WO2012075743A1 - 一种以太环网链路保护倒换的方法及装置 - Google Patents

一种以太环网链路保护倒换的方法及装置 Download PDF

Info

Publication number
WO2012075743A1
WO2012075743A1 PCT/CN2011/071451 CN2011071451W WO2012075743A1 WO 2012075743 A1 WO2012075743 A1 WO 2012075743A1 CN 2011071451 W CN2011071451 W CN 2011071451W WO 2012075743 A1 WO2012075743 A1 WO 2012075743A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
ethernet ring
link
protection
mep
Prior art date
Application number
PCT/CN2011/071451
Other languages
English (en)
French (fr)
Inventor
彭媛媛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012075743A1 publication Critical patent/WO2012075743A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration

Definitions

  • the present invention relates to the field of network technologies, and in particular, to a method and apparatus for protection switching of an Ethernet ring link. Background technique
  • Ethernet ring network technology With the continuous development of Ethernet ring network technology, the scale of the Ethernet ring network is also growing. At present, carrier-grade Ethernet ring circuits are widely used, and therefore, protection of Ethernet ring links is particularly important.
  • each Ethernet ring protection domain can implement a service virtual local area network based on user data service forwarding (Virtual Local Area Network, VLAN) function.
  • VLAN Virtual Local Area Network
  • FIG. 1 is a schematic structural diagram of an Ethernet ring network and an Ethernet ring protection domain in the prior art. The operator sets a node in the Ethernet ring network as a master node or a slave node according to actual requirements, and each Ethernet ring.
  • a network protection domain usually consists of one master node and one or more slave nodes; each node consists of two ports, the master port and the slave port, each port being connected to other nodes for A loop is formed in the Ethernet ring protection domain.
  • the master node disables the physical forwarding function of the slave port to avoid network storms.
  • the physical forwarding function of the link where the master port resides is set to the active state.
  • the physical forwarding function of the master node is set to be effective, that is, the link is working on the link, so that the link protection switching operation is completed. Ensure the normal forwarding of data services.
  • the time for protecting the switching operation (that is, the time when the Ethernet ring is disconnected) must be protected in order to ensure that the user does not recognize the switching action of the link.
  • the time for protecting the switching operation is mainly composed of two parts: the detection time T1 when the fault occurs until the fault is detected, and the switching time T2 when the protection switching operation starts to the protection switching.
  • the detection time T1 is different due to different detection mechanisms, and the protection switching time ⁇ 2 is relatively fixed. Therefore, the length of the detection time T1 directly determines whether the protection switching operation of the Ethernet ring network can reach the performance requirement of 50 ms. Whether the detection method used can quickly and effectively implement the detection directly determines the speed of the protection switching operation and whether it can be normal. get on.
  • the commonly used detection method is to directly detect the physical state of the physical port of each node on the ring, and then determine whether a protection switching operation is required according to the detection result.
  • the method has the following drawbacks:
  • An embodiment of the present invention provides a method and a device for protecting an Ethernet ring link protection switch, which are used to solve the problem that the physical port in the Ethernet ring network cannot be detected in a non-offline manner, and the fault detection time is too long. problem.
  • a method for protection switching of an Ethernet ring link comprising:
  • the Maintenance Joint Edge Point (MEP) node in the Maintenance Association (MA) sends continuity check (CCM) message protocol information to the peer MEP node;
  • MEP Maintenance Joint Edge Point
  • CCM continuity check
  • the peer MEP node When the peer MEP node does not receive the CCM message protocol information within a preset waiting time, it sends an alarm message to the master node of the Ethernet ring protection domain in which it is located;
  • An apparatus for protecting an Ethernet ring link protection comprising:
  • a sending module configured to: send, by the MEP node in the MA, CCM text protocol information to the peer MEP node;
  • An alarm sending module configured to: when the peer MEP node does not receive the CCM message protocol information within a preset waiting time, send an alarm message to a master node of the Ethernet ring protection domain in which the peer MEP node is located;
  • the ring network protection domain includes the master node of the Ethernet ring network;
  • the switching module is configured to perform a link protection switching operation on the Ethernet ring network where the primary node is located when the primary node receives the alarm information.
  • the MEP node in the MA receives the CCM message protocol information sent by the peer MEP node, it can quickly determine whether the link where the MEP node is located is faulty.
  • the MEP node issues a warning to the master node of the Ethernet ring protection domain in which it is located.
  • the link protection switching operation of the Ethernet ring network where the master node is located is performed.
  • FIG. 1 is a schematic structural diagram of an Ethernet ring network and an Ethernet ring protection domain in the prior art
  • FIG. 2 is a schematic flowchart of a method for protecting an Ethernet ring link protection switch according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a MA domain provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an Ethernet ring network and an Ethernet ring protection domain provided in Embodiment 1;
  • FIG. 5 is a schematic structural diagram of an Ethernet ring network with a transparent transmission device and an Ethernet ring protection domain provided by Embodiment 2;
  • FIG. 6 is a schematic diagram showing the structure of an Ethernet ring network and an Ethernet ring protection domain with multiple transparent transmission devices.
  • FIG. 7 is a schematic structural diagram of an apparatus for protection switching of an Ethernet ring link according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a method for protection switching of a ring network link by applying a Institute of Electrical and Electronics Engineers (IEEE) 802. lag protocol to an Ethernet ring network link detection mechanism.
  • IEEE Institute of Electrical and Electronics Engineers
  • the Ethernet ring protection switching operation is triggered by the detection protocol to detect a faulty link in the Ethernet ring network and perform protection switching.
  • the IEEE 802. lag also known as the Connectivity Fault Management (CFM)
  • CFM Connectivity Fault Management
  • Step 11 In the detection process, the Maintenance Association End Point (MEP) node in the Maintenance Associations (MA) sends a Continuity Check Message (CCM) message protocol to the peer MEP node. information.
  • MEP Maintenance Association End Point
  • CCM Continuity Check Message
  • Step 12 When the peer MEP node does not receive the CCM message protocol information within a preset waiting time, it sends an alarm message to the master node of the Ethernet ring protection domain.
  • Step 13 When receiving the alarm information, the master node performs a link protection switching operation on the Ethernet ring network where the master node is located.
  • the method for the MEP node in the MA to send the CCM message protocol information to the peer MEP node includes: the MEP node sends the CCM text protocol information to the peer MEP node every preset transmission time.
  • the sending time may specifically be 3.3 ms of a text sending period specified by the CCM protocol; the MA includes two or more MEP nodes.
  • the method for sending the alarm information to the master node of the Ethernet ring protection domain in which the peer MEP node is located includes multiple types. The best way is:
  • the peer MEP node When the peer MEP node does not receive the CCM message protocol information within a preset waiting time, the peer MEP node searches for the Ethernet ring network protection in the association table according to the preset association table.
  • the location information of the primary node of the domain and sends the alarm information to the primary node according to the location information;
  • the waiting time is a multiple of the time required to send the CCM message protocol information; specifically, the time required for the packet sending period 3 times, that is, 9.9ms, so when the MEP node finds that it has not received the CCM message protocol information after waiting for 9.9ms, it will send an alarm message, which greatly shortens the time of fault detection;
  • step 13 when the master node receives the alarm information, the method for performing the link protection switching operation on the Ethernet ring network where the master node is located is as follows:
  • the master node When the master node receives the alarm information, the master node switches to another link of the Ethernet ring network in which it is located; in this step, the master node sets the physical forwarding function of the slave port to be valid, that is, the slave port When the link is working, it can ensure that each node in the Ethernet ring network can still communicate normally.
  • the embodiment provided by the present invention is a basic Continuity Check (CC) function using CFM, and divides a plurality of management domains (MDs) for the Ethernet ring network by CFM; and in the MD
  • the maintenance joint intermediate point (MEP) or the maintenance association intermediate point (MIP) is set as the primary and secondary nodes in an MA, as shown in Figure 3.
  • the primary and secondary nodes in the Ethernet ring network are non-transparent. Device, and transparent device does not need to be set.
  • the MEP node must be a master node or a slave node, and at least two MEP nodes in the same MA; the MIP node can be a transparent transmission device, and 0 or at least one MIP node can be included in the same MA.
  • Embodiment 1 :
  • a first embodiment of the present invention provides a method for protection switching of a link of a ring network.
  • the method determines whether a link between two MEP nodes is determined according to whether the set MEP node can receive CCM protocol information sent by the peer MEP node. It can communicate normally. If it is not, the link is faulty, and link protection switching is performed.
  • this embodiment uses an Ethernet ring network as shown in FIG. 1 to set an MD, and the MD includes only one MA as an example, and considers that all nodes in the Ethernet ring network are used to support information.
  • Non-transparent device for switching functions As shown in Figure 4, the specific process is as follows:
  • Step 21 Create an Ethernet ring protection domain for the Ethernet ring network.
  • the Ethernet ring protection domain includes nodes Sl, S2, S3, and S4.
  • Step 22 Set the nodes in the Ethernet ring network as one master node and multiple slave nodes as needed.
  • the primary node is the node that is the focus of attention, that is, S1
  • the secondary node is the secondary focused node, that is, S2, S3, and S4.
  • the nodes that do not need to be concerned may not be set.
  • Step 23 The physical forwarding function of the slave port of the master node of the Ethernet ring protection domain, that is, the link of the slave port of S1 and S4 is invalid.
  • the physical forwarding function of the link connected to S1 and S4 is disabled to prevent network storms when information is transmitted in the Ethernet ring protection domain.
  • Step 24 Establish an MA for the forged link between S2 and S3 in the Ethernet ring network, and determine the MEP node in the MA. This step includes the following:
  • Step 31 Determine an ID identifier of a node in the Ethernet ring network.
  • Step 32 Determine a certain link of the MA to be created on the Ethernet ring network.
  • the IDs of the nodes in the MA must be the same, here the link between node S2 to node S3 is selected; node S2 is determined to be the MEP1 node, and node S3 is determined to be the MEP2 node.
  • Step 25 Establish an association table between the node and the Ethernet ring protection domain for each MEP node; the association table is used to describe which Ethernet ring protection domain the MEP node belongs to, and the master of the Ethernet ring protection domain The location information of the node.
  • Step 26 When the Ethernet ring network starts working, the Ethernet ring protection domain automatically enables the CC function; performs link check and protection switching operations.
  • the specific steps are as follows:
  • Step 41 The MEP1 node in the MA sends CCM message protocol information to the MEP2 node, where the CCM message protocol information carries the time when the sender sends the message, and the sender Location
  • the sending time may specifically be a packet sending period of 3.3 ms specified by the CCM protocol;
  • Step 42 When the MEP2 node receives the CCM message protocol information sent by the MEP1 node, saves the received CCM message protocol information in its own database, indicating that the link is normal; when the MEP2 node is preset If the CCM message protocol information sent by the MEP1 node is not received within the waiting time, the link is faulty, and the process proceeds to step 43.
  • the waiting time is a multiple of the time required to send the CCM message protocol information; specifically, it may be three times the time required for the sending cycle, ie 9.9 ms;
  • Step 43 When the link is faulty, the MEP2 node searches for the association table saved by itself, and determines the Ethernet ring protection domain in which it is located, and searches for the location information of the active node of the Ethernet ring protection domain from the association table. ;
  • Step 44 The MEP2 node sends the alarm information to the master node according to the location information of the found primary node, that is, the S1 node.
  • Step 45 After receiving the alarm information, the master node determines, by using a protocol, that the physical forwarding function of the link between the ports, that is, the links between S1 and S4, is valid, and the link between S1 and S2 is The physical forwarding function is disabled and the link protection switching operation is completed.
  • Embodiment 2
  • the second embodiment of the present invention provides a method for protection switching of an Ethernet ring link with a transparent transmission device, where nodes S1, S2, and S3 shown in FIG. 1 are present in the Ethernet ring network.
  • S4 in this embodiment, only the link working state between the node S2 and the node S4 is concerned. Therefore, the node S3 can be regarded as a transparent transmission device, and the IDs of S2, S3, and S4 are considered to be the same;
  • the embodiment is an example in which the Ethernet ring network is configured with an MD, and the MD includes only one MA as an example, and all the nodes in the Ethernet ring network are considered to support the information exchange function.
  • the specific process is as follows:
  • Step 51 Create an Ethernet ring protection domain, set the node in the Ethernet ring network as the master node, or set the physical forwarding function of the node and the link connecting S1 and S4 to be invalid. Steps 21 to 23 are performed. As described, it will not be repeated here.
  • Step 52 Set an MA for the link where the slave nodes S2, S3, and S4 in the Ethernet ring network are located.
  • Step 54 Establish an association table between the node and the Ethernet ring protection domain on the MEP1 node and the MEP2.
  • the association table is used to describe which Ethernet ring protection domain the MEP node belongs to, and the Ethernet ring protection domain.
  • Step 55 When the Ethernet ring network starts working, the Ethernet ring protection domain automatically enables the CC function. The link check operation and the protection switch are performed. Step 26 is omitted here.
  • an apparatus for protection switching of an Ethernet ring link includes: a sending module 61, configured to: in the detecting process, an MEP node in the MA to a peer MEP section Point to send CCM text protocol information;
  • the alarm sending module 64 is configured to: when the peer MEP node does not receive the CCM message protocol information within a preset waiting time, send an alarm message to the master node of the Ethernet ring protection domain in which the peer MEP node is located;
  • the ring network protection domain includes the master node of the Ethernet ring network;
  • the switching module 65 is configured to perform a link protection switching operation on the Ethernet ring network where the primary node is located when the primary node receives the alarm information.
  • the sending module 61 is configured to:
  • the MEP node sends CCM message protocol information to the peer MEP node every predetermined message transmission period.
  • the alarm sending module 64 includes a searching module 62 and a sending sub-module 63.
  • the searching module 62 is configured to: the peer MEP node does not receive the CCM message protocol within a preset waiting time.
  • the peer MEP node searches for the location information of the master node of the Ethernet ring protection domain in the association table according to the preset association table; the sending submodule 63 is configured to use the location The information sends an alarm message to the master node.
  • the switching module 65 is configured to: when the primary node receives the alarm information, the primary node switches to another link of the Ethernet ring network where the primary node is located.
  • the MEP node in the MA After confirming that the MEP node in the MA receives the CCM message protocol information sent by the peer MEP node, it can quickly determine whether the link of the MEP node is faulty. When it is determined that the fault occurs, the MEP node is in the Ethernet. The master node of the ring protection domain issues a warning. After the master node receives the alarm information, the link protection switchover operation is performed on the Ethernet ring protection domain where the master node is located. This ensures that the Ethernet ring network can be in normal working state. It can be seen that with the present invention, it is possible to detect a fault that the physical port in the Ethernet ring network exhibits in a non-downline form, and it is possible to reduce the time of fault detection.
  • embodiments of the present invention may be provided as a method, system, Or a computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
  • a computer-usable storage medium including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Description

一种以太环网链路保护倒换的方法及装置 技术领域
本发明涉及网络技术领域, 尤其涉及一种以太环网链路保护倒换的方 法及装置。 背景技术
随着以太环网技术的不断发展, 以太环网网络的规模也越来越大。 目 前, 电信级以太环网电路得到了广泛应用, 因此, 对于以太环网链路的保 护就显得尤其重要。
现有技术中, 在以太环网保护链路的系统中, 通过为以太环网设置多 个以太环网保护域, 每个以太环网保护域可以实现基于用户数据业务转发 的业务虚拟局域网 ( Virtual Local Area Network, VLAN )功能。 如图 1所 示, 图 1 为现有技术中以太环网及以太环网保护域的结构示意图, 操作人 员根据实际需求将以太环网中的节点设置为主节点或者从节点, 每个以太 环网保护域通常由一个主节点以及一个或多个从节点共同组成; 每个节点 由两个端口组成, 所述两个端口包括主端口和从端口, 每个端口分别与其 他节点相连接以便在以太环网保护域中形成环路, 开始工作时主节点将其 自身从端口物理转发功能置为无效以避免出现网络风暴, 同时使得主端口 所在链路物理转发功能置为有效状态。 当检查到以太环网保护域中的某段 链路出现故障时, 主节点将从端口的物理转发功能置为有效, 即使得从端 口所在链路开始工作, 以此完成链路保护倒换操作, 保证数据业务的正常 转发。
对于电信级以太环网络, 为了保证用户感知不到链路的倒换动作即保 护倒换操作, 因此, 保护倒换操作的时间 (即以太环网断流的时间) 必须 在控制在 50ms以内, 才能满足网络可靠性和稳定性要求。 一般情况下, 保 护倒换操作的时间主要由两部分组成: 故障发生至故障被检测的检测时间 T1 ; 保护倒换操作开始至保护倒换生效的倒换时间 T2。 其中, 检测时间 T1 因检测机制不同而差别较大, 而保护倒换时间 Τ2相对比较固定。 因此, 检 测时间 T1 的长短直接决定了对以太环网的保护倒换操作是否能够达到 50ms的性能要求, 所使用的检测方法能否快速、 有效实施检测直接决定了 保护倒换操作的速度以及能否正常进行。
目前常用的检测方法是直接检测环上各节点的物理端口的物理状态, 然后根据检测结果确定是否需要进行保护倒换操作。 但本发明人发现该方 法存在以下缺陷:
1、 对于物理端口以下线形式表现的故障有效, 但对于其它不以该形式 表现的故障却无法进行检测;
2、 现有技术中, 直接检测环上各节点的物理端口的物理状态将会耗费 大量的检测时间, 从而导致保护倒换操作的时间过长。 发明内容
本发明实施例提供了一种以太环网链路保护倒换的方法及装置, 用于 解决无法检测出以太环网中物理端口以非下线形式表现出的故障、 以及故 障检测的时间过长的问题。
一种以太环网链路保护倒换的方法, 该方法包括:
在检测过程中, 维护联合(MA ) 中的维护联合边缘点(MEP )节点向 对端 MEP节点发送连续性检测 ( CCM )报文协议信息;
所述对端 MEP节点在预先设定的等待时间内未接收到所述 CCM报文 协议信息时, 向其自身所在以太环网保护域的主节点发出告警信息;
所述主节点在接到告警信息时, 对所述主节点所在的以太环网进行链 路保护倒换操作。 一种以太环网链路保护倒换的装置, 该装置包括:
发送模块, 用于在检测过程中, MA中的 MEP节点向对端 MEP节点 发送 CCM 文协议信息;
告警发送模块, 用于所述对端 MEP节点在预先设定的等待时间内未接 收到所述 CCM报文协议信息时,向其自身所在以太环网保护域的主节点发 出告警信息; 所述太环网保护域包含以太环网的主节点;
倒换模块, 用于所述主节点在接到告警信息时, 对所述主节点所在的 以太环网进行链路保护倒换操作。
通过釆用本发明提供的方法, 在检测过程中, 通过确认 MA中的 MEP 节点是否收到对端 MEP节点发来的 CCM报文协议信息, 即可快速确定该 MEP节点所在链路是否发生故障; 当确定发生故障时,该 MEP节点向其所 在以太环网保护域的主节点发出警告, 在主节点接到告警信息后, 对该主 节点所在的以太环网进行链路保护倒换操作, 以此保证以太环网能够处于 正常工作状态; 可见, 釆用本发明, 能够检测出以太环网中物理端口以非 下线形式表现出的故障, 并且可以减少故障检测的时间。 附图说明
图 1为现有技术中以太环网及以太环网保护域的结构示意图; 图 2为本发明实施例提供的一种以太环网链路保护倒换的方法流程示 意图;
图 3为本法明实施例提供的 MA域结构示意图;
图 4为实施例一提供的一种以太环网以及以太环网保护域的结构示意 图;
图 5 为实施例二提供的一种带有透传设备的以太环网以及以太环网保 护域的结构示意图;
图 6为带有多个透传设备的以太环网以及以太环网保护域的结构示意 图;
图 7为本发明实施例提供的一种以太环网链路保护倒换的装置结构示 意图。 具体实施方式
本发明实施例提供一种以太环网链路保护倒换的方法, 该方法通过将 电气和电子工程师协会 ( Institute of Electrical and Electronics Engineers , IEEE ) 802. lag协议应用到以太环网的链路检测机制中 , 由该检测协议触发 以太环网保护倒换操作, 从而检测出以太环网中发生故障的链路并进行保 护倒换。 所述 IEEE 802. lag 也称为连接故障管理 (Connectivity Fault Management, CFM ),是为了满足快速发展的城域接入网对网络性能需要提 出的用于电信级以太环网运营、 管理和维护的标准。 如图 2所示, 具体步 骤如下:
步骤 11 , 在检测过程中, 维护联合(Maintenance Associations, MA ) 中的维护联合边缘点 ( Maintenance association End Point, MEP )节点向对 端 MEP节点发送连续性检测( Continuity Check Message, CCM )报文协议 信息。
步骤 12,所述对端 MEP节点在预先设定的等待时间内未接收到该 CCM 报文协议信息时, 向其自身所在以太环网保护域的主节点发出告警信息。
步骤 13 , 所述主节点在接到告警信息时, 对该主节点所在的以太环网 进行链路保护倒换操作。
在步骤 11中, 在检测过程中, MA中的 MEP节点向对端 MEP节点发 送 CCM报文协议信息的方法包括: MEP节点每隔预先设定的发送时间向 对端 MEP节点发送 CCM 文协议信息; 所述发送时间具体可以是 CCM 协议规定的 文发送周期 3.3ms; 所述 MA中包含两个或两个以上的 MEP 节点。 在步骤 12 中, 对端 MEP 节点在预先设定的等待时间内未接收到该 CCM报文协议信息时, 向其自身所在以太环网保护域的主节点发出告警信 息的方法包括多种, 较佳的方法为:
对端 MEP节点在预先设定的等待时间内未接收到该 CCM报文协议信 息时, 该对端 MEP节点根据预先设定的关联表, 在所述关联表中查找自身 所在的以太环网保护域的主节点的位置信息, 并根据该位置信息向该主节 点发出告警信息; 所述等待时间为发送 CCM报文协议信息所需时间的倍 数; 具体的, 可以是报文发送周期所需时间的 3倍、 即 9.9ms, 因此当 MEP 节点在等待 9.9ms后发现未接收到 CCM报文协议信息, 便发出告警信息, 从而大大缩短了故障检测的时间;
在步骤 13中, 主节点在接到告警信息时, 对该主节点所在的以太环网 进行链路保护倒换操作的方法具体为:
当所述主节点在接到告警信息时, 该主节点倒换为自身所在的以太环 网的另一条链路; 本步骤中主节点将其从端口的物理转发功能置为有效, 即使得从端口所在链路开始工作, 即可保证以太环网中的各个节点仍然能 够正常通信。
以下以具体实施例进行介绍:
本发明提供的实施例为使用了 CFM的最基本的连续性检测(Continuity Check, CC )功能,并通过 CFM为该以太环网划分多个管理域( Maintenance Domains, MD ); 并在 MD中的一个 MA中分别为主、 从节点设置维护联 合边缘点 ( MEP )或者维护联合中间点 ( Maintenance association Intermediate Point, MIP ), 如图 3所示; 在以太环网中主、 从节点为非透传设备, 而透 传设备不需要进行设置。 MEP节点必须为主节点或从节点, 并且在同一个 MA中至少包含两个 MEP节点; MIP节点可以为透传设备, 在同一个 MA 中可包含 0个或至少一个 MIP节点。 实施例一:
本发明实施例一提供一种以太环网链路保护倒换的方法, 该方法根据 设置的 MEP节点是否可以接收到对端 MEP节点发送的 CCM协议信息,确 定两个 MEP节点之间的链路是否能够正常通信, 如果不能则说明该链路发 生故障, 从而进行链路保护倒换。 为了方便介绍, 本实施例以参见图 1 所 示的以太环网设置一个 MD , 且该 MD中只包含一个 MA为例进行说明, 并且认为该以太环网中的所有节点都是用来支持信息交换功能的非透传设 备。 如图 4所示, 具体过程如下:
步骤 21 , 为以太环网创建以太环网保护域; 该以太环网保护域中包括 节点 Sl、 S2、 S3、 S4。
步骤 22, 根据需要将以太环网中的节点设置为一个主节点和多个从节 点。
本步骤中主节点为重点关注的节点即 S1 , 从节点为次重点关注的节点 即 S2、 S3、 S4, 对于不需要进行关注的节点可以不进行设置。
本步骤中由于只有一个以太环网保护域, 因此, 在该以太环网中只能 设置一个主节点; 对于有更多节点的以太环网只要保证所创建的以太环网 保护域中只包含一个主节点即可, 参见图 1。
步骤 23 , 将以太环网保护域的主节点的从端口, 即 S1的从端口与 S4 相连的链路的物理转发功能置为无效。
本步骤中将 S1和 S4相连的链路的物理转发功能置为无效是为了防止 在以太环网保护域中传递信息时出现网络风暴。
步骤 24, 为以太环网中的 S2至 S3之间的锻链路建立 MA, 并在 MA 中确定 MEP节点; 本步骤包括以下内容:
步骤 31 , 确定以太环网中节点的 ID标识;
步骤 32 , 在以太环网上确定需要创建 MA的某段链路; 本步骤中所述 MA中的节点的 ID标识必须相同,此处选择节点 S2至节点 S3之间的链路; 并将节点 S2确定为 MEP1节点, 将节点 S3确定为 MEP2节点。
步骤 25 ,为每一个 MEP节点建立该节点与所在以太环网保护域的关联 表; 所述关联表用于描述该 MEP节点属于哪一个以太环网保护域, 以及该 以太环网保护域的主节点的位置信息。
步骤 26, 当以太环网开始工作时, 以太环网保护域自动开启 CC功能; 进行链路检查以及保护倒换操作, 具体步骤如下:
步骤 41 , 每隔预先设定的发送时间, MA中的 MEP1节点向 MEP2节 点发送 CCM报文协议信息, 所述 CCM报文协议信息中携带发送方发送该 才艮文的时间, 以及该发送方的地点;
所述发送时间具体可以是 CCM协议规定报文发送周期 3.3ms;
步骤 42, 当 MEP2节点接收到 MEP1节点发送的 CCM报文协议信息 时, 将接收到的 CCM报文协议信息保存在自身的数据库中, 此时说明链路 正常; 当 MEP2节点在预先设定的等待时间内没有接收到 MEP1节点发送 的 CCM报文协议信息时, 则说明链路出现故障, 转到步骤 43;
所述等待时间为发送 CCM报文协议信息所需时间的倍数; 具体的, 可 以是 发送周期所需时间的 3倍即 9.9ms;
步骤 43 , 当链路出现故障时, MEP2节点查找自身保存的关联表, 并 从中确定自身所在的以太环网保护域, 同时从该关联表中查找该以太环网 保护域的主节点的位置信息;
步骤 44, MEP2节点根据查找到的主节点即 S1节点的位置信息, 向该 主节点发送告警信息;
步骤 45 , 当该主节点接收到告警信息后, 通过协议运算将从端口所处 链路即 S1与 S4之间的链路的物理转发功能置为有效, 将 S1与 S2之间的 链路的物理转发功能置为无效, 完成链路保护倒换操作。 实施例二:
如图 5 所示, 本发明实施例二提供一种带有透传设备的以太环网链路 保护倒换的方法, 在该以太环网中存在如图 1所示的节点 Sl、 S2、 S3、 S4, 本实施例中只关心节点 S2至节点 S4之间的链路工作状态, 因此, 对于节 点 S3可视为透传设备, 并且认为 S2、 S3、 S4的 ID标识相同; 为了方便介 绍, 本实施例为该以太环网设置一个 MD, 且该 MD中只包含一个 MA为 例进行说明, 并且认为该以太环网中的所有节点都是用来支持信息交换功 能的。 具体过程如下:
步骤 51 , 创建以太环网保护域、 将以太环网中的节点设置为主节点或 者从节点、 将 S1和 S4相连的链路的物理转发功能置为无效的操作步骤如 步骤 21至步骤 23所述, 此处不再赘述。
本步骤中由于节点 S3为透传设备, 可不对节点 S3设置为从节点。 步骤 52,为该以太环网中的从节点 S2、 S3、 S4所在链路设置建立 MA。 步骤 53 , 在 MA中, 操作人员将从节点 S2和从节点 S4分别设置为 MEP1节点和 MEP2节点; 由于节点 S3为透传设备, 因此将节点 S3设置 为 MIP节点。
步骤 54, 在 MEP1节点和 MEP2上分别建立该节点与所在以太环网保 护域的关联表; 所述关联表用于描述该 MEP节点属于哪一个以太环网保护 域, 以及该以太环网保护域的主节点的位置信息。
步骤 55 , 当以太环网开始工作时, 以太环网保护域自动开启 CC功能; 进行链路检查操作以及保护倒换, 同步骤 26, 此处不再赘述。
如图 6所示, 本步骤中,还可将其他不进行 CCM "^艮文协议传递的设备 如 HI和 H2设置为透传设备, 并将其设置为 MIP节点。
如图 7所示, 一种以太环网链路保护倒换的装置, 该装置包括: 发送模块 61 , 用于在检测过程中, MA中的 MEP节点向对端 MEP节 点发送 CCM 文协议信息;
告警发送模块 64,用于所述对端 MEP节点在预先设定的等待时间内未 接收到该 CCM报文协议信息时,向其自身所在以太环网保护域的主节点发 出告警信息; 所述太环网保护域包含以太环网的主节点;
倒换模块 65 , 用于所述主节点在接到告警信息时, 对该主节点所在的 以太环网进行链路保护倒换操作。
较佳的, 所述发送模块 61用于:
MEP节点每隔预先设定的报文发送周期向对端 MEP节点发送 CCM报 文协议信息。
较佳的, 所述告警发送模块 64包括查找模块 62和发送子模块 63; 所述查找模块 62,用于所述对端 MEP节点在预先设定的等待时间内未 接收到该 CCM报文协议信息时,该对端 MEP节点根据预先设定的关联表, 在所述关联表中查找自身所在的以太环网保护域的主节点的位置信息; 所述发送子模块 63 , 用于根据该位置信息向该主节点发出告警信息。 较佳的, 所述倒换模块 65 , 用于当所述主节点在接到告警信息时, 该 主节点倒换为自身所在的所述以太环网的另一条链路。
综上所述, 本发明的有益效果:
通过确认 MA中的 MEP节点是否收到对端 MEP节点发来的 CCM报 文协议信息, 即可快速确定该 MEP节点所在链路是否发生故障; 当确定发 生故障时, 该 MEP节点向其所在以太环网保护域的主节点发出警告, 在主 节点接到告警信息后, 对该主节点所在的以太环网保护域进行链路保护倒 换操作, 以此保证以太环网能够处于正常工作状态。 可见, 釆用本发明, 能够检测出以太环网中物理端口以非下线形式表现出的故障, 并且可以减 少故障检测的时间。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施 例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个 或多个其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不 限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的 形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序 产品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流 程图和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中 的流程和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专 用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个 机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产 生用于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方 框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存 储器中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机 实现的处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的 功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知 了基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所 附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和 修改。 本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权 利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在 内。

Claims

权利要求书
1、 一种以太环网链路保护倒换的方法, 其特征在于, 该方法包括: 在检测过程中, 维护联合(MA ) 中的维护联合边缘点(MEP )节点向 对端 MEP节点发送连续性检测 ( CCM )报文协议信息;
所述对端 MEP节点在预先设定的等待时间内未接收到所述 CCM报文 协议信息时, 向其自身所在以太环网保护域的主节点发出告警信息;
所述主节点在接到告警信息时, 对所述主节点所在的以太环网进行链 路保护倒换操作。
2、 如权利要求 1所述的以太环网链路保护倒换的方法, 其特征在于, 所述 MA中包含至少两个 MEP节点。
3、 如权利要求 1所述的以太环网链路保护倒换的方法, 其特征在于, 所述在 MA中的 MEP节点向对端 MEP节点发送 CCM报文协议信息包括:
MEP节点每隔预先设定的发送时间向对端 MEP节点发送 CCM报文协 议信息。
4、 如权利要求 1所述的以太环网链路保护倒换的方法, 其特征在于, 所述对端 MEP节点在预先设定的等待时间内未接收到 CCM报文协议信息 时, 向其自身所在以太环网保护域的主节点发出告警信息包括:
所述对端 MEP节点在预先设定的等待时间内未接收到所述 CCM报文 协议信息时, 所述对端 MEP节点根据预先设定的关联表, 在所述关联表中 查找自身所在的以太环网保护域的主节点的位置信息, 并根据所述位置信 息向所述主节点发出告警信息。
5、 如权利要求 1所述的以太环网链路保护倒换的方法, 其特征在于, 所述主节点在接到告警信息时, 对所述主节点所在的以太环网进行链路保 护倒换操作包括:
所述主节点在接到告警信息时, 所述主节点倒换为自身所在的以太环 网的另一条链路。
6、 一种以太环网链路保护倒换的装置, 其特征在于, 该装置包括: 发送模块, 用于在检测过程中, MA中的 MEP节点向对端 MEP节点 发送 CCM 文协议信息;
告警发送模块, 用于所述对端 MEP节点在预先设定的等待时间内未接 收到所述 CCM报文协议信息时,向其自身所在以太环网保护域的主节点发 出告警信息; 所述太环网保护域包含以太环网的主节点;
倒换模块, 用于所述主节点在接到告警信息时, 对所述主节点所在的 以太环网进行链路保护倒换操作。
7、 如权利要求 6所述的以太环网链路保护倒换的装置, 其特征在于, 所述发送模块用于:
MEP节点每隔预先设定的发送时间向对端 MEP节点发送 CCM报文协 议信息。
8、 如权利要求 6所述的以太环网链路保护倒换的装置, 其特征在于, 所述告警发送模块包括查找模块和发送子模块;
所述查找模块, 用于对端 MEP节点在预先设定的等待时间内未接收到 所述 CCM报文协议信息时, 所述对端 MEP节点根据预先设定的关联表, 在所述关联表中查找自身所在的以太环网保护域的主节点的位置信息; 所述发送子模块, 用于根据所述位置信息向所述主节点发出告警信息。
9、 如权利要求 6所述的以太环网链路保护倒换的装置, 其特征在于, 所述倒换模块, 用于在所述主节点在接到告警信息时, 所述主节点倒换为 自身所在的以太环网的另一条链路。
PCT/CN2011/071451 2010-12-07 2011-03-02 一种以太环网链路保护倒换的方法及装置 WO2012075743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105768599A CN102045230A (zh) 2010-12-07 2010-12-07 一种以太环网链路保护倒换的方法及装置
CN201010576859.9 2010-12-07

Publications (1)

Publication Number Publication Date
WO2012075743A1 true WO2012075743A1 (zh) 2012-06-14

Family

ID=43911039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071451 WO2012075743A1 (zh) 2010-12-07 2011-03-02 一种以太环网链路保护倒换的方法及装置

Country Status (2)

Country Link
CN (1) CN102045230A (zh)
WO (1) WO2012075743A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885484B2 (en) * 2011-07-25 2014-11-11 Alcatel Lucent Bootstrapping fault detection sessions over a P2MP tunnel
CN102684838B (zh) * 2012-05-23 2016-01-20 瑞斯康达科技发展股份有限公司 一种帧丢失检测方法、装置及维护实体组端点
CN104053168B (zh) * 2013-03-15 2017-11-28 华为技术有限公司 状态设置方法、节点及网络
CN103546316B (zh) * 2013-10-12 2017-09-29 华为技术有限公司 一种传输oam报文的方法及装置
CN106452910B (zh) * 2016-11-07 2019-09-17 瑞斯康达科技发展股份有限公司 一种确定倒换时间的方法及节点
CN111698157B (zh) * 2020-07-23 2022-05-24 迈普通信技术股份有限公司 一种链路管理方法、板卡及交换机
CN115714698B (zh) * 2022-09-26 2024-04-16 重庆长安汽车股份有限公司 车载以太网的环网通信方法、装置、车辆及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483572A (zh) * 2009-02-10 2009-07-15 中兴通讯股份有限公司 链路检测方法、以太环网节点

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100589427C (zh) * 2007-02-14 2010-02-10 中兴通讯股份有限公司 一种以太网自动保护方法
CN101072237B (zh) * 2007-03-01 2012-07-04 中兴通讯股份有限公司 以太环智能保护方法
CN101222402B (zh) * 2008-01-22 2011-05-18 杭州华三通信技术有限公司 以太环网保护方法、系统及装置
CN101686166B (zh) * 2008-09-28 2012-04-04 华为技术有限公司 一种环网业务故障处理方法、装置和系统
CN101714939A (zh) * 2008-10-06 2010-05-26 中兴通讯股份有限公司 一种以太环网主节点的故障处理方法及相应以太环网
CN101399737A (zh) * 2008-10-21 2009-04-01 中兴通讯股份有限公司 用于以太环网的链路聚合组的保护方法及装置
CN101640646B (zh) * 2009-09-01 2012-05-23 中兴通讯股份有限公司 以太环网保护倒换方法及装置
CN101888323B (zh) * 2010-07-19 2012-04-11 南京邮电大学 一种基于以太环网的pbb-te保护方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483572A (zh) * 2009-02-10 2009-07-15 中兴通讯股份有限公司 链路检测方法、以太环网节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEONG-DONG RYOO ET AL.: "OAM and Its Performance Monitoring Mechanisms for Carrier Ethernet Transport Networks", IEEE COMMUNICATION MAGAZINE, 2008, pages 97 - 103, XP011205403 *

Also Published As

Publication number Publication date
CN102045230A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
US11323307B2 (en) Method and system of a dynamic high-availability mode based on current wide area network connectivity
RU2606053C2 (ru) Метод управления изменением состояния в узле межсоединения
WO2012075743A1 (zh) 一种以太环网链路保护倒换的方法及装置
EP2951959B1 (en) Using ethernet ring protection switching with computer networks
US9071513B2 (en) Path switch-back method and apparatus in transport network
CN103607317A (zh) 二层环路检测方法和装置及通信系统
EP3203684B1 (en) Method, apparatus and system for network operations, administration and maintenance
WO2011120297A1 (zh) 虚拟专用局域网业务的保护方法、系统、pe和ce
CN101197733A (zh) 网络连通性的自动检测方法及装置
WO2015196676A1 (zh) 组网保护方法、装置及组网中的汇聚主用网元
CN105871674A (zh) 环保护链路故障保护方法、设备及系统
CN102647304A (zh) 地址解析协议表的同步方法及装置
WO2013182116A1 (zh) 保护以太环网节点间连通性的控制方法、装置及第一节点
WO2014029282A1 (zh) 跨域保护互通方法及系统
WO2010031295A1 (zh) 一种以太网故障恢复的控制方法
WO2011017900A1 (zh) 一种以太网隧道分段保护方法及系统
US9197441B2 (en) Method and system for service protection
WO2015154423A1 (zh) 跨域业务处理方法、装置及系统
JP5989911B2 (ja) サービス・トラフィックを保護するための方法および装置
WO2015039456A1 (zh) 网络数据自环回的控制方法及装置
WO2012171397A1 (zh) 一种链路保护方法及装置
JP5711420B2 (ja) イーサネットノードの検出フレームタイムアウト時間の設定方法及びシステム
JP2011223172A (ja) リング型ネットワークシステム、通信装置および障害検出方法
CN105450518B (zh) 一种mpls-tp环网故障排除方法及装置
WO2017181778A1 (zh) 一种双主控设备主控之间链路扩展方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846419

Country of ref document: EP

Kind code of ref document: A1