WO2012075953A1 - 一种数据测量方法、通信系统以及设备 - Google Patents

一种数据测量方法、通信系统以及设备 Download PDF

Info

Publication number
WO2012075953A1
WO2012075953A1 PCT/CN2011/083687 CN2011083687W WO2012075953A1 WO 2012075953 A1 WO2012075953 A1 WO 2012075953A1 CN 2011083687 W CN2011083687 W CN 2011083687W WO 2012075953 A1 WO2012075953 A1 WO 2012075953A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
base station
frequency
power
uplink
Prior art date
Application number
PCT/CN2011/083687
Other languages
English (en)
French (fr)
Inventor
于映辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11847457.6A priority Critical patent/EP2642785B1/en
Publication of WO2012075953A1 publication Critical patent/WO2012075953A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to the field of communications, and in particular, to a data measurement method, and a communication system and device.
  • FDD frequency division duplex
  • the downlink (DL, Down link) frequency band and the uplink (UL, Up link) frequency band usually use the same bandwidth, but the current uplink and downlink frequency bands do not have the same traffic.
  • the traffic of the DL band is usually larger than the traffic of the UL band, which causes some UL resources of the UL band to be relatively idle.
  • the UL traffic and the DL traffic match, since the UL spectrum efficiency is higher than the DL spectrum efficiency, the usage rate of the UL subframe is lower than the usage rate of the DL subframe, and the UL resource may be redundant.
  • part of the UL access link resources of the frequency division duplex system can be used for DL access link resources of a Time Division Duplexing (TDD) system, thereby improving FDD UL. Band utilization.
  • TDD Time Division Duplexing
  • the user equipment UE, User Equipment
  • LPN low power node
  • DSS dynamic spectrum sharing
  • the base station in the DSS scenario, in order to reduce the interference of the DL control channel of the base station and the LPN, it is preferable to switch from the base station to the TDD cell of the LPN. Since the downlink channel of the base station is in the FDD DL band, and the downlink channel of the TDD cell of the LPN is in the FDD UL band, it is necessary to perform inter-frequency measurement for the measurement of the UE under the base station.
  • the inter-frequency measurement period is longer than the intra-frequency measurement period.
  • the inter-frequency measurement period is 480 ms, which is 280 ms longer than the intra-frequency measurement period.
  • the inter-frequency measurement period is 240 ms, which is 40 ms longer than the same-frequency measurement period.
  • the inter-frequency measurement requires the UE to interrupt the data reception of the current cell, so it has an impact on the performance of the UE. Summary of the invention
  • Embodiments of the present invention provide a data measurement method, a communication system, and a device, which can reduce the impact of a measurement process on UE performance.
  • the data measurement method provided by the embodiment of the present invention includes: the user equipment UE receives the measurement control information sent by the base station, where the measurement control information includes frequency point information of the virtual same frequency cell, where the virtual same frequency cell is the UE a cell on a frequency layer corresponding to the second receiver, the second receiver is only used for measurement, and is not used for data reception; the UE starts the second receiver to perform virtual intra-frequency measurement according to the measurement control information.
  • the data measurement method provided by the embodiment of the present invention includes: determining a virtual intra-frequency cell in a neighboring cell, where the virtual co-frequency cell is a cell on a frequency layer corresponding to a second receiver of the user equipment UE, and the second receiving The device is only used for measurement, and is not used for data reception; sending measurement control information including frequency point information of the virtual intra-frequency cell to the UE, so that the UE starts the second according to the measurement control information The receiver performs the virtual co-frequency.
  • the data measurement method provided by the embodiment of the present invention includes: measuring, by the base station, the SRS uplink reference symbol configuration or the new uplink reference symbol configuration sent by the serving base station, and the transmit power on the uplink measurement symbol of the UE.
  • the measurement base station performs measurement on the UE according to the SRS uplink reference symbol configuration or a new uplink reference symbol configuration, and the transmit power on the uplink measurement symbol of the UE, to obtain an uplink loss value of the UE to the measurement base station.
  • the measuring base station acquires, according to the uplink path loss value and the measured transmit power of the base station, the UE receives from the measurement base station The received signal power of the signal.
  • the data measurement method provided by the embodiment of the present invention includes: acquiring transmit power on an uplink measurement symbol of a UE; transmitting an SRS uplink reference symbol configuration or a new uplink reference symbol configuration to the measurement base station, and uplink measurement symbols on the UE Transmitting power; causing the measurement base station to measure the UE slave measurement according to the SRS uplink reference symbol configuration or a new uplink reference symbol configuration, and a transmit power on an uplink measurement symbol of the UE and a transmit power of the measurement base station.
  • the base station receives the received signal power of the signal.
  • the user equipment includes: an information receiving unit, configured to receive measurement control information sent by a base station, where the measurement control information includes frequency point information of a virtual same frequency cell, where the virtual same frequency cell is a user equipment And a second receiver, configured to perform virtual intra-frequency measurement according to the measurement control information received by the information receiving unit.
  • the base station provided by the embodiment of the present invention includes: a cell determining unit, configured to determine a virtual intra-frequency cell in a neighboring cell, where the virtual co-frequency cell is a cell on a frequency layer corresponding to a second receiver of the user equipment UE, where Second reception The device is only used for measurement, and is not used for data reception; the information generating unit is configured to generate measurement control information, where the measurement control information includes frequency point information of the virtual same frequency cell determined by the cell determining unit; And sending, to the UE, measurement control information generated by the information generating unit, so that the UE starts the second receiver to perform virtual intra-frequency measurement according to the measurement control information.
  • the serving base station includes: a power calculation unit, configured to acquire transmit power on an uplink measurement symbol of the UE; and a configuration information acquiring unit, configured to acquire an SRS uplink reference symbol configuration or a new uplink reference symbol configuration; An information sending unit, configured to send, to the measurement base station, an SRS uplink reference symbol configuration or a new uplink reference symbol configuration acquired by the configuration information acquiring unit, and a transmit power on an uplink measurement symbol of the UE acquired by the power calculation unit And causing the measurement base station to perform, according to the SRS uplink reference symbol configuration or a new uplink reference symbol configuration, and the transmit power on the uplink measurement symbol of the UE and the transmit power of the measurement base station, the UE receives a signal from the measurement base station. Receive signal power.
  • the measurement base station includes: an information acquiring unit, configured to receive an SRS uplink reference symbol configuration or a new uplink reference symbol configuration sent by a serving base station, and transmit power on an uplink measurement symbol of the UE; And determining, according to the SRS uplink reference symbol configuration or a new uplink reference symbol configuration acquired by the information acquiring unit, and the transmit power on the uplink measurement symbol of the UE, obtaining the uplink of the UE to the measurement base station.
  • a power consumption unit configured to acquire a transmit power of the base station
  • a second calculation unit configured to calculate an uplink path loss value according to the first calculating unit, and the measured base station acquired by the power acquiring unit Transmit power, calculate the received signal power of the UE receiving signals from the measurement base station.
  • the communication system provided by the embodiment of the present invention includes: a user equipment and a base station.
  • a communication system provided by an embodiment of the present invention includes: a serving base station and a measurement base station.
  • the embodiments of the present invention have the following advantages:
  • the UE may receive the measurement control information from the base station, where the measurement control information includes the frequency point information of the virtual intra-frequency cell. After receiving the measurement control information sent by the base station, the UE may directly start the non-working frequency band. The second receiver performs virtual co-frequency measurement on the virtual co-frequency cell. At this time, the UE performs the same-frequency measurement. Since the efficiency of the intra-frequency measurement is much higher than the efficiency of the inter-frequency measurement, the UE can reduce the performance of the measurement process. influences.
  • FIG. 1 is a schematic diagram of an embodiment of a data measurement method according to the present invention.
  • FIG. 2 is a schematic diagram of another embodiment of a data measurement method according to the present invention
  • 3 is a schematic diagram of another embodiment of a data measurement method according to the present invention
  • FIG. 4 is a schematic structural diagram of a receiver of a user equipment according to the present invention.
  • FIG. 5 is a schematic diagram of cell handover according to the present invention.
  • FIG. 6 is a schematic diagram of an embodiment of a data measurement method according to the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of a data measurement method according to the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of a data measurement method according to the present invention.
  • FIG. 9 is a schematic diagram of setting an uplink common symbol according to the present invention.
  • FIG. 10 is a schematic diagram of road damage measurement according to the present invention.
  • FIG. 11 is a schematic diagram of an embodiment of a user equipment according to the present invention.
  • FIG. 12 is a schematic diagram of an embodiment of a base station according to the present invention.
  • FIG. 13 is a schematic diagram of an embodiment of a serving base station according to the present invention.
  • FIG. 14 is a schematic diagram of an embodiment of a measurement base station according to the present invention.
  • FIG. 15 is a schematic diagram of an embodiment of a communication system according to the present invention.
  • Embodiments of the present invention provide a data measurement method, a communication system, and related devices, which can reduce the impact of a measurement process on UE performance.
  • an embodiment of the data measurement method of the present invention includes:
  • the UE receives measurement control information sent by the base station.
  • the UE may receive measurement control information from the base station.
  • the measurement control information includes frequency point information of a virtual same frequency cell, where the virtual same frequency cell is a cell on a frequency layer corresponding to a second receiver of the UE, and the second receiver is used only for measurement, and is not used for performing Data reception measurement.
  • the UE may also report the UE capability information to the base station according to the query of the base station, or the UE may also actively report the UE capability information to the base station.
  • the UE capability information includes modes supported by the UE, such as TDD and/or FDD, and configuration information of the transmitter and the receiver that the UE works, such as a power band or a working frequency point, and the specific content includes those skilled in the art. Common knowledge of common sense is not limited here.
  • the UE may not report the capability information. After the base station acquires the UE capability information, if the capability information of the UE indicates that the UE has at least two receivers, the measurement control information that includes the frequency point information of the virtual intra-frequency cell is triggered to be sent to the UE.
  • the UE receives data through the first receiver in the current cell, and simultaneously measures the signal quality of the current cell through the first receiver, if the signal quality of the currently located cell satisfies the first pre- If the condition is set, the UE may report the measurement report of the current cell to the base station, and notify the base station that the signal of the current cell has deteriorated, and the measurement of the same-frequency or inter-frequency neighboring cell needs to be started.
  • the signal quality that satisfies the first preset condition may be a preset condition for starting a neighboring cell measurement of the same frequency or different frequency, for example, the signal power is lower than a preset threshold, or the error rate is higher than Pre-set thresholds, the specific conditions can also be set according to the actual situation, which is not limited here.
  • the base station may send the measurement control information to the UE, or the base station may measure the signal quality of the cell where the UE is currently located, and when the signal quality meets the first preset condition, The measurement control information is sent to the UE.
  • the UE starts the second receiver to perform virtual intra-frequency measurement according to the measurement control information.
  • the UE may start, according to the frequency information of the virtual same-frequency cell in the measurement control information, the second receiver in the non-working state of the UE to perform virtual co-frequency implementation on the virtual same-frequency cell.
  • the UE may receive the measurement control information from the base station, where the measurement control information includes the frequency point information of the virtual intra-frequency cell.
  • the UE may directly initiate the second reception of the non-working frequency band.
  • the machine performs virtual co-frequency measurement on the virtual co-frequency cell. At this time, the UE performs the same-frequency measurement. Since the efficiency of the intra-frequency measurement is much higher than the efficiency of the inter-frequency measurement, the impact of the measurement process on the UE performance can be reduced.
  • the data measurement method in the embodiment of the present invention is described above from the perspective of the UE.
  • the data measurement method in the embodiment of the present invention is described from the perspective of the base station.
  • another embodiment of the data measurement method of the present invention includes :
  • the base station After the base station establishes a network connection with the UE, if it is analyzed that the UE has an additional second receiver in addition to the first receiver that currently performs data transmission, it may be determined in the neighboring area of the base station.
  • Virtual co-frequency cell specific:
  • Each base station has a communication interface. When establishing a communication network, each base station will notify each other of its working frequency band or frequency point information, so the base station can query and UE in its own neighboring area according to the working frequency band or frequency point information.
  • the non-data-receiving second receiver is in the same-frequency neighboring cell and uses these cells as virtual co-frequency cells.
  • the network side may query the UE for the capability information of the UE.
  • the UE may report its capability information to the base station, or the UE may also The UE capability report can be initiated to the network, so that the base station can receive the UE capability information reported by the UE.
  • the UE capability information includes modes supported by the UE, such as TDD and/or FDD, and configuration information of the transmitter and the receiver that the UE works, such as a power band or a working frequency point, and specifically includes content.
  • modes supported by the UE such as TDD and/or FDD
  • configuration information of the transmitter and the receiver that the UE works such as a power band or a working frequency point, and specifically includes content.
  • the UE may not report the capability information.
  • 202 Send measurement control information including frequency point information of the virtual intra-frequency cell to the UE;
  • the measurement control information that includes the virtual co-frequency cell may be sent to the measurement control information, where the UE is configured to start, according to the frequency information of the virtual co-frequency cell, the second non-operation state in the UE.
  • the receiver performs virtual co-frequency measurement on the virtual co-frequency cell.
  • the UE receives data through the first receiver in the currently located cell, and simultaneously measures the signal quality of the current cell by using the first receiver, if the signal quality of the currently located cell satisfies the first pre-
  • the UE may report the measurement report of the current cell to the base station, and notify the base station that the signal of the current cell has deteriorated, and the measurement of the adjacent cell of the same frequency or the different frequency needs to be started.
  • the signal quality satisfies the first preset condition, which may be a preset condition for starting the measurement of the same frequency or inter-frequency neighboring cell, for example: the signal power is lower than the preset threshold, or the error rate is higher than the pre-
  • the threshold value can be set according to the actual situation, which is not limited here.
  • the base station may send the measurement control information to the UE, or the base station may measure the signal quality of the cell where the UE is currently located, and when the signal quality meets the first preset condition, The UE sends measurement control information.
  • the base station may send measurement control information to the UE, where the measurement control information includes frequency point information of the virtual same-frequency cell.
  • the UE may directly start the second non-operating frequency band.
  • the receiver performs virtual co-frequency measurement on the virtual co-frequency cell.
  • the UE performs the same-frequency measurement. Since the efficiency of the intra-frequency measurement is much higher than the efficiency of the inter-frequency measurement, the impact of the measurement process on the UE performance can be reduced.
  • another embodiment of the data measurement method of the present invention includes: 301.
  • the UE reports the UE capability information to the base station.
  • the network side may query the UE for the capability information of the UE.
  • the UE may report its capability information to the base station, so that the base station can receive The UE capability information reported by the UE, or the UE may also actively report its own capability to the network.
  • the UE capability information includes modes supported by the UE, such as TDD and/or FDD, and configuration information of the transmitter and the receiver that the UE works, such as a power band or a working frequency point, and specifically includes content.
  • modes supported by the UE such as TDD and/or FDD
  • configuration information of the transmitter and the receiver that the UE works such as a power band or a working frequency point, and specifically includes content.
  • the schematic diagram of the UE may be specifically as shown in FIG. 4, wherein the UE has two receivers, Rx1 and Rx2.
  • Rxl is in the FDD DL band and Rx2 is in the FDD UL band. Because the frequency bands of FDD UL and DL are far apart, the transmission of the UL band does not interfere with the reception of the DL band. Interference multiplexing is achieved by means of time division multiplexing between transceivers in the FDD UL band.
  • the two receivers described above are located in the DL band of the FDD and the UL band of the FDD, respectively. It can be understood that, in addition to the above manner, in practical applications, if the UE has two receivers, and the two receivers When the interval is relatively large, the UE may also perform measurement of the virtual intra-frequency cell in this embodiment. For example, if the DL frequency band or the UL frequency band span of the FDD is large, the two receivers of the UE may also be the same as the DL located in the FDD. The frequency band, or the same UL frequency band located in the FDD, is only required to make the interval between the two receivers relatively large.
  • the UE after the base station establishes a network connection with the UE, if the UE is analyzed, the UE has an additional second receiver in addition to the first receiver that currently performs data transmission.
  • the virtual co-frequency cell can be determined in the neighboring cell of the base station, specifically:
  • Each base station has a communication interface. When establishing a communication network, each base station will notify each other of its working frequency band or frequency point information, so the base station can query and UE in its own neighboring area according to the working frequency band or frequency point information.
  • the non-data-receiving second receiver is in the same-frequency neighboring cell and uses these cells as virtual co-frequency cells.
  • the UE reports the same frequency measurement result to the base station.
  • the UE receives data through the first receiver in the current cell, and simultaneously measures the signal quality of the current cell by using the first receiver, and if the signal quality of the currently located cell satisfies the first preset condition,
  • the base station reports the measurement report of the current cell, and is used to notify the base station that the signal of the current cell has deteriorated, and needs to start measurement of the adjacent cell of the same frequency or different frequency.
  • the signal quality satisfies the first preset condition, which may be to start neighboring cell measurement with the same frequency or different frequency.
  • Pre-conditions for example, the signal power is lower than the preset threshold, or the bit error rate is higher than the preset threshold.
  • the specific conditions can also be set according to the actual situation, which is not limited herein.
  • the measurement initiation of the virtual cell adopts the same mechanism as the same-frequency or inter-frequency neighbor cell measurement initiation.
  • the measurement start of the receiver for virtual cell measurement is initiated by the same frequency measurement event of the receiver receiving the data, that is, the measurement event of the current serving cell.
  • the base station sends measurement control information to the UE.
  • the base station may send the measurement control information to the UE, where the measurement control information is used to instruct the UE to start the second receiver in the UE that is in the non-working state according to the frequency point information of the virtual same-frequency cell. Perform virtual co-frequency measurements on virtual co-frequency cells.
  • the measurement control information sent by the base station to the UE may include frequency point information of the virtual intra-frequency cell, and may further include period information of the virtual intra-frequency measurement, and/or measurement time of each measurement period.
  • period information of the virtual intra-frequency measurement, and/or the measurement time of each measurement period may specifically be as follows:
  • a measurement is started every 200 milliseconds, and the measurement time in each 200 milliseconds is determined by the performance of the UE, such as 2 milliseconds or 4 milliseconds or 6 milliseconds;
  • the measurement period of the virtual co-frequency measurement is determined according to the DRX configuration on the other receiver, and the measurement time of each measurement period is determined by the UE. Performance decisions, such as 2 milliseconds or 4 milliseconds or 6 milliseconds;
  • the measurement period of the virtual intra-frequency measurement is determined according to the time slot (Gap) configuration of the inter-frequency measurement on the other receiver, for example, every 40 milliseconds or 80 milliseconds, and the measurement is performed for 6 milliseconds.
  • a new DRX cycle is set on the other receiver for measurement, and the measurement period of the virtual co-frequency measurement is determined according to the DRX cycle.
  • the measurement time of each measurement cycle is determined by the performance of the UE, such as 2 milliseconds or 4 milliseconds. Or 6 milliseconds, etc.; the DRX configuration at this time includes a DRX cycle, a measurement time of each measurement cycle, but does not include an activation timer, a retransmission timer, and the like for data transmission.
  • the period information of the virtual intra-frequency measurement, and/or the measurement time of each measurement period for example, it has been defined in a publicly available protocol or specification. You can also directly notify the option index, such as measurement configuration 1, or measurement configuration N.
  • the identification may be included in the measurement control message to indicate an indication of the measurement period of the virtual intra-frequency measurement and/or the measurement time within each measurement period, such as an option index. If only one is selected, the period information of the virtual intra-frequency measurement, and/or the measurement time of each measurement period, is not required to be indicated in the signaling.
  • the following describes the period information of the virtual co-frequency measurement and/or the configuration time of the measurement time of each measurement period with only a few examples. In practical applications, other methods may be used to determine the period information of the virtual co-frequency measurement, and / or the measurement time of each measurement cycle, which is not limited here.
  • the UE may measure the virtual intra-frequency cell according to the frequency information of the virtual same-frequency cell, the period information of the virtual same-frequency measurement, and/or the measurement time of each measurement period.
  • the UE needs to query the corresponding measurement period in the preset correspondence according to the identifier. And / or measurement time.
  • the UE starts the second receiver according to the frequency point information, so that the second receiver performs virtual intra-frequency measurement on the virtual intra-frequency cell according to the queried measurement period and/or measurement time.
  • the switching path is avoided in order to avoid the interference of the downlink receiving channel.
  • the handover from the base station 1 to the measurement base station is "switch 2", and the handover from the measurement base station to the base station 2 is "switch 4".
  • the UE does not have additional TDD reception capability, and the handover path is a handover from the base station 1 to the measurement base station to "switch 1", from the measurement base station to the base station. Switch 2 to "Switch 3".
  • the UE can enable the same frequency measurement of the measurement base station by the receiver Rx2 in the FDD UL band.
  • the receiver operating in the FDD DL is the receiver Rxl, and the measurement of the adjacent cell of the same frequency is called the same frequency measurement.
  • the receiver Rx2 in the FDD UL band is used only for the same frequency measurement, but not for receiving data.
  • the measurement of the cell with the same frequency as the receiver Rx2 is called virtual intra-frequency cell measurement.
  • the UE may turn on the Rx1 of the receiver FDD DL to perform the same frequency measurement on the FDD cell under the base station eNB2.
  • the receiver operating in FDD UL is the receiver Rx2, and the measurement of the adjacent cell with the same frequency is called the same frequency measurement.
  • the receiver Rxl in the FDD DL frequency band is only used for the same frequency measurement, and is not used for receiving data.
  • the measurement of the cell with the same frequency as the receiver Rx1 is called virtual intra-frequency cell measurement.
  • the UE performs measurement reporting on the base station.
  • the UE starts the second receiver in the non-working frequency band, that is, the virtual co-frequency measurement receiver, performs virtual intra-frequency measurement, and displays the signal of the virtual co-frequency cell when the virtual same-frequency measurement result is displayed.
  • the measurement report of the virtual intra-frequency measurement is reported to the base station.
  • the signal quality satisfies the second preset condition, which may be a preset condition corresponding to the measurement event of the handover, for example, the signal power is higher than or equal to the preset threshold, or the error rate is lower than or equal to the pre-condition.
  • the threshold The specific conditions can also be set according to the actual situation, which is not limited herein.
  • the base station After the UE reports the measurement report of the virtual intra-frequency measurement to the base station, the base station can perform the handover decision according to the measurement report of the virtual co-frequency measurement.
  • the specific determination manner is common knowledge of those skilled in the art, which is not limited herein.
  • the UE may receive measurement control information from the base station, where the measurement control information includes frequency point information of the virtual same-frequency cell. After receiving the measurement control information sent by the base station, the UE may directly start the non-working frequency band receiver. The virtual intra-frequency measurement is performed on the virtual co-frequency cell. At this time, the UE performs the same-frequency measurement. Since the efficiency of the intra-frequency measurement is much higher than the efficiency of the inter-frequency measurement, the impact of the measurement process on the UE performance can be reduced.
  • this embodiment can also be applied to any scenario in which the UE has an additional receiver that can perform measurements.
  • the UE can perform the same-frequency measurement. Since the efficiency of the same-frequency measurement is much higher than the efficiency of the inter-frequency measurement, the impact of the measurement process on the UE performance can be reduced. In practical applications, the UE performs the same.
  • other network elements can be used instead of the UE for measurement, thereby reducing the impact of the measurement process on the performance of the UE.
  • FIG. 6 another implementation of the data measurement method of the present invention. Examples include:
  • the measurement base station receives the SRS uplink reference symbol configuration or the new uplink reference symbol configuration sent by the serving base station, and the transmit power on the uplink measurement symbol of the UE.
  • the SRS Sounding Reference Signal
  • the SRS is a type of uplink reference symbol. .
  • the measurement base station may receive the SRS uplink reference symbol configuration or the new uplink reference symbol configuration from the serving base station, and may also receive the transmit power on the uplink reference symbol of the UE, and the parameters are all calculated or acquired by the serving base station and sent to the measurement. Base station.
  • the measurement base station may also obtain the measurement configuration information that is measured by the serving base station, and the measurement configuration information may be pre-configured in the measurement base station, which is not limited herein.
  • the measurement base station is a base station adjacent to the serving base station, and the measurement base station may be a low power node base station, a macro base station, or another type of base station, which is not limited herein.
  • the measurement base station performs measurement on the UE according to the SRS uplink reference symbol configuration or the new uplink reference symbol configuration, and the transmit power on the uplink measurement symbol of the UE, to obtain an uplink path loss value of the UE to the measurement base station.
  • the measurement base station may perform measurement on the UE according to the parameters, and obtain the UE to the measurement base station.
  • the uplink loss value specifically, can be as follows:
  • the measurement base station measures the SRS uplink reference symbol according to the SRS uplink reference symbol configuration, or according to the new The uplink reference symbol configuration measures the new uplink reference symbol to obtain the received power of the UE on the reference symbol. After that, the measurement base station performs layer three filtering on the received power on the reference symbol to obtain layer three received power. Then, the base station is measured. The difference between the transmit power on the uplink measurement symbol of the UE received from the serving base station and the three received power of the layer is used as the uplink path loss value of the UE to the measurement base station.
  • the uplink path loss value of the UE to the measurement base station may also be calculated in other manners, and the specific process is not limited herein.
  • the measurement base station acquires according to the uplink path loss value of the UE to the measurement base station and the transmit power of the measurement base station.
  • the UE receives the received signal power (RSRP Reference Signal Received Power) from the base station.
  • RSRP Reference Signal Received Power received signal power
  • the measurement base station After the measurement base station calculates the uplink path loss value of the UE to the measurement base station, the measurement base station can calculate the RSRP of the UE according to the transmission power of the UE and the uplink path loss value, thereby completing the uplink measurement of the UE.
  • the difference between the transmit power of the uplink and the uplink loss is used as the RSRP of the UE.
  • the measurement base station may receive the SRS uplink reference symbol configuration or the new uplink reference symbol configuration from the base station, and The UE measures the transmit power on the uplink, and uses these parameters to measure the uplink signal of the UE, thereby acquiring the uplink path loss of the UE to the measurement base station.
  • the measurement base station can obtain the received signal power of the UE receiving the signal from the measurement base station according to the path loss and the measured transmission power of the base station, so that the measurement by the UE itself is not required, so that the influence of the measurement process on the UE performance can be reduced.
  • the data measurement method in the embodiment of the present invention is described from the perspective of the measurement base station.
  • the data measurement method in the embodiment of the present invention is described from the perspective of the serving base station. Referring to FIG. 7, another implementation of the data measurement method of the present invention is described. Examples include:
  • the serving base station may obtain the transmit power on the uplink measurement symbol of the UE by: determining the transmit power on the uplink measurement symbol of the UE according to PEMAX H and Pp a ass ;
  • the ⁇ ⁇ ⁇ - H is the value of the maximum transmit power parameter IE P-Max broadcasted in the system message, the P P WCTClass is 23 dBm
  • the serving base station may obtain the transmit power of the uplink measurement symbol of the UE in other manners, which is not limited herein.
  • the serving base station may send the preset SRS uplink reference symbol configuration or the new uplink reference symbol configuration to the measurement base station, and the obtained transmit power of the uplink measurement symbol of the UE, thereby
  • the measurement base station is configured to calculate the RSRP of the UE according to the SRS uplink reference symbol configuration or the new uplink reference symbol configuration, the transmit power on the uplink measurement symbol of the UE, and the transmit power of the measurement base station, to complete the measurement process instead of the UE.
  • the serving base station may further send measurement configuration information that is measured by the UE to the measurement base station.
  • the serving base station may send an SRS uplink reference symbol configuration or a new uplink reference symbol configuration to the measurement base station, or measurement configuration information for measuring the UE, and transmit power on the uplink measurement symbol of the UE, so that the measurement base station can
  • FIG. 8 another embodiment of the data measurement method of the present invention includes:
  • the serving base station acquires related parameters.
  • the related parameters may be obtained, and the specific parameters include: configuration of the SRS uplink reference symbol, or configuration of a new uplink reference symbol, or measurement configuration of the base station to perform measurement reporting to the serving base station, and The UE is measuring the transmit power on the symbol.
  • the transmitting power of the UE on the measurement symbol is required to be acquired by the serving base station.
  • the serving base station may select one of them, and the measurement base station performs measurement to the serving base station.
  • the reported configuration can be obtained or not.
  • the configuration of the SRS uplink reference symbol refers to the bandwidth configuration of the UE pilot symbol of the SRS, the subframe configuration of the UE pilot symbol, and the reporting configuration of the SRS.
  • the configuration of the new uplink reference symbol is used to indicate whether to use the uplink common reference symbol.
  • the design of the new uplink reference symbol can refer to the design of the downlink reference symbol, for example, as shown in FIG. 9.
  • the position of the newly set common reference symbol on the uplink subframe can refer to the location of the downlink common reference symbol.
  • the reference symbols occupy a number of resource elements (RE, Resource Element) within the entire PRB and can be configured with specific symbols similar to SRS.
  • the configuration in which the measurement base station performs measurement reporting to the serving base station refers to the reported content, for example, which UE measures the measurement base station to satisfy the event.
  • the base station needs to perform power control calculation to obtain.
  • Physical uplink shared channel PUSCH, Physical Uplink Sharing Channel
  • the power control formula is: f (i)
  • P CMAX is the maximum transmit power configured by the UE, and is a value that the UE selects within a certain range.
  • M Pusc H (i) is the resource bandwidth allocated by the base station to the UE on the subframe i, and the resource bandwidth can be represented by the number of resource blocks. Since it is a resource allocated by the base station, the base station is aware of this parameter. This is the power reference value of the puscH set by the base station for the UE , so the base station is also aware of this value.
  • the PL is the downlink path loss measured by the UE. Unless the UE performs measurement reporting, the base station is unknown. It is the compensation coefficient, and the value range is (0 0.4 0.5 0.6 0.7 0.8 0.9 1 ). The compensation coefficient can be used as the uplink path loss compensation after multiplying the downlink path loss measured by the UE. The value is set by the base station in the system message. It is then notified to the UE, so the base station is also aware of this value.
  • ⁇ TP (i) 1010 10 (2MPR (i) *Ks-l ), where the maximum power reduction (MPR Maximum Power Reduction) is the current modulation coding mode, Ks is the cell level parameter, and the MPR and Ks are passed by the base station through the system.
  • MPR Maximum Power Reduction MPR Maximum Power Reduction
  • Ks the cell level parameter
  • the MPR and Ks are passed by the base station through the system. The message is sent to the UE, so the base station can also obtain these parameters and calculate ⁇ ⁇ (i).
  • f (i) is a closed-loop adjustment function. Since some of the above parameters are open-loop power control parameters, in order to increase the accuracy of power control, closed-loop adjustment can also be performed through a closed-loop adjustment function.
  • the closed-loop adjustment function f ( i) is the UE.
  • the level parameter is sent by the base station to the UE through a system message, so the base station can also know the parameter.
  • the UE reports a PHR Power Headroom Report to inform the base station of the remaining transmit power.
  • the reported PHR value can be expressed by the following formula:
  • PH (i) PcMAX - ⁇ 101og 10 (M PUSCH (i)) + P O PUSCH ( j) + «( j) - PL+ ATP ) + f (i) ⁇ (Formula 1) From the above formula, you can see The PHR reports the value of the remaining power of the UE on the PUSCH channel.
  • the power control formula of the base station for the UE's transmit power on the measured symbols is:
  • Equation 3 When the transmit power of the data shared channel and the transmit power of the SRS symbol are both less than ⁇ CMAX, then SRS and The difference in transmit power on the PUSCH channel is:
  • ⁇ SRS—PUSCH PSRS oFFSET+lOloglO (M SRS ) - ⁇ lOloglO ( MpuscH (i)) + ⁇ IT (i) ⁇ (Formula 4)
  • PSKS-OTFSET is a UE- specific parameter and can be used with 4 bits. Indicates that the UE is notified by the base station, so this parameter is known to the base station.
  • the M SRS is a resource bandwidth allocated by the base station to the SRS on the subframe i, and the resource bandwidth can be represented by the number of resource blocks. Since it is a resource allocated by the base station, the base station is aware of this parameter.
  • the base station can be calculated by (Formula 4). Therefore, if the base station knows the value of the P cMAx of the UE, the base station can know that the current transmit power of the PUSCH of the UE is P CMAX - PHR through the PHR reported by the UE, and then the base station can obtain the UE in the measurement by using the transmit power of the PUSCH. The transmit power on the symbol.
  • the values of P CMAX can be obtained in the following two ways: 1. According to MIN ⁇ P EMAX _H, Pp. was a ass ⁇ PcMAX determined value of:
  • PEMAX-H The value of PEMAX-H is broadcast in the system message and is known to the base station.
  • P P The value of wasClass is 23dBm, which is specified by the protocol. You can use MIN ⁇ P EMAX- H, Pp directly.
  • PpowerCla SS ⁇ -N (dBm) is taken as the value of P CMAX .
  • the value of N can be any value between 0-8.
  • the relationship between the maximum transmit power of P CMAX and ⁇ ⁇ — H is:
  • the range of ⁇ TC is 0 or 1.5 dB. P P .
  • the WCTClass is 23dBm, which is specified by the protocol.
  • QAM Quadrature Amplitude Modulation
  • the range of MPR is 1 or 2
  • the range of A-MPR is 1 or 2, 3. In most cases, the value is 1;
  • the value of P-Max is (-30..33) dBm.
  • Pp. a AS J where ⁇ ⁇ ⁇ — H is the value of the maximum transmit power parameter IE P-Max broadcast in the system message.
  • the WCTClass is 23dBm, which is specified by the protocol.
  • T ( ⁇ MAX ) is the error tolerance of the parameters P CMAX — L and P CMAX — HP E MAX — H.
  • the range is ⁇ 2 or ⁇ 4. From the above (Formula 5), the value of P CMAX is between MIN ⁇ ⁇ ⁇ — H Pp was a ass ⁇ and MIN ⁇ PEMAX_H, P P WCTClass ⁇ -8dBm. . According to the average value, the value of P CMAX can be taken as MIN.
  • the value is between MIN ⁇ ⁇ ⁇ — H Pp Class ⁇ and MIN ⁇ ⁇ ⁇ — H Ppowerci ass ⁇ -4dBm.
  • the value of PCMAX can be taken as MIN ⁇ P EMAX — H P P WCTClass ⁇ -2dBm. 2.
  • the value of P CMAX is determined by reporting the measurement result by the UE and reporting the PHR by the UE:
  • the base station may send measurement control information to the UE, where the measurement control configuration and the measurement report reporting configuration of the RSRP are included;
  • the UE may perform measurement reporting according to the event set by the measurement;
  • the UE receives data through the receiver in the current cell, and at the same time, measures the signal quality of the current cell by using the receiver. If the signal quality of the current cell meets the first preset condition, the UE reports the current cell to the base station. The measurement report is used to inform the base station that the signal of the current cell has deteriorated.
  • the signal quality satisfies the first preset condition, which may be a preset condition for starting the same-frequency or inter-frequency neighboring area measurement, for example, the signal power is lower than the preset threshold, or the error rate is higher than the preset.
  • the threshold value, the specific conditions can also be set according to the actual situation, which is not limited here.
  • the base station can calculate the downlink loss PL (Path Loss) of the current UE according to the measurement result, and the specific manner is:
  • the Tx_p 0W er is the downlink transmit power of the base station, and the base station broadcasts the downlink transmit power, and both the base station and the UE can be known.
  • the RSRP is a measurement result reported by the UE, and based on this, the base station can calculate the current path loss of the UE.
  • the UE reports the value of the PHR according to the event trigger or the periodic trigger. Or, when the base station calculates the downlink PL value, the base station triggers the UE to report the PHR value.
  • the base station calculates the value of P CMAX according to (formula 2) according to the previously calculated PL value and the value of the PHR reported by the UE, and parameters known by other base stations. If the PHR is set to report based on P CMAX, when the P CMAX of the UE changes, the UE reports the PHR. Then the base station can recalculate the value of the UE's ⁇ CMAX.
  • the base station can obtain the maximum transmit power P CMAX of the UE, and then the base station can obtain the transmit power on the PUSCH of the current UE according to the PHR reported by the UE.
  • the base station then calculates the transmit power of the SRS according to (formula 4), the transmit power difference between the SRS and the PUSCH.
  • the transmit power on the uplink common reference symbol may be required to be the same as the PUSCH, so that the base station can directly obtain the transmit power of the uplink common reference symbol according to the PHR report.
  • the serving base station notifies the measurement base station of related parameters.
  • the base station may send the parameters to the measurement base station, so that the measurement base station performs uplink measurement on the UE.
  • the transmit power of the UE on the measurement symbol is sent by the serving base station to the measurement base station.
  • the serving base station may select to send one of the base stations to measure the base station to the serving base station.
  • the configuration for measuring the report may or may not be sent.
  • the measurement base station performs uplink measurement on the UE.
  • the serving base station When the UE is in the connected state, in order to support the uplink scheduling, the serving base station performs uplink SRS measurement. Since the scheduling information of the SRS is statically configured by the serving base station, the measurement base station adjacent to the serving base station can also obtain the SRS configuration, and can also perform signal power measurement on the uplink SRS symbol of the UE of the serving base station.
  • the serving base station is a macro base station
  • the SRS measurement performed by the base station is a normal SRS measurement.
  • the measurement of the SRS of the serving base station by the base station is to detect the power of the SRS symbol, and then the power of the detected SRS is L3 filtered to obtain an uplink RSRP measurement result, which is called uplink RSRP.
  • the measurement base station may subtract the value of the uplink RSRP of the UE from the transmit power of the UE on the measurement symbol according to the transmit power of the UE on the measurement symbol and the value of the uplink RSRP of the UE measured by the base station in step 803.
  • the UE measures the value of the uplink path loss of the base station.
  • the measuring base station uses the measured transmit power of the base station minus the measured PL value to obtain the RSRP measurement result of the UE, that is, the measurement of the UE is completed.
  • the measurement base station reports the measurement result.
  • the measurement base station When the measured RSRP measurement result measured by the base station in step 803 meets the measurement reporting condition sent by the serving base station, the measurement base station reports the measurement result of the RSRP measured by the measurement base station to the serving base station.
  • the serving base station may receive the measurement report reported by the measurement base station, and perform the handover decision according to the measurement report of the current cell and the measurement report reported by the measurement base station. The specific process is common knowledge of those skilled in the art, and is not limited herein.
  • the UE may also perform the cell search in advance before the handover.
  • the base station may send a cell detection command to the UE, and the UE may perform cell detection first.
  • the measurement base station may receive the SRS uplink reference symbol configuration or the new uplink reference symbol configuration from the base station, and the transmit power on the uplink measurement symbol of the UE, and use the parameters to measure the uplink signal of the UE, so The UE itself performs measurements, thus reducing the impact of the measurement process on UE performance.
  • an embodiment of the user equipment of the present invention includes:
  • the information receiving unit 1102 is configured to receive measurement control information sent by the base station, where the measurement control information includes frequency point information of the virtual same frequency cell, where the virtual same frequency cell is a cell on a frequency layer corresponding to the second receiver of the user equipment;
  • the two receivers 1105 are configured to perform virtual intra-frequency measurement according to the measurement control information received by the information receiving unit 1102.
  • a first receiver 1103, configured to detect a signal quality of a currently located cell
  • the second reporting unit 1104 is configured to report the measurement report of the current cell to the base station when the first receiver 1103 measures that the signal quality of the currently located cell satisfies the first preset condition.
  • the first reporting unit 1101 is configured to report the UE capability information to the base station, where the UE capability information includes a mode supported by the UE, a working frequency band/work frequency point configuration information of the UE and the receiver.
  • the third reporting unit 1106 is configured to report, when the result of the virtual intra-frequency measurement obtained by the second receiver 1105, that the signal quality of the virtual intra-frequency cell meets the second preset condition, report the measurement report of the virtual intra-frequency measurement to the base station.
  • the operations performed by the first reporting unit 1101, the second reporting unit 1104, and the third reporting unit 1106 in this embodiment are all reporting information to the base station.
  • the reporting units can be integrated into one physical or software module. , can also be implemented independently by different physical or software modules, which is not limited herein.
  • the user equipment in this embodiment may receive the frequency information of the virtual intra-frequency cell from the base station, and may start the second receiver to perform the virtual co-frequency measurement.
  • the specific process is consistent with the content described in FIG. 1 and FIG. 3 above.
  • the network side may query the UE for the capability information of the UE, and the UE receives the network.
  • the first reporting unit 1101 can report its own capability information to the base station.
  • the UE capability information includes modes supported by the UE, such as TDD and/or FDD, and configuration information of the transmitter and the receiver that the UE works, and the specific content includes common knowledge of those skilled in the art. , here is not limited.
  • the UE receives data through the first receiver 1103 in the current cell, and simultaneously measures the signal quality of the current cell through the first receiver 1103. If the signal quality of the currently located cell satisfies the first preset condition, Then, the second reporting unit 1104 reports the measurement report of the current cell to the base station, and is used to notify the base station that the signal of the current cell has deteriorated.
  • the signal quality satisfies the first preset condition, which may be a preset condition for starting the neighboring area measurement, for example, the signal power is lower than the preset threshold, or the error rate is higher than the preset threshold
  • the conditions can also be set according to the actual situation, which is not limited here.
  • the information receiving unit 1102 can receive measurement control information from the base station, where the measurement control information is used to instruct the UE to perform measurement of another cell.
  • the information receiving unit 1102 may start the second receiver 1105 in the non-working state of the UE to perform virtual co-frequency on the virtual co-frequency cell according to the received frequency information of the virtual intra-frequency cell. measuring.
  • the second receiver 1105 that directly activates the non-working frequency band performs virtual intra-frequency measurement on the virtual same-frequency cell, and the UE performs the same Frequency measurement, because the efficiency of the same frequency measurement is much higher than the efficiency of the inter-frequency measurement, it can reduce the impact of the measurement process on UE performance.
  • an embodiment of the base station of the present invention includes: a cell determining unit 1202, configured to determine a virtual intra-frequency cell in a neighboring cell, where the virtual intra-frequency cell is a second receiving of the UE.
  • the cell on the frequency layer corresponding to the machine, the second receiver is only used for measurement, and is not used for data reception.
  • the information generating unit 1203 is configured to generate measurement control information, where the measurement control information includes the virtual same as determined by the cell determining unit 1202. Frequency point information of the frequency cell;
  • the information sending unit 1204 is configured to send the measurement control information generated by the information generating unit 1203 to the UE, so that the UE starts the second receiver to perform virtual intra-frequency measurement according to the measurement control information.
  • the base station in this embodiment may further include:
  • the measurement report receiving unit 1205 is configured to receive a measurement report of the virtual intra-frequency measurement reported by the UE, and the handover decision unit 1206 is configured to perform a handover decision according to the measurement report of the virtual intra-frequency measurement.
  • the acquiring unit 1201 is configured to acquire UE capability information of the UE, where the UE capability information includes a mode supported by the UE, and a working frequency band/work frequency point configuration information of the transmitter and the receiver of the UE;
  • the control unit 1207 is configured to: when the UE capability information acquired by the acquiring unit 1201 indicates that the UE has at least two receivers, the triggering cell determining unit 1202 performs a corresponding operation.
  • the base station in this embodiment may send the frequency point information of the virtual intra-frequency cell to the user equipment, so that the user equipment starts the second receiver to perform the virtual co-frequency measurement, and the specific process is consistent with the content described in FIG. 2 and FIG. 3 above.
  • the following describes the interaction relationship between the units of the base station in this embodiment:
  • the network side may query the UE for the capability information of the UE.
  • the UE may report its capability information to the base station, so that the acquiring unit 1201 The UE capability information reported by the UE may be received.
  • the UE capability information includes modes supported by the UE, such as TDD and/or FDD, and configuration information of the transmitter and the receiver that the UE works, and the specific content includes common knowledge of those skilled in the art. , here is not limited.
  • the control unit 1207 may trigger the cell determining unit 1202 to A virtual co-frequency cell is determined in a neighboring cell of the base station, specifically:
  • Each base station has a communication interface. When establishing a communication network, each base station will notify each other of its working frequency band or frequency point information, so the base station can query and UE in its own neighboring area according to the working frequency band or frequency point information.
  • the non-data-receiving second receiver is in the same-frequency neighboring cell and uses these cells as virtual co-frequency cells.
  • the UE receives data through the first receiver in the current cell, and simultaneously measures the signal quality of the current cell by using the first receiver, and if the signal quality of the currently located cell satisfies the first preset condition, The base station reports a measurement report of the current cell, and is used to notify the base station that the signal of the current cell has deteriorated.
  • the signal quality satisfies the first preset condition, which may be a preset condition for starting the neighboring area measurement, for example, the signal power is lower than the preset threshold, or the error rate is higher than the preset threshold
  • the conditions can also be set according to the actual situation, which is not limited here.
  • the information generating unit 1203 may generate the virtual bearer.
  • the measurement control information of the frequency point information of the same frequency cell the information sending unit 1204 may send the measurement control information that includes the virtual same frequency cell to the UE, where the measurement control information is used to instruct the UE to start according to the frequency information of the virtual same frequency cell.
  • the second receiver in the UE that is in the non-working state performs virtual intra-frequency measurement on the virtual intra-frequency cell.
  • the information sending unit 1204 may send measurement control information to the UE, where the measurement control information includes frequency point information of the virtual same-frequency cell.
  • the UE may directly start the non-working frequency band.
  • the second receiver performs virtual co-frequency measurement on the virtual co-frequency cell.
  • the UE performs the same-frequency measurement. Since the efficiency of the intra-frequency measurement is much higher than the efficiency of the inter-frequency measurement, the UE can reduce the measurement process performance. Impact.
  • an embodiment of the serving base station of the present invention includes:
  • the power calculation unit 1302 is configured to acquire transmit power on an uplink measurement symbol of the UE.
  • the configuration information obtaining unit 1303 is configured to acquire an SRS uplink reference symbol configuration or a new uplink reference symbol configuration.
  • the configuration information sending unit 1304 is configured to send, to the measurement base station, the SRS uplink reference symbol configuration or the new uplink reference symbol configuration acquired by the configuration information acquiring unit 1303, and the transmit power on the uplink measurement symbol of the UE acquired by the power calculation unit 1302, so that The measurement base station measures the received signal power of the UE receiving the signal from the measurement base station according to the SRS uplink reference symbol configuration or the new uplink reference symbol configuration, and the transmit power on the uplink measurement symbol of the UE and the transmit power of the measurement base station.
  • the second report receiving unit 1305 is configured to receive the measurement report reported by the measurement base station according to the preset measurement configuration information.
  • the determining unit 1306 is configured to perform a handover decision according to the measurement report reported by the measurement base station.
  • the first report receiving unit 1301 is configured to receive a measurement report of a current cell sent by the user equipment UE, and trigger the power calculation unit 1302 and the configuration information acquiring unit 1303 to perform a corresponding operation.
  • the operations performed by the first report receiving unit 1301 and the second report receiving unit 1305 in this embodiment are all receiving measurement reports.
  • the report receiving units can be integrated into one physical or software module, and also It can be implemented independently by different physical or software modules, which is not limited herein.
  • the serving base station in this embodiment may send the configuration information to the measurement base station, so that the measurement base station can perform cell measurement instead of the user equipment.
  • the specific process is consistent with the content described in FIG. 7 and FIG. 8 above, and is convenient for understanding.
  • the following describes the interaction relationship between the units of the serving base station in this embodiment:
  • the UE receives data through the receiver in the current cell, and simultaneously measures the signal quality of the current cell through the receiver. If the signal quality of the currently located cell satisfies the first preset condition, the first report receiving unit The 1301 may receive a measurement report of the current cell from the UE, indicating that the signal of the current cell has deteriorated.
  • the signal quality satisfies the first preset condition, which may be a preset condition for starting the neighboring area measurement, for example, the signal power is lower than the preset threshold, or the error rate is higher than the preset threshold
  • the conditions can also be set according to the actual situation, which is not limited here.
  • the power calculation unit 1302 can calculate the transmit power on the uplink measurement symbol of the UE, and the configuration information acquiring unit 1303 can obtain the SRS uplink reference symbol configuration or the new uplink reference symbol configuration.
  • the calculation process is similar to the process described in the foregoing embodiment shown in FIG. 8, and details are not described herein again.
  • the configuration information sending unit 1304 may send the preset SRS uplink reference symbol configuration or the new uplink reference symbol configuration to the measurement base station. And calculating the transmit power on the uplink measurement symbol of the UE, so that the measurement base station calculates the RSRP of the UE to complete the measurement process instead of the UE.
  • the configuration information sending unit 1304 may send the SRS uplink reference symbol configuration or the new uplink reference symbol configuration to the measurement base station, and the transmit power on the uplink measurement symbol of the UE, so that the measurement base station can use the parameters to uplink to the UE.
  • the signal is measured, so the measurement by the UE itself is not required, so the influence of the measurement process on the performance of the UE can be reduced.
  • an embodiment of the measurement base station of the present invention includes:
  • the information acquiring unit 1401 is configured to receive an SRS uplink reference symbol configuration or a new uplink reference symbol configuration sent by the serving base station, and transmit power on the uplink measurement symbol of the UE;
  • the first calculating unit 1402 is configured to measure, according to the SRS uplink reference symbol configuration or the new uplink reference symbol configuration acquired by the information acquiring unit 1401, and the transmit power on the uplink measurement symbol of the UE, to obtain an uplink of the UE to the measurement base station. Loss value
  • a power acquiring unit 1403, configured to acquire a transmit power of the base station of the measurement
  • the second calculating unit 1404 is configured to calculate, according to the uplink path loss value calculated by the first calculating unit 1402 and the transmit power of the measured base station acquired by the power acquiring unit 1403, the received signal power of the UE receiving the signal from the measuring base station.
  • the first calculating unit 1402 in this embodiment includes:
  • the power measurement module 14021 is configured to measure the SRS uplink reference symbol according to the SRS uplink reference symbol configuration acquired by the information acquiring unit 1401, or measure the new uplink reference symbol according to the new uplink reference symbol configuration, to obtain the UE on the reference symbol. Receiving power
  • the filtering module 14022 is configured to perform layer three filtering on the received power on the reference symbol measured by the power measuring module 14021 to obtain a layer three receiving power.
  • the calculating module 14023 is configured to use, as the uplink path loss value of the UE to the measurement base station, the difference between the transmit power on the uplink measurement symbol of the UE acquired by the information acquiring unit 1401 and the layer three received power obtained by the filtering module 14022.
  • the measurement reporting unit 1405 is configured to report, when the received signal power of the UE receiving the signal received by the measurement base station from the measurement base station, that the received signal power of the UE is received by the second calculation unit 1404, to the serving base station, according to the preset measurement configuration information, that the UE receives the signal from the measurement base station. A measurement report of the received signal power.
  • the measurement configuration information in this embodiment may be received from the serving base station, or may be locally pre-configured by the measurement base station, which is not limited herein.
  • the operations performed by the first calculating unit 1402 and the second calculating unit 1404 in this embodiment are all performed calculations.
  • the computing units may be integrated into one physical or software module, or may be independently different. Physical or software module implementation, which is not limited herein.
  • the measurement base station in this embodiment can obtain the configuration information from the serving base station, so that the cell measurement can be performed instead of the user equipment.
  • the specific process is consistent with the foregoing descriptions of FIG. 6 and FIG. 8. For ease of understanding, the following is in this embodiment.
  • the interaction relationship between each unit of the base station is measured:
  • the information acquiring unit 1401 may receive the SRS uplink reference symbol configuration or the new uplink reference symbol configuration from the base station, and may also receive the transmit power on the uplink measurement symbol of the UE, and the parameters are all calculated or acquired by the base station and then sent to the measurement. Base station.
  • the information acquiring unit 14021 may measure the SRS uplink reference symbol according to the SRS uplink reference symbol configuration, or configure the new according to the new uplink reference symbol configuration.
  • the uplink reference symbol is measured to obtain the received power of the UE on the reference symbol.
  • the filtering module 14022 performs layer 3 filtering on the received power on the reference symbol calculated by the power measurement module 14021 to obtain the layer three received power, and then the calculating module 14023 acquires the UE acquired by the information acquiring unit 1401. The difference between the transmit power on the uplink measurement symbol and the layer three received power obtained by the filter module 14022 is used as the uplink path loss value of the UE to the measurement base station.
  • the second calculating unit 1404 After calculating the uplink path loss value of the UE to the measurement base station, the second calculating unit 1404 obtains the received signal power of the UE receiving the signal from the measurement base station according to the uplink path loss value and the measured base station transmit power, thereby completing the uplink measurement to the UE.
  • the information acquiring unit 1401 may receive the SRS uplink reference symbol configuration or the new uplink reference symbol configuration from the base station, and the transmit power on the uplink measurement symbol of the UE, and the second calculating unit 1404 may use the parameters to the UE.
  • the uplink signal is measured, so the measurement by the UE itself is not required, so the influence of the measurement process on the UE performance can be reduced.
  • an embodiment of the communication system of the present invention includes:
  • the specific functions, structures, and processing procedures of the user equipment 1501 in this embodiment are similar to those of the user equipment shown in FIG. 11 , and details are not described herein again.
  • the specific functions, structures, and processing procedures of the base station 1502 in this embodiment are similar to those of the foregoing base station shown in FIG. 12, and details are not described herein again.
  • another embodiment of the communication system of the present invention includes:
  • the specific functions, structures, and processing procedures of the serving base station 1601 in this embodiment are similar to those of the service base station shown in FIG. 13 , and details are not described herein again.
  • the specific functions, structures, and processing procedures of the measurement base station 1602 in this embodiment are similar to those of the measurement base station shown in FIG. 14 , and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种数据测量方法、 通信系统以及设备
本申请要求于 2010年 12月 8日提交中国专利局、 申请号为 CN 201010579179.2、 发明名称为 "一种数据测量方法及通信系统以及相关设备" 的中国专利申请的优先权, 其全部内容通过弓 I用结合在本申请中。 技术领域 本发明涉及通信领域, 尤其涉及一种数据测量方法、 及通信系统以及设备。 背景技术 在频分双工(FDD, Frequency Division Duplexing)系统中, 下行(DL, Down link) 频段和上行 (UL, Up link) 频段通常使用相同的带宽, 但是目前上下行频段的业务量 并不均衡, DL频段的业务量通常要比 UL频段的业务量大,这样就会导致 UL频段的部 分 UL资源相对空闲。 另一方面, 在 UL业务量和 DL业务量相匹配的情况下, 由于 UL 频谱效率比 DL频谱效率更高, 使得 UL子帧的使用率比 DL子帧的使用率低, UL资源 会出现冗余。
为了有效的利用 UL冗余的资源, 频分双工系统的部分 UL接入链路资源可以被用 于时分双工(TDD, Time Division Duplexing)系统的 DL接入链路资源, 从而提高 FDD UL频段利用率。
当用户设备(UE, User Equipment)从基站向低功率节点 (LPN, Low Power Node) 切换时, 如果没有采用动态频率共享 (DSS, Dynamic Spectrum Sharing) 技术的话, 则 在 LPN基站只能部署和基站为同频的小区。在基站和 LPN的 FDD小区的边缘处,可能 存在着 DL控制信道的干扰。
对于具有 TDD能力的 UE而言, 在 DSS的场景下, 为了减小基站和 LPN的 DL控 制信道的干扰,其最好从基站切换到 LPN的 TDD小区上。 由于基站的下行信道在 FDD DL频段上, 而 LPN的 TDD小区的下行信道在 FDD UL频段上,所以对于基站下的 UE 进行测量而言, 需要进行的是异频测量。
但是, 异频测量周期比同频测量周期长, 比如, 测量带宽为 6RB 时, 异频测量周 期为 480ms, 比同频测量周期长 280ms。 而当测量带宽为 50RB 时, 异频测量周期为 240ms, 比同频测量周期长 40ms。 而且异频测量需要 UE中断当前小区的数据接收, 所 以对 UE的性能造成了影响。 发明内容
本发明实施例提供了一种数据测量方法、 通信系统以及设备, 能够减少测量过程对 UE性能的影响。
本发明实施例提供的数据测量方法, 包括: 用户设备 UE接收基站发送的测量控制 信息, 所述测量控制信息中包含虚拟同频小区的频点信息, 所述虚拟同频小区为所述 UE 的第二接收机对应的频率层上的小区, 所述第二接收机仅用于测量, 而不用于进行 数据接收; UE根据所述测量控制信息启动所述第二接收机进行虚拟同频测量。
本发明实施例提供的数据测量方法, 包括: 确定邻区中的虚拟同频小区, 所述虚拟 同频小区为用户设备 UE的第二接收机对应的频率层上的小区, 所述第二接收机仅用于 测量, 而不用于进行数据接收; 将包含所述虚拟同频小区的频点信息的测量控制信息发 送至所述 UE, 使得所述 UE根据所述测量控制信息启动所述第二接收机进行虚拟同频 本发明实施例提供的数据测量方法,包括:测量基站接收服务基站发送的 SRS上行 参考符号配置或新的上行参考符号配置, 以及所述 UE的上行测量符号上的发射功率; 测量基站根据所述 SRS上行参考符号配置或新的上行参考符号配置,以及所述 UE的上 行测量符号上的发射功率对所述 UE进行测量,得到所述 UE到测量基站的上行路损值; 测量基站根据所述上行路损值以及测量基站的发射功率, 获取 UE从测量基站接收信号 的接收信号功率。
本发明实施例提供的数据测量方法,包括:获取 UE的上行测量符号上的发射功率; 向测量基站发送 SRS上行参考符号配置或新的上行参考符号配置,以及所述 UE的上行 测量符号上的发射功率;使得所述测量基站根据所述 SRS上行参考符号配置或新的上行 参考符号配置, 及所述 UE的上行测量符号上的发射功率以及所述测量基站的发射功率 测量所述 UE从测量基站接收信号的接收信号功率。
本发明实施例提供的用户设备, 包括: 信息接收单元, 用于接收基站发送的测量控 制信息, 所述测量控制信息中包含虚拟同频小区的频点信息, 所述虚拟同频小区为用户 设备的第二接收机对应的频率层上的小区; 第二接收机, 用于根据所述信息接收单元接 收到的测量控制信息进行虚拟同频测量。
本发明实施例提供的基站,包括: 小区确定单元,用于确定邻区中的虚拟同频小区, 所述虚拟同频小区为用户设备 UE的第二接收机对应的频率层上的小区, 所述第二接收 机仅用于测量, 而不用于进行数据接收; 信息生成单元, 用于生成测量控制信息, 所述 测量控制信息中包含所述小区确定单元确定的虚拟同频小区的频点信息; 信息发送单 元, 用于将所述信息生成单元生成的测量控制信息发送至所述 UE, 使得所述 UE根据 所述测量控制信息启动所述第二接收机进行虚拟同频测量。
本发明实施例提供的服务基站, 包括: 功率计算单元, 用于获取 UE的上行测量符 号上的发射功率;配置信息获取单元,用于获取 SRS上行参考符号配置或新的上行参考 符号配置; 配置信息发送单元, 用于向测量基站发送所述配置信息获取单元获取的 SRS 上行参考符号配置或新的上行参考符号配置, 以及所述功率计算单元获取的所述 UE的 上行测量符号上的发射功率,使得所述测量基站根据所述 SRS上行参考符号配置或新的 上行参考符号配置, 及所述 UE的上行测量符号上的发射功率以及所述测量基站的发射 功率测量 UE从测量基站接收信号的接收信号功率。
本发明实施例提供的测量基站, 包括: 信息获取单元, 用于接收服务基站发送的 SRS上行参考符号配置或新的上行参考符号配置, 以及 UE的上行测量符号上的发射功 率;第一计算单元,用于根据信息获取单元获取的所述 SRS上行参考符号配置或新的上 行参考符号配置, 以及 UE的上行测量符号上的发射功率对所述 UE进行测量得到所述 UE到测量基站的上行路损值; 功率获取单元, 用于获取本测量基站的发射功率; 第二 计算单元,用于根据所述第一计算单元计算得到的上行路损值以及所述功率获取单元获 取的本测量基站的发射功率, 计算 UE从测量基站接收信号的接收信号功率。
本发明实施例提供的通信系统, 包括: 用户设备以及基站。
本发明实施例提供的通信系统, 包括: 服务基站以及测量基站。
从以上技术方案可以看出, 本发明实施例具有以下优点:
本发明实施例中, UE可以从基站接收到测量控制信息, 该测量控制信息中包含虚 拟同频小区的频点信息, 当 UE接收到基站发送的测量控制信息之后, 可以直接启动非 工作频段的第二接收机对虚拟同频小区进行虚拟同频测量,此时 UE进行的是同频测量, 由于同频测量的效率远远高于异频测量的效率, 因此能够减少测量过程对 UE性能的影 响。 附图说明 图 1为本发明数据测量方法一个实施例示意图;
图 2为本发明数据测量方法另一实施例示意图; 图 3为本发明数据测量方法另一实施例示意图;
图 4为本发明用户设备的接收机结构示意图;
图 5为本发明小区切换示意图;
图 6为本发明数据测量方法一个实施例示意图;
图 7为本发明数据测量方法另一实施例示意图;
图 8为本发明数据测量方法另一实施例示意图;
图 9为本发明上行公共符号设定示意图;
图 10为本发明路损测量示意图;
图 11为本发明用户设备一个实施例示意图;
图 12为本发明基站一个实施例示意图;
图 13为本发明服务基站一个实施例示意图;
图 14为本发明测量基站一个实施例示意图;
图 15为本发明通信系统一个实施例示意图;
图 16为本发明通信系统另一实施例示意图。 具体实施方式 本发明实施例提供了一种数据测量方法及通信系统以及相关设备, 能够减少测量过 程对 UE性能的影响。
请参阅图 1, 本发明数据测量方法一个实施例包括:
101、 UE接收基站发送的测量控制信息;
本实施例中, UE在和基站建立了网络连接之后, 如果该 UE除了当前进行数据传 输的第一接收机外,还具有额外的第二接收机,则 UE可以从基站接收到测量控制信息, 该测量控制信息中包含虚拟同频小区的频点信息, 该虚拟同频小区为该 UE的第二接收 机对应的频率层上的小区, 该第二接收机仅用于测量, 而不用于进行数据接收测量。
需要说明的是, 在实际应用中, UE在从基站接收测量控制信息之前, 还可以根据 基站的询问向基站上报自身的 UE能力信息,或者, UE也可以主动向基站上报 UE能力 信息。
该 UE能力信息中包含 UE所支持的模式, 例如 TDD和 /或 FDD, 以及 UE工作的 发射机和接收机的配置信息, 比如功率频段或工作频点等, 具体包含的内容为本领域技 术人员的公知常识, 此处不作限定。 本实施例中, 若基站中预置有各 UE的能力信息, 则 UE也可以不上报能力信息。 基站获取 UE能力信息后, 如果 UE的能力信息表明该 UE具有至少两个接收机时, 触发向 UE发送包含所述虚拟同频小区的频点信息的测量控制信息。
在实际应用中, UE在当前所处的小区中会通过第一接收机接收数据, 并且同时会 通过第一接收机测量当前小区的信号质量,若当前所处的小区的信号质量满足第一预置 条件, 则 UE可以向基站上报当前小区的测量报告, 用于告知基站当前小区的信号已经 劣化, 需要启动同频或异频相邻小区的测量。
本实施例中,信号质量满足第一预置条件可以是启动同频或异频的相邻小区测量的 预置条件, 例如: 信号功率低于预置门限值, 或者是误码率高于预置门限值, 具体的条 件还可以根据实际情况进行设定, 此处不作限定。
基站接收到 UE发送的当前小区的测量报告时,则可以向 UE发送该测量控制信息, 或者基站可以自身测量 UE当前所处的小区的信号质量, 并当信号质量满足第一预置条 件时, 向 UE发送测量控制信息。
102、 UE根据测量控制信息启动第二接收机进行虚拟同频测量。
UE在收到了基站发送的测量控制信息之后, 可以根据测量控制信息中的虚拟同频 小区的频点信息启动 UE中处于非工作状态的第二接收机对虚拟同频小区进行虚拟同频 本实施例中, UE可以从基站接收到测量控制信息, 该测量控制信息中包含虚拟同 频小区的频点信息, 当 UE接收到基站发送的测量控制信息之后, 可以直接启动非工作 频段的第二接收机对虚拟同频小区进行虚拟同频测量, 此时 UE进行的是同频测量, 由 于同频测量的效率远远高于异频测量的效率,因此能够减少测量过程对 UE性能的影响。
上面从 UE的角度对本发明实施例中的数据测量方法进行了描述, 下面从基站的角 度对本发明实施例中的数据测量方法进行描述, 请参阅图 2, 本发明数据测量方法另一 实施例包括:
201、 确定邻区中的虚拟同频小区;
本实施例中, 基站与 UE建立了网络连接之后, 若分析得到该 UE除了当前进行数 据传输的第一接收机外, 还具有额外的第二接收机, 则可以在本基站的邻区中确定虚拟 同频小区, 具体的:
每个基站间都有通讯接口, 在建立通信网络时, 各基站会相互通报自身的工作频带 或频点信息, 因此基站可以根据这些工作频带或频点信息在自己的邻区中, 查询和 UE 的非数据接收的第二接收机同频的邻区, 并将这些小区作为虚拟同频小区。
在实际应用中, 当 UE与基站之间建立了网络连接之后, 网络侧可以向 UE询问 UE 能力信息, UE在接收到网络侧的询问时, 可以向基站上报自身的能力信息, 或者, UE 也可以主动向网络测发起 UE能力的上报, 从而基站可以接收到 UE上报的 UE能力信 息。
需要说明的是, 该 UE能力信息中包含 UE所支持的模式, 例如 TDD和 /或 FDD, 以及 UE工作的发射机和接收机的配置信息等, 比如功率频段或工作频点, 具体包含的 内容为本领域技术人员的公知常识, 此处不作限定。
本实施例中, 若基站中预置有各 UE的能力信息, 则 UE也可以不上报能力信息。 202、 将包含虚拟同频小区的频点信息的测量控制信息发送至 UE;
基站确定了虚拟同频小区之后, 可以将包含该虚拟同频小区的测量控制信息发送至 该测量控制信息用于指示 UE根据虚拟同频小区的频点信息启动 UE中处于非工作 状态的第二接收机对虚拟同频小区进行虚拟同频测量。
需要说明的是, UE在当前所处的小区中会通过第一接收机接收数据, 并且同时会 通过第一接收机测量当前小区的信号质量,若当前所处的小区的信号质量满足第一预置 条件, 则 UE可以向基站上报当前小区的测量报告, 用于告知基站当前小区的信号已经 劣化, 需要启动同频或异频的相邻小区的测量。
需要说明的是,信号质量满足第一预置条件可以是启动同频或异频相邻小区测量的 预置条件, 例如: 信号功率低于预置门限值, 或者是误码率高于预置门限值, 具体的条 件还可以根据实际情况进行设定, 此处不作限定。
基站接收到 UE发送的当前小区的测量报告时, 则可以向 UE发送测量控制信息, 或者基站可以自身测量 UE当前所处的小区的信号质量, 并当信号质量满足第一预置条 件时, 向 UE发送测量控制信息。
本实施例中, 基站可以向 UE发送测量控制信息, 该测量控制信息中包含虚拟同频 小区的频点信息, 当 UE接收到基站发送的测量控制信息之后, 可以直接启动非工作频 段的第二接收机对虚拟同频小区进行虚拟同频测量, 此时 UE进行的是同频测量, 由于 同频测量的效率远远高于异频测量的效率, 因此能够减少测量过程对 UE性能的影响。
为便于理解, 下面对本发明数据测量方法进行详细描述, 请参阅图 3, 本发明数据 测量方法另一实施例包括: 301、 UE向基站上报 UE能力信息;
本实施例中, 当 UE与基站之间建立了网络连接之后, 网络侧可以向 UE询问 UE 能力信息, UE在接收到网络侧的询问时, 可以向基站上报自身的能力信息, 从而基站 可以接收到 UE上报的 UE能力信息, 或者 UE也可以主动上报自己的能力到网络测。
需要说明的是, 该 UE能力信息中包含 UE所支持的模式, 例如 TDD和 /或 FDD, 以及 UE工作的发射机和接收机的配置信息等, 比如功率频段或工作频点, 具体包含的 内容为本领域技术人员的公知常识, 此处不作限定。
UE的示意图具体可以如图 4所示, 其中, 该 UE有 2个接收机, 分别为 Rxl, 以 及 Rx2。
Rxl位于 FDD DL频段, Rx2位于 FDD UL频段。 因为 FDD UL和 DL的频段相差 比较远, 所以 UL频段的发送不会对 DL频段的接收有干扰。 在 FDD UL频段上的收发 信机之间通过时分复用的方式来达到干扰规避的目的。
上面介绍的两个接收机分别位于 FDD的 DL频段和 FDD的 UL频段, 可以理解的 是, 除了上述的方式之外, 在实际应用中, 如果 UE具有两个接收机, 并且两个接收机 的间隔比较大时,则该 UE也可以进行本实施例中的虚拟同频小区的测量,例如如果 FDD 的 DL频段或 UL频段跨度较大, 则 UE的两个接收机也可以同位于 FDD的 DL频段, 或同位于 FDD的 UL频段, 只要使得这两个接收机之间的间隔比较大即可。
302、 查询邻区;
本实施例中, 基站与 UE建立了网络连接之后, 若分析得到该 UE除了当前进行数 据传输的第一接收机外, 还具有额外的第二接收机。 则可以在本基站的邻区中确定虚拟 同频小区, 具体的:
每个基站间都有通讯接口, 在建立通信网络时, 各基站会相互通报自身的工作频带 或频点信息, 因此基站可以根据这些工作频带或频点信息在自己的邻区中, 查询和 UE 的非数据接收的第二接收机同频的邻区, 并将这些小区作为虚拟同频小区。
303、 UE向基站上报同频测量结果;
UE在当前所处的小区中会通过第一接收机接收数据, 并且同时会通过第一接收机 测量当前小区的信号质量, 若当前所处的小区的信号质量满足第一预置条件, 则向基站 上报当前小区的测量报告, 用于告知基站当前小区的信号已经劣化, 需要启动同频或异 频的相邻小区的测量。
需要说明的是,信号质量满足第一预置条件可以是启动同频或异频的相邻小区测量 的预置条件, 例如: 信号功率低于预置门限值, 或者是误码率高于预置门限值, 具体的 条件还可以根据实际情况进行设定, 此处不作限定。
本实施例中,对于虚拟小区的测量启动采用和同频或异频相邻小区测量启动相同的 机制。 比如用于虚拟小区测量的接收机的测量启动, 是由进行数据接收的接收机的同频 测量事件, 即对当前的服务小区的测量事件, 来启动的。
304、 基站向 UE发送测量控制信息;
UE向基站上报了当前小区的测量报告之后, 基站可以向 UE发送测量控制信息, 该测量控制信息用于指示 UE根据虚拟同频小区的频点信息启动 UE中处于非工作状态 的第二接收机对虚拟同频小区进行虚拟同频测量。
本实施例中,基站向 UE发送的测量控制信息中可以包括虚拟同频小区的频点信息, 还可以进一步包括虚拟同频测量的周期信息, 和 /或每个测量周期的测量时间。
需要说明的是,该虚拟同频测量的周期信息,和 /或每个测量周期的测量时间具体可 以是以下几种情况:
( 1 ) 根据同频测量的性能要求, 每 200毫秒启动进行一次测量, 每 200毫秒内的 测量时间由 UE的性能决定, 比如 2毫秒或 4毫秒或 6毫秒等;
(2) 根据同频测量的使用非连续接收 (DRX, Discontinuous Reception) 情况下的 性能要求, 按照另外一个接收机上的 DRX配置确定虚拟同频测量的测量周期, 每个测 量周期的测量时间由 UE的性能决定, 比如 2毫秒或 4毫秒或 6毫秒等;
(3)根据另一个接收机上的异频测量的时隙(Gap)配置方式确定虚拟同频测量的 测量周期, 比如每 40毫秒或者 80毫秒, 进行 6毫秒的测量等。
(4) 在另外一个接收机上新设定一个 DRX周期用于测量, 按照该 DRX周期确定 虚拟同频测量的测量周期, 每个测量周期的测量时间由 UE的性能决定, 比如 2毫秒或 4毫秒或 6毫秒等; 此时的 DRX配置中包括 DRX周期, 每个测量周期的测量时间, 但 是不包括激活定时器, 重传定时器等用于数据传输的定时器等。
需要说明的是,如果上述几种确定虚拟同频测量的周期信息,和 /或每个测量周期的 测量时间的方式已经存在对应的选项, 比如, 已经在公开的协议或规范中有所定义, 则 也可以直接通知选项索引, 比如测量配置 1, 或者测量配置 N等。 可以在测量控制消息 中包含该标识用于指示虚拟同频测量的测量周期和 /或每个测量周期内的测量时间的标 识, 比如选项索引。 如果选择只有一个, 则该虚拟同频测量的周期信息, 和 /或每个测量 周期的测量时间就不需要信令中进行指示。 上面仅以几个例子说明虚拟同频测量的周期信息,和 /或每个测量周期的测量时间的 配置方式, 在实际应用中, 还可以使用其他的方式确定虚拟同频测量的周期信息, 和 / 或每个测量周期的测量时间, 具体此处不作限定。
305、 进行虚拟同频测量;
UE在接收到基站发送的测量控制信息之后, 即可根据虚拟同频小区的频点信息, 虚拟同频测量的周期信息, 和 /或每个测量周期的测量时间对虚拟同频小区进行测量。
如果测量控制消息中包含的是用于指示虚拟同频测量的测量周期和 /或每个测量周 期内的测量时间的标识, UE需要根据所述标识在预置的对应关系中查询对应的测量周 期和 /或测量时间。 UE根据频点信息启动第二接收机, 以使该第二接收机按照查询到的 测量周期和 /或测量时间对虚拟同频小区进行虚拟同频测量。
为便于说明测量的过程, 请参阅图 5, 图 5中, 对于具有第二接收机的 UE, 本发 明中为具有额外 TDD接收能力的 UE而言, 为了避免下行接收信道的干扰, 其切换路 径为:从基站 1到测量基站的切换为 "切换 2",从测量基站到基站 2的切换为"切换 4"。
对于不具有对于具有第二接收机的 UE, 本发明中为不具有额外 TDD接收能力的 UE而言, 其切换路径为从基站 1到测量基站的切换为 "切换 1 ", 从测量基站到基站 2 的切换为 "切换 3"。
在 "切换 2"之前的测量中, UE可以开启在 FDD UL频段的接收机 Rx2对测量基 站小区进行同频测量。 其中工作在 FDD DL的接收机为接收机 Rxl, 与之同频的相邻小 区的测量称之为同频测量。 其中在 FDD UL频段上的接收机 Rx2, 仅用于同频测量, 而 不用于接收数据, 与接收机 Rx2同频的小区的测量称之为虚拟同频小区测量。
在 "切换 4"之前的测量中, UE可以开启接收机 FDD DL的 Rxl对基站 eNB2下 的 FDD小区进行同频测量。 其中工作在 FDD UL的接收机为接收机 Rx2, 与之同频的 相邻小区的测量称之为同频测量。 其中在 FDD DL频段上的接收机 Rxl, 仅用于同频测 量, 而不用于接收数据, 与接收机 Rxl同频的小区的测量称之为虚拟同频小区测量。
306、 UE向基站进行测量上报。
UE根据接收到的测量控制信息, UE启动在非工作频段上的第二接收机, 即虚拟同 频测量接收机, 进行虚拟同频测量, 当虚拟同频测量的结果显示虚拟同频小区的信号质 量满足第二预置条件时, 向基站上报虚拟同频测量的测量报告。
需要说明的是,信号质量满足第二预置条件可以是满足切换的测量事件对应的预置 条件, 例如: 信号功率高于或等于预置门限值, 或者是误码率低于或等于预置门限值, 具体的条件还可以根据实际情况进行设定, 此处不作限定。
UE 向基站上报虚拟同频测量的测量报告之后, 基站即可根据该虚拟同频测量的测 量报告进行切换判决, 具体的判决方式为本领域技术人员的公知常识, 此处不作限定。
本实施例中, UE可以从基站接收到测量控制信息, 该测量控制信息中包含虚拟同 频小区的频点信息, 当 UE接收到基站发送的测量控制信息之后, 可以直接启动非工作 频段接收机对虚拟同频小区进行虚拟同频测量, 此时 UE进行的是同频测量, 由于同频 测量的效率远远高于异频测量的效率, 因此能够减少测量过程对 UE性能的影响。
本实施例除了可以应用于上述的 DSS场景外,还可以应用于 UE有额外的一个接收 机可以进行测量的任何场景。
上述的实施例中, UE可以进行同频测量, 由于同频测量的效率远远高于异频测量 的效率, 因此能够减少测量过程对 UE性能的影响, 在实际应用中, 除了由 UE进行同 频测量以减少测量过程对 UE性能的影响之外,还可以由其他的网元替代 UE进行测量, 从而减少测量过程对 UE性能的影响, 具体请参阅图 6, 本发明数据测量方法另一实施 例包括:
601、 测量基站接收服务基站发送的 SRS上行参考符号配置或新的上行参考符号配 置, 以及 UE的上行测量符号上的发射功率; SRS (Sounding reference signal, 探测参考 符号)为上行参考符号的一种。
测量基站可以从服务基站接收到 SRS上行参考符号配置或新的上行参考符号配置, 同时还可以接收到 UE的上行参考符号上的发射功率, 这些参数均由服务基站计算或获 取得到后发送给测量基站。
本实施例中, 测量基站还可以从服务基站获取到对 UE进行测量的测量配置信息, 可以理解的是,该测量配置信息也可以在测量基站中预先配置,具体方式此处不做限定。
本实施例中, 测量基站为与服务基站相邻的基站, 该测量基站可以为低功率节点基 站, 也可以为宏基站, 或者为其他类型的基站, 具体此处不做限定。
602、 测量基站根据 SRS上行参考符号配置或新的上行参考符号配置, 以及 UE的 上行测量符号上的发射功率对 UE进行测量, 得到 UE到测量基站的上行路损值;
本实施例中, 测量基站在获取到 SRS上行参考符号配置或新的上行参考符号配置, 以及 UE的上行测量符号上的发射功率后,可以根据这些参数对 UE进行测量,得到 UE 到测量基站的上行路损值, 具体的, 可以采用如下的方式:
测量基站根据 SRS上行参考符号配置对 SRS上行参考符号进行测量, 或根据新的 上行参考符号配置对新的上行参考符号进行测量, 得到 UE在参考符号上的接收功率; 之后, 测量基站对该参考符号上的接收功率进行层三过滤, 得到层三接收功率; 然后, 测量基站将从服务基站接收到的 UE的上行测量符号上的发射功率与该层三 接收功率之间的差值作为 UE到测量基站的上行路损值。
需要说明的是, 在实际应用中, 同样还可以采用其他的方式计算 UE到测量基站的 上行路损值, 具体的过程此处不作限定。
603、 测量基站根据 UE到测量基站的上行路损值以及测量基站的发射功率, 获取
UE从测量基站接收信号的接收信号功率 (RSRP Reference Signal Received Power )。
测量基站计算得到 UE到测量基站的上行路损值之后, 测量基站可以根据自身的发 射功率与该上行路损值计算 UE的 RSRP, 从而完成对 UE的上行测量。
具体的, 可以将自身的发射功率与该上行路损值之间的差值作为 UE的 RSRP 本实施例中,测量基站可以从基站接收到 SRS上行参考符号配置或新的上行参考符 号配置, 以及 UE的上行测量符号上的发射功率, 并使用这些参数对 UE的上行信号进 行测量, 从而获取 UE到测量基站的上行路损。 测量基站根据该路损以及测量基站的发 射功率, 可以获得 UE从测量基站接收信号的接收信号功率, 所以无需 UE自身进行测 量, 因此能够减少测量过程对 UE性能的影响。
上面从测量基站的角度对本发明实施例中的数据测量方法进行了描述, 下面从服务 基站的角度对本发明实施例中的数据测量方法进行描述, 请参阅图 7, 本发明数据测量 方法另一实施例包括:
701、 获取 UE的上行测量符号上的发射功率;
本实施例中, 服务基站可以通过如下方式获取 UE的上行测量符号上的发射功率: 根据 PEMAX H, 以及 Pp aass 确定 UE的上行测量符号上的发射功率;
或者, 接收 UE发送的测量结果以及功率余值报告, 根据该测量结果以及功率余值 报告确定 UE的上行测量符号上的发射功率;
该 ΡΕΜΑχ— H为系统消息中广播的最大发射功率参数 IE P-Max的数值, 该 PP WCTClass 为 23dBm
可以理解的是, 在实际应用中, 服务基站还可以通过其他的方式获取 UE的上行测 量符号上的发射功率, 具体此处不作限定。
702、 向测量基站发送 SRS上行参考符号配置或新的上行参考符号配置, 以及 UE 的上行测量符号上的发射功率, 使得测量基站计算 UE的 RSRP 服务基站在获取 UE的上行测量符号上的发射功率之后, 可以向测量基站发送预置 的 SRS上行参考符号配置或新的上行参考符号配置,以及得到的 UE的上行测量符号上 的发射功率, 从而使得测量基站根据 SRS上行参考符号配置或新的上行参考符号配置, UE的上行测量符号上的发射功率以及测量基站的发射功率计算 UE的 RSRP, 以替代 UE完成测量过程。
本实施例中, 服务基站还可以向测量基站发送对 UE进行测量的测量配置信息。 本实施例中,服务基站可以向测量基站发送 SRS上行参考符号配置或新的上行参考 符号配置, 或对 UE进行测量的测量配置信息, 以及 UE的上行测量符号上的发射功率, 使得测量基站能够使用这些参数对 UE的上行信号进行测量, 所以无需 UE自身进行测 量, 因此能够减少测量过程对 UE性能的影响。
为便于理解, 下面对本发明数据测量方法进行详细描述, 请参阅图 8, 本发明数据 测量方法另一实施例包括:
801、 服务基站获取相关的参数;
服务基站与 UE建立了网络连接之后, 可以开始获取相关参数, 具体的参数包括: SRS上行参考符号的配置, 或新的上行参考符号的配置, 或测量基站向服务基站进 行测量上报的配置, 以及 UE在测量符号上的发射功率。
其中, UE在测量符号上的发射功率是服务基站必须获取的, 对于 SRS上行参考符 号的配置和新的上行参考符号的配置, 服务基站可以选择获取其中的一个, 而测量基站 向服务基站进行测量上报的配置可以获取, 也可以不获取。
其中, SRS上行参考符号的配置是指 SRS的 UE导频符号的带宽配置, UE导频符 号的子帧配置和 SRS的上报配置;
该新的上行参考符号的配置用于指示是否使用上行公共参考符号。新的上行参考符 号的设计可以参考下行参考符号的设计, 例如图 9所示, 在图 9中, 上行子帧上新设定 的公共参考符号的位置可以参考下行公共参考符号的位置。 参考符号在整个 PRB 内均 衡的占用一些资源元素 (RE, Resource Element), 可以采用和 SRS类似的特定符号上 进行配置。
该测量基站向服务基站进行测量上报的配置是指上报的内容, 例如哪个 UE对测量 基站的测量满足事件。
本实施例中, 对于 UE在测量符号上的发射功率, 基站需要进行功率控制的计算才 能获得。 基站对 UE的物理上行共享信道 (PUSCH, Physical Uplink Sharing Channel) 的功率控制公式为:
Figure imgf000015_0001
f (i)
(公式一);
其中,
PCMAX是 UE配置的最大发射功率, 是 UE在一定的范围内进行选择的一个值。
MPuscH(i)是在子帧 i上, 基站分配给 UE的资源带宽, 该资源带宽可以用资源块 的个数来表示。 由于是基站分配的资源, 基站对该参数是可知的。 是基站为 UE设定的 puscH的功率基准值, 所以基站对该值也是可知 的。
PL是 UE测量的下行路损, 除非 UE进行测量上报, 否则基站不可知。 是补偿系数, 取值范围为 (0 0.4 0.5 0.6 0.7 0.8 0.9 1 ), 该补偿系 数与 UE测量的下行路损相乘后可以作为上行路损补偿, 该数值是由基站在系统消息中 设定后通知给 UE的, 所以基站对此值也是可知的。
Δ TP (i) =1010 10 (2MPR (i) *Ks-l ),其中, 最大功率降低(MPR Maximum Power Reduction) 为当前的调制编码方式, Ks为小区级参数, MPR以及 Ks由基站通过系统 消息发送给 UE, 所以基站也可以获取到这些参数计算得到 Δ ΊΤ (i)。
f (i) 是闭环调整函数, 由于以上的一些参数都是开环功率控制参数, 为了增加功 率控制的准确性, 还可以通过闭环调整函数进行闭环调整, 该闭环调整函数 f ( i) 是 UE级参数, 是基站通过系统消息发送给 UE的, 所以基站同样可以获知该项参数。
在 UE和基站通信过程中, UE会上报功率余值报告(PHR Power Headroom Report), 来通知基站手机上剩余的发射功率。
其上报的 PHR值的可以用如下公式表示:
PH (i) = PcMAX -{ 101og10(MPUSCH(i)) + PO PUSCH( j) + «( j) - PL+ ATP ) + f (i) } (公式一) 从上面的公式中可以看出, PHR报告的是在 PUSCH信道上的 UE的剩余功率的值。 基站对于 UE在测量符号上的发射功率的功率控制公式为:
PSRS (i) = min{PCMAX ,
Figure imgf000015_0002
式三) 当数据共享信道的发射功率和 SRS 符号的发射功率都小于 ^CMAX时, 则 SRS 和 PUSCH信道上的发射功率的差为:
△ SRS— PUSCH=PSRS oFFSET+lOloglO (MSRS) -{ lOloglO ( MpuscH (i)) +Δ IT (i) } (公 式四) 其中参数 PSKS-OTFSET是 UE特定的参数, 可以用 4个比特来表示, 由基站通知 UE, 所以该参数是基站可知的。
MSRS是在子帧 i上基站分配给 SRS的资源带宽, 该资源带宽可以用资源块的个数 来表示。 由于是基站分配的资源, 基站对该参数是可知的。
所以 SRS和 PUSCH信道的发射功率差, 基站是可以通过 (公式四) 计算出来的。 所以, 如果基站知道 UE的 PcMAx的值, 则通过 UE上报的 PHR, 基站可以知道 UE 的 PUSCH的当前的发射功率为 PCMAX -PHR, 然后通过该 PUSCH的发射功率, 基站可 以获得 UE在测量符号上的发射功率。 本实施例中, 可以采用如下两种方式获取 PCMAX的值: 一、 根据 MIN{PEMAX_H, Pp。weraass}确定 PcMAX的值:
其中 PEMAX— H的值在系统消息中广播, 是基站可知的。 PPwerClass的值为 23dBm, 该 值是协议规定的。 可以直接使用 MIN{P EMAX— H, Pp。weraass}作为 PcMAX的值, 或者采用 MIN {P EMAX—H,
PpowerClaSS}-N (dBm)作为 PCMAX的值。 其中 N的取值可以为 0-8间的任意一个值。 本实施例中, PCMAX和 ΡΕΜΑΧH的最大发射功率之间的关系为:
PcMAX— L - T(PCMAX_L) ≤ PcMAX ≤ Ρ。ΜΑΧ— H + T(PCMAX_H)― 公式五 其中, PCMAXL=MIN { PEMAX— Η-Δ TC, PPWERCLASS-MPR-A-MPR-A TC },其中 ΡΕΜΑχ— H 就是系统消息中广播的最大发射功率参数 IE P-Max的值。
Δ TC的范围为 0或者 1.5dB。 PPWCTClass为 23dBm, 该值是协议规定的。 当采用 16 正交幅度调制 (QAM, Quadrature Amplitude Modulation) 进行数据调制时, MPR的取 值范围为 1或 2, A-MPR的范围为 1或 2, 3, 大部分情况的取值为 1 ; P-Max的值为 (-30..33) dBm。
Figure imgf000016_0001
Pp。 aASJ, 其中 ΡΕΜΑχ— H就是系统消息中广播的最大发射 功率参数 IE P-Max的值。 PPWCTClass为 23dBm, 该值是协议规定的。 T ( ^MAX )是参数 PCMAX— L和 PCMAX— H PEMAX— H的误差容忍值。其范围为 ±2或 ±4 从上面的 (公式五) 可见, PCMAX的取值在 MIN {ΡΕΜΑχ— H Pp weraass}和 MIN {PEMAX_H, PP WCTClass}-8dBm之间取值。按照平均的取值而言, PCMAX的值可以取 MIN
{PEMAX— H Pp werClass}-4dBm
在大部分情况下, 在 MIN {ΡΕΜΑΧ— H Pp Class }和 MIN {ΡΕΜΑχ— H Ppowerciass}-4dBm 之间取值。 按照平均的取值而言, PCMAX的值可以取 MIN {PEMAXH PP WCTClass}-2dBm 二、 通过 UE上报测量结果结合 UE上报 PHR来确定 PCMAX的值:
在 UE与基站建立完连接之后,基站可以向 UE发送测量控制信息,其中包含 RSRP 的测量控制配置和测量报告上报配置;
UE可以根据测量设定的事件进行测量上报;
UE在当前所处的小区中会通过接收机接收数据, 并且同时会通过接收机测量当前 小区的信号质量, 若当前所处的小区的信号质量满足第一预置条件, 则向基站上报当前 小区的测量报告, 用于告知基站当前小区的信号已经劣化。
需要说明的是,信号质量满足第一预置条件可以是启动同频或异频邻区测量的预置 条件, 例如: 信号功率低于预置门限值, 或者是误码率高于预置门限值, 具体的条件还 可以根据实际情况进行设定, 此处不作限定。
当 UE上报 RSRP的测量结果时, 基站可以根据该测量结果计算出当前 UE的下行 路损 PL (Path Loss) 是多少, 具体的方式为:
PL=Tx_power-RSRP (公式六)
其中 Tx_p0Wer是基站的下行发射功率, 基站广播该下行发射功率, 基站和 UE都 可以获知。 RSRP是 UE上报的测量结果, 基于此, 基站可以计算 UE当前的路损。
根据事件触发或者周期触发, UE上报 PHR的值。 或者基站在计算出下行的 PL值 时, 基站触发 UE上报 PHR值。
由于 RSRP是一个慢变的测量结果, 而 PHR是支持 UE的上行功率调整的, 是一个 相对快变的值, 所以在 PHR上报期间, 可以假定此时 UE的 PL没有发生改变。 则基站 根据前面计算得到的 PL值和 UE上报的 PHR的值,以及其他基站已知的参数,根据(公 式二) 计算得到 PCMAX的值。 若设定 PHR基于 PCMAX进行上报, 那么当 UE的 PCMAX变化时, UE会上报 PHR 则基站可以重新计算 UE的 ^CMAX的值。 通过上述的方式, 基站可以获得 UE的最大发射功率 PCMAX, 然后基站根据 UE上 报的 PHR, 可以获得当前 UE的 PUSCH上的发射功率。 然后基站根据 (公式四), SRS 和 PUSCH的发射功率差来计算出 SRS的发射功率。
如果 UE使用新设计的上行公共参考符号来发送功率的话, 则可以要求该上行公共 参考符号上的发射功率和 PUSCH的一样, 这样基站可以根据 PHR报告, 直接得到该上 行公共参考符号的发射功率。
802、 服务基站向测量基站通知相关参数;
基站通过步骤 801计算了相关的参数之后, 可以将这些参数发送给测量基站, 使得 测量基站对 UE进行上行测量。
其中, UE在测量符号上的发射功率会由服务基站发送给测量基站, 对于 SRS上行 参考符号的配置和新的上行参考符号的配置, 服务基站可以选择发送其中的一个, 而测 量基站向服务基站进行测量上报的配置可以发送, 也可以不发送。
803、 测量基站对 UE进行上行测量;
当 UE处于连接状态上, 为了支持上行调度, 服务基站会进行上行的 SRS的测量。 由于 SRS的调度信息是由服务基站静态配置的,所以与服务基站相邻的测量基站也可以 获得该 SRS配置, 也可以对服务基站的 UE进行上行的 SRS符号进行信号功率的测量。
如图 10所示, 图 10中, 服务基站为宏基站, 其进行的 SRS的测量为正常的 SRS 的测量。 测量基站对于服务基站的 SRS的测量则是对于 SRS符号进行功率的检测, 然 后将检测到的 SRS 的功率进行 L3过滤, 得到一个上行 RSRP的测量结果, 称为上行 RSRP。
804、 处理测量结果;
测量基站根据基站通知的 UE在测量符号上的发射功率和测量基站在步骤 803中测 量到的 UE的上行 RSRP的值,可以将 UE在测量符号上的发射功率减去 UE的上行 RSRP 的值作为 UE到测量基站的上行路损的值。
由于 TDD系统的信道互益性, 测量基站使用本测量基站的发射功率减去上述测量 得到的 PL值即可得到 UE的 RSRP测量结果, 即完成对 UE的测量。
805、 测量基站上报测量结果。
当测量基站在步骤 803中测量的 RSRP测量结果满足服务基站下发的测量上报条件 时, 则测量基站向服务基站上报测量基站测量到的 UE的 RSRP的测量结果。 服务基站可以接收到测量基站上报的测量报告, 并根据当前小区的测量报告以及测 量基站上报的测量报告进行切换判决, 具体过程为本领域技术人员的公知常识, 具体此 处不作限定。
需要说明的是, 在该方法中, 因为 UE初次检测小区可能需要花费的时间比较长, 所以在切换之前, 也可以让 UE提前进行小区的搜索。 在切换判决之前, 或切换判决之 后且发送切换命令之前, 基站可以发送小区探测命令给 UE, UE可以先进行小区探测。
本实施例中,测量基站可以从基站接收到 SRS上行参考符号配置或新的上行参考符 号配置, 以及 UE的上行测量符号上的发射功率, 并使用这些参数对 UE的上行信号进 行测量, 所以无需 UE自身进行测量, 因此能够减少测量过程对 UE性能的影响。
下面对本发明中的用户设备进行描述,请参阅图 11,本发明用户设备一个实施例包 括:
信息接收单元 1102,用于接收基站发送的测量控制信息,测量控制信息中包含虚拟 同频小区的频点信息, 虚拟同频小区为用户设备的第二接收机对应的频率层上的小区; 第二接收机 1105, 用于根据信息接收单元 1102接收到的测量控制信息进行虚拟同 频测量。
本实施例中的用户设备还可以进一步包括:
第一接收机 1103, 用于对当前所处的小区的信号质量进行检测;
第二上报单元 1104, 用于当第一接收机 1103测量到当前所处的小区的信号质量满 足第一预置条件时, 向基站上报当前小区的测量报告。
本实施例中的用户设备还可以进一步包括:
第一上报单元 1101, 用于向基站上报 UE能力信息, UE能力信息中包括 UE支持 的模式, UE的发射机和接收机的工作频带 /工作频点配置信息。
本实施例中的用户设备还可以进一步包括:
第三上报单元 1106, 用于当第二接收机 1105得到的虚拟同频测量的结果显示虚拟 同频小区的信号质量满足第二预置条件时, 向基站上报虚拟同频测量的测量报告。
本实施例中的第一上报单元 1101,第二上报单元 1104以及第三上报单元 1106所执 行的操作都是向基站上报信息, 在实际应用中, 这些上报单元可以集成为一个物理或软 件模块实现, 也可以独立以不同的物理或软件模块实现, 具体此处不作限定。
本实施例中的用户设备可以从基站接收到虚拟同频小区的频点信息, 可以启动第二 接收机进行虚拟同频测量, 具体的过程与前述图 1以及图 3所描述的内容一致, 为便于 理解, 下面对本实施例中用户设备的各单元之间的交互关系进行说明: 本实施例中, 当 UE与基站之间建立了网络连接之后, 网络侧可以向 UE询问 UE 能力信息, UE在接收到网络侧的询问时, 第一上报单元 1101可以向基站上报自身的能 力信息。
需要说明的是, 该 UE能力信息中包含 UE所支持的模式, 例如 TDD和 /或 FDD, 以及 UE工作的发射机和接收机的配置信息等, 具体包含的内容为本领域技术人员的公 知常识, 此处不作限定。
UE在当前所处的小区中会通过第一接收机 1103接收数据,并且同时会通过第一接 收机 1103测量当前小区的信号质量, 若当前所处的小区的信号质量满足第一预置条件, 则第二上报单元 1104 向基站上报当前小区的测量报告, 用于告知基站当前小区的信号 已经劣化。
需要说明的是,信号质量满足第一预置条件可以是启动邻区测量的预置条件,例如: 信号功率低于预置门限值, 或者是误码率高于预置门限值, 具体的条件还可以根据实际 情况进行设定, 此处不作限定。
第二上报单元 1104向基站上报了当前小区的测量报告之后, 信息接收单元 1102可 以从基站接收到测量控制信息, 该测量控制信息用于指示 UE进行另一小区的测量。
信息接收单元 1102在收到了基站发送的测量控制信息之后, 可以根据接收到的虚 拟同频小区的频点信息启动 UE中处于非工作状态的第二接收机 1105对虚拟同频小区 进行虚拟同频测量。
本实施例中, 当信息接收单元 1102接收到基站发送的测量控制信息之后, 可以直 接启动非工作频段的第二接收机 1105对虚拟同频小区进行虚拟同频测量, 此时 UE进 行的是同频测量, 由于同频测量的效率远远高于异频测量的效率, 因此能够减少测量过 程对 UE性能的影响。
下面对本发明中的基站进行描述, 请参阅图 12, 本发明基站一个实施例包括: 小区确定单元 1202, 用于确定邻区中的虚拟同频小区, 该虚拟同频小区为 UE的第 二接收机对应的频率层上的小区, 第二接收机仅用于测量, 而不用于进行数据接收; 信息生成单元 1203, 用于生成测量控制信息, 测量控制信息中包含小区确定单元 1202确定的虚拟同频小区的频点信息;
信息发送单元 1204, 用于将信息生成单元 1203生成的测量控制信息发送至 UE, 使得 UE根据测量控制信息启动第二接收机进行虚拟同频测量。 本实施例中的基站还可以进一步包括:
测量报告接收单元 1205, 用于接收 UE上报的虚拟同频测量的测量报告; 切换判决单元 1206, 用于根据虚拟同频测量的测量报告进行切换判决。
本实施例中的基站还可以进一步包括:
获取单元 1201, 用于获取 UE的 UE能力信息, UE能力信息中包括 UE支持的模 式, UE的发射机和接收机的工作频带 /工作频点配置信息;
控制单元 1207, 用于当获取单元 1201获取到的 UE能力信息指示 UE具有至少两 个接收机时, 触发小区确定单元 1202执行相应操作。
本实施例中的基站可以向用户设备发送虚拟同频小区的频点信息,使得用户设备启 动第二接收机进行虚拟同频测量, 具体的过程与前述图 2以及图 3所描述的内容一致, 为便于理解, 下面对本实施例中基站的各单元之间的交互关系进行说明:
本实施例中, 当 UE与基站之间建立了网络连接之后, 网络侧可以向 UE询问 UE 能力信息, UE在接收到网络侧的询问时, 可以向基站上报自身的能力信息, 从而获取 单元 1201可以接收到 UE上报的 UE能力信息。
需要说明的是, 该 UE能力信息中包含 UE所支持的模式, 例如 TDD和 /或 FDD, 以及 UE工作的发射机和接收机的配置信息等, 具体包含的内容为本领域技术人员的公 知常识, 此处不作限定。
获取单元 1201接收到 UE上报的 UE能力信息之后,若分析得到该 UE除了当前进 行数据传输的第一接收机外, 还具有额外的第二接收机, 则控制单元 1207可以触发小 区确定单元 1202在本基站的邻区中确定虚拟同频小区, 具体的:
每个基站间都有通讯接口, 在建立通信网络时, 各基站会相互通报自身的工作频带 或频点信息, 因此基站可以根据这些工作频带或频点信息在自己的邻区中, 查询和 UE 的非数据接收的第二接收机同频的邻区, 并将这些小区作为虚拟同频小区。
UE在当前所处的小区中会通过第一接收机接收数据, 并且同时会通过第一接收机 测量当前小区的信号质量, 若当前所处的小区的信号质量满足第一预置条件, 则向基站 上报当前小区的测量报告, 用于告知基站当前小区的信号已经劣化。
需要说明的是,信号质量满足第一预置条件可以是启动邻区测量的预置条件,例如: 信号功率低于预置门限值, 或者是误码率高于预置门限值, 具体的条件还可以根据实际 情况进行设定, 此处不作限定。
UE向基站上报了当前小区的测量报告之后,信息生成单元 1203可以生成携带虚拟 同频小区的频点信息的测量控制信息, 信息发送单元 1204可以将包含该虚拟同频小区 的测量控制信息发送至 UE, 该测量控制信息用于指示 UE根据虚拟同频小区的频点信 息启动 UE中处于非工作状态的第二接收机对虚拟同频小区进行虚拟同频测量。
本实施例中, 信息发送单元 1204可以向 UE发送测量控制信息, 该测量控制信息 中包含虚拟同频小区的频点信息, 当 UE接收到基站发送的测量控制信息之后, 可以直 接启动非工作频段的第二接收机对虚拟同频小区进行虚拟同频测量, 此时 UE进行的是 同频测量, 由于同频测量的效率远远高于异频测量的效率, 因此能够减少测量过程对 UE性能的影响。
下面对本发明中的服务基站进行描述,请参阅图 13,本发明服务基站一个实施例包 括:
功率计算单元 1302, 用于获取 UE的上行测量符号上的发射功率;
配置信息获取单元 1303, 用于获取 SRS上行参考符号配置或新的上行参考符号配 置;
配置信息发送单元 1304, 用于向测量基站发送配置信息获取单元 1303获取的 SRS 上行参考符号配置或新的上行参考符号配置, 以及功率计算单元 1302获取的 UE的上 行测量符号上的发射功率,使得测量基站根据 SRS上行参考符号配置或新的上行参考符 号配置, 及 UE的上行测量符号上的发射功率以及测量基站的发射功率测量 UE从测量 基站接收信号的接收信号功率。
本实施例中的服务基站还可以进一步包括:
第二报告接收单元 1305,用于接收测量基站根据预置的测量配置信息上报的测量报 告. 判决单元 1306, 用于根据测量基站上报的测量报告进行切换判决。
本实施例中的服务基站还可以进一步包括:
第一报告接收单元 1301, 用于接收用户设备 UE发送的当前小区的测量报告, 并触 发功率计算单元 1302以及配置信息获取单元 1303执行相应操作。
本实施例中的第一报告接收单元 1301以及第二报告接收单元 1305所执行的操作都 是都是接收测量报告, 在实际应用中, 这些报告接收单元可以集成为一个物理或软件模 块实现, 也可以独立以不同的物理或软件模块实现, 具体此处不作限定。
本实施例中的服务基站可以向测量基站发送配置信息,使得测量基站可以代替用户 设备进行小区测量, 具体的过程与前述图 7以及图 8所描述的内容一致, 为便于理解, 下面对本实施例中服务基站的各单元之间的交互关系进行说明:
UE在当前所处的小区中会通过接收机接收数据, 并且同时会通过接收机测量当前 小区的信号质量, 若当前所处的小区的信号质量满足第一预置条件, 则第一报告接收单 元 1301可以从 UE接收到当前小区的测量报告, 说明当前小区的信号已经劣化。
需要说明的是,信号质量满足第一预置条件可以是启动邻区测量的预置条件,例如: 信号功率低于预置门限值, 或者是误码率高于预置门限值, 具体的条件还可以根据实际 情况进行设定, 此处不作限定。
UE向基站上报了当前小区的测量报告之后, 功率计算单元 1302可以计算 UE的上 行测量符号上的发射功率, 配置信息获取单元 1303可以获取 SRS上行参考符号配置或 新的上行参考符号配置, 具体的计算过程与前述图 8所示实施例中描述的过程类似, 此 处不再赘述。
得到 UE的上行测量符号上的发射功率以及 SRS上行参考符号配置或新的上行参考 符号配置之后, 配置信息发送单元 1304可以向测量基站发送预置的 SRS上行参考符号 配置或新的上行参考符号配置, 以及计算得到的 UE的上行测量符号上的发射功率, 从 而使得测量基站计算 UE的 RSRP, 以替代 UE完成测量过程。
本实施例中, 配置信息发送单元 1304可以向测量基站发送 SRS上行参考符号配置 或新的上行参考符号配置, 以及 UE的上行测量符号上的发射功率, 使得测量基站能够 使用这些参数对 UE的上行信号进行测量, 所以无需 UE自身进行测量, 因此能够减少 测量过程对 UE性能的影响。
下面对本发明中的测量基站进行描述,请参阅图 14,本发明测量基站一个实施例包 括:
信息获取单元 1401, 用于接收服务基站发送的 SRS上行参考符号配置或新的上行 参考符号配置, 以及 UE的上行测量符号上的发射功率;
第一计算单元 1402,用于根据信息获取单元 1401获取的 SRS上行参考符号配置或 新的上行参考符号配置,以及 UE的上行测量符号上的发射功率对 UE进行测量得到 UE 到测量基站的上行路损值;
功率获取单元 1403, 用于获取本测量基站的发射功率;
第二计算单元 1404, 用于根据第一计算单元 1402计算得到的上行路损值以及功率 获取单元 1403获取的测量基站的发射功率, 计算 UE从测量基站接收信号的接收信号 功率。 本实施例中的第一计算单元 1402包括:
功率测量模块 14021, 用于根据信息获取单元 1401获取的 SRS上行参考符号配置 对 SRS上行参考符号进行测量,或根据新的上行参考符号配置对新的上行参考符号进行 测量, 得到 UE在参考符号上的接收功率;
过滤模块 14022, 用于对功率测量模块 14021测量得到的参考符号上的接收功率进 行层三过滤, 得到层三接收功率;
计算模块 14023,用于将信息获取单元 1401获取的 UE的上行测量符号上的发射功 率与过滤模块 14022得到的层三接收功率之间的差值作为 UE 到测量基站的上行路损 值。
本实施例中的测量基站还可以进一步包括:
测量上报单元 1405, 用于当第二计算单元 1404计算得到的 UE从测量基站接收信 号的接收信号功率满足预置条件时, 根据预置的测量配置信息向服务基站上报包含 UE 从测量基站接收信号的接收信号功率的测量报告。
本实施例中的测量配置信息可以是从服务基站接收到的, 也可以是测量基站本地预 先配置的, 具体此处不做限定。
本实施例中的第一计算单元 1402以及第二计算单元 1404所执行的操作都是都是进 行计算, 在实际应用中, 这些计算单元可以集成为一个物理或软件模块实现, 也可以独 立以不同的物理或软件模块实现, 具体此处不作限定。
本实施例中的测量基站可以从服务基站获取到配置信息, 从而可以代替用户设备进 行小区测量, 具体的过程与前述图 6以及图 8所描述的内容一致, 为便于理解, 下面对 本实施例中测量基站的各单元之间的交互关系进行说明:
信息获取单元 1401可以从基站接收到 SRS上行参考符号配置或新的上行参考符号 配置, 同时还可以接收到 UE的上行测量符号上的发射功率, 这些参数均由基站计算或 获取得到后发送给测量基站。
信息获取单元 1401在获取到 SRS上行参考符号配置或新的上行参考符号配置后, 功率测量模块 14021可以根据 SRS上行参考符号配置对 SRS上行参考符号进行测量, 或根据新的上行参考符号配置对新的上行参考符号进行测量, 得到 UE在参考符号上的 接收功率。
过滤模块 14022对功率测量模块 14021计算得到的参考符号上的接收功率进行层三 过滤, 得到层三接收功率, 之后, 计算模块 14023将信息获取单元 1401获取到的 UE 的上行测量符号上的发射功率与过滤模块 14022得到的层三接收功率之间的差值作为 UE到测量基站的上行路损值。
计算得到 UE到测量基站的上行路损值之后, 第二计算单元 1404根据上行路损值 以及测量基站的发射功率, 获取 UE从测量基站接收信号的接收信号功率, 从而完成对 UE的上行测量。
本实施例中, 信息获取单元 1401可以从基站接收到 SRS上行参考符号配置或新的 上行参考符号配置, 以及 UE的上行测量符号上的发射功率, 第二计算单元 1404可以 使用这些参数对 UE的上行信号进行测量, 所以无需 UE自身进行测量, 因此能够减少 测量过程对 UE性能的影响。
下面对本发明通信系统实施例进行描述,请参阅图 15,本发明通信系统一个实施例 包括:
用户设备 1501以及基站 1502。
本实施例中的用户设备 1501的具体功能, 结构以及处理流程与前述图 11所示的用 户设备类似, 具体此处不再赘述。
本实施例中的基站 1502的具体功能, 结构以及处理流程与前述图 12所示的基站类 似, 具体此处不再赘述。
请参阅图 16, 本发明通信系统另一实施例包括:
服务基站 1601以及测量基站 1602。
本实施例中的服务基站 1601的具体功能, 结构以及处理流程与前述图 13所示的服 务基站类似, 具体此处不再赘述。
本实施例中的测量基站 1602的具体功能, 结构以及处理流程与前述图 14所示的测 量基站类似, 具体此处不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通 过程序来指令相关的硬件完成, 该程序可以存储于一种计算机可读存储介质中, 上述提 到的存储介质可以是只读存储器, 磁盘或光盘等。
以上对本发明所提供的一种数据测量方法及通信系统以及相关设备进行了详细介 绍, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具体实施方式及应用范 围上均会有改变之处, 因此, 本说明书内容不应理解为对本发明的限制。

Claims

权利要求
1、 一种数据测量方法, 其特征在于, 包括:
用户设备 (User Equipment, UE) 接收基站发送的测量控制信息, 所述测量控制信 息中包含虚拟同频小区的频点信息, 所述虚拟同频小区为所述 UE的第二接收机对应的 频率层上的小区, 所述第二接收机仅用于测量, 而不用于进行数据接收;
UE根据所述测量控制信息启动所述第二接收机进行虚拟同频测量。
2、 根据权利要求 1所述的方法, 其特征在于, 所述测量控制信息中还包含虚拟同 频测量的测量周期和 /或每个测量周期内的测量时间;
所述 UE根据所述测量控制信息启动所述第二接收机进行虚拟同频测量包括: UE根据所述频点信息启动第二接收机, 以使所述第二接收机按照所述测量周期和 / 或测量时间对所述虚拟同频小区进行虚拟同频测量。
3、 根据权利要求 1所述的方法, 其特征在于, 所述测量控制信息中还包含用于指 示虚拟同频测量的测量周期和 /或每个测量周期内的测量时间的标识;
所述 UE根据所述测量控制信息启动所述第二接收机进行虚拟同频测量包括: UE根据所述标识在预置的对应关系中查询对应的测量周期和 /或测量时间;
UE根据所述频点信息启动第二接收机, 以使所述第二接收机按照查询到的测量周 期和 /或测量时间对所述虚拟同频小区进行虚拟同频测量。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 所述测量周期由所述基站根据 同频测量的性能需求, 使用非连续接收(DRX, Discontinuous Reception)情况下同频测 量的性能需求, 同频测量使用的 DRX周期, 或 UE的第二接收机上的周期性异频测量 的时隙配置方式确定;
所述测量时间根据所述 UE的性能确定。
5、 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 所述 UE根据所述测 量控制信息启动所述第二接收机进行虚拟同频测量之后包括:
当虚拟同频测量的结果显示所述虚拟同频小区的信号质量满足第二预置条件时,
UE向所述基站上报虚拟同频测量的测量报告。
6、 一种数据测量方法, 其特征在于, 包括:
确定邻区中的虚拟同频小区, 所述虚拟同频小区为用户设备 (User Equipment, UE) 的第二接收机对应的频率层上的小区, 所述第二接收机仅用于测量, 而不用于进行数据 接收; 将包含所述虚拟同频小区的频点信息的测量控制信息发送至所述 UE,使得所述 UE 根据所述测量控制信息启动所述第二接收机进行虚拟同频测量。
7、 根据权利要求 6所述的方法, 其特征在于, 所述方法还包括:
根据同频测量的性能需求, 使用非连续接收(DRX, Discontinuous Reception)情况 下同频测量的性能需求, 同频测量使用 DRX周期, 或 UE的第二接收机上的周期性异 频测量的时隙配置方式确定虚拟同频测量的测量周期,和 /或根据所述 UE的性能确定每 个测量周期内的测量时间;
将所述虚拟同频测量的测量周期和 /或每个测量周期内的测量时间,或者用于指示所 述虚拟同频测量的测量周期和 /或每个测量周期内的测量时间的标识携带于所述测量控 制信息中发送给所述 UE。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 所述将包含所述虚拟同频小区 的频点信息的测量控制信息发送至所述 UE之前包括:
获取 UE能力信息;
如果所述 UE能力信息指示所述 UE具有至少两个接收机时, 触发所述将包含所述 虚拟同频小区的频点信息的测量控制信息发送至所述 UE的步骤。
9、 根据权利要求 6或 7所述的方法, 其特征在于, 所述将包含所述虚拟同频小区 的频点信息的测量控制信息发送至所述 UE之前包括:
如果接收到所述 UE上报的测量报告, 所述的测量报告是所述 UE的第一接收机测 量到当前所处的小区的信号质量满足第一预置条件时上报的,所述第一接收机用于进行 数据传输; 或者, 如果基站确定所述 UE当前所处的小区的信号质量满足第一预置条件 时, 触发所述将包含所述虚拟同频小区的频点信息的测量控制信息发送至所述 UE的步 骤。
10、 一种数据测量方法, 其特征在于, 包括:
测量基站接收服务基站发送的 SRS ( Sounding reference signal, 探测参考符号)配置 或新的上行参考符号配置, 以及用户设备 (User Equipment, UE) 的上行测量符号上的 发射功率;
测量基站根据所述 SRS配置或新的上行参考符号配置,以及所述 UE的上行测量符 号上的发射功率对所述 UE进行测量, 得到所述 UE到测量基站的上行路损值;
测量基站根据所述上行路损值以及测量基站的发射功率, 获取 UE从测量基站接收 信号的接收信号功率。
11、 根据权利要求 10所述的方法, 其特征在于, 所述测量基站根据所述 SRS配置 或新的上行参考符号配置, 以及所述 UE的上行测量符号上的发射功率对所述 UE进行 测量, 得到所述 UE到测量基站的上行路损值包括:
测量基站根据所述 SRS配置对 SRS进行测量, 或根据新的上行参考符号配置对新 的上行参考符号进行测量, 得到 UE在参考符号上的接收功率;
测量基站对所述参考符号上的接收功率进行层三过滤, 得到层三接收功率; 测量基站将所述 UE的上行测量符号上的发射功率与所述层三接收功率之间的差值 作为所述 UE到测量基站的上行路损值。
12、 根据权利要求 10或 11所述的方法, 其特征在于, 所述测量基站根据所述上行 路损值以及测量基站的发射功率, 获取 UE从测量基站接收信号的接收信号功率包括: 测量基站将所述测量基站的发射功率与所述上行路损值之间的差值作为 UE从测量 基站接收信号的接收信号功率。
13、 根据权利要求 10或 11所述的方法, 其特征在于, 所述测量基站根据所述上行 路损值以及测量基站的发射功率, 获取 UE从测量基站接收信号的接收信号功率之后包 括:
当所述 UE从测量基站接收信号的接收信号功率满足预置条件时, 测量基站根据预 置的测量配置信息向所述服务基站上报包含所述 UE从测量基站接收信号的接收信号功 率的测量报告。
14、 一种数据测量方法, 其特征在于, 包括:
获取用户设备 (User Equipment, UE) 的上行测量符号上的发射功率;
向测量基站发送 SRS (Sounding reference signal, 探测参考符号)配置或新的上行参 考符号配置, 以及所述 UE的上行测量符号上的发射功率;
使得所述测量基站根据所述 SRS配置或新的上行参考符号配置,及所述 UE的上行 测量符号上的发射功率以及所述测量基站的发射功率测量所述 UE从测量基站接收信号 的接收信号功率。
15、 根据权利要求 14所述的方法, 其特征在于, 所述向测量基站发送 SRS配置或 新的上行参考符号配置, 以及所述 UE的上行测量符号上的发射功率之后包括:
接收所述测量基站根据预置的测量配置信息上报的测量报告,所述测量报告中包含 所述 UE从测量基站接收信号的接收信号功率;
根据所述测量基站上报的测量报告进行切换判决。
16、 根据权利要求 14或 15所述的方法, 其特征在于, 所述获取 UE的上行测量符 号上的发射功率包括:
根据 PEMAX— H, 以及 Pp。 aass确定 UE的上行测量符号上的发射功率;
或者,
接收 UE发送的测量结果以及功率余值报告, 根据所述测量结果以及功率余值报告 确定 UE的上行测量符号上的发射功率;
所述 PEMAX H为系统消息中广播的最大发射功率参数 IE P-Max 的数值, 所述
PpowerClass为 23dBm。
17、 一种用户设备, 其特征在于, 包括:
信息接收单元, 用于接收基站发送的测量控制信息, 所述测量控制信息中包含虚拟 同频小区的频点信息,所述虚拟同频小区为用户设备的第二接收机对应的频率层上的小 区;
第二接收机, 用于根据所述信息接收单元接收到的测量控制信息进行虚拟同频测
18、 根据权利要求 17所述的用户设备, 其特征在于, 所述用户设备还包括: 第三上报单元,用于当所述第二接收机得到的虚拟同频测量的结果显示所述虚拟同 频小区的信号质量满足第二预置条件时, 向所述基站上报虚拟同频测量的测量报告。
19、 一种基站, 其特征在于, 包括:
小区确定单元, 用于确定邻区中的虚拟同频小区, 所述虚拟同频小区为用户设备 (User Equipment, UE) 的第二接收机对应的频率层上的小区, 所述第二接收机仅用于 测量, 而不用于进行数据接收;
信息生成单元, 用于生成测量控制信息, 所述测量控制信息中包含所述小区确定单 元确定的虚拟同频小区的频点信息;
信息发送单元, 用于将所述信息生成单元生成的测量控制信息发送至所述 UE, 使 得所述 UE根据所述测量控制信息启动所述第二接收机进行虚拟同频测量。
20、 根据权利要求 19所述的基站, 其特征在于, 所述基站还包括:
获取单元, 用于获取所述 UE的 UE能力信息;
控制单元, 用于当所述获取单元获取到的 UE能力信息指示所述 UE具有至少两个 接收机时, 触发所述小区确定单元执行相应操作。
21、 一种服务基站, 其特征在于, 包括: 功率计算单元, 用于获取用户设备 (User Equipment, UE) 的上行测量符号上的发 射功率;
配置信息获取单元, 用于获取 SRS (Sounding reference signal, 探测参考符号)配置 或新的上行参考符号配置;
配置信息发送单元,用于向测量基站发送所述配置信息获取单元获取的 SRS配置或 新的上行参考符号配置, 以及所述功率计算单元获取的所述 UE的上行测量符号上的发 射功率, 使得所述测量基站根据所述 SRS配置或新的上行参考符号配置, 及所述 UE的 上行测量符号上的发射功率以及所述测量基站的发射功率测量 UE从测量基站接收信号 的接收信号功率。
22、 根据权利要求 21所述的服务基站, 其特征在于, 所述服务基站还包括: 第二报告接收单元,用于接收所述测量基站根据预置的测量配置信息上报的测量报 告, 所述测量报告中包含所述 UE从测量基站接收信号的接收信号功率;
判决单元, 用于根据所述第二报告接收单元接收到的测量报告进行切换判决。
23、 一种测量基站, 其特征在于, 包括:
信息获取单元,用于接收服务基站发送的 SRS (Sounding reference signal, 探测参考 符号) 配置或新的上行参考符号配置, 以及用户设备 (User Equipment, UE) 的上行测 量符号上的发射功率;
第一计算单元,用于根据信息获取单元获取的所述 SRS配置或新的上行参考符号配 置, 以及 UE的上行测量符号上的发射功率对所述 UE进行测量得到所述 UE到测量基 站的上行路损值;
功率获取单元, 用于获取所述测量基站的发射功率;
第二计算单元,用于根据所述第一计算单元计算得到的上行路损值以及所述功率获 取单元获取的所述测量基站的发射功率,计算 UE从测量基站接收信号的接收信号功率。
24、 根据权利要求 23所述的测量基站, 其特征在于, 所述第一计算单元包括: 功率测量模块, 用于根据信息获取单元获取的 SRS配置对 SRS上行参考符号进行 测量, 或根据信息获取单元获取的新的上行参考符号配置对新的上行参考符号进行测 量, 得到 UE在参考符号上的接收功率;
过滤模块,用于对所述功率测量模块测量得到的参考符号上的接收功率进行层三过 滤, 得到层三接收功率;
计算模块, 用于将所述信息获取单元获取的 UE的上行测量符号上的发射功率与所 述过滤模块得到的层三接收功率之间的差值作为所述 UE到测量基站的上行路损值。
25、 根据权利要求 23或 24所述的测量基站, 其特征在于, 所述测量基站还包括: 测量上报单元, 用于当所述第二计算单元计算得到的 UE从测量基站接收信号的接 收信号功率功率满足预置条件时,根据预置的测量配置信息向所述服务基站上报包含所 述 UE从测量基站接收信号的接收信号功率的测量报告。
26、 一种通信系统, 其特征在于, 包括:
如权利要求 17或 18所述的用户设备;
以及如权利要求 19或 20所述的基站。
27、 一种通信系统, 其特征在于, 包括:
如权利要求 21或 22所述的服务基站;
以及如权利要求 23至 25中任一项所述的测量基站。
PCT/CN2011/083687 2010-12-08 2011-12-08 一种数据测量方法、通信系统以及设备 WO2012075953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11847457.6A EP2642785B1 (en) 2010-12-08 2011-12-08 Methods and devices for data measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010579179.2A CN102572913B (zh) 2010-12-08 2010-12-08 一种数据测量方法及通信系统以及相关设备
CN201010579179.2 2010-12-08

Publications (1)

Publication Number Publication Date
WO2012075953A1 true WO2012075953A1 (zh) 2012-06-14

Family

ID=46206631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083687 WO2012075953A1 (zh) 2010-12-08 2011-12-08 一种数据测量方法、通信系统以及设备

Country Status (3)

Country Link
EP (1) EP2642785B1 (zh)
CN (1) CN102572913B (zh)
WO (1) WO2012075953A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906179A (zh) * 2012-12-28 2014-07-02 中国电信股份有限公司 上报用户终端的频率支持信息的方法和系统
CN105828337A (zh) * 2014-09-17 2016-08-03 中兴通讯股份有限公司 一种动态构建虚拟小区的方法和装置
CN104602267B (zh) * 2015-01-30 2018-10-26 深圳酷派技术有限公司 一种异频测量非授权频谱的测量间隔配置方法及服务基站
CN106572478B (zh) * 2016-11-14 2020-09-08 上海华为技术有限公司 一种构造无线栅格的方法及基站
BR112019012954A2 (pt) 2017-01-05 2019-11-26 Guangdong Oppo Mobile Telecommunications Corp Ltd método e dispositivo para acesso aleatório
CN108738083B (zh) 2017-04-14 2021-01-15 中国移动通信有限公司研究院 一种触发终端同频测量的方法、装置、终端及基站
CN112235837B (zh) * 2019-07-15 2022-07-12 华为技术有限公司 一种切换方法以及通信装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100167660A1 (en) * 2008-12-25 2010-07-01 Kabushiki Kaisha Toshiba Wireless communication apparatus and wireless communication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405950B1 (ko) * 2007-10-02 2014-06-12 엘지전자 주식회사 단말의 이동성 지원 방법 및 이를 지원하는 이동 통신 단말
US9226205B2 (en) * 2008-04-25 2015-12-29 Interdigital Patent Holdings, Inc. Multi-cell WTRUs configured to perform mobility procedures and methods
US8687589B2 (en) * 2008-08-13 2014-04-01 Qualcomm Incorporated Neighbor cell search on a secondary carrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100167660A1 (en) * 2008-12-25 2010-07-01 Kabushiki Kaisha Toshiba Wireless communication apparatus and wireless communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "Gap handling for CDMA2000 measurements", 3GPP TSG-RAN WG2 #59-BIS, TDOC R2-074099, 12 October 2007 (2007-10-12), SHANGHAI, CHINA *
NORTEL NETWORKS ET AL.: "3GPP2 1xRTT Measurement reports and control", 3GPP TSG-RAN WG 2 MEETING #59, R2-073578, 24 August 2007 (2007-08-24), ATHENS, GREECE *
QUALCOMM EUROPE: "Uplink channel measurements in neighboring cells", 3GPP TSG-RAN WG2 #58BIS, R2-072601, 29 June 2007 (2007-06-29), ORLANDO, FLORIDA USA *

Also Published As

Publication number Publication date
EP2642785A1 (en) 2013-09-25
CN102572913A (zh) 2012-07-11
CN102572913B (zh) 2015-09-09
EP2642785B1 (en) 2019-07-31
EP2642785A4 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
US10356793B2 (en) Method and apparatus for reporting performance of terminal in mobile communication system
US9363721B2 (en) In-device coexistence interference report control method and apparatus of network in mobile communication system
WO2012075953A1 (zh) 一种数据测量方法、通信系统以及设备
CN101636986B (zh) 用于高速下行链路分组接入链路自适应的方法和设备
US8971226B2 (en) Method and apparatus for dynamic and adjustable energy savings in a communication network
US20140295820A1 (en) Method and apparatus for effectively reducing power consumption of terminal in mobile communication system
JP6403203B2 (ja) 無線通信システム、端末装置、基地局装置、無線通信方法および集積回路
KR20150021490A (ko) 이동통신 시스템에서 작은 크기의 데이터를 송수신하는 방법 및 장치
WO2012136122A1 (zh) 功率调整方法和基站
US20210385836A1 (en) Multiple uplink carriers in a cell deployed in unlicensed spectrum
WO2014048182A1 (zh) 一种实现小小区为ue服务的方法、装置和系统
WO2014047830A1 (zh) 多rat网络下的无线资源协调调度方法
EP2772085B1 (en) Apparatus and method for time domain icic with muting pattern comprising fixed and optional parts
WO2016091276A1 (en) Uplink power control mechanism
KR101858378B1 (ko) 우선순위화된 셀 식별 및 측정 방법
WO2014194799A1 (zh) 通信方法、无线网络控制器和用户设备
WO2014139088A1 (zh) 功率控制方法及装置
WO2010096968A1 (zh) 压缩模式参数的配置及测量方法、装置、系统
WO2013141336A1 (ja) 通信システム、無線基地局装置、無線端末装置、通信制御方法および通信制御プログラム
WO2013110353A1 (en) Method and apparatus for dynamic and adjustable energy savings in a cellular communication network
US20220377674A1 (en) Power control for bidirectional sidelink
WO2023282303A1 (ja) 通信装置、基地局及び通信方法
US20150280889A1 (en) Channel timing method, apparatus, and communication system for multiflow transmission
WO2014198185A1 (zh) 传输功率控制比特的发送方法、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011847457

Country of ref document: EP