WO2012077157A1 - Skew plate-type hydraulic rotary machine - Google Patents

Skew plate-type hydraulic rotary machine Download PDF

Info

Publication number
WO2012077157A1
WO2012077157A1 PCT/JP2010/007103 JP2010007103W WO2012077157A1 WO 2012077157 A1 WO2012077157 A1 WO 2012077157A1 JP 2010007103 W JP2010007103 W JP 2010007103W WO 2012077157 A1 WO2012077157 A1 WO 2012077157A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
cylinder block
bush
plate
type hydraulic
Prior art date
Application number
PCT/JP2010/007103
Other languages
French (fr)
Japanese (ja)
Inventor
大野 猛
鈴木 孝尚
寿夫 和田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US13/882,832 priority Critical patent/US20130327208A1/en
Priority to EP10860466.1A priority patent/EP2650538A1/en
Priority to JP2012547597A priority patent/JPWO2012077157A1/en
Priority to KR1020127031763A priority patent/KR20130030761A/en
Priority to CN2010800690030A priority patent/CN103069161A/en
Priority to PCT/JP2010/007103 priority patent/WO2012077157A1/en
Publication of WO2012077157A1 publication Critical patent/WO2012077157A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0636Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F03C1/0639Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/10Control of working-fluid admission or discharge peculiar thereto
    • F01B3/103Control of working-fluid admission or discharge peculiar thereto for machines with rotary cylinder block
    • F01B3/108Control of working-fluid admission or discharge peculiar thereto for machines with rotary cylinder block by turning the swash plate (with fixed inclination)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/122Details or component parts, e.g. valves, sealings or lubrication means
    • F04B1/124Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/122Details or component parts, e.g. valves, sealings or lubrication means
    • F04B1/124Pistons
    • F04B1/126Piston shoe retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/128Driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2035Cylinder barrels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2042Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2078Swash plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2078Swash plates
    • F04B1/2085Bearings for swash plates or driving axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/22Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • F04B27/0882Pistons piston shoe retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • F04B27/0886Piston shoes

Definitions

  • the present invention relates to a swash plate type hydraulic rotating machine suitable as, for example, a swash plate type hydraulic pump or a swash plate type hydraulic motor.
  • FIG. 8 shows a conventional swash plate type hydraulic pump.
  • a conventional swash plate type hydraulic pump 100 includes a cylindrical cylinder block 9 that is spline-fitted to the rotary shaft 3, a plurality of cylinders 11 formed in the cylinder block 9, and a cylinder 11. And a valve plate 4 with which one end of the cylinder block 9 is in contact, and a presser plate 17 and a swash plate 15 provided opposite to the other end of the cylinder block 9. ing.
  • the tip of the piston 13 is a spherical portion 13 a that protrudes from the cylinder 11, and the spherical portion 13 a is spherically supported by a shoe 14 that is in sliding contact with the sliding contact surface 15 c of the swash plate 15.
  • the shoe 14 is fitted in a shoe support hole 17 a provided in the presser plate 17 corresponding to the cylinder 11.
  • the spherical bush 80 that supports the presser plate 17 is a cylindrical member that is spline-fitted to the rotary shaft 3, and is positioned between the cylinder block 9 and the swash plate 15.
  • the outer peripheral surface of the spherical bush 80 gradually increases in diameter from the swash plate 15 side toward the valve plate 4 side, and the outer peripheral surface and the inner peripheral surface of the presser plate 17 are in contact with each other.
  • a set spring 20 is provided between the spherical bush 80 and the cylinder block 9. Due to the spring force of the set spring 20 and the hydraulic pressure in each cylinder 11, the cylinder block 9 is pressed against and closely contacts the valve plate 4, and the shoe 14 is pressed against the sliding contact surface 15 c of the swash plate 15.
  • the piston 13 reciprocates in the cylinder 11 along the inclination of the swash plate 15.
  • the swash plate type hydraulic pump uses the movement of the piston 13 to suck a required amount of working fluid at a low pressure and discharge it to the high pressure side.
  • the rotation of the rotary shaft and the movement of the working fluid are opposite to those of the swash plate type hydraulic pump.
  • the force with which the shoe 14 presses the swash plate 15 depends on the spring force of the set spring 20, and the piston 13 causes the shoe 14 to move the valve plate 4.
  • the force pulling toward the side exceeds the force pressing the shoe 14 by the set spring 20 and the hydraulic pressure.
  • the shoe 14 may float from the swash plate 15 or may fall (tilt).
  • the shoe 14 comes into contact with the sliding contact surface 15 c of the swash plate 15.
  • the swash plate 15 and the shoe 14 may be unevenly worn or galling and seizure may occur due to the contact of the shoe 14, and the life of the shoe 14 and the swash plate 15 may be reduced.
  • the bearing surface that comes into contact with the swash plate of the shoe is made of an aluminum-silicon alloy that is lighter and more excellent in wear resistance than a copper alloy, thereby acting on the shoe. By reducing the centrifugal force, lifting of the shoe from the swash plate is prevented.
  • an object of the present invention is to provide a technique for preventing the shoe from lifting from the swash plate in a swash plate type hydraulic rotating machine such as a swash plate type hydraulic pump or a swash plate type hydraulic motor. As a result, it aims at providing the structure which can be equal to the further increase in the rotational speed of a swash plate type hydraulic rotating machine.
  • the swash plate type hydraulic rotating machine according to the present invention is in sliding contact with the valve plate between the rotary plate, the valve plate and the swash plate facing away from each other in the axial direction of the rotary shaft, and between the valve plate and the swash plate.
  • a cylinder block externally fitted to the rotating shaft, a plurality of cylinders provided in the cylinder block, a plurality of pistons inserted into the cylinder so as to reciprocate in the axial direction, and the swash plate from the cylinder
  • a plurality of shoes pivotably connected to the tip of the piston protruding to the side, and an annular presser plate that is loosely fitted to the rotary shaft between the swash plate and the cylinder block and holds the shoe
  • a bush that supports the presser plate, a bush that is provided between the bush and the cylinder block, and the bush that is provided between the presser plate and the cylinder block.
  • the pressing plate and a spring member for urging the bush so as to press the swash plate side, gap between the axial direction of the bush and the cylinder block is one that is 0 or very small in the assembled state.
  • the size of the gap is preferably 0 or more than 0 and 1.2 mm or less.
  • the swash plate type hydraulic rotating machine includes a rotating shaft, a valve plate and a swash plate facing away from each other in the axial direction of the rotating shaft, and the valve plate and the sliding plate between the valve plate and the swash plate.
  • a cylinder block that is externally fitted to the rotating shaft so as to be in contact; a plurality of cylinders provided in the cylinder block; a plurality of pistons that are inserted into the cylinder so as to be capable of reciprocating in the axial direction; A plurality of shoes that are swingably connected to the tip of the piston that protrudes toward the swash plate, and an annular ring that is loosely fitted to the rotary shaft between the swash plate and the cylinder block and holds the shoe A presser plate, provided between the presser plate and the cylinder block, a bush for supporting the presser plate, and provided between the bush and the cylinder block.
  • a spring member which shoe urges the bush so as to press the pressing plate to the swash-plate-side, but with a filling member to fill the axial clearances of the bush and the cylinder block.
  • the filling member may be one or more shim plates. Further, a time-curable or thermosetting filler may be provided between the filling member and any one of the bush and the cylinder block. Alternatively, the filling member may be a press-fitting bush.
  • the swash plate type hydraulic rotating machine configured as described above, since the gap between the cylinder block and the bush is zero or very small, movement of the bush toward the valve plate is restricted when the bush comes into contact with the cylinder block. . That is, the movement of the press plate that presses the shoe against the swash plate toward the valve plate is restricted. Therefore, for example, when the rotational speed of the rotary shaft increases and the moment of overturning the shoe caused by the inertial force or centrifugal force that pulls the piston toward the valve plate becomes greater than the spring force of the set spring, the shoe is inclined. Do not lift or fall over the board.
  • the shoe is prevented from being lifted or overturned from the swash plate, so that the shoe slides on the swash plate in a state where it comes into contact with the swash plate.
  • the bushing is pressed against the cylinder block. Since the movement of the plate toward the valve plate is restricted, it is possible to prevent the shoe from being lifted from the swash plate or falling down.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a swash plate type hydraulic pump according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion X surrounded by a two-dot chain line in FIG.
  • FIG. 3 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing Example 1 of a spherical bush and a cylinder block provided with a gap in the axial direction.
  • FIG. 4 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing Example 2 of a spherical bush and a cylinder block provided with a gap in the axial direction.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a swash plate type hydraulic pump according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion X surrounded by a two-dot chain line in FIG.
  • FIG. 3 is
  • FIG. 5 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing an example 2 of a spherical bush and a cylinder block in which an interval in the axial direction is filled.
  • FIG. 6 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing an example 3 of a spherical bush and a cylinder block in which an interval in the axial direction is filled.
  • FIG. 7 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing a fourth example of a spherical bush and a cylinder block in which an interval in the axial direction is filled.
  • FIG. 8 is a longitudinal sectional view showing a schematic configuration of a conventional swash plate type hydraulic pump.
  • FIG. 9 is a view showing a state of a shoe lifted from a swash plate in a conventional swash plate type hydraulic pump.
  • the swash plate type hydraulic pump 10 has a rotating shaft 3 supported by a casing (not shown).
  • the rotary shaft 3 is connected to a drive source (not shown) such as an engine.
  • a thick cylindrical cylinder block 9 is fitted on the rotary shaft 3. Specifically, a spline provided on the outer periphery of the rotating shaft 3 and a spline 9 b provided on the inner periphery of the cylinder block 9 are engaged. Thereby, the cylinder block 9 rotates around the rotating shaft 3 as the rotating shaft 3 rotates.
  • a disc-shaped valve plate 4 fixed to the casing is provided on one side of the cylinder block 9 (in the right side of the drawing in FIG. 1).
  • the valve plate 4 is in sliding contact with a valve plate sliding contact surface 97 which is one end surface of the cylinder block 9.
  • a pair of intake / exhaust ports 5 and 6 are formed in the valve plate 4, and these communicate with an intake / exhaust passage (not shown) formed in the casing.
  • an annular swash plate 15 through which the rotary shaft 3 passes is provided so as to face the valve plate 4.
  • the swash plate 15 and the cylinder block 9 are separated from each other, and the surface of the swash plate 15 facing the cylinder block 9 is a slidable contact surface 9c on which a shoe 14 described later slides.
  • the swash plate 15 is tilted from a direction perpendicular to the axial direction of the rotating shaft 3 (hereinafter simply referred to as the axial direction L), and is configured such that its maximum tilt angle can be changed by a tilting actuator (not shown).
  • the swash plate 15 side along the axial direction L is referred to as “first side”
  • the valve plate 4 side along the axial direction L is referred to as “second side”.
  • the first side is the opposite side of the second side.
  • the cylinder block 9 is integrally provided with a guide portion 91 inserted into a spherical bush 80 described later and a main body portion 92 provided with a cylinder 11 into which the piston 13 is inserted.
  • the main body 92 has a larger diameter than the guide 91, and the guide 91 protrudes from the main body 92 to the first side. For this reason, the cylinder block 9 has a two-stage end face facing the first side.
  • the first step end surface is a first end surface 95 located on the first side of the guide portion 91
  • the second step end surface is a second end surface 96 located on the first side of the main body portion 92.
  • the cylinder block 9 has the above-described valve plate sliding contact surface 97 as an end surface facing the second side.
  • a plurality of cylinders 11 (only two are shown in FIG. 1) are formed concentrically around the rotation shaft 3.
  • the cylinder 11 is a cylindrical space extending in the axial direction L, and opens toward the first side.
  • the cylinder block 9 is provided with a cylinder port 11a for communicating the inside of each cylinder 11 with the intake / exhaust ports 5 and 6.
  • a piston 13 is inserted into each cylinder 11 so as to reciprocate in the axial direction L within the cylinder 11.
  • a spherical portion 13 a that protrudes from the cylinder block 9 to the first side is formed at the end portion on the first side of the piston 13.
  • the spherical portion 13 a of the piston 13 is fitted into a spherical support portion 14 a formed on the second side of the shoe 14.
  • the shoe 14 is swingably connected to the tip of the piston 13.
  • the first side of the shoe 14 is in sliding contact with the sliding contact surface 15 c of the swash plate 15.
  • Each shoe 14 rotates around the rotary shaft 3 while being in sliding contact with the sliding contact surface 15 c of the swash plate 15 by the rotation of the rotary shaft 3.
  • An annular pressing plate 17 is provided between the cylinder block 9 and the swash plate 15.
  • a plurality of shoe support holes 17 a provided corresponding to the cylinders 11 are formed in the presser plate 17.
  • the shoe 14 is fitted in the shoe support hole 17a.
  • the outer periphery of the shoe 14 has a small-diameter portion 14c that can be fitted into the shoe support hole 17a, and a large-diameter portion 14d that is larger in diameter than the shoe support hole 17a on the first side of the small-diameter portion 14c.
  • the step 14 between the small-diameter portion 14c and the large-diameter portion 14d of the shoe 14 comes into contact with the peripheral portion of the shoe support hole 17a toward the second side, so that the movement of the shoe 14 to the second side is restricted.
  • the pressing plate 17 is supported on the rotary shaft 3 through a spherical bush 80 so as to be swingable.
  • the outer peripheral surface 81 of the spherical bush 80 gradually increases in diameter toward the second side and is formed with a smooth curved surface.
  • a flange 82 is formed at the end of the outer peripheral surface 81 of the spherical bush 80 on the second side.
  • the spherical bush 80 is inserted toward the first side on the inner periphery of the presser plate 17, and the outer peripheral surface 81 of the spherical bush 80 is in contact with the inner peripheral surface 17 b of the presser plate 17.
  • a fitting portion 83 and a guide hole portion 84 are formed in order from the first side.
  • a spline extending along the axial direction L is formed in the fitting portion 83 of the spherical bush 80, and this spline is fitted with a spline formed on the outer periphery of the rotary shaft 3.
  • the spherical bush 80 can rotate integrally with the rotary shaft 3 and move in the axial direction L.
  • the guide hole portion 84 of the spherical bush 80 has an opening directed to the second side, and is formed in a hollow shape into which the guide portion 91 of the cylinder block 9 can be inserted toward the first side.
  • the outer periphery of the guide portion 91 of the cylinder block 9 and the inner periphery of the guide hole portion 84 of the spherical bush 80 are in contact.
  • the spherical bush 80 can be moved in the axial direction L without being shaken by being guided by the guide portion 91 of the cylinder block 9.
  • a set spring 20 is provided between the spherical bush 80 and the cylinder block 9 to urge them so as to repel them in the axial direction L.
  • a plurality of spring accommodating holes 93 that open toward the first side are formed in the main body 92 of the cylinder block 9, and set springs 20 that are coil springs are fitted into the respective spring accommodating holes 93. Yes.
  • the first side of the set spring 20 protrudes from the cylinder block 9 and abuts against the flange 82 of the spherical bush 80 at the protruding end. Due to the spring force of the set spring 20 and the hydraulic pressure in the cylinder 11, the valve plate sliding contact surface 97 of the cylinder block 9 is pressed against and closely contacts the valve plate 4.
  • the presser plate 17 is pressed to the first side by the spherical bush 80 pressed to the first side by the spring force of the set spring 20 and the hydraulic pressure in the cylinder 11.
  • the shoe 14 is pressed against the sliding contact surface 15 c of the swash plate 15 by the presser plate 17 pressed toward the first side.
  • the operation of the swash plate type hydraulic pump 10 having the above-described configuration when one of the intake / exhaust ports 5 and 6 is used as an intake port and the other intake / exhaust port 6 as a discharge port will be described.
  • the rotary shaft 3 is rotationally driven by a drive device such as an engine
  • the cylinder block 9 rotates integrally with the rotary shaft 3, and the valve plate sliding contact surface 9 a of the cylinder block 9 slides with respect to the valve plate 4. Rotates while touching.
  • Each shoe 14 held by the presser plate 17 rotates together with the cylinder block 9 and the piston 13 while making sliding contact with the sliding contact surface 15 c of the swash plate 15.
  • each piston 13 reciprocates in the cylinder 11 with a stroke corresponding to the maximum tilt angle of the swash plate 15, and in the intake stroke in which each piston 13 pushes from the top dead center to the bottom dead center,
  • the pressure oil sucked into each cylinder 11 is used as high pressure oil from the discharge port 6 to the suction / discharge passage.
  • discharge When the maximum tilt angle of the swash plate 15 is adjusted by a tilt actuator (not shown), the stroke of each piston 13 is changed, whereby the discharge capacity discharged from each cylinder 11 can be variably controlled. .
  • the swash plate type hydraulic pump 10 is configured such that in the assembled state, the gap in the axial direction L between the cylinder block 9 and the spherical bush 80 is zero or very small.
  • assembled state means a state in which the swash plate type hydraulic pump 10 is assembled.
  • the state in which the swash plate type hydraulic pump 10 is operating is not excluded, and the gap in the axial direction L between the cylinder block 9 and the spherical bush 80 may be 0 or very small in the operating state.
  • the gap is 0 means that the spherical bush 80 and the cylinder block 9 are continuous in the axial direction L, and there is no gap between them.
  • the cylinder block 9 and the spherical bush 80 are in contact with each other.
  • a state in which the bush 80 has a gap G (gap) in the axial direction L and the gap G is filled with the filling member F is also included. If the gap between the spherical bush 80 and the cylinder block 9 in the axial direction L is 0, the spherical bush 80 is brought into direct or indirect contact with the cylinder block 9 so that the spherical bush 80 moves in the axial direction L toward the second side. It becomes impossible to move.
  • the gap is very small means that there is a minute gap ⁇ L in the axial direction L between the cylinder block 9 and the spherical bush 80. If there is a minute gap ⁇ L in the axial direction L between the spherical bush 80 and the cylinder block 9, the spherical bush 80 can move in the axial direction L to the second side by the size of the gap ⁇ L. However, the size of the gap ⁇ L is sufficiently small. The size of the gap ⁇ L is such that the amount of movement of the presser plate 17 to the second side accompanying the movement of the spherical bushing 80 to the second side is within a range in which the shoe 14 is not separated from the sliding contact surface 15 c of the swash plate 15.
  • the size of the gap ⁇ L is greater than 0 and 1.2 mm or less, and more desirably greater than 0 and 0.8 mm or less.
  • the gap in the axial direction L between the cylinder block 9 and the spherical bush 80 is designed to be about 3 to 5 mm.
  • an axis line is formed between the first end surface 95 of the cylinder block 9 and the hole bottom 85 (second end surface) of the guide hole portion 84 of the spherical bush 80.
  • An interval G in the direction L is provided.
  • This gap G is filled with a filling member F. Therefore, the cylinder block 9 and the spherical bush 80 are continuous in the axial direction L with no gap, and the gap in the axial direction L is zero.
  • the filling member F is one or more shim plates 30. The number and thickness of the shim plates 30 are appropriately selected according to the size of the gap G.
  • the shim plate 30 is used as the filling member F, even if the size of the gap G varies due to dimensional errors of individual parts, if the number of shim plates 30 is increased or decreased during assembly, the cylinder block 9
  • the gap G in the axial direction L with the spherical bush 80 can be filled with high accuracy.
  • the swash plate type hydraulic pump 10 having the above-described configuration, when the rotary shaft 3 rotates at a high speed in a state where the hydraulic pressure in the cylinder 11 is reduced due to low pressure operation or the like, a shoe by inertia force or centrifugal force that pulls the piston 13 toward the second side. In some cases, the moment to cause 14 to fall is greater than the spring force of the set spring 20. In this case, if the presser plate 17 is pulled by the piston 13 and moves to the second side, the pressing force of the shoe 14 against the swash plate 15 decreases and the shoe 14 falls over.
  • the spherical bush 80 is directly or indirectly connected to the cylinder block 9 when a force is generated to move the presser plate 17 to the second side.
  • the contact to the second side is restricted by contact, and the presser plate 17 is restricted to move to the second side by making contact with the spherical bush 80.
  • the movement of the presser plate 17 to the second side is restricted. Therefore, even in the above case, the shoe 14 is attached to the swash plate 15. It does not float or fall over from the sliding contact surface 15c.
  • the pump 14 is reduced in efficiency due to the sliding rotation of the shoe 14 in a state where the shoe 14 comes into contact with the sliding contact surface 15c of the swash plate 15, the swash plate 15 or Occurrence of uneven wear, galling and seizure of each shoe 14 and the like is suppressed.
  • the set spring 20 having the conventional spring force can be used, so that the friction force between the shoe 14 and the swash plate 15 increases due to the increase of the spring force. Therefore, there is no possibility that the efficiency is lowered or seizure occurs.
  • the swash plate 15 of the swash plate 15 of the shoe 14 is lifted or falls, the number of parts to be added is small and the structure is simple. Further, when the gap G in the axial direction L is filled with the filling member F, the cylinder block 9 and the spherical bush 80 rotate synchronously, so the filling member F and the cylinder block 9 do not slide relatively, and the filling member F and spherical bush 80 do not slide relatively. Therefore, excessive friction does not occur between the cylinder block 9 and the filling member F, and between the spherical bush 80 and the filling member F, and the rotation speed of the swash plate hydraulic pump 10 can be further increased. .
  • FIG. 3 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing an example of a spherical bush and a cylinder block provided with a gap in the axial direction.
  • the swash plate type hydraulic pump 10 shown in FIG. 3 is provided with a small gap ⁇ L in the axial direction L between the cylinder block 9 and the spherical bush 80.
  • the first end surface 95 of the cylinder block 9 and the hole bottom 85 of the guide hole 84 of the spherical bush 80 are separated in the axial direction L, and a gap ⁇ L in the axial direction L exists between them. is doing.
  • the size of the gap ⁇ L is designed to be greater than 0 and 1.2 mm or less, and more desirably greater than 0 and 0.8 mm or less in the assembled swash plate type hydraulic pump 10.
  • FIG. 4 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing Example 2 of a spherical bush and a cylinder block provided with a gap in the axial direction.
  • the second end face 96 of the cylinder block 9 and the flange 82 of the spherical bush 80 are separated from each other in the axial direction L, and a minute gap ⁇ L in the axial direction L exists between them.
  • the set spring 20 includes a plurality of disc springs provided so as to repel between the hole bottom 85 of the guide hole 84 of the spherical bush 80 and the first end surface 95 of the cylinder block 9. It is.
  • FIG. 5 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing a second example of a spherical bush and a cylinder block in which an interval in the axial direction is filled.
  • a gap G in the axial direction L is provided between the first end surface 95 of the cylinder block 9 and the hole bottom 85 of the guide hole portion 84 of the spherical bush 80. This gap G is filled with a filling ring 31.
  • the filling ring 31 is an annular filling member F.
  • An annular groove-shaped accommodation portion 32 is formed in the hole bottom 85 of the guide hole portion 84 of the spherical bush 80, and a part on the first side of the filling ring 31 is embedded in the accommodation portion 32.
  • the end surface on the second side of the filling ring 31 is in contact with the first end surface 95 of the cylinder block 9.
  • the filler 33 is hardened in the state which the filling ring 31 and the 1st end surface 95 of the cylinder block 9 contact
  • the filler 33 may be omitted.
  • FIG. 6 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing Example 3 of a spherical bush and a cylinder block in which the axial distance is filled.
  • a gap G in the axial direction L is provided between the first end surface 95 of the cylinder block 9 and the hole bottom 85 of the guide hole portion 84 of the spherical bush 80.
  • This gap G is filled with the press-fitting bush 41.
  • the press-fitting bush 41 is a cylindrical filling member F.
  • An annular groove-shaped press-fit portion 42 is formed in the hole bottom 85 of the guide hole portion 84 of the spherical bush 80, and the press-fit bush 41 is press-fitted into the press-fit portion 42 toward the first side.
  • the press-fit bush 41 press-fitted into the press-fit portion 42 of the spherical bush 80 cannot be inserted and removed from the press-fit portion 42 due to friction.
  • the second end surface of the press-fitting bush 41 is in contact with the first end surface 95 of the cylinder block 9.
  • a high-strength adhesive may be applied to the outer periphery of the press-fit bush 41, and the press-fit bush 41 and the press-fit bush 41 may be bonded via this adhesive.
  • the press-fitting bush 41 may be loosely fitted without being press-fitted.
  • FIG. 7 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing a fourth example of a spherical bush and a cylinder block in which an interval in the axial direction is filled. In the example shown in FIG.
  • a gap G in the axial direction L is provided between the second end surface 96 where the spring accommodation hole 93 of the cylinder block 9 is opened and the flange 82 of the spherical bush 80.
  • the gap G is filled with a filling column 35 that is a filling member F.
  • the gap in the axial direction L between the spherical bush 80 and the cylinder block 9 is zero.
  • the cylinder block 9 is provided with a plurality of filling member accommodation holes 98 that open toward the swash plate 15. A filling column 35 is inserted into the filling member accommodation hole 98.
  • the filling column 35 protrudes from the filling member accommodation hole 98 of the cylinder block 9 to the first side, and the protruding first side end surface is in contact with the flange 82 of the spherical bush 80.
  • the time-curable or thermosetting filler 36 is first injected into the filling member accommodation hole 98 of the cylinder block 9, and then the filling column 35 is fitted. . Then, the filler 36 is hardened in a state where the end surface on the first side of the filling column 35 is in contact with the flange 82 of the spherical bush 80.
  • the filler 36 By providing the filler 36 between the cylinder block 9 and the filling column 35 in this way, even if there is a variation in the size of the gap G due to dimensional errors of individual parts, the gap G is used as the filling column. 35 and the filler 36 can be filled with high accuracy. It is desirable that the filler 36 has an adhesive performance that fixes the filling column 35 in the filling member accommodation hole 98 of the cylinder block 9. In this way, when a high-strength adhesive is applied to the outer peripheral portion of the filling column 35 and the filling column 35 and the cylinder block 9 are bonded via this adhesive, the filler 33 may be omitted.
  • the filling member F (filling ring 31, press-fit bush 41, filling column 35) is used to fill the gap G in the axial direction L between the cylinder block 9 and the spherical bush 80.
  • these filling members F may be provided on either the cylinder block 9 or the spherical bush 80.
  • a swash plate type hydraulic pump has been described as an example of the swash plate type hydraulic rotary machine.
  • the swash plate type hydraulic rotary machine to which the present invention is applied is not limited to this.
  • the swash plate type hydraulic rotating machine may be a swash plate type hydraulic motor.
  • the lift of the shoe from the swash plate can be prevented even if the rotational speed of the rotary shaft is increased.
  • the present invention can be widely applied to a swash plate type hydraulic rotating machine having a swash plate having a variable maximum tilt angle regardless of the detailed structure.

Abstract

Provided is a skew plate-type rotary machine equipped with: a rotary shaft (3); a valve plate (4); a skew plate (15); a cylinder block (9) fitted onto rotary shaft (3) so as to be in sliding contact with the valve plate (4); cylinders (11) provided in the cylinder block (9); pistons (13) inserted in the axial direction (L) into the cylinders (11) so as to be capable of reciprocating movement; shoes (14) fitted onto the tips of the pistons (13); a circular pressing plate (17) that is provided between the skew plate (15) and the cylinder block (9) and supports the shoes (14); a bushing (80) that is inserted at the inner circumference of the pressing plate (17) and that supports the pressing plate (17) while pressing it toward the skew plate (15); and set springs (20) that bias the bushing (80) and the cylinder block (9) so as to repel in the axial direction (L). In addition, when assembled, the clearance in the axial direction (L) between the cylinder block (9) and the bushing (80) is 0 or minimal.

Description

斜板型液圧回転機Swash plate type hydraulic rotating machine
 本発明は、例えば、斜板型油圧ポンプや斜板型油圧モータ等として好適な斜板型液圧回転機に関する。 The present invention relates to a swash plate type hydraulic rotating machine suitable as, for example, a swash plate type hydraulic pump or a swash plate type hydraulic motor.
 従来、斜板型液圧回転機として、斜板型油圧ポンプや斜板型油圧モータが知られている(特許文献1、参照)。図8は、従来の斜板型油圧ポンプを示している。図8に示すように、従来の斜板型油圧ポンプ100は、回転軸3にスプライン嵌合している円筒状のシリンダブロック9と、シリンダブロック9に形成された複数のシリンダ11と、シリンダ11に往復動可能に挿入されたピストン13と、シリンダブロック9の一端が接触している弁板4と、シリンダブロック9の他端に対峙して設けられた押え板17および斜板15とを備えている。ピストン13の先端はシリンダ11から突出する球形部13aとなっており、球形部13aは斜板15の摺接面15cに摺接しているシュー14に球面支持されている。シュー14は、押え板17にシリンダ11と対応して設けられたシュー支持孔17aに嵌っている。押え板17を支承する球面ブッシュ80は、回転軸3にスプライン嵌合された筒状部材であって、シリンダブロック9と斜板15の間に位置している。球面ブッシュ80の外周面は、斜板15側から弁板4側へ向けて漸次拡径しており、この外周面と押え板17の内周面が接触している。球面ブッシュ80とシリンダブロック9との間にはセットスプリング20が設けられている。セットスプリング20のばね力と各シリンダ11内の油圧とにより、シリンダブロック9が弁板4に押し付けられて密着するとともに、シュー14が斜板15の摺接面15cに押し付けられている。 Conventionally, swash plate type hydraulic pumps and swash plate type hydraulic motors are known as swash plate type hydraulic rotating machines (see Patent Document 1). FIG. 8 shows a conventional swash plate type hydraulic pump. As shown in FIG. 8, a conventional swash plate type hydraulic pump 100 includes a cylindrical cylinder block 9 that is spline-fitted to the rotary shaft 3, a plurality of cylinders 11 formed in the cylinder block 9, and a cylinder 11. And a valve plate 4 with which one end of the cylinder block 9 is in contact, and a presser plate 17 and a swash plate 15 provided opposite to the other end of the cylinder block 9. ing. The tip of the piston 13 is a spherical portion 13 a that protrudes from the cylinder 11, and the spherical portion 13 a is spherically supported by a shoe 14 that is in sliding contact with the sliding contact surface 15 c of the swash plate 15. The shoe 14 is fitted in a shoe support hole 17 a provided in the presser plate 17 corresponding to the cylinder 11. The spherical bush 80 that supports the presser plate 17 is a cylindrical member that is spline-fitted to the rotary shaft 3, and is positioned between the cylinder block 9 and the swash plate 15. The outer peripheral surface of the spherical bush 80 gradually increases in diameter from the swash plate 15 side toward the valve plate 4 side, and the outer peripheral surface and the inner peripheral surface of the presser plate 17 are in contact with each other. A set spring 20 is provided between the spherical bush 80 and the cylinder block 9. Due to the spring force of the set spring 20 and the hydraulic pressure in each cylinder 11, the cylinder block 9 is pressed against and closely contacts the valve plate 4, and the shoe 14 is pressed against the sliding contact surface 15 c of the swash plate 15.
 上記構成の斜板型油圧ポンプにおいて、回転軸3が回転すると斜板15の傾きに沿ってピストン13がシリンダ11内を往復動する。斜板型油圧ポンプは、このピストン13の動きを利用し、低圧の所要量の作動流体を吸込み、高圧側に吐出するものである。また斜板型油圧モータは、回転軸の回転と作動流体の動きが上記斜板型油圧ポンプと逆になっている。 In the swash plate type hydraulic pump configured as described above, when the rotary shaft 3 rotates, the piston 13 reciprocates in the cylinder 11 along the inclination of the swash plate 15. The swash plate type hydraulic pump uses the movement of the piston 13 to suck a required amount of working fluid at a low pressure and discharge it to the high pressure side. In the swash plate type hydraulic motor, the rotation of the rotary shaft and the movement of the working fluid are opposite to those of the swash plate type hydraulic pump.
 上述した従来の斜板型油圧ポンプ100では、セットスプリング20のばね力と各シリンダ11内の油圧とによって斜板15側に押付けられている押え板17が、各シュー14を斜板15の摺接面15cに密着させている。しかし、回転軸3およびシリンダブロック9が高速回転すると、ピストン13がシリンダ11内を往復動する速度が増大して、ピストン13がシュー14を弁板4側に向けて引っ張る力が大きくなる。そして、この高速回転状態で低圧運転等によりシリンダ11内の油圧が低下すると、シュー14が斜板15を押し付ける力はセットスプリング20のバネ力に頼ることとなり、ピストン13がシュー14を弁板4側に向けて引っ張る力がセットスプリング20と油圧によりシュー14を押さえつけている力を上回ってしまう。これにより、図9に示すように、シュー14が斜板15から浮き上がったり、転倒したり(傾いたり)することがある。シュー14が斜板15から浮き上がると、シュー14は斜板15の摺接面15cに片当たりする。この片当たり状態のシュー14が斜板15を摺動しながら回転すると、トルクロスを生じてポンプ効率が大幅に低下する。また、このシュー14の片当たりによって、斜板15やシュー14が偏摩耗したり、カジリや焼き付き等が生じたりして、シュー14および斜板15の寿命が低下する。 In the above-described conventional swash plate type hydraulic pump 100, the holding plate 17 pressed against the swash plate 15 side by the spring force of the set spring 20 and the hydraulic pressure in each cylinder 11 causes each shoe 14 to slide on the swash plate 15. It is in close contact with the contact surface 15c. However, when the rotating shaft 3 and the cylinder block 9 rotate at a high speed, the speed at which the piston 13 reciprocates within the cylinder 11 increases, and the force with which the piston 13 pulls the shoe 14 toward the valve plate 4 increases. When the hydraulic pressure in the cylinder 11 decreases due to low pressure operation or the like in this high speed rotation state, the force with which the shoe 14 presses the swash plate 15 depends on the spring force of the set spring 20, and the piston 13 causes the shoe 14 to move the valve plate 4. The force pulling toward the side exceeds the force pressing the shoe 14 by the set spring 20 and the hydraulic pressure. As a result, as shown in FIG. 9, the shoe 14 may float from the swash plate 15 or may fall (tilt). When the shoe 14 is lifted from the swash plate 15, the shoe 14 comes into contact with the sliding contact surface 15 c of the swash plate 15. When the shoe 14 in the one-sided state rotates while sliding on the swash plate 15, a torque cross is generated, and the pump efficiency is greatly reduced. In addition, the swash plate 15 and the shoe 14 may be unevenly worn or galling and seizure may occur due to the contact of the shoe 14, and the life of the shoe 14 and the swash plate 15 may be reduced.
 上記のようなシューの浮き上がりを防止するために、特許文献1に記載の斜板型油圧ポンプでは、シュー14を斜板15に押さえつけている押え板17の周縁部分にテーパを設けている。かかる構成により、押え板17の剛性を高めて当該押え板17の変形を防止することによって、シュー14の浮き上がりを防止している。 In order to prevent the shoe from lifting up as described above, in the swash plate type hydraulic pump described in Patent Document 1, a taper is provided at the peripheral portion of the presser plate 17 pressing the shoe 14 against the swash plate 15. With this configuration, the presser plate 17 is prevented from being lifted by increasing the rigidity of the presser plate 17 and preventing the presser plate 17 from being deformed.
 また、特許文献2に記載のアキシャルプランジャ型油圧装置では、シューの斜板と当接する軸受面を銅合金よりも軽く耐摩耗性に優れたアルミニウム-シリコン合金で形成することによって、シューに作用する遠心力を軽減することにより、シューの斜板からの浮き上がりを防止している。 Further, in the axial plunger type hydraulic device described in Patent Document 2, the bearing surface that comes into contact with the swash plate of the shoe is made of an aluminum-silicon alloy that is lighter and more excellent in wear resistance than a copper alloy, thereby acting on the shoe. By reducing the centrifugal force, lifting of the shoe from the swash plate is prevented.
特開平5-164038号公報Japanese Patent Laid-Open No. 5-164038 特開昭50-146907号公報JP 50-146907 A
 特許文献1に記載のように、従来の斜板型油圧ポンプ100において押え板17の変形を防止しても、セットスプリング20が縮むと、押え板17が弁板4側へ移動してしまい、シュー14が斜板15から浮き上がってしまうおそれがある。なお、上記のようなシューの浮き上がりを防止するために、押え板17を斜板15側へ押し付けているセットスプリング20のバネ力を高めることも考え得る。しかし、セットスプリング20のバネ力には限界があるうえに、バネ力が増加するとシュー14と斜板15の間の摩擦力が増加して効率が低下したり焼き付きが生じたりするおそれがあるので、回転軸3の回転速度の大幅な高速化に耐えることができない。 As described in Patent Document 1, even if the press plate 17 is prevented from being deformed in the conventional swash plate hydraulic pump 100, if the set spring 20 is contracted, the press plate 17 moves to the valve plate 4 side. There is a possibility that the shoe 14 may be lifted from the swash plate 15. In order to prevent the shoe from lifting up as described above, it is conceivable to increase the spring force of the set spring 20 that presses the presser plate 17 toward the swash plate 15 side. However, the spring force of the set spring 20 is limited, and if the spring force increases, the frictional force between the shoe 14 and the swash plate 15 increases, which may reduce the efficiency or cause seizure. The rotation speed of the rotary shaft 3 cannot be greatly increased.
 また、特許文献2に記載のアキシャルプランジャ型油圧装置では、シューの位置を固定するために押え板ではなく、斜板の外周部分においてシューを斜板に当接した状態に押さえ込む額縁が設けられている。この構成では、油圧装置が作動すると斜板の額縁とシューとの間に相対すべりが生じるため、回転速度の大幅な高速化に耐えることができない。 In addition, in the axial plunger type hydraulic device described in Patent Document 2, a frame is provided to hold the shoe in a state where it is in contact with the swash plate, not the presser plate, in order to fix the position of the shoe. Yes. In this configuration, when the hydraulic device is operated, a relative slip occurs between the frame of the swash plate and the shoe, so that it cannot withstand a significant increase in rotational speed.
 そこで、本発明では、斜板型油圧ポンプや斜板型油圧モータなどの斜板型液圧回転機において、シューの斜板からの浮き上がりを防止するための技術を提供することを目的とする。ひいては、斜板型液圧回転機の回転速度の更なる高速化に耐えうる構造を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique for preventing the shoe from lifting from the swash plate in a swash plate type hydraulic rotating machine such as a swash plate type hydraulic pump or a swash plate type hydraulic motor. As a result, it aims at providing the structure which can be equal to the further increase in the rotational speed of a swash plate type hydraulic rotating machine.
 本発明に係る斜板型液圧回転機は、回転軸と、前記回転軸の軸線方向に離れて対峙する弁板および斜板と、前記弁板と前記斜板の間において前記弁板と摺接するように前記回転軸に外嵌されたシリンダブロックと、前記シリンダブロックに設けられた複数のシリンダと、前記シリンダに前記軸線方向に往復動可能に挿入された複数のピストンと、前記シリンダから前記斜板側へ突出した前記ピストンの先端に揺動可能に連結された複数のシューと、前記斜板と前記シリンダブロックの間において前記回転軸に遊嵌されており、前記シューを保持する環状の押え板と、前記押え板と前記シリンダブロックとの間に設けられており、前記押え板を支持するブッシュと、前記ブッシュと前記シリンダブロックの間に設けられており、前記ブッシュが前記押え板を斜板側へ押圧するように当該ブッシュを付勢するばね部材とを備え、前記ブッシュと前記シリンダブロックの前記軸線方向の間隙が組立状態において0又は微小であるものである。 The swash plate type hydraulic rotating machine according to the present invention is in sliding contact with the valve plate between the rotary plate, the valve plate and the swash plate facing away from each other in the axial direction of the rotary shaft, and between the valve plate and the swash plate. A cylinder block externally fitted to the rotating shaft, a plurality of cylinders provided in the cylinder block, a plurality of pistons inserted into the cylinder so as to reciprocate in the axial direction, and the swash plate from the cylinder A plurality of shoes pivotably connected to the tip of the piston protruding to the side, and an annular presser plate that is loosely fitted to the rotary shaft between the swash plate and the cylinder block and holds the shoe And a bush that supports the presser plate, a bush that is provided between the bush and the cylinder block, and the bush that is provided between the presser plate and the cylinder block. The pressing plate and a spring member for urging the bush so as to press the swash plate side, gap between the axial direction of the bush and the cylinder block is one that is 0 or very small in the assembled state.
 前記斜板型液圧回転機において、前記間隙の大きさが0又は0より大きく1.2mm以下であることがよい。 In the swash plate type hydraulic rotating machine, the size of the gap is preferably 0 or more than 0 and 1.2 mm or less.
 また、本発明に係る斜板型液圧回転機は、回転軸と、前記回転軸の軸線方向に離れて対峙する弁板および斜板と、前記弁板と前記斜板の間において前記弁板と摺接するように前記回転軸に外嵌されたシリンダブロックと、前記シリンダブロックに設けられた複数のシリンダと、前記シリンダに前記軸線方向に往復動可能に挿入された複数のピストンと、前記シリンダから前記斜板側へ突出した前記ピストンの先端に揺動可能に連結された複数のシューと、前記斜板と前記シリンダブロックの間において前記回転軸に遊嵌されており、前記シューを保持する環状の押え板と、前記押え板と前記シリンダブロックとの間に設けられており、前記押え板を支持するブッシュと、前記ブッシュと前記シリンダブロックの間に設けられており、前記ブッシュが前記押え板を斜板側へ押圧するように当該ブッシュを付勢するばね部材と、前記ブッシュと前記シリンダブロックの前記軸線方向の間隙を埋める充填部材を備えたものである。 Further, the swash plate type hydraulic rotating machine according to the present invention includes a rotating shaft, a valve plate and a swash plate facing away from each other in the axial direction of the rotating shaft, and the valve plate and the sliding plate between the valve plate and the swash plate. A cylinder block that is externally fitted to the rotating shaft so as to be in contact; a plurality of cylinders provided in the cylinder block; a plurality of pistons that are inserted into the cylinder so as to be capable of reciprocating in the axial direction; A plurality of shoes that are swingably connected to the tip of the piston that protrudes toward the swash plate, and an annular ring that is loosely fitted to the rotary shaft between the swash plate and the cylinder block and holds the shoe A presser plate, provided between the presser plate and the cylinder block, a bush for supporting the presser plate, and provided between the bush and the cylinder block. A spring member which shoe urges the bush so as to press the pressing plate to the swash-plate-side, but with a filling member to fill the axial clearances of the bush and the cylinder block.
 前記充填部材は、1枚以上のシム板であってよい。また、前記充填部材と前記ブッシュおよび前記シリンダブロックのいずれか一方との間に、時間硬化性又は熱硬化性の充填剤を備えることもできる。或いは、前記充填部材は、圧入ブッシュであってもよい。 The filling member may be one or more shim plates. Further, a time-curable or thermosetting filler may be provided between the filling member and any one of the bush and the cylinder block. Alternatively, the filling member may be a press-fitting bush.
 上記構成の斜板型液圧回転機によれば、シリンダブロックとブッシュとの間隙が0又は微小であるので、ブッシュがシリンダブロックと当接することによりブッシュの弁板側への移動が規制される。つまり、シューを斜板へ押し付けている押え板の弁板側への移動が規制される。したがって、例えば、回転軸の回転速度が高速化してピストンを弁板側に向けて引っ張る慣性力や遠心力によるシューを転倒させるモーメントがセットスプリングのバネ力よりも大きくなった場合に、シューが斜板から浮き上がったり転倒したりしない。このように、本発明に係る斜板型液圧回転機では、シューの斜板からの浮き上がりや転倒が防止されているので、シューが斜板に片当たりした状態で斜板上を摺動しながら回転することに起因する、運転効率の低下、斜板およびシューの偏摩耗、ならびにカジリ現象および焼き付き等の発生を防止することができる。そして、このように回転軸の回転速度を高速化させてもシューが斜板から浮き上がらないので、斜板型液圧回転機において回転軸の回転速度をより高速化させることが可能となる。 According to the swash plate type hydraulic rotating machine configured as described above, since the gap between the cylinder block and the bush is zero or very small, movement of the bush toward the valve plate is restricted when the bush comes into contact with the cylinder block. . That is, the movement of the press plate that presses the shoe against the swash plate toward the valve plate is restricted. Therefore, for example, when the rotational speed of the rotary shaft increases and the moment of overturning the shoe caused by the inertial force or centrifugal force that pulls the piston toward the valve plate becomes greater than the spring force of the set spring, the shoe is inclined. Do not lift or fall over the board. As described above, in the swash plate type hydraulic rotating machine according to the present invention, the shoe is prevented from being lifted or overturned from the swash plate, so that the shoe slides on the swash plate in a state where it comes into contact with the swash plate. However, it is possible to prevent a decrease in operating efficiency, uneven wear of the swash plate and the shoe, galling and seizure due to rotation. Since the shoe does not lift from the swash plate even when the rotation speed of the rotation shaft is increased in this way, the rotation speed of the rotation shaft can be further increased in the swash plate type hydraulic rotating machine.
 本発明によれば、ピストンを弁板側に向けて引っ張る慣性力や遠心力によるシューを転倒させるモーメントがセットスプリングのバネ力よりも大きくなった場合でも、ブッシュがシリンダブロックと当接することにより押え板の弁板側への移動が規制されるので、シューの斜板からの浮き上がりや転倒を防止することができる。 According to the present invention, even when the moment of inertia that pulls the piston toward the valve plate or the moment of overturning the shoe due to centrifugal force is greater than the spring force of the set spring, the bushing is pressed against the cylinder block. Since the movement of the plate toward the valve plate is restricted, it is possible to prevent the shoe from being lifted from the swash plate or falling down.
図1は、本発明の実施の形態に係る斜板型油圧ポンプの概略構成を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a schematic configuration of a swash plate type hydraulic pump according to an embodiment of the present invention. 図2は、図1において二点鎖線で囲まれた部分Xの拡大図である。FIG. 2 is an enlarged view of a portion X surrounded by a two-dot chain line in FIG. 図3は、軸線方向に間隙が設けられた球面ブッシュとシリンダブロックの例1を示す斜板型油圧ポンプの縦断面図の一部拡大図である。FIG. 3 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing Example 1 of a spherical bush and a cylinder block provided with a gap in the axial direction. 図4は、軸線方向に間隙が設けられた球面ブッシュとシリンダブロックの例2を示す斜板型油圧ポンプの縦断面図の一部拡大図である。FIG. 4 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing Example 2 of a spherical bush and a cylinder block provided with a gap in the axial direction. 図5は、軸線方向の間隔が埋められた球面ブッシュとシリンダブロックの例2を示す斜板型油圧ポンプの縦断面図の一部拡大図である。FIG. 5 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing an example 2 of a spherical bush and a cylinder block in which an interval in the axial direction is filled. 図6は、軸線方向の間隔が埋められた球面ブッシュとシリンダブロックの例3を示す斜板型油圧ポンプの縦断面図の一部拡大図である。FIG. 6 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing an example 3 of a spherical bush and a cylinder block in which an interval in the axial direction is filled. 図7は、軸線方向の間隔が埋められた球面ブッシュとシリンダブロックの例4を示す斜板型油圧ポンプの縦断面図の一部拡大図である。FIG. 7 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing a fourth example of a spherical bush and a cylinder block in which an interval in the axial direction is filled. 図8は、従来の斜板型油圧ポンプの概略構成を示す縦断面図である。FIG. 8 is a longitudinal sectional view showing a schematic configuration of a conventional swash plate type hydraulic pump. 図9は、従来の斜板型油圧ポンプにおいて斜板から浮き上がったシューの様子を示す図である。FIG. 9 is a view showing a state of a shoe lifted from a swash plate in a conventional swash plate type hydraulic pump.
 以下、本発明を実施するための形態について、図面を参照しながら、詳細に説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複説明を省略する。ここでは、斜板型液圧回転機として、斜板型油圧ポンプを例に挙げて説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted. Here, a swash plate type hydraulic pump will be described as an example of the swash plate type hydraulic rotating machine.
 まず、図1を参照しながら、斜板型油圧ポンプの概略構成について説明する。斜板型油圧ポンプ10はケーシング(図示略)に支承された回転軸3を有する。回転軸3は、エンジン等の駆動源(図示略)と接続されている。回転軸3には、厚肉円筒状のシリンダブロック9が外嵌されている。具体的には、回転軸3の外周に設けられたスプラインとシリンダブロック9の内周に設けられたスプライン9bが係合している。これにより、シリンダブロック9は回転軸3の回転に伴って回転軸3を中心として回転する。 First, a schematic configuration of a swash plate type hydraulic pump will be described with reference to FIG. The swash plate type hydraulic pump 10 has a rotating shaft 3 supported by a casing (not shown). The rotary shaft 3 is connected to a drive source (not shown) such as an engine. A thick cylindrical cylinder block 9 is fitted on the rotary shaft 3. Specifically, a spline provided on the outer periphery of the rotating shaft 3 and a spline 9 b provided on the inner periphery of the cylinder block 9 are engaged. Thereby, the cylinder block 9 rotates around the rotating shaft 3 as the rotating shaft 3 rotates.
 シリンダブロック9の一方(図1では、紙面右方)にはケーシングに固定された円板状の弁板4が設けられている。弁板4は、シリンダブロック9の一方の端面である弁板摺接面97と摺接している。弁板4には、一対の吸排ポート5,6が形成され、これらはケーシングに形成された吸排通路(図示略)に連通されている。シリンダブロック9の他方(図1では、紙面左方)には、回転軸3が貫通する環状の斜板15が、弁板4と対峙するように設けられている。斜板15とシリンダブロック9とは離間しており、斜板15のシリンダブロック9と対向している面は、後述するシュー14が摺動する摺接面9cとなっている。斜板15は、回転軸3の軸線方向(以下、単に軸線方向Lという)と直角する方向から傾いており、図示しない傾転用アクチュエータによりその最大傾転角を変更できるように構成されている。以下では、説明の便宜を図って、軸線方向Lに沿って斜板15側を「第1側」といい、軸線方向Lに沿って弁板4側を「第2側」という。第1側は第2側の反対側である。 A disc-shaped valve plate 4 fixed to the casing is provided on one side of the cylinder block 9 (in the right side of the drawing in FIG. 1). The valve plate 4 is in sliding contact with a valve plate sliding contact surface 97 which is one end surface of the cylinder block 9. A pair of intake / exhaust ports 5 and 6 are formed in the valve plate 4, and these communicate with an intake / exhaust passage (not shown) formed in the casing. On the other side of the cylinder block 9 (on the left side in FIG. 1), an annular swash plate 15 through which the rotary shaft 3 passes is provided so as to face the valve plate 4. The swash plate 15 and the cylinder block 9 are separated from each other, and the surface of the swash plate 15 facing the cylinder block 9 is a slidable contact surface 9c on which a shoe 14 described later slides. The swash plate 15 is tilted from a direction perpendicular to the axial direction of the rotating shaft 3 (hereinafter simply referred to as the axial direction L), and is configured such that its maximum tilt angle can be changed by a tilting actuator (not shown). Hereinafter, for convenience of explanation, the swash plate 15 side along the axial direction L is referred to as “first side”, and the valve plate 4 side along the axial direction L is referred to as “second side”. The first side is the opposite side of the second side.
 シリンダブロック9は、後述する球面ブッシュ80に挿入されるガイド部91と、ピストン13が挿入されるシリンダ11が設けられた本体部92とを、一体的に備えている。本体部92はガイド部91よりも大径であって、ガイド部91は本体部92から第1側へ突出している。このため、シリンダブロック9は第1側へ向いた二段の端面を有している。一段目の端面は、ガイド部91の第1側に位置する第1の端面95であり、二段面の端面は、本体部92の第1側に位置する第2の端面96である。一方、シリンダブロック9は第2側へ向いた端面として、前述の弁板摺接面97を有している。シリンダブロック9の本体部92には、回転軸3を中心として同心円上に複数のシリンダ11(図1では2個のみ図示)が形成されている。シリンダ11は、軸線方向Lに延びる円柱状の空間であって、第1側に向けて開口している。さらに、シリンダブロック9には、各シリンダ11内と吸排ポート5,6とを連通させるシリンダポート11aが設けられている。各シリンダ11には、シリンダ11内を軸線方向Lに往復動可能にピストン13が挿入されている。ピストン13の第1側の端部には、シリンダブロック9から第1側へ突出する球形部13aが形成されている。このピストン13の球形部13aは、シュー14の第2側に形成された球面支持部14aに嵌め込まれている。これにより、シュー14はピストン13の先端に揺動可能に連結されている。シュー14の第1側は、斜板15の摺接面15cに摺接している。そして、各シュー14は、回転軸3の回転により、斜板15の摺接面15cと摺接しつつ回転軸3の周りを回転する。 The cylinder block 9 is integrally provided with a guide portion 91 inserted into a spherical bush 80 described later and a main body portion 92 provided with a cylinder 11 into which the piston 13 is inserted. The main body 92 has a larger diameter than the guide 91, and the guide 91 protrudes from the main body 92 to the first side. For this reason, the cylinder block 9 has a two-stage end face facing the first side. The first step end surface is a first end surface 95 located on the first side of the guide portion 91, and the second step end surface is a second end surface 96 located on the first side of the main body portion 92. On the other hand, the cylinder block 9 has the above-described valve plate sliding contact surface 97 as an end surface facing the second side. In the main body 92 of the cylinder block 9, a plurality of cylinders 11 (only two are shown in FIG. 1) are formed concentrically around the rotation shaft 3. The cylinder 11 is a cylindrical space extending in the axial direction L, and opens toward the first side. Further, the cylinder block 9 is provided with a cylinder port 11a for communicating the inside of each cylinder 11 with the intake / exhaust ports 5 and 6. A piston 13 is inserted into each cylinder 11 so as to reciprocate in the axial direction L within the cylinder 11. A spherical portion 13 a that protrudes from the cylinder block 9 to the first side is formed at the end portion on the first side of the piston 13. The spherical portion 13 a of the piston 13 is fitted into a spherical support portion 14 a formed on the second side of the shoe 14. As a result, the shoe 14 is swingably connected to the tip of the piston 13. The first side of the shoe 14 is in sliding contact with the sliding contact surface 15 c of the swash plate 15. Each shoe 14 rotates around the rotary shaft 3 while being in sliding contact with the sliding contact surface 15 c of the swash plate 15 by the rotation of the rotary shaft 3.
 シリンダブロック9と斜板15の間には、環状の押え板17が設けられている。押え板17には、各シリンダ11と対応して設けられた複数のシュー支持孔17aが形成されている。このシュー支持孔17aにはシュー14が嵌め込まれている。シュー14の外周は、シュー支持孔17aに嵌入可能な小径部14cと、小径部14cよりも第1側においてシュー支持孔17aより大径の大径部14dとを有している。シュー14の小径部14cと大径部14dの段差面が、シュー支持孔17aの周縁部に第2側へ向けて当接することにより、シュー14は第2側への移動が規制されている。 An annular pressing plate 17 is provided between the cylinder block 9 and the swash plate 15. A plurality of shoe support holes 17 a provided corresponding to the cylinders 11 are formed in the presser plate 17. The shoe 14 is fitted in the shoe support hole 17a. The outer periphery of the shoe 14 has a small-diameter portion 14c that can be fitted into the shoe support hole 17a, and a large-diameter portion 14d that is larger in diameter than the shoe support hole 17a on the first side of the small-diameter portion 14c. The step 14 between the small-diameter portion 14c and the large-diameter portion 14d of the shoe 14 comes into contact with the peripheral portion of the shoe support hole 17a toward the second side, so that the movement of the shoe 14 to the second side is restricted.
 押え板17は、回転軸3に球面ブッシュ80を介して揺動可能に支承されている。球面ブッシュ80の外周面81は、第2側へ向けて漸次拡径し、且つ、滑らかな曲面で形成されている。球面ブッシュ80の外周面81の第2側の端部には鍔82が形成されている。球面ブッシュ80は押え板17の内周に第1側へ向けて挿入されており、球面ブッシュ80の外周面81が押え板17の内周面17bと接触している。そして、押え板17の内周面17bが球面ブッシュ80の外周面81を滑ることにより、押え板17は回転軸3を中心として揺動することができる。一方、球面ブッシュ80の内周には、第1側から順に、嵌合部83とガイド穴部84とが形成されている。球面ブッシュ80の嵌合部83には、軸線方向Lに沿ったスプラインが形成されており、このスプラインは回転軸3の外周に形成されたスプラインと嵌合している。これにより、球面ブッシュ80は回転軸3と一体的に回転し且つ軸線方向Lに移動することができる。球面ブッシュ80のガイド穴部84は、第2側へ向いた開口を有し、前述のシリンダブロック9のガイド部91を第1側へ向けて挿入可能な空洞状に形成されている。シリンダブロック9のガイド部91が球面ブッシュ80のガイド穴部84に挿入された状態において、シリンダブロック9のガイド部91の外周と球面ブッシュ80のガイド穴部84の内周は接触している。このようにして、球面ブッシュ80は、シリンダブロック9のガイド部91に案内されることにより、振れることなく軸線方向Lに移動することができる。 The pressing plate 17 is supported on the rotary shaft 3 through a spherical bush 80 so as to be swingable. The outer peripheral surface 81 of the spherical bush 80 gradually increases in diameter toward the second side and is formed with a smooth curved surface. A flange 82 is formed at the end of the outer peripheral surface 81 of the spherical bush 80 on the second side. The spherical bush 80 is inserted toward the first side on the inner periphery of the presser plate 17, and the outer peripheral surface 81 of the spherical bush 80 is in contact with the inner peripheral surface 17 b of the presser plate 17. Then, when the inner peripheral surface 17 b of the presser plate 17 slides on the outer peripheral surface 81 of the spherical bush 80, the presser plate 17 can swing around the rotation shaft 3. On the other hand, on the inner periphery of the spherical bush 80, a fitting portion 83 and a guide hole portion 84 are formed in order from the first side. A spline extending along the axial direction L is formed in the fitting portion 83 of the spherical bush 80, and this spline is fitted with a spline formed on the outer periphery of the rotary shaft 3. Thereby, the spherical bush 80 can rotate integrally with the rotary shaft 3 and move in the axial direction L. The guide hole portion 84 of the spherical bush 80 has an opening directed to the second side, and is formed in a hollow shape into which the guide portion 91 of the cylinder block 9 can be inserted toward the first side. In a state where the guide portion 91 of the cylinder block 9 is inserted into the guide hole portion 84 of the spherical bush 80, the outer periphery of the guide portion 91 of the cylinder block 9 and the inner periphery of the guide hole portion 84 of the spherical bush 80 are in contact. Thus, the spherical bush 80 can be moved in the axial direction L without being shaken by being guided by the guide portion 91 of the cylinder block 9.
 球面ブッシュ80とシリンダブロック9との間には、これらを軸線方向Lに反発するように付勢するセットスプリング20が設けられている。具体的には、シリンダブロック9の本体部92には第1側に向けて開口する複数のスプリング収容穴93が形成されており、各スプリング収容穴93にコイルバネであるセットスプリング20が嵌め込まれている。セットスプリング20の第1側はシリンダブロック9から突出しており、その突出端で球面ブッシュ80の鍔82と当接している。このセットスプリング20のバネ力とシリンダ11内の油圧とにより、シリンダブロック9の弁板摺接面97は弁板4に押し付けられて密着している。また、セットスプリング20のバネ力とシリンダ11内の油圧とによって第1側へ押圧された球面ブッシュ80により、押え板17は第1側へ押圧されている。そして、第1側へ押圧された押え板17により、シュー14が斜板15の摺接面15cへ押し付けられている。 A set spring 20 is provided between the spherical bush 80 and the cylinder block 9 to urge them so as to repel them in the axial direction L. Specifically, a plurality of spring accommodating holes 93 that open toward the first side are formed in the main body 92 of the cylinder block 9, and set springs 20 that are coil springs are fitted into the respective spring accommodating holes 93. Yes. The first side of the set spring 20 protrudes from the cylinder block 9 and abuts against the flange 82 of the spherical bush 80 at the protruding end. Due to the spring force of the set spring 20 and the hydraulic pressure in the cylinder 11, the valve plate sliding contact surface 97 of the cylinder block 9 is pressed against and closely contacts the valve plate 4. The presser plate 17 is pressed to the first side by the spherical bush 80 pressed to the first side by the spring force of the set spring 20 and the hydraulic pressure in the cylinder 11. The shoe 14 is pressed against the sliding contact surface 15 c of the swash plate 15 by the presser plate 17 pressed toward the first side.
 ここで、上記構成の斜板型油圧ポンプ10を、各吸排ポート5,6のうち、一方の吸排ポート5を吸入側ポート、他方の吸排ポート6を吐出ポートとして使用した場合の作動について説明する。まず、エンジン等の駆動装置によって回転軸3が回転駆動されると、シリンダブロック9は回転軸3と一体的に回転し、シリンダブロック9の弁板摺接面9aは弁板4に対して摺接しつつ回転する。また、押え板17に保持された各シュー14は、斜板15の摺接面15cに摺接しつつ、シリンダブロック9およびピストン13と共に回転する。これにより、各ピストン13は、斜板15の最大傾転角に応じたストロークでシリンダ11内を往復動し、各ピストン13が上死点から下死点まで押動する吸入行程では吸排通路から吸入ポート5を介して各シリンダ11内に圧油を吸込み、下死点から上死点に復動する吐出行程では各シリンダ11内に吸込んだ圧油を高圧油として吐出ポート6から吸排通路へと吐出する。そして、傾転用アクチュエータ(図示略)によって斜板15の最大傾転角を調節すると、各ピストン13のストロークが変更され、これにより、各シリンダ11から吐出する吐出容量を可変に制御することができる。 Here, the operation of the swash plate type hydraulic pump 10 having the above-described configuration when one of the intake / exhaust ports 5 and 6 is used as an intake port and the other intake / exhaust port 6 as a discharge port will be described. . First, when the rotary shaft 3 is rotationally driven by a drive device such as an engine, the cylinder block 9 rotates integrally with the rotary shaft 3, and the valve plate sliding contact surface 9 a of the cylinder block 9 slides with respect to the valve plate 4. Rotates while touching. Each shoe 14 held by the presser plate 17 rotates together with the cylinder block 9 and the piston 13 while making sliding contact with the sliding contact surface 15 c of the swash plate 15. As a result, each piston 13 reciprocates in the cylinder 11 with a stroke corresponding to the maximum tilt angle of the swash plate 15, and in the intake stroke in which each piston 13 pushes from the top dead center to the bottom dead center, In the discharge stroke in which the pressure oil is sucked into each cylinder 11 via the suction port 5 and moved back from the bottom dead center to the top dead center, the pressure oil sucked into each cylinder 11 is used as high pressure oil from the discharge port 6 to the suction / discharge passage. And discharge. When the maximum tilt angle of the swash plate 15 is adjusted by a tilt actuator (not shown), the stroke of each piston 13 is changed, whereby the discharge capacity discharged from each cylinder 11 can be variably controlled. .
 上記斜板型油圧ポンプ10において、組立状態で、シリンダブロック9と球面ブッシュ80との軸線方向Lの間隙が0又は微小となるように構成されている。ここで「組立状態」とは、斜板型油圧ポンプ10が組み上がった状態を意味する。但し、斜板型油圧ポンプ10が作動している状態を除外するわけではなく、作動している状態でシリンダブロック9と球面ブッシュ80との軸線方向Lの間隙が0又は微小であってもよい。上記において「間隙が0である」ことは、球面ブッシュ80とシリンダブロック9とが軸線方向Lに連続しており、これらの間に空隙がないことを意味する。よって、シリンダブロック9と球面ブッシュ80との軸線方向Lの間隙が0である状態には、シリンダブロック9と球面ブッシュ80とが軸線方向Lに当接している状態に加え、シリンダブロック9と球面ブッシュ80に軸線方向Lの間隔G(間隙)があり当該間隔Gが充填部材Fで埋められている状態も含まれる。球面ブッシュ80とシリンダブロック9の軸線方向Lの間隙が0であれば、球面ブッシュ80がシリンダブロック9と直接的又は間接的に当接することによって、球面ブッシュ80は第2側へ軸線方向Lに移動不能となる。 The swash plate type hydraulic pump 10 is configured such that in the assembled state, the gap in the axial direction L between the cylinder block 9 and the spherical bush 80 is zero or very small. Here, “assembled state” means a state in which the swash plate type hydraulic pump 10 is assembled. However, the state in which the swash plate type hydraulic pump 10 is operating is not excluded, and the gap in the axial direction L between the cylinder block 9 and the spherical bush 80 may be 0 or very small in the operating state. . In the above, “the gap is 0” means that the spherical bush 80 and the cylinder block 9 are continuous in the axial direction L, and there is no gap between them. Therefore, when the gap in the axial direction L between the cylinder block 9 and the spherical bush 80 is 0, in addition to the state where the cylinder block 9 and the spherical bush 80 are in contact with the axial direction L, the cylinder block 9 and the spherical bush 80 are in contact with each other. A state in which the bush 80 has a gap G (gap) in the axial direction L and the gap G is filled with the filling member F is also included. If the gap between the spherical bush 80 and the cylinder block 9 in the axial direction L is 0, the spherical bush 80 is brought into direct or indirect contact with the cylinder block 9 so that the spherical bush 80 moves in the axial direction L toward the second side. It becomes impossible to move.
 また、上記において「間隙が微小である」とは、シリンダブロック9と球面ブッシュ80との間に軸線方向Lの微小な間隙ΔLが存在することを意味する。球面ブッシュ80とシリンダブロック9との間に軸線方向Lの微小な間隙ΔLが存在すれば、球面ブッシュ80は間隙ΔLの大きさだけ第2側へ軸線方向Lに移動可能である。但し、間隙ΔLの大きさは十分に小さい。間隙ΔLの大きさは、球面ブッシュ80の第2側への移動に伴う押え板17の第2側への移動量がシュー14が斜板15の摺接面15cから離れない範囲に収まる大きさである。具体的には、間隙ΔLの大きさは、0より大きく1.2mm以下であり、更に望ましくは、0より大きく0.8mm以下である。参考までに、従来の一般的な斜板型油圧モータにおいて、シリンダブロック9と球面ブッシュ80との軸線方向Lの間隙は3~5mm程度に設計されている。 In the above, “the gap is very small” means that there is a minute gap ΔL in the axial direction L between the cylinder block 9 and the spherical bush 80. If there is a minute gap ΔL in the axial direction L between the spherical bush 80 and the cylinder block 9, the spherical bush 80 can move in the axial direction L to the second side by the size of the gap ΔL. However, the size of the gap ΔL is sufficiently small. The size of the gap ΔL is such that the amount of movement of the presser plate 17 to the second side accompanying the movement of the spherical bushing 80 to the second side is within a range in which the shoe 14 is not separated from the sliding contact surface 15 c of the swash plate 15. It is. Specifically, the size of the gap ΔL is greater than 0 and 1.2 mm or less, and more desirably greater than 0 and 0.8 mm or less. For reference, in a conventional general swash plate type hydraulic motor, the gap in the axial direction L between the cylinder block 9 and the spherical bush 80 is designed to be about 3 to 5 mm.
 図1および図2に示す斜板型油圧ポンプ10では、シリンダブロック9の第1の端面95と、球面ブッシュ80のガイド穴部84の穴底85(第2側の端面)との間に軸線方向Lの間隔Gが設けられている。この間隔Gは、充填部材Fで埋められている。よって、シリンダブロック9と球面ブッシュ80は空隙なく軸線方向Lに連続しており、これらの軸線方向Lの間隙が0となっている。充填部材Fは、1枚以上のシム板30である。シム板30の枚数や厚みは、間隔Gの大きさに応じて適宜選択される。充填部材Fとしてシム板30が用いられることにより、例え個々の部品の寸法誤差により間隔Gの大きさにバラツキがあっても、組立時にシム板30の枚数を増減調整すれば、シリンダブロック9と球面ブッシュ80との軸線方向Lの間隔Gを高い精度で埋めることができる。 In the swash plate type hydraulic pump 10 shown in FIGS. 1 and 2, an axis line is formed between the first end surface 95 of the cylinder block 9 and the hole bottom 85 (second end surface) of the guide hole portion 84 of the spherical bush 80. An interval G in the direction L is provided. This gap G is filled with a filling member F. Therefore, the cylinder block 9 and the spherical bush 80 are continuous in the axial direction L with no gap, and the gap in the axial direction L is zero. The filling member F is one or more shim plates 30. The number and thickness of the shim plates 30 are appropriately selected according to the size of the gap G. Since the shim plate 30 is used as the filling member F, even if the size of the gap G varies due to dimensional errors of individual parts, if the number of shim plates 30 is increased or decreased during assembly, the cylinder block 9 The gap G in the axial direction L with the spherical bush 80 can be filled with high accuracy.
 上記構成の斜板型油圧ポンプ10において、低圧運転等によりシリンダ11内の油圧が低下した状態で回転軸3が高速回転すると、ピストン13を第2側に向けて引っ張る慣性力や遠心力によるシュー14を転倒させようとするモーメントがセットスプリング20のバネ力よりも大きくなる場合がある。この場合に、仮に押え板17がピストン13に引っ張られて第2側へ移動すれば、シュー14の斜板15への押し付け力が低下し、シュー14が転倒してしまう。これに対し、本実施形態に係る斜板型油圧ポンプ10では、押え板17を第2側へ移動させようとする力が生じた時に、球面ブッシュ80はシリンダブロック9と直接的又は間接的に当接することにより第2側への移動が規制され、押え板17は球面ブッシュ80と当接することにより第2側への移動が規制される。このように、本実施形態に係る斜板型油圧ポンプ10では押え板17の第2側への移動が規制されているので、上記のような場合であっても、シュー14が斜板15の摺接面15cから浮き上がったり転倒したりすることがない。よって、本実施形態に係る斜板型油圧ポンプ10では、シュー14が斜板15の摺接面15cに片当たりした状態で摺動回転することに起因する、ポンプ効率の低下、斜板15や各シュー14等の偏摩耗、カジリ現象および焼き付き等の発生が抑止されている。しかも、本実施形態に係る斜板型油圧ポンプ10では、従来の仕様のバネ力のセットスプリング20を用いることができるので、バネ力の増大によりシュー14と斜板15の間の摩擦力が増加して効率が低下したり焼き付きが生じたりするおそれがない。さらに、シュー14の斜板15の摺接面15cから浮き上がったり転倒したりするために、追加する部品点数は少なく、構造もシンプルである。また、充填部材Fで軸線方向Lの間隙Gを埋めた場合において、シリンダブロック9と球面ブッシュ80は同期して回転することから、充填部材Fとシリンダブロック9は相対的に滑らず、充填部材Fと球面ブッシュ80も相対的に滑らない。したがって、シリンダブロック9と充填部材Fの間および球面ブッシュ80と充填部材Fの間で過剰な摩擦が生じることがなく、斜板型油圧ポンプ10の回転速度の更なる高速化に耐えることができる。 In the swash plate type hydraulic pump 10 having the above-described configuration, when the rotary shaft 3 rotates at a high speed in a state where the hydraulic pressure in the cylinder 11 is reduced due to low pressure operation or the like, a shoe by inertia force or centrifugal force that pulls the piston 13 toward the second side. In some cases, the moment to cause 14 to fall is greater than the spring force of the set spring 20. In this case, if the presser plate 17 is pulled by the piston 13 and moves to the second side, the pressing force of the shoe 14 against the swash plate 15 decreases and the shoe 14 falls over. On the other hand, in the swash plate type hydraulic pump 10 according to the present embodiment, the spherical bush 80 is directly or indirectly connected to the cylinder block 9 when a force is generated to move the presser plate 17 to the second side. The contact to the second side is restricted by contact, and the presser plate 17 is restricted to move to the second side by making contact with the spherical bush 80. Thus, in the swash plate type hydraulic pump 10 according to the present embodiment, the movement of the presser plate 17 to the second side is restricted. Therefore, even in the above case, the shoe 14 is attached to the swash plate 15. It does not float or fall over from the sliding contact surface 15c. Therefore, in the swash plate type hydraulic pump 10 according to the present embodiment, the pump 14 is reduced in efficiency due to the sliding rotation of the shoe 14 in a state where the shoe 14 comes into contact with the sliding contact surface 15c of the swash plate 15, the swash plate 15 or Occurrence of uneven wear, galling and seizure of each shoe 14 and the like is suppressed. In addition, in the swash plate type hydraulic pump 10 according to the present embodiment, the set spring 20 having the conventional spring force can be used, so that the friction force between the shoe 14 and the swash plate 15 increases due to the increase of the spring force. Therefore, there is no possibility that the efficiency is lowered or seizure occurs. Further, since the swash plate 15 of the swash plate 15 of the shoe 14 is lifted or falls, the number of parts to be added is small and the structure is simple. Further, when the gap G in the axial direction L is filled with the filling member F, the cylinder block 9 and the spherical bush 80 rotate synchronously, so the filling member F and the cylinder block 9 do not slide relatively, and the filling member F and spherical bush 80 do not slide relatively. Therefore, excessive friction does not occur between the cylinder block 9 and the filling member F, and between the spherical bush 80 and the filling member F, and the rotation speed of the swash plate hydraulic pump 10 can be further increased. .
 以上、本発明の好適な一実施形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて、様々な設計変更を行うことが可能である The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment, and various design changes can be made as long as they are described in the claims.
 例えば、上記実施形態に係る斜板型油圧ポンプ10において、シリンダブロック9と球面ブッシュ80との軸線方向Lの間隙は0であるが、この間隙は微小であってもよい。図3は軸線方向に間隙が設けられた球面ブッシュとシリンダブロックの一例を示す斜板型油圧ポンプの縦断面図の一部拡大図である。図3に示す斜板型油圧ポンプ10は、組立状態で、シリンダブロック9と球面ブッシュ80との間に、微小な軸線方向Lの間隙ΔLが設けられている。より詳細には、シリンダブロック9の第1の端面95と、球面ブッシュ80のガイド穴部84の穴底85とは軸線方向Lに離れており、これらの間に軸線方向Lの間隙ΔLが存在している。この間隙ΔLの大きさは、組立状体の斜板型油圧ポンプ10において、0より大きく1.2mm以下、更に望ましくは、0より大きく0.8mm以下となるように設計されている。 For example, in the swash plate type hydraulic pump 10 according to the above embodiment, the gap in the axial direction L between the cylinder block 9 and the spherical bush 80 is 0, but this gap may be minute. FIG. 3 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing an example of a spherical bush and a cylinder block provided with a gap in the axial direction. In the assembled state, the swash plate type hydraulic pump 10 shown in FIG. 3 is provided with a small gap ΔL in the axial direction L between the cylinder block 9 and the spherical bush 80. More specifically, the first end surface 95 of the cylinder block 9 and the hole bottom 85 of the guide hole 84 of the spherical bush 80 are separated in the axial direction L, and a gap ΔL in the axial direction L exists between them. is doing. The size of the gap ΔL is designed to be greater than 0 and 1.2 mm or less, and more desirably greater than 0 and 0.8 mm or less in the assembled swash plate type hydraulic pump 10.
 なお、シリンダブロック9と球面ブッシュ80との軸線方向Lの間隙ΔLの位置は、シリンダブロック9の第1の端面95と球面ブッシュ80のガイド穴部84の穴底85との間に限定されない。図4は軸線方向に間隙が設けられた球面ブッシュとシリンダブロックの例2を示す斜板型油圧ポンプの縦断面図の一部拡大図である。図4に示す例では、シリンダブロック9の第2の端面96と球面ブッシュ80の鍔82とは軸線方向Lに離れており、これらの間に微小な軸線方向Lの間隙ΔLが存在している。なお、この例において、セットスプリング20は、球面ブッシュ80のガイド穴部84の穴底85と、シリンダブロック9の第1の端面95との間で反発するように設けられた複数枚の皿バネである。 The position of the gap ΔL in the axial direction L between the cylinder block 9 and the spherical bush 80 is not limited between the first end face 95 of the cylinder block 9 and the hole bottom 85 of the guide hole 84 of the spherical bush 80. FIG. 4 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing Example 2 of a spherical bush and a cylinder block provided with a gap in the axial direction. In the example shown in FIG. 4, the second end face 96 of the cylinder block 9 and the flange 82 of the spherical bush 80 are separated from each other in the axial direction L, and a minute gap ΔL in the axial direction L exists between them. . In this example, the set spring 20 includes a plurality of disc springs provided so as to repel between the hole bottom 85 of the guide hole 84 of the spherical bush 80 and the first end surface 95 of the cylinder block 9. It is.
 また、例えば、上記実施形態に係る斜板型油圧ポンプ10において、充填部材Fはシム板30であるが、充填部材Fはシム板30に限定されない。図5は軸線方向の間隔が埋められた球面ブッシュとシリンダブロックの例2を示す斜板型油圧ポンプの縦断面図の一部拡大図である。図5に示す例では、シリンダブロック9の第1の端面95と、球面ブッシュ80のガイド穴部84の穴底85との間に、軸線方向Lの間隔Gが設けられている。この間隔Gは、充填リング31で埋められている。これにより、シリンダブロック9と球面ブッシュ80との軸線方向Lの間隙が0となっている。充填リング31は、環状の充填部材Fである。球面ブッシュ80のガイド穴部84の穴底85には環状溝形状の収容部32が形成されており、この収容部32に充填リング31の第1側の一部分が埋設されている。充填リング31の第2側の端面は、シリンダブロック9の第1の端面95と当接している。この斜板型油圧ポンプ10を組み立てる際には、球面ブッシュ80の収容部32に、まず、時間硬化性又は熱硬化性の充填剤33を注入し、続いて、充填リング31を第1側へ向けて嵌め込む。そして、充填リング31とシリンダブロック9の第1の端面95とが当接した状態で、充填剤33を硬化させる。このように球面ブッシュ80と充填リング31との間に充填剤33を設けることで、例え個々の部品の寸法誤差により間隔Gの大きさにバラツキがあっても、この間隔Gを充填リング31と充填剤33とにより高い精度で埋めることができる。なお、充填剤33は、球面ブッシュ80の収容部32に充填リング31を固定させるような、接着性能を有することが望ましい。また、充填リング31の外周部に高強度の接着剤を塗布し、接着剤を介して充填リング31と球面ブッシュ80との接触面で接着させる場合は、充填剤33を省いても良い。 Further, for example, in the swash plate hydraulic pump 10 according to the above embodiment, the filling member F is the shim plate 30, but the filling member F is not limited to the shim plate 30. FIG. 5 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing a second example of a spherical bush and a cylinder block in which an interval in the axial direction is filled. In the example shown in FIG. 5, a gap G in the axial direction L is provided between the first end surface 95 of the cylinder block 9 and the hole bottom 85 of the guide hole portion 84 of the spherical bush 80. This gap G is filled with a filling ring 31. As a result, the gap in the axial direction L between the cylinder block 9 and the spherical bush 80 is zero. The filling ring 31 is an annular filling member F. An annular groove-shaped accommodation portion 32 is formed in the hole bottom 85 of the guide hole portion 84 of the spherical bush 80, and a part on the first side of the filling ring 31 is embedded in the accommodation portion 32. The end surface on the second side of the filling ring 31 is in contact with the first end surface 95 of the cylinder block 9. When the swash plate type hydraulic pump 10 is assembled, the time-setting or thermosetting filler 33 is first injected into the accommodating portion 32 of the spherical bush 80, and then the filling ring 31 is moved to the first side. Fit it. And the filler 33 is hardened in the state which the filling ring 31 and the 1st end surface 95 of the cylinder block 9 contact | abutted. By providing the filler 33 between the spherical bush 80 and the filling ring 31 in this way, even if there is a variation in the size of the gap G due to a dimensional error of individual parts, the gap G and the filling ring 31 are used. Filling with the filler 33 can be performed with high accuracy. It is desirable that the filler 33 has an adhesive performance that fixes the filling ring 31 to the housing portion 32 of the spherical bush 80. Further, in the case where a high-strength adhesive is applied to the outer peripheral portion of the filling ring 31 and is adhered on the contact surface between the filling ring 31 and the spherical bush 80 via the adhesive, the filler 33 may be omitted.
 或いは、充填部材Fとして、圧入ブッシュを用いることもできる。図6は軸線方向の間隔が埋められた球面ブッシュとシリンダブロックの例3を示す斜板型油圧ポンプの縦断面図の一部拡大図である。図6に示す例では、シリンダブロック9の第1の端面95と、球面ブッシュ80のガイド穴部84の穴底85との間に軸線方向Lの間隔Gが設けられている。この間隔Gは、圧入ブッシュ41で埋められている。これにより、シリンダブロック9と球面ブッシュ80との軸線方向Lの間隙が0となっている。圧入ブッシュ41は筒状の充填部材Fである。球面ブッシュ80のガイド穴部84の穴底85に環状溝形状の圧入部42が形成されており、この圧入部42に圧入ブッシュ41が第1側へ向けて圧入されている。球面ブッシュ80の圧入部42に圧入された圧入ブッシュ41は、摩擦により圧入部42から挿脱不能である。組立状態の斜板型油圧ポンプ10において、圧入ブッシュ41の第2側の端面は、シリンダブロック9の第1の端面95と当接している。このように、充填部材Fとして圧入ブッシュ41を用いることによれば、圧入ブッシュ41の圧入具合を調整することによって、間隔Gの大きさのバラツキを吸収することができる。なお、圧入ブッシュ41の外周部に高強度の接着剤を塗布し、この接着剤を介して圧入ブッシュ41と圧入ブッシュ41を接着してもよい。この場合は、圧入ブッシュ41を圧入せずルーズフィットさせてもよい。 Alternatively, a press-fit bush can be used as the filling member F. FIG. 6 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing Example 3 of a spherical bush and a cylinder block in which the axial distance is filled. In the example shown in FIG. 6, a gap G in the axial direction L is provided between the first end surface 95 of the cylinder block 9 and the hole bottom 85 of the guide hole portion 84 of the spherical bush 80. This gap G is filled with the press-fitting bush 41. As a result, the gap in the axial direction L between the cylinder block 9 and the spherical bush 80 is zero. The press-fitting bush 41 is a cylindrical filling member F. An annular groove-shaped press-fit portion 42 is formed in the hole bottom 85 of the guide hole portion 84 of the spherical bush 80, and the press-fit bush 41 is press-fitted into the press-fit portion 42 toward the first side. The press-fit bush 41 press-fitted into the press-fit portion 42 of the spherical bush 80 cannot be inserted and removed from the press-fit portion 42 due to friction. In the assembled swash plate type hydraulic pump 10, the second end surface of the press-fitting bush 41 is in contact with the first end surface 95 of the cylinder block 9. As described above, by using the press-fitting bush 41 as the filling member F, by adjusting the press-fitting condition of the press-fitting bush 41, the variation in the size of the gap G can be absorbed. Note that a high-strength adhesive may be applied to the outer periphery of the press-fit bush 41, and the press-fit bush 41 and the press-fit bush 41 may be bonded via this adhesive. In this case, the press-fitting bush 41 may be loosely fitted without being press-fitted.
 また、例えば、上記実施形態に係る斜板型油圧ポンプ10において、充填部材Fにより埋められるシリンダブロック9と球面ブッシュ80との軸線方向Lの間隙の位置は、シリンダブロック9の第1の端面95と球面ブッシュ80のガイド穴部84の穴底85との間に限定されない。図7は軸線方向の間隔が埋められた球面ブッシュとシリンダブロックの例4を示す斜板型油圧ポンプの縦断面図の一部拡大図である。図7に示す例では、シリンダブロック9のスプリング収容穴93が開口している第2の端面96と、球面ブッシュ80の鍔82との間に、軸線方向Lの間隔Gが設けられている。この間隔Gは、充填部材Fである充填柱35により埋められている。これにより、球面ブッシュ80とシリンダブロック9との軸線方向Lの間隙が0となっている。シリンダブロック9には、スプリング収容穴93と同様に、斜板15に向けて開口する複数の充填部材収容穴98が設けられている。この充填部材収容穴98に、充填柱35が挿設されている。充填柱35はシリンダブロック9の充填部材収容穴98から第1側へ突出しており、この突出している第1側の端面が球面ブッシュ80の鍔82と当接している。この斜板型油圧ポンプ10を組み立てる際には、シリンダブロック9の充填部材収容穴98に、まず、時間硬化性又は熱硬化性の充填剤36を注入し、続いて、充填柱35を嵌め込む。そして、充填柱35の第1側の端面と球面ブッシュ80の鍔82とが当接した状態で、充填剤36を硬化させる。このようにシリンダブロック9と充填柱35との間に充填剤36を設けることによれば、例え個々の部品の寸法誤差により間隔Gの大きさにバラツキがあっても、この間隔Gを充填柱35と充填剤36とにより高い精度で埋めることができる。なお、充填剤36は、シリンダブロック9の充填部材収容穴98に充填柱35を固定させるような、接着性能を有することが望ましい。このように充填柱35の外周部に高強度の接着剤を塗布し、この接着剤を介して充填柱35とシリンダブロック9とを接着する場合は、充填剤33を省いてもよい。 Further, for example, in the swash plate type hydraulic pump 10 according to the above embodiment, the position of the gap in the axial direction L between the cylinder block 9 filled with the filling member F and the spherical bush 80 is the first end surface 95 of the cylinder block 9. And the hole bottom 85 of the guide hole portion 84 of the spherical bush 80. FIG. 7 is a partially enlarged view of a longitudinal sectional view of a swash plate type hydraulic pump showing a fourth example of a spherical bush and a cylinder block in which an interval in the axial direction is filled. In the example shown in FIG. 7, a gap G in the axial direction L is provided between the second end surface 96 where the spring accommodation hole 93 of the cylinder block 9 is opened and the flange 82 of the spherical bush 80. The gap G is filled with a filling column 35 that is a filling member F. As a result, the gap in the axial direction L between the spherical bush 80 and the cylinder block 9 is zero. Similar to the spring accommodation hole 93, the cylinder block 9 is provided with a plurality of filling member accommodation holes 98 that open toward the swash plate 15. A filling column 35 is inserted into the filling member accommodation hole 98. The filling column 35 protrudes from the filling member accommodation hole 98 of the cylinder block 9 to the first side, and the protruding first side end surface is in contact with the flange 82 of the spherical bush 80. When assembling the swash plate type hydraulic pump 10, the time-curable or thermosetting filler 36 is first injected into the filling member accommodation hole 98 of the cylinder block 9, and then the filling column 35 is fitted. . Then, the filler 36 is hardened in a state where the end surface on the first side of the filling column 35 is in contact with the flange 82 of the spherical bush 80. By providing the filler 36 between the cylinder block 9 and the filling column 35 in this way, even if there is a variation in the size of the gap G due to dimensional errors of individual parts, the gap G is used as the filling column. 35 and the filler 36 can be filled with high accuracy. It is desirable that the filler 36 has an adhesive performance that fixes the filling column 35 in the filling member accommodation hole 98 of the cylinder block 9. In this way, when a high-strength adhesive is applied to the outer peripheral portion of the filling column 35 and the filling column 35 and the cylinder block 9 are bonded via this adhesive, the filler 33 may be omitted.
 なお、上記図5,6,7に示す例では、シリンダブロック9と球面ブッシュ80の軸線方向Lの間隔Gを埋めるために充填部材F(充填リング31,圧入ブッシュ41,充填柱35)を用いているが、これらの充填部材Fはシリンダブロック9および球面ブッシュ80のいずれに設けられていてもかまわない。また、上記実施の形態において、斜板型液圧回転機として斜板型油圧ポンプを例に挙げて説明したが、本発明が適用される斜板型液圧回転機はこれに限定されない。例えば、斜板型液圧回転機は、斜板型油圧モータであってもかまわない。 In the examples shown in FIGS. 5, 6, and 7, the filling member F (filling ring 31, press-fit bush 41, filling column 35) is used to fill the gap G in the axial direction L between the cylinder block 9 and the spherical bush 80. However, these filling members F may be provided on either the cylinder block 9 or the spherical bush 80. In the above embodiment, a swash plate type hydraulic pump has been described as an example of the swash plate type hydraulic rotary machine. However, the swash plate type hydraulic rotary machine to which the present invention is applied is not limited to this. For example, the swash plate type hydraulic rotating machine may be a swash plate type hydraulic motor.
 本発明は、斜板型油圧ポンプや斜板型油圧モータなどの斜板型液圧回転機において、回転軸の回転速度が高速化してもシューの斜板からの浮き上がりを防止することができるので、細部構造に係わらず最大傾転角が可変の斜板を有する斜板型液圧回転機に広く適用させることができる。 According to the present invention, in a swash plate type hydraulic rotating machine such as a swash plate type hydraulic pump or a swash plate type hydraulic motor, the lift of the shoe from the swash plate can be prevented even if the rotational speed of the rotary shaft is increased. The present invention can be widely applied to a swash plate type hydraulic rotating machine having a swash plate having a variable maximum tilt angle regardless of the detailed structure.
 G 間隔
 F 充填部材
 3 回転軸
 4 弁板
 5,6 吸排ポート
 9 シリンダブロック
 11 シリンダ
 13 ピストン
 14 シュー
 15 斜板
 17 押え板
 20 セットスプリング
 30 シム板
 31 充填リング
 32 収容部
 33 充填剤
 35 充填柱
 36 充填剤
 41 圧入ブッシュ
 80 球面ブッシュ
G interval F Filling member 3 Rotating shaft 4 Valve plate 5, 6 Intake / exhaust port 9 Cylinder block 11 Cylinder 13 Piston 14 Shoe 15 Swash plate 17 Presser plate 20 Set spring 30 Shim plate 31 Filling ring 32 Receiving part 33 Filler 35 Filling column 36 Filler 41 Press-fit bush 80 Spherical bush

Claims (6)

  1.  回転軸と、
     前記回転軸の軸線方向に離れて対峙する弁板および斜板と、
     前記弁板と前記斜板の間において前記弁板と摺接するように前記回転軸に外嵌されたシリンダブロックと、
     前記シリンダブロックに設けられた複数のシリンダと、
     前記シリンダに前記軸線方向に往復動可能に挿入された複数のピストンと、
     前記シリンダから前記斜板側へ突出した前記ピストンの先端に揺動可能に連結された複数のシューと、
     前記斜板と前記シリンダブロックの間において前記回転軸に遊嵌されており、前記シューを保持する環状の押え板と、
     前記押え板と前記シリンダブロックとの間に設けられており、前記押え板を支持するブッシュと、
     前記ブッシュと前記シリンダブロックの間に設けられており、前記ブッシュが前記押え板を斜板側へ押圧するように当該ブッシュを付勢するばね部材とを備え、
     前記ブッシュと前記シリンダブロックの前記軸線方向の間隙が組立状態において0又は微小である、斜板型液圧回転機。
    A rotation axis;
    A valve plate and a swash plate facing away from each other in the axial direction of the rotating shaft;
    A cylinder block externally fitted to the rotary shaft so as to be in sliding contact with the valve plate between the valve plate and the swash plate;
    A plurality of cylinders provided in the cylinder block;
    A plurality of pistons inserted into the cylinder so as to reciprocate in the axial direction;
    A plurality of shoes connected to the tip of the piston projecting from the cylinder toward the swash plate;
    An annular press plate that is loosely fitted to the rotating shaft between the swash plate and the cylinder block and holds the shoe;
    A bush provided between the presser plate and the cylinder block, and supporting the presser plate;
    A spring member that is provided between the bush and the cylinder block and biases the bush so that the bush presses the presser plate toward the swash plate;
    A swash plate type hydraulic rotating machine in which the axial gap between the bush and the cylinder block is 0 or very small in an assembled state.
  2.  前記間隙の大きさが0又は0より大きく1.2mm以下である、請求項1に記載の斜板型液圧回転機。 The swash plate type hydraulic rotating machine according to claim 1, wherein the size of the gap is 0 or more than 0 and 1.2 mm or less.
  3.  回転軸と、
     前記回転軸の軸線方向に離れて対峙する弁板および斜板と、
     前記弁板と前記斜板の間において前記弁板と摺接するように前記回転軸に外嵌されたシリンダブロックと、
     前記シリンダブロックに設けられた複数のシリンダと、
     前記シリンダに前記軸線方向に往復動可能に挿入された複数のピストンと、
     前記シリンダから前記斜板側へ突出した前記ピストンの先端に揺動可能に連結された複数のシューと、
     前記斜板と前記シリンダブロックの間において前記回転軸に遊嵌されており、前記シューを保持する環状の押え板と、
     前記押え板と前記シリンダブロックとの間に設けられており、前記押え板を支持するブッシュと、
     前記ブッシュと前記シリンダブロックの間に設けられており、前記ブッシュが前記押え板を斜板側へ押圧するように当該ブッシュを付勢するばね部材と、
     前記ブッシュと前記シリンダブロックの前記軸線方向の間隙を埋める充填部材を備えた、斜板型液圧回転機。
    A rotation axis;
    A valve plate and a swash plate facing away from each other in the axial direction of the rotating shaft;
    A cylinder block externally fitted to the rotary shaft so as to be in sliding contact with the valve plate between the valve plate and the swash plate;
    A plurality of cylinders provided in the cylinder block;
    A plurality of pistons inserted into the cylinder so as to reciprocate in the axial direction;
    A plurality of shoes connected to the tip of the piston projecting from the cylinder toward the swash plate;
    An annular press plate that is loosely fitted to the rotating shaft between the swash plate and the cylinder block and holds the shoe;
    A bush provided between the presser plate and the cylinder block, and supporting the presser plate;
    A spring member that is provided between the bush and the cylinder block and biases the bush so that the bush presses the presser plate toward the swash plate;
    A swash plate type hydraulic rotating machine including a filling member that fills the gap between the bush and the cylinder block in the axial direction.
  4.  前記充填部材が、1枚以上のシム板である、請求項3に記載の斜板型液圧回転機。 The swash plate type hydraulic rotating machine according to claim 3, wherein the filling member is one or more shim plates.
  5.  前記充填部材と前記ブッシュおよび前記シリンダブロックのいずれか一方との間に、時間硬化性又は熱硬化性の充填剤を備えた、請求項3に記載の斜板型液圧回転機。 The swash plate type hydraulic rotating machine according to claim 3, further comprising a time curable or thermosetting filler between the filling member and any one of the bush and the cylinder block.
  6.  前記充填部材が、圧入ブッシュである、請求項3に記載の斜板型液圧回転機。 The swash plate type hydraulic rotating machine according to claim 3, wherein the filling member is a press-fitting bush.
PCT/JP2010/007103 2010-12-07 2010-12-07 Skew plate-type hydraulic rotary machine WO2012077157A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/882,832 US20130327208A1 (en) 2010-12-07 2010-12-07 Swash plate type hydraulic rotating machine
EP10860466.1A EP2650538A1 (en) 2010-12-07 2010-12-07 Skew plate-type hydraulic rotary machine
JP2012547597A JPWO2012077157A1 (en) 2010-12-07 2010-12-07 Swash plate type hydraulic rotating machine
KR1020127031763A KR20130030761A (en) 2010-12-07 2010-12-07 Skew plate-type hydraulic rotary machine
CN2010800690030A CN103069161A (en) 2010-12-07 2010-12-07 Skew plate-type hydraulic rotary machine
PCT/JP2010/007103 WO2012077157A1 (en) 2010-12-07 2010-12-07 Skew plate-type hydraulic rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/007103 WO2012077157A1 (en) 2010-12-07 2010-12-07 Skew plate-type hydraulic rotary machine

Publications (1)

Publication Number Publication Date
WO2012077157A1 true WO2012077157A1 (en) 2012-06-14

Family

ID=46206681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007103 WO2012077157A1 (en) 2010-12-07 2010-12-07 Skew plate-type hydraulic rotary machine

Country Status (6)

Country Link
US (1) US20130327208A1 (en)
EP (1) EP2650538A1 (en)
JP (1) JPWO2012077157A1 (en)
KR (1) KR20130030761A (en)
CN (1) CN103069161A (en)
WO (1) WO2012077157A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156547A1 (en) * 2013-03-29 2014-10-02 カヤバ工業株式会社 Opposed-swash-plate-type hydraulic rotary machine
WO2015166629A1 (en) * 2014-05-01 2015-11-05 川崎重工業株式会社 Swash plate-type hydraulic rotary machine and method for manufacturing same
CN107387351A (en) * 2017-09-04 2017-11-24 杭州力龙液压有限公司 Plunger assembly, plunger pump and hydraulic transmission
CN108547748A (en) * 2018-04-09 2018-09-18 张家港市海工船舶机械制造有限公司 A kind of low-noise axial plunger pump
JP2020183744A (en) * 2019-05-09 2020-11-12 ナブテスコ株式会社 Hydraulic pump and construction machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326409B2 (en) 2013-03-29 2018-05-16 Kyb株式会社 Hydraulic rotating machine
JP6246582B2 (en) * 2013-12-16 2017-12-13 日立建機株式会社 Hydraulic rotating machine
DE102016223307A1 (en) * 2016-11-24 2018-05-24 Danfoss Power Solutions Gmbh & Co. Ohg HYDRAULIC AXIAL PISTON UNIT WITH CENTRALLY FIXED LOW HOLDER
CN108131266B (en) * 2018-02-01 2019-08-30 李涌权 Fluid pump

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146907A (en) 1974-05-16 1975-11-25
JPS5164038A (en) 1974-11-27 1976-06-03 Fujikura Ltd TEEPUMAKISOCHI
JPS54163302U (en) * 1978-05-09 1979-11-15
JPS5789878U (en) * 1980-11-25 1982-06-02
JPS6375570U (en) * 1986-05-19 1988-05-19
JPH0239578U (en) * 1988-09-08 1990-03-16
JPH0373678U (en) * 1989-11-20 1991-07-24
JPH0886273A (en) * 1994-09-19 1996-04-02 Hitachi Ltd Swash type axial piston machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292553A (en) * 1963-12-30 1966-12-20 Sunstrand Corp Piston return mechanism
US3807283A (en) * 1970-05-18 1974-04-30 Cessna Aircraft Co Axial piston pump or motor
JP2977043B2 (en) * 1990-11-28 1999-11-10 日立建機株式会社 Swash plate type hydraulic rotary machine
JPH07167044A (en) * 1993-12-17 1995-07-04 Uchida Yuatsu Kiki Kogyo Kk Cylinder block engaging device for swash plate type piston pump motor
JP3587498B2 (en) * 1998-01-23 2004-11-10 株式会社荏原製作所 Axial piston type pump
JP2005209882A (en) * 2004-01-22 2005-08-04 Renesas Technology Corp Semiconductor package and semiconductor device
CN101326365A (en) * 2006-04-10 2008-12-17 布鲁宁赫斯海诺马帝克有限公司 Hydrostatic piston engine with rotatable control disc
CN101341335A (en) * 2006-06-02 2009-01-07 布鲁宁赫斯海诺马帝克有限公司 Axial piston machine having a hydrostatically mounted cradle journal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146907A (en) 1974-05-16 1975-11-25
JPS5164038A (en) 1974-11-27 1976-06-03 Fujikura Ltd TEEPUMAKISOCHI
JPS54163302U (en) * 1978-05-09 1979-11-15
JPS5789878U (en) * 1980-11-25 1982-06-02
JPS6375570U (en) * 1986-05-19 1988-05-19
JPH0239578U (en) * 1988-09-08 1990-03-16
JPH0373678U (en) * 1989-11-20 1991-07-24
JPH0886273A (en) * 1994-09-19 1996-04-02 Hitachi Ltd Swash type axial piston machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156547A1 (en) * 2013-03-29 2014-10-02 カヤバ工業株式会社 Opposed-swash-plate-type hydraulic rotary machine
JPWO2014156547A1 (en) * 2013-03-29 2017-02-16 Kyb株式会社 Opposing swash plate type hydraulic rotating machine
US9856851B2 (en) 2013-03-29 2018-01-02 Kyb Corporation Opposed swash plate type fluid pressure rotating machine
WO2015166629A1 (en) * 2014-05-01 2015-11-05 川崎重工業株式会社 Swash plate-type hydraulic rotary machine and method for manufacturing same
JP2015212522A (en) * 2014-05-01 2015-11-26 川崎重工業株式会社 Swash plate type fluid pressure rotary machine and process of manufacturing the same
GB2540072A (en) * 2014-05-01 2017-01-04 Kawasaki Heavy Ind Ltd Swash plate-type hydraulic rotary machine and method for manufacturing same
DE112015002089B4 (en) 2014-05-01 2019-08-01 Kawasaki Jukogyo Kabushiki Kaisha Swash plate fluid pressure rotating device - preferably axial piston machine, with oscillatory sliding shoe holding plate, which is acted upon by a displaceable spherical bushing, which has a bearing side adjustable movement limiting mechanism with respect to the drive shaft - and a method for the production thereof
US10533544B2 (en) 2014-05-01 2020-01-14 Kawasaki Jukogyo Kabushiki Kaisha Swash plate type liquid-pressure rotating device and method of manufacturing same
GB2540072B (en) * 2014-05-01 2020-06-24 Kawasaki Heavy Ind Ltd Swash plate type liquid-pressure rotating device and method for manufacturing same
CN107387351A (en) * 2017-09-04 2017-11-24 杭州力龙液压有限公司 Plunger assembly, plunger pump and hydraulic transmission
CN108547748A (en) * 2018-04-09 2018-09-18 张家港市海工船舶机械制造有限公司 A kind of low-noise axial plunger pump
JP2020183744A (en) * 2019-05-09 2020-11-12 ナブテスコ株式会社 Hydraulic pump and construction machine

Also Published As

Publication number Publication date
EP2650538A1 (en) 2013-10-16
CN103069161A (en) 2013-04-24
JPWO2012077157A1 (en) 2014-05-19
KR20130030761A (en) 2013-03-27
US20130327208A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
WO2012077157A1 (en) Skew plate-type hydraulic rotary machine
WO2010140374A1 (en) Variable displacement compressor
JPH0474550B2 (en)
JP6254897B2 (en) Swash plate type hydraulic rotating machine and manufacturing method thereof
JP5102837B2 (en) Hydraulic pump / motor and method for preventing pulsation of hydraulic pump / motor
JP3960117B2 (en) Variable capacity compressor and noise suppression method
US20180142553A1 (en) Hydraulic axial piston unit with central fixed hold down device
JP4541474B2 (en) Axial piston machine
JP2008064057A (en) Variable displacement compressor
JP2004293388A (en) Oscillating swash plate type pump
JP5539807B2 (en) Hydraulic pump / motor
JPH04203279A (en) Slant plate type hydraulic rotary machine
JP5316110B2 (en) Fuel injection pump
JP6447362B2 (en) Variable capacity swash plate type hydraulic rotating machine
JP6203328B1 (en) Swash plate type piston pump
JPH05164038A (en) Swash plate type liquid pressure rotating machine
JP2005201175A (en) Variable displacement swash plate type hydraulic rotating machine
JP6832263B2 (en) Axial piston type hydraulic rotary machine
WO2018216418A1 (en) Variable displacement oil pump
JP6672213B2 (en) Oblique axis type hydraulic rotary machine
JP4562661B2 (en) Swash plate compressor
JP2004036468A (en) High pressure fuel pump
JP2015063892A (en) Variable displacement swash plate compressor
JP6052016B2 (en) Variable capacity swash plate compressor
JPH04241777A (en) Axial piston pump

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069003.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860466

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012547597

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127031763

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13882832

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010860466

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE