WO2012075806A1 - Data transmission method, device and radio frame - Google Patents

Data transmission method, device and radio frame Download PDF

Info

Publication number
WO2012075806A1
WO2012075806A1 PCT/CN2011/076599 CN2011076599W WO2012075806A1 WO 2012075806 A1 WO2012075806 A1 WO 2012075806A1 CN 2011076599 W CN2011076599 W CN 2011076599W WO 2012075806 A1 WO2012075806 A1 WO 2012075806A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
subframe
radio frame
configuration
downlink
Prior art date
Application number
PCT/CN2011/076599
Other languages
French (fr)
Chinese (zh)
Inventor
辛雨
郝鹏
郁光辉
胡留军
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012075806A1 publication Critical patent/WO2012075806A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst

Definitions

  • the present invention relates to the field of communications, and in particular to a data transmission method, apparatus, and radio frame.
  • uplink/downlinks of wireless air interface transmission generally transmit data in units of radio frames; wherein each radio frame is composed of thousands
  • the sub-frames are composed of sub-frames, and the sub-frames are all composed of Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • each Radio frame consists of 10 Subframes.
  • the current LTE, Worldwide Interoperability for Microwave Access (Wimax), and Ultra Mobile Broadband (UMB) systems have two duplex modes: Frequency Division and Duplex (Frequency Division) Duplex, abbreviated as FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division and Duplex
  • TDD Time Division Duplex
  • the uplink/downlink uses different frequency bands for data transmission.
  • the resource allocation of the system's uplink/downlink subframes is relatively independent, that is, the downlink subframes (Subframes) and uplinks can be used.
  • Subframes are used for resource allocation.
  • the uplink/downlink uses the same frequency band for time-division transmission.
  • the system can divide the thousands of subframes of the radio frame into the uplink subframe and the downlink subframe according to a certain ratio.
  • choosing the appropriate uplink-downlink ratio configuration is beneficial to improve the spectrum efficiency of the TDD system. For example, for an area with a large number of data download services, you can select a configuration with more downlink subframes. For an area with more data services, you can select a configuration with more uplink subframes. In the region, you can select a proportional configuration in which the uplink and downlink subframes are almost equal.
  • a radio frame contains 10 subframes, and the subframe numbers are labeled as: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
  • D indicates that the subframe is a downlink subframe; the "U” table The subframe is shown as an uplink subframe; "S” indicates that the subframe is a special subframe, that is, the subframe includes both an uplink transmission and a downlink transmission.
  • the area when a TDD system area of a certain configuration is used, when there is a different service type requirement in the area, the area needs to be converted into another uplink and downlink configuration to improve the spectrum of the TDD system.
  • effectiveness For example, if the TDD system area configured with 1 is used, when the downlink download data service increases in the area, the area needs to be converted into a TDD system with a relatively long downlink subframe configuration of 2. In this way, the subframe in which the uplink data was originally sent will no longer send uplink data, but will instead send downlink data.
  • a main object of the present invention is to provide a data transmission method, apparatus, and radio frame to solve the problem that the system processing complexity caused by the data transmission method in the related art is relatively high and the system is interrupted.
  • a data transmission method is provided for use in a TDD system.
  • the data transmission method includes: setting a predetermined uplink and downlink configuration manner, wherein the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: a first subframe, a fifth subframe, and a sixth subframe.
  • the frame, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes, and the second subframe and the sixth subframe are special subframes;
  • the predetermined uplink and downlink configuration mode is used for data transmission.
  • the primary carrier uses one of the uplink and downlink configurations of the LTE R8 TDD system to configure the radio frame thereon; the secondary carrier configures the radio frame on the secondary carrier using one of the following configurations: a predetermined uplink and downlink configuration mode, and the LTE R8 TDD system has One of the uplink and downlink configuration methods.
  • the uplink and downlink configuration modes 0 to 6 of the LTE R8 TDD system are as shown in the following Table 1:
  • the D identifier subframe is a downlink subframe
  • the U identifier subframe is an uplink subframe
  • the S identifier subframe is a special subframe.
  • the method further includes: when the radio frame configuration is changed from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 2, the radio frame configuration is first converted from the uplink and downlink configuration mode 1 to a predetermined uplink and downlink configuration mode; The predetermined uplink and downlink configuration mode is converted to the uplink and downlink configuration mode 2, wherein, in each uplink and downlink configuration mode conversion process, only one subframe changes in one radio frame, and the radio frame is configured as one of the following: radio frame configuration of the cell , radio frame configuration of the carrier.
  • the method further includes: when the radio frame configuration is switched from the uplink and downlink subframe configuration mode 2 to the uplink and downlink configuration mode 1, the radio frame configuration is first converted from the uplink and downlink configuration mode 2 to a predetermined uplink and downlink configuration mode; The configuration is changed from the predetermined uplink and downlink configuration mode to the uplink and downlink configuration mode 1, wherein, in each uplink and downlink configuration mode conversion process, only one subframe changes in one radio frame, and the radio frame is configured as one of the following: Frame configuration, radio frame configuration of the carrier.
  • the method further includes: when the radio frame configuration is switched from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 3, the radio frame configuration is first converted from the uplink and downlink configuration mode 1 to a predetermined uplink and downlink configuration mode; The predetermined uplink and downlink configuration mode is converted to the uplink and downlink configuration mode 3, wherein the radio frame is configured as one of the following: a radio frame configuration of the cell, and a radio frame configuration of the carrier.
  • the method further includes: when the radio frame configuration is changed from the uplink and downlink configuration mode 3 to the uplink and downlink configuration mode 1, the radio frame configuration is first converted from the uplink and downlink configuration mode 3 to a predetermined uplink and downlink configuration mode; The predetermined uplink and downlink configuration mode is switched to the uplink and downlink configuration mode 1, where the radio frame is configured as one of the following: a radio frame configuration of the cell, and a radio frame configuration of the carrier.
  • the foregoing method further includes: performing radio frame configuration conversion in the following sequence: uplink and downlink configuration mode 0---> uplink and downlink configuration mode 6---> uplink and downlink configuration mode 1---> predetermined uplink and downlink configuration mode 1> Uplink and downlink configuration mode 2 -> uplink and downlink configuration mode 5, wherein the radio frame configuration is one of the following: radio frame configuration of the cell, and radio frame configuration of the carrier.
  • the method further includes: performing the following steps to perform radio frame configuration conversion: Up-down and downlink configuration mode 5---> uplink and downlink configuration mode 4---> uplink and downlink configuration mode 3---> predetermined uplink and downlink configuration mode 1> On Downstream configuration mode 1---> uplink and downlink configuration mode 6 -> uplink and downlink configuration mode 0, where the radio frame configuration is one of the following: radio frame configuration of the cell, radio frame configuration of the carrier.
  • the above method further includes: performing the following steps to perform the conversion of the radio frame configuration: the uplink and downlink configuration mode 5 ———> the uplink and downlink configuration mode 2 -> the predetermined uplink and downlink configuration mode -> the uplink and downlink configuration mode 1 -> the uplink and downlink configuration mode 6 -> uplink and downlink configuration mode 0, where the radio frame is configured as one of the following: radio frame configuration of the cell, radio frame configuration of the carrier.
  • the radio frame is configured as one of the following: radio frame configuration of the cell, radio frame configuration of the carrier.
  • the data transmission apparatus includes: a setting module, configured to set a predetermined uplink and downlink configuration manner in a subframe format of the radio frame, wherein the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: The first subframe, the fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes, and the second subframe
  • the subframe and the sixth subframe are special subframes;
  • the transmission module is configured to perform data transmission using a predetermined uplink and downlink configuration manner.
  • a radio frame is also provided.
  • the radio frame according to the present invention includes 10 subframes, where the first subframe, the fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, The fourth subframe and the eighth subframe are uplink subframes, and the second subframe and the sixth subframe are special subframes.
  • a predetermined uplink and downlink configuration mode is set, wherein the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: a first subframe, a fifth subframe, and a sixth subframe.
  • the ninth subframe and the tenth subframe are downlink subframes
  • the third subframe, the fourth subframe, and the eighth subframe are uplink subframes
  • the second subframe and the sixth subframe are special subframes, which are solved.
  • multiple subframes in the uplink subframe and the downlink subframe are converted at the same time, which causes the control information transmission position to be more complicated and chaotic when dynamically changing, thereby causing high complexity of system processing. And caused a system interruption. Thereby, the stability of the uplink and downlink conversion of the subframe is improved, and the reliability of the system is improved.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present invention
  • 2 is a block diagram showing the structure of a data transmission apparatus according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing a preferred configuration of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present invention. As shown in FIG.
  • the method includes: 4 ⁇ S 102: Set a predetermined uplink and downlink configuration mode in a subframe format of the radio frame, where the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: the first subframe and the fifth subframe
  • the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes
  • the third subframe, the fourth subframe, and the eighth subframe are uplink subframes
  • the second subframe and the sixth subframe are special.
  • Step S104 Perform data transmission by using a predetermined uplink and downlink configuration manner; through the foregoing steps, setting a predetermined uplink and downlink configuration manner, and configuring a predetermined uplink and downlink configuration manner to configure 10 subframes in one radio frame as:
  • the first subframe, the fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes
  • the third subframe, the fourth subframe, and the eighth subframe are uplink subframes
  • the subframe and the sixth subframe are special subframes, which overcome In the related art, in the process of sub-frame format conversion, multiple subframes in the uplink subframe and the downlink subframe are converted at the same time, which causes the control information transmission position to be more complicated and chaotic when dynamically changing, thereby causing high complexity of system processing.
  • the primary carrier uses one of the uplink and downlink configurations of the LTE R8 TDD system to configure the subframe thereon; the secondary carrier configures the subframe on the primary carrier by using one of the following configurations: a predetermined uplink and downlink configuration mode, LTE R8 One of the uplink and downlink configurations of the TDD system.
  • the primary carrier is configured according to the subframe format specified by the existing protocol
  • the secondary carrier is configured according to the subframe format and the converted subframe format specified by the existing protocol, thereby achieving compatibility with the existing system. Increased flexibility in subframe configuration.
  • the uplink and downlink configuration manners defined in the above configuration are the uplink and downlink configuration modes of the LTE R8 TDD system.
  • the TDD system of the R9 or R10 series is also included but not limited.
  • the above-mentioned uplink and downlink configuration manner, so in this embodiment The data transmission scheme is applicable not only to the LTE R8 TDD system, but also to other versions of the LTE TDD system compatible with the LTE R8 TDD system.
  • the uplink and downlink configuration modes 0 to 6 of the LTE R8 TDD system configuration are as shown in Table 1: wherein the D identifier subframe is a downlink subframe, the U identifier subframe is an uplink subframe, and the S identifier subframe is a special subframe. frame.
  • the smooth transition of the uplink and downlink configuration formats is implemented in the subframe format of the existing protocol configuration, thereby improving system stability.
  • the method further includes: when the radio frame configuration is switched from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 2, the radio frame configuration is first converted from the uplink and downlink configuration mode 1 to a predetermined uplink and downlink configuration mode; The frame configuration is changed from the predetermined uplink and downlink configuration mode to the uplink and downlink configuration mode 2, wherein, in each uplink and downlink configuration mode conversion process, only one subframe changes in one radio frame, and the radio frame is configured as one of the following: Radio frame configuration, radio frame configuration of the carrier.
  • the radio frame configuration is switched from the uplink and downlink subframe configuration mode 2 to the uplink and downlink subframe configuration mode 1
  • the radio frame configuration is first converted from the uplink and downlink subframe configuration mode 2 to a predetermined uplink and downlink configuration mode;
  • the radio frame configuration is switched from the predetermined uplink and downlink configuration mode to the uplink and downlink subframe configuration mode 1.
  • the radio frame is configured as one of the following. : Radio frame configuration of the cell, radio frame configuration of the carrier.
  • the method further includes: when the radio frame configuration is switched from the uplink and downlink subframe configuration mode 1 to the uplink and downlink subframe configuration mode 3, the radio frame configuration is first converted from the uplink and downlink subframe configuration mode 1 to a predetermined uplink and downlink.
  • the configuration mode is: converting the subframe configuration from the predetermined uplink and downlink configuration mode to the uplink and downlink subframe configuration mode 3, wherein the wireless frame is configured as one of the following: a radio frame configuration of the cell, and a radio frame configuration of the carrier.
  • the radio frame configuration when the radio frame configuration is switched from the uplink and downlink subframe configuration mode 3 to the uplink and downlink subframe configuration mode 1, the radio frame configuration is first converted from the uplink and downlink subframe configuration mode 3 to a predetermined uplink and downlink configuration mode; The radio frame configuration is switched from the predetermined uplink and downlink configuration mode to the uplink and downlink subframe configuration mode 1, where the radio frame is configured as one of the following: a radio frame configuration of the cell, and a radio frame configuration of the carrier.
  • the smooth transition of the radio frame configuration of the cell or carrier from mode 3 to mode 1 is realized, and the efficiency and stability of the conversion are improved.
  • the conversion of the radio frame configuration is performed in the following sequence: Up-and-down-down subframe configuration mode 0-> Up-down-down configuration mode 6--->Uplink and downlink configuration mode 1--->Scheduled uplink and downlink configuration mode->Upstream and downlink Configuration mode 2 -> uplink and downlink configuration mode 5, where the radio frame is configured as one of the following: Frame configuration, radio frame configuration of the carrier.
  • the radio frame configuration of the cell or the carrier is smoothly converted from the uplink subframe to the downlink subframe, thereby improving the efficiency and stability of the conversion.
  • the conversion of the radio frame configuration is performed in the following sequence: uplink and downlink configuration mode 5 -> uplink and downlink configuration mode 4---> uplink and downlink configuration mode 3---> predetermined uplink and downlink configuration mode 1> uplink and downlink configuration mode 1---> Uplink and downlink configuration mode 6 -> Uplink and downlink configuration mode 0, where the radio frame is configured as one of the following: radio frame configuration of the cell and radio frame configuration of the carrier.
  • the radio frame configuration of the cell or the carrier is smoothly converted from the manner in which the downlink subframes are more uplinks, and the efficiency and stability of the conversion are improved.
  • the conversion of the radio frame configuration is performed in the following sequence: Up-down and downlink configuration mode 5 -> uplink and downlink configuration mode 2 -> predetermined uplink and downlink configuration mode 1 - uplink and downlink configuration mode 1 ->> uplink and downlink configuration mode 6 -> uplink and downlink configuration mode 0, where the radio frame is configured as one of the following: radio frame configuration of the cell, radio frame configuration of the carrier.
  • the radio frame configuration of the cell or the carrier is smoothly converted from the manner that the number of the downlink subframes is larger, and the uplink subframe is more, thereby improving the efficiency and stability of the conversion.
  • the preferred embodiment of the present invention provides a data transmission method. The embodiment combines the foregoing embodiments and preferred embodiments thereof.
  • the UL-DL configuration mode of the data transmission method can be used in an independent manner.
  • the TDD system area can also be used in a subcarrier TDD configuration in a multi-carrier system.
  • a radio frame includes 10 subframes, and the subframe numbers are respectively marked as: 0, 1 .
  • Subframe 0 is a downlink subframe; subframe 1 is a special subframe; subframes 2 and 3 are uplink subframes; subframes 4 and 5 are downlink subframes; subframe 6 is a special subframe; subframe 7 is an uplink subframe. Frames; subframes 8 and 9 are downlink subframes; Table 2 subframe transmission format diagram
  • a radio frame contains 10 subframes, and the subframe numbers are respectively marked as: 0, 1 , 2, 3, 4, 5, 6, 7, 8, 9.
  • D indicates that the subframe is a downlink subframe
  • U indicates that the subframe is an uplink subframe
  • S indicates that the subframe is a special subframe, that is, the subframe includes both an uplink transmission part and an The part of the downlink transmission.
  • the new TDD uplink and downlink configuration mode is referred to as: uplink and downlink configuration 7.
  • the TDD system uses three bits of data to represent eight types of uplink and downlink configurations; the table is expressed as follows: Table 3: Upstream and downlink subframe configuration diagram
  • the seven uplink and downlink configurations of the original Time Division Long Term Evolution (TD-LTE) system require three bits of data to be represented. After the TDD system encodes the three bits of data according to certain rules, it indicates eight uplink and downlink configurations. . Now, after adding a new uplink and downlink configuration mode, it can still be represented by 3 bits of data. Therefore, there is no additional system overhead, and the 3-bit data resource can be fully utilized.
  • the data transmission method in this embodiment includes the following manners: Mode 1: When a cell that uses TDD uplink and downlink configuration 1 is to be converted into a TDD uplink and downlink configuration 2, the cell needs to be converted into a TDD uplink and downlink configuration 7 first, and then converted.
  • the uplink and downlink configuration 7 of the TDD is only one more downlink subframe than the configuration 1, and the configuration 2 has only one downlink subframe more than the configuration 7.
  • Configuration 1 is first converted to configuration 7 and then converted to configuration 2, or configuration 2 is first converted to configuration 7 and then to configuration 1 to make the TDD uplink and downlink configuration changes of the cell have continuity, which is beneficial to ensure that the ongoing service is not Interrupt and reduce the complexity of system processing.
  • the carrier of the TDD uplink and downlink configuration 1 when the carrier of the TDD uplink and downlink configuration 1 is to be converted into the TDD uplink and downlink configuration 2, the carrier needs to be converted into the TDD uplink and downlink configuration 7 first, and then converted into the TDD uplink and downlink configuration 2; similarly, When the carrier of the TDD uplink and downlink configuration 2 is to be converted into the TDD uplink and downlink configuration 1, the carrier needs to be converted into the TDD uplink and downlink configuration 7 and then converted into the TDD uplink and downlink configuration 1. It should be noted that, when the TDD system area configured with 1 is used, when the downlink download data service increases in the area, the area needs to be converted into a TDD system with a relatively long downlink subframe configuration of 2.
  • the subframe in which the uplink data was originally sent will no longer send uplink data, but will instead send downlink data.
  • Mode 3 When the cell with TDD uplink and downlink configuration 3 is to be converted to TDD uplink and downlink configuration 1, the cell needs to be converted into TDD uplink and downlink configuration 7 first, and then converted to TDD uplink and downlink configuration 1.
  • the carrier of the TDD uplink and downlink configuration 3 when used When the carrier of the TDD uplink and downlink configuration 3 is to be converted into the TDD uplink and downlink configuration 1, the carrier needs to be converted into the TDD uplink and downlink configuration 7 and then converted into the TDD uplink and downlink configuration 1.
  • the TDD uplink and downlink configuration 7 in one radio frame, is only one more downlink subframe than the configuration 1, and the configuration 3 is only one more downlink subframe than the configuration 7.
  • the configuration 3 is first converted into the configuration 7 and then converted into the configuration 1 to make the TDD uplink and downlink configuration changes of the cell have continuity, which is beneficial to ensure that the ongoing services are not interrupted and the complexity of the system processing is reduced.
  • Mode 4 When the carrier of TDD uplink and downlink configuration 3 is to be converted into TDD uplink and downlink configuration 1, the carrier needs to be converted into TDD uplink and downlink configuration 7 first, and then converted into TDD uplink and downlink configuration 1. Similarly, when used When the carrier of the TDD uplink and downlink configuration 1 is to be converted into the TDD uplink and downlink configuration 3, the carrier needs to be converted into the TDD uplink and downlink configuration 7 and then converted into the TDD uplink and downlink configuration 3.
  • Mode 5 When the cell transitions from the uplink configuration to the downlink configuration, the following conversion sequence is required: Configuration 0-—>Configuration 6-—>Configuration 1-—>Configuration 7-—Configuration 2- — > Configuration 5.
  • Mode 6 When a carrier transitions from a higher uplink configuration to a lower downlink configuration, the following conversion sequence is required: Configuration 0-—>Configuration 6-—>Configuration 1-—>Configuration 7-—>Configuration 2 ->> Configuration 5.
  • Mode 8 When the cell transitions from the downlink configuration to the uplink configuration, the following conversion sequence is required: Configuration 5-->Configuration 4-->Configuration 3-->Configuration 7-->Configuration 1- —>Configuration 6 — — > Configuration 0.
  • Mode 9 When a carrier is switched from a downlink configuration to a larger uplink configuration, the following conversion sequence is required: Configuration 5-->Configuration 4-->Configuration 3-->Configuration 7-->Configuration 1 ->> Configuration 6 - - > Configuration 0.
  • Mode 10 When a cell transitions from a downlink configuration to a larger uplink configuration, it can also be performed in another conversion sequence as follows: Configuration 5-->Configuration 2-->Configuration 7-->Configuration 1--> Configuration 6 - - > Configuration 0. It can be seen that after the TDD uplink and downlink configuration 7 is added, the uplink and downlink configuration changes of the TD-LTE system are more continuous, which is beneficial to ensure that the ongoing services are not interrupted and the complexity of the system processing is reduced.
  • Way eleven When a carrier is switched from a downlink configuration to a higher uplink configuration, you can also perform the following conversion sequence as follows: Configuration 5-->Configuration 2-->Configuration 7-->Configuration 1-->Configuration 6 - - > Configuration 0.
  • the primary carrier uses any one of the seven configurations of uplink and downlink configuration 0, configuration 1, configuration 2, configuration 3, configuration 4, configuration 5, and configuration 6; Any of the eight configurations of uplink and downlink configuration 0 to configuration 7 can be used.
  • the primary carrier can maintain the backward compatibility problem of the terminal with the original configuration; the new configuration 7 of the secondary carrier can enhance the flexibility of the terminal to dynamically change in the TDD configuration.
  • the TDD frame structure of the 5ms period is more advantageous than the TDD frame structure of the 10ms period in the delay sensitive service. Therefore, the method of the embodiment is used in a 5ms period, and the configuration 7 is added to make the system configuration more. reasonable.
  • the uplink-downlink ratio of configuration 7 is more suitable for the current data service type, and the frequency of use is high, and the system transmission efficiency is improved.
  • the ratio of the uplink transmission resource to the downlink transmission resource in the two modes of configuration 1 and 2 is moderate, and can be adapted to the service type in the ever-changing region. Therefore, when the configuration 1 and the configuration 2 are used in the actual application of the TD-LTE system Will be more. In this way, if a configuration 7 is added between configuration 1 and configuration 2, the application scenario of this new configuration will be more, and the data transmission of the system can be optimized.
  • the present embodiment provides a data transmission apparatus.
  • FIG. 2 is a structural block diagram of a data transmission apparatus according to an embodiment of the present invention. As shown in FIG.
  • the apparatus includes: a setting module 22 and a transmission module 24, and the following structure is
  • the setting module 22 is configured to set a predetermined uplink and downlink configuration manner in a subframe format of the radio frame, where the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: the first subframe The fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes, second subframes, and The six subframes are special subframes;
  • the transmission module 24 is connected to the setting module 22, and is configured to perform data transmission by using the predetermined uplink and downlink configuration manner set by the setting module setting 22.
  • FIG. 3 is a block diagram of a preferred structure of a data transmission apparatus according to an embodiment of the present invention. As shown in FIG. 3, the apparatus further includes: a first subframe configuration module 32, a second subframe configuration module 34, and a first conversion submodule.
  • the foregoing apparatus further includes: a first subframe configuration module 32, configured to configure a primary carrier to configure a subframe thereon by using one of an uplink and downlink configuration manner of the LTE R8 TDD system; and a second subframe configuration module 34 configured to be a secondary carrier Use one of the following configuration methods to configure the subframes on it: One of the scheduled uplink and downlink configurations, and one of the uplink and downlink configurations of the LTE R8 TDD system.
  • the first conversion sub-module 241 is configured to convert the radio frame configuration from the uplink and downlink configuration mode 1 to a predetermined uplink and downlink configuration mode when the radio frame configuration is changed from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 2;
  • the conversion sub-module 242 is connected to the first conversion sub-module 241, and is configured to convert the radio frame configuration converted by the first conversion sub-module 241 from a predetermined uplink-downlink configuration mode to an uplink-downlink configuration mode 2, where each uplink and downlink configuration During the configuration mode conversion, only one subframe in a radio frame changes, and the radio frame is configured as one of the following: radio frame configuration of the cell and radio frame configuration of the carrier.
  • the second conversion sub-module 243 is configured to convert the radio frame configuration from the uplink and downlink configuration mode 2 to a predetermined uplink and downlink configuration mode when the radio frame configuration is changed from the uplink and downlink configuration mode 2 to the uplink and downlink configuration mode 1;
  • the conversion sub-module 244 is connected to the second conversion sub-module 243, and is configured to convert the radio frame configuration converted by the second conversion sub-module 243 from a predetermined uplink-downlink configuration mode to an uplink-downlink configuration mode 1, where each uplink and downlink configuration During the configuration mode conversion, only one subframe in a radio frame changes.
  • the radio frame is configured as one of the following: radio frame configuration of the cell, and radio frame configuration of the carrier.
  • the third conversion sub-module 245 is configured to convert the radio frame configuration from the uplink and downlink subframe configuration mode 1 to a predetermined uplink and downlink configuration mode when the radio frame configuration is changed from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 3;
  • the third format conversion sub-module 246 is connected to the third conversion sub-module 245, and configured to convert the radio frame configuration converted by the third conversion sub-module 245 from a predetermined uplink-downlink configuration mode to an uplink-downlink configuration mode 3, where the radio frame Configured as one of the following: Subframe radio frame configuration of the cell, radio frame configuration of the carrier.
  • the fourth conversion sub-module 247 is configured to convert the radio frame configuration from the uplink and downlink configuration mode 3 to a predetermined uplink and downlink configuration mode when the radio frame configuration is changed from the uplink and downlink configuration mode 3 to the uplink and downlink configuration mode 1;
  • the conversion sub-module 248 is connected to the fourth conversion sub-module 247, and is configured to convert the radio frame configuration converted by the fourth conversion sub-module 247 from a predetermined uplink-downlink configuration mode to an uplink-downlink configuration mode 1, where the radio frame configuration is One of the following: radio frame configuration of the cell, radio frame configuration of the carrier.
  • the fifth conversion sub-module 249 is configured to perform the conversion of the radio frame configuration in the following sequence: uplink and downlink configuration mode 0---> uplink and downlink configuration mode 6---> uplink and downlink configuration mode 1---> predetermined uplink and downlink Configuration mode 1 > Up-and-down-down subframe configuration mode 2---> Up-and-down-down subframe configuration mode 5, where the radio frame is configured as one of the following: radio frame configuration of the cell, and radio frame configuration of the carrier.
  • the sixth conversion sub-module 250 is configured to perform the conversion of the radio frame configuration in the following sequence: uplink and downlink configuration mode 5---> uplink and downlink configuration mode 4---> uplink and downlink configuration mode 3---> predetermined uplink and downlink Configuration mode 1> Uplink and downlink configuration mode 1--->Uplink and downlink configuration mode 6 -> Uplink and downlink configuration mode 0, where the radio frame is configured as one of the following: radio frame configuration of the cell and radio frame configuration of the carrier.
  • the seventh conversion sub-module 251 is configured to perform the conversion of the radio frame configuration in the following sequence: the uplink and downlink configuration mode 5 -> the uplink and downlink configuration mode 2 - the predetermined uplink and downlink configuration mode -> the uplink and downlink configuration mode 1 -> Uplink and downlink configuration mode 6 -> uplink and downlink configuration mode 0, where the radio frame configuration is one of the following: radio frame configuration of the cell, radio frame configuration of the carrier.
  • the embodiment provides a radio frame, where the radio frame includes 10 subframes, where the first subframe, the fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, The three subframes, the fourth subframe, and the eighth subframe are uplink subframes, and the second subframe and the sixth subframe are special subframes.
  • the conversion between the uplink and downlink configuration modes of the LTE R8 TDD system configuration can be simplified by using the radio frame. For example, the uplink and downlink configuration mode 1 configured in the LTE R8 TDD system and the uplink and downlink configuration mode 2 configured in the LTE R8 TDD system are converted. Only one sub-frame changes during the process.
  • the foregoing embodiment provides a data transmission method, apparatus, and radio frame, by setting a predetermined uplink and downlink configuration manner, wherein a predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame.
  • the first subframe, the fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes
  • the third subframe, the fourth subframe, and the eighth subframe are uplink subframes.
  • the second sub-frame and the sixth sub-frame are special sub-frames, and the sub-frame format conversion process in the related art overcomes that multiple sub-frames are simultaneously converted in the uplink sub-frame and the downlink sub-frame, and the control information is sent in a dynamic position.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.

Abstract

The present invention discloses a data transmission method, a device and a radio frame. The method includes that: a predetermined uplink-downlink configuration manner is configured, wherein in the predetermined uplink-downlink configuration manner, 10 sub-frames in one radio frame are configured as: the first sub-frame, the fifth sub-frame, the sixth sub-frame, the ninth sub-frame and the tenth sub-frame are a downlink sub-frame, the third sub-frame, the fourth sub-frame and the eighth sub-frame are an uplink sub-frame, the second sub-frame and the sixth sub-frame are a specific sub-frame. The uplink-downlink converting stability of the sub-frame is increased by using the present invention.

Description

数据传输方法、 装置及无线帧 技术领域 本发明涉及通信领域, 具体而言, 涉及一种数据传输方法、 装置及无线帧。 背景技术 在以无线帧 ( Radio frame ) 为单位进行数据传输的无线系统中, 无线空口 传输的上 /下行链路一般是以 Radio frame为单位进行传输数据的; 其中, 每个 Radio frame由若千个子帧 (Subframe )组成, 并且, Subframe均以正交频分复 用( Orthogonal Frequency Division Multiplexing, 简称为 OFDM )符号( Symbol ) 为基本单位组成。 对于长期演进(Long-Term Evolution, 简称为 LTE ) 系统, 每个 Radio frame由 10个 Subframe组成。 目前的 LTE、 啟波接入全球互通 ( Worldwide Interoperability for Microwave Access,简称为 Wimax )、超级移动宽带( Ultra Mobile Broadband,简称为 UMB ) 系统啫有两种双工方式: 频分双工 ( Frequency Division Duplex, 简称为 FDD ) 方式和时分双工 ( Time Division Duplex, 简称为 TDD ) 方式。 在 FDD方式下, 上 /下行链路釆用不同的频带进行数据传输, 这样, 系统 的上 /下行子帧 (Subframes ) 的资源分配相对比较独立, 即, 可以对下行子帧 ( Subframes ) 和上行子帧 (Subframes ) 分别进行资源分配。 在 TDD方式下, 由于上 /下行链路使用相同的频段分时进行传输, 这样, 根据业务的需要, 系统可以按照一定的比例将无线帧的若千子帧分成上行子帧 和下行子帧。 一般 TDD 系统上行子帧和下行子帧个数的比例都有若千种类, 以满足不同业务类型的需要。 根据不同地区业务类型的需要, 选择恰当的上下行比例配置有利于提高 TDD系统的频谱效率。 比如, 对于下载数据业务比较多的地区, 就可以选择下 行子帧比较多的配置; 对于上载数据业务比较多的地区, 就可以选择上行子帧 比较多的配置; 对于上下载数据业务量比较平衡的地区, 就可以选择上下行子 帧差不多相等的比例配置。 在目前的 LTE TDD (或称为 TD-LTE ) 系统中, 对 TDD上下行比例配置设定了 7种, 如下表 1所示。 一个无线帧包含了 10个子 帧,子帧号分别标记为: 0, 1,2,3,4,5,6,7,8,9。 "D"表示该子帧为下行子帧; "U" 表 示该子帧为上行子帧; "S"表示该子帧为特殊子帧, 即该子帧既包含有上行传 输的部分也包含有下行传输的部分。 表 1 上下行子帧配置表 TECHNICAL FIELD The present invention relates to the field of communications, and in particular to a data transmission method, apparatus, and radio frame. BACKGROUND In a wireless system that performs data transmission in units of radio frames, uplink/downlinks of wireless air interface transmission generally transmit data in units of radio frames; wherein each radio frame is composed of thousands The sub-frames are composed of sub-frames, and the sub-frames are all composed of Orthogonal Frequency Division Multiplexing (OFDM) symbols. For the Long-Term Evolution (LTE) system, each Radio frame consists of 10 Subframes. The current LTE, Worldwide Interoperability for Microwave Access (Wimax), and Ultra Mobile Broadband (UMB) systems have two duplex modes: Frequency Division and Duplex (Frequency Division) Duplex, abbreviated as FDD) and Time Division Duplex (TDD). In the FDD mode, the uplink/downlink uses different frequency bands for data transmission. Thus, the resource allocation of the system's uplink/downlink subframes is relatively independent, that is, the downlink subframes (Subframes) and uplinks can be used. Subframes are used for resource allocation. In the TDD mode, the uplink/downlink uses the same frequency band for time-division transmission. Thus, according to the needs of the service, the system can divide the thousands of subframes of the radio frame into the uplink subframe and the downlink subframe according to a certain ratio. Generally, there are thousands of types of uplink subframes and downlink subframes in the TDD system to meet the needs of different service types. According to the needs of different regional business types, choosing the appropriate uplink-downlink ratio configuration is beneficial to improve the spectrum efficiency of the TDD system. For example, for an area with a large number of data download services, you can select a configuration with more downlink subframes. For an area with more data services, you can select a configuration with more uplink subframes. In the region, you can select a proportional configuration in which the uplink and downlink subframes are almost equal. In the current LTE TDD (or TD-LTE) system, seven types of TDD uplink and downlink proportion configurations are set, as shown in Table 1 below. A radio frame contains 10 subframes, and the subframe numbers are labeled as: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. "D" indicates that the subframe is a downlink subframe; the "U" table The subframe is shown as an uplink subframe; "S" indicates that the subframe is a special subframe, that is, the subframe includes both an uplink transmission and a downlink transmission. Table 1 Up-and-down-down subframe configuration table
Figure imgf000003_0001
Figure imgf000003_0001
相关技术中的数据传输方法, 对于釆用某一种配置的 TDD 系统区域, 当 该区域出现不同的业务类型需求时, 该区域就需要转换成另外一种上下行配 置, 以提高 TDD系统的频谱效率。 比如, 如果对于釆用配置为 1的 TDD系统 区域, 当该区域出现下行下载数据业务增多的情况时, 就需要将该区域转换成 下行子帧相对更多的配置为 2的 TDD 系统。 这样, 就会出现原来发上行数据 的子帧不再发上行数据了, 而改为发下行数据。 但是在该过程中会出现上行子 帧和下行子帧中同时有多个子帧进行转换, 造成控制信息发送位置在动态变化 时比较复杂和混乱, 从而导致系统处理的复杂度比较高且造成系统中断。 发明内容 本发明的主要目的在于提供一种数据传输方法、 装置及无线帧, 以解决上 述相关技术中数据传输方法导致的系统处理复杂度比较高且造成系统中断的 问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种数据传输方法, 应用于 TDD系统。 根据本发明的数据传输方法包括: 设置预定的上下行配置方式, 其中, 预 定的上下行配置方式将一个无线帧中的 10 个子帧配置为: 第一子帧、 第五子 帧、 第六子帧、 第九子帧和第十子帧为下行子帧, 第三子帧、 第四子帧和第八 子帧为上行子帧, 第二子帧和第六子帧为特殊子帧; 使用预定的上下行配置方 式进行数据传输。 主载波使用 LTE R8 TDD系统具有的上下行配置方式之一配置其上的无线 帧; 辅载波使用以下之一的配置方式配置其上的无线帧: 预定的上下行配置方 式、 LTE R8 TDD系统具有的上下行配置方式之一。 In the data transmission method in the related art, when a TDD system area of a certain configuration is used, when there is a different service type requirement in the area, the area needs to be converted into another uplink and downlink configuration to improve the spectrum of the TDD system. effectiveness. For example, if the TDD system area configured with 1 is used, when the downlink download data service increases in the area, the area needs to be converted into a TDD system with a relatively long downlink subframe configuration of 2. In this way, the subframe in which the uplink data was originally sent will no longer send uplink data, but will instead send downlink data. However, in this process, multiple subframes in the uplink subframe and the downlink subframe may be converted at the same time, which causes the control information sending position to be complex and confusing when dynamically changing, thereby causing high processing complexity and system interruption. . SUMMARY OF THE INVENTION A main object of the present invention is to provide a data transmission method, apparatus, and radio frame to solve the problem that the system processing complexity caused by the data transmission method in the related art is relatively high and the system is interrupted. In order to achieve the above object, according to an aspect of the present invention, a data transmission method is provided for use in a TDD system. The data transmission method according to the present invention includes: setting a predetermined uplink and downlink configuration manner, wherein the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: a first subframe, a fifth subframe, and a sixth subframe. The frame, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes, and the second subframe and the sixth subframe are special subframes; The predetermined uplink and downlink configuration mode is used for data transmission. The primary carrier uses one of the uplink and downlink configurations of the LTE R8 TDD system to configure the radio frame thereon; the secondary carrier configures the radio frame on the secondary carrier using one of the following configurations: a predetermined uplink and downlink configuration mode, and the LTE R8 TDD system has One of the uplink and downlink configuration methods.
LTE R8 TDD系统具有的上下行配置方式 0至 6为下表 1所示: 其中, D 标识子帧为下行子帧, U标识子帧为上行子帧, S标识子帧为特殊子帧。 上述方法还包括: 在无线帧配置从上下行配置方式 1转换为上下行配置方 式 2时, 先将无线帧配置从上下行配置方式 1转换为预定的上下行配置方式; 再将无线帧配置从预定的上下行配置方式转换为上下行配置方式 2, 其中, 每 次上下行配置方式转换过程中, 一个无线帧中只有一个子帧发生变化, 无线帧 配置为以下之一: 小区的无线帧配置、 载波的无线帧配置。 上述方法还包括: 在无线帧配置从上下行子帧配置方式 2转换为上下行配 置方式 1时, 先将无线帧配置从上下行配置方式 2转换为预定的上下行配置方 式; 再将无线帧配置从预定的上下行配置方式转换为上下行配置方式 1 , 其中, 每次上下行配置方式转换过程中, 一个无线帧中只有一个子帧发生变化, 无线 帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配置。 上述方法还包括: 在无线帧配置从上下行配置方式 1转换为上下行配置方 式 3时, 先将无线帧配置从上下行配置方式 1转换为预定的上下行配置方式; 再将无线帧配置从预定的上下行配置方式转换为上下行配置方式 3 , 其中, 无 线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配置。 上述方法还包括: 在无线帧配置从上下行配置方式 3转换为上下行配置方 式 1时, 先将无线帧配置从上下行配置方式 3转换为预定的上下行配置方式; 再将无线帧配置从预定的上下行配置方式转换为上下行配置方式 1 , 其中, 无 线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配置。 上述方法还包括: 使用如下顺序进行无线帧配置的转换: 上下行配置方式 0--->上下行配置方式 6--->上下行配置方式 1--->预定的上下行配置方式一 >上 下行配置方式 2- >上下行配置方式 5 , 其中, 无线帧配置为以下之一: 小区的 无线帧配置、 载波的无线帧配置。 上述方法还包括: 使用如下顺序进行无线帧配置的转换: 上下行配置方式 5--->上下行配置方式 4--->上下行配置方式 3--->预定的上下行配置方式一 >上 下行配置方式 1--->上下行配置方式 6 ->上下行配置方式 0, 其中, 无线帧配 置为以下之一: 小区的无线帧配置、 载波的无线帧配置。 上述方法还包括: 使用如下顺序进行无线帧配置的转换: 上下行配置方式 5——— >上下行配置方式 2- >预定的上下行配置方式- >上下行配置方式 1- >上 下行配置方式 6 - >上下行配置方式 0, 其中, 无线帧配置为以下之一: 小区的 无线帧配置、 载波的无线帧配置。 为了实现上述目的, 根据本发明的另一方面, 提供了一种数据传输装置。 根据本发明的数据传输装置包括: 设置模块, 用于设置无线帧的子帧格式 中的预定的上下行配置方式, 其中, 预定的上下行配置方式将一个无线帧中的 10个子帧配置为: 第一子帧、 第五子帧、 第六子帧、 第九子帧和第十子帧为下 行子帧, 第三子帧、 第四子帧和第八子帧为上行子帧, 第二子帧和第六子帧为 特殊子帧; 传输模块, 设置为使用预定的上下行配置方式进行数据传输。 为了实现上述目的, 才艮据本发明的再一方面, 还提供了一种无线帧。 才艮据本发明的无线帧包括 10 个子帧, 其中, 第一子帧、 第五子帧、 第六 子帧、 第九子帧和第十子帧为下行子帧, 第三子帧、 第四子帧和第八子帧为上 行子帧, 第二子帧和第六子帧为特殊子帧。 通过本发明, 釆用设置一种预定的上下行配置方式, 其中, 预定的上下行 配置方式将一个无线帧中的 10 个子帧配置为: 第一子帧、 第五子帧、 第六子 帧、 第九子帧和第十子帧为下行子帧, 第三子帧、 第四子帧和第八子帧为上行 子帧, 第二子帧和第六子帧为特殊子帧, 解决了相关技术中子帧格式转换过程 中会出现上行子帧和下行子帧中同时有多个子帧进行转换, 造成控制信息发送 位置在动态变化时比较复杂和混乱, 从而导致系统处理的复杂度比较高且造成 系统中断的问题。 从而提高了子帧上下行转换的稳定性, 继而提高了系统的可 靠性。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不 当限定。 在附图中: 图 1是根据本发明实施例的数据传输方法的流程图; 图 2是根据本发明实施例的数据传输装置的结构框图; 以及 图 3是根据本发明实施例的数据传输装置的优选的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不 冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本实施例提供了一种数据传输方法, 应用于时分双工 (TDD ) 系统, 图 1 是才艮据本发明实施例的数据传输方法的流程图, 如图 1所示, 该方法包括: 步 4聚 S 102: 设置无线帧的子帧格式中的预定的上下行配置方式, 其中, 预 定的上下行配置方式将一个无线帧中的 10 个子帧配置为: 第一子帧、 第五子 帧、 第六子帧、 第九子帧和第十子帧为下行子帧, 第三子帧、 第四子帧和第八 子帧为上行子帧, 第二子帧和第六子帧为特殊子帧; 步骤 S 104: 使用预定的上下行配置方式进行数据传输; 通过上述步骤, 设置一种预定的上下行配置方式, 预定的上下行配置方式 将一个无线帧中的 10 个子帧配置为: 第一子帧、 第五子帧、 第六子帧、 第九 子帧和第十子帧为下行子帧, 第三子帧、 第四子帧和第八子帧为上行子帧, 第 二子帧和第六子帧为特殊子帧, 克服了相关技术中子帧格式转换过程中会出现 上行子帧和下行子帧中同时有多个子帧进行转换, 造成控制信息发送位置在动 态变化时比较复杂和混乱, 从而导致系统处理的复杂度比较高且造成系统中断 的问题。 从而提高了子帧上下行转换的稳定性, 继而提高了系统的可靠性。 优选地, 主载波使用 LTE R8 TDD系统具有的上下行配置方式之一配置其 上的子帧; 辅载波使用以下之一的配置方式配置其上的子帧: 预定的上下行配 置方式、 LTE R8 TDD系统具有的上下行配置方式之一。 通过该优选实施例, 保证了主载波按照现有协议规定的子帧格式配置, 辅载波按照现有协议规定的 子帧格式和转换子帧格式进行配置, 实现了对现有系统的兼容性, 提高了子帧 配置的灵活性。 需要说明的是, 上述配置中限定的上下行配置方式虽然为 LTE R8 TDD系 统具有的上下行配置方式, 但是由于 LTE系统的后向兼容性, 对于 R9或 R10 系列的 TDD 系统同样包含但不限于上述的上下行配置方式, 所以本实施例中 的数据传输方案不仅适用于 LTE R8 TDD系统, 同样适用于与 LTE R8 TDD系 统兼容的其他版本的 LTE TDD系统。 优选地,上述 LTE R8 TDD系统配置的上下行配置方式 0至 6为表 1所示: 其中, D标识子帧为下行子帧, U标识子帧为上行子帧, S标识子帧为特殊子 帧。 通过该优选实施例, 在现有协议配置的子帧格式下实现上下行配置格式的 平稳转换, 提高了系统稳定性。 优选地, 上述方法还包括: 在无线帧配置从上下行配置方式 1转换为上下 行配置方式 2时, 先将无线帧配置从上下行配置方式 1转换为预定的上下行配 置方式; 再将无线帧配置从预定的上下行配置方式转换为上下行配置方式 2, 其中,每次上下行配置方式转换过程中,一个无线帧中只有一个子帧发生变化, 无线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配置。 优选地, 在无线帧配置从上下行子帧配置方式 2转换为上下行子帧配置方 式 1时, 先将无线帧配置从上下行子帧配置方式 2转换为预定的上下行配置方 式; 再将无线帧配置从预定的上下行配置方式转换为上下行子帧配置方式 1 , 其中,每次上下行配置方式转换过程中,一个无线帧中只有一个子帧发生变化, 无线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配置。 优选地, 上述方法还包括: 在无线帧配置从上下行子帧配置方式 1转换为 上下行子帧配置方式 3时, 先将无线帧配置从上下行子帧配置方式 1转换为预 定的上下行配置方式; 再将子帧配置从预定的上下行配置方式转换为上下行子 帧配置方式 3 , 其中, 无线帧配置为以下之一: 小区的无线帧配置、 载波的无 线帧配置。 通过该优选实施例, 实现了小区或载波的无线帧配置从方式 1向方 式 3的平稳转换, 提高了转换的效率和平稳性。 优选地, 在无线帧配置从上下行子帧配置方式 3转换为上下行子帧配置方 式 1时, 先将无线帧配置从上下行子帧配置方式 3转换为预定的上下行配置方 式; 再将无线帧配置从预定的上下行配置方式转换为上下行子帧配置方式 1 , 其中, 无线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配置。 通过 该优选实施例,实现了小区或载波的无线帧配置从方式 3向方式 1的平稳转换, 提高了转换的效率和平稳性。 优选地, 使用如下顺序进行无线帧配置的转换: 上下行子帧配置方式 0- > 上下行配置方式 6--->上下行配置方式 1--->预定的上下行配置方式 - >上下行 配置方式 2- >上下行配置方式 5 , 其中, 无线帧配置为以下之一: 小区的无线 帧配置、 载波的无线帧配置。 通过该优选实施例, 实现了小区或载波的无线帧 配置从上行子帧较多方式向下行子帧较多的方式的平稳转换, 提高了转换的效 率和平稳性。 优选地, 使用如下顺序进行无线帧配置的转换: 上下行配置方式 5 ->上下 行配置方式 4--->上下行配置方式 3--->预定的上下行配置方式一 >上下行配置 方式 1--->上下行配置方式 6 ->上下行配置方式 0, 其中, 无线帧配置为以下 之一: 小区的无线帧配置、 载波的无线帧配置。 通过该优选实施例, 实现了小 区或载波的无线帧配置从下行子帧较多方式向上行子帧较多的方式的平稳转 换, 提高了转换的效率和平稳性。 优选地, 使用如下顺序进行无线帧配置的转换: 上下行配置方式 5- >上下 行配置方式 2--->预定的上下行配置方式一 >上下行配置方式 1--->上下行配置 方式 6 - >上下行配置方式 0, 其中, 无线帧配置为以下之一: 小区的无线帧配 置、 载波的无线帧配置。 通过该优选实施例, 实现了小区或载波的无线帧配置 从下行子帧较多的方式向上行子帧较多的方式的平稳转换, 提高了转换的效率 和平稳性。 优选实施例 本实施例提供了一种数据传输方法, 本实施例结合了上述实施例及其中的 优选实施方式, 在本实施例中数据传输方法的 UL-DL 配置方式既可以用在一 个独立的 TDD系统区域,也可以用在多载波系统中的某个副载波 TDD配置上。 在本实施例中, 一个无线帧包含了 10个子帧, 子帧号分别标记为: 0, 1 ,The uplink and downlink configuration modes 0 to 6 of the LTE R8 TDD system are as shown in the following Table 1: The D identifier subframe is a downlink subframe, the U identifier subframe is an uplink subframe, and the S identifier subframe is a special subframe. The method further includes: when the radio frame configuration is changed from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 2, the radio frame configuration is first converted from the uplink and downlink configuration mode 1 to a predetermined uplink and downlink configuration mode; The predetermined uplink and downlink configuration mode is converted to the uplink and downlink configuration mode 2, wherein, in each uplink and downlink configuration mode conversion process, only one subframe changes in one radio frame, and the radio frame is configured as one of the following: radio frame configuration of the cell , radio frame configuration of the carrier. The method further includes: when the radio frame configuration is switched from the uplink and downlink subframe configuration mode 2 to the uplink and downlink configuration mode 1, the radio frame configuration is first converted from the uplink and downlink configuration mode 2 to a predetermined uplink and downlink configuration mode; The configuration is changed from the predetermined uplink and downlink configuration mode to the uplink and downlink configuration mode 1, wherein, in each uplink and downlink configuration mode conversion process, only one subframe changes in one radio frame, and the radio frame is configured as one of the following: Frame configuration, radio frame configuration of the carrier. The method further includes: when the radio frame configuration is switched from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 3, the radio frame configuration is first converted from the uplink and downlink configuration mode 1 to a predetermined uplink and downlink configuration mode; The predetermined uplink and downlink configuration mode is converted to the uplink and downlink configuration mode 3, wherein the radio frame is configured as one of the following: a radio frame configuration of the cell, and a radio frame configuration of the carrier. The method further includes: when the radio frame configuration is changed from the uplink and downlink configuration mode 3 to the uplink and downlink configuration mode 1, the radio frame configuration is first converted from the uplink and downlink configuration mode 3 to a predetermined uplink and downlink configuration mode; The predetermined uplink and downlink configuration mode is switched to the uplink and downlink configuration mode 1, where the radio frame is configured as one of the following: a radio frame configuration of the cell, and a radio frame configuration of the carrier. The foregoing method further includes: performing radio frame configuration conversion in the following sequence: uplink and downlink configuration mode 0---> uplink and downlink configuration mode 6---> uplink and downlink configuration mode 1---> predetermined uplink and downlink configuration mode 1> Uplink and downlink configuration mode 2 -> uplink and downlink configuration mode 5, wherein the radio frame configuration is one of the following: radio frame configuration of the cell, and radio frame configuration of the carrier. The method further includes: performing the following steps to perform radio frame configuration conversion: Up-down and downlink configuration mode 5---> uplink and downlink configuration mode 4---> uplink and downlink configuration mode 3---> predetermined uplink and downlink configuration mode 1> On Downstream configuration mode 1---> uplink and downlink configuration mode 6 -> uplink and downlink configuration mode 0, where the radio frame configuration is one of the following: radio frame configuration of the cell, radio frame configuration of the carrier. The above method further includes: performing the following steps to perform the conversion of the radio frame configuration: the uplink and downlink configuration mode 5 ———> the uplink and downlink configuration mode 2 -> the predetermined uplink and downlink configuration mode -> the uplink and downlink configuration mode 1 -> the uplink and downlink configuration mode 6 -> uplink and downlink configuration mode 0, where the radio frame is configured as one of the following: radio frame configuration of the cell, radio frame configuration of the carrier. In order to achieve the above object, according to another aspect of the present invention, a data transmission device is provided. The data transmission apparatus according to the present invention includes: a setting module, configured to set a predetermined uplink and downlink configuration manner in a subframe format of the radio frame, wherein the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: The first subframe, the fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes, and the second subframe The subframe and the sixth subframe are special subframes; the transmission module is configured to perform data transmission using a predetermined uplink and downlink configuration manner. In order to achieve the above object, according to still another aspect of the present invention, a radio frame is also provided. The radio frame according to the present invention includes 10 subframes, where the first subframe, the fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, The fourth subframe and the eighth subframe are uplink subframes, and the second subframe and the sixth subframe are special subframes. With the present invention, a predetermined uplink and downlink configuration mode is set, wherein the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: a first subframe, a fifth subframe, and a sixth subframe. The ninth subframe and the tenth subframe are downlink subframes, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes, and the second subframe and the sixth subframe are special subframes, which are solved. In the related art, in the process of sub-frame format conversion, multiple subframes in the uplink subframe and the downlink subframe are converted at the same time, which causes the control information transmission position to be more complicated and chaotic when dynamically changing, thereby causing high complexity of system processing. And caused a system interruption. Thereby, the stability of the uplink and downlink conversion of the subframe is improved, and the reliability of the system is improved. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the drawings: FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present invention; 2 is a block diagram showing the structure of a data transmission apparatus according to an embodiment of the present invention; and FIG. 3 is a block diagram showing a preferred configuration of a data transmission apparatus according to an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The embodiment provides a data transmission method, which is applied to a time division duplex (TDD) system. FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present invention. As shown in FIG. 1, the method includes: 4 聚 S 102: Set a predetermined uplink and downlink configuration mode in a subframe format of the radio frame, where the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: the first subframe and the fifth subframe The sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes, and the second subframe and the sixth subframe are special. Sub-frame; Step S104: Perform data transmission by using a predetermined uplink and downlink configuration manner; through the foregoing steps, setting a predetermined uplink and downlink configuration manner, and configuring a predetermined uplink and downlink configuration manner to configure 10 subframes in one radio frame as: The first subframe, the fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes, and the second subframe The subframe and the sixth subframe are special subframes, which overcome In the related art, in the process of sub-frame format conversion, multiple subframes in the uplink subframe and the downlink subframe are converted at the same time, which causes the control information transmission position to be more complicated and chaotic when dynamically changing, thereby causing high complexity of system processing. And caused a system interruption. Thereby, the stability of the uplink and downlink conversion of the subframe is improved, and the reliability of the system is improved. Preferably, the primary carrier uses one of the uplink and downlink configurations of the LTE R8 TDD system to configure the subframe thereon; the secondary carrier configures the subframe on the primary carrier by using one of the following configurations: a predetermined uplink and downlink configuration mode, LTE R8 One of the uplink and downlink configurations of the TDD system. With the preferred embodiment, the primary carrier is configured according to the subframe format specified by the existing protocol, and the secondary carrier is configured according to the subframe format and the converted subframe format specified by the existing protocol, thereby achieving compatibility with the existing system. Increased flexibility in subframe configuration. It should be noted that the uplink and downlink configuration manners defined in the above configuration are the uplink and downlink configuration modes of the LTE R8 TDD system. However, due to the backward compatibility of the LTE system, the TDD system of the R9 or R10 series is also included but not limited. The above-mentioned uplink and downlink configuration manner, so in this embodiment The data transmission scheme is applicable not only to the LTE R8 TDD system, but also to other versions of the LTE TDD system compatible with the LTE R8 TDD system. Preferably, the uplink and downlink configuration modes 0 to 6 of the LTE R8 TDD system configuration are as shown in Table 1: wherein the D identifier subframe is a downlink subframe, the U identifier subframe is an uplink subframe, and the S identifier subframe is a special subframe. frame. With the preferred embodiment, the smooth transition of the uplink and downlink configuration formats is implemented in the subframe format of the existing protocol configuration, thereby improving system stability. Preferably, the method further includes: when the radio frame configuration is switched from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 2, the radio frame configuration is first converted from the uplink and downlink configuration mode 1 to a predetermined uplink and downlink configuration mode; The frame configuration is changed from the predetermined uplink and downlink configuration mode to the uplink and downlink configuration mode 2, wherein, in each uplink and downlink configuration mode conversion process, only one subframe changes in one radio frame, and the radio frame is configured as one of the following: Radio frame configuration, radio frame configuration of the carrier. Preferably, when the radio frame configuration is switched from the uplink and downlink subframe configuration mode 2 to the uplink and downlink subframe configuration mode 1, the radio frame configuration is first converted from the uplink and downlink subframe configuration mode 2 to a predetermined uplink and downlink configuration mode; The radio frame configuration is switched from the predetermined uplink and downlink configuration mode to the uplink and downlink subframe configuration mode 1. In the process of converting the uplink and downlink configuration mode, only one subframe in one radio frame changes, and the radio frame is configured as one of the following. : Radio frame configuration of the cell, radio frame configuration of the carrier. Preferably, the method further includes: when the radio frame configuration is switched from the uplink and downlink subframe configuration mode 1 to the uplink and downlink subframe configuration mode 3, the radio frame configuration is first converted from the uplink and downlink subframe configuration mode 1 to a predetermined uplink and downlink. The configuration mode is: converting the subframe configuration from the predetermined uplink and downlink configuration mode to the uplink and downlink subframe configuration mode 3, wherein the wireless frame is configured as one of the following: a radio frame configuration of the cell, and a radio frame configuration of the carrier. Through the preferred embodiment, the smooth transition of the radio frame configuration of the cell or carrier from mode 1 to mode 3 is realized, and the efficiency and stability of the conversion are improved. Preferably, when the radio frame configuration is switched from the uplink and downlink subframe configuration mode 3 to the uplink and downlink subframe configuration mode 1, the radio frame configuration is first converted from the uplink and downlink subframe configuration mode 3 to a predetermined uplink and downlink configuration mode; The radio frame configuration is switched from the predetermined uplink and downlink configuration mode to the uplink and downlink subframe configuration mode 1, where the radio frame is configured as one of the following: a radio frame configuration of the cell, and a radio frame configuration of the carrier. Through the preferred embodiment, the smooth transition of the radio frame configuration of the cell or carrier from mode 3 to mode 1 is realized, and the efficiency and stability of the conversion are improved. Preferably, the conversion of the radio frame configuration is performed in the following sequence: Up-and-down-down subframe configuration mode 0-> Up-down-down configuration mode 6--->Uplink and downlink configuration mode 1--->Scheduled uplink and downlink configuration mode->Upstream and downlink Configuration mode 2 -> uplink and downlink configuration mode 5, where the radio frame is configured as one of the following: Frame configuration, radio frame configuration of the carrier. With the preferred embodiment, the radio frame configuration of the cell or the carrier is smoothly converted from the uplink subframe to the downlink subframe, thereby improving the efficiency and stability of the conversion. Preferably, the conversion of the radio frame configuration is performed in the following sequence: uplink and downlink configuration mode 5 -> uplink and downlink configuration mode 4---> uplink and downlink configuration mode 3---> predetermined uplink and downlink configuration mode 1> uplink and downlink configuration mode 1---> Uplink and downlink configuration mode 6 -> Uplink and downlink configuration mode 0, where the radio frame is configured as one of the following: radio frame configuration of the cell and radio frame configuration of the carrier. With the preferred embodiment, the radio frame configuration of the cell or the carrier is smoothly converted from the manner in which the downlink subframes are more uplinks, and the efficiency and stability of the conversion are improved. Preferably, the conversion of the radio frame configuration is performed in the following sequence: Up-down and downlink configuration mode 5 -> uplink and downlink configuration mode 2 -> predetermined uplink and downlink configuration mode 1 - uplink and downlink configuration mode 1 ->> uplink and downlink configuration mode 6 -> uplink and downlink configuration mode 0, where the radio frame is configured as one of the following: radio frame configuration of the cell, radio frame configuration of the carrier. With the preferred embodiment, the radio frame configuration of the cell or the carrier is smoothly converted from the manner that the number of the downlink subframes is larger, and the uplink subframe is more, thereby improving the efficiency and stability of the conversion. The preferred embodiment of the present invention provides a data transmission method. The embodiment combines the foregoing embodiments and preferred embodiments thereof. In this embodiment, the UL-DL configuration mode of the data transmission method can be used in an independent manner. The TDD system area can also be used in a subcarrier TDD configuration in a multi-carrier system. In this embodiment, a radio frame includes 10 subframes, and the subframe numbers are respectively marked as: 0, 1 .
2, 3 , 4, 5 , 6, 7, 8, 9。 子帧 0为下行子帧; 子帧 1为特殊子帧; 子帧 2和 3为上行子帧; 子帧 4和 5为下行子帧; 子帧 6为特殊子帧; 子帧 7为上行子 帧; 子帧 8和 9为下行子帧; 表 2子帧传输格式示意表
Figure imgf000008_0001
2, 3, 4, 5, 6, 7, 8, 9. Subframe 0 is a downlink subframe; subframe 1 is a special subframe; subframes 2 and 3 are uplink subframes; subframes 4 and 5 are downlink subframes; subframe 6 is a special subframe; subframe 7 is an uplink subframe. Frames; subframes 8 and 9 are downlink subframes; Table 2 subframe transmission format diagram
Figure imgf000008_0001
由表 2可知: 一个无线帧包含了 10个子帧, 子帧号分别标记为: 0, 1 , 2, 3 , 4, 5 , 6, 7, 8, 9。 "D"表示该子帧为下行子帧; "U" 表示该子帧为上行子 帧; "S"表示该子帧为特殊子帧, 即该子帧既包含有上行传输的部分也包含有 下行传输的部分。 在本实施例中将新的 TDD上下行配置方式称为: 上下行配置 7。 TDD系 统使用 3个比特数据表示 8种上下行配置; 用表格表示如下: 表 3上下行子帧配置示意表 It can be seen from Table 2 that a radio frame contains 10 subframes, and the subframe numbers are respectively marked as: 0, 1 , 2, 3, 4, 5, 6, 7, 8, 9. "D" indicates that the subframe is a downlink subframe; "U" indicates that the subframe is an uplink subframe; "S" indicates that the subframe is a special subframe, that is, the subframe includes both an uplink transmission part and an The part of the downlink transmission. In this embodiment, the new TDD uplink and downlink configuration mode is referred to as: uplink and downlink configuration 7. The TDD system uses three bits of data to represent eight types of uplink and downlink configurations; the table is expressed as follows: Table 3: Upstream and downlink subframe configuration diagram
Figure imgf000009_0001
Figure imgf000009_0001
由表 3可知, 原来时分长期演进 ( TD-LTE ) 系统的 7种上下行配置需要 3 个比特数据来表示, TDD系统对这 3比特数据按照某种规则进行编码后, 表示 8种上下行配置。 现在增加一种新的上下行配置方式后, 仍然可以用 3个比特 数据来表示。 因此没有额外增加系统开销, 并且可以充分利用这 3比特数据资 源。 本实施例中的数据传输方法包括以下方式: 方式一:当釆用 TDD上下行配置 1的小区要转换成 TDD上下行配置 2时, 该小区需要先转换成 TDD上下行配置 7 , 然后再转换成 TDD上下行配置 2; 同理, 当釆用 TDD上下行配置 2的小区要转换成 TDD上下行配置 1时, 该小 区需要先转换成 TDD上下行配置 7 , 然后再转换成 TDD上下行配置 1。 需要说明的是, 在一个无线帧里, TDD上下行配置 7比配置 1只多一个下 行子帧, 而配置 2比配置 7也只多一个下行子帧。 配置 1先转换成配置 7然后 再转换成配置 2 , 或者配置 2先转换成配置 7然后再转换成配置 1 , 使得小区 的 TDD上下行配置变化具有连续性, 有利于保证在进行中的业务不中断和降 低系统处理的复杂度。 方式二 当釆用 TDD上下行配置 1的载波要转换成 TDD上下行配置 2时, 该载波 需要先转换成 TDD上下行配置 7 , 然后再转换成 TDD上下行配置 2; 同理, 当釆用 TDD上下行配置 2的载波要转换成 TDD上下行配置 1时, 该载波需要 先转换成 TDD上下行配置 7, 然后再转换成 TDD上下行配置 1。 需要说明的是, 对于釆用配置为 1 的 TDD 系统区域, 当该区域出现下行 下载数据业务增多的情况时, 就需要将该区域转换成下行子帧相对更多的配置 为 2的 TDD系统。 这样, 就会出现原来发上行数据的子帧不再发上行数据了, 而改为发下行数据。 配置 1与配置 2之间在一个无线帧里有 2个子帧不同, 如 果系统要在配置 1与配置 2之间进行动态变换的话, 容易导致控制信息发送位 置在动态变化时比较复杂和混乱, 并容易导致业务的中断。 因此, 如果要使 TD-LTE系统在配置 1与配置 2之间实现高效率的动态变换, 使用配置 7进行 中间转换, 可以保证在不中断业务的情况下顺利转换上下行配置, 且降低系统 转换的复杂度。 如果釆用配置 1与釆用配置 2的 TD-LTE系统相邻时, 中间就需要有一块 区域是釆用空子帧的配置, 以隔离上下行千扰。 但由于在一个无线帧里有 2个 子帧要设置成空子帧, 因此中间这块区域的资源浪费就比较大, 反而可能会降 低了整个 TD-LTE系统网络的效率。 方式三 当釆用 TDD上下行配置 3的小区要转换成 TDD上下行配置 1时, 该小区 需要先转换成 TDD上下行配置 7, 然后再转换成 TDD上下行配置 1 , 同理, 当釆用 TDD上下行配置 3的载波要转换成 TDD上下行配置 1时, 该载波需要 先转换成 TDD上下行配置 7, 然后再转换成 TDD上下行配置 1。 需要说明的是, 在本方式中, 在一个无线帧里, TDD上下行配置 7比配置 1只多一个下行子帧, 而配置 3比配置 7也只多一个下行子帧。 配置 3先转换 成配置 7然后再转换成配置 1 , 使得小区的 TDD上下行配置变化具有连续性, 有利于保证在进行中的业务不中断和降低系统处理的复杂度。 方式四 当釆用 TDD上下行配置 3的载波要转换成 TDD上下行配置 1时, 该载波 需要先转换成 TDD上下行配置 7, 然后再转换成 TDD上下行配置 1 , 同理, 当釆用 TDD上下行配置 1的载波要转换成 TDD上下行配置 3时, 该载波需要 先转换成 TDD上下行配置 7, 然后再转换成 TDD上下行配置 3。 方式五 当小区从上行较多的配置转换到下行较多的配置时, 需要按照如下的转换 顺序进行: 配置 0-— >配置 6-— >配置 1-— >配置 7-— >配置 2-— >配置 5。 方式六 当某载波从上行较多的配置转换到下行较多的配置时, 需要按照如下的转 换顺序进行: 配置 0-— >配置 6-— >配置 1-— >配置 7-— >配置 2-— >配置 5。 方式八 当小区从下行较多的配置转换到上行较多的配置时, 需要按照如下的转换 顺序进行: 配置 5-— >配置 4-— >配置 3-— >配置 7-— >配置 1-— >配置 6 -— >配置 0。 方式九 当某载波从下行较多的配置转换到上行较多的配置时, 需要按照如下的转 换顺序进行: 配置 5-— >配置 4-— >配置 3-— >配置 7-— >配置 1-— >配置 6 -— >配置 0。 方式十 当小区从下行较多的配置转换到上行较多的配置时, 还可以按照另外一种 转换顺序进行如下: 配置 5-— >配置 2-— >配置 7-— >配置 1-— >配置 6 -— >配置 0。 可以看出, 增加了 TDD上下行配置 7之后, TD-LTE系统的上下行配置变 化更加具有连续性, 有利于保证在进行中的业务不中断和降低系统处理的复杂 度。 方式十一 当某载波从下行较多的配置转换到上行较多的配置时, 还可以按照另外一 种转换顺序进行如下: 配置 5-— >配置 2-— >配置 7-— >配置 1-— >配置 6 -— >配置 0。 优选地, 在多载波 TDD系统中, 主载波釆用上下行配置 0、 配置 1、 配置 2、 配置 3、 配置 4、 配置 5、 配置 6这 7种配置中的任何一种; 某一个副载波 可以釆用上下行配置 0至配置 7这 8种配置中的任何一种。 这样, 主载波釆用 原来的配置可以 艮好地保持终端的后向兼容性问题; 副载波釆用新的配置 7可 以 艮好地增强终端在 TDD配置动态变化的灵活性。 需要说明的是, 5ms周期的 TDD帧结构比 10ms周期的 TDD帧结构在时 延敏感性业务方面更有优势, 因此增加一个 5ms周期内使用本实施例的方法, 增加配置 7 , 使系统配置更合理。 而且配置 7的上下行比例比较适合现在的数 据业务类型, 使用频度很高, 提高系统传输效率。 且配置 1和 2这两种方式的 上行传输资源与下行传输资源的比例比较适中, 能够适应业务类型在不断变化 的区域使用,因此 TD-LTE系统实际应用中釆用配置 1与配置 2的时候会更多。 这样, 如果在配置 1与配置 2之间增加一种配置 7 , 这种新配置的应用场景也 会比较多, 可以优化系统的数据传输。 本实施例提供了一种数据传输装置, 图 2是根据本发明实施例的数据传输 装置的结构框图, 如图 2所示, 该装置包括: 设置模块 22和传输模块 24 , 下 面对上述结构进行详细描述: 设置模块 22 , 设置为设置无线帧的子帧格式中的预定的上下行配置方式, 其中, 预定的上下行配置方式将一个无线帧中的 10个子帧配置为: 第一子帧、 第五子帧、 第六子帧、 第九子帧和第十子帧为下行子帧, 第三子帧、 第四子帧 和第八子帧为上行子帧, 第二子帧和第六子帧为特殊子帧; 传输模块 24 , 连接 至设置模块 22 , 设置为使用设置模块设置 22设置的所述预定的上下行配置方 式进行数据传输。 图 3是根据本发明实施例的数据传输装置的优选的结构框图,如图 3所示, 该装置还包括: 第一子帧配置模块 32 , 第二子帧配置模块 34 , 第一转换子模 块 241 , 第一格式转换子模块 242 , 第二转换子模块 243 , 第二格式转换子模块 244 , 第三转换子模块 245 , 第三格式转换子模块 246 , 第四转换子模块 247 , 第四格式转换子模块 248 , 第五转换子模块 249 , 第六转换子模块 250 , 第七转 换子模块 251 , 下面对上述结构进行详细描述: 上述装置还包括: 第一子帧配置模块 32 , 设置为配置主载波使用 LTE R8 TDD系统具有的上下行配置方式之一配置其上的子帧; 第二子帧配置模块 34 , 设置为辅载波使用以下之一的配置方式配置其上的子帧: 预定的上下行配置方 式、 LTE R8 TDD系统具有的上下行配置方式之一。 第一转换子模块 241 , 设置为在无线帧配置从上下行配置方式 1转换为上 下行配置方式 2时, 将无线帧配置从上下行配置方式 1转换为预定的上下行配 置方式; 第一格式转换子模块 242 , 连接至第一转换子模块 241 , 设置为将第 一转换子模块 241转换得到的无线帧配置从预定的上下行配置方式转换为上下 行配置方式 2 , 其中, 每次上下行配置方式转换过程中, 一个无线帧中只有一 个子帧发生变化, 无线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧 配置。 第二转换子模块 243 , 设置为在无线帧配置从上下行配置方式 2转换为上 下行配置方式 1时, 将无线帧配置从上下行配置方式 2转换为预定的上下行配 置方式; 第二格式转换子模块 244, 连接至第二转换子模块 243 , 设置为将第 二转换子模块 243转换得到的无线帧配置从预定的上下行配置方式转换为上下 行配置方式 1 , 其中, 每次上下行配置方式转换过程中, 一个无线帧中只有一 个子帧发生变化无线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配 置。 第三转换子模块 245, 设置为在无线帧配置从上下行配置方式 1转换为上 下行配置方式 3时, 将无线帧配置从上下行子帧配置方式 1转换为预定的上下 行配置方式; 第三格式转换子模块 246 , 连接至第三转换子模块 245, 设置为 将第三转换子模块 245转换得到的无线帧配置从预定的上下行配置方式转换为 上下行配置方式 3 , 其中, 无线帧配置为以下之一: 小区的子帧无线帧配置、 载波的无线帧配置。 第四转换子模块 247, 设置为在无线帧配置从上下行配置方式 3转换为上 下行配置方式 1时, 将无线帧配置从上下行配置方式 3转换为预定的上下行配 置方式; 第四格式转换子模块 248, 连接至第四转换子模块 247, 设置为将第 四转换子模块 247转换得到的无线帧配置从预定的上下行配置方式转换为上下 行配置方式 1 , 其中, 无线帧配置为以下之一: 小区的无线帧配置、 载波的无 线帧配置。 第五转换子模块 249 , 设置为使用如下顺序进行无线帧配置的转换: 上下 行配置方式 0--->上下行配置方式 6--->上下行配置方式 1--->预定的上下行配置 方式一 >上下行子帧配置方式 2--->上下行子帧配置方式 5 , 其中, 无线帧配置 为以下之一: 小区的无线帧配置、 载波的无线帧配置。 第六转换子模块 250 , 设置为使用如下顺序进行无线帧配置的转换: 上下 行配置方式 5--->上下行配置方式 4--->上下行配置方式 3--->预定的上下行配置 方式一 >上下行配置方式 1--->上下行配置方式 6 - >上下行配置方式 0 , 其中, 无线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配置。 第七转换子模块 251 , 设置为使用如下顺序进行无线帧配置的转换: 上下 行配置方式 5- >上下行配置方式 2- >预定的上下行配置方式- >上下行配置 方式 1--->上下行配置方式 6 ->上下行配置方式 0 , 其中, 无线帧配置为以下 之一: 小区的无线帧配置、 载波的无线帧配置。 本实施例提供了一种无线帧, 该无线帧包括 10个子帧, 其中, 第一子帧、 第五子帧、 第六子帧、 第九子帧和第十子帧为下行子帧, 第三子帧、 第四子帧 和第八子帧为上行子帧, 第二子帧和第六子帧为特殊子帧。 通过该无线帧可以 使得 LTE R8 TDD系统配置的上下行配置方式之间的转换得到简化,例如: LTE R8 TDD系统配置的上下行配置方式 1与 LTE R8 TDD系统配置的上下行配置 方式 2的转换过程中只有一个子帧发生变化。 综上所述, 通过上述实施例, 提供了一种数据传输方法、 装置及无线帧, 通过设置预定的上下行配置方式, 其中, 预定的上下行配置方式将一个无线帧 中的 10 个子帧配置为: 第一子帧、 第五子帧、 第六子帧、 第九子帧和第十子 帧为下行子帧, 第三子帧、 第四子帧和第八子帧为上行子帧, 第二子帧和第六 子帧为特殊子帧, 克服了相关技术中子帧格式转换过程中会出现上行子帧和下 行子帧中同时有多个子帧进行转换, 造成控制信息发送位置在动态变化时比较 复杂和混乱, 从而导致系统处理的复杂度比较高且造成系统中断的问题。 从而 提高了子帧上下行转换的稳定性, 继而提高了系统的可靠性。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以 用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多 个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码 来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并且在某些 情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者将它们分别 制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电 路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。 As can be seen from Table 3, the seven uplink and downlink configurations of the original Time Division Long Term Evolution (TD-LTE) system require three bits of data to be represented. After the TDD system encodes the three bits of data according to certain rules, it indicates eight uplink and downlink configurations. . Now, after adding a new uplink and downlink configuration mode, it can still be represented by 3 bits of data. Therefore, there is no additional system overhead, and the 3-bit data resource can be fully utilized. The data transmission method in this embodiment includes the following manners: Mode 1: When a cell that uses TDD uplink and downlink configuration 1 is to be converted into a TDD uplink and downlink configuration 2, the cell needs to be converted into a TDD uplink and downlink configuration 7 first, and then converted. In the TDD uplink and downlink configuration 2; similarly, when the cell using the TDD uplink and downlink configuration 2 is to be converted into the TDD uplink and downlink configuration 1, the cell needs to be converted into the TDD uplink and downlink configuration 7, and then converted into the TDD uplink and downlink configuration. 1. It should be noted that, in a radio frame, the uplink and downlink configuration 7 of the TDD is only one more downlink subframe than the configuration 1, and the configuration 2 has only one downlink subframe more than the configuration 7. Configuration 1 is first converted to configuration 7 and then converted to configuration 2, or configuration 2 is first converted to configuration 7 and then to configuration 1 to make the TDD uplink and downlink configuration changes of the cell have continuity, which is beneficial to ensure that the ongoing service is not Interrupt and reduce the complexity of system processing. In the second mode, when the carrier of the TDD uplink and downlink configuration 1 is to be converted into the TDD uplink and downlink configuration 2, the carrier needs to be converted into the TDD uplink and downlink configuration 7 first, and then converted into the TDD uplink and downlink configuration 2; similarly, When the carrier of the TDD uplink and downlink configuration 2 is to be converted into the TDD uplink and downlink configuration 1, the carrier needs to be converted into the TDD uplink and downlink configuration 7 and then converted into the TDD uplink and downlink configuration 1. It should be noted that, when the TDD system area configured with 1 is used, when the downlink download data service increases in the area, the area needs to be converted into a TDD system with a relatively long downlink subframe configuration of 2. In this way, the subframe in which the uplink data was originally sent will no longer send uplink data, but will instead send downlink data. There are two sub-frames in a radio frame between configuration 1 and configuration 2. If the system is to dynamically change between configuration 1 and configuration 2, it is easy to cause the control information sending position to be more complicated and chaotic when dynamically changing, and It is easy to cause business interruption. Therefore, if you want to enable the TD-LTE system to achieve high-efficiency dynamic conversion between configuration 1 and configuration 2, use configuration 7 for intermediate conversion, which can ensure smooth transition of uplink and downlink configuration without interrupting services, and reduce system conversion. The complexity. If the configuration 1 is adjacent to the TD-LTE system configured with the configuration 2, an intermediate area is required to be configured with an empty subframe to isolate the uplink and downlink interference. However, since there are 2 subframes in a radio frame to be set as null subframes, the resource waste in the middle region is relatively large, which may reduce the efficiency of the entire TD-LTE system network. Mode 3: When the cell with TDD uplink and downlink configuration 3 is to be converted to TDD uplink and downlink configuration 1, the cell needs to be converted into TDD uplink and downlink configuration 7 first, and then converted to TDD uplink and downlink configuration 1. Similarly, when used When the carrier of the TDD uplink and downlink configuration 3 is to be converted into the TDD uplink and downlink configuration 1, the carrier needs to be converted into the TDD uplink and downlink configuration 7 and then converted into the TDD uplink and downlink configuration 1. It should be noted that, in this mode, in one radio frame, the TDD uplink and downlink configuration 7 is only one more downlink subframe than the configuration 1, and the configuration 3 is only one more downlink subframe than the configuration 7. The configuration 3 is first converted into the configuration 7 and then converted into the configuration 1 to make the TDD uplink and downlink configuration changes of the cell have continuity, which is beneficial to ensure that the ongoing services are not interrupted and the complexity of the system processing is reduced. Mode 4: When the carrier of TDD uplink and downlink configuration 3 is to be converted into TDD uplink and downlink configuration 1, the carrier needs to be converted into TDD uplink and downlink configuration 7 first, and then converted into TDD uplink and downlink configuration 1. Similarly, when used When the carrier of the TDD uplink and downlink configuration 1 is to be converted into the TDD uplink and downlink configuration 3, the carrier needs to be converted into the TDD uplink and downlink configuration 7 and then converted into the TDD uplink and downlink configuration 3. Mode 5 When the cell transitions from the uplink configuration to the downlink configuration, the following conversion sequence is required: Configuration 0-—>Configuration 6-—>Configuration 1-—>Configuration 7-—Configuration 2- — > Configuration 5. Mode 6 When a carrier transitions from a higher uplink configuration to a lower downlink configuration, the following conversion sequence is required: Configuration 0-—>Configuration 6-—>Configuration 1-—>Configuration 7-—>Configuration 2 ->> Configuration 5. Mode 8 When the cell transitions from the downlink configuration to the uplink configuration, the following conversion sequence is required: Configuration 5-->Configuration 4-->Configuration 3-->Configuration 7-->Configuration 1- —>Configuration 6 — — > Configuration 0. Mode 9 When a carrier is switched from a downlink configuration to a larger uplink configuration, the following conversion sequence is required: Configuration 5-->Configuration 4-->Configuration 3-->Configuration 7-->Configuration 1 ->> Configuration 6 - - > Configuration 0. Mode 10 When a cell transitions from a downlink configuration to a larger uplink configuration, it can also be performed in another conversion sequence as follows: Configuration 5-->Configuration 2-->Configuration 7-->Configuration 1--> Configuration 6 - - > Configuration 0. It can be seen that after the TDD uplink and downlink configuration 7 is added, the uplink and downlink configuration changes of the TD-LTE system are more continuous, which is beneficial to ensure that the ongoing services are not interrupted and the complexity of the system processing is reduced. Way eleven When a carrier is switched from a downlink configuration to a higher uplink configuration, you can also perform the following conversion sequence as follows: Configuration 5-->Configuration 2-->Configuration 7-->Configuration 1-->Configuration 6 - - > Configuration 0. Preferably, in the multi-carrier TDD system, the primary carrier uses any one of the seven configurations of uplink and downlink configuration 0, configuration 1, configuration 2, configuration 3, configuration 4, configuration 5, and configuration 6; Any of the eight configurations of uplink and downlink configuration 0 to configuration 7 can be used. In this way, the primary carrier can maintain the backward compatibility problem of the terminal with the original configuration; the new configuration 7 of the secondary carrier can enhance the flexibility of the terminal to dynamically change in the TDD configuration. It should be noted that the TDD frame structure of the 5ms period is more advantageous than the TDD frame structure of the 10ms period in the delay sensitive service. Therefore, the method of the embodiment is used in a 5ms period, and the configuration 7 is added to make the system configuration more. reasonable. Moreover, the uplink-downlink ratio of configuration 7 is more suitable for the current data service type, and the frequency of use is high, and the system transmission efficiency is improved. The ratio of the uplink transmission resource to the downlink transmission resource in the two modes of configuration 1 and 2 is moderate, and can be adapted to the service type in the ever-changing region. Therefore, when the configuration 1 and the configuration 2 are used in the actual application of the TD-LTE system Will be more. In this way, if a configuration 7 is added between configuration 1 and configuration 2, the application scenario of this new configuration will be more, and the data transmission of the system can be optimized. The present embodiment provides a data transmission apparatus. FIG. 2 is a structural block diagram of a data transmission apparatus according to an embodiment of the present invention. As shown in FIG. 2, the apparatus includes: a setting module 22 and a transmission module 24, and the following structure is For detailed description, the setting module 22 is configured to set a predetermined uplink and downlink configuration manner in a subframe format of the radio frame, where the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: the first subframe The fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes, second subframes, and The six subframes are special subframes; the transmission module 24 is connected to the setting module 22, and is configured to perform data transmission by using the predetermined uplink and downlink configuration manner set by the setting module setting 22. FIG. 3 is a block diagram of a preferred structure of a data transmission apparatus according to an embodiment of the present invention. As shown in FIG. 3, the apparatus further includes: a first subframe configuration module 32, a second subframe configuration module 34, and a first conversion submodule. 241, the first format conversion submodule 242, the second conversion submodule 243, the second format conversion submodule 244, the third conversion submodule 245, the third format conversion submodule 246, the fourth conversion submodule 247, and the fourth format The conversion sub-module 248, the fifth conversion sub-module 249, the sixth conversion sub-module 250, and the seventh conversion sub-module 251 are described in detail below: The foregoing apparatus further includes: a first subframe configuration module 32, configured to configure a primary carrier to configure a subframe thereon by using one of an uplink and downlink configuration manner of the LTE R8 TDD system; and a second subframe configuration module 34 configured to be a secondary carrier Use one of the following configuration methods to configure the subframes on it: One of the scheduled uplink and downlink configurations, and one of the uplink and downlink configurations of the LTE R8 TDD system. The first conversion sub-module 241 is configured to convert the radio frame configuration from the uplink and downlink configuration mode 1 to a predetermined uplink and downlink configuration mode when the radio frame configuration is changed from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 2; The conversion sub-module 242 is connected to the first conversion sub-module 241, and is configured to convert the radio frame configuration converted by the first conversion sub-module 241 from a predetermined uplink-downlink configuration mode to an uplink-downlink configuration mode 2, where each uplink and downlink configuration During the configuration mode conversion, only one subframe in a radio frame changes, and the radio frame is configured as one of the following: radio frame configuration of the cell and radio frame configuration of the carrier. The second conversion sub-module 243 is configured to convert the radio frame configuration from the uplink and downlink configuration mode 2 to a predetermined uplink and downlink configuration mode when the radio frame configuration is changed from the uplink and downlink configuration mode 2 to the uplink and downlink configuration mode 1; The conversion sub-module 244 is connected to the second conversion sub-module 243, and is configured to convert the radio frame configuration converted by the second conversion sub-module 243 from a predetermined uplink-downlink configuration mode to an uplink-downlink configuration mode 1, where each uplink and downlink configuration During the configuration mode conversion, only one subframe in a radio frame changes. The radio frame is configured as one of the following: radio frame configuration of the cell, and radio frame configuration of the carrier. The third conversion sub-module 245 is configured to convert the radio frame configuration from the uplink and downlink subframe configuration mode 1 to a predetermined uplink and downlink configuration mode when the radio frame configuration is changed from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 3; The third format conversion sub-module 246 is connected to the third conversion sub-module 245, and configured to convert the radio frame configuration converted by the third conversion sub-module 245 from a predetermined uplink-downlink configuration mode to an uplink-downlink configuration mode 3, where the radio frame Configured as one of the following: Subframe radio frame configuration of the cell, radio frame configuration of the carrier. The fourth conversion sub-module 247 is configured to convert the radio frame configuration from the uplink and downlink configuration mode 3 to a predetermined uplink and downlink configuration mode when the radio frame configuration is changed from the uplink and downlink configuration mode 3 to the uplink and downlink configuration mode 1; The conversion sub-module 248 is connected to the fourth conversion sub-module 247, and is configured to convert the radio frame configuration converted by the fourth conversion sub-module 247 from a predetermined uplink-downlink configuration mode to an uplink-downlink configuration mode 1, where the radio frame configuration is One of the following: radio frame configuration of the cell, radio frame configuration of the carrier. The fifth conversion sub-module 249 is configured to perform the conversion of the radio frame configuration in the following sequence: uplink and downlink configuration mode 0---> uplink and downlink configuration mode 6---> uplink and downlink configuration mode 1---> predetermined uplink and downlink Configuration mode 1 > Up-and-down-down subframe configuration mode 2---> Up-and-down-down subframe configuration mode 5, where the radio frame is configured as one of the following: radio frame configuration of the cell, and radio frame configuration of the carrier. The sixth conversion sub-module 250 is configured to perform the conversion of the radio frame configuration in the following sequence: uplink and downlink configuration mode 5---> uplink and downlink configuration mode 4---> uplink and downlink configuration mode 3---> predetermined uplink and downlink Configuration mode 1> Uplink and downlink configuration mode 1--->Uplink and downlink configuration mode 6 -> Uplink and downlink configuration mode 0, where the radio frame is configured as one of the following: radio frame configuration of the cell and radio frame configuration of the carrier. The seventh conversion sub-module 251 is configured to perform the conversion of the radio frame configuration in the following sequence: the uplink and downlink configuration mode 5 -> the uplink and downlink configuration mode 2 - the predetermined uplink and downlink configuration mode -> the uplink and downlink configuration mode 1 -> Uplink and downlink configuration mode 6 -> uplink and downlink configuration mode 0, where the radio frame configuration is one of the following: radio frame configuration of the cell, radio frame configuration of the carrier. The embodiment provides a radio frame, where the radio frame includes 10 subframes, where the first subframe, the fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, The three subframes, the fourth subframe, and the eighth subframe are uplink subframes, and the second subframe and the sixth subframe are special subframes. The conversion between the uplink and downlink configuration modes of the LTE R8 TDD system configuration can be simplified by using the radio frame. For example, the uplink and downlink configuration mode 1 configured in the LTE R8 TDD system and the uplink and downlink configuration mode 2 configured in the LTE R8 TDD system are converted. Only one sub-frame changes during the process. In summary, the foregoing embodiment provides a data transmission method, apparatus, and radio frame, by setting a predetermined uplink and downlink configuration manner, wherein a predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame. The first subframe, the fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes. The second sub-frame and the sixth sub-frame are special sub-frames, and the sub-frame format conversion process in the related art overcomes that multiple sub-frames are simultaneously converted in the uplink sub-frame and the downlink sub-frame, and the control information is sent in a dynamic position. The change is more complicated and confusing, which leads to the complexity of the system processing and the problem of system interruption. Thereby, the stability of the uplink and downlink conversion of the subframe is improved, and the reliability of the system is improved. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or separate them It is implemented by making individual integrated circuit modules, or by making a plurality of modules or steps of them into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种数据传输方法, 应用于时分双工 TDD系统, 包括: A data transmission method for a time division duplex TDD system, comprising:
设置预定的上下行配置方式, 其中, 所述预定的上下行配置方式将 一个无线帧中的 10个子帧配置为: 第一子帧、 第五子帧、 第六子帧、 第 九子帧和第十子帧为下行子帧, 第三子帧、 第四子帧和第八子帧为上行 子帧, 第二子帧和第六子帧为特殊子帧;  And setting a predetermined uplink and downlink configuration manner, where the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: a first subframe, a fifth subframe, a sixth subframe, a ninth subframe, and The tenth subframe is a downlink subframe, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes, and the second subframe and the sixth subframe are special subframes.
使用所述预定的上下行配置方式进行数据传输。  Data transmission is performed using the predetermined uplink and downlink configuration manner.
2. 根据权利要求 1所述的方法, 其中, 2. The method according to claim 1, wherein
主载波使用 LTE R8 TDD系统具有的上下行配置方式之一配置其上 的无线帧;  The primary carrier uses one of the uplink and downlink configurations of the LTE R8 TDD system to configure the radio frame thereon;
辅载波使用以下之一的配置方式配置其上的无线帧: 所述预定的上 下行配置方式、 LTE R8 TDD系统具有的上下行配置方式之一。  The secondary carrier configures the radio frame on the secondary carrier in one of the following configurations: the predetermined uplink and downlink configuration mode, and one of the uplink and downlink configuration modes of the LTE R8 TDD system.
3. 根据权利要求 2所述的方法, 其中, 3. The method according to claim 2, wherein
所述 LTE R8 TDD系统具有的上下行配置方式 0至 6为下表所示:  The uplink and downlink configuration modes 0 to 6 of the LTE R8 TDD system are as follows:
Figure imgf000016_0001
Figure imgf000016_0001
其中, D标识所述子帧为下行子帧, U标识所述子帧为上行子帧, S 标识所述子帧为特殊子帧。  The D identifies that the subframe is a downlink subframe, and U identifies that the subframe is an uplink subframe, and S identifies that the subframe is a special subframe.
4. 根据权利要求 3所述的方法, 其中, 还包括: 4. The method according to claim 3, further comprising:
在无线帧配置从所述上下行配置方式 1转换为所述上下行配置方式 2时, 先将所述无线帧配置从所述上下行配置方式 1转换为所述预定的 上下行配置方式; 再将所述无线帧配置从所述预定的上下行配置方式转换为所述上下 行配置方式 2, 其中, 每次上下行配置方式转换过程中, 一个无线帧中 只有一个子帧发生变化, 所述无线帧配置为以下之一: 小区的无线帧配 置、 载波的无线帧配置。 When the radio frame configuration is switched from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 2, the radio frame configuration is first converted from the uplink and downlink configuration mode 1 to the predetermined uplink and downlink configuration mode; And converting the radio frame configuration from the predetermined uplink and downlink configuration mode to the uplink and downlink configuration mode 2, wherein only one subframe in a radio frame changes during each uplink and downlink configuration mode conversion process. The radio frame configuration is one of the following: radio frame configuration of a cell, radio frame configuration of a carrier.
5. 根据权利要求 3所述的方法, 其中, 还包括: 5. The method according to claim 3, further comprising:
在无线帧配置从所述上下行子帧配置方式 2转换为所述上下行配置 方式 1时, 先将所述无线帧配置从所述上下行配置方式 2转换为所述预 定的上下行配置方式;  When the radio frame configuration is switched from the uplink and downlink subframe configuration mode 2 to the uplink and downlink configuration mode 1, the radio frame configuration is first converted from the uplink and downlink configuration mode 2 to the predetermined uplink and downlink configuration mode. ;
再将所述无线帧配置从所述预定的上下行配置方式转换为所述上下 行配置方式 1 , 其中, 每次上下行配置方式转换过程中, 一个无线帧中 只有一个子帧发生变化, 所述无线帧配置为以下之一: 小区的无线帧配 置、 载波的无线帧配置。  And converting the radio frame configuration from the predetermined uplink and downlink configuration mode to the uplink and downlink configuration mode 1, wherein, in each uplink and downlink configuration mode conversion process, only one subframe in a radio frame changes. The radio frame configuration is one of the following: radio frame configuration of a cell, radio frame configuration of a carrier.
6. 根据权利要求 3所述的方法, 其中, 还包括: 6. The method according to claim 3, further comprising:
在无线帧配置从所述上下行配置方式 1转换为所述上下行配置方式 3 时, 先将所述无线帧配置从所述上下行配置方式 1转换为所述预定的 上下行配置方式;  When the radio frame configuration is changed from the uplink and downlink configuration mode 1 to the uplink and downlink configuration mode 3, the radio frame configuration is first converted from the uplink and downlink configuration mode 1 to the predetermined uplink and downlink configuration mode;
再将所述无线帧配置从所述预定的上下行配置方式转换为所述上下 行配置方式 3 , 其中, 所述无线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配置。  And converting the radio frame configuration from the predetermined uplink and downlink configuration manner to the uplink and downlink configuration mode 3, wherein the radio frame is configured as one of: a radio frame configuration of a cell, and a radio frame configuration of a carrier.
7. 根据权利要求 3所述的方法, 其中, 还包括: 7. The method according to claim 3, further comprising:
在所述无线帧配置从所述上下行配置方式 3转换为所述上下行配置 方式 1时, 先将无线帧配置从所述上下行配置方式 3转换为所述预定的 上下行配置方式;  When the radio frame configuration is switched from the uplink and downlink configuration mode 3 to the uplink and downlink configuration mode 1, the radio frame configuration is first converted from the uplink and downlink configuration mode 3 to the predetermined uplink and downlink configuration mode;
再将所述无线帧配置从所述预定的上下行配置方式转换为所述上下 行配置方式 1 , 其中, 所述无线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配置。  And converting the radio frame configuration from the predetermined uplink and downlink configuration manner to the uplink and downlink configuration mode 1 , wherein the radio frame is configured as one of: a radio frame configuration of a cell, and a radio frame configuration of a carrier.
8. 根据权利要求 3所述的方法, 其中, 还包括: 8. The method according to claim 3, further comprising:
使用如下顺序进行无线帧配置的转换: 所述上下行配置方式 0 ->所 述上下行配置方式 6--->所述上下行配置方式 1--->所述预定的上下行配 置方式 --- >所述上下行配置方式 2--->所述上下行配置方式 5 , 其中, 所 述无线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配置。 Performing the conversion of the radio frame configuration in the following sequence: the uplink and downlink configuration mode 0 -> the uplink and downlink configuration mode 6 -> the uplink and downlink configuration mode 1 -> the predetermined uplink and downlink configuration The above-mentioned uplink-downlink configuration mode 2 -> the uplink-downlink configuration mode 5, wherein the radio frame is configured as one of: a radio frame configuration of a cell, and a radio frame configuration of a carrier.
9. 根据权利要求 3所述的方法, 其中, 还包括: 9. The method according to claim 3, further comprising:
使用如下顺序进行所述无线帧配置的转换: 所述上下行配置方式 5-— >所述上下行配置方式 4- >所述上下行配置方式 3- >所述预定的上 下行配置方式一 >所述上下行配置方式 1--->所述上下行配置方式 6 — > 所述上下行配置方式 0, 其中, 所述无线帧配置为以下之一: 小区的无 线帧配置、 载波的无线帧配置。  Performing the conversion of the radio frame configuration in the following sequence: the uplink and downlink configuration mode 5 -> the uplink and downlink configuration mode 4 -> the uplink and downlink configuration mode 3 -> the predetermined uplink and downlink configuration mode 1 The uplink and downlink configuration mode 1 -> the uplink and downlink configuration mode 6 -> the uplink and downlink configuration mode 0, wherein the radio frame is configured as one of the following: a radio frame configuration of a cell, a radio frame of a carrier Configuration.
10. 根据权利要求 3所述的方法, 其中, 还包括: 10. The method according to claim 3, further comprising:
使用如下顺序进行所述无线帧配置的转换: 所述上下行配置方式 5--->所述上下行配置方式 2 ->所述预定的上下行配置方式 - >所述上下 行配置方式 1--->所述上下行配置方式 6 - >所述上下行配置方式 0, 其 中, 所述无线帧配置为以下之一: 小区的无线帧配置、 载波的无线帧配 置。  Performing the conversion of the radio frame configuration in the following sequence: the uplink and downlink configuration mode 5 -> the uplink and downlink configuration mode 2 -> the predetermined uplink and downlink configuration mode -> the uplink and downlink configuration mode 1 - The uplink and downlink configuration mode 6 -> the uplink and downlink configuration mode 0, wherein the radio frame is configured as one of: a radio frame configuration of a cell, and a radio frame configuration of a carrier.
11. 一种数据传输装置, 其中, 包括: 11. A data transmission device, comprising:
设置模块 ,用于设置无线帧的子帧格式中的预定的上下行配置方式, 其中, 所述预定的上下行配置方式将一个无线帧中的 10个子帧配置为: 第一子帧、 第五子帧、 第六子帧、 第九子帧和第十子帧为下行子帧, 第 三子帧、 第四子帧和第八子帧为上行子帧, 第二子帧和第六子帧为特殊 子帧;  a setting module, configured to set a predetermined uplink and downlink configuration manner in a subframe format of the radio frame, where the predetermined uplink and downlink configuration manner configures 10 subframes in one radio frame as: a first subframe, a fifth The subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, and the third subframe, the fourth subframe, and the eighth subframe are uplink subframes, second subframes, and sixth subframes. Is a special subframe;
传输模块, 设置为使用所述预定的上下行配置方式进行数据传输。  The transmission module is configured to perform data transmission by using the predetermined uplink and downlink configuration manner.
12. 一种无线帧, 包括 10个子帧, 其中, 第一子帧、 第五子帧、 第六子帧、 第九子帧和第十子帧为下行子帧, 第三子帧、 第四子帧和第八子帧为上 行子帧, 第二子帧和第六子帧为特殊子帧。 A radio frame, comprising: 10 subframes, where the first subframe, the fifth subframe, the sixth subframe, the ninth subframe, and the tenth subframe are downlink subframes, third subframes, and fourth subframes The subframe and the eighth subframe are uplink subframes, and the second subframe and the sixth subframe are special subframes.
PCT/CN2011/076599 2010-12-09 2011-06-29 Data transmission method, device and radio frame WO2012075806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010581486.4 2010-12-09
CN201010581486.4A CN102035594B (en) 2010-12-09 2010-12-09 Data transmitting method and device and radio frame

Publications (1)

Publication Number Publication Date
WO2012075806A1 true WO2012075806A1 (en) 2012-06-14

Family

ID=43887989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076599 WO2012075806A1 (en) 2010-12-09 2011-06-29 Data transmission method, device and radio frame

Country Status (2)

Country Link
CN (1) CN102035594B (en)
WO (1) WO2012075806A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113917A (en) * 2013-04-22 2014-10-22 普天信息技术研究院有限公司 Method for implementing HARQ under the change of uplink and downlink sub-frame configuration
WO2017129081A1 (en) * 2016-01-29 2017-08-03 华为技术有限公司 Frame format configuration method, apparatus and system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035594B (en) * 2010-12-09 2015-05-13 中兴通讯股份有限公司 Data transmitting method and device and radio frame
CN102223214B (en) * 2011-06-01 2014-04-16 电信科学技术研究院 Method and device for data transmission
WO2013044432A1 (en) * 2011-09-26 2013-04-04 Renesas Mobile Corporation Timing control in flexible time division duplex configuration
KR101283907B1 (en) * 2011-11-02 2013-07-16 주식회사 이노와이어리스 TDD downlink data transmitting method in LTE system
US9584266B2 (en) 2012-03-09 2017-02-28 Lg Electronics Inc. Method for transreceiving signals and apparatus for same
WO2014075320A1 (en) * 2012-11-19 2014-05-22 Nokia Siemens Networks Oy Method and apparatus
CN104348595B (en) * 2013-07-26 2017-07-21 普天信息技术有限公司 The transmission method and system of a kind of hybrid automatic repeat request feedback information
CN105308891B (en) * 2014-05-23 2019-03-01 华为技术有限公司 A kind of device and method of determining secondary carrier transmission direction
CN105763305B (en) * 2014-12-17 2019-04-23 中国移动通信集团公司 A kind of data transmission method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615947A (en) * 2008-06-24 2009-12-30 华为技术有限公司 Configuration ratio of uplink subframe to downlink subframe method, and method, the device of transfer of data
CN101741710A (en) * 2008-11-04 2010-06-16 大唐移动通信设备有限公司 Uplink-downlink configuration and receiving methods of TDD system carrier aggregation
CN101754329A (en) * 2008-12-10 2010-06-23 华为技术有限公司 Data transmission method, equipment and system
WO2010077120A2 (en) * 2009-01-05 2010-07-08 Lg Electronics Inc. Method for relaying data performed by a relay station in wireless communication system based on tdd
CN102035594A (en) * 2010-12-09 2011-04-27 中兴通讯股份有限公司 Data transmitting method and device and radio frame

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483511B (en) * 2008-01-09 2013-09-18 三星电子株式会社 Method suitable for multiple TDD system coexistence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615947A (en) * 2008-06-24 2009-12-30 华为技术有限公司 Configuration ratio of uplink subframe to downlink subframe method, and method, the device of transfer of data
CN101741710A (en) * 2008-11-04 2010-06-16 大唐移动通信设备有限公司 Uplink-downlink configuration and receiving methods of TDD system carrier aggregation
CN101754329A (en) * 2008-12-10 2010-06-23 华为技术有限公司 Data transmission method, equipment and system
WO2010077120A2 (en) * 2009-01-05 2010-07-08 Lg Electronics Inc. Method for relaying data performed by a relay station in wireless communication system based on tdd
CN102035594A (en) * 2010-12-09 2011-04-27 中兴通讯股份有限公司 Data transmitting method and device and radio frame

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113917A (en) * 2013-04-22 2014-10-22 普天信息技术研究院有限公司 Method for implementing HARQ under the change of uplink and downlink sub-frame configuration
CN104113917B (en) * 2013-04-22 2017-08-25 普天信息技术研究院有限公司 A kind of realize descending HARQ method during ascending-descending subframes configuration change
WO2017129081A1 (en) * 2016-01-29 2017-08-03 华为技术有限公司 Frame format configuration method, apparatus and system
CN107026689A (en) * 2016-01-29 2017-08-08 华为技术有限公司 A kind of frame format collocation method, device and system
CN107026689B (en) * 2016-01-29 2019-08-16 华为技术有限公司 A kind of frame format configuration method, device and system

Also Published As

Publication number Publication date
CN102035594A (en) 2011-04-27
CN102035594B (en) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2012075806A1 (en) Data transmission method, device and radio frame
US20210274498A1 (en) Self-contained time division duplex (tdd) subframe structure
JP6974612B2 (en) Information transmission methods and devices
CN104067681B (en) Equipment for reconfiguring up-link and downlink distribution in time domain duplex wireless system
KR102396226B1 (en) Time division duplex (tdd) subframe structure supporting single and multiple interlace modes
CN107925540B (en) Configurable bidirectional Time Division Duplex (TDD) subframe structure
CN104272795B (en) Terminal installation, base station apparatus and its method
US10966281B2 (en) Transmission timing information sending method, transmission timing information receiving method, and apparatus
CN108781140A (en) System and method for determining HARQ-ACK transmission timings for the TTI of shortening
WO2020194162A1 (en) Method and apparatus for determining a duration of a repetition of a transport block
WO2019096009A1 (en) Information transmission method and device
CN102017758B (en) Aggregation of resources over multiple frames in a TDD communication system
CN107872417B (en) Data transmitting and receiving method and device
CN109496399A (en) System and method for the operation of frequency division duplex Transmission Time Interval
WO2012048593A1 (en) Time division duplex system, dynamic frame structure and configuration method thereof
CN104685815A (en) Carrier aggregation acknowledgement bits
CN105191468A (en) Systems and methods for feedback reporting
CN103416016A (en) Determining timing of feedback information in wireless networks realised in different technologies
WO2018029493A1 (en) Lte+nr dual connectivity with single/common uplink
WO2012027924A1 (en) Method and system for physical resources configuration and signal transmission when communication systems coexist
CN108353415A (en) It is used for transmission the method, mobile station and the network equipment of business
CN108964852A (en) The processing method of frequency domain resource, apparatus and system
WO2014190792A1 (en) Method and device for processing flexible subframe
JP2019517206A (en) Uplink reference signal transmission method, uplink reference signal reception method and apparatus
WO2016015317A1 (en) Method and device for determining data transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846881

Country of ref document: EP

Kind code of ref document: A1