liquid crystal device includes a light guide plate having a light incident surface on an end surface, a light source that causes light to enter the light incident surface of the light guide plate, and a light diffusing plate disposed to face the light guide plate. And a liquid crystal layer disposed between the light guide plate and the light diffusing plate, and an electric field is generated inside the liquid crystal layer to propagate through the light guide plate and from the light guide plate to the liquid crystal layer.
  • an optical layer that reflects the first polarized light and transmits the second polarized light different from the first polarized light is interposed between the liquid crystal layer and the light diffusion plate.
  • the pair of electrodes are propagated through the inside of the light guide plate and change the birefringence of the liquid crystal layer of the first polarized light that is obliquely incident on the liquid crystal layer from the light guide plate.
  • the polarization state of the first polarized light traveling obliquely in the liquid crystal layer may be changed.
  • a polarizing layer that transmits the first polarized light may be provided on an optical path of the light between the light guide plate and the light source.
  • the liquid crystal layer propagates through the light guide plate and totally reflects the second polarized light incident on the liquid crystal layer obliquely from the light guide plate.
  • Polarized light that is reflected by the liquid crystal layer on the end surface different from the light incident surface of the light guide plate, and converts the second polarized light that has propagated through the light guide plate into the first polarized light and reflects the light into the light guide plate.
  • a conversion layer may be provided.
  • a polarizing layer that transmits the second polarized light transmitted through the optical layer may be provided between the light diffusion plate and the optical layer.
  • the pair of electrodes propagates through the light guide plate and is refracted from the liquid crystal layer of the first polarization that is obliquely incident on the liquid crystal layer from the light guide plate.
  • the first polarized light is transmitted through the liquid crystal layer and emitted from the light diffusing plate, and the first polarized light is totally reflected by the liquid crystal layer and propagates inside the light guide plate. You may switch from the state which does not radiate
  • the liquid crystal layer propagates through the light guide plate and is incident obliquely on the liquid crystal layer, and totally reflects the second polarized light different from the first polarized light. Then, the second polarized light that is totally reflected by the liquid crystal layer and propagates through the inside of the light guide plate is converted into the first polarized light on the end surface different from the light incident surface of the light guide plate, and is converted into the first light guide plate.
  • a reflective polarization conversion layer may be provided.
  • the light source includes a plurality of light emitting elements that emit light of different colors, and the plurality of light emitting elements sequentially emit light at different timings.
  • the electrode may generate an electric field in the liquid crystal layer in accordance with a gradation of an image of a color emitted from the light emitting element in accordance with a timing at which the plurality of light emitting elements emit light.
  • the pair of electrodes may generate an electric field in a layer thickness direction of the liquid crystal layer.
  • the liquid crystal layer may exhibit an isotropic phase in a state where no electric field is applied to the liquid crystal layer without generating an electric field.
  • the liquid crystal layer includes a direction in which the light is incident on a light incident surface of the light guide plate, and a normal direction of a surface of the light guide plate facing the light diffusion plate.
  • the orientation state may change in a plane including
  • an edge light type liquid crystal device capable of emitting light only from a specific region of the light guide plate.
  • FIG. 1 shows the electric field application state which generated the electric field inside the liquid crystal layer in the 1st modification of the backlight unit of 2nd Embodiment.
  • It is a disassembled perspective view of the liquid crystal display device of 3rd Embodiment. It is sectional drawing parallel to YZ plane of a liquid crystal display device. It is a disassembled perspective view of the liquid crystal display device of 4th Embodiment. It is sectional drawing parallel to YZ plane of a liquid crystal display device. It is sectional drawing parallel to YZ plane of the liquid crystal display device of 5th Embodiment. It is sectional drawing perpendicular
  • FIG. 1 is an exploded perspective view of the liquid crystal display device 1 of the first embodiment.
  • the extending direction of the gate line 21 is the X direction
  • the extending direction of the data line 22 is the Y direction
  • the direction perpendicular to the X direction and the Y direction is the Z direction. Will be explained.
  • the liquid crystal display device 1 includes a liquid crystal panel 2 and a backlight unit (liquid crystal device) 3.
  • the liquid crystal panel 2 includes a first substrate 10, a second substrate 11, a first polarizing plate 12, and a second polarizing plate 13.
  • the second substrate 11 is disposed to face the first substrate 10.
  • the first polarizing plate 12 is provided on the outer surface side of the first substrate 10.
  • the second polarizing plate 13 is provided on the outer surface side of the second substrate 11.
  • a rectangular frame-shaped sealing material 19 is provided on the peripheral edge of the facing region where the first substrate 10 and the second substrate 11 face each other. In a space surrounded by the first substrate 10, the second substrate 11, and the sealing material 19, liquid crystal (not shown) is sealed.
  • the display area 2A is provided inside the sealing material 19.
  • a plurality of gate lines 21 extending in the X direction and a plurality of data lines 22 extending in the Y direction are provided on the first substrate 10 in a lattice shape in plan view.
  • a display element corresponding to any one of red, green, and blue is provided at the intersection between the gate line 21 and the data line 22.
  • a backlight unit 3 is provided on the back side of the liquid crystal panel 2.
  • the backlight unit 3 includes a plurality of light sources 5 and a light guide 4.
  • the light guide 4 spreads light incident from the plurality of light sources 5 in a planar shape and emits the light toward the liquid crystal panel 2.
  • the light guide 4 is a light guide panel including a first substrate 41 and a second substrate 42.
  • the second substrate 42 is disposed to face the first substrate 41.
  • the first substrate 41 is a light guide plate having a light incident surface on the end surface 41a.
  • a rectangular frame-shaped sealing material 49 is provided at the peripheral edge of the facing region where the first substrate 41 and the second substrate 42 face each other.
  • a liquid crystal layer is sealed in a space surrounded by the first substrate 41, the second substrate 42, and the sealing material 49.
  • a plurality of stripe-shaped switching areas 401, 402, 403, 404, and 405 that can be switched between a lighting state (ON state) and a non-lighting state (OFF state) are provided inside the sealing material 49.
  • a lighting state ON state
  • OFF state non-lighting state
  • the plurality of switching areas 401 to 405 are arranged adjacent to each other in the Y direction.
  • the light source 5 is, for example, a light emitting diode (LED) that emits white light.
  • the light source 5 may be anything that can be used as a point light source, and may be an organic EL (ElectroLuminescence) element.
  • a plurality of light sources 5 are arranged at positions facing the light incident surface 41 a of the first substrate 41. Although five light sources 5 are provided in FIG. 1, the number of light sources 5 is not limited to this.
  • the plurality of light sources 5 are arranged in the X direction with the light emitting surface opposed to the light incident surface 41 a of the first substrate 41.
  • FIG. 2 is a cross-sectional view of the backlight unit 3 parallel to the YZ plane.
  • the light guide 4 includes a first substrate 41, a second substrate 42, a liquid crystal layer 45, an optical layer 46, a polarizing layer 47, and a light diffusion plate 48.
  • the second substrate 42 is disposed to face the first substrate 41.
  • the liquid crystal layer 45 is sandwiched between the first substrate 41 and the second substrate 42.
  • the optical layer 46 is provided between the second substrate 42 and the liquid crystal layer 45.
  • the polarizing layer 47 is provided on the outer surface side of the second substrate 42 (the side opposite to the liquid crystal layer 45).
  • the light diffusion plate 48 is provided on the outer surface side of the polarizing layer 47.
  • the first substrate 41 and the second substrate 42 are transparent plate materials made of polystyrene or glass.
  • An end surface of the first substrate 41 facing the light source 5 is a light incident surface 41 a on which light emitted from the light source 5 is incident.
  • the light incident surface 41a is inclined with respect to the XY plane.
  • the inclination angle of the light incident surface 41 a with respect to the XY plane is an angle at which light emitted from the light source 5 in a direction substantially orthogonal to the light incident surface 41 a is totally reflected inside the first substrate 41.
  • the light source 5 is preferably a directional light source. In order to satisfy the total reflection condition, it is preferable that the angle range of the light incident on the first substrate 41 is narrowed to about 5 degrees or less.
  • a reflection layer 61 is provided that reflects the light incident on the end face toward the inside of the first substrate 41.
  • the first substrate 41 is provided with a plurality of first electrodes 43.
  • the first electrode 43 is made of a transparent conductive film such as ITO (Indium Tin Oxide).
  • a second electrode 44 is provided on the second substrate 42 so as to face the plurality of first electrodes 43.
  • the second electrode 44 is made of a transparent conductive film such as ITO.
  • the first electrode 43 is a striped electrode extending in the X direction.
  • the second electrode 44 is a common electrode common to the plurality of first electrodes 43.
  • a region in which the orientation of the liquid crystal layer 45 is controlled by the first electrode 43 and the second electrode 44 (a region where the first electrode 43 and the second electrode 44 face each other) is one switching region.
  • five first electrodes 43 are provided in the Y direction. Accordingly, five switching areas 401 to 405 are provided in the Y direction.
  • a polarizing layer 60 that transmits the first polarized light Lp is provided on the light path between the light source 5 and the light incident surface 41a.
  • the polarizing layer 60 is, for example, a polarizing plate having a transmission axis parallel to the intersecting line where the YZ plane and the light incident surface 41a intersect.
  • the first polarized light Lp is light that enters the optical layer 46 as P-polarized light.
  • the polarizing layer 60 is installed on the light incident surface 41a, and the light emitting surface of the light source 5 and the light incident surface 41a of the first substrate 41 face each other with the polarizing layer 60 interposed therebetween.
  • the second polarized light Ls incident as S-polarized light on the interface between the second electrode 44 and the optical layer 46 is absorbed or reflected by the polarizing layer 60. Only the first polarized light Lp that enters the interface between the second electrode 44 and the optical layer 46 as P-polarized light enters the inside of the first substrate 41.
  • the liquid crystal layer 45 includes a liquid crystal having a positive dielectric anisotropy indicating a blue phase.
  • the blue phase is a liquid crystal phase in which a plurality of spiral structures having different spiral axes are in a three-dimensional periodic structure.
  • the blue phase itself is optically isotropic and rearranges into a nematic phase when a voltage is applied.
  • the alignment of the liquid crystal layer 45 is controlled by an electric field generated between the first electrode 43 and the second electrode 44.
  • the blue phase liquid crystal layer 45 exhibits a Kerr effect (Kerr effect).
  • the refractive index of the liquid crystal layer 45 is proportional to the square of the electric field strength.
  • the response time of the blue phase liquid crystal is about 10 microseconds, which is much shorter than the response time of normal nematic liquid crystal (10 milliseconds).
  • the refractive index of the liquid crystal layer 45 in the state where no electric field is applied is substantially equal to the refractive index of the first substrate 41, the second substrate 42, the first electrode 43, and the second electrode 44. Therefore, light incident from the light incident surface 41 a of the first substrate 41 passes through the first electrode 43, the liquid crystal layer 45, and the second electrode 44 and reaches the optical layer 46.
  • the optical layer 46 is an optical anisotropic body having a different refractive index depending on the polarization state of incident light.
  • the optical layer 46 has a relatively small refractive index with respect to the first polarized light Lp and a relatively large refractive index with respect to the second polarized light Ls.
  • the refractive index of the optical layer 46 with respect to the first polarized light Lp is smaller than the refractive index of the second electrode 44. Therefore, the first polarized light Lp incident on the optical layer 46 from the second electrode 44 is totally reflected on the surface of the optical layer 46.
  • the refractive index of the optical layer 46 with respect to the second polarized light Ls is equal to or larger than the refractive index of the second electrode 44. Therefore, the second polarized light Ls incident on the optical layer 46 from the second electrode 44 passes through the optical layer 46 and enters the second substrate 42.
  • the liquid crystal disposed between the first electrode 43 and the second electrode 44 is in a special alignment state called a blue phase. Therefore, the liquid crystal layer 45 has an optical isotropic phase having no optical anisotropy.
  • the first polarized light Lp incident on the liquid crystal layer 45 is incident on the optical layer 46 without changing the polarization state when no electric field is applied. Therefore, the first polarized light Lp is reflected on the surface of the optical layer 46 and propagates in the light guide 4 in the Y direction. In a region where no voltage is applied between the first electrode 43 and the second electrode 44, no light is emitted to the outside. Therefore, it becomes a non-lighting state (OFF state).
  • the liquid crystal disposed between the first electrode 43 and the second electrode 44 is generally aligned in the Z direction. Therefore, the liquid crystal layer 45 becomes an optically anisotropic phase having optical anisotropy. Since the liquid crystal layer 45 at the time of applying an electric field has birefringence, the first polarized light Lp incident on the liquid crystal layer 45 is elliptically polarized in the liquid crystal layer 45 or the second polarized light orthogonal to the first polarized light Lp. It is converted into Ls (linearly polarized light incident on the optical layer 46 as S-polarized light). Therefore, a part of the first polarized light Lp whose polarization state has been converted by the liquid crystal layer 45 passes through the optical layer 46 and enters the second substrate 42, and reaches the polarizing layer 47.
  • the polarizing layer 47 is a polarizing plate having a transmission axis parallel to the X direction. Therefore, the second polarized light Ls that has passed through the optical layer 46 passes through the polarizing layer 47, is diffused by the light diffusion plate 48, and is emitted to the outside.
  • the surface of the light diffusing plate 48 that faces the liquid crystal panel 2 is a light emitting surface 4 a from which light propagated through the light guide 4 is emitted. In a region where a voltage is applied between the first electrode 43 and the second electrode 44, light is emitted to the outside. Therefore, it will be in a lighting state (ON state).
  • FIG. 2 shows a case where the switching regions 401 and 403 to 405 are in an isotropic phase state (when no electric field is applied: OFF), and the switching region 402 is in an anisotropic phase state (when an electric field is applied: ON). Therefore, the light propagated inside the light guide 4 is selectively emitted from the switching region 402.
  • FIG. 3 is a plan view of the light guide 4 viewed from the Z direction.
  • a plurality of light sources shown in FIG. 1 are installed on one end side of the light guide 4 in the Y direction along the end surface (light incident surface) of the first substrate 41. Light emitted from the light source propagates in the light guide 4 in the Y direction, so that a plurality of stripe-shaped light propagation regions 501, 502, 503, 504, and 505 that are long in the Y direction are formed.
  • the light guide 4 is provided with a plurality of first electrodes 43 and second electrodes 44.
  • the first electrodes 43 are arranged in the Y direction.
  • the second electrode 44 faces the plurality of first electrodes 43.
  • the first electrode 43 is a striped electrode extending in the X direction.
  • a facing region where one first electrode 43 and second electrode 44 face each other is one switching region 401 to 405.
  • a region facing one propagation region 501 to 505 is one sub illumination region A.
  • the switching areas 401 to 405 and the sub illumination area A are illumination areas obtained by dividing the light exit surface of the light guide 4.
  • a plurality of sub illumination areas A are provided in a matrix in the X and Y directions corresponding to the intersections of the plurality of first electrodes 43 and the plurality of propagation areas 501 to 505. Yes.
  • region A and a non-lighting state from the light guide panel drive circuit 36 is. Supplied.
  • the first electrodes of the sub illumination areas A adjacent in the X direction are connected to each other. For this reason, the orientations of the liquid crystal layers of the plurality of sub illumination areas A adjacent in the X direction are collectively changed.
  • a plurality of sub illumination areas A adjacent in the X direction form one switching area capable of simultaneously switching between the isotropic phase state and the anisotropic phase state.
  • the light guide 4 is provided with a plurality of switching regions 401 to 411 extending in the X direction and adjacent to each other in the Y direction.
  • FIG. 4 is a cross-sectional view perpendicular to the light exit surface 5 a of the light source 5.
  • the light source 5 includes a light emitting element 71 and a reflection mirror 72.
  • the reflection mirror 72 reflects the light emitted from the light emitting element 71.
  • the light emitting element 71 is a solid light source (LED chip) formed on the base material 70, for example.
  • the light emitting element 71 is not limited to an LED as long as it can be used as a point light source.
  • the reflection mirror 72 has, for example, the shape of a rotating paraboloid, and the light emitting element 71 is disposed at the focal point of the paraboloid.
  • the light emitting element 71 is integrated with the reflecting mirror 72 by the molding resin 73 in a state where the light emitting element 71 is positioned at the focal position of the reflecting mirror 72.
  • the light source 5 collimates the light emitted from the light emitting element 71 by the reflection mirror 72. For this reason, light having strong directivity is emitted in the direction of the optical axis of the reflection mirror 72 (the central axis of the paraboloid of revolution).
  • the light emission surface 5 a of the light source 5 is a surface perpendicular to the optical axis of the reflection mirror 72.
  • the light source 5 is disposed so that the light emitting surface 5a faces the light incident surface 41a of the first substrate 41 shown in FIG. Therefore, the light source 5 emits light having strong directivity in a direction perpendicular to the light incident surface 41 a of the first substrate 41.
  • FIG. 8A and 8B are schematic diagrams for explaining the operation of the backlight unit 3.
  • FIG. 8A is a diagram illustrating a state in which no electric field is applied in the liquid crystal layer 45 without applying an electric field.
  • FIG. 8B is a diagram illustrating an electric field application state in which an electric field is generated inside the liquid crystal layer 45.
  • the shape of the liquid crystal 45a as a refractive index ellipsoid is indicated by a circle or an ellipse.
  • a circle indicates an isotropic phase state
  • an ellipse indicates an anisotropic phase state.
  • FIG. 8A and FIG. 8B only components necessary for the description are illustrated.
  • the liquid crystal layer 45 is in an optically isotropic phase when no electric field is applied.
  • the light including the first polarized light Lp and the second polarized light Ls emitted from the light source is absorbed or reflected by the polarizing layer 60, and only the first polarized light Lp enters the first substrate 41. Since the liquid crystal layer 45 has an isotropic phase, the polarization state of the first polarized light Lp propagating through the first substrate 41 and obliquely incident on the liquid crystal layer 45 from the first substrate 41 is changed by the liquid crystal layer 45. Without being incident on the optical layer 46.
  • the optical layer 46 Since the optical layer 46 has a small refractive index with respect to the first polarized light Lp, the first polarized light Lp incident on the optical layer 46 is totally reflected on the surface of the optical layer 46, and the inside of the liquid crystal layer 45 and the first substrate 41. To propagate. The first polarized light Lp is reflected by the optical layer 46 and does not exit from the light diffusion plate 48 to the outside. Therefore, it will be in a non-lighting state.
  • the liquid crystal layer 45 in the electric field application state, the liquid crystal layer 45 is in an anisotropic phase having optical anisotropy.
  • the polarization state of the first polarized light Lp propagating through the first substrate 41 and obliquely incident on the liquid crystal layer 45 from the first substrate 41 is changed by the liquid crystal layer 45. Since the first polarized light Lp travels in a direction substantially perpendicular to the layer thickness direction of the liquid crystal layer 45, it passes through the liquid crystal layer 45 as compared with a normal configuration in which light travels in the layer thickness direction of the liquid crystal layer. The distance is long. Therefore, the first polarized light Lp is efficiently converted into the second polarized light Ls by the liquid crystal layer 45.
  • the first polarized light Lp transmitted through the liquid crystal layer 45 and converted into the second polarized light Ls is incident on the optical layer 46. Since the optical layer 46 exhibits a large refractive index with respect to the second polarized light Ls, the second polarized light Ls incident on the optical layer 46 passes through the optical layer 46 and enters the polarizing layer 47. Since the transmission axis of the polarizing layer 47 is parallel to the second polarized light Ls, the second polarized light Ls transmitted through the optical layer 46 reaches the light diffusing plate 48 without being absorbed by the polarizing layer 47, and the light diffusing plate 48. Is diffused and emitted to the outside. Therefore, it will be in a lighting state.
  • the light diffusion plate 48 diffuses the second polarized light Ls that travels obliquely inside the liquid crystal layer 45 and enters the light diffusion plate 48 obliquely in the normal direction (Z direction) of the light exit surface of the light diffusion plate 48. Let Thereby, the light of a Z direction can be supplied with respect to the liquid crystal panel 2 (refer FIG. 1) facing the light guide 4, and the contrast of the liquid crystal panel 2 can be improved.
  • FIG. 5 is a block diagram showing an electrical configuration of the liquid crystal display device 1.
  • the liquid crystal display device 1 includes a liquid crystal panel 2, a backlight unit 3, a video signal control circuit 30, a gradation control circuit 31, a gate line driving circuit 32, a data line driving circuit 33, and a light source control circuit 34.
  • a thin film transistor (TFT) 23 is provided corresponding to each intersection of the gate line 21 and the data line 22.
  • the thin film transistor 23 has a gate connected to the gate line 21, a source connected to the data line 22, and a drain connected to the pixel electrode 24.
  • a counter electrode 26 is provided at a position on the second substrate of the liquid crystal panel 2 facing the pixel electrode 24.
  • a counter electrode potential Vcom is supplied to the counter electrode 26 by a power supply circuit (not shown).
  • a liquid crystal layer 25 is sandwiched between the pixel electrode 24 and the counter electrode 26.
  • a region where the orientation of the liquid crystal layer 25 is controlled by one pixel electrode 24 and the counter electrode 26 is a display element PX which is a minimum unit of display.
  • a plurality of stripe-shaped propagation areas 501 to 505 and a plurality of stripe-shaped switching areas 401 to 405 are arranged in a lattice pattern.
  • the propagation areas 501 to 505 are formed inside the light guide 4.
  • the switching areas 401 to 405 switch between a lighting state and a non-lighting state of light propagating inside the light guide 4.
  • the propagation areas 501 to 505 are areas in which light propagates inside the light guide 4.
  • each switching region 401 to 405 a first electrode 43 for performing switching control is formed.
  • a region where the propagation regions 501 to 505 overlap with the switching regions 401 to 405 is a sub illumination region A.
  • a plurality of sub illumination areas A are provided in a matrix along the X direction and the Y direction.
  • the number of light sources 5 is five and the number of switching areas 401 to 405 is five.
  • the number of light sources and switching areas is not limited to this.
  • the video signal control circuit 30 generates an image control signal and a light source control signal based on a video signal input from the outside.
  • the light source control signal is a signal for instructing the amount of emitted light for each light source 5 and emitting the light at a predetermined timing.
  • the amount of the emitted light is set according to the brightness of the image of the display portion of the liquid crystal panel 2 corresponding to the sub illumination area A (the gradation value of the video signal input from the outside). For example, in a portion where a dark image is displayed, the amount of light emitted from the sub illumination area A (light emitted from the light source 5 corresponding to the sub illumination area A) is reduced. On the other hand, in a portion where a bright image is displayed, the amount of light emitted from the sub illumination area A (light emitted from the light source 5 corresponding to the sub illumination area A) is increased. Thereby, compared with the structure which always irradiates the light of the maximum light quantity to the whole display area of the liquid crystal panel 2, power consumption can be reduced and contrast can also be improved.
  • the image control signal is a signal that determines what gradation is to be given to each display element PX of the liquid crystal panel 2.
  • the amount of light emitted from the light guide 4 is controlled for each sub illumination area A. Therefore, the gradation value actually obtained for each display element PX corresponds to the amount of light emitted from the sub-illumination area A emitted to each display element PX with respect to the gradation signal obtained from the video signal. Correction (extension processing) is added.
  • the gradation control circuit 31 generates a horizontal drive signal and a vertical drive signal based on the image control signal.
  • the gate line driving circuit 32 sequentially selects the plurality of gate lines 21 of the liquid crystal panel 2 in the order of S1, S2, S3,..., Sm within one vertical scanning period based on the horizontal driving signal.
  • the data line drive circuit 33 Based on the horizontal drive signal, the data line drive circuit 33 sequentially outputs the grayscale signals in the order of D1, D2, D3,..., Dn to the plurality of data lines 22 of the liquid crystal panel 2 within one horizontal scanning period. Supply. As a result, an image for one frame is displayed in the display area 2 ⁇ / b> A of the liquid crystal panel 2.
  • the light source control circuit 34 generates a light source drive signal and a light guide panel drive signal based on the light source control signal.
  • the light source drive signal is a signal indicating the brightness, lighting time, and emission timing of the emitted light that each light source 5 should emit. The luminance depends on the magnitude of the drive current that drives the light source 5. The amount of light emitted from the light source 5 is controlled by controlling the lighting time of the light source 5 by pulse width modulation (PWM) when the luminance is constant.
  • PWM pulse width modulation
  • the light guide panel drive signal is a signal indicating the timing when each of the switching regions 401 to 405 is in an anisotropic phase state.
  • the light guide panel drive circuit 36 individually selects the plurality of first electrodes 43 of the light guide 4 within one vertical scanning period based on the light guide panel drive signal, and turns on / off the switching areas 401 to 405. Switch between and. Based on the light source drive signal, the light source drive circuit 35 emits light with the brightness and lighting time designated from each light source 5 within one horizontal scanning period. Thereby, the light of the light quantity controlled by the light source drive circuit 35 is emitted from the plurality of sub illumination areas A toward the liquid crystal panel 2.
  • FIG. 6 is a plan view of a plurality of sub illumination areas A 11 to A 55 viewed from the Z direction.
  • the light guide 4 is provided with a plurality of sub illumination areas A 11 to A 55 that can independently control the amount of light emitted toward the liquid crystal panel 2 (see FIG. 1).
  • the sub illumination areas A 11 to A 55 are formed by arranging a plurality of switching areas 401 to 405 and a plurality of propagation areas 501 to 505 in a grid pattern.
  • the amount of light emitted from the sub illumination areas A 11 to A 55 is controlled by the luminance and lighting time of the light source 5 (see FIG. 1) that makes the light incident along the propagation paths 501 to 505.
  • FIGS. 7 (a) to 7 (f) are diagrams showing an example of a method for controlling the light sources 51 to 55 and the switching areas 401 to 405.
  • FIG. FIGS. 7A to 7E show the flow of processing in time order. The left part of FIGS. 7A to 7E shows the selection position of the switching area.
  • FIG. 7 (f) is a diagram showing the light amount distribution of the emitted light obtained by the processes of FIGS. 7 (a) to 7 (e).
  • 7A to 7F the reference numerals of the plurality of light sources 5 shown in FIG. 1 are indicated by different reference numerals (51 to 55) for convenience.
  • the switching area 401 in the first row is switched to the anisotropic phase state.
  • a predetermined amount of light is emitted from each of the light sources 51 to 55 within a period from time t0 to t1.
  • the light amounts of the light source 51 and the light source 52 are I1
  • the light amount of the light source 53 is I2
  • the light amounts of the light source 54 and the light source 55 are zero.
  • the switching area 402 in the second row is switched to the anisotropic phase state in the period from time t1 to t2.
  • a predetermined amount of light is emitted from each of the light sources 51 to 55 within a period from time t1 to t2.
  • the light amounts of the light source 51 and the light source 53 are I1
  • the light amount of the light source 52 is I3
  • the light amounts of the light source 54 and the light source 55 are zero.
  • the switching region 403 in the third row is switched to the anisotropic phase state in the period from time t2 to t3.
  • a predetermined amount of light is emitted from each of the light sources 51 to 55 within a period from time t2 to t3.
  • the light amounts of the light source 51, the light source 53, and the light source 55 are I2, and the light amounts of the light source 52 and the light source 54 are I1.
  • the switching area 404 in the fourth row is switched to the anisotropic phase state.
  • a predetermined amount of light is emitted from each of the light sources 51 to 55 within a period from time t3 to t4.
  • the light amount of the light source 54 is I2
  • the light amount of the light source 55 is I1
  • the light amounts of the light source 51, the light source 52, and the light source 53 are zero.
  • the switching area 405 in the fifth row is switched to the anisotropic phase state in the period from time t4 to t5.
  • a predetermined amount of light is emitted from each of the light sources 51 to 55 within a period from time t4 to t5.
  • the light amounts of the light source 51, the light source 52, the light source 53, the light source 54, and the light source 55 are all zero.
  • FIG. 7 (f) is a diagram showing a light amount distribution of light emitted from the light guide 6 during a period from time t1 to t5. This light quantity distribution is controlled based on the brightness distribution of the image for one frame.
  • the upper left and lower right light amounts of the light guide 4 are large, and the upper right and lower left light amounts of the light guide 6 are small. Therefore, the display image has a light amount distribution suitable for displaying an image with bright upper left and lower right of the screen and dark upper right and lower left of the screen.
  • the amount of light emitted from each of the sub illumination areas A 11 to A 55 is controlled independently according to the brightness of the display image corresponding to each sub illumination area.
  • the video signal supplied to each display element of the liquid crystal panel 2 is expanded according to the amount of light emitted from the sub illumination area.
  • the liquid crystal display device 1 can display images with low power consumption and high contrast by area active control that combines dimming control and expansion control. In the light control, the amount of light emitted from each of the sub illumination areas A 11 to A 55 is adjusted. In the expansion control, the video signal of each display element of the liquid crystal panel 2 is expanded.
  • the birefringence of light that propagates in the Y direction inside the first substrate 41 and enters the liquid crystal layer 45 obliquely from the first substrate 41 is changed.
  • the amount of light that travels obliquely inside the liquid crystal layer 45 and is diffused by the light diffusion plate 48 and emitted to the outside is controlled. Therefore, high-quality image display by area active control is possible while using the thin backlight unit 3 of the edge light system.
  • the traveling direction is substantially parallel to the Y direction. .
  • the light travels in a direction substantially perpendicular to the thickness direction of the liquid crystal layer 45. Therefore, even when the distance of light passing through the liquid crystal layer 45 is long and the liquid crystal layer 45 having a small thickness is used, the polarization state of the light can be greatly changed.
  • the thickness of the liquid crystal layer 45 By reducing the thickness of the liquid crystal layer 45, the magnitude of the voltage applied between the first electrode 43 and the second electrode 44 can be reduced.
  • the blue phase liquid crystal layer 45 is known to have a high driving voltage. However, by reducing the thickness of the liquid crystal layer 45, the driving voltage can be reduced and the power consumption can be reduced.
  • FIG. 9 is a first modification of the backlight unit 3 of the first embodiment.
  • FIG. 10 is a second modification of the backlight unit 3 of the first embodiment.
  • the polarizing layer 60 provided on the light incident surface of the first substrate 41 is omitted.
  • the first substrate 41 is arranged on a second end surface different from the first end surface that is the light incident surface of the first substrate 41 (for example, an end surface provided on a side opposite to the side on which the light incident surface is provided).
  • a polarization conversion layer 62 is provided for converting the second polarized light Ls propagating through the first polarized light Lp into the first polarized light Lp.
  • the polarization conversion layer 62 includes, for example, a ⁇ / 4 layer 62a disposed on the second end face, and a reflective layer 62b that reflects the second polarized light Ls that has passed through the ⁇ / 4 layer 62a and has become circularly polarized light. Prepare.
  • the light including the first polarized light Lp and the second polarized light Ls emitted from the light source enters the first substrate 41 from the light incident surface of the first substrate 41.
  • the refractive index of the liquid crystal layer 45 is a refractive index that transmits the first polarized light Lp and totally reflects the second polarized light Ls.
  • the average refractive index is nD
  • the liquid crystal layer 45 is in an anisotropic phase state (electric field applied state)
  • the ordinary light refractive index is no
  • the refractive index is ne
  • the refractive index of the first substrate 41 or the first electrode that forms an interface with the liquid crystal layer 45 is nW.
  • the second polarized light Ls that has propagated through the first substrate 41 is converted into the first polarized light Lp by the polarization conversion layer 62, and is externally transmitted from the sub-illumination region in the anisotropic phase state (electric field applied state) through the light diffusion plate 48.
  • the light component absorbed by the polarizing layer 60 is not generated, so that the light emitted from the light source can be used efficiently.
  • FIG. 11 is an exploded perspective view of the liquid crystal display device 6 of the second embodiment.
  • the same reference numerals are given to components common to the liquid crystal display device 1 of the first embodiment, and detailed description thereof will be omitted.
  • the liquid crystal display device 6 includes a liquid crystal panel 2 and a backlight unit (liquid crystal device) 7.
  • the backlight unit 7 includes a plurality of light sources 5 and a light guide 8.
  • the light guide 8 spreads light incident from the plurality of light sources 5 in a planar shape and emits the light toward the liquid crystal panel 2.
  • the light guide 8 is a light guide panel including a first substrate 41 and a second substrate 42.
  • the second substrate 42 is disposed to face the first substrate 41.
  • the first substrate 41 is a light guide plate having a light incident surface on the end surface 41a.
  • a rectangular frame-shaped sealing material 49 is provided at the peripheral edge of the facing region where the first substrate 41 and the second substrate 42 face each other, and the space surrounded by the first substrate 41, the second substrate 42, and the sealing material 49.
  • the liquid crystal layer is enclosed in
  • a plurality of stripe-shaped switching areas 401, 402, 403, 404, and 405 that can be switched between a lighting state (ON state) and a non-lighting state (OFF state) are provided inside the sealing material 49.
  • a lighting state ON state
  • OFF state non-lighting state
  • the plurality of switching areas 401 to 405 are arranged adjacent to each other in the Y direction.
  • FIG. 12 is a cross-sectional view of the backlight unit 7 parallel to the YZ plane.
  • the light guide 8 includes a first substrate 41, a second substrate 42, a liquid crystal layer 45, and a light diffusion plate 48.
  • the second substrate 42 is disposed to face the first substrate 41.
  • the liquid crystal layer 45 is sandwiched between the first substrate 41 and the second substrate 42.
  • the light diffusing plate 48 is provided on the outer surface side (the side opposite to the liquid crystal layer 45) of the second substrate 42.
  • the first substrate 41 is provided on a second end surface different from the first end surface that is the light incident surface 41a of the first substrate 41 (for example, an end surface provided on a side opposite to the side on which the light incident surface 41a is provided).
  • a polarization conversion layer 62 that propagates through the substrate and converts the second polarized light Ls incident on the end face thereof into the first polarized light Lp and reflects it toward the inside of the first substrate 41.
  • the first polarized light Lp is polarized light parallel to the YZ plane that propagates through the first substrate 41 and enters the liquid crystal layer 45 from the first substrate 41 as P-polarized light.
  • the second polarized light Ls is polarized light orthogonal to the first polarized light Lp.
  • the polarization conversion layer 62 includes a ⁇ / 4 layer 62a and a reflective layer 62b.
  • the ⁇ / 4 layer 62a is disposed on the second end face.
  • the reflective layer 62b reflects the second polarized light Ls that has passed through the ⁇ / 4 layer 62a and has become circularly polarized light.
  • a polarizing layer is not provided on the light path between the light source 5 and the light incident surface 41a.
  • Light including the first polarized light Lp and the second polarized light Ls emitted from the light source 5 enters the first substrate 41 from the light incident surface 41 a of the first substrate 41.
  • the liquid crystal layer 45 includes a liquid crystal having a positive dielectric anisotropy indicating a blue phase.
  • the refractive index of the liquid crystal layer 45 is a refractive index that transmits the first polarized light Lp and totally reflects the second polarized light Ls.
  • the average refractive index is nD
  • the liquid crystal layer 45 is in an anisotropic phase state (electric field applied state)
  • the ordinary light refractive index is no
  • the relationship of no ⁇ nD ⁇ nW ⁇ ne is established.
  • the first polarized light Lp and the second polarized light Ls incident on the liquid crystal layer 45 are refracted with an average refractive index nD.
  • the average refractive index nD is smaller than the refractive index nW of the first electrode 43
  • the first polarized light Lp and the second polarized light Ls are totally reflected at the interface between the liquid crystal layer 45 and the first electrode 43, and Propagates the interior in the Y direction.
  • no voltage is applied between the first electrode 43 and the second electrode 44, no light is emitted to the outside. Therefore, it becomes a non-lighting state (OFF state).
  • the first polarized light Lp incident on the liquid crystal layer 45 is refracted by the refractive index ne of extraordinary light, and the second polarized light Ls is Refracts at the refractive index no of ordinary light.
  • the refractive index ne of extraordinary light is larger than the refractive index nW of the first electrode 43. Therefore, the first polarized light Lp is transmitted through the interface between the liquid crystal layer 45 and the first electrode 43 and travels obliquely inside the liquid crystal layer 45 to cause the second electrode 44, the second substrate 42, and the light diffusion plate 48 to pass through. To the outside.
  • the refractive index no of ordinary light is smaller than the refractive index nW of the first electrode 43. Therefore, the second polarized light Ls is totally reflected at the interface between the liquid crystal layer 45 and the first electrode 43 and propagates in the first substrate 41 in the Y direction. Then, the light is converted into the first polarized light Lp by the polarization conversion layer 62, passes through the liquid crystal layer 45 in the region to which the electric field is applied, travels obliquely inside the liquid crystal layer 45, and enters the second electrode 44 and the second substrate 42. The light is emitted to the outside through the light diffusion plate 48. In a region where a voltage is applied between the first electrode 43 and the second electrode 44, light is emitted to the outside. Therefore, it will be in a lighting state (ON state).
  • the refractive index of light propagating in the Y direction through the first substrate 41 and incident obliquely on the liquid crystal layer 45 from the first substrate 41 is changed.
  • the amount of light that travels obliquely inside the liquid crystal layer 45 and is diffused by the light diffusion plate 48 and emitted to the outside is controlled. Therefore, high-quality image display by area active control is possible while using the thin backlight unit 7 of the edge light system.
  • the liquid crystal display device 6 since no polarizing layer is provided between the light source 5 and the light incident surface 41a of the first substrate 41, no light component is absorbed by the polarizing layer. Therefore, the light emitted from the light source 5 can be used efficiently.
  • FIG. 13A and 13B are a first modification of the backlight unit 7 of the second embodiment.
  • FIG. 13A is a diagram showing a state in which no electric field is applied in the liquid crystal layer 45 without generating an electric field.
  • FIG. 13B is a diagram showing an electric field application state in which an electric field is generated inside the liquid crystal layer 45.
  • FIG. 13A and FIG. 13B only components necessary for explanation are illustrated.
  • the nematic liquid crystal 46b having positive dielectric anisotropy is used instead of the blue phase liquid crystal layer, and the propagation direction of the first polarization Lp is changed.
  • the alignment state of the liquid crystal 45b is changed in the plane including the same.
  • the liquid crystal layer 45 is a horizontal alignment in which the alignment state when no electric field is applied is aligned in a direction substantially perpendicular to the layer thickness direction of the liquid crystal layer 45, and the alignment state when an electric field is applied is the layer thickness direction of the liquid crystal layer 45. It is a vertical alignment that is aligned substantially in parallel.
  • the liquid crystal 45b has an alignment state in a plane including the direction in which light enters the light incident surface of the first substrate 41 and the normal direction (Z direction) of the surface facing the light diffusion plate 48 of the first substrate 41. Change.
  • the refractive index of ordinary light of the liquid crystal layer 45 is no
  • the refractive index of extraordinary light is ne
  • the refractive index of the first substrate 41 or the first electrode forming an interface with the liquid crystal layer 45 is nW, no ⁇ nW ⁇ ne. A relationship is established.
  • the first polarized light Lp and the second polarized light Ls incident on the liquid crystal layer 45 are refracted at the refractive index no of ordinary light.
  • the refractive index no of ordinary light is smaller than the refractive index nW of the first electrode 43. Therefore, the first polarized light Lp and the second polarized light Ls are totally reflected at the interface between the liquid crystal layer 45 and the first electrode 43 and propagate in the first substrate 41 in the Y direction. In a region where no voltage is applied between the first electrode 43 and the second electrode 44, no light is emitted to the outside. Therefore, it becomes a non-lighting state (OFF state).
  • the first polarized light Lp incident on the liquid crystal layer 45 is refracted with the refractive index ne of extraordinary light
  • the second polarized light Ls is refracted with the refractive index no of ordinary light.
  • the refractive index ne of extraordinary light is larger than the refractive index nW of the first electrode 43. Therefore, the first polarized light Lp is transmitted through the interface between the liquid crystal layer 45 and the first electrode 43 and travels obliquely inside the liquid crystal layer 45 to cause the second electrode 44, the second substrate 42, and the light diffusion plate 48 to pass through. To the outside.
  • the refractive index no of ordinary light is smaller than the refractive index nW of the first electrode 43.
  • the second polarized light Ls is totally reflected at the interface between the liquid crystal layer 45 and the first electrode 43 and propagates in the first substrate 41 in the Y direction. Then, the light is converted into the first polarized light Lp by the polarization conversion layer 62, passes through the liquid crystal layer 45 in the region to which the electric field is applied, travels obliquely inside the liquid crystal layer 45, and enters the second electrode 44 and the second substrate 42. The light is emitted to the outside through the light diffusion plate 48. In a region where a voltage is applied between the first electrode 43 and the second electrode 44, light is emitted to the outside. Therefore, it will be in a lighting state (ON state).
  • the lighting state and the non-lighting state can be controlled by substantially the same action.
  • FIG. 14 is an exploded perspective view of the liquid crystal display device 100 of the third embodiment.
  • the liquid crystal display device 100 includes a first substrate 110, a plurality of light sources 105, a second substrate 111, a polarizing layer 113, and a light diffusing plate 118.
  • the light source 105 makes light incident on the end surface (light incident surface) 110 a of the first substrate 110.
  • the second substrate 111 is disposed to face the first substrate 110.
  • the polarizing layer 113 is provided on the outer surface side of the second substrate 111.
  • the light diffusing plate 118 is provided on the outer surface side of the polarizing layer 113.
  • a rectangular frame-shaped sealing material 119 is provided at the peripheral edge of the facing region where the first substrate 110 and the second substrate 111 face each other. Liquid crystal (not shown) is sealed in a space surrounded by the first substrate 110, the second substrate 111, and the sealing material 119.
  • a display region 100A is provided inside the sealing material 119.
  • a plurality of gate lines 121 extending in the X direction and a plurality of data lines 122 extending in the Y direction are provided on the first substrate 110 in a lattice shape in plan view.
  • a display element corresponding to any one of red, green, and blue is provided at the intersection between the gate line 121 and the data line 122.
  • On the first substrate 110 a plurality of display elements are arranged in a matrix in the X direction and the Y direction, and a display region 100A is formed by the plurality of display elements.
  • the light source 105 is, for example, a light emitting diode (LED) that emits white light.
  • the light source 105 may be anything that can be used as a point light source, and may be an organic EL (Electro-Luminescence) element.
  • a plurality of light sources 105 are arranged at positions facing the light incident surface 110 a of the first substrate 110. In FIG. 14, five light sources 105 are provided, but the number of light sources 105 is not limited to this.
  • the plurality of light sources 105 are arranged in the X direction with the light emitting surface opposed to the light incident surface 110 a of the first substrate 110.
  • the configuration of the light source 105 is the same as that of the light source 5 shown in FIG.
  • FIG. 15 is a cross-sectional view of the liquid crystal display device 100 parallel to the YZ plane.
  • the liquid crystal display device 100 includes a first substrate 110, a light source 105, a second substrate 111, a liquid crystal layer 115, an optical layer 116, a polarizing layer 113, and a light diffusing plate 118.
  • the light source 105 makes light incident on the end surface (light incident surface) 110 a of the first substrate 110.
  • the second substrate 111 is disposed to face the first substrate 110.
  • the liquid crystal layer 115 is sandwiched between the first substrate 110 and the second substrate 111.
  • the optical layer 116 is provided between the second substrate 111 and the liquid crystal layer 115.
  • the polarizing layer 113 is provided on the outer surface side of the second substrate 111 (the side opposite to the liquid crystal layer 115).
  • the light diffusing plate 118 is provided on the outer surface side of the polarizing layer 113.
  • the first substrate 110 and the second substrate 111 are transparent plate materials made of polystyrene or glass.
  • An end surface of the first substrate 110 facing the light source 105 is a light incident surface 110 a on which light emitted from the light source 105 is incident.
  • the first substrate 110 is a light guide plate having a light incident surface on the end surface 110a.
  • the light incident surface 110a is inclined with respect to the XY plane.
  • the inclination angle of the light incident surface 110 a with respect to the XY plane is an angle at which light emitted from the light source 105 in a direction substantially orthogonal to the light incident surface 110 a is totally reflected inside the first substrate 110.
  • the light source 105 is preferably a directional light source. In order to satisfy the total reflection condition, it is preferable that the angle range of the light incident on the first substrate 110 is narrowed to about a half width of 5 degrees or less.
  • the reflective layer 130 is provided on an end surface different from the light incident surface 110a of the first substrate 110 (for example, an end surface provided on a side opposite to the side on which the light incident surface 110a is provided).
  • the reflective layer 130 is light that propagates inside the first substrate 110 and reflects the light incident on the end surface thereof toward the inside of the first substrate 110.
  • the first substrate 110 is provided with a plurality of first electrodes 124 made of a transparent conductive film such as ITO (Indium Tin Oxide).
  • a second electrode 125 made of a transparent conductive film such as ITO is provided on the second substrate 124 so as to face the plurality of first electrodes 124.
  • the first electrode 124 is a pixel electrode provided for each display element.
  • the second electrode 125 is a common electrode (counter electrode) common to the plurality of first electrodes 124.
  • a region in which the orientation of the liquid crystal layer 115 is controlled by one first electrode 124 and one second electrode 125 (a region where the first electrode 124 and the second electrode 125 face each other) is the minimum display corresponding to one display element. It is an area.
  • five first electrodes 124 are provided in the Y direction, but actually, hundreds to thousands of first electrodes 124 are provided.
  • a color filter layer 117 is provided in which a color filter 117a of any one of red, green, and blue is arranged for each display element.
  • an optical layer 116 is provided over the entire display region 100a.
  • a second electrode 125 is provided on the inner surface side of the optical layer 116.
  • a polarizing layer 113 that transmits the second polarized light Ls that has passed through the optical layer 116 is provided on the outer surface side of the second substrate 111.
  • a light diffusing plate 118 that diffuses and emits the second polarized light transmitted through the polarizing layer 113 is provided on the outer surface side of the polarizing layer 113.
  • a polarizing layer 112 that transmits the first polarized light Lp is provided on the light path between the light source 105 and the light incident surface 110a.
  • the polarizing layer 112 is, for example, a polarizing plate having a transmission axis parallel to the intersecting line where the YZ plane and the light incident surface 110a intersect.
  • the first polarized light Lp is light that enters the optical layer 116 as P-polarized light.
  • the polarizing layer 112 is installed on the light incident surface 110a, and the light emitting surface of the light source 105 and the light incident surface 110a of the first substrate 110 face each other with the polarizing layer 112 interposed therebetween.
  • the second polarized light Ls that enters the interface between the second electrode 125 and the optical layer 116 as S-polarized light is absorbed or reflected by the polarizing layer 112. Only the first polarized light Lp that enters the interface between the second electrode 125 and the optical layer 116 as P-polarized light enters the first substrate 110.
  • the liquid crystal layer 115 includes a liquid crystal having a positive dielectric anisotropy indicating a blue phase.
  • the blue phase is a liquid crystal phase in which a plurality of spiral structures having different spiral axes are in a three-dimensional periodic structure.
  • the blue phase itself is optically isotropic, and is transformed to a nematic phase by applying a voltage.
  • the orientation of the liquid crystal layer 115 is controlled by an electric field generated between the first electrode 124 and the second electrode 125.
  • the blue phase liquid crystal layer 115 exhibits a Kerr effect (Kerr effect).
  • the refractive index of the liquid crystal layer 115 is proportional to the square of the electric field strength.
  • the response time of the blue phase liquid crystal is about 10 microseconds, which is much shorter than the response time of normal nematic liquid crystal (10 milliseconds).
  • An electric field is not generated between the first electrode 124 and the second electrode 125, and the refractive index of the liquid crystal layer 115 in an electric field application state in which an electric field in the Z direction is generated between the first electrode 124 and the second electrode 125.
  • the refractive index of the liquid crystal layer 115 in a state where no electric field is applied is substantially equal to the refractive indexes of the first substrate 110, the second substrate 111, the first electrode 124, and the second electrode 125. Therefore, light incident from the light incident surface 110 a of the first substrate 110 passes through the first electrode 124, the liquid crystal layer 115, and the second electrode 125 and reaches the optical layer 116.
  • the optical layer 116 is an optical anisotropic body having a different refractive index depending on the polarization state of incident light.
  • the optical layer 116 has a relatively small refractive index with respect to the first polarized light Lp and a relatively large refractive index with respect to the second polarized light Ls.
  • the refractive index of the optical layer 116 with respect to the first polarized light Lp is smaller than the refractive index of the second electrode 125. Therefore, the first polarized light Lp incident on the optical layer 116 from the second electrode 125 is totally reflected on the surface of the optical layer 116.
  • the refractive index of the optical layer 116 with respect to the second polarized light Ls is equal to or larger than the refractive index of the second electrode 125. Therefore, the second polarized light Ls incident on the optical layer 116 from the second electrode 125 passes through the optical layer 116 and enters the second substrate 111.
  • the liquid crystal disposed between the first electrode 124 and the second electrode 125 is in a special alignment state called a blue phase. Accordingly, the liquid crystal layer 115 has an optical isotropic phase having no optical anisotropy.
  • the first polarized light Lp incident on the liquid crystal layer 115 is incident on the optical layer 116 without changing the polarization state when no electric field is applied. Therefore, the first polarized light Lp is reflected on the surface of the optical layer 116 and propagates in the liquid crystal display device 100 in the Y direction. In a region where no voltage is applied between the first electrode 124 and the second electrode 125, no light is emitted to the outside. Therefore, it becomes a non-lighting state (OFF state).
  • the liquid crystal disposed between the first electrode 124 and the second electrode 125 is generally aligned in the Z direction. Therefore, the liquid crystal layer 115 becomes an optically anisotropic phase having optical anisotropy. Since the liquid crystal layer 115 upon application of an electric field has birefringence, the first polarized light Lp incident on the liquid crystal layer 115 is elliptically polarized light in the liquid crystal layer 115 or second polarized light Ls (optical) orthogonal to the first polarized light Lp. Linearly polarized light that is incident on the layer 116 as S-polarized light). Therefore, a part of the first polarized light Lp whose polarization state is converted by the liquid crystal layer 115 passes through the optical layer 116 and enters the second substrate 111, and reaches the polarizing layer 113.
  • the polarizing layer 113 is a polarizing plate having a transmission axis parallel to the X direction. Therefore, the second polarized light Ls that has passed through the optical layer 116 passes through the polarizing layer 113, is diffused by the light diffusion plate 118, and is emitted to the outside.
  • the surface of the light diffusing plate 118 is a light emitting surface 118 a from which light propagated through the liquid crystal display device 100 is emitted. In a region where a voltage is applied between the first electrode 124 and the second electrode 125, light is emitted to the outside. Therefore, it will be in a lighting state (ON state).
  • the amount of light incident on the first substrate 110 from the light source 105 is set according to the brightness of the image of the display element illuminated by the light source 105 (the gradation value of the video signal input from the outside). For example, in a display element displaying a dark image, the amount of light emitted from the light source 105 is reduced. On the other hand, for a display element displaying a bright image, the amount of light emitted from the light source 105 is increased. Accordingly, the video signal supplied to the display element is expanded according to the amount of light emitted from the light source 105. As a result, power consumption can be reduced and contrast can be improved as compared with a configuration in which the entire display region is always irradiated with the maximum amount of light.
  • the birefringence of the light that propagates in the Y direction inside the first substrate 110 and enters the liquid crystal layer 115 obliquely from the first substrate 110 is changed.
  • the amount of light that travels obliquely inside the liquid crystal layer 115 and is diffused by the light diffusion plate 118 and emitted to the outside is controlled. Therefore, high-quality image display by area active control is possible while realizing a thin liquid crystal display device of the edge light system.
  • the traveling direction is substantially parallel to the Y direction. .
  • the light travels in a direction substantially perpendicular to the thickness direction of the liquid crystal layer 115. Therefore, even when the distance of light passing through the liquid crystal layer 115 is long and the liquid crystal layer 115 having a small thickness is used, the polarization state of the light can be greatly changed.
  • the blue phase liquid crystal layer 115 is known to have a high driving voltage. However, by reducing the thickness of the liquid crystal layer 115, the driving voltage can be reduced and the power consumption can be reduced.
  • FIG. 16 is an exploded perspective view of a liquid crystal display device (liquid crystal device) 101 according to the fourth embodiment.
  • liquid crystal display device 101 the same reference numerals are given to components common to the liquid crystal display device 100 of the third embodiment, and detailed description thereof will be omitted.
  • the liquid crystal display device 101 includes a first substrate 110, a plurality of light sources 105, a second substrate 111, and a light diffusion plate 118.
  • the light source 105 makes light incident on the end surface (light incident surface) 110 a of the first substrate 110.
  • the second substrate 111 is disposed to face the first substrate 110.
  • the light diffusion plate 118 is provided on the outer surface side of the second substrate 111.
  • a rectangular frame-shaped sealing material 119 is provided at the peripheral edge of the facing region where the first substrate 110 and the second substrate 111 face each other. Liquid crystal (not shown) is sealed in a space surrounded by the first substrate 110, the second substrate 111, and the sealing material 119.
  • FIG. 17 is a cross-sectional view of the liquid crystal display device 101 parallel to the YZ plane.
  • the liquid crystal display device 101 includes a first substrate 110, a light source 105, a second substrate 111, a liquid crystal layer 115, and a light diffusion plate 118.
  • the light source 105 makes light incident on the end surface (light incident surface) 110 a of the first substrate 110.
  • the second substrate 111 is disposed to face the first substrate 110.
  • the liquid crystal layer 115 is sandwiched between the first substrate 110 and the second substrate 111.
  • the light diffusion plate 118 is provided on the outer surface side of the second substrate 111.
  • a polarization conversion layer 131 is provided on a second end surface different from the first end surface that is the light incident surface 110a of the first substrate 110 (for example, an end surface provided on a side opposite to the side on which the light incident surface 110a is provided). Is provided.
  • the polarization conversion layer 131 is light that has propagated inside the first substrate 110, and converts the second polarized light Ls incident on the end surface thereof into the first polarized light Lp and reflects it toward the inside of the first substrate 110. .
  • the first polarized light Lp is polarized light parallel to the YZ plane that propagates through the first substrate 110 and enters the liquid crystal layer 115 from the first substrate 110 as P-polarized light.
  • the second polarized light Ls is polarized light orthogonal to the first polarized light Lp.
  • the polarization conversion layer 131 includes a ⁇ / 4 layer 62a and a reflective layer 62b.
  • the ⁇ / 4 layer 62a is disposed on the second end face.
  • the reflective layer 62b reflects the second polarized light Ls that has passed through the ⁇ / 4 layer 62a and has become circularly polarized light.
  • a polarizing layer is not provided on the optical path of light between the light source 105 and the light incident surface 110a.
  • Light including the first polarized light Lp and the second polarized light Ls emitted from the light source 105 enters the first substrate 110 from the light incident surface 110 a of the first substrate 110.
  • the liquid crystal layer 115 includes a liquid crystal having a positive dielectric anisotropy indicating a blue phase.
  • the refractive index of the liquid crystal layer 115 is a refractive index that transmits the first polarized light Lp and totally reflects the second polarized light Ls.
  • the average refractive index when the liquid crystal layer 115 is isotropic (no electric field applied state) is nD
  • the ordinary refractive index when the liquid crystal layer 115 is an anisotropic phase (electric field applied state) is no.
  • the refractive index is ne and the refractive index of the first substrate 110 or the first electrode 124 that forms an interface with the liquid crystal layer 115 is nW, the relationship of no ⁇ nD ⁇ nW ⁇ ne is established.
  • the first polarized light Lp and the second polarized light Ls incident on the liquid crystal layer 115 are refracted with an average refractive index nD.
  • the average refractive index nD is smaller than the refractive index nW of the first electrode 124, the first polarized light Lp and the second polarized light Ls are totally reflected at the interface between the liquid crystal layer 115 and the first electrode 124, and Propagates the interior in the Y direction.
  • no voltage is applied between the first electrode 124 and the second electrode 125, no light is emitted to the outside. Therefore, it becomes a non-lighting state (OFF state).
  • the first polarized light Lp incident on the liquid crystal layer 115 is refracted with the refractive index ne of extraordinary light, and the second polarized light Ls is Refracts at the refractive index no of ordinary light.
  • the refractive index ne of extraordinary light is larger than the refractive index nW of the first electrode 124. Therefore, the first polarized light Lp passes through the interface between the liquid crystal layer 115 and the first electrode 124, travels obliquely inside the liquid crystal layer 115, and passes through the second electrode 125, the second substrate 111, and the light diffusion plate 118. To the outside.
  • the refractive index no of ordinary light is smaller than the refractive index nW of the first electrode 124. Therefore, the second polarized light Ls is totally reflected at the interface between the liquid crystal layer 115 and the first electrode 124 and propagates in the first substrate 110 in the Y direction. Then, the light is converted into the first polarized light Lp by the polarization conversion layer 131, passes through the liquid crystal layer 115 in the region to which the electric field is applied, and travels obliquely through the liquid crystal layer 115 to form the second electrode 125, the second substrate 111, and the like. The light is emitted to the outside through the light diffusion plate 118. In a region where a voltage is applied between the first electrode 124 and the second electrode 125, light is emitted to the outside. Therefore, it will be in a lighting state (ON state).
  • the refractive index of light propagating in the Y direction through the first substrate 110 and obliquely incident on the liquid crystal layer 115 from the first substrate 110 is changed.
  • the amount of light that travels obliquely inside the liquid crystal layer 115 and is diffused by the light diffusion plate 118 and emitted to the outside is controlled. Therefore, high-quality image display by area active control is possible while realizing a thin liquid crystal display device of the edge light system.
  • the liquid crystal display device 101 since no polarizing layer is provided between the light source 105 and the light incident surface 110a of the first substrate 110, no light component is absorbed by the polarizing layer. Therefore, the light emitted from the light source 105 can be used efficiently.
  • FIG. 18 is a cross-sectional view parallel to the YZ plane of the liquid crystal display device (liquid crystal device) 102 of the fifth embodiment.
  • the liquid crystal display device 102 components common to the liquid crystal display device 100 of the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the difference between the liquid crystal display device 102 and the liquid crystal display device 100 of the third embodiment is that the color filter layer is omitted and different light colors (for example, red light, green light, and blue light) are applied to the light source 135.
  • a plurality of light emitting elements that emit light are provided, and light of different colors is sequentially emitted from each light emitting element at different timings.
  • an electric field corresponding to the gradation of the image of the color emitted from the light emitting elements is generated inside the liquid crystal layer 115 in accordance with the timing at which the plurality of light emitting elements emit light.
  • FIG. 19 is a cross-sectional view perpendicular to the light exit surface 135a of the light source 135.
  • the light source 135 includes a light emitting element 71R, a light emitting element 71G, a light emitting element 71B, and a reflection mirror 72.
  • the light emitting element 71R emits red light.
  • the light emitting element 71G emits green light.
  • the light emitting element 71B emits blue light.
  • the reflection mirror 72 reflects the light emitted from the light emitting elements 71R, 71G, 71B.
  • the light emitting elements 71R, 71G, 71B are solid light sources (LED chips) formed on the base material 70, for example.
  • the light emitting elements 71R, 71G, 71B are not limited to LEDs as long as they can be used as point light sources.
  • the reflection mirror 72 has, for example, a paraboloid shape.
  • the light emitting elements 71R, 71G, 71B are disposed at the focal point of the paraboloid.
  • the light emitting elements 71 ⁇ / b> R, 71 ⁇ / b> G, 71 ⁇ / b> B are integrated with the reflection mirror 72 by the mold resin 73 while being positioned at the focal position of the reflection mirror 72.
  • the light source 135 collimates the light emitted from the light emitting elements 71R, 71G, 71B by the reflection mirror 72. For this reason, light having strong directivity is emitted in the direction of the optical axis of the reflection mirror 72 (the central axis of the paraboloid of revolution).
  • the light emission surface 135 a of the light source 135 is a surface perpendicular to the optical axis of the reflection mirror 72.
  • the light source 135 is disposed such that the light emitting surface 135a faces the light incident surface 110a of the first substrate 110 shown in FIG. Accordingly, the light source 135 emits light having strong directivity in a direction perpendicular to the light incident surface 110a of the first substrate 110.
  • Each display element of the liquid crystal display device 102 sequentially displays red, green, and blue images.
  • the red light emitting element 71R, the green light emitting element 71G, and the blue light emitting element 71B provided in the light source 135 sequentially emit light.
  • the amount of light incident on the first substrate 110 from the light source 135 is the brightness of the image of the display element illuminated by the light source 135 (from the outside). It is set according to the gradation value of the input video signal. For example, in a display element displaying a dark image, the amount of light emitted from the light source 135 is reduced.
  • the amount of light emitted from the light source 135 is increased.
  • the video signal supplied to the display element is expanded according to the amount of light emitted from the light source 135.
  • power consumption can be reduced and contrast can be improved as compared with a configuration in which the entire display region is always irradiated with the maximum amount of light.
  • FIG. 20 is a cross-sectional view parallel to the YZ plane of the liquid crystal display device (liquid crystal device) 103 of the sixth embodiment.
  • the same reference numerals are given to components common to the liquid crystal display device 101 of the fourth embodiment, and detailed description thereof will be omitted.
  • the liquid crystal display device 104 is different from the liquid crystal display device 101 of the fourth embodiment in that the color filter layer is omitted and light of different colors (for example, red light, green light, and blue light) is supplied to the light source 135.
  • a plurality of light emitting elements that emit light are provided, and light of different colors is sequentially emitted from each light emitting element at different timings.
  • an electric field corresponding to the gradation of the color image emitted from the light emitting elements is generated inside the liquid crystal layer 115 in accordance with the timing at which the plurality of light emitting elements emit light.
  • the configuration of the light source 135 is the same as the configuration shown in FIG.
  • Each display element of the liquid crystal display device 104 sequentially displays red, green, and blue images.
  • the red light emitting element 71R, the green light emitting element 71G, and the blue light emitting element 71B provided in the light source 135 sequentially emit light.
  • the amount of light incident on the first substrate 110 from the light source 135 is the brightness of the image of the display element illuminated by the light source 135 (from the outside). It is set according to the gradation value of the input video signal. For example, in a display element displaying a dark image, the amount of light emitted from the light source 135 is reduced.
  • the amount of light emitted from the light source 135 is increased.
  • the video signal supplied to the display element is expanded according to the amount of light emitted from the light source 135.
  • power consumption can be reduced and contrast can be improved as compared with a configuration in which the entire display region is always irradiated with the maximum amount of light.
  • the liquid crystal device mainly using the liquid crystal layer of the blue phase has been described, but the alignment mode of the liquid crystal layer is not limited to this.
  • the refractive index or the birefringence of the first polarized light propagating through the light guide plate and incident obliquely (approximately in a direction perpendicular to the thickness direction of the liquid crystal layer) from the light guide plate to the liquid crystal layer is changed by an electric field.
  • Any liquid crystal layer can be used.
  • a liquid crystal layer using an alignment form other than the blue phase such as the liquid crystal layer described in the first modification of the second embodiment, can also be used.
  • the pair of electrodes that generate an electric field inside the liquid crystal layer are arranged separately on the first substrate and the second substrate.
  • This method is a liquid crystal device that generates an electric field in the thickness direction of the liquid crystal layer inside the liquid crystal layer, and is a so-called vertical electric field type liquid crystal device.
  • the electric field is not necessarily generated in the thickness direction of the liquid crystal layer.
  • a so-called lateral electric field type liquid crystal device such as an IPS (In-Plane? Switching) method or an FFS (Fringe? Field? Switching) method may be used.
  • the first polarized light is P-polarized light
  • the refractive index or the birefringence magnitude of the liquid crystal layer where the P-polarized light is refracted is controlled by the pair of electrodes.
  • the first polarization is not limited to P polarization.
  • the polarized light along that direction may be used as the first polarized light.
  • the light guide plate having the light incident surface on the end surface, the light source that makes the light incident on the light incident surface of the light guide plate, the light diffusion plate arranged to face the light guide plate, the light guide plate and the light diffusion plate, A liquid crystal layer disposed between the liquid crystal layer and the refractive index or the birefringence of light incident on the liquid crystal layer obliquely from the light guide plate by generating an electric field inside the liquid crystal layer and propagating through the light guide plate.
  • a backlight unit and a liquid crystal display including a pair of electrodes that control the amount of light that travels obliquely through the liquid crystal layer and is diffused by the light diffusion plate and emitted by changing
  • the apparatus has been described.
  • the use of such a liquid crystal device is not limited to a backlight unit or a liquid crystal display device. It can be widely applied to other uses such as a lighting device used for indoor lighting.
  • a case where a liquid crystal device is used as a lighting device will be described as a seventh embodiment.
  • the liquid crystal display device that displays an image has been described.
  • a liquid crystal dimming device that is a surface light source that emits light to the outside will be described.
  • FIG. 21 is an exploded perspective view of the liquid crystal light control device (liquid crystal device) 1101 of the seventh embodiment.
  • Components common to the liquid crystal display device 100 of the third embodiment in the liquid crystal light control device 1101 are assigned the same reference numerals, and detailed descriptions thereof are omitted.
  • the liquid crystal light control device 1101 includes a first substrate 110, a plurality of light sources 105, a second substrate 111, and a light diffusion plate 118.
  • the light source 105 makes light incident on the end surface (light incident surface) 110 a of the first substrate 110.
  • the second substrate 111 is disposed to face the first substrate 110.
  • the light diffusion plate 118 is provided on the outer surface side of the second substrate 111.
  • a rectangular frame-shaped sealing material 119 is provided at the peripheral edge of the facing region where the first substrate 110 and the second substrate 111 face each other. Liquid crystal (not shown) is sealed in a space surrounded by the first substrate 110, the second substrate 111, and the sealing material 119.
  • FIG. 22 is a cross-sectional view parallel to the YZ plane of the liquid crystal light control device 1101 of the seventh embodiment.
  • Components common to the liquid crystal display device 101 of the fourth embodiment in the liquid crystal light control device 1101 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the liquid crystal dimming device 1101 is different from the liquid crystal display device 101 of the fourth embodiment in that the color filter layer is omitted, and the light source 135 is provided with a plurality of light emitting elements that emit different amounts of white light. The point is that light of different amounts of light is emitted sequentially at different timings. In addition, an electric field corresponding to the gradation of the image of the color emitted from the light emitting elements is generated inside the liquid crystal layer 115 in accordance with the timing at which the plurality of light emitting elements emit light.
  • the light emitting elements PX11 to PX15 of the liquid crystal light control device 1101 sequentially emit white light having different light amounts. And according to the timing of the light emission, each light emitting element provided in the light source 135 emits light sequentially.
  • the amount of light incident on the first substrate 110 from the light source 135 is set according to the brightness of the light emitting elements PX11 to PX15 illuminated by the light source 135. For example, in a light emitting element that emits weak light, the amount of light emitted from the light source 135 is reduced. On the other hand, in the light emitting element emitting strong light, the amount of light emitted from the light source 135 is increased. Thereby, power consumption can be reduced as compared with a configuration in which the entire light emitting region is always irradiated with the maximum amount of light.
  • a light emitting diode that emits white light is used as the light source 135, but the present invention is not limited to this.
  • a light emitting element 71R that emits red light, a light emitting element 71G that emits green light, and a light emitting element 71B that emits blue light may be used.
  • the polarizing layer 113 may be provided between the first substrate 110 and the light diffusion plate 118.
  • the present invention can be used in the field of edge light type liquid crystal devices.
  • polarizing layer 113 ... polarizing layer, 115 ... liquid crystal layer, 116 ... optical layer, 118 ... light diffusion plate, 124 ... first. 1 electrode, 125 ... second electrode, 131 ... polarization conversion layer, 135 ... light source, Lp ... first polarization Ls ⁇ second polarization

Abstract

Disclosed is a liquid crystal display device which comprises: a light guide plate that has a light incident surface on an end face; a light source for having light incident on the light incident surface of the light guide plate; a light diffusion plate that is arranged so as to face the light guide plate; a liquid crystal layer that is arranged between the light guide plate and the light diffusion plate; and a pair of electrodes that controls the amount of light, which propagates obliquely within the liquid crystal layer and is diffused and emitted by the light diffusion plate, by producing an electric field inside the liquid crystal layer and changing the refractive index or the magnitude of the birefringence of light that has propagated within the light guide plate and obliquely entered into the liquid crystal layer from the light guide plate.

Description

液晶装置Liquid crystal device
 本発明は、液晶装置に関する。
 本願は、2010年12月15日に、日本に出願された特願2010-279737号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a liquid crystal device.
This application claims priority based on Japanese Patent Application No. 2010-279737 filed in Japan on December 15, 2010, the contents of which are incorporated herein by reference.
 導光板の端面に光源を配置し、光源から射出された光を導光板全体に広げて面光源を形成するエッジライト方式の液晶装置として、特許文献1に記載の液晶装置が知られている。特許文献1の液晶装置は、相互に分離された複数の導光板と、各導光板に光を入射する複数の光源と、を備え、複数の光源を導光板ごとに部分駆動する。 A liquid crystal device described in Patent Document 1 is known as an edge light type liquid crystal device in which a light source is disposed on an end face of a light guide plate and light emitted from the light source is spread over the entire light guide plate to form a surface light source. The liquid crystal device of Patent Document 1 includes a plurality of light guide plates separated from each other and a plurality of light sources that make light incident on the light guide plates, and partially drives the light sources for each light guide plate.
特開2010-20961号公報JP 2010-20961 A
 特許文献1の液晶装置は、導光板の端面から導光板の全面に光を広げる方式であるため、導光板の特定の領域のみから光を出射させることができない。そのため、映像の明るさに応じて出射光量を制御するエリアアクティブ駆動を行うことができない。 Since the liquid crystal device of Patent Document 1 is a method of spreading light from the end face of the light guide plate to the entire surface of the light guide plate, light cannot be emitted only from a specific region of the light guide plate. Therefore, area active drive that controls the amount of emitted light according to the brightness of the image cannot be performed.
 本発明の目的は、導光板の特定の領域のみから光を出射させることが可能なエッジライト方式の液晶装置を提供することにある。 An object of the present invention is to provide an edge light type liquid crystal device capable of emitting light only from a specific region of a light guide plate.
(1) 本発明の一態様による液晶装置は、端面に光入射面を有する導光板と、前記導光板の光入射面に光を入射させる光源と、前記導光板と対向配置された光拡散板と、前記導光板と前記光拡散板との間に配置された液晶層と、前記液晶層の内部に電界を発生させ、前記導光板の内部を伝播し前記導光板から前記液晶層に対して斜めに入射した前記光の屈折率又は複屈折の大きさを変化させることにより、前記液晶層の内部を斜めに進行し前記光拡散板で拡散されて射出される前記光の光量を制御する一対の電極と、を備える。 (1) A liquid crystal device according to an aspect of the present invention includes a light guide plate having a light incident surface on an end surface, a light source that causes light to enter the light incident surface of the light guide plate, and a light diffusing plate disposed to face the light guide plate. And a liquid crystal layer disposed between the light guide plate and the light diffusing plate, and an electric field is generated inside the liquid crystal layer to propagate through the light guide plate and from the light guide plate to the liquid crystal layer. A pair for controlling the light quantity of the light emitted obliquely and then diffused by the light diffusion plate through the inside of the liquid crystal layer by changing the refractive index or the birefringence of the light incident obliquely. Electrode.
(2) 本発明の一態様による液晶装置において、前記液晶層と前記光拡散板との間には、第1偏光を反射し、前記第1偏光とは異なる第2偏光を透過する光学層が設けられ、前記一対の電極は、前記導光板の内部を伝播し前記導光板から前記液晶層に対して斜めに入射した前記第1偏光の前記液晶層の複屈折の大きさを変化させることにより、前記液晶層の内部を斜めに進行した前記第1偏光の偏光状態を変化させても良い。 (2) In the liquid crystal device according to an aspect of the present invention, an optical layer that reflects the first polarized light and transmits the second polarized light different from the first polarized light is interposed between the liquid crystal layer and the light diffusion plate. The pair of electrodes are propagated through the inside of the light guide plate and change the birefringence of the liquid crystal layer of the first polarized light that is obliquely incident on the liquid crystal layer from the light guide plate. The polarization state of the first polarized light traveling obliquely in the liquid crystal layer may be changed.
(3) 本発明の一態様による液晶装置において、前記導光板と前記光源との間の前記光の光路上に、前記第1偏光を透過させる偏光層が設けられても良い。 (3) In the liquid crystal device according to an aspect of the present invention, a polarizing layer that transmits the first polarized light may be provided on an optical path of the light between the light guide plate and the light source.
(4) 本発明の一態様による液晶装置において、前記液晶層は、前記導光板の内部を伝播し前記導光板から前記液晶層に対して斜めに入射した前記第2偏光を全反射し、前記導光板の前記光入射面とは異なる端面に、前記液晶層によって全反射され前記導光板の内部を伝播した前記第2偏光を前記第1偏光に変換して前記導光板の内部に反射する偏光変換層が設けられても良い。 (4) In the liquid crystal device according to an aspect of the present invention, the liquid crystal layer propagates through the light guide plate and totally reflects the second polarized light incident on the liquid crystal layer obliquely from the light guide plate. Polarized light that is reflected by the liquid crystal layer on the end surface different from the light incident surface of the light guide plate, and converts the second polarized light that has propagated through the light guide plate into the first polarized light and reflects the light into the light guide plate. A conversion layer may be provided.
(5) 本発明の一態様による液晶装置において、前記光拡散板と前記光学層との間には、前記光学層を透過した前記第2偏光を透過する偏光層が設けられても良い。 (5) In the liquid crystal device according to an aspect of the present invention, a polarizing layer that transmits the second polarized light transmitted through the optical layer may be provided between the light diffusion plate and the optical layer.
(6) 本発明の一態様による液晶装置において、前記一対の電極は、前記導光板の内部を伝播し前記導光板から前記液晶層に対して斜めに入射した第1偏光の前記液晶層の屈折率を変化させることにより、前記第1偏光が前記液晶層を透過して前記光拡散板から出射する状態と、前記第1偏光が前記液晶層で全反射されて前記導光板の内部を伝播し前記光拡散板から出射しない状態と、を切り換えても良い。 (6) In the liquid crystal device according to an aspect of the present invention, the pair of electrodes propagates through the light guide plate and is refracted from the liquid crystal layer of the first polarization that is obliquely incident on the liquid crystal layer from the light guide plate. By changing the rate, the first polarized light is transmitted through the liquid crystal layer and emitted from the light diffusing plate, and the first polarized light is totally reflected by the liquid crystal layer and propagates inside the light guide plate. You may switch from the state which does not radiate | emit from the said light diffusing plate.
(7) 本発明の一態様による液晶装置において、前記液晶層は、前記導光板の内部を伝播し前記液晶層に対して斜めに入射した、前記第1偏光とは異なる第2偏光を全反射し、前記導光板の前記光入射面とは異なる端面に、前記液晶層によって全反射され前記導光板の内部を伝播した前記第2偏光を前記第1偏光に変換して前記導光板の内部に反射する偏光変換層が設けられても良い。 (7) In the liquid crystal device according to one aspect of the present invention, the liquid crystal layer propagates through the light guide plate and is incident obliquely on the liquid crystal layer, and totally reflects the second polarized light different from the first polarized light. Then, the second polarized light that is totally reflected by the liquid crystal layer and propagates through the inside of the light guide plate is converted into the first polarized light on the end surface different from the light incident surface of the light guide plate, and is converted into the first light guide plate. A reflective polarization conversion layer may be provided.
(8) 本発明の一態様による液晶装置において、前記光源は、互いに異なる色の光を発光する複数の発光素子を備え、前記複数の発光素子は、タイミングをずらして順次発光し、前記一対の電極は、前記複数の発光素子が発光するタイミングに合わせて、前記発光素子から発光する色の画像の階調に応じた電界を前記液晶層の内部に発生させても良い。 (8) In the liquid crystal device according to one embodiment of the present invention, the light source includes a plurality of light emitting elements that emit light of different colors, and the plurality of light emitting elements sequentially emit light at different timings. The electrode may generate an electric field in the liquid crystal layer in accordance with a gradation of an image of a color emitted from the light emitting element in accordance with a timing at which the plurality of light emitting elements emit light.
(9) 本発明の一態様による液晶装置において、前記一対の電極は、前記液晶層の層厚方向の電界を発生させても良い。 (9) In the liquid crystal device according to one embodiment of the present invention, the pair of electrodes may generate an electric field in a layer thickness direction of the liquid crystal layer.
(10) 本発明の一態様による液晶装置において、前記液晶層は、前記液晶層の内部に電界を発生させない電界無印加状態において等方相を示しても良い。 (10) In the liquid crystal device according to one embodiment of the present invention, the liquid crystal layer may exhibit an isotropic phase in a state where no electric field is applied to the liquid crystal layer without generating an electric field.
(11) 本発明の一態様による液晶装置において、前記液晶層は、前記導光板の光入射面に前記光が入射する方向と、前記導光板の前記光拡散板と対向する面の法線方向とを含む面内で配向状態が変化しても良い。 (11) In the liquid crystal device according to an aspect of the present invention, the liquid crystal layer includes a direction in which the light is incident on a light incident surface of the light guide plate, and a normal direction of a surface of the light guide plate facing the light diffusion plate. The orientation state may change in a plane including
 本発明によれば、導光板の特定の領域のみから光を出射させることが可能なエッジライト方式の液晶装置を提供することができる。 According to the present invention, it is possible to provide an edge light type liquid crystal device capable of emitting light only from a specific region of the light guide plate.
第1実施形態の液晶表示装置の分解斜視図である。It is a disassembled perspective view of the liquid crystal display device of 1st Embodiment. バックライトユニットのYZ平面に平行な断面図である。It is sectional drawing parallel to YZ plane of a backlight unit. Z方向から見た導光体の平面図である。It is a top view of the light guide seen from the Z direction. 光源の光出射面に垂直な断面図である。It is sectional drawing perpendicular | vertical to the light-projection surface of a light source. 液晶表示装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of a liquid crystal display device. Z方向から見た複数のサブ照明領域の平面図である。It is a top view of a plurality of sub illumination fields seen from the Z direction. 光源と切り換え領域の制御方法の一例を示す図である。It is a figure which shows an example of the control method of a light source and a switching area | region. 液晶層の内部に電界を発生させない電界非印加状態を示す図である。It is a figure which shows the electric field non-application state which does not generate | occur | produce an electric field inside a liquid crystal layer. 液晶層の内部に電界を発生させた電界印加状態を示す図である。It is a figure which shows the electric field application state which generated the electric field inside the liquid crystal layer. 第1実施形態のバックライトユニットの第1変形例である。It is a 1st modification of the backlight unit of 1st Embodiment. 第1実施形態のバックライトユニットの第2変形例である。It is a 2nd modification of the backlight unit of 1st Embodiment. 第2実施形態の液晶表示装置の分解斜視図である。It is a disassembled perspective view of the liquid crystal display device of 2nd Embodiment. バックライトユニットのYZ平面に平行な断面図である。It is sectional drawing parallel to YZ plane of a backlight unit. 第2実施形態のバックライトユニットの第1変形例において、液晶層の内部に電界を発生させない電界非印加状態を示す図である。It is a figure which shows the electric field non-application state which does not generate | occur | produce an electric field inside a liquid crystal layer in the 1st modification of the backlight unit of 2nd Embodiment. 第2実施形態のバックライトユニットの第1変形例において、液晶層の内部に電界を発生させた電界印加状態を示す図である。It is a figure which shows the electric field application state which generated the electric field inside the liquid crystal layer in the 1st modification of the backlight unit of 2nd Embodiment. 第3実施形態の液晶表示装置の分解斜視図である。It is a disassembled perspective view of the liquid crystal display device of 3rd Embodiment. 液晶表示装置のYZ平面に平行な断面図である。It is sectional drawing parallel to YZ plane of a liquid crystal display device. 第4実施形態の液晶表示装置の分解斜視図である。It is a disassembled perspective view of the liquid crystal display device of 4th Embodiment. 液晶表示装置のYZ平面に平行な断面図である。It is sectional drawing parallel to YZ plane of a liquid crystal display device. 第5実施形態の液晶表示装置のYZ平面に平行な断面図である。It is sectional drawing parallel to YZ plane of the liquid crystal display device of 5th Embodiment. 光源の光出射面に垂直な断面図である。It is sectional drawing perpendicular | vertical to the light-projection surface of a light source. 第6実施形態の液晶表示装置のYZ平面に平行な断面図である。It is sectional drawing parallel to YZ plane of the liquid crystal display device of 6th Embodiment. 第7実施形態の液晶調光装置の分解斜視図である。It is a disassembled perspective view of the liquid crystal light control apparatus of 7th Embodiment. 第7実施形態の液晶調光装置のYZ平面に平行な断面図である。It is sectional drawing parallel to YZ plane of the liquid crystal light control apparatus of 7th Embodiment.
 図1は、第1実施形態の液晶表示装置1の分解斜視図である。以下の説明では、ゲート線21の延在方向をX方向とし、データ線22の延在方向をY方向とし、X方向及びY方向と直交する方向をZ方向として、各構成要素の形状や配置を説明する。 FIG. 1 is an exploded perspective view of the liquid crystal display device 1 of the first embodiment. In the following description, the extending direction of the gate line 21 is the X direction, the extending direction of the data line 22 is the Y direction, and the direction perpendicular to the X direction and the Y direction is the Z direction. Will be explained.
 液晶表示装置1は、液晶パネル2と、バックライトユニット(液晶装置)3と、を備える。 The liquid crystal display device 1 includes a liquid crystal panel 2 and a backlight unit (liquid crystal device) 3.
 液晶パネル2は、第1基板10と、第2基板11と、第1偏光板12と、第2偏光板13と、を備える。第2基板11は、第1基板10と対向配置される。第1偏光板12は、第1基板10の外面側に設けられる。第2偏光板13は、第2基板11の外面側に設けられる。
 第1基板10と第2基板11とが対向する対向領域の周縁部には、矩形枠状のシール材19が設けられている。第1基板10、第2基板11及びシール材19によって囲まれた空間に、図示略の液晶が封入されている。
The liquid crystal panel 2 includes a first substrate 10, a second substrate 11, a first polarizing plate 12, and a second polarizing plate 13. The second substrate 11 is disposed to face the first substrate 10. The first polarizing plate 12 is provided on the outer surface side of the first substrate 10. The second polarizing plate 13 is provided on the outer surface side of the second substrate 11.
A rectangular frame-shaped sealing material 19 is provided on the peripheral edge of the facing region where the first substrate 10 and the second substrate 11 face each other. In a space surrounded by the first substrate 10, the second substrate 11, and the sealing material 19, liquid crystal (not shown) is sealed.
 シール材19の内側には、表示領域2Aが設けられている。表示領域2Aには、X方向に延びる複数のゲート線21と、Y方向に延びる複数のデータ線22とが第1基板10上において、平面視格子状に設けられている。ゲート線21とデータ線22との交差部には、赤色、緑色又は青色のいずれかの色に対応した表示要素が設けられている。第1基板10上には、複数の表示要素が、X方向及びY方向にマトリクス状に配置されており、その複数の表示要素によって、表示領域2Aが形成されている。 The display area 2A is provided inside the sealing material 19. In the display area 2A, a plurality of gate lines 21 extending in the X direction and a plurality of data lines 22 extending in the Y direction are provided on the first substrate 10 in a lattice shape in plan view. A display element corresponding to any one of red, green, and blue is provided at the intersection between the gate line 21 and the data line 22. On the first substrate 10, a plurality of display elements are arranged in a matrix in the X direction and the Y direction, and a display region 2A is formed by the plurality of display elements.
 液晶パネル2の背面側には、バックライトユニット3が設けられている。バックライトユニット3は、複数の光源5と、導光体4と、を備える。導光体4は、複数の光源5から入射した光を面状に広げて液晶パネル2に向けて出射する。 A backlight unit 3 is provided on the back side of the liquid crystal panel 2. The backlight unit 3 includes a plurality of light sources 5 and a light guide 4. The light guide 4 spreads light incident from the plurality of light sources 5 in a planar shape and emits the light toward the liquid crystal panel 2.
 導光体4は、第1基板41、第2基板42を備えた導光パネルである。第2基板42は、第1基板41と対向配置される。第1基板41は、端面41aに光入射面を有する導光板である。第1基板41と第2基板42とが対向する対向領域の周縁部には、矩形枠状のシール材49が設けられる。第1基板41、第2基板42及びシール材49によって囲まれた空間に、液晶層が封入されている。 The light guide 4 is a light guide panel including a first substrate 41 and a second substrate 42. The second substrate 42 is disposed to face the first substrate 41. The first substrate 41 is a light guide plate having a light incident surface on the end surface 41a. A rectangular frame-shaped sealing material 49 is provided at the peripheral edge of the facing region where the first substrate 41 and the second substrate 42 face each other. A liquid crystal layer is sealed in a space surrounded by the first substrate 41, the second substrate 42, and the sealing material 49.
 シール材49の内側には、点灯状態(ON状態)と、非点灯状態(OFF状態)とを切り換え可能な複数のストライプ状の切り換え領域401、402、403、404、405が設けられている。点灯状態(ON状態)では、導光体4の内部を伝播する光を導光体4の外部に出射させる。非点灯状態(OFF状態)では、導光体4の内部を伝播する光を導光体4の外部に出射させない。
 複数の切り換え領域401~405は、Y方向に互いに隣接して配置されている。
A plurality of stripe-shaped switching areas 401, 402, 403, 404, and 405 that can be switched between a lighting state (ON state) and a non-lighting state (OFF state) are provided inside the sealing material 49. In the lighting state (ON state), light propagating inside the light guide 4 is emitted to the outside of the light guide 4. In the non-lighting state (OFF state), light propagating inside the light guide 4 is not emitted to the outside of the light guide 4.
The plurality of switching areas 401 to 405 are arranged adjacent to each other in the Y direction.
 光源5は、例えば、白色光を発光する発光ダイオード(Light Emitting Diode;LED)である。光源5は、点状光源として利用できるものであれば良く、有機EL(ElectroLuminescence)素子のようなものでも良い。光源5は、第1基板41の光入射面41aと対向する位置に、複数個配置されている。図1では、光源5を5つ設けているが、光源5の数はこれに限らない。複数の光源5は、発光面を第1基板41の光入射面41aと対向させた状態で、X方向に配列されている。 The light source 5 is, for example, a light emitting diode (LED) that emits white light. The light source 5 may be anything that can be used as a point light source, and may be an organic EL (ElectroLuminescence) element. A plurality of light sources 5 are arranged at positions facing the light incident surface 41 a of the first substrate 41. Although five light sources 5 are provided in FIG. 1, the number of light sources 5 is not limited to this. The plurality of light sources 5 are arranged in the X direction with the light emitting surface opposed to the light incident surface 41 a of the first substrate 41.
 図2は、バックライトユニット3のYZ平面に平行な断面図である。 FIG. 2 is a cross-sectional view of the backlight unit 3 parallel to the YZ plane.
 導光体4は、第1基板41と、第2基板42と、液晶層45と、光学層46と、偏光層47と、光拡散板48と、を備える。第2基板42は、第1基板41と対向配置される。液晶層45は、第1基板41と第2基板42との間に挟持される。光学層46は、第2基板42と液晶層45との間に設けられる。偏光層47は、第2基板42の外面側(液晶層45とは反対側)に設けられる。光拡散板48は、偏光層47の外面側に設けられる。 The light guide 4 includes a first substrate 41, a second substrate 42, a liquid crystal layer 45, an optical layer 46, a polarizing layer 47, and a light diffusion plate 48. The second substrate 42 is disposed to face the first substrate 41. The liquid crystal layer 45 is sandwiched between the first substrate 41 and the second substrate 42. The optical layer 46 is provided between the second substrate 42 and the liquid crystal layer 45. The polarizing layer 47 is provided on the outer surface side of the second substrate 42 (the side opposite to the liquid crystal layer 45). The light diffusion plate 48 is provided on the outer surface side of the polarizing layer 47.
 第1基板41及び第2基板42は、ポリスチレンやガラスなどからなる透明な板材である。第1基板41の光源5と対向する端面は、光源5から出射した光が入射する光入射面41aである。光入射面41aは、XY平面に対して傾斜している。光入射面41aのXY平面に対する傾斜角は、光源5から概ね光入射面41aと直交する方向に射出された光が第1基板41の内部で全反射される角度とされている。 The first substrate 41 and the second substrate 42 are transparent plate materials made of polystyrene or glass. An end surface of the first substrate 41 facing the light source 5 is a light incident surface 41 a on which light emitted from the light source 5 is incident. The light incident surface 41a is inclined with respect to the XY plane. The inclination angle of the light incident surface 41 a with respect to the XY plane is an angle at which light emitted from the light source 5 in a direction substantially orthogonal to the light incident surface 41 a is totally reflected inside the first substrate 41.
 光源5は、指向性光源であることが好ましい。全反射条件を満足する為には、第1基板41に入射した光の角度範囲が、半値幅5度以下程度に絞られている事が好ましい。 The light source 5 is preferably a directional light source. In order to satisfy the total reflection condition, it is preferable that the angle range of the light incident on the first substrate 41 is narrowed to about 5 degrees or less.
 第1基板41の光入射面41aとは異なる端面(例えば光入射面41aが設けられた辺と対向する辺に設けられた端面)には、第1基板41の内部を伝播する光であって、その端面に入射した光を、第1基板41の内部に向けて反射する反射層61が設けられている。 On the end face different from the light incident face 41a of the first substrate 41 (for example, the end face provided on the side opposite to the side on which the light incident face 41a is provided), the light propagates inside the first substrate 41. A reflection layer 61 is provided that reflects the light incident on the end face toward the inside of the first substrate 41.
 第1基板41には、複数の第1電極43が設けられている。第1電極43は、ITO(Indium Tin Oxide;インジウム錫酸化物)などの透明導電膜からなる。第2基板42には、第2電極44が、複数の第1電極43と対向して設けられている。第2電極44は、ITOなどの透明導電膜からなる。
 第1電極43は、X方向に延びるストライプ状の電極である。第2電極44は、複数の第1電極43に対して共通の共通電極である。1つの第1電極43と第2電極44とによって、液晶層45の配向が制御される領域(第1電極43と第2電極44とが対向する領域)が、1つの切り換え領域である。図2の導光体4では、Y方向に5本の第1電極43が設けられている。これにより、Y方向に5本の切り換え領域401~405が設けられている。
The first substrate 41 is provided with a plurality of first electrodes 43. The first electrode 43 is made of a transparent conductive film such as ITO (Indium Tin Oxide). A second electrode 44 is provided on the second substrate 42 so as to face the plurality of first electrodes 43. The second electrode 44 is made of a transparent conductive film such as ITO.
The first electrode 43 is a striped electrode extending in the X direction. The second electrode 44 is a common electrode common to the plurality of first electrodes 43. A region in which the orientation of the liquid crystal layer 45 is controlled by the first electrode 43 and the second electrode 44 (a region where the first electrode 43 and the second electrode 44 face each other) is one switching region. In the light guide 4 of FIG. 2, five first electrodes 43 are provided in the Y direction. Accordingly, five switching areas 401 to 405 are provided in the Y direction.
 光源5と光入射面41aとの間の光の光路上には、第1偏光Lpを透過する偏光層60が設けられている。偏光層60は、例えば、YZ平面と光入射面41aとが交差する交差線と平行な透過軸を有する偏光板である。第1偏光Lpは、光学層46に対してP偏光として入射する光である。偏光層60は、光入射面41aに設置され、偏光層60を挟んで光源5の光出射面と第1基板41の光入射面41aとが対向している。光源5から射出された光のうち、第2電極44と光学層46との界面にS偏光として入射する第2偏光Lsは、偏光層60で吸収又は反射される。第2電極44と光学層46との界面にP偏光として入射する第1偏光Lpのみが、第1基板41の内部に入射する。 A polarizing layer 60 that transmits the first polarized light Lp is provided on the light path between the light source 5 and the light incident surface 41a. The polarizing layer 60 is, for example, a polarizing plate having a transmission axis parallel to the intersecting line where the YZ plane and the light incident surface 41a intersect. The first polarized light Lp is light that enters the optical layer 46 as P-polarized light. The polarizing layer 60 is installed on the light incident surface 41a, and the light emitting surface of the light source 5 and the light incident surface 41a of the first substrate 41 face each other with the polarizing layer 60 interposed therebetween. Of the light emitted from the light source 5, the second polarized light Ls incident as S-polarized light on the interface between the second electrode 44 and the optical layer 46 is absorbed or reflected by the polarizing layer 60. Only the first polarized light Lp that enters the interface between the second electrode 44 and the optical layer 46 as P-polarized light enters the inside of the first substrate 41.
 液晶層45は、ブルー相を示す誘電異方性が正の液晶を含む。ブルー相は、らせん軸が異なる方向を向いた複数のらせん状の構造体が、立体的に周期構造をとっている液晶相である。ブルー相自体は、光学的に等方的で、電圧を印加することでネマチック相に転位する。液晶層45の配向は、第1電極43と第2電極44との間に発生する電界によって制御される。ブルー相の液晶層45は、カー効果(Kerr効果)を示す。液晶層45の屈折率は、電界強度の2乗に比例する。ブルー相の液晶の応答時間は10マイクロ秒前後であり、通常のネマチック液晶の応答時間(10ミリ秒)よりも格段に短い。 The liquid crystal layer 45 includes a liquid crystal having a positive dielectric anisotropy indicating a blue phase. The blue phase is a liquid crystal phase in which a plurality of spiral structures having different spiral axes are in a three-dimensional periodic structure. The blue phase itself is optically isotropic and rearranges into a nematic phase when a voltage is applied. The alignment of the liquid crystal layer 45 is controlled by an electric field generated between the first electrode 43 and the second electrode 44. The blue phase liquid crystal layer 45 exhibits a Kerr effect (Kerr effect). The refractive index of the liquid crystal layer 45 is proportional to the square of the electric field strength. The response time of the blue phase liquid crystal is about 10 microseconds, which is much shorter than the response time of normal nematic liquid crystal (10 milliseconds).
 第1電極43と第2電極44との間にZ方向の電界を発生させた電界印加状態の液晶層45の屈折率と、第1電極43と第2電極44との間に電界を発生させない電界非印加状態の液晶層45の屈折率は、第1基板41、第2基板42、第1電極43及び第2電極44の屈折率と概ね等しい。そのため、第1基板41の光入射面41aから入射した光は、第1電極43、液晶層45及び第2電極44を透過して光学層46に至る。 The refractive index of the liquid crystal layer 45 in the electric field application state in which an electric field in the Z direction is generated between the first electrode 43 and the second electrode 44, and no electric field is generated between the first electrode 43 and the second electrode 44. The refractive index of the liquid crystal layer 45 in the state where no electric field is applied is substantially equal to the refractive index of the first substrate 41, the second substrate 42, the first electrode 43, and the second electrode 44. Therefore, light incident from the light incident surface 41 a of the first substrate 41 passes through the first electrode 43, the liquid crystal layer 45, and the second electrode 44 and reaches the optical layer 46.
 光学層46は、入射する光の偏光状態に応じて屈折率が異なる光学異方体である。光学層46は、第1偏光Lpに対して相対的に屈折率が小さく、第2偏光Lsに対して相対的に屈折率が大きい。第1偏光Lpに対する光学層46の屈折率は、第2電極44の屈折率よりも小さい。よって、第2電極44から光学層46に入射した第1偏光Lpは、光学層46の表面で全反射される。第2偏光Lsに対する光学層46の屈折率は、第2電極44の屈折率と同等かそれよりも大きい。よって、第2電極44から光学層46に入射した第2偏光Lsは、光学層46を透過して第2基板42に入射する。 The optical layer 46 is an optical anisotropic body having a different refractive index depending on the polarization state of incident light. The optical layer 46 has a relatively small refractive index with respect to the first polarized light Lp and a relatively large refractive index with respect to the second polarized light Ls. The refractive index of the optical layer 46 with respect to the first polarized light Lp is smaller than the refractive index of the second electrode 44. Therefore, the first polarized light Lp incident on the optical layer 46 from the second electrode 44 is totally reflected on the surface of the optical layer 46. The refractive index of the optical layer 46 with respect to the second polarized light Ls is equal to or larger than the refractive index of the second electrode 44. Therefore, the second polarized light Ls incident on the optical layer 46 from the second electrode 44 passes through the optical layer 46 and enters the second substrate 42.
 電界非印加状態では、第1電極43と第2電極44との間に配置された液晶は、ブルー相と呼ばれる特殊な配向状態となる。よって、液晶層45は、光学的異方性を持たない光学等方相となる。液晶層45に入射した第1偏光Lpは、電界非印加状態では偏光状態を変えることなく光学層46に入射する。よって、第1偏光Lpは、光学層46の表面で反射され導光体4の内部を概ねY方向に伝播する。第1電極43と第2電極44との間に電圧を印加しない領域では、光が外部に出射しない。よって、非点灯状態(OFF状態)となる。 In an electric field non-application state, the liquid crystal disposed between the first electrode 43 and the second electrode 44 is in a special alignment state called a blue phase. Therefore, the liquid crystal layer 45 has an optical isotropic phase having no optical anisotropy. The first polarized light Lp incident on the liquid crystal layer 45 is incident on the optical layer 46 without changing the polarization state when no electric field is applied. Therefore, the first polarized light Lp is reflected on the surface of the optical layer 46 and propagates in the light guide 4 in the Y direction. In a region where no voltage is applied between the first electrode 43 and the second electrode 44, no light is emitted to the outside. Therefore, it becomes a non-lighting state (OFF state).
 電界印加状態では、第1電極43と第2電極44との間に配置された液晶は、概ねZ方向に配向する。そのため、液晶層45は、光学異方性を有する光学異方相となる。電界印加時の液晶層45は、複屈折性を有するため、液晶層45に入射した第1偏光Lpは、液晶層45で偏光状態を楕円偏光、又は、第1偏光Lpと直交する第2偏光Ls(光学層46に対してS偏光として入射する直線偏光)に変換される。よって、液晶層45によって偏光状態が変換された第1偏光Lpの一部は、光学層46を透過して第2基板42に入射し、偏光層47に至る。 In the electric field application state, the liquid crystal disposed between the first electrode 43 and the second electrode 44 is generally aligned in the Z direction. Therefore, the liquid crystal layer 45 becomes an optically anisotropic phase having optical anisotropy. Since the liquid crystal layer 45 at the time of applying an electric field has birefringence, the first polarized light Lp incident on the liquid crystal layer 45 is elliptically polarized in the liquid crystal layer 45 or the second polarized light orthogonal to the first polarized light Lp. It is converted into Ls (linearly polarized light incident on the optical layer 46 as S-polarized light). Therefore, a part of the first polarized light Lp whose polarization state has been converted by the liquid crystal layer 45 passes through the optical layer 46 and enters the second substrate 42, and reaches the polarizing layer 47.
 偏光層47は、X方向と平行な透過軸を有する偏光板である。よって、光学層46を透過した第2偏光Lsは、偏光層47を透過し、光拡散板48で拡散されて外部に出射する。
 光拡散板48の液晶パネル2(図1参照)と対向する面は、導光体4の内部を伝播した光が出射する光出射面4aである。第1電極43と第2電極44との間に電圧を印加した領域では、光が外部に出射する。よって、点灯状態(ON状態)となる。
The polarizing layer 47 is a polarizing plate having a transmission axis parallel to the X direction. Therefore, the second polarized light Ls that has passed through the optical layer 46 passes through the polarizing layer 47, is diffused by the light diffusion plate 48, and is emitted to the outside.
The surface of the light diffusing plate 48 that faces the liquid crystal panel 2 (see FIG. 1) is a light emitting surface 4 a from which light propagated through the light guide 4 is emitted. In a region where a voltage is applied between the first electrode 43 and the second electrode 44, light is emitted to the outside. Therefore, it will be in a lighting state (ON state).
 図2は、切り換え領域401、403~405が等方相状態(電界非印加時:OFF)であり、切り換え領域402が異方相状態(電界印加時:ON)である場合を示している。よって、導光体4の内部を伝播した光は、切り換え領域402から選択的に出射する。 FIG. 2 shows a case where the switching regions 401 and 403 to 405 are in an isotropic phase state (when no electric field is applied: OFF), and the switching region 402 is in an anisotropic phase state (when an electric field is applied: ON). Therefore, the light propagated inside the light guide 4 is selectively emitted from the switching region 402.
 図3は、Z方向から見た導光体4の平面図である。 FIG. 3 is a plan view of the light guide 4 viewed from the Z direction.
 導光体4のY方向一端側には、第1基板41の端面(光入射面)に沿って、図1に示した複数の光源が設置されている。光源から出射した光が導光体4の内部をY方向に伝播することにより、Y方向に長手の複数のストライプ状の光の伝播領域501、502、503、504、505が形成されている。 A plurality of light sources shown in FIG. 1 are installed on one end side of the light guide 4 in the Y direction along the end surface (light incident surface) of the first substrate 41. Light emitted from the light source propagates in the light guide 4 in the Y direction, so that a plurality of stripe-shaped light propagation regions 501, 502, 503, 504, and 505 that are long in the Y direction are formed.
 導光体4には、複数の第1電極43、第2電極44が設けられている。第1電極43は、Y方向に配列される。第2電極44は、複数の第1電極43と対向する。
 第1電極43は、X方向に延びるストライプ状の電極である。1つの第1電極43と第2電極44とが対向する対向領域が、1つの切り換え領域401~405である。1つの切り換え領域のうち、1つの伝播領域501~505と対向する領域が、1つのサブ照明領域Aである。切り換え領域401~405とサブ照明領域Aは、いずれも導光体4の光出射面を分割して得られた照明領域である。導光体4には、複数の第1電極43と複数の伝播領域501~505との各交差部に対応して、X方向とY方向に複数のサブ照明領域Aがマトリクス状に設けられている。
The light guide 4 is provided with a plurality of first electrodes 43 and second electrodes 44. The first electrodes 43 are arranged in the Y direction. The second electrode 44 faces the plurality of first electrodes 43.
The first electrode 43 is a striped electrode extending in the X direction. A facing region where one first electrode 43 and second electrode 44 face each other is one switching region 401 to 405. Of one switching region, a region facing one propagation region 501 to 505 is one sub illumination region A. The switching areas 401 to 405 and the sub illumination area A are illumination areas obtained by dividing the light exit surface of the light guide 4. In the light guide 4, a plurality of sub illumination areas A are provided in a matrix in the X and Y directions corresponding to the intersections of the plurality of first electrodes 43 and the plurality of propagation areas 501 to 505. Yes.
 第1電極43と第2電極44との間には、導光パネル駆動回路36から、サブ照明領域Aの点灯状態と非点灯状態とを切り換えるための導光パネル駆動信号に対応した駆動電圧が供給される。X方向に隣接したサブ照明領域Aの第1電極同士は互いに接続されている。そのため、X方向に隣接した複数のサブ照明領域Aの液晶層の配向は一括で変更される。X方向に隣接した複数のサブ照明領域Aは、等方相状態と異方相状態とを同時に切り換え可能な1つの切り換え領域を形成する。導光体4には、X方向に延びる複数の切り換え領域401~411がY方向に互いに隣接して設けられている。 Between the 1st electrode 43 and the 2nd electrode 44, the drive voltage corresponding to the light guide panel drive signal for switching the lighting state of the sub illumination area | region A and a non-lighting state from the light guide panel drive circuit 36 is. Supplied. The first electrodes of the sub illumination areas A adjacent in the X direction are connected to each other. For this reason, the orientations of the liquid crystal layers of the plurality of sub illumination areas A adjacent in the X direction are collectively changed. A plurality of sub illumination areas A adjacent in the X direction form one switching area capable of simultaneously switching between the isotropic phase state and the anisotropic phase state. The light guide 4 is provided with a plurality of switching regions 401 to 411 extending in the X direction and adjacent to each other in the Y direction.
 図4は、光源5の光出射面5aに垂直な断面図である。 FIG. 4 is a cross-sectional view perpendicular to the light exit surface 5 a of the light source 5.
 光源5は、発光素子71と、反射ミラー72と、を備える。反射ミラー72は、発光素子71から放射された光を反射する。
 発光素子71は、例えば基材70上に形成された固体光源(LEDチップ)である。発光素子71は、点光源として利用できるものであればよく、LEDに限定されない。反射ミラー72は、例えば回転放物面の形状を有しており、発光素子71は放物面の焦点に配置されている。発光素子71は、反射ミラー72の焦点位置に位置決めされた状態で、モールド樹脂73によって反射ミラー72と一体化されている。
The light source 5 includes a light emitting element 71 and a reflection mirror 72. The reflection mirror 72 reflects the light emitted from the light emitting element 71.
The light emitting element 71 is a solid light source (LED chip) formed on the base material 70, for example. The light emitting element 71 is not limited to an LED as long as it can be used as a point light source. The reflection mirror 72 has, for example, the shape of a rotating paraboloid, and the light emitting element 71 is disposed at the focal point of the paraboloid. The light emitting element 71 is integrated with the reflecting mirror 72 by the molding resin 73 in a state where the light emitting element 71 is positioned at the focal position of the reflecting mirror 72.
 光源5は、発光素子71から放射された光を、反射ミラー72で平行化する。そのため、反射ミラー72の光軸(回転放物面の中心軸)の方向に強い指向性を持った光を射出する。光源5の光出射面5aは、反射ミラー72の光軸に対して垂直な面である。光源5は、光出射面5aが図2に示した第1基板41の光入射面41aと対向するように配置される。
 よって、光源5は、第1基板41の光入射面41aに対して垂直な方向に強い指向性を持った光を射出する。
The light source 5 collimates the light emitted from the light emitting element 71 by the reflection mirror 72. For this reason, light having strong directivity is emitted in the direction of the optical axis of the reflection mirror 72 (the central axis of the paraboloid of revolution). The light emission surface 5 a of the light source 5 is a surface perpendicular to the optical axis of the reflection mirror 72. The light source 5 is disposed so that the light emitting surface 5a faces the light incident surface 41a of the first substrate 41 shown in FIG.
Therefore, the light source 5 emits light having strong directivity in a direction perpendicular to the light incident surface 41 a of the first substrate 41.
 図8A及び図8Bは、バックライトユニット3の動作を説明する模式図である。図8Aは、液晶層45の内部に電界を発生させない電界非印加状態を示す図である。図8Bは、液晶層45の内部に電界を発生させた電界印加状態を示す図である。図8A及び図8Bでは、屈折率楕円体としての液晶45aの形状を円又は楕円で示している。円は等方相状態を示し、楕円は異方相状態を示す。図8A及び図8Bでは、説明に必要な構成要素のみを図示している。 8A and 8B are schematic diagrams for explaining the operation of the backlight unit 3. FIG. FIG. 8A is a diagram illustrating a state in which no electric field is applied in the liquid crystal layer 45 without applying an electric field. FIG. 8B is a diagram illustrating an electric field application state in which an electric field is generated inside the liquid crystal layer 45. 8A and 8B, the shape of the liquid crystal 45a as a refractive index ellipsoid is indicated by a circle or an ellipse. A circle indicates an isotropic phase state, and an ellipse indicates an anisotropic phase state. In FIG. 8A and FIG. 8B, only components necessary for the description are illustrated.
 図8Aに示すように、電界非印加状態では、液晶層45は光学的に等方な等方相となっている。光源から射出された第1偏光Lpと第2偏光Lsとを含む光は、偏光層60によって第2偏光Lsが吸収又は反射され、第1偏光Lpのみが第1基板41の内部に入射する。液晶層45は等方相であるため、第1基板41の内部を伝播し第1基板41から液晶層45に対して斜めに入射した第1偏光Lpは、液晶層45で偏光状態を変更されることなく光学層46に入射する。光学層46は第1偏光Lpに対して小さな屈折率を示すため、光学層46に入射した第1偏光Lpは、光学層46の表面で全反射され、液晶層45及び第1基板41の内部を伝播する。第1偏光Lpは、光学層46で反射されて光拡散板48から外部に出射しない。よって、非点灯状態となる。 As shown in FIG. 8A, the liquid crystal layer 45 is in an optically isotropic phase when no electric field is applied. The light including the first polarized light Lp and the second polarized light Ls emitted from the light source is absorbed or reflected by the polarizing layer 60, and only the first polarized light Lp enters the first substrate 41. Since the liquid crystal layer 45 has an isotropic phase, the polarization state of the first polarized light Lp propagating through the first substrate 41 and obliquely incident on the liquid crystal layer 45 from the first substrate 41 is changed by the liquid crystal layer 45. Without being incident on the optical layer 46. Since the optical layer 46 has a small refractive index with respect to the first polarized light Lp, the first polarized light Lp incident on the optical layer 46 is totally reflected on the surface of the optical layer 46, and the inside of the liquid crystal layer 45 and the first substrate 41. To propagate. The first polarized light Lp is reflected by the optical layer 46 and does not exit from the light diffusion plate 48 to the outside. Therefore, it will be in a non-lighting state.
 図8Bに示すように、電界印加状態では、液晶層45は光学異方性を有する異方相となっている。第1基板41の内部を伝播し第1基板41から液晶層45に対して斜めに入射した第1偏光Lpは、液晶層45によって偏光状態が変更される。第1偏光Lpは、概ね液晶層45の層厚方向と直交する方向に進行するため、液晶層の層厚方向に光を進行させる通常の構成と比較して、液晶層45の内部を通過する距離が長い。よって、液晶層45によって第1偏光Lpは、効率よく第2偏光Lsに変換される。 As shown in FIG. 8B, in the electric field application state, the liquid crystal layer 45 is in an anisotropic phase having optical anisotropy. The polarization state of the first polarized light Lp propagating through the first substrate 41 and obliquely incident on the liquid crystal layer 45 from the first substrate 41 is changed by the liquid crystal layer 45. Since the first polarized light Lp travels in a direction substantially perpendicular to the layer thickness direction of the liquid crystal layer 45, it passes through the liquid crystal layer 45 as compared with a normal configuration in which light travels in the layer thickness direction of the liquid crystal layer. The distance is long. Therefore, the first polarized light Lp is efficiently converted into the second polarized light Ls by the liquid crystal layer 45.
 液晶層45を透過して第2偏光Lsに変換された第1偏光Lpは、光学層46に入射する。光学層46は第2偏光Lsに対して大きな屈折率を示すため、光学層46に入射した第2偏光Lsは光学層46を透過し、偏光層47に入射する。偏光層47の透過軸は第2偏光Lsと平行であることから、光学層46を透過した第2偏光Lsは偏光層47に吸収されることなく光拡散板48に到達し、光拡散板48が拡散されて外部に出射される。よって、点灯状態となる。 The first polarized light Lp transmitted through the liquid crystal layer 45 and converted into the second polarized light Ls is incident on the optical layer 46. Since the optical layer 46 exhibits a large refractive index with respect to the second polarized light Ls, the second polarized light Ls incident on the optical layer 46 passes through the optical layer 46 and enters the polarizing layer 47. Since the transmission axis of the polarizing layer 47 is parallel to the second polarized light Ls, the second polarized light Ls transmitted through the optical layer 46 reaches the light diffusing plate 48 without being absorbed by the polarizing layer 47, and the light diffusing plate 48. Is diffused and emitted to the outside. Therefore, it will be in a lighting state.
 光拡散板48は、液晶層45の内部を斜めに進行し光拡散板48に対して斜めに入射した第2偏光Lsを光拡散板48の光出射面の法線方向(Z方向)に拡散させる。これにより、導光体4と対向する液晶パネル2(図1参照)に対してZ方向の光を供給することができ、液晶パネル2のコントラストを向上することができる。 The light diffusion plate 48 diffuses the second polarized light Ls that travels obliquely inside the liquid crystal layer 45 and enters the light diffusion plate 48 obliquely in the normal direction (Z direction) of the light exit surface of the light diffusion plate 48. Let Thereby, the light of a Z direction can be supplied with respect to the liquid crystal panel 2 (refer FIG. 1) facing the light guide 4, and the contrast of the liquid crystal panel 2 can be improved.
 図5は、液晶表示装置1の電気的構成を示すブロック図である。 FIG. 5 is a block diagram showing an electrical configuration of the liquid crystal display device 1.
 液晶表示装置1は、液晶パネル2と、バックライトユニット3と、映像信号制御回路30と、階調制御回路31と、ゲート線駆動回路32と、データ線駆動回路33と、光源制御回路34と、光源駆動回路35と、導光パネル駆動回路36と、を備える。 The liquid crystal display device 1 includes a liquid crystal panel 2, a backlight unit 3, a video signal control circuit 30, a gradation control circuit 31, a gate line driving circuit 32, a data line driving circuit 33, and a light source control circuit 34. A light source drive circuit 35 and a light guide panel drive circuit 36.
 液晶パネル2の第1基板上には、複数のゲート線21と複数のデータ線22とが格子状に配置されている。ゲート線21とデータ線22との各交差部に対応して薄膜トランジスタ(Thin Film Transistor;TFT)23が設けられている。薄膜トランジスタ23のゲートはゲート線21と接続されており、ソースはデータ線22と接続されており、ドレインは画素電極24と接続されている。画素電極24と対向する液晶パネル2の第2基板上の位置には、対向電極26が設けられている。対向電極26には、図示略の電源回路によって対向電極電位Vcomが供給される。画素電極24と対向電極26との間には、液晶層25が挟持されている。1つの画素電極24と対向電極26によって液晶層25の配向が制御される領域が、表示の最小単位である表示要素PXである。 On the first substrate of the liquid crystal panel 2, a plurality of gate lines 21 and a plurality of data lines 22 are arranged in a lattice pattern. A thin film transistor (TFT) 23 is provided corresponding to each intersection of the gate line 21 and the data line 22. The thin film transistor 23 has a gate connected to the gate line 21, a source connected to the data line 22, and a drain connected to the pixel electrode 24. A counter electrode 26 is provided at a position on the second substrate of the liquid crystal panel 2 facing the pixel electrode 24. A counter electrode potential Vcom is supplied to the counter electrode 26 by a power supply circuit (not shown). A liquid crystal layer 25 is sandwiched between the pixel electrode 24 and the counter electrode 26. A region where the orientation of the liquid crystal layer 25 is controlled by one pixel electrode 24 and the counter electrode 26 is a display element PX which is a minimum unit of display.
 バックライトユニット3には、複数のストライプ状の伝播領域501~505と、複数のストライプ状の切り換え領域401~405と、が格子状に配置されている。伝播領域501~505は、導光体4の内部に形成される。切り換え領域401~405は、導光体4の内部を伝播する光の点灯状態と非点灯状態とを切り換える。
 伝播領域501~505は、導光体4の内部を光が伝播する領域である。
In the backlight unit 3, a plurality of stripe-shaped propagation areas 501 to 505 and a plurality of stripe-shaped switching areas 401 to 405 are arranged in a lattice pattern. The propagation areas 501 to 505 are formed inside the light guide 4. The switching areas 401 to 405 switch between a lighting state and a non-lighting state of light propagating inside the light guide 4.
The propagation areas 501 to 505 are areas in which light propagates inside the light guide 4.
 各切り換え領域401~405には、切り換え制御を行うための第1電極43が形成されている。伝播領域501~505と切り換え領域401~405とが重なる領域が、サブ照明領域Aである。導光体4には、複数のサブ照明領域Aが、X方向とY方向に沿ってマトリクス状に設けられている。図5では、光源5の数を5つとし、切り換え領域401~405の数を5本としているが、光源と切り換え領域の数はこれに限定されない。 In each switching region 401 to 405, a first electrode 43 for performing switching control is formed. A region where the propagation regions 501 to 505 overlap with the switching regions 401 to 405 is a sub illumination region A. In the light guide 4, a plurality of sub illumination areas A are provided in a matrix along the X direction and the Y direction. In FIG. 5, the number of light sources 5 is five and the number of switching areas 401 to 405 is five. However, the number of light sources and switching areas is not limited to this.
 映像信号制御回路30は、外部から入力された映像信号に基づいて、画像制御信号と光源制御信号とを生成する。 The video signal control circuit 30 generates an image control signal and a light source control signal based on a video signal input from the outside.
 光源制御信号は、光源5毎に出射光の光量を指示し、定められたタイミングで出射させる信号である。出射光の光量は、サブ照明領域Aに対応する液晶パネル2の表示部分の画像の明るさ(外部から入力される映像信号の階調値)に応じて設定される。例えば、暗い画像が表示されている部分では、サブ照明領域Aから出射する光(サブ照明領域Aに対応した光源5からの出射光)の光量を小さくする。一方、明るい画像が表示されている部分では、サブ照明領域Aから出射する光(サブ照明領域Aに対応した光源5からの出射光)の光量を大きくする。これにより、液晶パネル2の表示領域全体に常に最大光量の光を照射し続ける構成に比べて、消費電力を低減でき、コントラストも向上することができる。 The light source control signal is a signal for instructing the amount of emitted light for each light source 5 and emitting the light at a predetermined timing. The amount of the emitted light is set according to the brightness of the image of the display portion of the liquid crystal panel 2 corresponding to the sub illumination area A (the gradation value of the video signal input from the outside). For example, in a portion where a dark image is displayed, the amount of light emitted from the sub illumination area A (light emitted from the light source 5 corresponding to the sub illumination area A) is reduced. On the other hand, in a portion where a bright image is displayed, the amount of light emitted from the sub illumination area A (light emitted from the light source 5 corresponding to the sub illumination area A) is increased. Thereby, compared with the structure which always irradiates the light of the maximum light quantity to the whole display area of the liquid crystal panel 2, power consumption can be reduced and contrast can also be improved.
 画像制御信号は、液晶パネル2の各表示要素PXにどのような階調を与えるかを定める信号である。導光体4から出射する光の光量は、サブ照明領域A毎に制御される。そのため、実際に各表示要素PXで求められる階調の値は、映像信号から得られた階調信号に対して、各表示要素PXに出射するサブ照明領域Aからの出射光の光量に応じた補正(伸張処理)が加えられたものである。 The image control signal is a signal that determines what gradation is to be given to each display element PX of the liquid crystal panel 2. The amount of light emitted from the light guide 4 is controlled for each sub illumination area A. Therefore, the gradation value actually obtained for each display element PX corresponds to the amount of light emitted from the sub-illumination area A emitted to each display element PX with respect to the gradation signal obtained from the video signal. Correction (extension processing) is added.
 階調制御回路31は画像制御信号に基づいて水平駆動信号と垂直駆動信号とを生成する。ゲート線駆動回路32は、水平駆動信号に基づいて1垂直走査期間内に液晶パネル2の複数のゲート線21を、S1、S2、S3、・・・、Smの順に順次選択する。データ線駆動回路33は、水平駆動信号に基づいて、1水平走査期間内に液晶パネル2の複数のデータ線22に対して、D1、D2、D3、・・・、Dnの順に順次階調信号を供給する。これにより、液晶パネル2の表示領域2Aに1フレーム分の画像が表示される。 The gradation control circuit 31 generates a horizontal drive signal and a vertical drive signal based on the image control signal. The gate line driving circuit 32 sequentially selects the plurality of gate lines 21 of the liquid crystal panel 2 in the order of S1, S2, S3,..., Sm within one vertical scanning period based on the horizontal driving signal. Based on the horizontal drive signal, the data line drive circuit 33 sequentially outputs the grayscale signals in the order of D1, D2, D3,..., Dn to the plurality of data lines 22 of the liquid crystal panel 2 within one horizontal scanning period. Supply. As a result, an image for one frame is displayed in the display area 2 </ b> A of the liquid crystal panel 2.
 光源制御回路34は、光源制御信号に基づいて、光源駆動信号と導光パネル駆動信号とを生成する。光源駆動信号は、各光源5が出射すべき出射光の輝度、点灯時間及び出射タイミングを示す信号である。輝度は、光源5を駆動する駆動電流の大きさに依存する。光源5から出射する光の光量は、輝度を一定とした場合、パルス幅変調(Pulse Width Modulation;PWM)によって光源5の点灯時間を制御することにより、制御される。導光パネル駆動信号は、各切り換え領域401~405を異方相状態とするタイミングを示す信号である。 The light source control circuit 34 generates a light source drive signal and a light guide panel drive signal based on the light source control signal. The light source drive signal is a signal indicating the brightness, lighting time, and emission timing of the emitted light that each light source 5 should emit. The luminance depends on the magnitude of the drive current that drives the light source 5. The amount of light emitted from the light source 5 is controlled by controlling the lighting time of the light source 5 by pulse width modulation (PWM) when the luminance is constant. The light guide panel drive signal is a signal indicating the timing when each of the switching regions 401 to 405 is in an anisotropic phase state.
 導光パネル駆動回路36は、導光パネル駆動信号に基づいて、1垂直走査期間内に導光体4の複数の第1電極43を個別に選択し、切り換え領域401~405の点灯と非点灯とを切り換える。光源駆動回路35は、光源駆動信号に基づいて、1水平走査期間内に各光源5から指定された輝度及び点灯時間で光を出射させる。これにより、複数のサブ照明領域Aから、光源駆動回路35によって制御された光量の光が液晶パネル2に向けて出射する。 The light guide panel drive circuit 36 individually selects the plurality of first electrodes 43 of the light guide 4 within one vertical scanning period based on the light guide panel drive signal, and turns on / off the switching areas 401 to 405. Switch between and. Based on the light source drive signal, the light source drive circuit 35 emits light with the brightness and lighting time designated from each light source 5 within one horizontal scanning period. Thereby, the light of the light quantity controlled by the light source drive circuit 35 is emitted from the plurality of sub illumination areas A toward the liquid crystal panel 2.
 図6は、Z方向から見た複数のサブ照明領域A11~A55の平面図である。 FIG. 6 is a plan view of a plurality of sub illumination areas A 11 to A 55 viewed from the Z direction.
 導光体4には、液晶パネル2(図1参照)に向けて出射する光の光量を独立に制御可能な複数のサブ照明領域A11~A55が設けられている。サブ照明領域A11~A55は、複数の切り換え領域401~405と複数の伝播領域501~505とが格子状に配置されることにより形成される。サブ照明領域A11~A55から出射する光の光量は、伝播経路501~505に沿って光を入射させる光源5(図1参照)の輝度及び点灯時間によって制御される。 The light guide 4 is provided with a plurality of sub illumination areas A 11 to A 55 that can independently control the amount of light emitted toward the liquid crystal panel 2 (see FIG. 1). The sub illumination areas A 11 to A 55 are formed by arranging a plurality of switching areas 401 to 405 and a plurality of propagation areas 501 to 505 in a grid pattern. The amount of light emitted from the sub illumination areas A 11 to A 55 is controlled by the luminance and lighting time of the light source 5 (see FIG. 1) that makes the light incident along the propagation paths 501 to 505.
 図7(a)~図7(f)は、光源51~55と切り換え領域401~405の制御方法の一例を示す図である。図7(a)~図7(e)は、処理の流れを時間順に示している。図7(a)~図7(e)の左側部分は、切り換え領域の選択位置を示している。図7(f)は、図7(a)~図7(e)の処理によって得られた出射光の光量分布を示す図である。図7(a)~図7(f)では、図1に示した複数の光源5の符号を、便宜上、異なる符号(51~55)で記載している。 7 (a) to 7 (f) are diagrams showing an example of a method for controlling the light sources 51 to 55 and the switching areas 401 to 405. FIG. FIGS. 7A to 7E show the flow of processing in time order. The left part of FIGS. 7A to 7E shows the selection position of the switching area. FIG. 7 (f) is a diagram showing the light amount distribution of the emitted light obtained by the processes of FIGS. 7 (a) to 7 (e). 7A to 7F, the reference numerals of the plurality of light sources 5 shown in FIG. 1 are indicated by different reference numerals (51 to 55) for convenience.
 まず、図7(a)に示すように、時間t0からt1までの期間において、1行目の切り換え領域401が異方相状態に切り換えられる。この切り換えタイミングに合せて、時間t0からt1までの期間内に各光源51~55から所定の光量の光が射出される。図7(a)では、例えば、光源51と光源52の光量はI1であり、光源53の光量はI2であり、光源54と光源55の光量は0である。 First, as shown in FIG. 7A, in the period from time t0 to t1, the switching area 401 in the first row is switched to the anisotropic phase state. In accordance with this switching timing, a predetermined amount of light is emitted from each of the light sources 51 to 55 within a period from time t0 to t1. In FIG. 7A, for example, the light amounts of the light source 51 and the light source 52 are I1, the light amount of the light source 53 is I2, and the light amounts of the light source 54 and the light source 55 are zero.
 次に、図7(b)に示すように、時間t1からt2までの期間において2行目の切り換え領域402が異方相状態に切り換えられる。この切り換えタイミングに合せて、時間t1からt2までの期間内に、各光源51~55から所定の光量の光が射出される。図7(b)では、例えば、光源51と光源53の光量はI1であり、光源52の光量はI3であり、光源54と光源55の光量は0である。 Next, as shown in FIG. 7B, the switching area 402 in the second row is switched to the anisotropic phase state in the period from time t1 to t2. In accordance with this switching timing, a predetermined amount of light is emitted from each of the light sources 51 to 55 within a period from time t1 to t2. In FIG. 7B, for example, the light amounts of the light source 51 and the light source 53 are I1, the light amount of the light source 52 is I3, and the light amounts of the light source 54 and the light source 55 are zero.
 次に、図7(c)に示すように、時間t2からt3までの期間において、3行目の切り換え領域403が異方相状態に切り換えられる。この切り換えタイミングに合せて、時間t2からt3までの期間内に各光源51~55から所定の光量の光が射出される。図7(c)では、例えば、光源51と光源53と光源55の光量はI2であり、光源52と光源54の光量はI1である。 Next, as shown in FIG. 7C, the switching region 403 in the third row is switched to the anisotropic phase state in the period from time t2 to t3. In accordance with this switching timing, a predetermined amount of light is emitted from each of the light sources 51 to 55 within a period from time t2 to t3. In FIG. 7C, for example, the light amounts of the light source 51, the light source 53, and the light source 55 are I2, and the light amounts of the light source 52 and the light source 54 are I1.
 次に、図7(d)に示すように、時間t3からt4までの期間において、4行目の切り換え領域404が異方相状態に切り換えられる。この切り換えタイミングに合せて、時間t3からt4までの期間内に各光源51~55から所定の光量の光が射出される。図7(d)では、例えば、光源54の光量はI2であり、光源55の光量はI1であり、光源51と光源52と光源53の光量は0である。 Next, as shown in FIG. 7 (d), in the period from time t3 to t4, the switching area 404 in the fourth row is switched to the anisotropic phase state. In accordance with this switching timing, a predetermined amount of light is emitted from each of the light sources 51 to 55 within a period from time t3 to t4. In FIG. 7D, for example, the light amount of the light source 54 is I2, the light amount of the light source 55 is I1, and the light amounts of the light source 51, the light source 52, and the light source 53 are zero.
 次に、図7(e)に示すように、時間t4からt5までの期間において、5行目の切り換え領域405が異方相状態に切り換えられる。この切り換えタイミングに合せて、時間t4からt5までの期間内に、各光源51~55から所定の光量の光が射出される。図7(e)では、例えば、光源51、光源52、光源53、光源54及び光源55の光量はいずれも0である。 Next, as shown in FIG. 7E, the switching area 405 in the fifth row is switched to the anisotropic phase state in the period from time t4 to t5. In accordance with this switching timing, a predetermined amount of light is emitted from each of the light sources 51 to 55 within a period from time t4 to t5. In FIG. 7E, for example, the light amounts of the light source 51, the light source 52, the light source 53, the light source 54, and the light source 55 are all zero.
 図7(f)は、時間t1からt5までの期間に導光体6から出射された光の光量分布を示す図である。この光量分布は、1フレーム分の画像の明るさ分布に基づいて制御される。図7(f)の光量分布では、導光体4の左上と右下の光量が大きく、導光体6の右上と左下の光量が小さい。よって、表示画像としては、画面の左上と右下が明るく、画面の右上と左下が暗い画像表示を行う場合に適した光量分布となっている。 FIG. 7 (f) is a diagram showing a light amount distribution of light emitted from the light guide 6 during a period from time t1 to t5. This light quantity distribution is controlled based on the brightness distribution of the image for one frame. In the light amount distribution of FIG. 7 (f), the upper left and lower right light amounts of the light guide 4 are large, and the upper right and lower left light amounts of the light guide 6 are small. Therefore, the display image has a light amount distribution suitable for displaying an image with bright upper left and lower right of the screen and dark upper right and lower left of the screen.
 各サブ照明領域A11~A55から出射する光の光量は、各サブ照明領域に対応する表示画像の明るさに応じて独立に制御される。液晶パネル2の各表示要素に供給する映像信号は、サブ照明領域から出射する光の光量に応じて伸張処理される。液晶表示装置1では、調光制御と、伸張制御とを組み合わせたエリアアクティブ制御により、消費電力が小さく、コントラストの高い画像表示が可能である。調光制御では、各サブ照明領域A11~A55から出射する光の光量を調節する。伸張制御では、液晶パネル2の各表示要素の映像信号を伸張する。 The amount of light emitted from each of the sub illumination areas A 11 to A 55 is controlled independently according to the brightness of the display image corresponding to each sub illumination area. The video signal supplied to each display element of the liquid crystal panel 2 is expanded according to the amount of light emitted from the sub illumination area. The liquid crystal display device 1 can display images with low power consumption and high contrast by area active control that combines dimming control and expansion control. In the light control, the amount of light emitted from each of the sub illumination areas A 11 to A 55 is adjusted. In the expansion control, the video signal of each display element of the liquid crystal panel 2 is expanded.
 液晶表示装置1では、第1基板41の内部をY方向に伝播し第1基板41から液晶層45に対して斜めに入射した光の複屈折の大きさを変化させる。これにより、液晶層45の内部を斜めに進行し光拡散板48で拡散されて外部に射出される光の光量を制御する。そのため、エッジライト方式の薄型のバックライトユニット3を用いながら、エリアアクティブ制御による高品質な画像表示が可能である。 In the liquid crystal display device 1, the birefringence of light that propagates in the Y direction inside the first substrate 41 and enters the liquid crystal layer 45 obliquely from the first substrate 41 is changed. Thus, the amount of light that travels obliquely inside the liquid crystal layer 45 and is diffused by the light diffusion plate 48 and emitted to the outside is controlled. Therefore, high-quality image display by area active control is possible while using the thin backlight unit 3 of the edge light system.
 第1基板41の内部を伝播する光は、液晶層45に対して浅い角度(Z方向に対して臨界角以上の大きな角度)で入射することから、その進行方向は概ねY方向に平行である。
 通常の液晶パネルのように液晶層の層厚方向に光を入射させる場合と異なり、光は液晶層45の層厚方向と概ね直交する方向に進行する。そのため、液晶層45の内部を通過する光の距離が長く、その分、層厚の小さい液晶層45を用いた場合でも、光の偏光状態を大きく変化させることができる。液晶層45の層厚を小さくすることで、第1電極43と第2電極44との間に印加する電圧の大きさを小さくすることができる。ブルー相の液晶層45は、駆動電圧が高いことが知られているが、液晶層45の層厚を小さくすることで、駆動電圧を小さくし、消費電力を低減することが可能となる。
Since the light propagating through the first substrate 41 is incident on the liquid crystal layer 45 at a shallow angle (a large angle greater than the critical angle with respect to the Z direction), the traveling direction is substantially parallel to the Y direction. .
Unlike the case where light is incident in the thickness direction of the liquid crystal layer as in a normal liquid crystal panel, the light travels in a direction substantially perpendicular to the thickness direction of the liquid crystal layer 45. Therefore, even when the distance of light passing through the liquid crystal layer 45 is long and the liquid crystal layer 45 having a small thickness is used, the polarization state of the light can be greatly changed. By reducing the thickness of the liquid crystal layer 45, the magnitude of the voltage applied between the first electrode 43 and the second electrode 44 can be reduced. The blue phase liquid crystal layer 45 is known to have a high driving voltage. However, by reducing the thickness of the liquid crystal layer 45, the driving voltage can be reduced and the power consumption can be reduced.
[第1実施形態の第1変形例]
 図9は、第1実施形態のバックライトユニット3の第1変形例である。
[First Modification of First Embodiment]
FIG. 9 is a first modification of the backlight unit 3 of the first embodiment.
 図9に示す第1実施形態の第1変形例では、光拡散板48と光学層46との間の偏光層47が省略されている。この構成でも図5のバックライトユニット3と同様の作用を生じる。 In the first modification of the first embodiment shown in FIG. 9, the polarizing layer 47 between the light diffusing plate 48 and the optical layer 46 is omitted. This configuration also produces the same effect as the backlight unit 3 in FIG.
[第1実施形態の第2変形例]
 図10は、第1実施形態のバックライトユニット3の第2変形例である。
[Second Modification of First Embodiment]
FIG. 10 is a second modification of the backlight unit 3 of the first embodiment.
 図10に示す第1実施形態の第2変形例では、第1基板41の光入射面に設けられていた偏光層60が省略されている。また、第1基板41の光入射面である第1の端面とは異なる第2の端面(例えば、光入射面が設けられた辺と対向する辺に設けられた端面)に、第1基板41の内部を伝播した第2偏光Lsを第1偏光Lpに変換する偏光変換層62が設けられている。偏光変換層62は、例えば、第2の端面に配置されたλ/4層62aと、λ/4層62aを透過して円偏光となった第2偏光Lsを反射する反射層62bと、を備える。 In the second modification of the first embodiment shown in FIG. 10, the polarizing layer 60 provided on the light incident surface of the first substrate 41 is omitted. Further, the first substrate 41 is arranged on a second end surface different from the first end surface that is the light incident surface of the first substrate 41 (for example, an end surface provided on a side opposite to the side on which the light incident surface is provided). A polarization conversion layer 62 is provided for converting the second polarized light Ls propagating through the first polarized light Lp into the first polarized light Lp. The polarization conversion layer 62 includes, for example, a λ / 4 layer 62a disposed on the second end face, and a reflective layer 62b that reflects the second polarized light Ls that has passed through the λ / 4 layer 62a and has become circularly polarized light. Prepare.
 光源から射出された第1偏光Lpと第2偏光Lsとを含む光は、第1基板41の光入射面から第1基板41の内部に入射する。液晶層45の屈折率は、第1偏光Lpを透過し、第2偏光Lsを全反射する屈折率となっている。例えば、液晶層45が等方相である場合(電界無印加状態)の平均屈折率をnDとし、異方相状態である場合(電界印加状態)の常光の屈折率をnoとし、異常光の屈折率をneとし、液晶層45と界面をなす第1基板41又は第1電極の屈折率をnWとする。このとき、no≦nD≦nW≦neの関係が成り立てば、上記の動作が可能となる。 The light including the first polarized light Lp and the second polarized light Ls emitted from the light source enters the first substrate 41 from the light incident surface of the first substrate 41. The refractive index of the liquid crystal layer 45 is a refractive index that transmits the first polarized light Lp and totally reflects the second polarized light Ls. For example, when the liquid crystal layer 45 is in an isotropic phase (no electric field applied state), the average refractive index is nD, and when the liquid crystal layer 45 is in an anisotropic phase state (electric field applied state), the ordinary light refractive index is no, The refractive index is ne, and the refractive index of the first substrate 41 or the first electrode that forms an interface with the liquid crystal layer 45 is nW. At this time, if the relationship of no ≦ nD ≦ nW ≦ ne is established, the above operation is possible.
 第1基板41の内部を伝播した第2偏光Lsは、偏光変換層62で第1偏光Lpに変換され、異方相状態(電界印加状態)のサブ照明領域から光拡散板48を介して外部に出射する。第1実施形態の第2変形例では、偏光層60によって吸収される光の成分が発生しないため、光源から射出された光を効率よく利用することができる。 The second polarized light Ls that has propagated through the first substrate 41 is converted into the first polarized light Lp by the polarization conversion layer 62, and is externally transmitted from the sub-illumination region in the anisotropic phase state (electric field applied state) through the light diffusion plate 48. To exit. In the second modification of the first embodiment, the light component absorbed by the polarizing layer 60 is not generated, so that the light emitted from the light source can be used efficiently.
[第2実施形態]
 図11は、第2実施形態の液晶表示装置6の分解斜視図である。液晶表示装置6において第1実施形態の液晶表示装置1と共通する構成要素については、同じ符号を付し、それらの詳細な説明は省略する。
[Second Embodiment]
FIG. 11 is an exploded perspective view of the liquid crystal display device 6 of the second embodiment. In the liquid crystal display device 6, the same reference numerals are given to components common to the liquid crystal display device 1 of the first embodiment, and detailed description thereof will be omitted.
 液晶表示装置6は、液晶パネル2と、バックライトユニット(液晶装置)7と、を備える。 The liquid crystal display device 6 includes a liquid crystal panel 2 and a backlight unit (liquid crystal device) 7.
 バックライトユニット7は、複数の光源5と、導光体8と、を備える。導光体8は、複数の光源5から入射した光を面状に広げて液晶パネル2に向けて出射する。 The backlight unit 7 includes a plurality of light sources 5 and a light guide 8. The light guide 8 spreads light incident from the plurality of light sources 5 in a planar shape and emits the light toward the liquid crystal panel 2.
 導光体8は、第1基板41と、第2基板42と、を備えた導光パネルである。第2基板42は、第1基板41と対向配置される。
 第1基板41は、端面41aに光入射面を有する導光板である。第1基板41と第2基板42とが対向する対向領域の周縁部には、矩形枠状のシール材49が設けられ、第1基板41、第2基板42及びシール材49によって囲まれた空間に液晶層が封入されている。
The light guide 8 is a light guide panel including a first substrate 41 and a second substrate 42. The second substrate 42 is disposed to face the first substrate 41.
The first substrate 41 is a light guide plate having a light incident surface on the end surface 41a. A rectangular frame-shaped sealing material 49 is provided at the peripheral edge of the facing region where the first substrate 41 and the second substrate 42 face each other, and the space surrounded by the first substrate 41, the second substrate 42, and the sealing material 49. The liquid crystal layer is enclosed in
 シール材49の内側には、点灯状態(ON状態)と、非点灯状態(OFF状態)とを切り換え可能な複数のストライプ状の切り換え領域401、402、403、404、405が設けられている。点灯状態(ON状態)では、導光体8の内部を伝播する光を導光体8の外部に出射させる。非点灯状態(OFF状態)では、導光体8の内部を伝播する光を導光体8の外部に出射させない。
 複数の切り換え領域401~405は、Y方向に互いに隣接して配置されている。
A plurality of stripe-shaped switching areas 401, 402, 403, 404, and 405 that can be switched between a lighting state (ON state) and a non-lighting state (OFF state) are provided inside the sealing material 49. In the lighting state (ON state), light propagating inside the light guide 8 is emitted to the outside of the light guide 8. In the non-lighting state (OFF state), the light propagating inside the light guide 8 is not emitted to the outside of the light guide 8.
The plurality of switching areas 401 to 405 are arranged adjacent to each other in the Y direction.
 図12は、バックライトユニット7のYZ平面に平行な断面図である。 FIG. 12 is a cross-sectional view of the backlight unit 7 parallel to the YZ plane.
 導光体8は、第1基板41と、第2基板42と、液晶層45と、光拡散板48と、を備える。第2基板42は、第1基板41と対向配置される。液晶層45は、第1基板41と第2基板42との間に挟持される。光拡散板48は、第2基板42の外面側(液晶層45とは反対側)に設けられる。 The light guide 8 includes a first substrate 41, a second substrate 42, a liquid crystal layer 45, and a light diffusion plate 48. The second substrate 42 is disposed to face the first substrate 41. The liquid crystal layer 45 is sandwiched between the first substrate 41 and the second substrate 42. The light diffusing plate 48 is provided on the outer surface side (the side opposite to the liquid crystal layer 45) of the second substrate 42.
 第1基板41の光入射面41aである第1の端面とは異なる第2の端面(例えば光入射面41aが設けられた辺と対向する辺に設けられた端面)には、第1基板41の内部を伝播し、その端面に入射した第2偏光Lsを第1偏光Lpに変換して第1基板41の内部に向けて反射する偏光変換層62が設けられている。第1偏光Lpは、第1基板41の内部を伝播し第1基板41から液晶層45に対してP偏光として入射するYZ平面に平行な偏光である。第2偏光Lsは、第1偏光Lpと直交する偏光である。偏光変換層62は、例えば、図10に示したように、λ/4層62aと、反射層62bと、を備える。λ/4層62aは、第2の端面に配置される。反射層62bは、λ/4層62aを透過して円偏光となった第2偏光Lsを反射する。 The first substrate 41 is provided on a second end surface different from the first end surface that is the light incident surface 41a of the first substrate 41 (for example, an end surface provided on a side opposite to the side on which the light incident surface 41a is provided). There is provided a polarization conversion layer 62 that propagates through the substrate and converts the second polarized light Ls incident on the end face thereof into the first polarized light Lp and reflects it toward the inside of the first substrate 41. The first polarized light Lp is polarized light parallel to the YZ plane that propagates through the first substrate 41 and enters the liquid crystal layer 45 from the first substrate 41 as P-polarized light. The second polarized light Ls is polarized light orthogonal to the first polarized light Lp. For example, as illustrated in FIG. 10, the polarization conversion layer 62 includes a λ / 4 layer 62a and a reflective layer 62b. The λ / 4 layer 62a is disposed on the second end face. The reflective layer 62b reflects the second polarized light Ls that has passed through the λ / 4 layer 62a and has become circularly polarized light.
 光源5と光入射面41aとの間の光の光路上には、偏光層は設けられていない。光源5から射出された第1偏光Lpと第2偏光Lsとを含む光は、第1基板41の光入射面41aから第1基板41の内部に入射する。 A polarizing layer is not provided on the light path between the light source 5 and the light incident surface 41a. Light including the first polarized light Lp and the second polarized light Ls emitted from the light source 5 enters the first substrate 41 from the light incident surface 41 a of the first substrate 41.
 液晶層45は、ブルー相を示す誘電異方性が正の液晶を含む。液晶層45の屈折率は、第1偏光Lpを透過し、第2偏光Lsを全反射する屈折率となっている。例えば、液晶層45が等方相である場合(電界無印加状態)の平均屈折率をnDとし、異方相状態である場合(電界印加状態)の常光の屈折率をnoとし、異常光の屈折率をneとし、液晶層45と界面をなす第1基板41又は第1電極の屈折率をnWとすると、no≦nD≦nW≦neの関係が成り立つ。 The liquid crystal layer 45 includes a liquid crystal having a positive dielectric anisotropy indicating a blue phase. The refractive index of the liquid crystal layer 45 is a refractive index that transmits the first polarized light Lp and totally reflects the second polarized light Ls. For example, when the liquid crystal layer 45 is in an isotropic phase (no electric field applied state), the average refractive index is nD, and when the liquid crystal layer 45 is in an anisotropic phase state (electric field applied state), the ordinary light refractive index is no, Assuming that the refractive index is ne and the refractive index of the first substrate 41 or the first electrode forming an interface with the liquid crystal layer 45 is nW, the relationship of no ≦ nD ≦ nW ≦ ne is established.
 第1電極43と第2電極44との間にZ方向の電界を発生させない電界非印加状態では、液晶層45に入射した第1偏光Lp及び第2偏光Lsは、平均屈折率nDで屈折する。平均屈折率nDは第1電極43の屈折率nWよりも小さいため、第1偏光Lp及び第2偏光Lsは、液晶層45と第1電極43との界面で全反射されて第1基板41の内部を概ねY方向に伝播する。第1電極43と第2電極44との間に電圧を印加しない領域では、光が外部に出射しない。よって、非点灯状態(OFF状態)となる。 In a state in which no electric field in the Z direction is generated between the first electrode 43 and the second electrode 44, the first polarized light Lp and the second polarized light Ls incident on the liquid crystal layer 45 are refracted with an average refractive index nD. . Since the average refractive index nD is smaller than the refractive index nW of the first electrode 43, the first polarized light Lp and the second polarized light Ls are totally reflected at the interface between the liquid crystal layer 45 and the first electrode 43, and Propagates the interior in the Y direction. In a region where no voltage is applied between the first electrode 43 and the second electrode 44, no light is emitted to the outside. Therefore, it becomes a non-lighting state (OFF state).
 第1電極43と第2電極44との間に電界を発生させた電界印加状態では、液晶層45に入射した第1偏光Lpは、異常光の屈折率neで屈折し、第2偏光Lsは、常光の屈折率noで屈折する。異常光の屈折率neは、第1電極43の屈折率nWよりも大きい。そのため、第1偏光Lpは、液晶層45と第1電極43との界面を透過し、液晶層45の内部を斜めに進行して、第2電極44、第2基板42及び光拡散板48を介して外部に出射する。常光の屈折率noは、第1電極43の屈折率nWよりも小さい。そのため、第2偏光Lsは、液晶層45と第1電極43との界面で全反射されて、第1基板41の内部を概ねY方向に伝播する。そして、偏光変換層62で第1偏光Lpに変換され、電界が印加された領域の液晶層45を透過し、液晶層45の内部を斜めに進行して、第2電極44、第2基板42及び光拡散板48を介して外部に出射する。第1電極43と第2電極44との間に電圧を印加した領域では、光が外部に出射する。よって、点灯状態(ON状態)となる。 In an electric field application state in which an electric field is generated between the first electrode 43 and the second electrode 44, the first polarized light Lp incident on the liquid crystal layer 45 is refracted by the refractive index ne of extraordinary light, and the second polarized light Ls is Refracts at the refractive index no of ordinary light. The refractive index ne of extraordinary light is larger than the refractive index nW of the first electrode 43. Therefore, the first polarized light Lp is transmitted through the interface between the liquid crystal layer 45 and the first electrode 43 and travels obliquely inside the liquid crystal layer 45 to cause the second electrode 44, the second substrate 42, and the light diffusion plate 48 to pass through. To the outside. The refractive index no of ordinary light is smaller than the refractive index nW of the first electrode 43. Therefore, the second polarized light Ls is totally reflected at the interface between the liquid crystal layer 45 and the first electrode 43 and propagates in the first substrate 41 in the Y direction. Then, the light is converted into the first polarized light Lp by the polarization conversion layer 62, passes through the liquid crystal layer 45 in the region to which the electric field is applied, travels obliquely inside the liquid crystal layer 45, and enters the second electrode 44 and the second substrate 42. The light is emitted to the outside through the light diffusion plate 48. In a region where a voltage is applied between the first electrode 43 and the second electrode 44, light is emitted to the outside. Therefore, it will be in a lighting state (ON state).
 液晶表示装置6では、第1基板41の内部をY方向に伝播し第1基板41から液晶層45に対して斜めに入射した光の屈折率の大きさを変化させる。これにより、液晶層45の内部を斜めに進行し光拡散板48で拡散されて外部に射出される光の光量を制御する。そのため、エッジライト方式の薄型のバックライトユニット7を用いながら、エリアアクティブ制御による高品質な画像表示が可能である。 In the liquid crystal display device 6, the refractive index of light propagating in the Y direction through the first substrate 41 and incident obliquely on the liquid crystal layer 45 from the first substrate 41 is changed. Thus, the amount of light that travels obliquely inside the liquid crystal layer 45 and is diffused by the light diffusion plate 48 and emitted to the outside is controlled. Therefore, high-quality image display by area active control is possible while using the thin backlight unit 7 of the edge light system.
 液晶表示装置6では、光源5と第1基板41の光入射面41aとの間に偏光層が設けられていないので、偏光層によって吸収される光の成分が発生しない。よって、光源5から射出された光を効率よく利用することができる。 In the liquid crystal display device 6, since no polarizing layer is provided between the light source 5 and the light incident surface 41a of the first substrate 41, no light component is absorbed by the polarizing layer. Therefore, the light emitted from the light source 5 can be used efficiently.
[第2実施形態の第1変形例]
 図13A及び図13Bは、第2実施形態のバックライトユニット7の第1変形例である。図13Aは、液晶層45の内部に電界を発生させない電界非印加状態を示す図である。図13Bは、液晶層45の内部に電界を発生させた電界印加状態を示す図である。図13A及び図13Bでは、説明に必要な構成要素のみを図示している。
[First Modification of Second Embodiment]
13A and 13B are a first modification of the backlight unit 7 of the second embodiment. FIG. 13A is a diagram showing a state in which no electric field is applied in the liquid crystal layer 45 without generating an electric field. FIG. 13B is a diagram showing an electric field application state in which an electric field is generated inside the liquid crystal layer 45. In FIG. 13A and FIG. 13B, only components necessary for explanation are illustrated.
 図13A及び図13Bに示す第2実施形態の第1変形例では、ブルー相の液晶層を用いずに、誘電異方性が正のネマチック液晶46bを用いて、第1偏光Lpの伝播方向を含む面内で液晶45bの配向状態を変化させている。液晶層45は、電界無印加時の配向状態が、液晶層45の層厚方向と概ね直交する方向に配向する水平配向であり、電界印加時の配向状態が、液晶層45の層厚方向と概ね平行に配向する垂直配向である。液晶45bは、第1基板41の光入射面に光が入射する方向と、第1基板41の光拡散板48と対向する面の法線方向(Z方向)とを含む面内で配向状態が変化する。液晶層45の常光の屈折率をnoとし、異常光の屈折率をneとし、液晶層45と界面をなす第1基板41又は第1電極の屈折率をnWとすると、no<nW<neの関係が成り立つ。 In the first modification of the second embodiment shown in FIGS. 13A and 13B, the nematic liquid crystal 46b having positive dielectric anisotropy is used instead of the blue phase liquid crystal layer, and the propagation direction of the first polarization Lp is changed. The alignment state of the liquid crystal 45b is changed in the plane including the same. The liquid crystal layer 45 is a horizontal alignment in which the alignment state when no electric field is applied is aligned in a direction substantially perpendicular to the layer thickness direction of the liquid crystal layer 45, and the alignment state when an electric field is applied is the layer thickness direction of the liquid crystal layer 45. It is a vertical alignment that is aligned substantially in parallel. The liquid crystal 45b has an alignment state in a plane including the direction in which light enters the light incident surface of the first substrate 41 and the normal direction (Z direction) of the surface facing the light diffusion plate 48 of the first substrate 41. Change. When the refractive index of ordinary light of the liquid crystal layer 45 is no, the refractive index of extraordinary light is ne, and the refractive index of the first substrate 41 or the first electrode forming an interface with the liquid crystal layer 45 is nW, no <nW <ne. A relationship is established.
 図13Aに示すように、電界非印加状態では、液晶層45に入射した第1偏光Lp及び第2偏光Lsは、常光の屈折率noで屈折する。常光の屈折率noは、第1電極43の屈折率nWよりも小さい。そのため、第1偏光Lp及び第2偏光Lsは、液晶層45と第1電極43との界面で全反射されて、第1基板41の内部を概ねY方向に伝播する。第1電極43と第2電極44との間に電圧を印加しない領域では、光が外部に出射しない。よって、非点灯状態(OFF状態)となる。 As shown in FIG. 13A, in the state where no electric field is applied, the first polarized light Lp and the second polarized light Ls incident on the liquid crystal layer 45 are refracted at the refractive index no of ordinary light. The refractive index no of ordinary light is smaller than the refractive index nW of the first electrode 43. Therefore, the first polarized light Lp and the second polarized light Ls are totally reflected at the interface between the liquid crystal layer 45 and the first electrode 43 and propagate in the first substrate 41 in the Y direction. In a region where no voltage is applied between the first electrode 43 and the second electrode 44, no light is emitted to the outside. Therefore, it becomes a non-lighting state (OFF state).
 図13Bに示すように、電界印加状態では、液晶層45に入射した第1偏光Lpは、異常光の屈折率neで屈折し、第2偏光Lsは、常光の屈折率noで屈折する。異常光の屈折率neは、第1電極43の屈折率nWよりも大きい。そのため、第1偏光Lpは、液晶層45と第1電極43との界面を透過し、液晶層45の内部を斜めに進行して、第2電極44、第2基板42及び光拡散板48を介して外部に出射する。常光の屈折率noは、第1電極43の屈折率nWよりも小さい。そのため、第2偏光Lsは、液晶層45と第1電極43との界面で全反射されて、第1基板41の内部を概ねY方向に伝播する。そして、偏光変換層62で第1偏光Lpに変換され、電界が印加された領域の液晶層45を透過し、液晶層45の内部を斜めに進行して、第2電極44、第2基板42及び光拡散板48を介して外部に出射する。第1電極43と第2電極44との間に電圧を印加した領域では、光が外部に出射する。よって、点灯状態(ON状態)となる。 As shown in FIG. 13B, in the electric field application state, the first polarized light Lp incident on the liquid crystal layer 45 is refracted with the refractive index ne of extraordinary light, and the second polarized light Ls is refracted with the refractive index no of ordinary light. The refractive index ne of extraordinary light is larger than the refractive index nW of the first electrode 43. Therefore, the first polarized light Lp is transmitted through the interface between the liquid crystal layer 45 and the first electrode 43 and travels obliquely inside the liquid crystal layer 45 to cause the second electrode 44, the second substrate 42, and the light diffusion plate 48 to pass through. To the outside. The refractive index no of ordinary light is smaller than the refractive index nW of the first electrode 43. Therefore, the second polarized light Ls is totally reflected at the interface between the liquid crystal layer 45 and the first electrode 43 and propagates in the first substrate 41 in the Y direction. Then, the light is converted into the first polarized light Lp by the polarization conversion layer 62, passes through the liquid crystal layer 45 in the region to which the electric field is applied, travels obliquely inside the liquid crystal layer 45, and enters the second electrode 44 and the second substrate 42. The light is emitted to the outside through the light diffusion plate 48. In a region where a voltage is applied between the first electrode 43 and the second electrode 44, light is emitted to the outside. Therefore, it will be in a lighting state (ON state).
 図13A及び図13Bのバックライトユニットは、液晶層45の配向形態がブルー相の液晶層と異なるが、概ね同じ作用によって点灯状態と非点灯状態とを制御することができる。 13A and 13B, although the alignment form of the liquid crystal layer 45 is different from that of the blue phase liquid crystal layer, the lighting state and the non-lighting state can be controlled by substantially the same action.
[第3実施形態]
 図14は、第3実施形態の液晶表示装置100の分解斜視図である。
[Third Embodiment]
FIG. 14 is an exploded perspective view of the liquid crystal display device 100 of the third embodiment.
 液晶表示装置100は、第1基板110と、複数の光源105と、第2基板111と、偏光層113と、光拡散板118と、を備える。光源105は、第1基板110の端面(光入射面)110aに光を入射する。第2基板111は、第1基板110と対向配置される。偏光層113は、第2基板111の外面側に設けられる。光拡散板118は、偏光層113の外面側に設けられる。
 第1基板110と第2基板111とが対向する対向領域の周縁部には、矩形枠状のシール材119が設けられている。第1基板110、第2基板111及びシール材119によって囲まれた空間に、図示略の液晶が封入されている。
The liquid crystal display device 100 includes a first substrate 110, a plurality of light sources 105, a second substrate 111, a polarizing layer 113, and a light diffusing plate 118. The light source 105 makes light incident on the end surface (light incident surface) 110 a of the first substrate 110. The second substrate 111 is disposed to face the first substrate 110. The polarizing layer 113 is provided on the outer surface side of the second substrate 111. The light diffusing plate 118 is provided on the outer surface side of the polarizing layer 113.
A rectangular frame-shaped sealing material 119 is provided at the peripheral edge of the facing region where the first substrate 110 and the second substrate 111 face each other. Liquid crystal (not shown) is sealed in a space surrounded by the first substrate 110, the second substrate 111, and the sealing material 119.
 シール材119の内側には、表示領域100Aが設けられている。表示領域100Aには、X方向に延びる複数のゲート線121と、Y方向に延びる複数のデータ線122とが、第1基板110上において平面視格子状に設けられている。ゲート線121とデータ線122との交差部には、赤色、緑色又は青色のいずれかの色に対応した表示要素が設けられている。第1基板110上には、複数の表示要素が、X方向及びY方向にマトリクス状に配置されており、複数の表示要素によって表示領域100Aが形成されている。 A display region 100A is provided inside the sealing material 119. In the display area 100 </ b> A, a plurality of gate lines 121 extending in the X direction and a plurality of data lines 122 extending in the Y direction are provided on the first substrate 110 in a lattice shape in plan view. A display element corresponding to any one of red, green, and blue is provided at the intersection between the gate line 121 and the data line 122. On the first substrate 110, a plurality of display elements are arranged in a matrix in the X direction and the Y direction, and a display region 100A is formed by the plurality of display elements.
 光源105は、例えば、白色光を発光する発光ダイオード(Light Emitting Diode;LED)である。光源105は、点状光源として利用できるものであれば良く、有機EL(Electro Luminescence)素子のようなものでも良い。光源105は、第1基板110の光入射面110aと対向する位置に複数個配置されている。図14では、光源105を5つ設けているが、光源105の数はこれに限らない。複数の光源105は、発光面を第1基板110の光入射面110aと対向させた状態でX方向に配列されている。光源105の構成は、図4に示した光源5の構成と同じである。 The light source 105 is, for example, a light emitting diode (LED) that emits white light. The light source 105 may be anything that can be used as a point light source, and may be an organic EL (Electro-Luminescence) element. A plurality of light sources 105 are arranged at positions facing the light incident surface 110 a of the first substrate 110. In FIG. 14, five light sources 105 are provided, but the number of light sources 105 is not limited to this. The plurality of light sources 105 are arranged in the X direction with the light emitting surface opposed to the light incident surface 110 a of the first substrate 110. The configuration of the light source 105 is the same as that of the light source 5 shown in FIG.
 図15は、液晶表示装置100のYZ平面に平行な断面図である。 FIG. 15 is a cross-sectional view of the liquid crystal display device 100 parallel to the YZ plane.
 液晶表示装置100は、第1基板110と、光源105と、第2基板111と、液晶層115と、光学層116と、偏光層113と、光拡散板118と、を備える。光源105は、第1基板110の端面(光入射面)110aに光を入射する。第2基板111は、第1基板110と対向配置される。液晶層115は、第1基板110と第2基板111との間に挟持される。光学層116は、第2基板111と液晶層115との間に設けられる。偏光層113は、第2基板111の外面側(液晶層115とは反対側)に設けられる。光拡散板118は、偏光層113の外面側に設けられる。 The liquid crystal display device 100 includes a first substrate 110, a light source 105, a second substrate 111, a liquid crystal layer 115, an optical layer 116, a polarizing layer 113, and a light diffusing plate 118. The light source 105 makes light incident on the end surface (light incident surface) 110 a of the first substrate 110. The second substrate 111 is disposed to face the first substrate 110. The liquid crystal layer 115 is sandwiched between the first substrate 110 and the second substrate 111. The optical layer 116 is provided between the second substrate 111 and the liquid crystal layer 115. The polarizing layer 113 is provided on the outer surface side of the second substrate 111 (the side opposite to the liquid crystal layer 115). The light diffusing plate 118 is provided on the outer surface side of the polarizing layer 113.
 第1基板110及び第2基板111は、ポリスチレンやガラスなどからなる透明な板材である。第1基板110の光源105と対向する端面は、光源105から出射した光が入射する光入射面110aである。第1基板110は、端面110aに光入射面を有する導光板である。光入射面110aは、XY平面に対して傾斜している。光入射面110aのXY平面に対する傾斜角は、光源105から概ね光入射面110aと直交する方向に射出された光が第1基板110の内部で全反射される角度とされている。 The first substrate 110 and the second substrate 111 are transparent plate materials made of polystyrene or glass. An end surface of the first substrate 110 facing the light source 105 is a light incident surface 110 a on which light emitted from the light source 105 is incident. The first substrate 110 is a light guide plate having a light incident surface on the end surface 110a. The light incident surface 110a is inclined with respect to the XY plane. The inclination angle of the light incident surface 110 a with respect to the XY plane is an angle at which light emitted from the light source 105 in a direction substantially orthogonal to the light incident surface 110 a is totally reflected inside the first substrate 110.
 光源105は、指向性光源であることが好ましい。全反射条件を満足する為には、第1基板110に入射した光の角度範囲が、半値幅5度以下程度に絞られている事が好ましい。 The light source 105 is preferably a directional light source. In order to satisfy the total reflection condition, it is preferable that the angle range of the light incident on the first substrate 110 is narrowed to about a half width of 5 degrees or less.
 第1基板110の光入射面110aとは異なる端面(例えば光入射面110aが設けられた辺と対向する辺に設けられた端面)には、反射層130が設けられている。反射層130は、第1基板110の内部を伝播する光であって、その端面に入射した光を、第1基板110の内部に向けて反射する。 The reflective layer 130 is provided on an end surface different from the light incident surface 110a of the first substrate 110 (for example, an end surface provided on a side opposite to the side on which the light incident surface 110a is provided). The reflective layer 130 is light that propagates inside the first substrate 110 and reflects the light incident on the end surface thereof toward the inside of the first substrate 110.
 第1基板110には、ITO(Indium Tin Oxide;インジウム錫酸化物)などの透明導電膜からなる複数の第1電極124が設けられている。第2基板124には、ITOなどの透明導電膜からなる第2電極125が、複数の第1電極124と対向して設けられている。第1電極124は、表示要素ごとに設けられた画素電極である。第2電極125は、複数の第1電極124に対して共通の共通電極(対向電極)である。1つの第1電極124と第2電極125によって液晶層115の配向が制御される領域(第1電極124と第2電極125とが対向する領域)が、1つの表示要素に対応した最小の表示領域である。図15では、Y方向に5つの第1電極124が設けられているが、実際には数百から数千の多数の第1電極124が設けられる。 The first substrate 110 is provided with a plurality of first electrodes 124 made of a transparent conductive film such as ITO (Indium Tin Oxide). A second electrode 125 made of a transparent conductive film such as ITO is provided on the second substrate 124 so as to face the plurality of first electrodes 124. The first electrode 124 is a pixel electrode provided for each display element. The second electrode 125 is a common electrode (counter electrode) common to the plurality of first electrodes 124. A region in which the orientation of the liquid crystal layer 115 is controlled by one first electrode 124 and one second electrode 125 (a region where the first electrode 124 and the second electrode 125 face each other) is the minimum display corresponding to one display element. It is an area. In FIG. 15, five first electrodes 124 are provided in the Y direction, but actually, hundreds to thousands of first electrodes 124 are provided.
 第2基板111の内面側(液晶層115側)には、1表示要素ごとに赤、緑、青のいずれか1色のカラーフィルタ117aが配置されてなるカラーフィルタ層117が設けられている。カラーフィルタ層117の内面側には、表示領域100aの全域にわたって、光学層116が設けられている。光学層116の内面側には、第2電極125が設けられている。第2基板111の外面側には、光学層116を透過した第2偏光Lsを透過する偏光層113が設けられている。偏光層113の外面側には、偏光層113を透過した第2偏光を拡散させて出射する光拡散板118が設けられている。 On the inner surface side (liquid crystal layer 115 side) of the second substrate 111, a color filter layer 117 is provided in which a color filter 117a of any one of red, green, and blue is arranged for each display element. On the inner surface side of the color filter layer 117, an optical layer 116 is provided over the entire display region 100a. A second electrode 125 is provided on the inner surface side of the optical layer 116. A polarizing layer 113 that transmits the second polarized light Ls that has passed through the optical layer 116 is provided on the outer surface side of the second substrate 111. A light diffusing plate 118 that diffuses and emits the second polarized light transmitted through the polarizing layer 113 is provided on the outer surface side of the polarizing layer 113.
 光源105と光入射面110aとの間の光の光路上には、第1偏光Lpを透過する偏光層112が設けられている。偏光層112は、例えば、YZ平面と光入射面110aとが交差する交差線と平行な透過軸を有する偏光板である。第1偏光Lpは、光学層116に対してP偏光として入射する光である。偏光層112は、光入射面110aに設置され、偏光層112を挟んで光源105の光出射面と第1基板110の光入射面110aとが対向している。光源105から射出された光のうち、第2電極125と光学層116との界面にS偏光として入射する第2偏光Lsは、偏光層112で吸収又は反射される。第2電極125と光学層116との界面にP偏光として入射する第1偏光Lpのみが、第1基板110の内部に入射する。 A polarizing layer 112 that transmits the first polarized light Lp is provided on the light path between the light source 105 and the light incident surface 110a. The polarizing layer 112 is, for example, a polarizing plate having a transmission axis parallel to the intersecting line where the YZ plane and the light incident surface 110a intersect. The first polarized light Lp is light that enters the optical layer 116 as P-polarized light. The polarizing layer 112 is installed on the light incident surface 110a, and the light emitting surface of the light source 105 and the light incident surface 110a of the first substrate 110 face each other with the polarizing layer 112 interposed therebetween. Of the light emitted from the light source 105, the second polarized light Ls that enters the interface between the second electrode 125 and the optical layer 116 as S-polarized light is absorbed or reflected by the polarizing layer 112. Only the first polarized light Lp that enters the interface between the second electrode 125 and the optical layer 116 as P-polarized light enters the first substrate 110.
 液晶層115は、ブルー相を示す誘電異方性が正の液晶を含む。ブルー相は、らせん軸が異なる方向を向いた複数のらせん状の構造体が、立体的に周期構造をとっている液晶相である。ブルー相自体は光学的に等方的で、電圧を印加することで、ネマチック相に転位する。液晶層115の配向は、第1電極124と第2電極125との間に発生する電界によって制御される。ブルー相の液晶層115は、カー効果(Kerr効果)を示す。液晶層115の屈折率は、電界強度の2乗に比例する。ブルー相の液晶の応答時間は、10マイクロ秒前後であり、通常のネマチック液晶の応答時間(10ミリ秒)よりも格段に短い。 The liquid crystal layer 115 includes a liquid crystal having a positive dielectric anisotropy indicating a blue phase. The blue phase is a liquid crystal phase in which a plurality of spiral structures having different spiral axes are in a three-dimensional periodic structure. The blue phase itself is optically isotropic, and is transformed to a nematic phase by applying a voltage. The orientation of the liquid crystal layer 115 is controlled by an electric field generated between the first electrode 124 and the second electrode 125. The blue phase liquid crystal layer 115 exhibits a Kerr effect (Kerr effect). The refractive index of the liquid crystal layer 115 is proportional to the square of the electric field strength. The response time of the blue phase liquid crystal is about 10 microseconds, which is much shorter than the response time of normal nematic liquid crystal (10 milliseconds).
 第1電極124と第2電極125との間にZ方向の電界を発生させた電界印加状態の液晶層115の屈折率と、第1電極124と第2電極125との間に電界を発生させない電界非印加状態の液晶層115の屈折率は、第1基板110、第2基板111、第1電極124及び第2電極125の屈折率と概ね等しい。そのため、第1基板110の光入射面110aから入射した光は、第1電極124、液晶層115及び第2電極125を透過して光学層116に至る。 An electric field is not generated between the first electrode 124 and the second electrode 125, and the refractive index of the liquid crystal layer 115 in an electric field application state in which an electric field in the Z direction is generated between the first electrode 124 and the second electrode 125. The refractive index of the liquid crystal layer 115 in a state where no electric field is applied is substantially equal to the refractive indexes of the first substrate 110, the second substrate 111, the first electrode 124, and the second electrode 125. Therefore, light incident from the light incident surface 110 a of the first substrate 110 passes through the first electrode 124, the liquid crystal layer 115, and the second electrode 125 and reaches the optical layer 116.
 光学層116は、入射する光の偏光状態に応じて屈折率が異なる光学異方体である。光学層116は、第1偏光Lpに対して相対的に屈折率が小さく、第2偏光Lsに対して相対的に屈折率が大きい。第1偏光Lpに対する光学層116の屈折率は、第2電極125の屈折率よりも小さい。よって、第2電極125から光学層116に入射した第1偏光Lpは、光学層116の表面で全反射される。第2偏光Lsに対する光学層116の屈折率は、第2電極125の屈折率と同等かそれよりも大きい。よって、第2電極125から光学層116に入射した第2偏光Lsは、光学層116を透過して第2基板111に入射する。 The optical layer 116 is an optical anisotropic body having a different refractive index depending on the polarization state of incident light. The optical layer 116 has a relatively small refractive index with respect to the first polarized light Lp and a relatively large refractive index with respect to the second polarized light Ls. The refractive index of the optical layer 116 with respect to the first polarized light Lp is smaller than the refractive index of the second electrode 125. Therefore, the first polarized light Lp incident on the optical layer 116 from the second electrode 125 is totally reflected on the surface of the optical layer 116. The refractive index of the optical layer 116 with respect to the second polarized light Ls is equal to or larger than the refractive index of the second electrode 125. Therefore, the second polarized light Ls incident on the optical layer 116 from the second electrode 125 passes through the optical layer 116 and enters the second substrate 111.
 電界非印加状態では、第1電極124と第2電極125との間に配置された液晶はブルー相と呼ばれる特殊な配向状態となる。よって、液晶層115は、光学的異方性を持たない光学等方相となる。液晶層115に入射した第1偏光Lpは、電界非印加状態では偏光状態を変えることなく光学層116に入射する。よって、第1偏光Lpは、光学層116の表面で反射され液晶表示装置100の内部を概ねY方向に伝播する。第1電極124と第2電極125との間に電圧を印加しない領域では、光が外部に出射しない。よって、非点灯状態(OFF状態)となる。 In an electric field non-application state, the liquid crystal disposed between the first electrode 124 and the second electrode 125 is in a special alignment state called a blue phase. Accordingly, the liquid crystal layer 115 has an optical isotropic phase having no optical anisotropy. The first polarized light Lp incident on the liquid crystal layer 115 is incident on the optical layer 116 without changing the polarization state when no electric field is applied. Therefore, the first polarized light Lp is reflected on the surface of the optical layer 116 and propagates in the liquid crystal display device 100 in the Y direction. In a region where no voltage is applied between the first electrode 124 and the second electrode 125, no light is emitted to the outside. Therefore, it becomes a non-lighting state (OFF state).
 電界印加状態では、第1電極124と第2電極125との間に配置された液晶は、概ねZ方向に配向する。そのため、液晶層115は、光学異方性を有する光学異方相となる。電界印加時の液晶層115は複屈折性を有するため、液晶層115に入射した第1偏光Lpは、液晶層115で偏光状態を楕円偏光又は第1偏光Lpと直交する第2偏光Ls(光学層116に対してS偏光として入射する直線偏光)に変換される。よって、液晶層115によって偏光状態が変換された第1偏光Lpの一部は、光学層116を透過して第2基板111に入射し、偏光層113に至る。 In the electric field application state, the liquid crystal disposed between the first electrode 124 and the second electrode 125 is generally aligned in the Z direction. Therefore, the liquid crystal layer 115 becomes an optically anisotropic phase having optical anisotropy. Since the liquid crystal layer 115 upon application of an electric field has birefringence, the first polarized light Lp incident on the liquid crystal layer 115 is elliptically polarized light in the liquid crystal layer 115 or second polarized light Ls (optical) orthogonal to the first polarized light Lp. Linearly polarized light that is incident on the layer 116 as S-polarized light). Therefore, a part of the first polarized light Lp whose polarization state is converted by the liquid crystal layer 115 passes through the optical layer 116 and enters the second substrate 111, and reaches the polarizing layer 113.
 偏光層113は、X方向と平行な透過軸を有する偏光板である。よって、光学層116を透過した第2偏光Lsは、偏光層113を透過し、光拡散板118で拡散されて外部に出射する。光拡散板118の表面は、液晶表示装置100の内部を伝播した光が出射する光出射面118aである。第1電極124と第2電極125との間に電圧を印加した領域では、光が外部に出射する。よって、点灯状態(ON状態)となる。 The polarizing layer 113 is a polarizing plate having a transmission axis parallel to the X direction. Therefore, the second polarized light Ls that has passed through the optical layer 116 passes through the polarizing layer 113, is diffused by the light diffusion plate 118, and is emitted to the outside. The surface of the light diffusing plate 118 is a light emitting surface 118 a from which light propagated through the liquid crystal display device 100 is emitted. In a region where a voltage is applied between the first electrode 124 and the second electrode 125, light is emitted to the outside. Therefore, it will be in a lighting state (ON state).
 光源105から第1基板110に入射する光の光量は、光源105によって照明される表示要素の画像の明るさ(外部から入力される映像信号の階調値)に応じて設定される。例えば、暗い画像が表示されている表示要素では、光源105から出射する光の光量を小さくする。一方、明るい画像が表示されている表示要素では、光源105から出射する光の光量を大きくする。これに伴って、表示要素に供給する映像信号は、光源105から出射する光の光量に応じて伸張処理される。これにより、表示領域全体に常に最大光量の光を照射し続ける構成に比べて、消費電力を低減でき、コントラストも向上することができる。 The amount of light incident on the first substrate 110 from the light source 105 is set according to the brightness of the image of the display element illuminated by the light source 105 (the gradation value of the video signal input from the outside). For example, in a display element displaying a dark image, the amount of light emitted from the light source 105 is reduced. On the other hand, for a display element displaying a bright image, the amount of light emitted from the light source 105 is increased. Accordingly, the video signal supplied to the display element is expanded according to the amount of light emitted from the light source 105. As a result, power consumption can be reduced and contrast can be improved as compared with a configuration in which the entire display region is always irradiated with the maximum amount of light.
 液晶表示装置100では、第1基板110の内部をY方向に伝播し第1基板110から液晶層115に対して斜めに入射した光の複屈折の大きさを変化させる。これにより、液晶層115の内部を斜めに進行し光拡散板118で拡散されて外部に射出される光の光量を制御する。そのため、エッジライト方式の薄型の液晶表示装置を実現しながら、エリアアクティブ制御による高品質な画像表示が可能である。 In the liquid crystal display device 100, the birefringence of the light that propagates in the Y direction inside the first substrate 110 and enters the liquid crystal layer 115 obliquely from the first substrate 110 is changed. Thus, the amount of light that travels obliquely inside the liquid crystal layer 115 and is diffused by the light diffusion plate 118 and emitted to the outside is controlled. Therefore, high-quality image display by area active control is possible while realizing a thin liquid crystal display device of the edge light system.
 第1基板110の内部を伝播する光は、液晶層115に対して浅い角度(Z方向に対して臨界角以上の大きな角度)で入射することから、その進行方向は概ねY方向に平行である。通常の液晶パネルのように液晶層の層厚方向に光を入射させる場合と異なり、光は液晶層115の層厚方向と概ね直交する方向に進行する。そのため、液晶層115の内部を通過する光の距離が長く、その分、層厚の小さい液晶層115を用いた場合でも、光の偏光状態を大きく変化させることができる。液晶層115の層厚を小さくすることで、第1電極124と第2電極125との間に印加する電圧の大きさを小さくすることができる。
 ブルー相の液晶層115は駆動電圧が高いことが知られているが、液晶層115の層厚を小さくすることで、駆動電圧を小さくし、消費電力を低減することが可能となる。
Since the light propagating through the first substrate 110 is incident on the liquid crystal layer 115 at a shallow angle (a larger angle than the critical angle with respect to the Z direction), the traveling direction is substantially parallel to the Y direction. . Unlike the case where light is incident in the thickness direction of the liquid crystal layer as in a normal liquid crystal panel, the light travels in a direction substantially perpendicular to the thickness direction of the liquid crystal layer 115. Therefore, even when the distance of light passing through the liquid crystal layer 115 is long and the liquid crystal layer 115 having a small thickness is used, the polarization state of the light can be greatly changed. By reducing the thickness of the liquid crystal layer 115, the magnitude of the voltage applied between the first electrode 124 and the second electrode 125 can be reduced.
The blue phase liquid crystal layer 115 is known to have a high driving voltage. However, by reducing the thickness of the liquid crystal layer 115, the driving voltage can be reduced and the power consumption can be reduced.
[第4実施形態]
 図16は、第4実施形態の液晶表示装置(液晶装置)101の分解斜視図である。液晶表示装置101において第3実施形態の液晶表示装置100と共通する構成要素については、同じ符号を付し、それらの詳細な説明は省略する。
[Fourth Embodiment]
FIG. 16 is an exploded perspective view of a liquid crystal display device (liquid crystal device) 101 according to the fourth embodiment. In the liquid crystal display device 101, the same reference numerals are given to components common to the liquid crystal display device 100 of the third embodiment, and detailed description thereof will be omitted.
 液晶表示装置101は、第1基板110と、複数の光源105と、第2基板111と、光拡散板118と、を備える。光源105は、第1基板110の端面(光入射面)110aに光を入射する。第2基板111は、第1基板110と対向配置される。光拡散板118は、第2基板111の外面側に設けられる。
 第1基板110と第2基板111とが対向する対向領域の周縁部には、矩形枠状のシール材119が設けられている。第1基板110、第2基板111及びシール材119によって囲まれた空間に、図示略の液晶が封入されている。
The liquid crystal display device 101 includes a first substrate 110, a plurality of light sources 105, a second substrate 111, and a light diffusion plate 118. The light source 105 makes light incident on the end surface (light incident surface) 110 a of the first substrate 110. The second substrate 111 is disposed to face the first substrate 110. The light diffusion plate 118 is provided on the outer surface side of the second substrate 111.
A rectangular frame-shaped sealing material 119 is provided at the peripheral edge of the facing region where the first substrate 110 and the second substrate 111 face each other. Liquid crystal (not shown) is sealed in a space surrounded by the first substrate 110, the second substrate 111, and the sealing material 119.
 図17は、液晶表示装置101のYZ平面に平行な断面図である。 FIG. 17 is a cross-sectional view of the liquid crystal display device 101 parallel to the YZ plane.
 液晶表示装置101は、第1基板110と、光源105と、第2基板111と、液晶層115と、光拡散板118と、を備える。光源105は、第1基板110の端面(光入射面)110aに光を入射する。第2基板111は、第1基板110と対向配置される。液晶層115は、第1基板110と第2基板111との間に挟持される。光拡散板118は、第2基板111の外面側に設けられる。 The liquid crystal display device 101 includes a first substrate 110, a light source 105, a second substrate 111, a liquid crystal layer 115, and a light diffusion plate 118. The light source 105 makes light incident on the end surface (light incident surface) 110 a of the first substrate 110. The second substrate 111 is disposed to face the first substrate 110. The liquid crystal layer 115 is sandwiched between the first substrate 110 and the second substrate 111. The light diffusion plate 118 is provided on the outer surface side of the second substrate 111.
 第1基板110の光入射面110aである第1の端面とは異なる第2の端面(例えば光入射面110aが設けられた辺と対向する辺に設けられた端面)には、偏光変換層131が設けられている。偏光変換層131は、第1基板110の内部を伝播した光であって、その端面に入射した第2偏光Lsを、第1偏光Lpに変換して第1基板110の内部に向けて反射する。
 第1偏光Lpは、第1基板110の内部を伝播し第1基板110から液晶層115に対してP偏光として入射するYZ平面に平行な偏光である。第2偏光Lsは、第1偏光Lpと直交する偏光である。偏光変換層131は、例えば、図10に示したように、λ/4層62aと、反射層62bと、を備える。λ/4層62aは、第2の端面に配置される。反射層62bは、λ/4層62aを透過して円偏光となった第2偏光Lsを反射する。
A polarization conversion layer 131 is provided on a second end surface different from the first end surface that is the light incident surface 110a of the first substrate 110 (for example, an end surface provided on a side opposite to the side on which the light incident surface 110a is provided). Is provided. The polarization conversion layer 131 is light that has propagated inside the first substrate 110, and converts the second polarized light Ls incident on the end surface thereof into the first polarized light Lp and reflects it toward the inside of the first substrate 110. .
The first polarized light Lp is polarized light parallel to the YZ plane that propagates through the first substrate 110 and enters the liquid crystal layer 115 from the first substrate 110 as P-polarized light. The second polarized light Ls is polarized light orthogonal to the first polarized light Lp. For example, as illustrated in FIG. 10, the polarization conversion layer 131 includes a λ / 4 layer 62a and a reflective layer 62b. The λ / 4 layer 62a is disposed on the second end face. The reflective layer 62b reflects the second polarized light Ls that has passed through the λ / 4 layer 62a and has become circularly polarized light.
 光源105と光入射面110aとの間の光の光路上には、偏光層は設けられていない。
 光源105から射出された第1偏光Lpと第2偏光Lsとを含む光は、第1基板110の光入射面110aから第1基板110の内部に入射する。
A polarizing layer is not provided on the optical path of light between the light source 105 and the light incident surface 110a.
Light including the first polarized light Lp and the second polarized light Ls emitted from the light source 105 enters the first substrate 110 from the light incident surface 110 a of the first substrate 110.
 液晶層115は、ブルー相を示す誘電異方性が正の液晶を含む。液晶層115の屈折率は、第1偏光Lpを透過し、第2偏光Lsを全反射する屈折率となっている。例えば、液晶層115が等方相である場合(電界無印加状態)の平均屈折率をnDとし、異方相状態である場合(電界印加状態)の常光の屈折率をnoとし、異常光の屈折率をneとし、液晶層115と界面をなす第1基板110又は第1電極124の屈折率をnWとすると、no≦nD≦nW≦neの関係が成り立つ。 The liquid crystal layer 115 includes a liquid crystal having a positive dielectric anisotropy indicating a blue phase. The refractive index of the liquid crystal layer 115 is a refractive index that transmits the first polarized light Lp and totally reflects the second polarized light Ls. For example, the average refractive index when the liquid crystal layer 115 is isotropic (no electric field applied state) is nD, and the ordinary refractive index when the liquid crystal layer 115 is an anisotropic phase (electric field applied state) is no. When the refractive index is ne and the refractive index of the first substrate 110 or the first electrode 124 that forms an interface with the liquid crystal layer 115 is nW, the relationship of no ≦ nD ≦ nW ≦ ne is established.
 第1電極124と第2電極125との間にZ方向の電界を発生させない電界非印加状態では、液晶層115に入射した第1偏光Lp及び第2偏光Lsは、平均屈折率nDで屈折する。平均屈折率nDは第1電極124の屈折率nWよりも小さいため、第1偏光Lp及び第2偏光Lsは、液晶層115と第1電極124との界面で全反射されて第1基板110の内部を概ねY方向に伝播する。第1電極124と第2電極125との間に電圧を印加しない領域では、光が外部に出射しない。よって、非点灯状態(OFF状態)となる。 In a state where no electric field in the Z direction is generated between the first electrode 124 and the second electrode 125, the first polarized light Lp and the second polarized light Ls incident on the liquid crystal layer 115 are refracted with an average refractive index nD. . Since the average refractive index nD is smaller than the refractive index nW of the first electrode 124, the first polarized light Lp and the second polarized light Ls are totally reflected at the interface between the liquid crystal layer 115 and the first electrode 124, and Propagates the interior in the Y direction. In a region where no voltage is applied between the first electrode 124 and the second electrode 125, no light is emitted to the outside. Therefore, it becomes a non-lighting state (OFF state).
 第1電極124と第2電極125との間に電界を発生させた電界印加状態では、液晶層115に入射した第1偏光Lpは、異常光の屈折率neで屈折し、第2偏光Lsは、常光の屈折率noで屈折する。異常光の屈折率neは、第1電極124の屈折率nWよりも大きい。そのため、第1偏光Lpは、液晶層115と第1電極124との界面を透過し、液晶層115の内部を斜めに進行して第2電極125、第2基板111及び光拡散板118を介して外部に出射する。常光の屈折率noは、第1電極124の屈折率nWよりも小さい。そのため、第2偏光Lsは、液晶層115と第1電極124との界面で全反射されて第1基板110の内部を概ねY方向に伝播する。そして、偏光変換層131で第1偏光Lpに変換され、電界が印加された領域の液晶層115を透過し、液晶層115の内部を斜めに進行して第2電極125、第2基板111及び光拡散板118を介して外部に出射する。第1電極124と第2電極125との間に電圧を印加した領域では、光が外部に出射する。よって、点灯状態(ON状態)となる。 In an electric field application state in which an electric field is generated between the first electrode 124 and the second electrode 125, the first polarized light Lp incident on the liquid crystal layer 115 is refracted with the refractive index ne of extraordinary light, and the second polarized light Ls is Refracts at the refractive index no of ordinary light. The refractive index ne of extraordinary light is larger than the refractive index nW of the first electrode 124. Therefore, the first polarized light Lp passes through the interface between the liquid crystal layer 115 and the first electrode 124, travels obliquely inside the liquid crystal layer 115, and passes through the second electrode 125, the second substrate 111, and the light diffusion plate 118. To the outside. The refractive index no of ordinary light is smaller than the refractive index nW of the first electrode 124. Therefore, the second polarized light Ls is totally reflected at the interface between the liquid crystal layer 115 and the first electrode 124 and propagates in the first substrate 110 in the Y direction. Then, the light is converted into the first polarized light Lp by the polarization conversion layer 131, passes through the liquid crystal layer 115 in the region to which the electric field is applied, and travels obliquely through the liquid crystal layer 115 to form the second electrode 125, the second substrate 111, and the like. The light is emitted to the outside through the light diffusion plate 118. In a region where a voltage is applied between the first electrode 124 and the second electrode 125, light is emitted to the outside. Therefore, it will be in a lighting state (ON state).
 液晶表示装置101では、第1基板110の内部をY方向に伝播し第1基板110から液晶層115に対して斜めに入射した光の屈折率の大きさを変化させる。これにより、液晶層115の内部を斜めに進行し光拡散板118で拡散されて外部に射出される光の光量を制御する。そのため、エッジライト方式の薄型の液晶表示装置を実現しながら、エリアアクティブ制御による高品質な画像表示が可能である。 In the liquid crystal display device 101, the refractive index of light propagating in the Y direction through the first substrate 110 and obliquely incident on the liquid crystal layer 115 from the first substrate 110 is changed. Thus, the amount of light that travels obliquely inside the liquid crystal layer 115 and is diffused by the light diffusion plate 118 and emitted to the outside is controlled. Therefore, high-quality image display by area active control is possible while realizing a thin liquid crystal display device of the edge light system.
 液晶表示装置101では、光源105と第1基板110の光入射面110aとの間に偏光層が設けられていないので、偏光層によって吸収される光の成分が発生しない。よって、光源105から射出された光を効率よく利用することができる。 In the liquid crystal display device 101, since no polarizing layer is provided between the light source 105 and the light incident surface 110a of the first substrate 110, no light component is absorbed by the polarizing layer. Therefore, the light emitted from the light source 105 can be used efficiently.
[第5実施形態]
 図18は、第5実施形態の液晶表示装置(液晶装置)102のYZ平面に平行な断面図である。液晶表示装置102において第3実施形態の液晶表示装置100と共通する構成要素については、同じ符号を付し、それらの詳細な説明は省略する。
[Fifth Embodiment]
FIG. 18 is a cross-sectional view parallel to the YZ plane of the liquid crystal display device (liquid crystal device) 102 of the fifth embodiment. In the liquid crystal display device 102, components common to the liquid crystal display device 100 of the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 液晶表示装置102において第3実施形態の液晶表示装置100と異なる点は、カラーフィルタ層を省略し、光源135に互いに異なる色の光(例えば、赤色の光、緑色の光、青色の光)を発光する複数の発光素子を設け、各発光素子から互いに異なる色の光をタイミングをずらして、順次、発光させるようにした点である。また、複数の発光素子が発光するタイミングに合わせて、発光素子から発光する色の画像の階調に応じた電界を、液晶層115の内部に発生させるようにした点である。 The difference between the liquid crystal display device 102 and the liquid crystal display device 100 of the third embodiment is that the color filter layer is omitted and different light colors (for example, red light, green light, and blue light) are applied to the light source 135. A plurality of light emitting elements that emit light are provided, and light of different colors is sequentially emitted from each light emitting element at different timings. In addition, an electric field corresponding to the gradation of the image of the color emitted from the light emitting elements is generated inside the liquid crystal layer 115 in accordance with the timing at which the plurality of light emitting elements emit light.
 図19は、光源135の光出射面135aに垂直な断面図である。 FIG. 19 is a cross-sectional view perpendicular to the light exit surface 135a of the light source 135. FIG.
 光源135は、発光素子71Rと、発光素子71Gと、発光素子71Bと、反射ミラー72と、を備える。発光素子71Rは、赤色の光を放射する。発光素子71Gは、緑色の光を放射する。発光素子71Bは、青色の光を放射する。反射ミラー72は、発光素子71R、71G、71Bから放射された光を反射する。
 発光素子71R、71G、71Bは、例えば基材70上に形成された固体光源(LEDチップ)である。発光素子71R、71G、71Bは、点光源として利用できるものであればよく、LEDに限定されない。
 反射ミラー72は、例えば回転放物面の形状を有している。発光素子71R、71G、71Bは、放物面の焦点に配置されている。発光素子71R、71G、71Bは、反射ミラー72の焦点位置に位置決めされた状態で、モールド樹脂73によって反射ミラー72と一体化されている。
The light source 135 includes a light emitting element 71R, a light emitting element 71G, a light emitting element 71B, and a reflection mirror 72. The light emitting element 71R emits red light. The light emitting element 71G emits green light. The light emitting element 71B emits blue light. The reflection mirror 72 reflects the light emitted from the light emitting elements 71R, 71G, 71B.
The light emitting elements 71R, 71G, 71B are solid light sources (LED chips) formed on the base material 70, for example. The light emitting elements 71R, 71G, 71B are not limited to LEDs as long as they can be used as point light sources.
The reflection mirror 72 has, for example, a paraboloid shape. The light emitting elements 71R, 71G, 71B are disposed at the focal point of the paraboloid. The light emitting elements 71 </ b> R, 71 </ b> G, 71 </ b> B are integrated with the reflection mirror 72 by the mold resin 73 while being positioned at the focal position of the reflection mirror 72.
 光源135は、発光素子71R、71G、71Bから放射された光を、反射ミラー72で平行化する。そのため、反射ミラー72の光軸(回転放物面の中心軸)の方向に強い指向性を持った光を射出する。光源135の光出射面135aは、反射ミラー72の光軸に対して垂直な面である。光源135は、光出射面135aが図18に示した第1基板110の光入射面110aと対向するように配置される。よって、光源135は、第1基板110の光入射面110aに対して垂直な方向に強い指向性を持った光を射出する。 The light source 135 collimates the light emitted from the light emitting elements 71R, 71G, 71B by the reflection mirror 72. For this reason, light having strong directivity is emitted in the direction of the optical axis of the reflection mirror 72 (the central axis of the paraboloid of revolution). The light emission surface 135 a of the light source 135 is a surface perpendicular to the optical axis of the reflection mirror 72. The light source 135 is disposed such that the light emitting surface 135a faces the light incident surface 110a of the first substrate 110 shown in FIG. Accordingly, the light source 135 emits light having strong directivity in a direction perpendicular to the light incident surface 110a of the first substrate 110.
 液晶表示装置102の各表示要素は、赤色、緑色、青色の画像を、順次、表示する。
 そして、その画像の表示タイミングに合わせて、光源135に設けられた赤色の発光素子71R、緑色の発光素子71G、青色の発光素子71Bが、順次、光を射出する。光源135(赤色の発光素子71R、緑色の発光素子71G、青色の発光素子71B)から第1基板110に入射する光の光量は、光源135によって照明される表示要素の画像の明るさ(外部から入力される映像信号の階調値)に応じて設定される。例えば、暗い画像が表示されている表示要素では、光源135から出射する光の光量を小さくする。一方、明るい画像が表示されている表示要素では、光源135から出射する光の光量を大きくする。これに伴って、表示要素に供給する映像信号は、光源135から出射する光の光量に応じて伸張処理される。これにより、表示領域全体に常に最大光量の光を照射し続ける構成に比べて、消費電力を低減でき、コントラストも向上することができる。
Each display element of the liquid crystal display device 102 sequentially displays red, green, and blue images.
In accordance with the display timing of the image, the red light emitting element 71R, the green light emitting element 71G, and the blue light emitting element 71B provided in the light source 135 sequentially emit light. The amount of light incident on the first substrate 110 from the light source 135 (red light emitting element 71R, green light emitting element 71G, blue light emitting element 71B) is the brightness of the image of the display element illuminated by the light source 135 (from the outside). It is set according to the gradation value of the input video signal. For example, in a display element displaying a dark image, the amount of light emitted from the light source 135 is reduced. On the other hand, for a display element displaying a bright image, the amount of light emitted from the light source 135 is increased. Along with this, the video signal supplied to the display element is expanded according to the amount of light emitted from the light source 135. As a result, power consumption can be reduced and contrast can be improved as compared with a configuration in which the entire display region is always irradiated with the maximum amount of light.
[第6実施形態]
 図20は、第6実施形態の液晶表示装置(液晶装置)103のYZ平面に平行な断面図である。液晶表示装置103において第4実施形態の液晶表示装置101と共通する構成要素については、同じ符号を付し、それらの詳細な説明は省略する。
[Sixth Embodiment]
FIG. 20 is a cross-sectional view parallel to the YZ plane of the liquid crystal display device (liquid crystal device) 103 of the sixth embodiment. In the liquid crystal display device 103, the same reference numerals are given to components common to the liquid crystal display device 101 of the fourth embodiment, and detailed description thereof will be omitted.
 液晶表示装置104において第4実施形態の液晶表示装置101と異なる点は、カラーフィルタ層を省略し、光源135に互いに異なる色の光(例えば、赤色の光、緑色の光、青色の光)を発光する複数の発光素子を設け、各発光素子から互いに異なる色の光をタイミングをずらして、順次、発光させるようにした点である。また、複数の発光素子が発光するタイミングに合わせて、発光素子から発光する色の画像の階調に応じた電界を、液晶層115の内部に発生させるようにした点である。光源135の構成は、図19で示した構成と同じである。 The liquid crystal display device 104 is different from the liquid crystal display device 101 of the fourth embodiment in that the color filter layer is omitted and light of different colors (for example, red light, green light, and blue light) is supplied to the light source 135. A plurality of light emitting elements that emit light are provided, and light of different colors is sequentially emitted from each light emitting element at different timings. In addition, an electric field corresponding to the gradation of the color image emitted from the light emitting elements is generated inside the liquid crystal layer 115 in accordance with the timing at which the plurality of light emitting elements emit light. The configuration of the light source 135 is the same as the configuration shown in FIG.
 液晶表示装置104の各表示要素は、赤色、緑色、青色の画像を、順次、表示する。
 そして、その画像の表示タイミングに合わせて、光源135に設けられた赤色の発光素子71R、緑色の発光素子71G、青色の発光素子71Bが、順次、光を射出する。光源135(赤色の発光素子71R、緑色の発光素子71G、青色の発光素子71B)から第1基板110に入射する光の光量は、光源135によって照明される表示要素の画像の明るさ(外部から入力される映像信号の階調値)に応じて設定される。例えば、暗い画像が表示されている表示要素では、光源135から出射する光の光量を小さくする。一方、明るい画像が表示されている表示要素では、光源135から出射する光の光量を大きくする。これに伴って、表示要素に供給する映像信号は、光源135から出射する光の光量に応じて伸張処理される。これにより、表示領域全体に常に最大光量の光を照射し続ける構成に比べて、消費電力を低減でき、コントラストも向上することができる。
Each display element of the liquid crystal display device 104 sequentially displays red, green, and blue images.
In accordance with the display timing of the image, the red light emitting element 71R, the green light emitting element 71G, and the blue light emitting element 71B provided in the light source 135 sequentially emit light. The amount of light incident on the first substrate 110 from the light source 135 (red light emitting element 71R, green light emitting element 71G, blue light emitting element 71B) is the brightness of the image of the display element illuminated by the light source 135 (from the outside). It is set according to the gradation value of the input video signal. For example, in a display element displaying a dark image, the amount of light emitted from the light source 135 is reduced. On the other hand, for a display element displaying a bright image, the amount of light emitted from the light source 135 is increased. Along with this, the video signal supplied to the display element is expanded according to the amount of light emitted from the light source 135. As a result, power consumption can be reduced and contrast can be improved as compared with a configuration in which the entire display region is always irradiated with the maximum amount of light.
[その他]
 上述の実施形態では、主にブルー相の液晶層を用いた液晶装置を説明したが、液晶層の配向形態はこれに限定されない。導光板の内部を伝播し、導光板から液晶層に対して斜め(概ね液晶層の層厚方向と直交する方向)に入射した第1偏光の屈折率又は複屈折の大きさを電界によって変化させることができる液晶層であればよい。上記の全ての実施形態においては、第2実施形態の第1変形例で説明した液晶層のように、ブルー相以外の配向形態を用いた液晶層を利用することもできる。
[Others]
In the above-described embodiment, the liquid crystal device mainly using the liquid crystal layer of the blue phase has been described, but the alignment mode of the liquid crystal layer is not limited to this. The refractive index or the birefringence of the first polarized light propagating through the light guide plate and incident obliquely (approximately in a direction perpendicular to the thickness direction of the liquid crystal layer) from the light guide plate to the liquid crystal layer is changed by an electric field. Any liquid crystal layer can be used. In all the embodiments described above, a liquid crystal layer using an alignment form other than the blue phase, such as the liquid crystal layer described in the first modification of the second embodiment, can also be used.
 上述の実施形態では、液晶層の内部に電界を発生させる一対の電極を第1基板と第2基板に分けて配置した。この方式は、液晶層の内部に液晶層の層厚方向の電界を発生させる液晶装置であって、いわゆる縦電界方式の液晶装置である。しかし、電界は、必ずしも液晶層の層厚方向に発生させる必要はない。例えば、IPS(In-Plane Switching)方式やFFS(Fringe Field Switching)方式などの、いわゆる横電界方式の液晶装置としてもよい。 In the above-described embodiment, the pair of electrodes that generate an electric field inside the liquid crystal layer are arranged separately on the first substrate and the second substrate. This method is a liquid crystal device that generates an electric field in the thickness direction of the liquid crystal layer inside the liquid crystal layer, and is a so-called vertical electric field type liquid crystal device. However, the electric field is not necessarily generated in the thickness direction of the liquid crystal layer. For example, a so-called lateral electric field type liquid crystal device such as an IPS (In-Plane? Switching) method or an FFS (Fringe? Field? Switching) method may be used.
 上述の実施形態では、第1偏光をP偏光とし、P偏光が屈折する液晶層の屈折率又は複屈折の大きさを、一対の電極によって制御した。しかし、第1偏光は、P偏光に限らない。液晶層の配向形態や電界の発生方向に応じて、屈折率や複屈折の大きさを大きく変化させ易い方向が存在するため、その方向に沿った偏光を第1偏光として利用すればよい。 In the above-described embodiment, the first polarized light is P-polarized light, and the refractive index or the birefringence magnitude of the liquid crystal layer where the P-polarized light is refracted is controlled by the pair of electrodes. However, the first polarization is not limited to P polarization. Depending on the orientation of the liquid crystal layer and the direction in which the electric field is generated, there is a direction in which the refractive index and the magnitude of birefringence can easily be changed. Therefore, the polarized light along that direction may be used as the first polarized light.
 上述の実施形態では、端面に光入射面を有する導光板と、導光板の光入射面に光を入射させる光源と、導光板と対向配置された光拡散板と、導光板と光拡散板との間に配置された液晶層と、液晶層の内部に電界を発生させ、導光板の内部を伝播し導光板から液晶層に対して斜めに入射した光の屈折率又は複屈折の大きさを変化させることにより、液晶層の内部を斜めに進行し光拡散板で拡散されて射出される光の光量を制御する一対の電極と、を備えた液晶装置の例として、バックライトユニットと液晶表示装置を説明した。しかし、かかる液晶装置の用途は、バックライトユニットや液晶表示装置に限らない。屋内の照明に用いる照明装置など、他の用途にも広く適用できる。一例として、液晶装置を、照明装置として用いる場合について、第7実施形態として説明する。 In the above-described embodiment, the light guide plate having the light incident surface on the end surface, the light source that makes the light incident on the light incident surface of the light guide plate, the light diffusion plate arranged to face the light guide plate, the light guide plate and the light diffusion plate, A liquid crystal layer disposed between the liquid crystal layer and the refractive index or the birefringence of light incident on the liquid crystal layer obliquely from the light guide plate by generating an electric field inside the liquid crystal layer and propagating through the light guide plate. As an example of a liquid crystal device, a backlight unit and a liquid crystal display including a pair of electrodes that control the amount of light that travels obliquely through the liquid crystal layer and is diffused by the light diffusion plate and emitted by changing The apparatus has been described. However, the use of such a liquid crystal device is not limited to a backlight unit or a liquid crystal display device. It can be widely applied to other uses such as a lighting device used for indoor lighting. As an example, a case where a liquid crystal device is used as a lighting device will be described as a seventh embodiment.
[第7実施形態]
 第1~第6実施形態では、画像を表示する液晶表示装置について説明したが、第7実施形態では、光を外部に照射する面光源の液晶調光装置について説明する。
[Seventh Embodiment]
In the first to sixth embodiments, the liquid crystal display device that displays an image has been described. In the seventh embodiment, a liquid crystal dimming device that is a surface light source that emits light to the outside will be described.
 図21は、第7実施形態の液晶調光装置(液晶装置)1101の分解斜視図である。液晶調光装置1101において第3実施形態の液晶表示装置100と共通する構成要素については、同じ符号を付し、それらの詳細な説明は省略する。 FIG. 21 is an exploded perspective view of the liquid crystal light control device (liquid crystal device) 1101 of the seventh embodiment. Components common to the liquid crystal display device 100 of the third embodiment in the liquid crystal light control device 1101 are assigned the same reference numerals, and detailed descriptions thereof are omitted.
 液晶調光装置1101は、第1基板110と、複数の光源105と、第2基板111と、光拡散板118と、を備える。光源105は、第1基板110の端面(光入射面)110aに光を入射する。第2基板111は、第1基板110と対向配置される。光拡散板118は、第2基板111の外面側に設けられる。
 第1基板110と第2基板111とが対向する対向領域の周縁部には、矩形枠状のシール材119が設けられている。第1基板110、第2基板111及びシール材119によって囲まれた空間に、図示略の液晶が封入されている。
The liquid crystal light control device 1101 includes a first substrate 110, a plurality of light sources 105, a second substrate 111, and a light diffusion plate 118. The light source 105 makes light incident on the end surface (light incident surface) 110 a of the first substrate 110. The second substrate 111 is disposed to face the first substrate 110. The light diffusion plate 118 is provided on the outer surface side of the second substrate 111.
A rectangular frame-shaped sealing material 119 is provided at the peripheral edge of the facing region where the first substrate 110 and the second substrate 111 face each other. Liquid crystal (not shown) is sealed in a space surrounded by the first substrate 110, the second substrate 111, and the sealing material 119.
 図22は、第7実施形態の液晶調光装置1101のYZ平面に平行な断面図である。液晶調光装置1101において第4実施形態の液晶表示装置101と共通する構成要素については、同じ符号を付し、それらの詳細な説明は省略する。 FIG. 22 is a cross-sectional view parallel to the YZ plane of the liquid crystal light control device 1101 of the seventh embodiment. Components common to the liquid crystal display device 101 of the fourth embodiment in the liquid crystal light control device 1101 are denoted by the same reference numerals, and detailed description thereof is omitted.
 液晶調光装置1101において第4実施形態の液晶表示装置101と異なる点は、カラーフィルタ層を省略し、光源135に互いに異なる光量の白色光を発光する複数の発光素子を設け、各発光素子から互いに異なる光量の光をタイミングをずらして、順次、発光させるようにした点である。また、複数の発光素子が発光するタイミングに合わせて、発光素子から発光する色の画像の階調に応じた電界を、液晶層115の内部に発生させるようにした点である。 The liquid crystal dimming device 1101 is different from the liquid crystal display device 101 of the fourth embodiment in that the color filter layer is omitted, and the light source 135 is provided with a plurality of light emitting elements that emit different amounts of white light. The point is that light of different amounts of light is emitted sequentially at different timings. In addition, an electric field corresponding to the gradation of the image of the color emitted from the light emitting elements is generated inside the liquid crystal layer 115 in accordance with the timing at which the plurality of light emitting elements emit light.
 液晶調光装置1101の各発光要素PX11~PX15は、光量の異なる白色光を、順次、発光する。
 そして、その発光のタイミングに合わせて、光源135に設けられた各発光素子が、順次、光を射出する。光源135から第1基板110に入射する光の光量は、光源135によって照明される発光要素PX11~PX15の明るさに応じて設定される。例えば、弱い光が発光されている発光要素では、光源135から出射する光の光量を小さくする。一方、強い光が発光されている発光要素では、光源135から出射する光の光量を大きくする。これにより、発光領域全体に常に最大光量の光を照射し続ける構成に比べて、消費電力を低減できる。
The light emitting elements PX11 to PX15 of the liquid crystal light control device 1101 sequentially emit white light having different light amounts.
And according to the timing of the light emission, each light emitting element provided in the light source 135 emits light sequentially. The amount of light incident on the first substrate 110 from the light source 135 is set according to the brightness of the light emitting elements PX11 to PX15 illuminated by the light source 135. For example, in a light emitting element that emits weak light, the amount of light emitted from the light source 135 is reduced. On the other hand, in the light emitting element emitting strong light, the amount of light emitted from the light source 135 is increased. Thereby, power consumption can be reduced as compared with a configuration in which the entire light emitting region is always irradiated with the maximum amount of light.
 第7実施形態では、光源135として、白色光を発光する発光ダイオードを用いるが、これに限定されるものではない。例えば、光源135として、図19を参照して説明したように、赤色の光を放射する発光素子71Rと、緑色の光を放射する発光素子71Gと、青色の光を放射する発光素子71Bとを用いてもよい。 In the seventh embodiment, a light emitting diode that emits white light is used as the light source 135, but the present invention is not limited to this. For example, as described with reference to FIG. 19, as the light source 135, a light emitting element 71R that emits red light, a light emitting element 71G that emits green light, and a light emitting element 71B that emits blue light. It may be used.
 なお、第7実施形態において、図18を参照して説明したように、第1基板110と光拡散板118との間に、偏光層113を設けてもよい。 In the seventh embodiment, as described with reference to FIG. 18, the polarizing layer 113 may be provided between the first substrate 110 and the light diffusion plate 118.
 本発明は、エッジライト方式の液晶装置の分野に利用することができる。 The present invention can be used in the field of edge light type liquid crystal devices.
3・・・バックライトユニット(液晶装置)、5・・・光源、7・・・バックライトユニット(液晶装置)、41・・・第1基板(導光板)、41a・・・光入射面、43・・・第1電極、44・・・第2電極、45・・・液晶層、46・・・光学層、47・・・偏光層、48・・・光拡散板、60・・・偏光層、62・・・偏光変換層、71R、71G、71B・・・発光素子、100、101、102、103・・・液晶表示装置(液晶装置)、110・・・第1基板(導光板)、110a・・・光入射面、112・・・偏光層、113・・・偏光層、115・・・液晶層、116・・・光学層、118・・・光拡散板、124・・・第1電極、125・・・第2電極、131・・・偏光変換層、135・・・光源、Lp・・・第1偏光、Ls・・・第2偏光 DESCRIPTION OF SYMBOLS 3 ... Backlight unit (liquid crystal device), 5 ... Light source, 7 ... Backlight unit (liquid crystal device), 41 ... 1st board | substrate (light guide plate), 41a ... Light incident surface, 43 ... 1st electrode, 44 ... 2nd electrode, 45 ... Liquid crystal layer, 46 ... Optical layer, 47 ... Polarizing layer, 48 ... Light diffusing plate, 60 ... Polarized light Layer, 62 ... polarization conversion layer, 71R, 71G, 71B ... light emitting element, 100, 101, 102, 103 ... liquid crystal display device (liquid crystal device), 110 ... first substrate (light guide plate) 110a ... light incident surface, 112 ... polarizing layer, 113 ... polarizing layer, 115 ... liquid crystal layer, 116 ... optical layer, 118 ... light diffusion plate, 124 ... first. 1 electrode, 125 ... second electrode, 131 ... polarization conversion layer, 135 ... light source, Lp ... first polarization Ls ··· second polarization

Claims (11)

  1.  端面に光入射面を有する導光板と、
     前記導光板の光入射面に光を入射させる光源と、
     前記導光板と対向配置された光拡散板と、
     前記導光板と前記光拡散板との間に配置された液晶層と、
     前記液晶層の内部に電界を発生させ、前記導光板の内部を伝播し前記導光板から前記液晶層に対して斜めに入射した前記光の屈折率又は複屈折の大きさを変化させることにより、前記液晶層の内部を斜めに進行し前記光拡散板で拡散されて射出される前記光の光量を制御する一対の電極と、
     を備える液晶装置。
    A light guide plate having a light incident surface on an end surface;
    A light source that makes light incident on a light incident surface of the light guide plate;
    A light diffusing plate disposed opposite to the light guide plate;
    A liquid crystal layer disposed between the light guide plate and the light diffusion plate;
    By generating an electric field inside the liquid crystal layer, propagating through the light guide plate, and changing the refractive index or birefringence of the light incident obliquely on the liquid crystal layer from the light guide plate, A pair of electrodes for controlling the amount of the light emitted obliquely through the liquid crystal layer and diffused by the light diffusion plate;
    A liquid crystal device comprising:
  2.  前記液晶層と前記光拡散板との間には、第1偏光を反射し、前記第1偏光とは異なる第2偏光を透過する光学層が設けられ、
     前記一対の電極は、前記導光板の内部を伝播し前記導光板から前記液晶層に対して斜めに入射した前記第1偏光の前記液晶層の複屈折の大きさを変化させることにより、前記液晶層の内部を斜めに進行した前記第1偏光の偏光状態を変化させる請求項1に記載の液晶装置。
    Between the liquid crystal layer and the light diffusion plate, an optical layer that reflects the first polarized light and transmits the second polarized light different from the first polarized light is provided,
    The pair of electrodes change the liquid crystal layer by changing the birefringence of the liquid crystal layer of the first polarized light propagating through the light guide plate and obliquely incident on the liquid crystal layer from the light guide plate. The liquid crystal device according to claim 1, wherein the polarization state of the first polarized light traveling obliquely in the layer is changed.
  3.  前記導光板と前記光源との間の前記光の光路上に、前記第1偏光を透過させる偏光層が設けられる請求項2に記載の液晶装置。 The liquid crystal device according to claim 2, wherein a polarizing layer that transmits the first polarized light is provided on an optical path of the light between the light guide plate and the light source.
  4.  前記液晶層は、前記導光板の内部を伝播し前記導光板から前記液晶層に対して斜めに入射した前記第2偏光を全反射し、
     前記導光板の前記光入射面とは異なる端面に、前記液晶層によって全反射され前記導光板の内部を伝播した前記第2偏光を前記第1偏光に変換して前記導光板の内部に反射する偏光変換層が設けられる請求項2に記載の液晶装置。
    The liquid crystal layer propagates through the light guide plate and totally reflects the second polarized light incident obliquely on the liquid crystal layer from the light guide plate.
    The second polarized light that has been totally reflected by the liquid crystal layer and propagated through the inside of the light guide plate is converted into the first polarized light on the end surface different from the light incident surface of the light guide plate and reflected to the inside of the light guide plate. The liquid crystal device according to claim 2, further comprising a polarization conversion layer.
  5.  前記光拡散板と前記光学層との間には、前記光学層を透過した前記第2偏光を透過する偏光層が設けられる請求項2に記載の液晶装置。 The liquid crystal device according to claim 2, wherein a polarizing layer that transmits the second polarized light transmitted through the optical layer is provided between the light diffusion plate and the optical layer.
  6.  前記一対の電極は、前記導光板の内部を伝播し前記導光板から前記液晶層に対して斜めに入射した第1偏光の前記液晶層の屈折率を変化させることにより、前記第1偏光が前記液晶層を透過して前記光拡散板から出射する状態と、前記第1偏光が前記液晶層で全反射されて前記導光板の内部を伝播し前記光拡散板から出射しない状態と、を切り換える請求項1に記載の液晶装置。 The pair of electrodes changes the refractive index of the liquid crystal layer of the first polarized light propagating through the light guide plate and obliquely incident on the liquid crystal layer from the light guide plate. Switching between a state in which the light is transmitted through the liquid crystal layer and emitted from the light diffusing plate, and a state in which the first polarized light is totally reflected by the liquid crystal layer and propagates in the light guide plate and is not emitted from the light diffusing plate. Item 2. A liquid crystal device according to item 1.
  7.  前記液晶層は、前記導光板の内部を伝播し前記液晶層に対して斜めに入射した、前記第1偏光とは異なる第2偏光を全反射し、
     前記導光板の前記光入射面とは異なる端面に、前記液晶層によって全反射され前記導光板の内部を伝播した前記第2偏光を前記第1偏光に変換して前記導光板の内部に反射する偏光変換層が設けられる請求項6に記載の液晶装置。
    The liquid crystal layer totally reflects a second polarized light different from the first polarized light that propagates through the light guide plate and is obliquely incident on the liquid crystal layer;
    The second polarized light that has been totally reflected by the liquid crystal layer and propagated through the inside of the light guide plate is converted into the first polarized light on the end surface different from the light incident surface of the light guide plate and reflected to the inside of the light guide plate. The liquid crystal device according to claim 6, further comprising a polarization conversion layer.
  8.  前記光源は、互いに異なる色の光を発光する複数の発光素子を備え、
     前記複数の発光素子は、タイミングをずらして順次発光し、
     前記一対の電極は、前記複数の発光素子が発光するタイミングに合わせて、前記発光素子から発光する色の画像の階調に応じた電界を前記液晶層の内部に発生させる請求項1に記載の液晶装置。
    The light source includes a plurality of light emitting elements that emit light of different colors,
    The plurality of light emitting elements sequentially emit light at different timings,
    2. The pair of electrodes according to claim 1, wherein an electric field corresponding to a gradation of an image of a color emitted from the light emitting element is generated inside the liquid crystal layer in accordance with a timing at which the plurality of light emitting elements emit light. Liquid crystal device.
  9.  前記一対の電極は、前記液晶層の層厚方向の電界を発生させる請求項1に記載の液晶装置。 2. The liquid crystal device according to claim 1, wherein the pair of electrodes generate an electric field in a layer thickness direction of the liquid crystal layer.
  10.  前記液晶層は、前記液晶層の内部に電界を発生させない電界無印加状態において等方相を示す請求項9に記載の液晶装置。 The liquid crystal device according to claim 9, wherein the liquid crystal layer exhibits an isotropic phase in a state where an electric field is not applied without generating an electric field inside the liquid crystal layer.
  11.  前記液晶層は、前記導光板の光入射面に前記光が入射する方向と、前記導光板の前記光拡散板と対向する面の法線方向とを含む面内で配向状態が変化する請求項9に記載の液晶装置。 The alignment state of the liquid crystal layer changes in a plane including a direction in which the light is incident on a light incident surface of the light guide plate and a normal direction of a surface of the light guide plate facing the light diffusion plate. 9. A liquid crystal device according to item 9.
PCT/JP2011/078759 2010-12-15 2011-12-13 Liquid crystal display device WO2012081567A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-279737 2010-12-15
JP2010279737 2010-12-15

Publications (1)

Publication Number Publication Date
WO2012081567A1 true WO2012081567A1 (en) 2012-06-21

Family

ID=46244666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078759 WO2012081567A1 (en) 2010-12-15 2011-12-13 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012081567A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148122A1 (en) * 2015-03-19 2016-09-22 シャープ株式会社 Liquid crystal display device
CN106154661A (en) * 2016-09-21 2016-11-23 京东方科技集团股份有限公司 A kind of transparent display panel and preparation method thereof, transparent display
WO2020250554A1 (en) * 2019-06-14 2020-12-17 株式会社ジャパンディスプレイ Optical device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125926A1 (en) * 2007-04-17 2008-10-23 Koninklijke Philips Electronics N.V. Controllable light-guide and display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125926A1 (en) * 2007-04-17 2008-10-23 Koninklijke Philips Electronics N.V. Controllable light-guide and display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148122A1 (en) * 2015-03-19 2016-09-22 シャープ株式会社 Liquid crystal display device
CN107430299A (en) * 2015-03-19 2017-12-01 夏普株式会社 Liquid crystal display device
US20180047348A1 (en) * 2015-03-19 2018-02-15 Sharp Kabushiki Kaisha Liquid crystal display device
CN106154661A (en) * 2016-09-21 2016-11-23 京东方科技集团股份有限公司 A kind of transparent display panel and preparation method thereof, transparent display
CN106154661B (en) * 2016-09-21 2019-05-14 京东方科技集团股份有限公司 A kind of transparent display panel and preparation method thereof, transparent display
WO2020250554A1 (en) * 2019-06-14 2020-12-17 株式会社ジャパンディスプレイ Optical device

Similar Documents

Publication Publication Date Title
US9581858B2 (en) Mirror display device
US10303000B2 (en) Display device including an optical modulator
KR101291940B1 (en) Transparent display device
US6744416B2 (en) Field sequential liquid crystal display apparatus
WO2012081497A1 (en) Illumination device, display device and three-dimensional display device
JP2006234849A (en) Liquid crystal display device, driving method used for the liquid crystal display device
WO2012081498A1 (en) Illumination device and display device
US20130002984A1 (en) Light control device and image display device
JP2010107584A (en) Liquid crystal display device
JP2010122386A (en) Liquid crystal display apparatus
WO2012081567A1 (en) Liquid crystal display device
CN108227285A (en) A kind of display device
JP2007183559A (en) Display device
KR20180028624A (en) Liquid crystal display device
US20120176566A1 (en) Backlight device and image display apparatus
JP4628043B2 (en) Liquid crystal display device
WO2012005320A1 (en) Illumination device and liquid-crystal display device
KR101394319B1 (en) Liquid crystal display device
JP5263230B2 (en) Liquid crystal display
WO2011162024A1 (en) Dimming device, image display device, and production method for dimming device
JP5397334B2 (en) Driving method of display device
CN115236899B (en) Backlight module and display device
CN215181319U (en) Light modulator, direct type backlight module and display assembly
CN212781586U (en) Dual display module and dual display device
JP5263228B2 (en) Driving method of display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP