WO2012077846A1 - High strength organic/inorganic composite having mineral bridge structure, and preparation method thereof - Google Patents

High strength organic/inorganic composite having mineral bridge structure, and preparation method thereof Download PDF

Info

Publication number
WO2012077846A1
WO2012077846A1 PCT/KR2010/008847 KR2010008847W WO2012077846A1 WO 2012077846 A1 WO2012077846 A1 WO 2012077846A1 KR 2010008847 W KR2010008847 W KR 2010008847W WO 2012077846 A1 WO2012077846 A1 WO 2012077846A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic composite
polymer
high strength
strength organic
inorganic
Prior art date
Application number
PCT/KR2010/008847
Other languages
French (fr)
Korean (ko)
Inventor
김영희
김수룡
권우택
이윤주
이준경
임형미
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2012077846A1 publication Critical patent/WO2012077846A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment

Definitions

  • the present invention relates to a high-strength organic-inorganic composite having a mineral bridge structure and a method of manufacturing the same, and more particularly, to manufacturing an organic-inorganic composite in which inorganic particles having a matrix structure in a polymer polymer are regularly arranged using a hydrothermal hot press method.
  • the present invention relates to an organic-inorganic composite having a high strength by forming a mineral bridge between inorganic particles filled in a high molecular polymer and a method of preparing the same.
  • nanocomposite materials As a result, researches on polymer nanocomposites centering on nanoclays having very large aspect ratios (200 to 1000) have been actively conducted as nanocomposite materials.
  • nanoclays due to the nature of nanoclays, many layers are attached, making it difficult to exfoliate them. Therefore, it is difficult to obtain nanocomposites in which constituent materials are well dispersed.
  • Biomimetic nanocomposites are 25-50% lighter than metals of the same strength, and are emerging as materials to replace metals in automobile and aircraft parts. Since natural structures have very complex structures, it is difficult to imitate them. have.
  • nanocomposites that mimic high-strength natural materials, such as nacres and bones, but they have yet to develop materials with satisfactory performance.
  • lightweight nanocomposites composed of nanoclays and polymers that mimic the microstructure of abalone shells have been reported.
  • the present technology can only manufacture thin films.
  • Hydrothermal hot pressing method is a method for producing a solid sintered body at a relatively low temperature under saturated vapor pressure conditions, and has been mainly used for the solid body of calcium carbonate, magnesium carbonate, etc. which is difficult to sinter.
  • this method has been applied to the manufacture of biomaterials, and US Patent No. 6,338,810 discloses that calcium phosphate powders such as calcium triphosphate ( ⁇ -TCP: ⁇ -tricalcium phosphate) and calcium phosphate (TeCP) It describes the method of solidifying to a compact by applying the pressure of 100-500 Mpa between 100-500 degreeC in presence.
  • the present inventors use the hydrothermal hot pressing method to increase the filling rate of the inorganic particles in the polymer polymer, when the inorganic inorganic particles having a matrix structure in the polymer polymer is regularly arranged, and the inorganic particles filled in the polymer polymer Forming a mineral bridge between them was found to exhibit a significantly higher strength than the conventional organic-inorganic composites to complete the present invention.
  • An object of the present invention is to provide an organic-inorganic composite having a light weight and high strength that can be used in high value-added industries such as aviation industry, aerospace industry, automobile industry, energy industry, environmental industry, defense industry, construction industry, There is.
  • the present invention comprises a high-strength organic-inorganic composite comprising a polymer polymer and inorganic particles having a matrix structure uniformly arranged in the polymer polymer, a mineral bridge is formed between the inorganic particles to provide.
  • the present invention comprises the steps of dispersing the plate-shaped inorganic particles in a solvent in a container, followed by freezing casting to remove the solvent to prepare a solid (step 1); It provides a method for producing a high-strength organic-inorganic composite comprising the step of impregnating the solid in the polymer polymer to prepare a mixture (step 2) and the hydrothermal hot pressing step (step 3) after adding the mineralizer to the mixture.
  • the high strength organic-inorganic composite according to the present invention is prepared by uniformly dispersing 50 to 80% by weight of inorganic particles in 20 to 50% by weight of the polymer.
  • the polymer may be polyethylene, polypropylene, phenolic resin, polyamide, polycarbonate, and the like, and the plate-shaped inorganic particles may include nanoclay, calcium carbonate, silica, alumina, ceria, magnesium hydrooxide, and zinc oxide. , Iron oxide, titanium oxide and the like can be used.
  • a basic solution or an acid solution may be used as the mineralizer, and specifically, a basic solution such as sodium hydroxide or potassium hydroxide or an acid solution such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, citric acid, or the like may be used.
  • the high strength organic-inorganic composite according to the present invention is prepared by uniformly dispersing plate-shaped inorganic particles in the polymer, and the inorganic particles may exhibit high strength by forming a mineral bridge by hydrothermal hot pressing.
  • the present invention provides a high strength and light weight organic-inorganic composite by regularly dispersing the plate-shaped inorganic particles in the polymer polymer to increase the filling rate of the inorganic particles, and forming a mineral bridge between the inorganic particles, thereby providing aerospace, aerospace, It can be widely used in high value-added industries such as automobile industry, energy industry, environmental industry, defense industry, construction industry and so on.
  • FIG. 1 is a process flow diagram schematically showing a manufacturing process of a high-strength organic-inorganic composite according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the organic-inorganic composite showing a state in which a mineral bridge is formed between the inorganic particles dispersed in the polymer by a hydrothermal hot pressing process in the manufacturing process of the high-strength organic-inorganic composite of the present invention.
  • the present invention provides a high-strength organic-inorganic composite comprising a polymer polymer and inorganic particles having a matrix structure uniformly arranged in the polymer polymer, wherein a mineral bridge is formed between the inorganic particles.
  • the high strength organic-inorganic composite may be prepared including 20 to 50% by weight of the polymer polymer and 50 to 80% by weight of the inorganic particles.
  • the polymer may be polyethylene, polypropylene, phenolic resin, polyamide, polycarbonate, or the like, but is not limited thereto.
  • an oxide-based ceramic such as nanoclay, calcium carbonate, silica, alumina, ceria, magnesium hydrooxide, zinc oxide, iron oxide, titanium oxide, etc. including bentonite and montmorillonite may be used. It may be dispersed in the polymer polymer in the form of a plate.
  • the high-strength organic-inorganic composite according to the present invention has a structure in which inorganic particles are uniformly dispersed in a high molecular polymer, and a mineral bridge is formed between inorganic particles by hydrothermal hot pressing to obtain a high mechanical strength of 150-250 Mpa and 1.5- A density of 3 g / cm 3 is shown.
  • the inorganic particles are dispersed in a solvent such as a beaker, then freeze cast to remove the solvent to prepare a solid (step 1).
  • step 1 inorganic particles are dispersed in a solvent in a container, for example, water, alcohol, acetone, dichloroethylene, and the like, and then solidified by freezing at -100 to 0 ° C from the bottom of the container.
  • the freezing casting method is performed to form a porous skeleton and a solvent is removed using a vacuum pump to prepare a solid.
  • one or two or more plate-shaped particles selected from the group consisting of oxide ceramics such as nanoclays including bentonite and montmorillonite, calcium carbonate, silica, alumina and titanium oxide may be used. .
  • step 2 the solid prepared in step 1 is impregnated into the polymer polymer to prepare a mixture (step 2).
  • the polymer may be polyethylene, polypropylene, phenolic resin, polyamide, polycarbonate, or the like, but is not limited thereto.
  • step 3 the mineralizer is added to the mixture prepared in step 2, followed by hydrothermal hot press treatment (step 3).
  • step 3 100 to 200 parts by weight of the mineralizer may be added to the mixture with respect to the total weight of the mixture prepared in step 2, and then hydrothermal hot pressing may be performed.
  • a basic solution or an acid solution may be used.
  • a basic solution such as sodium hydroxide or potassium hydroxide or an acid solution such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, citric acid, or the like may be used.
  • the addition of mineralizers to the mixture can enhance the solubility of the inorganic particles at high temperatures.
  • the mixture of the mixture prepared in step 2 and the mineralizer were introduced into a cell of a hydrothermal hot press device, and then a hydrothermal hot pressing process was performed at a pressure of 50 to 150 kN at 100 to 300 ° C. Can be performed.
  • This hydrothermal hot press process can be used to prepare a solid of inorganic matter using a dissolution-precipitation mechanism using a mineralizer at a low temperature.
  • the mineral bridge 120 is formed between the inorganic particles 110 when the hydrothermal hot pressing process is performed while the plate-shaped inorganic particles 110 are dispersed in the polymer 100 in step 3. do.
  • the high strength organic-inorganic composite of the present invention can be obtained by removing and drying the mineralizer from the product obtained by performing step 3 above.
  • the inorganic particles having a matrix structure is uniformly dispersed in the polymer polymer, a high-strength organic-inorganic composite having a structure in which a mineral bridge is formed between the inorganic particles can do.
  • the organic-inorganic composite prepared by the hydrothermal hot pressurization according to the present invention has excellent mechanical strength, which is a mineral bridge between the inorganic particles in the organic-inorganic composite of the present invention by hydrothermal hot pressurization. This is due to the formed structure.

Abstract

The present invention relates to a high strength organic/inorganic composite prepared using a hydrothermal hot pressing method, and a preparation method thereof. The organic/inorganic composite of the present invention comprises: a polymer; and inorganic particles having a matrix structure uniformly arranged inside the polymer, wherein mineral bridges are formed among the inorganic particles. Plate inorganic particles are regularly distributed inside a polymer to increase the filling ratio of inorganic particles, and mineral bridges are formed among the inorganic particles to provide a lightweight high strength organic/inorganic composite, and thus the present invention can be widely used in high-value industries such as the aerospace industry, the space industry, the automobile industry, the energy industry, the environmental industry, the defense industry, the construction industry, and the like.

Description

미네랄브릿지 구조를 갖는 고강도 유무기 복합체 및 이의 제조방법High strength organic-inorganic composite with mineral bridge structure and method
본 발명은 미네랄브릿지 구조를 갖는 고강도 유무기 복합체 및 이의 제조방법에 관한 것으로, 보다 상세하게는 고분자 중합체 내에 매트릭스 구조를 갖는 무기물 입자들이 규칙적으로 배열된 유무기 복합체를 수열 열간 가압법을 이용하여 제조함으로써 고분자 중합체 내에 충진된 무기물 입자들 사이에 미네랄 브릿지가 형성되어 우수한 강도를 갖는 유무기 복합체 및 이의 제조방법에 관한 것이다.The present invention relates to a high-strength organic-inorganic composite having a mineral bridge structure and a method of manufacturing the same, and more particularly, to manufacturing an organic-inorganic composite in which inorganic particles having a matrix structure in a polymer polymer are regularly arranged using a hydrothermal hot press method. The present invention relates to an organic-inorganic composite having a high strength by forming a mineral bridge between inorganic particles filled in a high molecular polymer and a method of preparing the same.
항공 산업과 우주 산업 그리고 자동차 산업 등에 요구되는 경량화에 의한 에너지 절감은 21 세기를 선도하는 중요기술이 될 것으로 예상되고 있으며, 에너지 환경산업 등에서 경량의 고강도 소재에 대한 수요가 증가하고 있다. Energy savings due to the weight reduction required for the aviation, aerospace and automotive industries are expected to be the leading technologies in the 21st century, and the demand for lightweight, high strength materials is increasing in the energy environment industry.
이에 따라 나노 복합 소재로서 최근 매우 큰 종횡비(200 ~ 1000)를 갖는 나노클레이를 중심으로 한 고분자 나노 복합체에 관한 연구가 활발히 진행되고 있으나, 나노클레이의 특성상 수많은 층이 붙어 있어 이를 박리화하는데 어려움이 있으므로 구성 소재들이 잘 분산된 나노 복합체를 얻기 힘든 실정이다.As a result, researches on polymer nanocomposites centering on nanoclays having very large aspect ratios (200 to 1000) have been actively conducted as nanocomposite materials. However, due to the nature of nanoclays, many layers are attached, making it difficult to exfoliate them. Therefore, it is difficult to obtain nanocomposites in which constituent materials are well dispersed.
생체모방 나노 복합체의 경우, 같은 강도의 금속보다 25~50%나 가벼워 자동차, 항공기 부품 중 금속을 대체할 소재로 부상되고 있는데, 자연의 구조물들은 매우 복잡한 구조를 가지므로 이를 모방하는데는 상당한 어려움이 있다. Biomimetic nanocomposites are 25-50% lighter than metals of the same strength, and are emerging as materials to replace metals in automobile and aircraft parts. Since natural structures have very complex structures, it is difficult to imitate them. have.
이에 진주층이나 뼈 같은 고강도의 자연의 물질을 모방한 나노 복 합체를 제조하고자 많은 연구가 진행되었으나, 아직 만족할 만한 성능을 갖는 소재의 개발에는 미치지 못하고 있다. 한 예로, 전복 껍질의 미세구조를 모방한 나노클레이와 고분자로 구성된 경량나노 복합소재가 보고되었으나 현재의 기술로는 박막(thin film) 정도로만 제조가 가능하다.Many studies have been conducted to produce nanocomposites that mimic high-strength natural materials, such as nacres and bones, but they have yet to develop materials with satisfactory performance. For example, lightweight nanocomposites composed of nanoclays and polymers that mimic the microstructure of abalone shells have been reported. However, the present technology can only manufacture thin films.
수열 열간 가압법(hydrothermal hot pressing method)은 포화 증기압 조건 하에서 비교적 낮은 온도로 단단한 소결체를 제조하는 방법으로서, 주로 소결이 어려운 탄산칼슘, 탄산마그네슘 등을 고화(solid body)시키는데 주로 사용되어져 왔다. 하지만 1990년도 이후 생체 재료 제조에 이 방법을 응용하기 시작하여 미국특허 제6,338,810호에서는 삼인산칼슘(α-TCP:α-tricalcium phosphate), 사인산칼슘(TeCP:tetracalcium phosphate) 등의 인산칼슘 분말을 수분 존재 하에서 100∼500℃ 사이에서 100∼500 Mpa의 압력을 가하여 치밀체로 고화시키는 방법에 대하여 기재하고 있다. Hydrothermal hot pressing method (hydrothermal hot pressing method) is a method for producing a solid sintered body at a relatively low temperature under saturated vapor pressure conditions, and has been mainly used for the solid body of calcium carbonate, magnesium carbonate, etc. which is difficult to sinter. However, since 1990, this method has been applied to the manufacture of biomaterials, and US Patent No. 6,338,810 discloses that calcium phosphate powders such as calcium triphosphate (α-TCP: α-tricalcium phosphate) and calcium phosphate (TeCP) It describes the method of solidifying to a compact by applying the pressure of 100-500 Mpa between 100-500 degreeC in presence.
또한, 카주유키 호소이(Kazuyuki Hosoi) 등은 역시 이인산칼슘이수화물(DCPD: dicalcium phosphate dihydrate)과 수산화칼슘을 150℃, 40 Mpa에서 처리하여 고화시키는 방법을 제안하였다(J. Am. Ceram. Soc., 79 [10] 2771-2774, 1996). 이 방법에서는 외부에서 수분을 가하지 않아도 고온에서 이인산칼슘이수화물의 탈수가 일어나 반응기에 수열 조건을 유지하게 된다. 이러한 수열 열간 가압법에 의해 고화된 인산 칼슘계 재료는 주로 생체뼈 대체용으로 연구되어 왔다. Kazuyuki Hosoi et al. Also proposed a method of solidifying by treating dicalcium phosphate dihydrate (DCPD) and calcium hydroxide at 150 ° C. and 40 Mpa (J. Am. Ceram. Soc. , 79 [10] 2771-2774, 1996). In this method, calcium diphosphate dihydrate is dehydrated at high temperature even without external moisture, thereby maintaining hydrothermal conditions in the reactor. Calcium phosphate-based materials solidified by such hydrothermal hot pressing have been mainly studied for replacement of living bones.
본 발명자들은 이러한 수열 열간 가압법을 사용하여 고분자 중합체 내에 매트릭스 구조를 갖는 무기물 입자들이 규칙적으로 배열된 유무기 복합체를 제조하는 경우, 고분자 중합체 내에 무기물 입자들의 충진율을 높이고, 고분자 중합체 내에 충진된 무기물 입자들 사이에 미네랄 브릿지를 형성하여 종래의 유무기 복합체에 비해 월등히 우수한 고강도를 나타내는 것을 알게 되어 본 발명을 완성하기에 이르렀다.The present inventors use the hydrothermal hot pressing method to increase the filling rate of the inorganic particles in the polymer polymer, when the inorganic inorganic particles having a matrix structure in the polymer polymer is regularly arranged, and the inorganic particles filled in the polymer polymer Forming a mineral bridge between them was found to exhibit a significantly higher strength than the conventional organic-inorganic composites to complete the present invention.
본 발명의 목적은 항공 산업, 우주 산업, 자동차 산업, 에너지 산업, 환경 산업, 국방 산업, 건설 산업 등과 같은 고부가가치 산업에 활용될 수 있는 경량 및 고강도를 나타내는 유무기 복합체 및 이의 제조방법을 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide an organic-inorganic composite having a light weight and high strength that can be used in high value-added industries such as aviation industry, aerospace industry, automobile industry, energy industry, environmental industry, defense industry, construction industry, There is.
상기 목적을 달성하기 위하여, 본 발명은 고분자 중합체 및 상기 고분자 중합체 내에 균일하게 배열된 매트릭스 구조를 갖는 무기물 입자를 포함하며, 상기 무기물 입자들 사이에는 미네랄 브릿지가 형성된 것을 특징으로 하는 고강도 유무기 복합체를 제공한다.In order to achieve the above object, the present invention comprises a high-strength organic-inorganic composite comprising a polymer polymer and inorganic particles having a matrix structure uniformly arranged in the polymer polymer, a mineral bridge is formed between the inorganic particles to provide.
또한, 본 발명은 판상의 무기물 입자를 용기 내의 용매에 분산시킨 후 프리징 캐스팅하고 용매를 제거하여 고형물을 제조하는 단계(단계 1); 상기 고형물을 고분자 중합체 내에 함침시켜 혼합물을 제조하는 단계(단계 2) 및 상기 혼합물에 광화제를 첨가한 후 수열 열간 가압하는 단계(단계 3)를 포함하는 고강도 유무기 복합체의 제조방법을 제공한다.In addition, the present invention comprises the steps of dispersing the plate-shaped inorganic particles in a solvent in a container, followed by freezing casting to remove the solvent to prepare a solid (step 1); It provides a method for producing a high-strength organic-inorganic composite comprising the step of impregnating the solid in the polymer polymer to prepare a mixture (step 2) and the hydrothermal hot pressing step (step 3) after adding the mineralizer to the mixture.
본 발명에 따른 고강도 유무기 복합체는 고분자 중합체 20∼50 중량% 내에 무기물 입자 50∼80 중량%가 균일하게 분산되어 제조된다.The high strength organic-inorganic composite according to the present invention is prepared by uniformly dispersing 50 to 80% by weight of inorganic particles in 20 to 50% by weight of the polymer.
상기 고분자 중합체로는 폴리에틸렌, 폴리프로필렌, 페놀릭레진, 폴리아마이드, 폴리카보네이트 등을 사용할 수 있으며, 상기 판상의 무기물 입자로는 나노클레이, 탄산칼슘, 실리카, 알루미나, 세리아, 마그네슘하이드로옥사이드, 산화아연, 산화철, 타이타늄옥사이드 등을 사용할 수 있다. 또한, 상기 광화제로는 염기성 용액 또는 산 용액이 사용될 수 있으며, 구체적으로 수산화나트륨, 수산화칼륨 등의 염기성 용액 또는 염산, 질산, 황산, 아세트산, 시트릭산 등의 산 용액이 사용될 수 있다.The polymer may be polyethylene, polypropylene, phenolic resin, polyamide, polycarbonate, and the like, and the plate-shaped inorganic particles may include nanoclay, calcium carbonate, silica, alumina, ceria, magnesium hydrooxide, and zinc oxide. , Iron oxide, titanium oxide and the like can be used. In addition, a basic solution or an acid solution may be used as the mineralizer, and specifically, a basic solution such as sodium hydroxide or potassium hydroxide or an acid solution such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, citric acid, or the like may be used.
본 발명에 따른 고강도 유무기 복합체는 상기 고분자 중합체 내에 판상의 무기물 입자가 균일하게 분산되어 제조되며, 상기 무기물 입자들은 수열 열간 가압 처리에 의해 미네랄 브릿지를 형성함으로써 고강도를 나타낼 수 있다.The high strength organic-inorganic composite according to the present invention is prepared by uniformly dispersing plate-shaped inorganic particles in the polymer, and the inorganic particles may exhibit high strength by forming a mineral bridge by hydrothermal hot pressing.
본 발명은 고분자 중합체 내에 판상의 무기물 입자를 규칙적으로 분산시켜 무기물 입자의 충진율을 높이고, 상기 무기물 입자들 사이에는 미네랄 브릿지를 형성하여 고강도이며 경량인 유무기 복합체를 제공함으로써, 항공 산업, 우주 산업, 자동차 산업, 에너지 산업, 환경 산업, 국방 산업, 건설 산업 등과 같은 고부가가치 산업에 널리 활용될 수 있다.The present invention provides a high strength and light weight organic-inorganic composite by regularly dispersing the plate-shaped inorganic particles in the polymer polymer to increase the filling rate of the inorganic particles, and forming a mineral bridge between the inorganic particles, thereby providing aerospace, aerospace, It can be widely used in high value-added industries such as automobile industry, energy industry, environmental industry, defense industry, construction industry and so on.
도 1은 본 발명의 일 실시형태에 따른 고강도 유무기 복합체의 제조공정을 개략적으로 나타낸 공정흐름도이다.1 is a process flow diagram schematically showing a manufacturing process of a high-strength organic-inorganic composite according to an embodiment of the present invention.
도 2는 본 발명의 고강도 유무기 복합체의 제조공정에서 수열 열간 가압 공정에 의해 고분자 중합체 내에 분산된 무기물 입자들 사이에 미네랄 브릿지가 형성된 상태를 나타내는 유무기 복합체의 단면도이다.2 is a cross-sectional view of the organic-inorganic composite showing a state in which a mineral bridge is formed between the inorganic particles dispersed in the polymer by a hydrothermal hot pressing process in the manufacturing process of the high-strength organic-inorganic composite of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. The terms or words used in the specification and claims are not to be construed as being limited to conventional or dictionary meanings, but should be construed as meanings and concepts corresponding to the technical matters of the present invention.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예이며, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있다.The embodiments described in the specification and the configuration shown in the drawings are preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, various equivalents and modifications that can replace them at the time of the present application are There may be.
본 발명은 고분자 중합체 및 상기 고분자 중합체 내에 균일하게 배열된 매트릭스 구조를 갖는 무기물 입자를 포함하며, 상기 무기물 입자들 사이에는 미네랄 브릿지가 형성된 것을 특징으로 하는 고강도 유무기 복합체를 제공한다.The present invention provides a high-strength organic-inorganic composite comprising a polymer polymer and inorganic particles having a matrix structure uniformly arranged in the polymer polymer, wherein a mineral bridge is formed between the inorganic particles.
본 발명의 일 실시형태에 있어서, 상기 고강도 유무기 복합체는 고분자 중합체 20∼50 중량% 및 무기물 입자 50∼80 중량%를 포함하여 제조될 수 있다.In one embodiment of the present invention, the high strength organic-inorganic composite may be prepared including 20 to 50% by weight of the polymer polymer and 50 to 80% by weight of the inorganic particles.
상기 고분자 중합체로는 폴리에틸렌, 폴리프로필렌, 페놀릭레진, 폴리아마이드, 폴리카보네이트 등을 사용할 수 있으나, 이에 제한되지 않는다.The polymer may be polyethylene, polypropylene, phenolic resin, polyamide, polycarbonate, or the like, but is not limited thereto.
상기 무기물 입자로는 벤토나이트 및 몬모릴나이트를 포함하는 나노클레이, 탄산칼슘, 실리카, 알루미나, 세리아, 마그네슘하이드로옥사이드, 산화아연, 산화철, 타이타늄옥사이드 등과 같은 산화물계 세라믹을 사용할 수 있으며, 상기 무기물 입자는 판상의 형태로 고분자 중합체에 분산될 수 있다.As the inorganic particles, an oxide-based ceramic such as nanoclay, calcium carbonate, silica, alumina, ceria, magnesium hydrooxide, zinc oxide, iron oxide, titanium oxide, etc. including bentonite and montmorillonite may be used. It may be dispersed in the polymer polymer in the form of a plate.
본 발명에 따른 고강도 유무기 복합체는 고분자 중합체에 무기물 입자가 균일하게 분산된 구조로 제조되며, 수열 열간 가압 처리에 의해 무기물 입자 사이에 미네랄 브릿지가 형성되어 150∼250 Mpa의 높은 기계적 강도 및 1.5∼3 g/cm3의 밀도를 나타낸다.The high-strength organic-inorganic composite according to the present invention has a structure in which inorganic particles are uniformly dispersed in a high molecular polymer, and a mineral bridge is formed between inorganic particles by hydrothermal hot pressing to obtain a high mechanical strength of 150-250 Mpa and 1.5- A density of 3 g / cm 3 is shown.
이하, 본 발명에 따른 고강도 유무기 복합체의 제조방법을 도 1을 참조하여 단계별로 구체적으로 설명한다.Hereinafter, a method of manufacturing a high strength organic-inorganic composite according to the present invention will be described in detail with reference to FIG. 1.
우선, 무기물 입자를 비이커 등의 용기 내의 용매에 분산시킨 후 프리징 캐스팅하고 용매를 제거하여 고형물을 제조한다(단계 1).First, the inorganic particles are dispersed in a solvent such as a beaker, then freeze cast to remove the solvent to prepare a solid (step 1).
상기 단계 1에서는 용기 내의 용매, 예를 들어, 물, 알코올, 아세톤, 디클로로에틸엔 등의 용매에 무기물 입자를 분산시킨 후 용기의 아래 부분부터 -100∼0℃에서 프리징(freezing)시켜 고형화하는 프리징 캐스팅법을 수행하여 다공성 골격을 형성하고 진공펌프 등을 사용하여 용매를 제거하여 고형물을 제조한다.In step 1, inorganic particles are dispersed in a solvent in a container, for example, water, alcohol, acetone, dichloroethylene, and the like, and then solidified by freezing at -100 to 0 ° C from the bottom of the container. The freezing casting method is performed to form a porous skeleton and a solvent is removed using a vacuum pump to prepare a solid.
상기 무기물 입자로는 산화물계 세라믹, 예를 들어, 벤토나이트 및 몬모릴나이트를 포함하는 나노클레이, 탄산칼슘, 실리카, 알루미나 및 타이타늄옥사이드로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 판상 입자를 사용할 수 있다.As the inorganic particles, one or two or more plate-shaped particles selected from the group consisting of oxide ceramics such as nanoclays including bentonite and montmorillonite, calcium carbonate, silica, alumina and titanium oxide may be used. .
다음으로, 단계 1에서 제조된 고형물을 고분자 중합체 내에 함침시켜 혼합물을 제조한다(단계 2).Next, the solid prepared in step 1 is impregnated into the polymer polymer to prepare a mixture (step 2).
상기 고분자 중합체로는 폴리에틸렌, 폴리프로필렌, 페놀릭레진, 폴리아마이드, 폴리카보네이트 등을 사용할 수 있으나, 이에 제한되지 않는다.The polymer may be polyethylene, polypropylene, phenolic resin, polyamide, polycarbonate, or the like, but is not limited thereto.
마지막으로, 단계 2에서 제조된 혼합물에 광화제를 첨가한 후 수열 열간 가압 처리를 수행한다(단계 3).Finally, the mineralizer is added to the mixture prepared in step 2, followed by hydrothermal hot press treatment (step 3).
본 발명의 일 실시형태에 있어서, 단계 3에서는 단계 2에서 제조된 혼합물 전체 중량에 대하여 광화제 100∼200 중량부를 혼합물에 첨가한 후 수열 열간 가압 처리를 수행할 수 있다.In one embodiment of the present invention, in step 3, 100 to 200 parts by weight of the mineralizer may be added to the mixture with respect to the total weight of the mixture prepared in step 2, and then hydrothermal hot pressing may be performed.
상기 광화제(mineralizer)로는 염기성 용액 또는 산 용액이 사용될 수 있으며, 구체적으로 수산화나트륨, 수산화칼륨 등의 염기성 용액 또는 염산, 질산, 황산, 아세트산, 시트릭산 등의 산 용액이 사용할 수 있으며, 이와 같이 혼합물에 광화제를 첨가함으로써 고온에서 무기물 입자의 용해도를 증진시킬 수 있다.As the mineralizer, a basic solution or an acid solution may be used. Specifically, a basic solution such as sodium hydroxide or potassium hydroxide or an acid solution such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, citric acid, or the like may be used. The addition of mineralizers to the mixture can enhance the solubility of the inorganic particles at high temperatures.
이후, 상기 단계 2에서 제조된 혼합물과 광화제의 혼합물질을 수열 열간 가압 장치의 셀에 투입한 후, 수열 열간 가압 공정(hydrothermal hot pressing process)을 100∼300 ℃에서 50∼150 kN의 압력을 가하여 수행할 수 있다. 이러한 수열 열간 가압 공정을 이용하여 낮은 온도에서 광화제를 사용하여 용해-석출 메카니즘을 이용하여 무기물의 고화체를 제조할 수 있다.Thereafter, the mixture of the mixture prepared in step 2 and the mineralizer were introduced into a cell of a hydrothermal hot press device, and then a hydrothermal hot pressing process was performed at a pressure of 50 to 150 kN at 100 to 300 ° C. Can be performed. This hydrothermal hot press process can be used to prepare a solid of inorganic matter using a dissolution-precipitation mechanism using a mineralizer at a low temperature.
도 2에 나타난 바와 같이, 단계 3에서 고분자 중합체(100) 내에 판상의 무기물 입자(110)가 분산된 상태에서 수열 열간 가압 공정을 수행하는 경우 무기물 입자(110) 사이에 미네랄 브릿지(120)가 형성된다.As shown in FIG. 2, the mineral bridge 120 is formed between the inorganic particles 110 when the hydrothermal hot pressing process is performed while the plate-shaped inorganic particles 110 are dispersed in the polymer 100 in step 3. do.
상기 단계 3을 수행하여 얻은 수득물로부터 광화제를 제거하고 건조시킴으로써 최종적인 본 발명의 고강도 유무기 복합체를 얻을 수 있다.The high strength organic-inorganic composite of the present invention can be obtained by removing and drying the mineralizer from the product obtained by performing step 3 above.
상술한 본 발명의 고강도 유무기 복합체의 제조방법에 따르는 경우, 고분자 중합체 내에 매트릭스 구조를 갖는 무기물 입자가 균일하게 분산되며, 상기 무기물 입자들 사이에는 미네랄 브릿지가 형성된 구조를 갖는 고강도 유무기 복합체를 제조할 수 있다.According to the manufacturing method of the high strength organic-inorganic composite of the present invention described above, the inorganic particles having a matrix structure is uniformly dispersed in the polymer polymer, a high-strength organic-inorganic composite having a structure in which a mineral bridge is formed between the inorganic particles can do.
이하, 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail.
<실시예 1><Example 1>
판상의 실리카인 일러라이트 30g을 15g의 물에 잘 분산시키 후 비이커의 아래 부분부터 서서히 프리징시켜 고형화한 다음 진공펌프를 사용하여 수분을 완전히 제거하고 페놀릭레진에 함침시켜 혼합물을 제조하였다. 상기 혼합물에 2M NaOH 용액 2㎖를 첨가하고 수열 열간 가압 장치의 셀에 투입한 후 250℃의 온도에서 50 kN의 압력을 1시간 동안 가하였다. 수열 열간 가압처리한 시료를 꺼내어 40℃ 증류수에 24시간 동안 침지시켜 광화제인 NaOH를 녹여내어 제거한 후 건조시켜 유무기 복합체를 제조하였다. 30 g of illite, a plate-like silica, was dispersed in 15 g of water, and then solidified by slowly freezing from the bottom of the beaker, followed by completely removing water using a vacuum pump and impregnating with phenolic resin to prepare a mixture. 2 ml of a 2M NaOH solution was added to the mixture, which was introduced into a cell of a hydrothermal hot press apparatus, and a pressure of 50 kN was applied at a temperature of 250 ° C. for 1 hour. The hydrothermal hot pressurized sample was taken out and immersed in distilled water at 40 ° C. for 24 hours to dissolve and remove NaOH, a mineralizer, and then dry to prepare an organic-inorganic composite.
<비교예 1>Comparative Example 1
판상의 실리카인 일러라이트 30g을 15g의 물에 잘 분산시키 후 비이커의 아래 부분부터 서서히 프리징시켜 고형화한 다음 진공펌프를 사용하여 수분을 완전히 제거하고 페놀릭레진에 함침시켰다. 가압장치의 셀에 옮긴 후 50 kN(뉴우톤)의 압력을 1시간 동안 가하였다. 가압처리한 시료를 꺼내어 유무기 복합체를 제조하였다.30 g of illite, a plate-like silica, was dispersed well in 15 g of water, and then solidified by slowly freezing from the bottom of the beaker, followed by completely removing water using a vacuum pump and impregnating with phenolic resin. After transferring to the cell of the pressurizer, a pressure of 50 kN (Newton) was applied for 1 hour. A pressurized sample was taken out to prepare an organic-inorganic composite.
시험예 - 압축강도 측정 시험Test Example-Compressive Strength Test
실시예 1 및 비교예 1에서 제조된 유무기 복합체에 대해 기계적 강도를 측정하기 위하여 5㎜ x 5㎜ x 10㎜크기의 각 실시예 1 및 비교예 1에서 제조된 유무기 복합체 시료를 위아래 표면에 레진으로 채워 만능시험기(Model 4204, Instron Corp., Danvers, MA)로 압축강도를 측정한 결과, 본 발명의 실시예 1에 따라 제조된 유무기 복합체는 150 MPa의 압축강도를 나타내었으나, 비교예 1에서 제조된 유무기 복합체는 100 MPa의 강도를 나타내었다.In order to measure the mechanical strength of the organic-inorganic composites prepared in Example 1 and Comparative Example 1, samples of the organic-inorganic composites prepared in each of Example 1 and Comparative Example 1 of 5 mm x 5 mm x 10 mm size on the upper and lower surfaces As a result of measuring the compressive strength by filling a resin with a universal testing machine (Model 4204, Instron Corp., Danvers, MA), the organic-inorganic composite prepared according to Example 1 of the present invention showed a compressive strength of 150 MPa. The organic-inorganic complex prepared in 1 exhibited an intensity of 100 MPa.
상기 결과로부터 본 발명에 따라 수열 열간 가압법을 이용하여 제조된 유무기 복합체는 기계적 강도가 우수한 것을 알 수 있으며, 이는 수열 열간 가압 처리에 의해 본 발명의 유무기 복합체 내의 무기물 입자들 사이에 미네랄 브릿지가 형성된 구조에 기인한 것이다.From the above results, it can be seen that the organic-inorganic composite prepared by the hydrothermal hot pressurization according to the present invention has excellent mechanical strength, which is a mineral bridge between the inorganic particles in the organic-inorganic composite of the present invention by hydrothermal hot pressurization. This is due to the formed structure.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (14)

  1. 고분자 중합체 및 상기 고분자 중합체 내에 균일하게 배열된 매트릭스 구조를 갖는 무기물 입자를 포함하며,It includes a high molecular polymer and inorganic particles having a matrix structure uniformly arranged in the high polymer,
    상기 무기물 입자들 사이에는 미네랄 브릿지가 형성된 것을 특징으로 하는 고강도 유무기 복합체.High strength organic-inorganic composite, characterized in that the mineral bridge is formed between the inorganic particles.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 고강도 유무기 복합체는 고분자 중합체 20∼50 중량% 및 무기물 입자 50∼80 중량%를 포함하여 제조된 것임을 특징으로 하는 고강도 유무기 복합체.The high-strength organic-inorganic composite is a high-strength organic-inorganic composite, characterized in that prepared by including 20 to 50% by weight of the polymer polymer and 50 to 80% by weight of the inorganic particles.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 무기물 입자는 벤토나이트 및 몬모릴나이트를 포함하는 나노클레이, 탄산칼슘, 실리카, 알루미나, 세리아, 마그네슘하이드로옥사이드, 산화아연, 산화철 및 타이타늄옥사이드로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 판상 입자인 것을 특징으로 하는 고강도 유무기 복합체.The inorganic particles may be one or two or more plate-shaped particles selected from the group consisting of nanoclay, calcium carbonate, silica, alumina, ceria, magnesium hydroxide, zinc oxide, iron oxide and titanium oxide including bentonite and montmorillonite. High strength organic-inorganic composite characterized by.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 고분자 중합체는 폴리에틸렌, 폴리프로필렌, 페놀릭레진, 폴리아마이드 및 폴리카보네이트로 이루어진 군으로부터 선택되는 것을 특징으로 하는 고강도 유무기 복합체.The high polymer is a high strength organic-inorganic composite, characterized in that selected from the group consisting of polyethylene, polypropylene, phenolic resin, polyamide and polycarbonate.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 고강도 유무기 복합체는 150∼250 Mpa의 기계적 강도 및 1.5∼3 g/cm3의 밀도를 나타내는 것을 특징으로 하는 고강도 유무기 복합체.The high strength organic-inorganic composite is a high strength organic-inorganic composite, characterized in that it exhibits a mechanical strength of 150 to 250 Mpa and a density of 1.5 to 3 g / cm 3 .
  6. 무기물 입자를 용기 내의 용매에 분산시킨 후 프리징 캐스팅하고 용매를 제거하여 고형물을 제조하는 단계(단계 1);Dispersing the inorganic particles in a solvent in a container, then freezing casting and removing the solvent to prepare a solid (step 1);
    상기 고형물을 고분자 중합체 내에 함침시켜 혼합물을 제조하는 단계(단계 2); 및Impregnating the solid into a polymer polymer to produce a mixture (step 2); And
    상기 혼합물에 광화제를 첨가한 후 수열 열간 가압하는 단계(단계 3);Hydrothermal hot pressing (step 3) after adding the mineralizer to the mixture;
    를 포함하는 것을 특징으로 하는 고강도 유무기 복합체의 제조방법.Method for producing a high strength organic-inorganic composite comprising a.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 무기물 입자는 벤토나이트 및 몬모릴나이트를 포함하는 나노클레이, 탄산칼슘, 실리카, 알루미나 및 타이타늄옥사이드로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 판상 입자인 것을 특징으로 하는 고강도 유무기 복합체의 제조방법.The inorganic particles are one or two or more kinds of plate-shaped particles selected from the group consisting of nanoclay, calcium carbonate, silica, alumina and titanium oxide including bentonite and montmorillonite.
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 단계 1에서 무기물 입자를 물, 알코올, 아세톤 및 디클로로에틸엔으로 이루어진 군으로부턴 선택되는 용매에 분산시킨 후, -100∼0℃에서 프리징시켜 고형화하는 것을 특징으로 하는 고강도 유무기 복합체의 제조방법.In step 1, the inorganic particles are dispersed in a solvent selected from the group consisting of water, alcohol, acetone, and dichloroethylene, and then solidified by freezing at -100 to 0 ° C. Way.
  9. 청구항 6에 있어서,The method according to claim 6,
    상기 고분자 중합체는 폴리에틸렌, 폴리프로필렌, 페놀릭레진, 폴리아마이드 및 폴리카보네이트로 이루어진 군으로부터 선택되는 것을 특징으로 하는 고강도 유무기 복합체의 제조방법.The high polymer is a method of producing a high strength organic-inorganic composite, characterized in that selected from the group consisting of polyethylene, polypropylene, phenolic resin, polyamide and polycarbonate.
  10. 청구항 6에 있어서,The method according to claim 6,
    상기 단계 3에서 혼합물 전체 중량에 대하여 광화제 100∼200 중량부를 혼합물에 첨가하는 것을 특징으로 하는 고강도 유무기 복합체의 제조방법.Method of producing a high strength organic-inorganic composite, characterized in that in step 3 to 100 to 200 parts by weight of the mineralizer based on the total weight of the mixture.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 광화제는 수산화나트륨, 수산화칼륨, 염산, 질산, 황산, 아세트산 및 시트릭산으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 고강도 유무기 복합체의 제조방법.The mineralizer is a method of producing a high strength organic-inorganic composite, characterized in that selected from the group consisting of sodium hydroxide, potassium hydroxide, hydrochloric acid, nitric acid, sulfuric acid, acetic acid and citric acid.
  12. 청구항 6에 있어서,The method according to claim 6,
    상기 수열 열간 가압하는 단계는 100∼300 ℃에서 50∼150 kN의 압력을 가압하여 수행되는 것을 특징으로 하는 고강도 유무기 복합체의 제조방법.The hydrothermal hot pressing step is a method for producing a high strength organic-inorganic composite, characterized in that is carried out by pressing a pressure of 50 ~ 150 kN at 100 ~ 300 ℃.
  13. 청구항 6에 있어서,The method according to claim 6,
    상기 단계 3을 수행하여 얻은 수득물로부터 광화제를 제거하고 건조시키는 단계를 더 포함하는 것을 특징으로 하는 고강도 유무기 복합체의 제조방법.The method of manufacturing a high strength organic-inorganic composite, characterized in that it further comprises the step of removing the mineralizer from the obtained obtained by performing step 3 and drying.
  14. 청구항 6에 있어서,The method according to claim 6,
    상기 고강도 유무기 복합체는 상기 고분자 중합체 내에 매트릭스 구조를 갖는 무기물 입자가 균일하게 분산되어 제조되며, 상기 무기물 입자들 사이에는 미네랄 브릿지가 형성된 것을 특징으로 하는 고강도 유무기 복합체의 제조방법.The high strength organic-inorganic composite is prepared by uniformly dispersing inorganic particles having a matrix structure in the polymer polymer, a method for producing a high strength organic-inorganic composite, characterized in that a mineral bridge is formed between the inorganic particles.
PCT/KR2010/008847 2010-12-06 2010-12-10 High strength organic/inorganic composite having mineral bridge structure, and preparation method thereof WO2012077846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100123755A KR101268883B1 (en) 2010-12-06 2010-12-06 High strength organic-inorganic composite having mineral bridge structure and preparation method thereof
KR10-2010-0123755 2010-12-06

Publications (1)

Publication Number Publication Date
WO2012077846A1 true WO2012077846A1 (en) 2012-06-14

Family

ID=46207319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008847 WO2012077846A1 (en) 2010-12-06 2010-12-10 High strength organic/inorganic composite having mineral bridge structure, and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101268883B1 (en)
WO (1) WO2012077846A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889879A (en) * 1986-07-30 1989-12-26 Pluess Staufer Ag Thermoplastic compositions with very high content of pulverized mineral materials for incorporation in polymers
US20020038582A1 (en) * 1999-07-02 2002-04-04 Richard A. Holl Composites of powdered fillers and polymer matrix
US20060127480A1 (en) * 2002-10-11 2006-06-15 Michael Tobyn Pharmaceutical excipients comprising inorganic particles in association with an organic polymeric material and forming a solid reticulated matrix, compositions, manufacturing and use thereof
WO2009074554A1 (en) * 2007-12-13 2009-06-18 Renault S.A.S. Method for preparing a transparent polymer material comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles
KR20100078741A (en) * 2008-12-30 2010-07-08 주식회사 엘지화학 Organic-inorganic composite compositions, preparation methods thereof, water treatment membranes and water treatment modules comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100533734B1 (en) * 2003-04-16 2005-12-22 한국화학연구원 Process for preparing polymer-layered compound nanocomposite
JP4375092B2 (en) 2003-06-04 2009-12-02 株式会社村田製作所 Method for producing ceramic composition
KR100599253B1 (en) 2004-06-24 2006-07-13 한국화학연구원 Synthesis of inorganic oxide nanoparticles in a polymer matrix by thermal cracking of inorganic acetate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889879A (en) * 1986-07-30 1989-12-26 Pluess Staufer Ag Thermoplastic compositions with very high content of pulverized mineral materials for incorporation in polymers
US20020038582A1 (en) * 1999-07-02 2002-04-04 Richard A. Holl Composites of powdered fillers and polymer matrix
US20060127480A1 (en) * 2002-10-11 2006-06-15 Michael Tobyn Pharmaceutical excipients comprising inorganic particles in association with an organic polymeric material and forming a solid reticulated matrix, compositions, manufacturing and use thereof
WO2009074554A1 (en) * 2007-12-13 2009-06-18 Renault S.A.S. Method for preparing a transparent polymer material comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles
KR20100078741A (en) * 2008-12-30 2010-07-08 주식회사 엘지화학 Organic-inorganic composite compositions, preparation methods thereof, water treatment membranes and water treatment modules comprising the same

Also Published As

Publication number Publication date
KR101268883B1 (en) 2013-05-29
KR20120062478A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
Rajak et al. Recent progress of reinforcement materials: a comprehensive overview of composite materials
Yu et al. Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention
Xu et al. Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: Methods, properties, and applications
Chen et al. An ultrasensitive fire-warning chitosan/montmorillonite/carbon nanotube composite aerogel with high fire-resistance
Wan et al. Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties
Li et al. 3D printing of hot dog‐like biomaterials with hierarchical architecture and distinct bioactivity
Lahiri et al. Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts
Alomayri et al. Mechanical properties of cotton fabric reinforced geopolymer composites at 200–1000 C
Thokchom et al. Effect of Si/Al ratio on performance of fly ash geopolymers at elevated temperature
EP1470912B1 (en) Multilayered ceramic coposite material having thermal protection properties
Xiao et al. Stereolithography (SLA) 3D printing of carbon fiber-graphene oxide (CF-GO) reinforced polymer lattices
Amaral et al. Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs
Xia et al. In-vitro cytotoxicity and in-vivo biocompatibility of as-extruded Mg–4.0 Zn–0.2 Ca alloy
Li et al. Smart graphene-cellulose paper for 2D or 3D “origami-inspired” human stem cell support and differentiation
Chen et al. A biomimetic‐structured wood‐derived carbon sponge with highly compressible and biocompatible properties for human‐motion detection
Yang et al. Morphology and mechanical properties of Cybister elytra
Singh et al. Ionic liquids-based processing of electrically conducting chitin nanocomposite scaffolds for stem cell growth
Zhang et al. Approaches to the manufacture of layered nanocomposites
Yang et al. Counterionic biopolymers-reinforced bioactive glass scaffolds with improved mechanical properties in wet state
Huang et al. Development of facture free clay-based aerogel: Formulation and architectural mechanisms
WO2012077962A2 (en) High strength organic/inorganic composite using plate-shaped inorganic particles and method for preparing same
Zhu et al. Nacre-like composite films with a conductive interconnected network consisting of graphene oxide, polyvinyl alcohol and single-walled carbon nanotubes
CN112940295B (en) Recyclable and reusable green hydrogel at room temperature and preparation method and application thereof
WO2012077846A1 (en) High strength organic/inorganic composite having mineral bridge structure, and preparation method thereof
He et al. Construction of alternate layered chitosan/alginate composite hydrogels and their properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860589

Country of ref document: EP

Kind code of ref document: A1