WO2012075776A1 - 子网连接保护中的路由切换方法及微波节点设备 - Google Patents

子网连接保护中的路由切换方法及微波节点设备 Download PDF

Info

Publication number
WO2012075776A1
WO2012075776A1 PCT/CN2011/074133 CN2011074133W WO2012075776A1 WO 2012075776 A1 WO2012075776 A1 WO 2012075776A1 CN 2011074133 W CN2011074133 W CN 2011074133W WO 2012075776 A1 WO2012075776 A1 WO 2012075776A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection
sncp
route
node device
microwave node
Prior art date
Application number
PCT/CN2011/074133
Other languages
English (en)
French (fr)
Inventor
孙晖
胡伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012075776A1 publication Critical patent/WO2012075776A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/14Monitoring arrangements

Definitions

  • the present invention relates to the field of communications, and in particular to a route switching method and a microwave node device in SubNetwork Connection Protection (SNCP).
  • SNCP SubNetwork Connection Protection
  • Microwave communication technology has been around for more than half a century. It is a wireless communication method for information transmission in the microwave band through terrestrial line of sight.
  • microwave devices support the transmission of Synchronous Digital Hierarchy (SDH) services, and implement Add/Drop Multiplexer (ADM)/Terminal Complex
  • SDH Synchronous Digital Hierarchy
  • ATM Add/Drop Multiplexer
  • the device is a transparent multiplexer (referred to as TM) and a Synchronous Transfer Module (STM).
  • SDH protection is divided into subnet connection protection and path protection.
  • the path protection includes multiplex section protection of the line system, multiplex section protection of the ring network, and channel protection of the ring network.
  • Subnet connection protection refers to pre-arranging a dedicated protection route for a subnet connection, so that once a subnet fails, the dedicated protection route replaces the subnet as a transmission task in the entire network.
  • the two independent paths of the path protection are terminated first, and then cross-connected; the sub-connection protection is the cross-connection first, and the path is terminated.
  • SNCP Subscribenet Connection Protection
  • the present invention provides a route switching method and a microwave node device in the subnet connection protection, to solve the above problem. At least one. According to an aspect of the present invention, a route switching method in a subnet connection protection is provided.
  • the method includes: receiving, by a microwave node device, a local request instruction, acquiring an interrupted port information; and the microwave node device confirming according to the configuration state and the interrupt port information. Switch to the matching SNCP route. After the microwave node device confirms the switch to the matched SNCP route, the method further includes: the microwave contact device updates the configuration state.
  • the foregoing configuration states include: a protection level and a protection mode.
  • the microwave node device confirms the switch to the matched SNCP route according to the configuration state and the interrupt interface information, and includes: when the protection level is VC4, the protection mode is automatic and preset. When the hysteresis time is 0, the route is re-established according to the working route and the protection route status.
  • the spoofing node device confirms that the switch to the matched SNCP route includes: when the protection level is VC4, the protection mode is automatic and the preset lag time is not 0.
  • the microwave node device processes the return and non-return modes separately and responds to the lag time and the return time.
  • the above-mentioned device does not perform processing according to the configuration state and the interrupt interface information, and confirms that the switch to the matched SNCP route includes: When the protection level is VC4 and the protection mode is not automatic, the microwave node device does not process.
  • the device of the above-mentioned device starts to switch to the matched SNCP route according to the configuration state and the interrupt interface information, and includes: if the protection level is VC12, directly switches to the matched SNCP route and updates the configuration state.
  • the above local request instruction includes at least one of the following: signal failure and signal shoddy information.
  • a microwave node device comprising: a receiving module configured to receive a local request instruction; and an execution module configured to acquire an interrupt port information according to the local request received by the receiving module; The module is configured to confirm the switch to the matched SNCP route according to the configuration state of the microwave node device and the interrupt port information.
  • the above device further includes: an update module, configured to update a last configuration state of the microwave contact device.
  • the above configuration states include: protection level and protection mode; then, the switching module is further set to perform re-establishment of the route according to the working route and the protection routing state when the protection level is VC4, the protection mode is automatic, and the preset hysteresis time is 0. .
  • the above switching module is also set to have a protection level of VC4, the protection mode is automatic, and the preset hysteresis time is not 0, and the 40 pairs of return and non-return modes are separately processed, and respond to the lag time and the return time.
  • the above switching module is also set to be in the protection level VC4, and when the protection mode is not automatic, no processing is performed.
  • the above switching module is also set to directly switch to the matching SNCP route and update the configuration state when the protection level is VC12.
  • the invention solves the related technology by using the start wave node device to receive the local request instruction and reading the interrupt port information through the registration interface callback function; and confirming the switch to the matched SNCP route according to the microwave node device configuration state and the interrupt port information.
  • the subnet connection protection of the VC4 and VC12 levels performs poorly in reliability and time, thereby improving the reliability of the subnet connection protection.
  • FIG. 2 is a structural block diagram of a microwave node device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a microwave node device according to a first embodiment of the present invention
  • FIG. 4b is a schematic structural view of the device 1 according to the present invention based on FIG.
  • FIG. 1 is a flowchart of a method for routing a route in a subnet connection protection according to an embodiment of the present invention. As shown in FIG. 1, the process includes: Step S102: The microwave node device receives a local request instruction, and obtains an interrupted port information.
  • the interrupt port information can be read by registering an interface callback function.
  • Step S104 The microwave node device confirms the handover to the matched SNCP route according to the configuration state and the interrupt port information. It can be seen from the foregoing embodiments that the technical solutions described in the foregoing embodiments solve the problems of low reliability and time performance of the VC4 and VC12 level subnet connection protection in the related art, thereby improving subnet connection protection. Reliability.
  • the method further includes: the microwave node device updating the configuration state.
  • the foregoing configuration state includes: a protection level, a protection mode; and the wave node device confirms that the switch to the matched SNCP route according to the configuration state and the interrupt interface information, including one of the following processing manners: when the protection level is VC4, when the protection mode is automatic and the preset hysteresis time is 0, the route is rebuilt according to the working route and the protection route status.
  • the protection level is VC4, the protection mode is automatic and the preset hysteresis time is not 0, the wave node device processes separately for the return and non-return modes, and responds to the lag time and the return time.
  • the protection level is VC4 and the protection mode is not automatic, the microwave node device does not process.
  • the device includes: a receiving module 20, configured to receive a local request instruction;
  • the executing module 22 is configured to perform the switching task callback interrupt port information according to the local request command received by the receiving module 20;
  • the switching module 24 is configured to confirm the switch to the matched SNCP route according to the configuration state of the microwave node device and the interrupt port information.
  • the foregoing apparatus may further include: an updating module 26, configured to update a configuration state of the microwave node device last time.
  • the foregoing configuration state may include: a protection level, a protection mode; and the switching module 24 is configured to use VC4, the protection mode is automatic, and the preset hysteresis time is 0, according to the working route and the protection routing state.
  • the routing module 24 is configured again.
  • the protection module is protected by VC4, the protection mode is automatic, and the preset hysteresis time is not 0.
  • the microwave node device processes the return and non-return modes separately, and responds to the lag time and the return time.
  • the above return mode means: when the protection mode is automatic, if the working channel is faulty, and the protection channel is available, then switching to the protection channel, when the working channel is restored, switching back to the working channel;
  • the above non-return mode means: protection When the mode is automatic, if the working channel is faulty and the protection channel is available, switch to the protection channel. When the working channel is restored, it does not switch back to the working channel.
  • the protection level is VC4 and the protection mode is not automatic
  • the switching module 24 does not perform processing.
  • the protection level is VC12
  • the switching module 24 directly switches to the matched SNCP route and updates the configuration state.
  • the microwave node device may include: a fault detection module, a main control module, a proxy module, and a drive task module.
  • the main control module interacts with the local management terminal (LMP) and the element management system (EMS).
  • LMP local management terminal
  • EMS element management system
  • the LMP and the EMS belong to the management interface and are used by local or remote users.
  • drive task module has higher priority, set to complete zero-lag time V4 level routing fast configuration; agent module completes non-zero hysteresis time V4 level routing configuration, and completes regression time, hysteresis time response operation,
  • drive task module has higher priority, set to complete zero-lag time V4 level routing fast configuration; agent module completes non-zero hysteresis time V4 level routing configuration, and completes regression time, hysteresis time response operation,
  • the return time refers to: In the return mode, if the current working channel is in the standby channel, and the active channel has been restored, after the regression time, the switching of the standby channel to the active channel is completed; the lag time refers to: If the switching operation is performed and the hysteresis time is not 0, the switching is performed after the hysteresis time.
  • each module in this embodiment may include each module in the embodiment shown in FIG. 2 or FIG. 3.
  • the functions performed by each module in the embodiment shown in FIG. 2 or FIG. 3 may be implemented in this embodiment. Each module is implemented. As shown in FIG. 4a and FIG.
  • the destination port can be configured as a panel port, and the source and protection routes are allowed to be extracted from the panel side and the backplane side.
  • RTUB1 in Figure 4b is a single board in device 1. This embodiment focuses on describing the configuration and implementation of SNCP protection.
  • a 2-way Synchronous Transport Module level-1 (SMT1) signal is transmitted from the air interface, and the backplane enters the above detection module and descends from the panel side.
  • the proxy module switches according to the detection module notification. routing.
  • the two STM1 signals transmitted on the hollow side of Figure 4a are the working and protection channels (work routing and protection routing).
  • the SF/SD triggered interrupt processing process includes: Step S502.
  • the detecting module detects that the SD or SF phenomenon occurs in the active or standby mode, performs the switching task callback interrupt port information, and reports the interrupt port information to the driver.
  • a task module step S504.
  • the driver task module confirms the matched SNCP route according to the configuration state and the interrupt port information; if the interruption occurs on the VC4 level SNCP route, step S506 is performed; if the VC12 level SNCP route, the process proceeds to step S514.
  • Step S506 determining whether the protection mode configured by the user is automatic; if it is not automatic, it indicates that an interruption occurs in the forced or manual state, and no processing is performed, and the process proceeds to step 4 S514; in step S508, the protection mode is automatic.
  • step S510 determines whether the hysteresis time set by the user is 0. If it is 0, go to step S510; if it is not 0, go to step S512; In step S510, routing is re-established according to the working and protection channel status. Because the driver task has a higher priority, it can complete the construction of the intra-constrained delay route. After the switchover, the protection routing information is synchronized to the proxy module. Step 4 gathers S512, and the proxy module determines whether it is the return mode. The non-return mode is processed separately, and the response lag time and regression time: For the return mode, the return chrono is started, and the time is returned to the time, the route is reset; for the non-return mode, the agent module is sent a fault (interrupt) message.
  • Step S514 the driving task module sends an interrupt message to the proxy module.
  • the foregoing process may further include: the proxy module updates the last switching mode and the current working channel: For the VC 12 level SNCP, by polling the primary and alternate channel cross configuration registers; for the VC4 level SNCP, status is provided by the proxy module.
  • the SNCP routing configuration may include: Step S602: The detecting module sets an SF threshold and an SD threshold enabling interrupt; and sets a default EXC sampling interval and a default SD.
  • the detection module is interrupted by step S604, and the main control module receives the configuration information of the user, that is, the SNCP mode information, and the school-risk ensures that there is no similar destination route.
  • the module analyzes the routing configuration information, determines the source, destination MAC address, and port number of the proxy module configuration port; Step S606, the proxy module receives the SNCP configuration request, and at this time, for the VC4 level routing, respectively, the working route (source port, MAC, destination) Port, MAC) and protection routing (source port, MAC, destination port, MAC), configure the work page and protection page for the chip, establish a working route, and then send a message to the driver task module; the service switches between the source and the protection route; VC12 level SNCP routing, the agent module completes work, protection, destination routing configuration, configuration mode is CMD ( work, protect, estiny ) : The configuration is delivered to the chip.
  • CMD work, protect, estiny
  • the main control module receives the user's SNCP operation command (clear, forced switching, manual switching); the agent module executes the operation command:
  • the agent module executes the operation command:
  • For the VC12 level SNCP route the user configuration is sent to the chip;
  • for the VC4 level SNCP route the detection is used for the main use.
  • Standby (work routing and protection routing) channel status That is, whether a fault occurs, and the route is set up, that is, the route configuration, that is, the path through which the chip is turned on by the configuration chip.
  • the 2588 chip can be implemented, and the 2588 hardware implements the low-order channel 1+1 automatic protection switching.
  • the switching delay time is programmable from 0 - 10 seconds, with a step size of 100 milliseconds; return waiting time (return type) 0 - 12 minutes programmable, 1 second step.
  • return waiting time return type
  • the software scheme of this embodiment can implement the SNCP protection of the VC4 level returning non-return mode within the delay constraint, and provide clearing, blocking, forced reverse request, and manual switching request.
  • the local request command (signal failure SF and signal degradation SD) allows the user to configure.
  • the foregoing embodiment uses the microwave node device to receive the local request command and reads the interrupted port information through the registration interface callback function; and confirms according to the microwave node device configuration state and the interrupt port information.
  • Switching to the matching SNCP route solves the problems of poor reliability and time performance of the VC4 and VC 12 level subnet connection protection in the related art, thereby improving the reliability of the subnet connection protection.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

子网连接保护中的路由切换方法及微波节点设备 技术领域 本发明涉及通信领域, 具体而言, 涉及一种子网连接保护(SubNetwork Connection Protection, 简称为 SNCP)中的路由切换方法及微波节点设备。 背景技术 微波通信技术问世已半个多世纪, 它是在微波频段通过地面视距进行信息 传播的一种无线通信手段。 为了提高服务可用性和增加网络的灵活性, 微波设 备支持同步数字体系 ( Synchronous Digital Hierarchy, 简称为 SDH ) 业务的传 输, 并实现分插复用器 (Add/Drop Multiplexer, 简称为 ADM) /终端复用器 ( termination Multiplexer, 简称为 TM )及同步传输模块 ( Synchronous Transfer Module , 简称为 STM ) 透传功能。
SDH保护分为子网连接保护和路径保护,路径保护包括线路系统的复用段 保护、 环网的复用段保护、 环网的通道保护。 子网连接保护是指对某一子网连 接预先安排专用的保护路由, 这样一旦子网发生故障, 专用保护路由便取代子 网担当在整个网络中的传送任务。 路径保护的两个独立的路径先进行终结, 而 后进行交叉连接; 子网连接保护是交叉连接在先, 路径终结在后。 相关技术中, 提供了修改 SNCP (子网连接保护)路径的方法, 其目的是调 整备用路径,最大限度地缩短业务中断时间。但并未给出 VC4、 VC 12级别 SNCP 路由具体的配置及命令切换方法, 同时给出切换时间时延论证。 同时由于上述技术方案多釆用软件方式实现自动保护倒换, 可靠性和时间 上表现较差, 针对上述问题, 目前尚未提出有效的解决方案。 发明内容 针对相关技术中, VC4和 VC12级别的子网连接保护在可靠性和时间上表 现较差等问题, 本发明提供一种子网连接保护中的路由切换方法及微波节点设 备, 以解决上述问题至少之一。 根据本发明的一个方面, 提供一种子网连接保护中的路由切换方法, 该方 法包括: 微波节点设备接收本地请求指令, 获取中断断端口信息; 微波节点设 备根据其配置状态及中断端口信息, 确认切换至匹配的 SNCP路由。 微波节点设备确认切换至匹配的 SNCP路由之后, 上述方法还包括: 微波 接点设备更新配置状态。 上述配置状态包括: 保护级别、 保护模式; 则微波节点设备根据其配置状 态及中断接口信息, 确认切换至匹配的 SNCP路由, 包括: 当所述保护级别为 VC4, 保护模式为自动以及预设的迟滞时间为 0时, 根据工作路由及保护路由 状态, 进行路由再次搭建。 上述 ^啟波节点设备 -据其配置状态及所述中断接口信息, 确认切换至匹配 的 SNCP路由, 包括: 当所述保护级别为 VC4, 保护模式为自动且预设的迟滞 时间不为 0, 则微波节点设备针对返回和非返回方式单独处理, 并响应迟滞时 间及回归时间。 上述 ^啟波节点设备才艮据其配置状态及中断接口信息, 确认切换至匹配的 SNCP路由, 包括: 当保护级别为 VC4, 保护模式不为自动, 则微波节点设备 不进行处理。 上述 ^啟波节点设备才艮据其配置状态及中断接口信息, 确认切换至匹配的 SNCP路由, 包括: 若保护级别为 VC12, 则直接切换至匹配的 SNCP路由并 更新配置状态。 上述本地请求指令至少包括以下之一: 信号失效及信号伪劣信息。 根据本发明的另一个方面, 提供一种微波节点设备, 该设备包括: 接收模 块, 设置为接收本地请求指令; 执行模块, 设置为根据接收模块接收到的所述 本地请求获取中断端口信息; 切换模块, 设置为根据微波节点设备的配置状态 及中断端口信息, 确认切换至匹配的 SNCP路由。 上述设备还包括: 更新模块, 设置为更新微波接点设备上次的配置状态。 上述配置状态包括: 保护级别、 保护模式; 则切换模块, 还设置为在保护 级别为 VC4, 保护模式为自动以及预设的迟滞时间为 0时, 根据工作路由及保 护路由状态, 进行路由再次搭建。 上述切换模块, 还设置为在保护级别为 VC4, 保护模式为自动且预设的迟 滞时间不为 0时, 4十对返回和非返回方式单独处理, 并响应迟滞时间及回归时 间。 上述切换模块, 还设置为在保护级别为 VC4, 保护模式不为自动时, 不进 行处理。 上述切换模块,还设置为在保护级别为 VC12时,直接切换至匹配的 SNCP 路由并更新配置状态。 本发明通过利用 啟波节点设备接收本地请求指令并通过注册接口回调函 数读取中断端口信息; 以及根据微波节点设备配置状态及所述中断端口信息, 确认切换至匹配的 SNCP路由,解决了相关技术中 VC4和 VC12级别的子网连 接保护在可靠性和时间上表现较差等问题, 进而提高了子网连接保护的可靠 性。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不 当限定。 在附图中: 图 1为根据本发明实施例的子网连接保护中的路由切换方法的流程图; 图 2为根据本发明实施例的微波节点设备的结构框图; 图 3为根据本发明优选实施例的微波节点设备的结构示意图; 图 4a为根据本发明第一实施例的微波节点设备应用时的拓朴结构示意图; 图 4b为根据本发明基于图 4a的设备 1应用时的结构示意图; 图 5为根据本发明第一实施例的本发明 SNCP中断处理示意图; 图 6为根据本发明第一实施例的 SNCP路由配置示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不 冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1为根据本发明实施例的子网连接保护中的路由切换方法的流程图。 如 图 1所示, 该流程包括: 步骤 S 102, 微波节点设备接收本地请求指令, 获取中断断端口信息; 在优 选实施过程中可以通过注册接口回调函数读取中断端口信息。 步骤 S 104, 微波节点设备根据其配置状态及中断端口信息, 确认切换至匹 配的 SNCP路由。 通过上述实施例可以看出, 上述实施例所描述的技术方案, 解决了相关技 术中 VC4和 VC12级别的子网连接保护在可靠性和时间上表现较差等问题,进 而提高了子网连接保护的可靠性。 优选地, 微波节点设备确认切换至匹配的 SNCP路由之后, 还可以包括: 微波节点设备更新配置状态。 在优选实施过程中, 上述配置状态包括: 保护级别、 保护模式; 则上述 波节点设备根据其配置状态及中断接口信息, 确认切换至匹配的 SNCP路由, 包括以下之一处理方式: 当保护级别为 VC4, 保护模式为自动以及预设的迟滞时间为 0时, 才艮据工 作路由及保护路由状态, 进行路由再次搭建。 当保护级别为 VC4, 保护模式为自动且预设的迟滞时间不为 0时, 则 波 节点设备针对返回和非返回方式单独处理, 并响应迟滞时间及回归时间。 当保护级别为 VC4, 保护模式不为自动时, 则微波节点设备不进行处理。 图 2为根据本发明实施例的微波节点设备的结构框图。 如图 2所示, 该设 备包括: 接收模块 20 , 设置为接收本地请求指令; 执行模块 22 , 设置为根据接收模块 20接收到的本地请求指令执行倒换任 务回调中断端口信息; 切换模块 24 , 设置为根据微波节点设备的配置状态及中断端口信息, 确认 切换至匹配的 SNCP路由。 优选地, 如图 3所示, 上述设备还可以包括: 更新模块 26 , 设置为更新微 波节点设备上次的配置状态。 在优选实施过程中, 上述配置状态可以包括: 保护级别、 保护模式; 则上述切换模块 24在保护级别为 VC4, 保护模式为自动以及预设的迟滞 时间为 0时, 根据工作路由及保护路由状态, 进行路由再次搭建; 上述切换模块 24在保护级别为 VC4, 保护模式为自动且预设的迟滞时间 不为 0, 则微波节点设备针对返回和非返回方式单独处理, 并响应迟滞时间及 回归时间, 其中, 上述返回方式是指: 保护方式为自动时, 若工作通道故障, 且保护通道可用, 则切换至保护通道, 当工作通道恢复后, 切换回工作通道; 上述非返回方式是指: 保护方式为自动时, 若工作通道故障, 且保护通道可用, 则切换至保护通道, 当工作通道恢复后, 不切换回工作通道。 上述切换模块 24在保护级别为 VC4, 保护模式不为自动时, 则不进行处 理; 上述切换模块 24在保护级别为 VC12时, 则直接切换至匹配的 SNCP路 由并更新配置状态。 为了更好地理解本发明, 下面以第一实施例结合图 4、 图 5、 图 6详细描 述本发明。 其中, 图 4为根据本发明优选实施例的微波节点设备应用时的拓朴 结构示意图; 图 5为才艮据本发明优选实施例的本发明 SNCP中断处理示意图; 图 6为根据本发明优选实施例的 SNCP路由配置示意图。 第一实施例 在本实施例中, 微波节点设备可以包括: 故障检测模块, 主控模块、 代理 模块和驱动任务模块。 主控模块实现与本地管理终端(Local Management Part, 简称为 LMP ) 及网元管理系统 ( Element Management System, 简称为 EMS ) 交互, 本实施例中, LMP和 EMS属于管理接口, 本地或远程用户使用这两个 模块, 完成设备管理功能; 驱动任务模块优先级较高, 设置为完成零迟滞时间 V4级别路由的快速配置; 代理模块完成非零迟滞时间 V4级别路由配置, 并完 成回归时间、 迟滞时间响应操作, 同时还需完成 VC12级别 SNCP路由的芯片 设置及命令下发执行 (清除、 保护闭锁、 强制倒换、 人工倒换)操作。 其中, 上述回归时间是指: 返回模式下, 若当前工作在备用通道, 且主用通道已经恢 复, 则经过回归时间后, 完成备用通道到主用通道的倒换; 迟滞时间是指: 若 当前需要进行倒换操作, 且迟滞时间不为 0 , 则在迟滞时间后进行倒换。 需要注意的是, 本实施例中各个模块可以包括图 2或图 3所示实施例中的 各个模块, 图 2或图 3所示实施例中的各个模块所完成的功能可以由本实施例 中的各个模块来实现。 如图 4a和 4b所示, 本实施例可以实现目的端口配置为面板端口, 允许源 和保护路由从面板侧和背板侧提取。 图 4b中的 RTUB1为设备 1中的单板。 本 实施例注重描述 SNCP保护配置及实现。 图 4a中从空口传递 2路同步传输模 式- 1 ( Synchronous Transport Module level- 1 , 简称为 SMT1 )信号, 由背板进 入上述检测模块, 从面板侧下行, 上述代理模块根据检测模块通知, 切换工作 路由。 图 4a中空口侧传递的 2路 STM1信号分别为工作和保护通道 (工作路 由和保护路由)。 如图 5所示, SF/SD触发的中断处理流程, 包括: 步骤 S502. 检测模块检测到主用或备用通过发生了 SD、 SF现象, 执行倒 换任务回调中断端口信息, 上报中断端口信息到驱动任务模块; 步骤 S504.驱动任务模块根据配置状态及中断端口信息,确认匹配的 SNCP 路由;若中断发生在 VC4级别的 SNCP路由上,则执行步骤 S506;如果为 VC12 级别 SNCP路由, 则转步骤 S514; 步骤 S506, 判断用户配置的保护模式是否为自动; 若不是自动, 则表明是 在强制或人工状态下发生中断, 此时不进行处理, 转入步 4聚 S514; 步骤 S508, 保护模式为自动, 判断用户设置的迟滞时间是否为 0。 如果为 0, 转入步骤 S510; 如果不为 0, 转入步骤 S512; 步骤 S510, 根据工作及保护通道状态, 进行路由再次搭建。 由于驱动任务 优先级较高, 故可以完成约束时延内路由的搭建工作, 倒换后工作、 保护路由 信息同步至代理模块; 步 4聚 S512, 由代理模块判断是否为返回方式, 4十对返回和非返回方式单独 处理, 响应迟滞时间及回归时间: 对于返回方式, 启动回归计时, 回归到时时, 重置路由; 对于非返回方式则给代理模块发送故障 (中断) 消息。 步骤 S514, 驱动任务模块发送中断消息至代理模块。 在本实施例的优选实施过程中, 上述流程还可以包括: 代理模块更新上次 切换模式及当前工作通道: 对于 VC 12级别 SNCP, 通过轮询主用、 备用通道 交叉配置寄存器实现; 对于 VC4级别 SNCP , 状态由代理模块提供。 在本实施例即第一实施例中, 如图 6所示, SNCP路由配置可以包括: 步骤 S602, 检测模块设置 SF阈值、 SD阈值使能中断; 并设置默认 EXC 釆样时间间隔和默认 SD釆样时间间隔; 发生 SF、 SD请求时, 检测模块上 4艮 中断通 步骤 S604, 主控模块收到用户的配置信息即 SNCP模式信息, 校-险并保证 不存在同源同目的路由, 主控模块分析路由配置信息, 确定代理模块配置端口 的源、 目的 MAC地址及端口号; 步骤 S606, 代理模块收到 SNCP配置请求, 此时对于 VC4级别路由, 分 别为工作路由(源端口、 MAC , 目的端口、 MAC )和保护路由(源端口、 MAC , 目的端口、 MAC ), 对芯片配置工作页及保护页, 建立工作路由, 然后发送消 息至驱动任务模块; 业务在源和保护路由间切换;对于 VC12级别 SNCP路由, 由代理模块完成工作、保护、 目的路由配置, 配置模式为 CMD ( work, protect, estiny ): 配置下发至芯片。 然后,主控模块收到用户的 SNCP操作命令(清除、强制倒换、人工倒换 ); 代理模块执行操作命令: 对于 VC12级别 SNCP路由, 对芯片下发用户配置; 对于 VC4级别 SNCP路由, 检测主用备用 (工作路由和保护路由) 通道状态 即是否发生故障, 进行路由搭建, 即路由配置, 即通过配置芯片打通信号传输 的通路。 在第一实施例的具体应用过程中, 可依托 2588芯片实现, 2588硬件实现 低阶通道 1+1 自动保护倒换。倒换延迟时间 0 - 10 秒之间可编程, 步长为 100 毫秒; 返回等待时间 (返回式) 0 - 12分钟可编程, 步长 1 秒。 虽然 2588并 未提供 VC4级别保护倒换功能,但是利用本实施例的软件方案, 可以实现时延 约束内 VC4级别返回非返回方式的 SNCP保护, 并提供清除、 闭锁、 强制倒 请求、 人工倒换请求。 且本地请求指令(信号失效 SF及信号劣化 SD )允许用 户配置。 从以上的描述中, 可以得出, 上述实施例通过利用微波节点设备接收本地 请求指令并通过注册接口回调函数读取中断断端口信息; 以及根据微波节点设 备配置状态及所述中断端口信息, 确认切换至匹配的 SNCP路由, 解决了相关 技术中 VC4和 VC 12级别的子网连接保护在可靠性和时间上表现较差等问题, 进而提高了子网连接保护的可靠性。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以 用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多 个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码 来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并且在某些 情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者将它们分别 制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电 路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

权 利 要 求 书
1. 一种子网连接保护 SNCP中的路由切换方法, 包括:
微波节点设备接收本地请求指令, 获取中断端口信息; 所述微波节点设备根据其配置状态及所述中断端口信息, 确认切换 至匹配的 SNCP路由。
2. 根据权利要求 1所述的方法, 其中, 所述微波节点设备确认切换至匹配 的 SNCP路由之后, 还包括:
所述微波接点设备更新所述配置状态。
3. 根据权利要求 1或 2所述的方法, 其中,
所述配置状态包括: 保护级别、 保护模式;
则所述微波节点设备根据其配置状态及所述中断接口信息, 确认切 换至匹配的 SNCP路由, 包括: 当所述保护级别为 VC4, 保护模式为自 动以及预设的迟滞时间为 0时, 根据工作路由及保护路由状态, 进行路 由再次搭建。
4. 根据权利要求 3所述的方法, 其中,
所述微波节点设备根据其配置状态及所述中断接口信息, 确认切换 至匹配的 SNCP路由, 包括: 当所述保护级别为 VC4, 保护模式为自动 且预设的迟滞时间不为 0时, 则所述 ^啟波节点设备 4十对返回和非返回方 式单独处理, 并响应所述迟滞时间及回归时间。
5. 根据权利要求 3所述的方法, 其中,
所述微波节点设备根据其配置状态及所述中断接口信息, 确认切换 至匹配的 SNCP路由, 包括: 当所述保护级别为 VC4, 保护模式不为自 动时, 则所述微波节点设备不进行处理。
6. 根据权利要求 3所述的方法, 其中,
所述微波节点设备根据其配置状态及所述中断接口信息, 确认切换 至匹配的 SNCP路由, 包括: 若所述保护级别为 VC12, 则直接切换至 匹配的 SNCP路由并更新所述配置^! 态。
7. 根据权利要求 1所述的方法, 其中, 所述本地请求指令至少包括以下之 信号失效及信号伪劣信息。
8. —种微波节点设备, 包括:
接收模块, 设置为接收本地请求指令;
执行模块, 设置为根据所述接收模块接收到的所述本地请求获取中 断端口信息;
切换模块, 设置为根据所述微波节点设备的配置状态及所述中断端 口信息, 确认切换至匹配的 SNCP路由。
9. 根据权利要求 8所述的设备, 其中, 所述设备还包括:
更新模块, 设置为更新所述微波接点设备上次的配置状态。
10. 根据权利要求 8或 9所述的设备, 其中,
所述配置状态包括: 保护级别、 保护模式;
则所述切换模块, 还设置为在所述保护级别为 VC4, 保护模式为自 动以及预设的迟滞时间为 0时, 根据工作路由及保护路由状态, 进行路 由再次搭建。
11. 根据权利要求 10所述的设备, 其中,
所述切换模块, 还设置为在所述保护级别为 VC4, 保护模式为自动 且预设的迟滞时间不为 0时, 针对返回和非返回方式单独处理, 并响应 所述迟滞时间及回归时间。
12. 根据权利要求 10所述的设备, 其中,
所述切换模块, 还设置为在所述保护级别为 VC4, 保护模式不为自 动时, 不进行处理。
13. 根据权利要求 10所述的设备, 其中,
所述切换模块, 还设置为在所述保护级别为 VC12时, 直接切换至 匹配的 SNCP路由并更新所述配置^! 态。
PCT/CN2011/074133 2010-12-09 2011-05-16 子网连接保护中的路由切换方法及微波节点设备 WO2012075776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010581526.5 2010-12-09
CN2010105815265A CN102546198A (zh) 2010-12-09 2010-12-09 子网连接保护中的路由切换方法及微波节点设备

Publications (1)

Publication Number Publication Date
WO2012075776A1 true WO2012075776A1 (zh) 2012-06-14

Family

ID=46206576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074133 WO2012075776A1 (zh) 2010-12-09 2011-05-16 子网连接保护中的路由切换方法及微波节点设备

Country Status (2)

Country Link
CN (1) CN102546198A (zh)
WO (1) WO2012075776A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1083710A2 (en) * 1999-09-09 2001-03-14 Nortel Networks Limited ATM group protection switching method and apparatus
CN1622516A (zh) * 2003-11-27 2005-06-01 上海贝尔阿尔卡特股份有限公司 一种实现sdh业务保护倒换和自动恢复的交叉连接系统
CN1783798A (zh) * 2004-11-29 2006-06-07 中兴通讯股份有限公司 同步数字体系支路自动保护倒换装置
CN101047547A (zh) * 2006-03-30 2007-10-03 华为技术有限公司 实现端口保护的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1083710A2 (en) * 1999-09-09 2001-03-14 Nortel Networks Limited ATM group protection switching method and apparatus
CN1622516A (zh) * 2003-11-27 2005-06-01 上海贝尔阿尔卡特股份有限公司 一种实现sdh业务保护倒换和自动恢复的交叉连接系统
CN1783798A (zh) * 2004-11-29 2006-06-07 中兴通讯股份有限公司 同步数字体系支路自动保护倒换装置
CN101047547A (zh) * 2006-03-30 2007-10-03 华为技术有限公司 实现端口保护的方法和装置

Also Published As

Publication number Publication date
CN102546198A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
Sharma et al. In-band control, queuing, and failure recovery functionalities for openflow
EP1898584B1 (en) A method and device for recovering the share mesh network
US8509059B2 (en) Method for operating a virtual router redundancy protocol router and communication system therefor
EP3691185A1 (en) Method for processing message, device, and system
WO2012000234A1 (zh) 链路间快速切换的方法、装置和系统
US7835271B2 (en) Signaling protocol for p-cycle restoration
EP3270527B1 (en) Device for supporting sub-network connection protocol over packet network
WO2009068592A1 (en) A method and apparatus for autonomous port role assignments in master-slave networks
WO2015123962A1 (zh) 开放流交换机优雅重启处理方法、装置及开放流控制器
WO2015113383A1 (zh) 通道切换方法、装置、光网络单元及时分波分复用系统
WO2014090083A1 (zh) 分布式弹性网络互连的业务承载方法及装置
US9647878B2 (en) Announcement method, device and system
WO2012048585A1 (zh) 切换方法和路由器
WO2012062069A1 (zh) 双向转发检测报文的发送方法及设备
JP5365434B2 (ja) ノード装置及び経路計算方法
ES2564526T3 (es) Nodo frontera de barrera y procedimiento para establecer una conexión entre nodos frontera de barrera
ES2886828T3 (es) Propagación de fallos en protección segmentada
WO2010133065A1 (zh) 基于无源光网络的保护系统和方法
US9397882B2 (en) Packet transport network system
WO2011017863A1 (zh) 光数据单元环路共享保护控制方法与装置
WO2015024163A1 (zh) 一种1+1端到端双向倒换的方法、系统和节点
WO2012075776A1 (zh) 子网连接保护中的路由切换方法及微波节点设备
KR100340725B1 (ko) 광가입자 전송시스템의 신호경로 설정관리 및자동보호절체 방법
EP2919405B1 (en) Mesh protection method and device
WO2015154583A1 (zh) 控制通道协议状态的更新方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846209

Country of ref document: EP

Kind code of ref document: A1