WO2012075914A1 - 一种实现点到多点标签交换路径保护的方法及系统 - Google Patents

一种实现点到多点标签交换路径保护的方法及系统 Download PDF

Info

Publication number
WO2012075914A1
WO2012075914A1 PCT/CN2011/083405 CN2011083405W WO2012075914A1 WO 2012075914 A1 WO2012075914 A1 WO 2012075914A1 CN 2011083405 W CN2011083405 W CN 2011083405W WO 2012075914 A1 WO2012075914 A1 WO 2012075914A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
protection
working
leaf node
node
Prior art date
Application number
PCT/CN2011/083405
Other languages
English (en)
French (fr)
Inventor
代雪会
吴波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012075914A1 publication Critical patent/WO2012075914A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • the present invention relates to a MPLS-TP (Transport Profile for Multi-Protocol Label Switching) technology, and more particularly to a method and system for implementing point-to-multipoint label switched path protection.
  • MPLS-TP Transport Profile for Multi-Protocol Label Switching
  • TDM time division multiplexing
  • IP-based IP-based
  • OAM Operation Administration and Maintain
  • protected packet transmission technology under this demand, the industry has proposed the concept of packet transport network (PTN, Packet Transport Network).
  • PTN Packet Transport Network
  • MPLS-TP Transport Profile for Multi-Protocol Label Switching
  • MPLS-TP technology is jointly developed by IETF and ITU-T. It is pointed out in RFC5654 (MPLS-TP requirements) that MPLS-TP needs to support point-to-point (P2P) and point-to-multipoint (P2MP) transmission paths. Arbitrary topology structure, and can protect the above transmission path, that is, a detailed requirement for survivability. Network survivability is the ability to provide recovery traffic transmission when traffic is interrupted or performance is degraded due to a network failure. This resiliency is called Recovery.
  • SLAs Service Level Agreements
  • the currently defined Recovery includes two mechanisms: Protection and Recovery.
  • Restoration Protection is a mechanism for pre-establishing one or more protection paths for one or more working paths and allocating resources for the protection paths. The simplest mechanism is to protect one working path (that is, 1). +1 protection). Restoration can use any available resource.
  • the rerouting mechanism triggers the establishment of a new transmission path instead of the invalid working path after the working path fails. It can be seen that Protection can quickly complete service recovery. Generally, the packet network requires protection switching to be completed in 50 ms; and Restoration recovers service for a relatively long time.
  • the MPLS-TP requirements and protection framework states that point-to-multipoint (P2MP, Point-to-multipoint, definition can be found in RFC4875) label switched path (LSP, Label Switched Path, RFC3209) requires 1+1 protection and works simultaneously.
  • P2MP Point-to-multipoint
  • LSP Label Switched Path
  • RFC4872 and RFC4873 are control plane-based protection mechanisms that provide end-to-end protection and segment protection for P2P LSPs and P2MP LSPs.
  • the control plane-based protection mechanism is used for P2MP LSP protection, the P2MP LSP is created based on the entire P2MP tree, and the working P2MP LSP and the protected P2MP LSP are preferably different paths to avoid a single fault. The working LSP and the protection LSP are unavailable.
  • Figure 1 shows the implementation of the existing P2MP LSP protection. S is the root node, L is the leaf node, and the path indicated by the solid line is the working P2MP LSP. The path indicated is to protect the P2MP LSP.
  • the root node sends the received service traffic to the working P2MP LSP and the protected P2MP LSP at the same time.
  • the leaf node only chooses to receive the working LSP or the protection LSP.
  • One of the above traffic will discard the stream received from the other path, which results in the required bandwidth being twice the bandwidth required by the actual service, and there is a waste of 50% of the network resources.
  • the control plane-based protection mechanism is implemented for the entire P2MP tree, that is, the root node and the leaf node of the working P2MP LSP and the protection P2MP LSP are identical, and it is not possible to select only some of the branches. Protection, so there is a lack of flexibility. Summary of the invention
  • the main object of the present invention is to provide a method and system for implementing point-to-multipoint label switched path protection, which can perform end-to-end protection based on branch flexibility and save network bandwidth resources.
  • a method for implementing point-to-multipoint label switched path protection including:
  • the root node is a leaf node that needs to be branch protected, and a working branch and a protection branch are respectively created.
  • the root node sends traffic to the leaf node on the working branch and the protection branch. Normally, the leaf node receives the service from the working branch, and when the working branch fails, the leaf node receives the service from the protection branch.
  • the root node separately creates a working branch and a protection branch as:
  • the root node After receiving the P2MP LSP establishment request, the root node calculates two different routes for each leaf node or part of the leaf nodes according to the pre-configuration, and creates two branches, one of which works as a work. Branch, one as a protection branch.
  • the working branch and the protection branch are different routes.
  • the root node separately creates a working branch and a protection branch, and further includes:
  • the root node indicates, in the RSVP-TE Path message based on the traffic engineering resource reservation path, a specific protection type and a type of each branch to the leaf node;
  • the root node After the root node receives the Resv message from the working and/or protection branches of all the leaf nodes, the root node completes the process of creating the P2MP LSP.
  • the leaf node receives the service on the protection branch: when the leaf node detects that a fault occurs on its working branch, the leaf node switches to receive the service from the protection branch; and, in the subsequent transmission, the Resv refresh The message indicates that the leaf node uses the protection branch to receive service data.
  • the indicating, in the Resv refresh message, that the leaf node currently uses the protection branch to receive the service data is: setting the 0 field in the protection sub-object of the Resv refresh message to 1.
  • a system for implementing point-to-multipoint label switched path protection comprising: a root node, and one or more leaf nodes; wherein
  • the root node is configured to create a working branch and a protection branch respectively for each leaf node that needs to be branch protected; and send a service to the leaf node on the working branch and the protection branch;
  • the leaf node is configured to receive a service from a working branch under normal conditions, and receive a service from the protection branch when a fault occurs on the working branch.
  • the working branch and the protection branch are different routes.
  • a method for implementing point-to-multipoint label switched path protection including:
  • the working node and the protection branch are configured for each leaf node that needs to be protected by the branch; the root node sends a service to the leaf node on the working branch and the protection branch; normally, the leaf node receives the service from the working branch, and works. When a failure occurs on the branch, the leaf node receives traffic from the protection branch.
  • the root node is a leaf node that needs branch protection, and a protection branch and a work branch are respectively created; the root node sends a service to the leaf node on the working branch and the protection branch; Next, the leaf node receives the service on the working branch, and when the fault occurs on the working branch, the leaf node receives the service on the protection branch.
  • the method for implementing the point-to-multipoint label switching path protection by the present invention can perform end-to-end protection for all branches or partial branches for the branch, so that the implementation of the multi-point label switching path protection is more flexible. Save network resources; further, focus on certain branches Use, to save more network resources.
  • Figure 1 is a schematic diagram of the implementation of the existing P2MP LSP protection
  • FIG. 2 is a flowchart of a method for implementing point-to-multipoint label switching path protection according to the present invention
  • FIG. 3 is a schematic diagram of a first embodiment of a method for implementing point-to-multipoint label switching path protection according to the present invention
  • FIG. 4 is a schematic diagram of a second embodiment of a method for implementing point-to-multipoint label switched path protection according to the present invention. detailed description
  • the root node is a leaf node that needs branch protection, and respectively creates a working branch and a protection branch; the root node sends a service to the leaf node on the working branch and the protection branch; under normal circumstances, the leaf node works from When a branch receives a service and a fault occurs on the working branch, the leaf node receives the service from the protection branch.
  • FIG. 2 is a flowchart of a method for implementing point-to-multipoint label switched path protection according to the present invention. As shown in FIG. 2, the method includes the following steps:
  • Step 200 The root node is a leaf node that needs branch protection, and a working branch and a protection branch are respectively created. This step specifically includes:
  • the root node calculates two different routes for each leaf node or part of the leaf nodes according to the pre-configuration, and creates two branches, one of which acts as a working branch and one serves as a protection branch.
  • the pre-configuration directive indicates that no specific leaf or leaf branches are protected, all the branches are protected by default; if the pre-configuration indicates that one or some leaf nodes require branch protection, then the indications are specified.
  • a leaf node that needs branch protection creates a protection branch, and the remaining leaf nodes do not need to create a protection branch, or establish a routing information that has been explicitly specified in the request. In this case, the root node does not need to calculate the route.
  • the working branch and the protection branch are different routes; however, the protection branch of the root node to a leaf node may be shared with the working node or the protection branch portion of the root node to other leaf nodes.
  • the root node indicates the specific protection type (such as the protection type is 1+1 protection) to the leaf node in the RSVP-TE Path message of the traffic engineering-based resource reservation path message of the P2MP, and the type of each branch is
  • the working branch is also the protection branch, which branch will be used to forward/receive data;
  • the leaf node receives the resource reservation protocol path (RSVP-TE Path) message of the traffic engineering, identifies the protection type, the working branch and the protection branch, and saves After obtaining the information, the upstream node sends a reservation (Resv) message according to the existing manner, and performs label allocation and resource reservation.
  • RSVP-TE Path resource reservation protocol path
  • the root node After the root node receives the Resv message from the working and/or protection branches of all the leaf nodes, the root node successfully completes the P2MP LSP creation process. Indicates in the Resv message that the leaf node will use the working branch to receive traffic.
  • each leaf node can also be statically configured.
  • the specific implementation can be referred to the third embodiment.
  • Step 201 The root node sends a service to the leaf node on the working branch and the protection branch. Normally, the leaf node receives the service from the working branch. When the working branch fails, the leaf node receives the service from the protection branch.
  • the P2MP service is sent to each working branch and protection branch on the root node of the P2MP LSP.
  • the leaf node chooses to receive services from the working branch. And perform end-to-end P2MP connectivity check/connection verification (CC/CV, Continuity Check/Connective Verification) on the P2MP LSP for fault detection.
  • CC/CV End-to-end P2MP connectivity check/connection verification
  • Continuity Check/Connective Verification Continuity Check/Connective Verification
  • a leaf node When a leaf node detects a failure on its working branch, it immediately switches to receiving the service from the protection branch; and if the LSP is dynamically created, it indicates that the leaf node is currently used in the next sent Resv refresh message.
  • the protection branch receives business data.
  • the leaf node does not receive the connectivity check message on its corresponding working branch within a certain period of time (usually 3.5 times the CC/CV transmission interval), it is considered that a fault occurs on the working branch.
  • end-to-end protection may be selected for all branches or partial branches, so that the implementation of multi-point label switching path protection is more flexible. It also saves network resources; further, reuse of certain branches, which saves network resources.
  • the present invention also provides a system for implementing point-to-multipoint label switched path protection, including a root node and a leaf node, where
  • the root node is configured to create a working branch and a protection branch respectively for each leaf node that needs to be branched, and send a service to the leaf node on the working branch and the protection branch.
  • the working branch and the protection branch are different routes; however, the protection branch of the root node to a leaf node may be shared with the working branch or the protection branch of the root node to other leaf nodes.
  • a leaf node is used to receive services on the working branch under normal conditions and receive services on the protection branch when a fault occurs on the working branch.
  • 3 is a schematic diagram of a first embodiment of a method for implementing point-to-multipoint label switched path protection according to the present invention. As shown in FIG. 3, it is assumed that a root node (S node) receives a P2MP LSP with a 1+1 protection attribute. A request is established, where the address of the root node, the address of the leaf node, the indication of whether the working branch corresponding to the leaf node needs protection, and the 1+1 protection attribute are specified. In this embodiment, 3 ⁇ 4 ⁇ indicates that all working branches corresponding to the leaf nodes need to be protected.
  • the S node calculates the route to each leaf node.
  • two different routes need to be calculated here, one of which acts as a working branch and the other as a protection branch, and the two branch routes cannot pass through the same node except the root node and the leaf node.
  • the protection branch route of a leaf node may be routed to the same node or link of one or some of the other leaf node's working branch or protection branch.
  • Table 1 shows the path information of the working and protection branches to the respective leaf nodes calculated in this embodiment.
  • the working branch is represented by a solid line
  • the protection branch is represented by a non-solid line.
  • the S node starts to create the P2MP LSP by constructing an RSVP-TE Path message from the root node according to the calculated route of each branch.
  • each leaf node since each leaf node has two branches, one of which is a working branch and the other is a protection branch, it is necessary to indicate in the RSVP-TE Path message which is a working branch, which is a protection branch, and each The leaf node will be received using the working branch.
  • the specific protection type (such as the protection type is 1+1 protection), and the attributes of the working branch/protection branch, such as the type of each branch, such as the working branch or the protection branch, which branch will be used to forward/receive data, etc.
  • Protection information can be specified in the PROTECTION sub-object.
  • Table 2 shows the format of the protection sub-object defined in the existing standard (RFC4873), where The LSP Flags field is used to describe the type of protection.
  • the protection type is set to 0x08.
  • RFC4872 and RFC4873 which will not be introduced here.
  • information about all branches is carried in an RSVP-TE Path message, including an explicit route of each branch (carried by ERO or SERO, where the ERO describes the complete or partial node information of a path, Only the ERO in the point-to-point path, SERO is extended in the point-to-multipoint LSP protocol, because the point-to-multipoint LSP has multiple branches, and the explicit routing information of one of the branches is selected in the ERO.
  • the other branch information is carried in the SERO, respectively, and a protection sub-object is inserted in the ERO or SERO object of each branch, indicating whether the branch is a working branch or a protection branch, and the protection type (first implementation)
  • the LSP Flags in the ERO or SERO protection sub-objects in each branch are the same, that is, both are 0x08).
  • the leaf node receives the RSVP-TE Path message, saves the protection type, the work, and the protection branch in the local state, and returns a Resv message to the upstream node to allocate the label and reserve the resource.
  • the S node receives the Resv message of all the downstream nodes, the entire P2MP LSP is established successfully.
  • the RRO or SRRO object in the Resv message continues to carry the protection sub-object, and the content of the protection sub-object is copied from the RSVP-TE Path message.
  • the S2 node receives the Resv message from all the leaf nodes, indicating that the P2MP LSP with the protection attribute is created successfully.
  • the P2MP LSP with the 1+1 protection attribute created in this embodiment is as shown in FIG. 3, wherein the branch indicated by the solid line is the working branch, and the branch represented by the other line type is the protection branch, and the allocated line is marked next to the line.
  • the label here is the downstream label assignment. It should be noted that the allocation of the label is a technical means that is well-known to those skilled in the art, and is not described herein, and the specific implementation is not intended to limit the scope of the present invention.
  • the P2MP service is simultaneously sent to the working branch and the protection branch on the S node of the P2MP LSP, and the leaf node chooses to receive from the working branch and runs the end-to-end P2MP CC/CV performs fault detection.
  • a protected leaf node it is received according to the stream of the received stream, otherwise it is discarded.
  • leaf node L1 will receive two streams with labels 20 and 31 respectively, but leaf node L1 will discard the stream with label 31 because the stream is received from the protection branch; , L2, L3, L4, L5, and L6 discard streams with labels of 32, 37, 38, 35, and 36, respectively.
  • the end-to-end proactive P2MP CC/CV can be run on the P2MP LSP for fault detection.
  • the leaf nodes L5 and L6 cannot receive the CC/CV message from the S node within the specified time, and it is determined that a fault occurs on the working branches of L5 and L6.
  • L5 and L6 choose to switch to receive traffic from the protection branch.
  • L5 and L6 in the Resv message sent upstream indicate that the branch currently uses the protection branch to receive the service, and is implemented by setting the 0 field in the protection sub-object of the Resv refresh message of the protection branch to 1.
  • the settings of S, P, and 0 in the protection sub-objects of each branch are as shown in Table 3:
  • FIG. 4 is a schematic diagram of a second embodiment of a method for implementing point-to-multipoint label switching path protection according to the present invention.
  • a node created by an S node is only protected to branches of leaf nodes L1, L2, L3, and L4.
  • a P2MP LSP is only protected to branches of leaf nodes L1, L2, L3, and L4.
  • the working branch and the protection branch may be explicitly specified, that is, the routes of each branch are configured on the S node of the P2MP LSP, and the working branches corresponding to the leaf nodes L1, L2, L3, and L4 are specified in the configuration.
  • the S-node will construct an RSVP-TE message according to all the configuration information to create the P2MP LSP.
  • the method for creating a specific Path and Resv message is the same as that in the first embodiment, and is not described here. It is emphasized that the protection branch is only created for the leaf nodes that need branch protection, so that the implementation of the invention based on the end-to-end protection of the branches is more flexible.
  • the third embodiment is a completely static configuration, that is, no control plane protocol is used.
  • the point-to-multipoint LSP with protection in the present invention can be statically configured in addition to the control plane protocol created in the first embodiment and the second embodiment, and is specifically divided into a root node configuration and an intermediate node. Configuration, and configuration of leaf nodes.
  • Root node configuration Configure the information of each branch on each outbound interface of the root node, including the tunnel identifier, protection type, branch information, and the relationship between the working branch and the protection branch.
  • the branch information here mainly includes the branch attribute (that is, the branch attribute). Whether the branch is a working branch or a protection branch), The branch number (unique under the tunnel), the next hop node address of the branch, the destination address of the branch (that is, the address of the corresponding leaf node), the outgoing interface, and the outgoing label.
  • the intermediate node Because it is end-to-end protection, the intermediate node does not need to know the information of the working branch and the protection branch. Therefore, the information related to protection does not need to be configured on the intermediate node.
  • the information that the intermediate node needs to configure on each inbound interface and outbound interface includes: ⁇ inbound interface, inbound label, outbound interface, outbound label ⁇ , and the address of the next hop node.
  • the configuration of the leaf node is configured on each ingress interface of each leaf node: the tunnel identifier, the address of the root node, the address of the leaf node, the type of protection, the information of the branch, the association relationship between the working branch and the protection branch.
  • the information of the branch here mainly includes the branch attribute (that is, whether the branch is a working branch or a protection branch), the branch number (only unique under the tunnel), the next hop node address of the branch, and the destination address of the branch (that is, the address of the corresponding leaf node). , inbound interface and inbound label.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种实现点到多点标签交换路径保护的方法及系统 技术领域
本发明涉及多协议标签交换传输框架(MPLS-TP, Transport Profile for Multi-Protocol Label Switching )技术, 尤指一种实现点到多点标签交换路径 保护的方法及系统。 背景技术
在电信业务 IP化趋势的推动下, 传送网承载的业务从以时分复用 ( TDM, Time Division Multiplexing )为主向以 IP为主转变, 这就需要一种 能够有效传输分组业务, 并提供电信级操作管理维护 (OAM , Operations Administration and Maintain )和保护的分组传输技术。 在这种需求下, 业界 提出了分组传送网 ( PTN , Packet Transport Network ) 的概念, 多协议标签 交换传输 4ϋ架 ( MPLS-TP , Transport Profile for Multi-Protocol Label Switching )就是一种 PTN的技术。
MPLS-TP技术是由 IETF和 ITU-T联合开发的,在 RFC5654( MPLS-TP 需求) 中指出, MPLS-TP需要支持点到点 (P2P )和点到多点 (P2MP ) 的 传送路径, 支持任意的拓朴结构, 并且能够对上述传送路径进行保护, 即 对生存性提出了详细的需求。 网络生存性是指由于网络发生故障而导致流 量传输中断或性能衰减时, 提供恢复流量传输的一种能力, 这种恢复能力 称为 Recovery。 在传送网中, 生存性对业务的可靠传输起着至关重要的作 用, 并且服务等级协议 ( SLAs, Service Level Agreements )提供的有保证服 务也要求网络能快速检测到设备故障、 并能在规定的时间内完成保护操作 即恢复业务的传输。
目前定义的 Recovery 包括两种机制: 保护 (Protection ) 和恢复 Restoration Protection是一种预先为一条或多条工作路径建立一条或多条 保护路径, 并已为保护路径分配好资源的机制, 最简单的机制是一条保护 路径用来保护一条工作路径(也就是 1+1保护)。 而 Restoration则可以使用 任何可用的资源, 一般指通过重路由机制在工作路径失效后触发建立一条 新的传送路径来代替失效的工作路径。 可见, Protection能够快速完成业务 恢复,通常,分组网络要求保护倒换能在 50ms的时间内完成;而 Restoration 恢复业务的时间相对较长。
MPLS-TP 需求和保护框架中指出 , 对点到多点 ( P2MP , Point-to-multipoint, 定义可参见 RFC4875 ) 标签交换路径 (LSP , Label Switched Path, RFC3209 )需要提供 1+1保护, 同时工作路径和保护路径的 建立及绑定支持静态或动态 (如果存在控制平面的情况下, 通过控制平面 协议创建和绑定) 的方式。
RFC4872和 RFC4873是基于控制平面的保护机制,可以实现对 P2P LSP 和 P2MP LSP的端到端保护和段保护。 但是, 当该基于控制平面的保护机 制用于 P2MP LSP保护时,是基于整棵 P2MP树创建保护 P2MP LSP的,且 要求工作 P2MP LSP和保护 P2MP LSP最好是不同路的,以避免单个故障导 致工作 LSP和保护 LSP都不可用的情况,如图 1所示,图 1为现有 P2MP LSP 保护的实现示意图, S 为根节点, L 为叶子节点, 实线表示的路径为工作 P2MP LSP, 虚线表示的路径为保护 P2MP LSP, 如果是 1+1保护结构的话, 根节点会将接收到的业务流量同时发送到工作 P2MP LSP和保护 P2MP LSP 上, 而叶子节点只会选择接收工作 LSP或保护 LSP上的一份流量, 即会丟 弃从另外一条路径上接收到的流, 这样就导致了所需带宽为实际业务所需 带宽的两倍, 存在了 50%网络资源的浪费。 而且, 这种基于控制平面的保 护机制是针对整棵 P2MP树进行的, 即工作 P2MP LSP和保护 P2MP LSP 的根节点和叶子节点是完全相同的, 而不能选择只对其中的某些分支进行 保护, 因此缺少了一定的灵活性。 发明内容
有鉴于此, 本发明的主要目的在于提供一种实现点到多点标签交换路 径保护的方法及系统, 能够基于分支灵活进行端到端的保护, 并节省网络 带宽资源。
为达到上述目的, 本发明的技术方案是这样实现的:
一种实现点到多点标签交换路径保护的方法, 包括:
根节点为需要进行分支保护的各叶子节点, 分别创建工作分支和保护 分支;
根节点在工作分支和保护分支上向叶子节点发送业务; 正常情况下, 叶子节点从工作分支上接收业务, 工作分支上发生故障时, 叶子节点从保 护分支上接收业务。
所述根节点分别创建工作分支和保护分支为:
所述根节点接收到点到多点标签交换路径 P2MP LSP建立请求后, 按 照预先配置, 为所有的叶子节点或部分叶子节点分别计算出两条不同的路 由并创建两个分支, 其中一个作为工作分支, 一个作为保护分支。
所述工作分支和保护分支是不同路由。
所述根节点分别创建工作分支和保护分支还包括:
所述根节点在基于流量工程的资源预留路径 RSVP-TE Path消息中, 向 叶子节点指明具体的保护类型、 每个分支的类型;
所述叶子节点接收到 RSVP-TE Path消息, 识别出所述保护类型、 以及 每个分支的类型, 向上游节点发送预留 Resv消息; 在所述 Resv消息中指 明所述叶子节点将使用工作分支接收业务;
所述根节点接收到来自所有叶子节点的工作和 /或保护分支的所述 Resv消息后, 完成点到多点标签交换路径 P2MP LSP的创建过程。 所述工作分支上发生故障时, 叶子节点在保护分支上接收业务为: 所述叶子节点检测到其工作分支上发生故障时, 切换到从保护分支上 接收业务; 并且, 在后续发送的 Resv刷新消息中指明所述叶子节点使用保 护分支接收业务数据。
所述在 Resv刷新消息中指明该叶子节点目前使用保护分支接收业务数 据为: 将所述 Resv刷新消息的保护子对象中的 0字段设置为 1。
一种实现点到多点标签交换路径保护的系统, 包括: 根节点、 及一个 或一个以上叶子节点; 其中,
根节点, 用于为需要进行分支保护的各叶子节点, 分别创建工作分支 和保护分支; 在工作分支和保护分支上向叶子节点发送业务;
所述叶子节点, 用于正常情况下, 从工作分支上接收业务, 工作分支 上发生故障时, 从保护分支上接收业务。
所述工作分支和保护分支是不同路由。
一种实现点到多点标签交换路径保护的方法, 包括:
为需要进行分支保护的各叶子节点, 配置工作分支和保护分支; 根节点在所述工作分支和保护分支上向叶子节点发送业务; 正常情况 下, 所述叶子节点从工作分支上接收业务, 工作分支上发生故障时, 所述 叶子节点从保护分支上接收业务。
从上述本发明提供的技术方案可以看出, 包括根节点为需要进行分支 保护的各叶子节点, 分别创建保护分支和工作分支; 根节点在工作分支和 保护分支上向叶子节点发送业务; 正常情况下, 叶子节点在工作分支上接 收业务, 在工作分支上发生故障时, 叶子节点在保护分支上接收业务。 通 过本发明实现点到多点标签交换路径保护的方法, 针对分支进行的, 可以 选择对所有的分支或部分分支进行端到端保护, 使得多点标签交换路径保 护的实现更具灵活性, 也节省了网络资源; 进一步地, 对某些分支进行重 用, 更加节省了网络资源。 附图说明
图 1为现有 P2MP LSP保护的实现示意图;
图 2为本发明实现点到多点标签交换路径保护的方法的流程图; 图 3 为本发明实现点到多点标签交换路径保护的方法的第一实施例的 示意图;
图 4为本发明实现点到多点标签交换路径保护的方法的第二实施例的 示意图。 具体实施方式
本发明的基本思想是: 根节点为需要进行分支保护的各叶子节点, 分 别创建工作分支和保护分支; 根节点在工作分支和保护分支上向叶子节点 发送业务; 正常情况下, 叶子节点从工作分支上接收业务, 工作分支上发 生故障时, 叶子节点从保护分支上接收业务。
图 2为本发明实现点到多点标签交换路径保护的方法的流程图,如图 2 所示, 包括以下步驟:
步驟 200: 根节点为需要进行分支保护的各叶子节点, 分别创建工作分 支和保护分支。 本步驟具体包括:
首先, 根节点接收到 P2MP LSP建立请求后, 按照预先配置, 为所有 的叶子节点或部分叶子节点分别计算出两条不同的路由并创建两个分支, 其中一个作为工作分支, 一个作为保护分支。 这里, 如果预先配置指示不 指明具体的哪个或哪些叶子节点对应的分支被保护, 则默认所有的分支都 被保护; 如果预先配置指示出某一个或某些叶子节点需要分支保护, 则对 这些指明需要分支保护的叶子节点创建保护分支, 而其余的叶子节点不需 要创建保护分支, 或建立请求中已经显式指定了各个分支的路由信息的情 况下根节点就不需要去计算路由了。 其中, 对路由的选择以及保护分支和 工作分支的创建具体实现属于本领域技术人员的惯用技术手段, 这里不再 赘述。 特别地, 工作分支和保护分支是不同路由的; 但是, 根节点到某个 叶子节点的保护分支, 可以与根节点到其它叶子节点的工作分支或保护分 支部分共路。
接着, 根节点在 P2MP 的基于流量工程的资源预留路径消息即 RSVP-TE Path消息中,向叶子节点指明具体的保护类型(如保护类型为 1+1 保护)、 以及每个分支的类型如是工作分支还是保护分支、 哪个分支将被用 作转发 /接收数据; 叶子节点接收到流量工程的资源预留协议的路径 ( RSVP-TE Path ) 消息, 识别出保护类型、 工作分支和保护分支, 保存获 得的信息后, 向上游节点按照现有方式发送预留 (Resv ) 消息, 进行标签 分配和资源预留等。
最后, 根节点接收到来自所有叶子节点的工作和 /或保护分支的 Resv 消息后, 成功完成 P2MP LSP的创建过程。 在 Resv消息中指明该叶子节点 将使用工作分支接收业务。
需要说明的是, 上述三个步驟适用于基于 RSVP-TE协议的创建方式。 各叶子节点的工作分支和保护分支也可以采用静态的配置方式。 具体实现 可参见第三实施例。
步驟 201 : 根节点在工作分支和保护分支上向叶子节点发送业务; 正常 情况下, 叶子节点从工作分支上接收业务, 在工作分支上发生故障时, 叶 子节点从保护分支上接收业务。
本步驟中, 正常情况下, P2MP业务在 P2MP LSP的根节点上双发到每 个工作分支和保护分支上, 而叶子节点选择从工作分支上接收业务。 并在 P2MP LSP上运行端到端的 P2MP连通性检查 /连接确认( CC/CV, Continuity Check/ Connectivity Verification )进行故障检测。 叶子节点虽然会从工作分支和保护分支上接收到两份流, 但是, 由于 叶子节点在 Resv消息中指明了从工作分支上接收, 因此, 叶子节点从保护 分支上接收到的流会被丟弃。
当某个叶子节点检测到其工作分支上发生故障时, 立即切换到从保护 分支上接收业务;并且,如果该 LSP是动态创建的,那么在下次发送的 Resv 刷新消息中指明该叶子节点目前使用保护分支接收业务数据。 这里, 如果 叶子节点在一定时间内 (通常是 3.5倍的 CC/CV发送间隔)接收不到其对 应的工作分支上的连通性检测报文, 即认为在工作分支上发生故障。
在本发明实现点到多点标签交换路径保护的方法中, 针对分支进行的, 可以选择对所有的分支或部分分支进行端到端保护, 使得多点标签交换路 径保护的实现更具灵活性, 也节省了网络资源; 进一步地, 对某些分支进 行重用, 更加节省了网络资源。
本发明还提供一种实现点到多点标签交换路径保护的系统, 包括根节 点、 及叶子节点, 其中,
根节点, 用于为需要进行分支保护的各叶子节点, 分别创建工作分支 和保护分支; 在工作分支和保护分支上向叶子节点发送业务。 其中, 工作 分支和保护分支是不同路由的; 但是, 根节点到某个叶子节点的保护分支 可以与, 根节点到其它叶子节点的工作分支或保护分支部分共路。
叶子节点, 用于正常情况下, 在工作分支上接收业务, 在工作分支上 发生故障时, 在保护分支上接收业务。 图 3 为本发明实现点到多点标签交换路径保护的方法的第一实施例的 示意图, 如图 3所示, 假设根节点( S节点)接收到一个具有 1+1保护属性 的 P2MP LSP的建立请求, 该请求中指明根节点的地址、 叶子节点的地址、 该叶子节点对应的工作分支是否需要保护的指示, 以及 1+1保护属性等。 本实施例中, ¾殳指示所有叶子节点对应的工作分支都需要保护。
首先, S节点计算出到每个叶子节点的路由。对于有分支保护的叶子节 点, 这里需要计算出两条不同的路由, 其中一条作为工作分支, 另一条作 为保护分支, 且这两条分支路由除了根节点和叶子节点之外, 不能经过相 同的节点或链路, 但是, 某个叶子节点的保护分支路由可以和其它叶子节 点的工作分支或保护分支路由经过某一个或某些相同的节点或链路。 而对 于没有分支保护的叶子节点, 只计算出一条路由作为工作分支。 表 1是本 实施例计算出的到各个叶子节点的工作和保护分支的路径信息。对应于图 3 中, 工作分支采用实线表示, 保护分支采用非实线表示。
Figure imgf000010_0001
表 1
接着, S节点根据计算出的各个分支的路由, 由根节点构造 RSVP-TE Path消息开始创建这条 P2MP LSP。 本实施例中, 由于每个叶子节点有两个 分支,其中一个是工作分支,另一个是保护分支,所以需要在 RSVP-TE Path 消息中指明哪个是工作分支、 哪个是保护分支, 以及每个叶子节点将使用 工作分支接收。
这里, 具体的保护类型(如保护类型为 1+1保护)、 以及工作分支 /保护 分支的属性如每个分支的类型如是工作分支还是保护分支、 哪个分支将被 用作转发 /接收数据等相关保护信息, 可以在保护(PROTECTION )子对象 中指明。 表 2为现有标准(RFC4873 ) 中定义的保护子对象的格式, 其中, LSP Flags 字段用于说明保护类型, 目前定义的有: 0x00 (不保护 ( Unprotected ) ), 0x01 ( (完全) 重路由 (( Full ) Rerouting ) ), 0x02 (不 支持额外流量的重路由( Rerouting without Extra-Traffic ) ), 0x04 (支持额外 流量的 1:N保护 ( 1:N Protection with Extra-Traffic ) ), 0x08 (表示 1+1单向 保护 ( 1+1 Unidirectional Protection ) ), 0x10 (表示 1+1 双向保护 (1+1 Bidirectional Protection ) )。 在第一实施例中, 保护类型设置为 0x08。 对于 PROTECTION子对象其余字段的含义可参考 RFC4872和 RFC4873 , 这里 不再介绍。
本实施例中, 采用在一个 RSVP-TE Path消息中携带所有分支的信息, 包括每个分支的显式路由 (通过 ERO或 SERO携带, 其中 ERO描述了一 条路径经过的完全或部分节点信息, 在点到点的路径中只有 ERO, SERO 是在点到多点的 LSP协议中扩展的, 因为点到多点的 LSP有多个分支, 选 择其中的一个分支的显式路由信息放在 ERO中, 其他的分支信息分别承载 在 SERO中), 并在每个分支的 ERO或 SERO对象中插入保护子对象, 在 该保护子对象中指明该分支是工作分支还是保护分支, 以及保护类型 (第 一实施例中, 每个分支的 ERO或 SERO中保护子对象中的 LSP Flags都是 相同的, 即都是 0x08 )。 对于第一实施例中各个分支的保护子对象中 S、 P、 0字段的设置如表 2所示, 其中, P=0表示是工作分支, P=l表示是保护分 支; 其中, S是 secondary的缩写, 表示辅助; P是 rotecting的缩写, 表 示保护; 0是 operational的缩写, 表示运作。 S=0表示是辅助 LSP, S=l 表示是主要 LSP; 0=1表示保护路径用来传送业务, 0=0表示其它情况。
分支 S P 0
L1工作分支 0 0 0
L1保护分支 0 1 0
L2工作分支 0 0 0 L2保护分支 0 1 0
L3工作分支 0 0 0
L3保护分支 0 1 0
L4工作分支 0 0 0
L4保护分支 0 1 0
L5工作分支 0 0 0
L5保护分支 0 1 0
L6工作分支 0 0 0
L6保护分支 0 1 0
表 2
然后, 叶子节点接收到 RSVP-TE Path消息, 将保护类型、 工作和保护 分支等信息都保存在本地状态中,并向上游节点返回 Resv消息以分配标签、 预留资源。 当 S节点接收到所有下游节点的 Resv消息, 则整个 P2MP LSP 建立成功。
这里, Resv消息中的 RRO或 SRRO对象中继续携带保护子对象, 保 护子对象的内容从 RSVP-TE Path消息中拷贝。
而 S节点接收到所有叶子节点的 Resv消息, 则表明这条具备保护属性 的 P2MP LSP创建成功。
本实施例中创建好的具有 1+1保护属性的 P2MP LSP如图 3所示, 其 中实线所示的分支为工作分支, 其余线型表示的分支为保护分支, 并且在 线旁边标注了分配的标签, 这里采用的是下游标签分配。 需要说明的是, 标签的分配属于本领域技术人员惯用技术手段, 这里不再赘述, 而且其具 体实现并不用于限定本发明的保护范围。
在正常情况下, P2MP业务在 P2MP LSP的 S节点上同时发送到工作分 支和保护分支上, 而叶子节点会选择从工作分支上接收, 并运行端到端的 P2MP CC/CV进行故障检测。 对于有保护的叶子节点, 根据接收到的流的 流就接收, 否则丟弃。 如图 3所示, 叶子节点 L1会收到标签分别为 20和 31的两份流, 但是, 叶子节点 L1会丟弃标签为 31的流, 因为该流是从保 护分支上接收到的; 同样, L2、 L3、 L4、 L5和 L6会丟弃标签分别为 32、 37、 38、 35和 36的流。
当某一个或多个工作分支发生故障时, 如图 3所示, 4叚设当 S---P2之 间的链路发生故障时, 到叶子节点 L5和 L6的工作分支都受到影响, 这时 L5和 L6切换到从保护分支上接收。 并在下次发送的 Resv刷新消息中指明 该分支对应的叶子节点目前使用保护分支进行接收。 没有受到故障影响的 叶子节点无需进行切换。
本实施例中, 可以采用在 P2MP LSP上运行端到端的 proactive P2MP CC/CV来进行故障检测。 当 S-P2之间的链路发生故障时, 叶子节点 L5和 L6在规定的时间内接收不到来自 S节点的 CC/CV报文,则判断出 L5和 L6 的工作分支上发生故障, 因此, L5和 L6选择切换到从保护分支上接收业 务。 除此之外, L5和 L6在向上游发送的 Resv消息中, 指明目前该分支采 用保护分支来接收业务, 并通过在保护分支的 Resv刷新消息的保护子对象 中的 0字段设置为 1来实现, 此时, 各个分支的保护子对象中的 S、 P和 0 的设置如表 3所示:
分支 S P 0
L1工作分支 0 0 0
L1保护分支 0 1 0
L2工作分支 0 0 0
L2保护分支 0 1 0
L3工作分支 0 0 0 L3保护分支 0 1 0
L4工作分支 0 0 0
L4保护分支 0 1 0
L5工作分支 0 0 0
L5保护分支 0 1 1
L6工作分支 0 0 0
L6保护分支 0 1 1
表 3
图 4为本发明实现点到多点标签交换路径保护的方法的第二实施例的 示意图, 本实施例中, S节点创建的是只到叶子节点 Ll、 L2、 L3和 L4的 分支具有保护的一条 P2MP LSP。
本实施例中, 工作分支和保护分支可以采用显式指定的方式, 即在 P2MP LSP的 S节点上配置各个分支的路由, 并在配置时指明叶子节点 Ll、 L2、 L3和 L4对应的工作分支具有保护, 且指定了保护分支的路由。 那么, S节点会根据所有的配置信息来构建 RSVP-TE消息以创建这条 P2MP LSP, 具体的 Path和 Resv消息的创建方法与第一实施例中的一致,这里不再赘述, 本实施例中强调的是, 只对需要分支保护的叶子节点创建保护分支, 使得 本发明基于分支的端到端的保护的实现更加灵活。
第三实施例, 完全静态配置的方式, 即不使用控制面协议。
本发明中具有保护的点到多点 LSP除了像第一实施例和第二实施例中 采用控制平面协议创建之外, 还可以采用静态配置的方式, 具体的分为根 节点的配置、 中间节点的配置, 以及叶子节点的配置。
根节点的配置: 在根节点的每个出接口上配置各个分支的信息, 包括 隧道标识、 保护类型、 分支信息、 以及工作分支和保护分支的关联关系, 这里的分支信息主要包括分支属性(即该分支是工作分支还是保护分支)、 分支编号(在隧道下唯一)、 分支的下一跳节点地址、 分支的目的地址(即 对应的叶子节点的地址)、 出接口和出标签等。
中间节点的配置: 因为是端到端的保护, 中间节点无需知道工作分支 和保护分支的信息, 因此, 与保护相关的信息无需在中间节点上配置。 中 间节点需要在每个入接口和出接口上配置的信息包括: {入接口、 入标签、 出接口、 出标签 }、 下一跳节点的地址。 这里, 可能有多个这样的标签交换 信息, 因为中间节点可能有多个分支经过该节点。
叶子节点的配置, 在每个叶子节点的每个入接口上配置: 隧道标识、 根节点的地址、 叶子节点的地址、 保护类型、 分支的信息、 工作分支和保 护分支的关联关系。 这里分支的信息主要包括分支属性(即该分支是工作 分支还是保护分支)、 分支编号(在隧道下唯一)、 分支的下一跳节点地址、 分支的目的地址(即对应的叶子节点的地址)、 入接口和入标签等。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种实现点到多点标签交换路径保护的方法, 其特征在于, 该方法 包括:
根节点为需要进行分支保护的各叶子节点, 分别创建工作分支和保护 分支;
根节点在工作分支和保护分支上向叶子节点发送业务; 正常情况下, 叶子节点从工作分支上接收业务, 工作分支上发生故障时, 叶子节点从保 护分支上接收业务。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根节点分别创建工 作分支和保护分支为:
所述根节点接收到点到多点标签交换路径 P2MP LSP建立请求后, 按 照预先配置, 为所有的叶子节点或部分叶子节点分别计算出两条不同的路 由并创建两个分支, 其中一个作为工作分支, 一个作为保护分支。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述工作分支和保 护分支是不同路由。
4、 根据权利要求 2所述的方法, 其特征在于, 该方法还包括: 所述根节点在基于流量工程的资源预留路径 RSVP-TE Path消息中, 向 叶子节点指明具体的保护类型、 每个分支的类型;
所述叶子节点接收到 RSVP-TE Path消息, 识别出所述保护类型、 每个 分支的类型, 向上游节点发送预留 Resv消息; 在所述 Resv消息中指明所 述叶子节点将使用工作分支接收业务;
所述根节点接收到来自所有叶子节点的工作和 /或保护分支的所述 Resv消息后, 完成点到多点标签交换路径 P2MP LSP的创建过程。
5、 根据权利要求 1所述的方法, 其特征在于, 所述工作分支上发生故 障时, 叶子节点在保护分支上接收业务为: 所述叶子节点检测到其工作分支上发生故障时, 切换到从保护分支上 接收业务; 并且, 在后续发送的 Resv刷新消息中指明所述叶子节点使用保 护分支接收业务数据。
6、 根据权利要求 5所述的方法, 其特征在于, 所述在 Resv刷新消息 中指明该叶子节点目前使用保护分支接收业务数据为: 将所述 Resv刷新消 息的保护子对象中的 0字段设置为 1。
7、 一种实现点到多点标签交换路径保护的系统, 其特征在于, 该系统 包括: 根节点、 及一个或一个以上叶子节点; 其中,
根节点, 用于为需要进行分支保护的各叶子节点, 分别创建工作分支 和保护分支; 在工作分支和保护分支上向叶子节点发送业务;
所述叶子节点, 用于正常情况下, 从工作分支上接收业务, 工作分支 上发生故障时, 从保护分支上接收业务。
8、 根据权利要求 7所述的系统, 其特征在于, 所述工作分支和保护分 支是不同路由。
9、 一种实现点到多点标签交换路径保护的方法, 其特征在于, 该方法 包括:
为需要进行分支保护的各叶子节点, 配置工作分支和保护分支; 根节点在所述工作分支和保护分支上向叶子节点发送业务; 正常情况 下, 所述叶子节点从工作分支上接收业务, 工作分支上发生故障时, 所述 叶子节点从保护分支上接收业务。
PCT/CN2011/083405 2010-12-08 2011-12-02 一种实现点到多点标签交换路径保护的方法及系统 WO2012075914A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010578716.1 2010-12-08
CN201010578716.1A CN102546352B (zh) 2010-12-08 2010-12-08 一种实现点到多点标签交换路径保护的方法及系统

Publications (1)

Publication Number Publication Date
WO2012075914A1 true WO2012075914A1 (zh) 2012-06-14

Family

ID=46206618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083405 WO2012075914A1 (zh) 2010-12-08 2011-12-02 一种实现点到多点标签交换路径保护的方法及系统

Country Status (2)

Country Link
CN (1) CN102546352B (zh)
WO (1) WO2012075914A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104702477B (zh) * 2013-12-06 2019-04-05 中兴通讯股份有限公司 一种实现隧道保护的方法及装置、网络设备
CN104301218B (zh) * 2014-10-24 2017-12-08 新华三技术有限公司 一种te隧道的保护方法及装置
CN106302165A (zh) * 2015-05-22 2017-01-04 中兴通讯股份有限公司 一种点到多点隧道的保护方法和装置
CN107181677A (zh) * 2016-03-09 2017-09-19 中兴通讯股份有限公司 一种p2mp主隧道节点保护的方法及装置
CN106817308B (zh) * 2016-12-30 2019-12-24 北京华为数字技术有限公司 一种组播流的转发系统、方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656651A (zh) * 2008-08-19 2010-02-24 华为技术有限公司 流量工程隧道的关联保护方法及装置
US20100214909A1 (en) * 2009-02-25 2010-08-26 Daniele Ceccarelli P2mp traffic protection in mpls-tp ring topology

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100546284C (zh) * 2006-09-13 2009-09-30 华为技术有限公司 标签交换路径保护方法及其系统
CN101662409B (zh) * 2008-08-28 2012-07-04 华为技术有限公司 一种建立关联保护的方法、系统及节点

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656651A (zh) * 2008-08-19 2010-02-24 华为技术有限公司 流量工程隧道的关联保护方法及装置
US20100214909A1 (en) * 2009-02-25 2010-08-26 Daniele Ceccarelli P2mp traffic protection in mpls-tp ring topology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORP.: "Multiprotocol Label Switching Transport Profile P2MP Share Protection", 19 October 2010 (2010-10-19), Retrieved from the Internet <URL:draft-liu-mp1s-tp-p2mp-share-protection-00> *

Also Published As

Publication number Publication date
CN102546352A (zh) 2012-07-04
CN102546352B (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
US7881183B2 (en) Recovery from control plane failures in the LDP signalling protocol
EP2878100B1 (en) System, method and apparatus for signaling and responding to ero expansion failure in inter domain te lsp
US7180866B1 (en) Rerouting in connection-oriented communication networks and communication systems
US7602702B1 (en) Fast reroute of traffic associated with a point to multi-point network tunnel
EP2852104B1 (en) Method and device for establishing multi-protocol label switching traffic engineering tunnel
US7133358B2 (en) Failure control unit
US8289843B2 (en) Service failure recovery method and system
US8335154B2 (en) Method and system for providing fault detection and notification for composite transport groups
CN101159690B (zh) 多协议标签交换转发方法、装置及标签交换路径管理模块
EP2797259A1 (en) Ring network label switch path creating method, related device and communication system
WO2008006268A1 (en) Method system and node device for realizing service protection in the automatically switched optical network
CN109672619A (zh) 一种处理报文的方法、设备及系统
WO2011157130A2 (zh) 路径建立方法和装置
EP2503742A1 (en) Method for implementing shared mesh protection, equipment and optical network system
US20090103533A1 (en) Method, system and node apparatus for establishing identifier mapping relationship
WO2011110110A1 (zh) 一种建立标签交换路径的方法、系统和节点设备
JP2012507909A (ja) Rsvp−teを用いるシングルルートマルチポイントサービスにおけるマルチキャスト及び双方向ユニキャストのシグナリング
US20130266008A1 (en) Packet forwarding method and network device
WO2012075914A1 (zh) 一种实现点到多点标签交换路径保护的方法及系统
EP2555469A1 (en) Fault protection method and device
WO2010028560A1 (zh) 在mesh网络中实现永久环网保护的方法
CN102447611B (zh) 一种建立和拆除双向点到多点标签转发路径的方法及系统
US9774492B2 (en) Message passing to assure deletion of label switched path
US9397882B2 (en) Packet transport network system
US20030043427A1 (en) Method of fast circuit recovery using local restoration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847783

Country of ref document: EP

Kind code of ref document: A1