WO2012079699A1 - Dispositif d'entraînement - Google Patents

Dispositif d'entraînement Download PDF

Info

Publication number
WO2012079699A1
WO2012079699A1 PCT/EP2011/005933 EP2011005933W WO2012079699A1 WO 2012079699 A1 WO2012079699 A1 WO 2012079699A1 EP 2011005933 W EP2011005933 W EP 2011005933W WO 2012079699 A1 WO2012079699 A1 WO 2012079699A1
Authority
WO
WIPO (PCT)
Prior art keywords
control loop
error
control
drive
fault
Prior art date
Application number
PCT/EP2011/005933
Other languages
German (de)
English (en)
Inventor
Markus Gottfried
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2012079699A1 publication Critical patent/WO2012079699A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/045Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with model-based controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a drive device and to a method for controlling a drive device.
  • Page 1 of 17 DE 103 41 504 A1 "Method for controlling the currents to be fed into a network in wind power plants and circuit operating according to this method"
  • [DE] 10 30 339 A1 "Method and device for improving the degree of utilization and the reliability of a power plant"
  • the operational management of the plant includes monitoring, with which the relevant subsystems are constantly monitored, and faults and emergency situations are identified.
  • the system is currently shut down (fail-passive) when an error is detected (lockout) or an emergency situation is detected (emergency shutdown) (see, e.g., [13], [14]).
  • Wind turbines are subject to variation in primary energy supply due to location and weather conditions (e.g., gusts). As a result, the system components are heavily loaded, and there are fluctuations in the electrical output variables (power, frequency, voltage) in appearance. To influence this is the task of the plant by means of suitable actuators, controls and regulations.
  • the numerous control circuits e.g. for the blade adjustment, turret adjustment, the generator, the aeroelasticity etc. (see eg [4-16], [22], [25]), the system can be realized with different control methods (see eg [3], [14]) ,
  • the present invention provides an improved drive device according to the features of patent claim 1 and an improved method for controlling a drive device according to the features of patent claim 6, in particular for use as / in an actuator in wind power plants,
  • Page 5 of 17 Tolerant systems are usually redundant systems. To achieve fault tolerant behavior, two tasks often need to be accomplished:
  • a faultless condition is established, i. a bug fix - forward or backward
  • Page 6 of 17 exhibit.
  • the method proposed here is characterized by a corresponding behavior in the event of a fault and has a modular structure.
  • the proposed method should use models, including physical quantities, which describe the dynamic behavior of the system, its subsystems and components, e.g. serve to observe these dynamics.
  • the models are described using finite state machines, mathematical functions and primarily differential equations. The description can be made in the time or frequency domain, time-continuous, time-discrete and event-discrete. In [13-15], [22],
  • [23], [26] give examples of suitable models of the mechanical structures of wind turbines.
  • Examples of suitable models of the subsystems can be [13-15],
  • FIG. 1 shows a block diagram of a fault-tolerant control
  • Figure 2 is a block diagram of the observer.
  • Figure 3 is a block diagram of the fault tolerant controller.
  • FIG. 4 shows a block diagram of the error accomodator.
  • FIG. 5 is a block diagram of the controller
  • FIG. 6 is a block diagram of the signal consolidation
  • FIG. 7 shows an example of a signal consolidation in the case of triplex redundancy
  • control loop sizes are used here:
  • Figure 1 the closed loop of the proposed method is shown in the form of a block diagram. In doing so, one recognizes the real system consisting of actuator system, process and sensor system as controlled system. Furthermore, one recognizes the observer, the error detection and fault diagnosis. In addition, error classification and fault-tolerant controller are shown.
  • FIG. 2 shows the block diagram of the observer with the gain matrix K, which uses the models of the actuators, the process and the sensors to estimate from the input vector and the output vector, the vector variables: parameters, states, outputs and residuals.
  • FIG. 3 shows, in the form of a block diagram, the fault-tolerant controller, which is composed of an error adjuster and a controller.
  • FIG. 4 illustrates the error accomodator in block diagram form, which consists of an arbitrator and a reconfigurator.
  • FIG. 5 shows in block diagram form the structure-variable, adaptive controller with the adaptation device. If, as shown here, more than one controller used, then a device is used, which serves for bounce-free switching or cross-fading between the individual controllers.
  • FIG. 6 shows a block diagram of the consolidation of redundant signals using the voting and monitoring methods.
  • FIG. 7 shows by way of example a possibility of the consolidation of the signals, as can be realized in the case of assumed triplex redundancy.
  • Proposed is a method for fault-tolerant control of wind turbines. As shown in the structure indicated in FIG. 1, observers, error detection, fault diagnosis, fault classification and fault-tolerant controllers are used.
  • the diagnosis should primarily be model-based and preferably based on analytical methods.
  • a technical diagnosis describes the analysis of the actual state.
  • the fault diagnosis assigns a cause of error to the deviation of the setpoint behavior detected in an error detection.
  • the diagnosis that implies a previous error detection can be broken down into the following steps:
  • the first two points describe the error detection, which allows a statement about the presence of an error.
  • the error diagnosis identifies the detected errors (the size of the error, the type of error, the cause of the error and the location of the error are determined).
  • Page 9 of 17 The observer serves, as can be seen in FIG. 2, to determine parameters, states and residuals.
  • various embodiments of the observers are suitable, of which are to be given as an example:
  • the basis for the use of the observers are appropriate models, as stated in section 3. This allows model-based identification of parameters and states, as well as the generation of residuals that can be used for error detection and fault diagnosis.
  • the basis of the parameter identification is the assumption that the physical parameters and their changes are mapped in the model parameters.
  • the fault diagnosis requires error detection and assesses the errors that have occurred in order to determine the cause of an error that has occurred.
  • Suitable methods include, for example:
  • Page 10 of 17 The error classifier selects the errors that have occurred from a set of possible errors based on characteristics, features and symptoms. Procedures that are useful for classifying errors include:
  • the fault-tolerant control uses the vector variables: commanded command values, output variables, estimated states, estimated control variables, error signals, additional signals.
  • the fault-tolerant control can be activated and deactivated.
  • the fault-tolerant controller consists of two parts on the first sublevel, as FIG. 3 shows. These are the error accomodator and the controller described in the following sections.
  • the error accomodator is composed of the portions of arbitrator and reconfigurator, as illustrated in FIG.
  • the task of the Arbitrators is to make an appropriate error handling using the information supplied to him. For this purpose, a decision is made as to how the controller, the actuators and the sensors should behave during further operation in the present fault situation and under the prevailing operating conditions. In this case, an appropriately suitable error exclusion, error correction or error compensation must be made. The appropriate information is passed to the reconfigurator. Applicable methods of arbitration may be, for example:
  • the task of the reconfigurator is to select the appropriate fallback level based on the information supplied to it by the arbitrator as required and to outsource, integrate and relocate the subsystems and the corresponding replacement systems on the basis of the requirements. If necessary, adjustments in structure and parameterization are necessary.
  • the reconfigurator passes on suitable information to the controller, the actuators and the sensors.
  • For reconfiguration for example:
  • the controller has, as seen in Figure 5, a general structure. Depending on the requirements, it is composed of individual multivariable regulators (see, for example, [28]), which can be adapted as required by structure and parameterization by means of an adaptation mechanism.
  • the individual multivariable controllers can also be equipped with anti-reset windup measures to prevent an integrator windup caused by manipulated variable limits (saturations).
  • the controller outputs can be proportionately taken into account when using several individual controllers, e.g. by using fuzzy logic, artificial neural networks, etc. It is also possible to switch between the individual controller outputs, e.g. by bounce-free switches, etc. make.
  • the individual controllers can be based, for example, on stability concepts, such as e.g. Hyperstability, dissipativity, etc., or methods based on differential algebraic methods, such as feedback linearization, backstepping, flatness, etc.
  • stability concepts such as e.g. Hyperstability, dissipativity, etc.
  • methods based on differential algebraic methods such as feedback linearization, backstepping, flatness, etc.
  • methods such as gain scheduling, model reference adaptive control, seif tuning control, model predictive methods, State regulations (eg LQR, Riccati etc.) are suitable.
  • PIDTV controls robust control methods (e.g., ⁇ -synthesis, Hoo method), hybrid controllers, finite state machines, artificial neural networks, and fuzzy logic.
  • the consolidation of redundant signals may be done using methods such as voting (see, e.g., [34]) and monitoring, as shown in Figure 6 as a block diagram.
  • voting see, e.g., [34]
  • monitoring as shown in Figure 6 as a block diagram.
  • Figure 7 As an example of a possibility for the case of a signal consolidation in Triplex redundancy serves Figure 7.
  • the method can have effects on the layout of the wind turbine.
  • actuators, sensors, control units etc. are available redundantly in order to be able to operate the plant in a fault-tolerant manner. This suggests the use of the described method.
  • the error classification provides information about the current error case, which results from the system control or the
  • Page 13 of 17 Data transfers of remote monitoring can be read out. These are indications for the use of the described method of fault-tolerant control.
  • the error acceptor with Arbitrator and Reconfigurator provide in case of reconfiguration of the system for the adjustments of regulation, actuators and sensors. Corresponding disconnection and connection of subsystems can be determined, which also points to a fault-tolerant operation of the system and thus to the method described.
  • the direct detectability of the competitor product is a challenge.
  • stimulation with appropriate test signals and appropriate recording of system responses during tests may give indications of the use of the method described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Wind Motors (AREA)

Abstract

L'invention porte sur un dispositif d'entraînement, en particulier sur un entraînement de réglage compris dans une éolienne, pouvant être utilisé en particulier comme entraînement de pas, ou entraînement azimutal, et qui comprend : un circuit de régulation dans lequel sont agencés, comme éléments de circuit de régulation, au moins une électronique de régulation, un dispositif de réglage - en particulier un actionneur électromécanique ou un actionneur hydraulique - ainsi qu'un détecteur pour la grandeur réglée, un dispositif d'observation qui est conçu pour exécuter un modèle du circuit de régulation sur la base de signaux de consigne, de signaux de réglage et des signaux de détecteurs du circuit de régulation qui lui sont envoyés, un dispositif de reconnaissance des défauts qui est conçu pour identifier un défaut en se basant sur des écarts entre le modèle et le circuit de régulation, et un circuit d'adaptation qui, en présence d'un défaut, est conçu pour adapter le comportement du circuit de régulation dans le sens tendant vers un comportement sans défaut.
PCT/EP2011/005933 2010-12-15 2011-11-25 Dispositif d'entraînement WO2012079699A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010054631A DE102010054631A1 (de) 2010-12-15 2010-12-15 Antriebseinrichtung
DE102010054631.3 2010-12-15

Publications (1)

Publication Number Publication Date
WO2012079699A1 true WO2012079699A1 (fr) 2012-06-21

Family

ID=45065860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/005933 WO2012079699A1 (fr) 2010-12-15 2011-11-25 Dispositif d'entraînement

Country Status (2)

Country Link
DE (1) DE102010054631A1 (fr)
WO (1) WO2012079699A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344914A (zh) * 2013-06-26 2013-10-09 中能电力科技开发有限公司 基于归一化的风电机组故障预警方法
WO2014202079A1 (fr) * 2013-06-21 2014-12-24 Kk Wind Solutions A/S Système de commande de turbine éolienne
EP3133282A1 (fr) 2015-08-19 2017-02-22 Senvion GmbH Procede et systeme de surveillance d'un dispositif de reglage de pale individuelle d'une eolienne
CN109340048A (zh) * 2018-09-14 2019-02-15 北京金风科创风电设备有限公司 风力发电机组运行控制方法和装置、存储介质
CN110821759A (zh) * 2019-12-13 2020-02-21 北京三力新能科技有限公司 一种液压变桨故障快速定位和安全停机方法
CN113007021A (zh) * 2021-03-18 2021-06-22 上海第二工业大学 用于变速风力发电机的命令滤波反步控制方法及控制器
CN115234448A (zh) * 2022-07-25 2022-10-25 东方电气新能科技(成都)有限公司 一种预防双馈风机快速收桨失败的监控方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108044A1 (fr) * 2015-12-23 2017-06-29 Vestas Wind Systems A/S Commande de turbines éoliennes en fonction d'estimations de fiabilité
EP3842635A1 (fr) * 2019-12-23 2021-06-30 Vestas Wind Systems A/S Fonctionnement d'une éolienne avec des capteurs mis en oeuvre à l'aide d'un modèle d'apprentissage automatique

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19827261C1 (de) 1998-06-18 2000-03-02 Siemens Ag Verfahren und Vorrichtung zur Ausregelung von Leistungsschwankungen eines Generators
DE10130339A1 (de) 2001-06-26 2003-01-02 Abb Research Ltd Verfahren und Vorrichtung zur Verbesserung des Nutzungsgrades und der Zuverlässigkeit einer Kraftanlage
DE10134883A1 (de) 2001-07-18 2003-01-30 Abb Research Ltd Verfahren und Vorrichtung zur drehzahlstellbaren leistungselektronischen Regelung einer getriebelosen Windkraftanlage
DE10140793A1 (de) 2001-08-20 2003-03-06 Gen Electric Einrichtung zum Verstellen des Rotorblattes eines Rotors einer Windkraftanlage
DE10141098A1 (de) 2001-08-22 2003-03-06 Gen Electric Windkraftanlage
DE10022974C2 (de) 2000-05-11 2003-10-23 Aloys Wobben Verfahren zum Betreiben einer Windenergieanlage sowie Windenergieanlage
EP1359321A1 (fr) * 2002-05-02 2003-11-05 General Electric Company Détection de charge pour pales d'éolienne
DE10341504A1 (de) 2003-09-03 2005-06-09 Repower Systems Ag Verfahren zum Betrieb einer Windenergieanlage, Windenergieanlage und Verfahren zur Bereitstellung von Regelleistung mit Windenergieanlagen
DE10239462B4 (de) 2002-08-21 2005-06-23 Würfel, Matthias, Dipl.-Ing. Verfahren zur Zustandserkennung und Bewertung der Übertragungseigenschaften von Schleifring-Kontaktsystemen bei Drehfeldmaschinen
US20060113801A1 (en) * 2004-11-17 2006-06-01 Thomas Schubert Device and method for a functional test of one wind turbine generator plant
DE102005038558A1 (de) 2005-08-12 2007-02-15 Repower Systems Ag Verfahren zum Betrieb eines Windenergieanlagenparks sowie Windenergieanlagenpark
DE102005026062A1 (de) 2005-06-07 2007-04-12 Kühn, Walter, Prof. Dr. Ing. Automatische Leistungs-Frequenz-Regelung und automatische Erzeugungsregelung mit selbstgeführten, pulsweitenmodulierten Wechselrichtern
DE102007014121A1 (de) 2006-10-09 2008-04-10 Ashland-Südchemie-Kernfest GmbH Radikalische Kalthärtung von auf modifizierten Poly(Meth)Acrylaten mit reaktiven ethylenischen Gruppen basierenden Kunstharzen
WO2009010061A2 (fr) * 2007-07-14 2009-01-22 Vestas Wind Systems A/S Eolienne, procede de compensation de disparites dans un systeme de pas de pale de rotor d'eolienne et procede d'utilisation associe

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19827261C1 (de) 1998-06-18 2000-03-02 Siemens Ag Verfahren und Vorrichtung zur Ausregelung von Leistungsschwankungen eines Generators
DE10022974C2 (de) 2000-05-11 2003-10-23 Aloys Wobben Verfahren zum Betreiben einer Windenergieanlage sowie Windenergieanlage
DE10130339A1 (de) 2001-06-26 2003-01-02 Abb Research Ltd Verfahren und Vorrichtung zur Verbesserung des Nutzungsgrades und der Zuverlässigkeit einer Kraftanlage
DE10134883A1 (de) 2001-07-18 2003-01-30 Abb Research Ltd Verfahren und Vorrichtung zur drehzahlstellbaren leistungselektronischen Regelung einer getriebelosen Windkraftanlage
DE10140793A1 (de) 2001-08-20 2003-03-06 Gen Electric Einrichtung zum Verstellen des Rotorblattes eines Rotors einer Windkraftanlage
DE10141098A1 (de) 2001-08-22 2003-03-06 Gen Electric Windkraftanlage
EP1359321A1 (fr) * 2002-05-02 2003-11-05 General Electric Company Détection de charge pour pales d'éolienne
DE10239462B4 (de) 2002-08-21 2005-06-23 Würfel, Matthias, Dipl.-Ing. Verfahren zur Zustandserkennung und Bewertung der Übertragungseigenschaften von Schleifring-Kontaktsystemen bei Drehfeldmaschinen
DE10341504A1 (de) 2003-09-03 2005-06-09 Repower Systems Ag Verfahren zum Betrieb einer Windenergieanlage, Windenergieanlage und Verfahren zur Bereitstellung von Regelleistung mit Windenergieanlagen
US20060113801A1 (en) * 2004-11-17 2006-06-01 Thomas Schubert Device and method for a functional test of one wind turbine generator plant
DE102005026062A1 (de) 2005-06-07 2007-04-12 Kühn, Walter, Prof. Dr. Ing. Automatische Leistungs-Frequenz-Regelung und automatische Erzeugungsregelung mit selbstgeführten, pulsweitenmodulierten Wechselrichtern
DE102005038558A1 (de) 2005-08-12 2007-02-15 Repower Systems Ag Verfahren zum Betrieb eines Windenergieanlagenparks sowie Windenergieanlagenpark
DE102007014121A1 (de) 2006-10-09 2008-04-10 Ashland-Südchemie-Kernfest GmbH Radikalische Kalthärtung von auf modifizierten Poly(Meth)Acrylaten mit reaktiven ethylenischen Gruppen basierenden Kunstharzen
WO2009010061A2 (fr) * 2007-07-14 2009-01-22 Vestas Wind Systems A/S Eolienne, procede de compensation de disparites dans un systeme de pas de pale de rotor d'eolienne et procede d'utilisation associe

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
"ENERCON Windenergieanlagen - Technologie & Service", 2007, ENERCON GMBH
"Produktbroschüre", 2007, NORDEX AG, article "Nordex Control 2"
"Produktprospekt", 2007, REPOWER SYSTEMS AG, article "MM92 - Das zuverlässige 2-Megawatt-Kraftwerk mit 92 Meter Rotordurchmesser"
"Technical Brochure, GE Energy", 2007, GENERAL ELECTRIC COMPANY, article "3.6MW Offshore Series Wind Turbine"
ACKERMANN, JÜRGEN: "Robuste Regelungen", 1993, SPRINGER VERLAG
ALLGÖWER, FRANK; ZHENG, ALEX: "Nonlinear Model Predictive Control", 2000, BRIKHÄUSER VERLAG AG
ASTRÖM, KARL JOHAN; WITTENMARK, BJÖRN: "Adaptive Control", 1995, ADDISON- WESLEY
BLOUGH , DOUGLAS M.; SULLIVAN, GREGORY F.: "A Comparison of Voting Strategies for Fault-Tolerant Distributed Systems", IEEE PROCEEDINGS OF THE 9TH SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS, 9 October 1990 (1990-10-09)
CHRISTOFFER SLOTH ET AL: "Active and passive fault-tolerant LPV control of wind turbines", AMERICAN CONTROL CONFERENCE (ACC), 2010, IEEE, PISCATAWAY, NJ, USA, 30 June 2010 (2010-06-30), pages 4640 - 4646, XP031719517, ISBN: 978-1-4244-7426-4 *
ENGELEN, T. G., VAN: "Report, STABCON Task-7", 2006, ENERGY RESEARCH CENTER OF THE NETHERLANDS, article "Morphological Study of Aeroelastic Control Concepts for Wind Turbines"
ERNST-CATHOR, JÜRGEN: "Dissertation", 1987, TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG, article "Drehzahlvariable Windenergieanlage mit Gleichstromzwischenkreis - Umrichter und Optimum - suchendem Regler"
GASCH, ROBERT; TWELE, JOCHEN: "Windkraftanlagen - Grundlagen, Entwurf, Planung und Betrieb", 2005, TEUBNER VERLAG
HANSEN, MORTEN H.; HANSEN, ANCA; LARSEN, TORBEN J.; 0YE, STIG; SORENSEN, POUL; FUGLSANG, PETER: "Report, Riso-R-1500(EN", 2005, RISO NATIONAL LABORATORY, article "Control design for a pitch-regulated, variable speed wind turbine"
HEIER, SIEGFRIED: "Windkraftanlagen: Systemauslegung, Netzintegration und Regelung", 2005, TEUBNER VERLAG
HOFFMANN, ROLF: "Dissertation", TECHNISCHE UNIVERSITÄT DARMSTADT, article "A comparison of control concepts for wind turbines in term of energy capture"
KHALIL, HASSAN K.: "Nonlinear Systems", 1996, PRENTICE HALL
KREITNER; HERMANN: "Dissertation", 1980, HOCHSCHULE DER BUNDESWEHR, article "Synthese strukturvariabler Mehrgrößenregelungssysteme unter Berücksichtigung von Steuer- und Zustandsgrößenbeschränkungen"
KRÜGER, THOMAS: "Dissertation", 1998, UNIVERSITÄT GESAMTHOCHSCHULE KASSEL, article "Regelungsverfahren für Windkraftanlagen zur Reduktion der mechanischen Belastung"
MOLENAAR, DAVID-P.: "Proceedings of Windpower 2000", 30 April 2000, NVENTION CENTER, PALM SPRINGS, article "Control relevant structural modeling of flexible wind turbines."
PETERS, G. E.; KNIGHT, A. M.: "Rugged Control Circuit for Efficient Operation of a Wind Turbine", IEEE PROCEEDINGS OF THE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING, vol. 1, 15 May 2002 (2002-05-15), XP010707427, DOI: doi:10.1109/CCECE.2002.1015224
ROSENBERG, K.: "Deliverable 3.4, BE97-4098", 1998, ADFCS, article "FCS Architecture Definition (Issue 1"
STIJN DONDERS: "fault detection and identification for wind turbine systems: a closed-loop analysis", 30 June 2002 (2002-06-30), XP055022750, Retrieved from the Internet <URL:http://www.stijndonders.nl/wind/scriptie.pdf> [retrieved on 20120323] *
WEY; TORSTEN: "Nichtlineare Regelungssysteme", 2002, TEUBNER VERLAG
XIUKUN (JOHN) WEI: "model based condition monitoring of sensors and actuators of large scale wind turbines", 31 October 2008 (2008-10-31), XP055022751, Retrieved from the Internet <URL:http://www.windworkshops.tudelft.nl/files/presentaties/4C/Wei/robustobserverbasedf.pdf> [retrieved on 20120323] *
ZHAN, TONG; LI, WENYONG; DU, LU: "A Procedure for the Development of Control-Oriented Linear Models for Horizontal-Axis Large Wind Turbines", JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT AND CONTROL, vol. 129, July 2007 (2007-07-01), pages 469 - 479
ZHAN, TONG; LI, WENYONG; DU, LU: "Mechatronic Control Model of the Wind Turbine with Transmission to Split Power", INTERNATIONAL JOURNAL OF CONTROL, AUTOMATION AND SYSTEMS, vol. 3, no. 4, 2005, pages 533 - 541

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202079A1 (fr) * 2013-06-21 2014-12-24 Kk Wind Solutions A/S Système de commande de turbine éolienne
CN103344914A (zh) * 2013-06-26 2013-10-09 中能电力科技开发有限公司 基于归一化的风电机组故障预警方法
EP3133282A1 (fr) 2015-08-19 2017-02-22 Senvion GmbH Procede et systeme de surveillance d'un dispositif de reglage de pale individuelle d'une eolienne
DE102015010686A1 (de) 2015-08-19 2017-02-23 Senvion Gmbh Verfahren und System zur Überwachung einer Einzelblattverstellung einer Windenergieanlage
CN109340048A (zh) * 2018-09-14 2019-02-15 北京金风科创风电设备有限公司 风力发电机组运行控制方法和装置、存储介质
CN110821759A (zh) * 2019-12-13 2020-02-21 北京三力新能科技有限公司 一种液压变桨故障快速定位和安全停机方法
CN113007021A (zh) * 2021-03-18 2021-06-22 上海第二工业大学 用于变速风力发电机的命令滤波反步控制方法及控制器
CN115234448A (zh) * 2022-07-25 2022-10-25 东方电气新能科技(成都)有限公司 一种预防双馈风机快速收桨失败的监控方法及装置

Also Published As

Publication number Publication date
DE102010054631A1 (de) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2012079699A1 (fr) Dispositif d&#39;entraînement
EP0895197B1 (fr) Procédé pour surveiller des installations avec des composants mécaniques
EP2132440B1 (fr) Dispositif d&#39;entraînement pour entraîner plusieurs essieux
EP1634365A2 (fr) Eolienne
EP1092177B1 (fr) Regulateur ou regulateur de propulseur, propulseur et procede pour reguler un systeme de reglage ou d&#39;entrainement ou un propulseur
EP2284634A1 (fr) Procédé et agencement pour le contrôle de paramètres de configuration automatique dans des éoliennes
WO2018059907A1 (fr) Procédé pour faire fonctionner un réseau de bord électrique d&#39;un véhicule à moteur
Badihi et al. Fault-tolerant cooperative control in a wind farm using adaptive control reconfiguration and control reallocation
EP2535570B1 (fr) Système d&#39;orientation d&#39;une éolienne.
EP2971768A1 (fr) Développement d&#39;un modèle d&#39;ordre supérieur
EP1442339A1 (fr) Procede permettant d&#39;eviter ou de reduire a un minimum la defaillance de fonctions d&#39;une installation technique
WO2021058471A1 (fr) Régulateur de puissance électronique programmable
WO2015161866A1 (fr) Surveillance de la tolérance aux pannes d&#39;une installation d&#39;automatisme
WO2018059906A1 (fr) Procédé permettant de faire fonctionner un réseau de bord électrique
EP1933008B1 (fr) Système de protection pour une installation et procédé destiné à la surveillance d&#39;un système de protection
EP2971769B1 (fr) Entrée de schéma r&amp;i pour un procédé de contrôle et/ou de surveillance d&#39;un système de compresseurs
EP3575909B1 (fr) Procédé de surveillance d&#39;une pluralité de systèmes mécaniques
WO2014026759A1 (fr) Machine électrique pourvue d&#39;un système de surveillance
DE102019000025A1 (de) Windenergieanlage
WO2019086205A1 (fr) Dispositif de surveillance de sécurité destiné à surveiller des états relatifs à la sécurité dans une installation de transport de personnes ainsi que procédé destiné à faire fonctionner ce dernier
DE19918332C1 (de) Verfahren zur Kontrolle der im Betrieb einer Anlage entstehenden Kosten
DE102013002662A1 (de) Verfahren und Vorrichtung zum Betreiben zumindest einer Windenergieanlage und zum Bestimmen einer Zustandsgröße einer Windenergieanlage
Monteiro Pereira et al. Reactive power management of a wind farm to prevent voltage collapse of an electric power system
DE10209328A1 (de) System zur Überwachung oder/und Optimierung der Funktion technischer Anlagen
EP4226494A1 (fr) Procédé de surveillance d&#39;un ou de plusieurs entraînements électriques d&#39;un système électromécanique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11790561

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11790561

Country of ref document: EP

Kind code of ref document: A1