WO2012074033A1 - Method for producing titanium-containing silicon oxide moldings and method for producing oxirane compounds - Google Patents

Method for producing titanium-containing silicon oxide moldings and method for producing oxirane compounds Download PDF

Info

Publication number
WO2012074033A1
WO2012074033A1 PCT/JP2011/077738 JP2011077738W WO2012074033A1 WO 2012074033 A1 WO2012074033 A1 WO 2012074033A1 JP 2011077738 W JP2011077738 W JP 2011077738W WO 2012074033 A1 WO2012074033 A1 WO 2012074033A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
silicon oxide
precursor
item
molded body
Prior art date
Application number
PCT/JP2011/077738
Other languages
French (fr)
Japanese (ja)
Inventor
純 山本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012074033A1 publication Critical patent/WO2012074033A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7038MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/34Reaction with organic or organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing a titanium-containing silicon oxide molded body and a method for producing an oxirane compound, which can produce an oxirane compound from olefin and hydroperoxide in high yield.
  • a titanium-containing silicon oxide catalyst having a zeolite structure is active in olefin epoxidation using hydrogen peroxide.
  • TO 4 units are successively connected three-dimensionally to form a crystalline porous structure.
  • zeolites with various structures due to the difference in the form of linkage of the TO 4 units are classified by the Structure Commission of the International Zeolite Association (IZA-SC) according to the structure code of the three letters of the alphabet according to the form.
  • IZA-SC Structure Commission of the International Zeolite Association
  • a titanium-containing MWW type zeolite catalyst is known as the catalyst.
  • the titanium-containing MWW-type zeolite is a titanium-containing silicon oxide catalyst having a structure similar to that of MCM-22 zeolite well known as an alkylation catalyst and having a structure code represented by MWW.
  • the titanium-containing MWW-type zeolite catalyst has insufficient activity for olefin epoxidation using hydrogen peroxide.
  • the titanium-containing MWW-type zeolite catalyst has a small pore size, the epoxidation activity is very low when a large olefin or organic hydroperoxide is used.
  • an approach for obtaining an MWW-type zeolite catalyst capable of reacting larger molecules for example, after swelling between layers of a MWW-type zeolite layered precursor with a surfactant or the like, the swollen MWW-type zeolite layered precursor is converted into a swollen MWW-type zeolite layered precursor.
  • a method for producing a catalyst in which an MWW-type zeolite layered precursor is delaminated by sonication and calcination.
  • This catalyst is widely known as ITQ2, which is an analog of MWW type zeolite.
  • JP-T-2003-509479 discloses a method of producing a compact having a predetermined size or more by pressing a powder of ITQ2 obtained by delaminating to obtain a tablet, and crushing and classifying the tablet.
  • JP-T-2003-509479 discloses a method of producing a compact having a predetermined size or more by pressing a powder of ITQ2 obtained by delaminating to obtain a tablet, and crushing and classifying the tablet.
  • JP-T-2003-509479 discloses a method of producing a compact having a predetermined size or more by pressing a powder of ITQ2 obtained by delaminating to obtain a tablet, and crushing and classifying the tablet.
  • JP-T-2003-509479 discloses a method of producing a compact having a predetermined size or more by pressing a powder of ITQ2 obtained by delaminating to obtain a tablet, and crushing and classifying the tablet
  • the problem to be solved by the present invention is to provide a method for producing a titanium-containing silicon oxide molded body and a method for producing an oxirane compound, which can produce an oxirane compound from olefin and hydroperoxide in high yield.
  • this invention relates to the manufacturing method of the titanium containing silicon oxide molded object which has the following 1st process, the following 2nd process, and the following 3rd process.
  • First step A step of obtaining a swollen titanium-containing zeolite layered precursor (2) by bringing the titanium-containing zeolite layered precursor (1) into contact with a solution containing a swelling agent and a solvent.
  • the present invention is a titanium-containing silicon obtained by the above production method
  • the present invention relates to a method for producing an oxirane compound in which an olefin and a hydroperoxide are reacted in the presence of an oxide compact.
  • the manufacturing method of the titanium containing silicon oxide molded object of this invention has the following 1st process, the following 2nd process, and the following 3rd process.
  • First step A step of obtaining a swollen titanium-containing zeolite layered precursor (2) by bringing the titanium-containing zeolite layered precursor (1) into contact with a solution containing a swelling agent and a solvent.
  • Second step precursor ( Step 2) Pressurizing to obtain molded body (3)
  • Third step Step of removing swelling agent contained in molded body (3) What is a titanium-containing zeolite layered precursor used as a raw material in the first step? A zeolite layered precursor in which titanium atoms are introduced.
  • Zeolite layered precursor is a structure that has a structure in which multiple layers of sheet-like silicon oxide are laminated. By firing it, a three-dimensional crystalline porous structure is formed to form zeolite. This is a possible structure.
  • Examples of the structure of the zeolite obtained by calcining the zeolite layered precursor include MWW type, FER type, RRO type, and CDO type defined by the Structure Commission of the International Zeolization Association (IZA-SC). Of these, an MWW-type zeolite layered precursor is preferable.
  • Examples of the method for producing the titanium-containing MWW-type zeolite layered precursor include the method described in JP-A No. 2002-102709.
  • titanium atoms into the zeolite layered precursor when the structure of the zeolite layered precursor is formed by hydrothermal synthesis or the like, a direct introduction method in which titanium atoms are introduced in the presence of a titanium source, zeolite not containing titanium atoms After synthesizing the layered precursor, any of post-introduction methods in which titanium atoms are introduced by a method such as ion exchange, isomorphous substitution, or atom planting may be used, but the introduction of titanium atoms may be performed by a direct introduction method. preferable.
  • the structure of the zeolite layered precursor can be observed by X-ray diffraction (XRD).
  • the titanium-containing MWW-type zeolite layered precursor can be obtained by mixing a silicon compound, a titanium compound, a boron compound, water and a structure directing agent, and then subjecting the obtained mixture to a hydrothermal synthesis reaction.
  • the silicon compound include alkoxysilane and amorphous silica.
  • Examples of the alkoxysilane include tetramethylorthosilicate, tetraethylorthosilicate, and tetrapropylorthosilicate.
  • Examples of the amorphous silica include Examples thereof include fumed silica.
  • Examples of the titanium compound include alkoxy titanium, peroxy titanate, titanium halide, titanium acetate, titanium nitrate, titanium sulfate, and titanium phosphate.
  • Examples of the alkoxy titanium include tetra-n-propyl ortho.
  • Examples thereof include titanate, tetra-isopropyl orthotitanate, tetra-n-butyl orthotitanate, etc., and examples of peroxytitanate include tetra-n-butylammonium peroxytitanate, and examples of titanium halide include, for example, , Titanium tetrachloride, titanium tetrabromide, titanium tetraiodide and the like. Examples of the boron compound include boric acid and anhydrous boric acid.
  • the structure directing agent is an organic compound that is used as an aid for forming a structure of zeolite or a precursor thereof.
  • Examples of the structure directing agent suitable for obtaining the MWW-type zeolite layered precursor include piperidine, hexamethyleneimine, and trimethyladamanta ammonium hydroxide. These structure directing agents may be used alone, or two or more structure directing agents having a desired ratio may be mixed and used. Of these, piperidine is preferably used alone.
  • the use ratio of each of the raw materials is based on the number of silicon atoms in the silicon compound, and the titanium compound is 0.01 to 0.2 as titanium atoms.
  • the boron compound is 0.1 to 3 mol times as a boron atom
  • water is 3 to 50 mol times
  • the structure directing agent is 0.1 to 3 mol times.
  • the raw materials are preferably mixed at a temperature of 0 to 60 ° C., more preferably 10 to 50 ° C.
  • the mixing method of the respective raw materials for example, all the raw materials may be mixed at once, or the respective raw materials may be mixed sequentially. In particular, mixing the raw material that is liquid first and then mixing the raw material that is solid can uniformly stir the raw material, and thus avoid the uneven distribution of titanium atoms in the obtained titanium-containing MWW-type zeolite layered precursor. It is preferable because it is possible.
  • the mixture of each raw material is subjected to a hydrothermal synthesis reaction to obtain a titanium-containing MWW-type zeolite layered precursor.
  • the titanium-containing MWW-type zeolite layered precursor is a structure that changes to the structure of the MWW-type zeolite upon firing, and has a structure in and between each layer of titanium-containing silicon oxide. It means the structure in which the directing agent is included.
  • hydrothermal synthesis refers to a synthesis method and crystal growth method of a substance carried out in the presence of high-temperature and high-pressure water (“Iwanami Physical and Chemical Dictionary”, 4th edition, Iwanami Shoten, 1987, p.
  • the raw materials are mixed, and the mixture of raw materials is heated at a temperature of about 100 to 200 ° C. under autoclaving in an autoclave for several hours to several days. It is carried out by stirring or standing the mixture.
  • Solids generated by hydrothermal synthesis may contain compounds other than titanium-containing MWW-type zeolite layered precursors, and solids containing titanium-containing MWW-type zeolite layered precursors usually require filtration of the reaction mixture and residue. Depending on the case, it can be obtained by washing with an organic solvent such as water or methanol and then drying.
  • the drying method is preferably, for example, a method in which the residue is heated at 10 to 200 ° C.
  • the titanium-containing MWW-type zeolite layered precursor produced by hydrothermal synthesis is preferably treated with an acid before being subjected to the first step described later to remove unnecessary Ti that does not function as a reactive site.
  • acids used for removing unnecessary Ti include inorganic acids and organic acids.
  • inorganic acids include hydrochloric acid, sulfuric acid, and nitric acid.
  • organic acids include formic acid and acetic acid.
  • An inorganic acid is preferable.
  • the acid is used as a solution obtained by diluting the acid with a solvent.
  • the concentration of the acid in the solution is preferably 0.5 to 10 N, and an organic solvent such as alcohol or ketone and water can be used as the solvent.
  • a swollen titanium-containing zeolite layered precursor (2) can be obtained by bringing the titanium-containing MWW-type zeolite layered precursor (1) obtained by the above operation into contact with a solution containing a swelling agent and a solvent. Examples of the method of bringing the precursor (1) into contact with the solution include a method of immersing the precursor (1) in the solution.
  • the swelling of the titanium-containing MWW-type zeolite layered precursor is that the peak of the precursor (2) derived from the 002 plane of the MWW structure in the X-ray diffraction method (XRD) is lower than the peak of the precursor (1). It can be confirmed from the difference in the amount of organic substances contained in the precursor (1) and the precursor (2) by elemental analysis or ignition loss analysis.
  • the swelling agent used in the first step is a compound having a characteristic of entering the interlayer of the titanium-containing MWW-type zeolite layered precursor to increase the interlayer distance.
  • a surfactant can be suitably used, and among them, a compound containing a quaternary ammonium ion represented by the following general formula (I) is preferable.
  • Examples of the quaternary ammonium ion represented by the general formula (I) include hexadecyltrimethylammonium, dodecyltrimethylammonium, benzyltrimethylammonium, dimethyldidodecylammonium, hexadecylpyridinium, and the like. More preferred.
  • the swelling agent may contain only one type of quaternary ammonium ion represented by the general formula (I), or may contain two or more types.
  • Examples of the solvent contained in the solution can dissolve the swelling agent. Examples of the solvent include water, alcohol, and ketone. Examples of the alcohol include methanol, ethanol, 1-propanol, and 2-propanol. Examples of ketones include acetone.
  • the solution is preferably alkaline.
  • alkali source quaternary ammonium hydroxide is preferable, and examples thereof include ammonium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and the like, and the fourth represented by the general formula (I). More preferred is a hydroxide of a quaternary ammonium ion.
  • the temperature at which the precursor (1) is brought into contact with the solution is usually 40 to 120 ° C, more preferably 60 to 100 ° C.
  • the time for bringing the precursor (1) into contact with the solution is usually 5 to 50 hours. Moreover, you may irradiate the solution containing a precursor (1) with an ultrasonic wave as needed, or may adjust pH of the solution containing a precursor (1).
  • a contact product obtained by bringing the precursor (1) into contact with the solution is filtered or centrifuged to obtain a solid. If necessary, the solid is washed with an organic solvent such as water or methanol, and then dried. A swollen titanium-containing zeolite layered precursor (2) can be obtained.
  • the drying method is preferably, for example, a method in which the residue is heated at 10 to 200 ° C.
  • the second step of the present invention is a step of pressing the swollen titanium-containing zeolite layered precursor (2) obtained in the first step to obtain a molded body (3). It is the most important matter of the present invention to pressurize the swollen titanium-containing zeolite layered precursor (2), thereby removing the swelling agent from the molded body (3) in the subsequent third step, thereby providing catalyst physical properties. Can be obtained.
  • any method such as roll press molding (briqueting, compacting), hydraulic press molding, compression molding represented by tableting molding, extrusion molding or the like is used.
  • compression molding is more preferable.
  • organic or inorganic binders can be used.
  • a method using no binder is preferred.
  • the pressure when pressurizing the precursor (2) is usually 0.1 to 10 ton / cm 2 , preferably 0.2 to 5 ton / cm 2 , and more preferably 0.5 ton / cm 2. ⁇ 2 tons / cm 2 .
  • the water content of the solid subjected to compression molding is preferably 15% or less, more preferably 10% or less.
  • Examples of the method for removing the swelling agent include a method of firing the molded product (3) obtained in the second step at a high temperature of 400 to 700 ° C. in air, and a method of extracting the swelling agent with a solvent.
  • a method of removing the swelling agent is preferred.
  • the solvent used for the extraction is not particularly limited as long as it can dissolve the swelling agent. Generally, oxa and / or oxo substituted hydrocarbons having 1 to 12 carbon atoms and liquid at normal temperature can be used.
  • Suitable solvents of this type include, for example, alcohols, ketones, ethers (acyclic compounds and cyclic compounds), esters, etc.
  • alcohols include, for example, methanol, ethanol, ethylene glycol , Propylene glycol, isopropanol, n-butanol, octanol and the like.
  • ketones include acetone, diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone and the like.
  • ethers include diisobutyl ether, tetrahydrofuran and the like.
  • acid salts include alkali metal salts, alkaline earth metal salts, ammonium salts and the like.
  • concentration of the acid or acid salt in the solvent is preferably 10 mol / l or less, and more preferably 5 mol / l or less.
  • the extraction temperature is preferably 0 to 200 ° C, more preferably 20 to 100 ° C.
  • the extraction may be performed under pressure.
  • the titanium-containing silicon oxide molded body obtained after the extraction treatment may be dried.
  • the drying method is preferably a method of heating at 10 to 700 ° C., more preferably 50 to 200 ° C. in an atmosphere of a non-reducing gas such as nitrogen, argon or carbon dioxide or an oxygen-containing gas such as air.
  • the titanium-containing silicon oxide molded body obtained by the above operation may contain titanium-containing MWW-type zeolite and the like, but the content of titanium-containing MWW-type zeolite is preferably 50% or less, 30 % Or less is more preferable.
  • the titanium-containing silicon oxide molded article is suitable as a catalyst in a method for producing an oxirane compound from an olefin and a hydroperoxide.
  • a silylated titanium-containing silicon oxide molded body obtained by silylating a titanium-containing silicon oxide molded body obtained by the above method is also suitable as a catalyst in a method for producing an oxirane compound from an olefin and a hydroperoxide.
  • Silylated titanium-containing silicon oxide compacts are more hydrophobic than titanium-containing silicon oxide compacts. Therefore, an oxirane compound can be produced in high yield from an olefin and a hydroperoxide by using a silylated titanium-containing silicon oxide molded article as a catalyst.
  • Examples of the method for silylating the titanium-containing silicon oxide molded body include a method of bringing the molded body into contact with a silylating agent.
  • Examples of the silylating agent include organic silanes, organic silylamines, organic silylamides and derivatives thereof, organic silazanes, and other silylating agents.
  • organic silane examples include chlorotrimethylsilane, nitrotrimethylsilane, chlorotriethylsilane, chlorodimethylphenylsilane, dimethyl-n-propylchlorosilane, dimethylisopropylchlorosilane, t-butyldimethylchlorosilane, tripropylchlorosilane, dimethyloctylchlorosilane, and tributyl.
  • Examples of the organic silylamine include N-trimethylsilylimidazole, Nt-butyldimethylsilylimidazole, N-dimethylethylsilylimidazole, N-dimethyl-n-propylsilylimidazole, N-dimethylisopropylsilylimidazole, N-trimethylsilyldimethylamine.
  • N-trimethylsilyldiethylamine N-trimethylsilylpyrrole, N-trimethylsilylpyrrolidine, N-trimethylsilylpiperidine, 1-cyanoethyl (diethylamino) dimethylsilane, pentafluorophenyldimethylsilylamine.
  • organic silylamides and derivatives thereof include N, O-bistrimethylsilylacetamide, N, O-bistrimethylsilyltrifluoroacetamide, N-trimethylsilylacetamide, N-methyl-N-trimethylsilylacetamide, N-methyl-N-trimethylsilyltriamide.
  • examples include fluoroacetamide, N-methyl-N-trimethylsilylheptafluorobutyramide, N- (t-butyldimethylsilyl) -N-trifluoroacetamide, and N, O-bis (diethylhydrosilyl) trifluoroacetamide.
  • organic silazane examples include hexamethyldisilazane, heptamethyldisilazane, 1,1,3,3-tetramethyldisilazane, 1,3-bis (chloromethyl) tetramethyldisilazane, 1,3-divinyl- Examples include 1,1,3,3-tetramethyldisilazane and 1,3-diphenyltetramethyldisilazane.
  • silylating agents examples include N-methoxy-N, O-bistrimethylsilyltrifluoroacetamide, N-methoxy-N, O-bistrimethylsilylcarbamate, N, O-bistrimethylsilylsulfamate, trimethylsilyltrifluoromethane. Examples thereof include sulfonate and N, N′-bistrimethylsilylurea.
  • a preferred silylating agent is hexamethyldisilazane.
  • the silylation of the titanium-containing silicon oxide molded body can be performed in either a gas phase or a liquid phase.
  • silylation is usually carried out in a solvent that does not essentially react with the silylating agent, and a hydrocarbon is preferably used as the solvent.
  • a hydrocarbon is preferably used as the solvent.
  • the hydrocarbon solvent include aliphatic hydrocarbons and aromatic hydrocarbons.
  • the aliphatic hydrocarbons include hexane and heptane.
  • the aromatic hydrocarbon include benzene, Examples include toluene and xylene.
  • the silylation temperature is preferably 0 to 300 ° C, more preferably 50 to 150 ° C.
  • the titanium-containing silicon oxide molded body and silylated titanium-containing silicon oxide molded body obtained by the method of the present invention can be suitably used as a catalyst particularly in a method for producing an oxirane compound in which an olefin and a hydroperoxide are reacted.
  • the olefin may be an acyclic, monocyclic, bicyclic or polycyclic compound, and may be a monoolefin, diolefin or polyolefin. If there are two or more olefinic bonds, this may be a conjugated bond or a non-conjugated bond. Olefins having 2 to 60 carbon atoms are generally preferred.
  • the olefin may have a substituent, and the substituent is preferably a relatively stable group.
  • the monoolefin include ethylene, propylene, butene-1, isobutylene, hexene-1, hexene-2, hexene-3, octene-1, decene-1, styrene, cyclohexene, and propylene is preferable.
  • the diolefin include butadiene and isoprene.
  • the substituent include various substituents containing a halogen atom, an oxygen atom, a sulfur atom, or a nitrogen atom together with hydrogen and / or a carbon atom.
  • Examples of the olefin having a substituent include Saturated alcohols, olefins substituted with a halogen atom, and the like.
  • Examples of unsaturated alcohols include allyl alcohol and crotyl alcohol.
  • Examples of olefins substituted with a halogen atom include allyl chloride.
  • Examples of the hydroperoxide suitably used in the present invention include hydrogen peroxide and organic hydroperoxide, and organic hydroperoxide is more preferable.
  • Organic hydroperoxides have the general formula R—O—O—H (Where R is a monovalent hydrocarbyl group.) Which reacts with an olefin to produce an oxirane compound and a compound R—OH.
  • R is preferably a hydrocarbyl group having 3 to 20 carbon atoms, more preferably a hydrocarbyl group having 3 to 10 carbon atoms, and still more preferably a secondary or tertiary alkyl group having 3 to 10 carbon atoms.
  • Examples of the tertiary alkyl group having 3 to 10 carbon atoms include a tertiary butyl group and a third pentyl group.
  • Examples of the tertiary aralkyl group having 8 to 10 carbon atoms include 2-phenylpropyl. -2 groups and the like.
  • various tetranylyl groups generated by removing hydrogen atoms from the aliphatic side chain of the tetralin molecule are also exemplified as R.
  • the organic hydroperoxide is preferably cumene hydroperoxide, and in that case, the method for producing an oxirane compound of the present invention can be suitably used as part of the propylene oxide single production process described in JP-A-2008-266304. .
  • the oxirane compound can be produced in a liquid phase using a solvent.
  • the solvent is preferably a liquid under the temperature and pressure during the reaction, and is substantially inert to the reactants and products.
  • the solvent may be a substance present in the hydroperoxide solution used.
  • the cumene hydroperoxide solution is a mixture of cumene hydroperoxide and cumene, which is a raw material thereof, this solution can be used as a substitute for the solvent without particularly adding a solvent.
  • the reaction temperature is generally 0 to 200 ° C., but a temperature of 25 to 200 ° C. is preferred.
  • the pressure may be any pressure that can keep the reaction mixture in a liquid state. In general, the pressure is preferably 100 to 10,000 kPa.
  • the liquid mixture containing the oxirane compound can be easily separated from the catalyst.
  • the liquid mixture may then be purified by an appropriate method. Purification includes fractional distillation, selective extraction, filtration, washing and the like.
  • the solvent, catalyst, unreacted olefin and unreacted hydroperoxide can be recycled and reused.
  • Manufacture of an oxirane compound may be performed with a slurry and may be performed using a fixed bed. In the case of large-scale industrial operation, a method using a fixed bed is preferable.
  • the pressure loss before and after the reaction tube is smaller than when powder is used.
  • the catalyst is less likely to flow out downstream, and is excellent in handling properties during filling.
  • Example 1 Preparation of Titanium-containing Zeolite Layered Precursor 171 g of ion exchange water and 60 g of piperidine were placed in a 1 liter separable flask and stirred, and 5 g of tetra-n-butyl orthotitanate was added dropwise thereto at room temperature. After stirring these for 0.5 hour, 42 g of boric acid was added and further stirred for 0.5 hour. Subsequently, 30 g of fumed silica (Cabot-O-Sil M-7D manufactured by Cabot) was added, followed by stirring for 1 hour.
  • Cabot-O-Sil M-7D manufactured by Cabot
  • Step of obtaining swollen titanium-containing zeolite layered precursor (first step) 4 g of a solid containing a titanium-containing zeolite layered precursor obtained by the method (1) (700 ° C.
  • Example 2 The same operation as in Example 1 was performed except that the swelling agent was removed in the third step not by solvent extraction but by firing the molded body for 5 hours at 540 ° C. in an air stream of 100 ml / min. The catalyst analysis results and reaction results are shown in Table 1.
  • Comparative Example 1 The same operation as in Example 1 was performed except that the order of the second step and the third step in Example 1 was changed and molding was performed after removal of the swelling agent (solvent extraction).
  • Example 2 The same operation as in Example 2 was performed except that the order of the second step and the third step in Example 2 was changed and molding was performed after removing (sintering) the swelling agent.
  • the catalyst analysis results and reaction results are shown in Table 1.
  • an oxirane compound can be produced from olefin and hydroperoxide in high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a method for producing titanium-containing silicon oxide moldings comprising the following first, second and third processes. First Process: A process of obtaining a swelled lamellar titanium-containing zeolite precursor (2) by bringing a lamellar titanium-containing zeolite precursor (1) into contact with a solution containing a swelling agent and a solvent Second Process: A process of obtaining a molding (3) by pressurizing the precursor (2) Third Process: A process of removing the swelling agent contained in the molding (3).

Description

チタン含有珪素酸化物成形体の製造方法及びオキシラン化合物の製造方法Method for producing titanium-containing silicon oxide molded body and method for producing oxirane compound
 本発明は、高収率でオレフィンとハイドロパーオキサイドからオキシラン化合物を製造することができるチタン含有珪素酸化物成形体の製造方法及びオキシラン化合物の製造方法に関するものである。 The present invention relates to a method for producing a titanium-containing silicon oxide molded body and a method for producing an oxirane compound, which can produce an oxirane compound from olefin and hydroperoxide in high yield.
 ゼオライト構造を有するチタン含有珪素酸化物触媒は過酸化水素を用いたオレフィンのエポキシ化に活性を示すことが知られている。ゼオライト構造の基本単位は、四面体構造を持つTO(T=Si、Al、P、Ti、Bなど)であり、1つのTO単位が4つの頂点酸素をそれぞれ隣の4つのTO単位と共有することにより、次々とTO単位が3次元的に連結して結晶性の多孔質構造を形成する。そしてそのTO単位の連結の形態の違いにより様々な構造のゼオライトが存在し、Structure Commission of the International Zeolite Association(IZA−SC)により、その形体に従ったアルファベット3文字の構造コードにより分類されている。
 例えば該触媒として、チタン含有MWW型ゼオライト触媒が知られている。チタン含有MWW型ゼオライトとは、アルキル化触媒としてよく知られているMCM−22ゼオライトと同様の構造を有し、構造コードがMWWで表されるチタン含有珪素酸化物触媒である。しかしながら、チタン含有MWW型ゼオライト触媒は、過酸化水素を用いたオレフィンのエポキシ化の活性は不十分である。またチタン含有MWW型ゼオライト触媒は細孔径が小さいので、大きいサイズのオレフィンや有機ハイドロパーオキサイドを用いた場合、エポキシ化活性は非常に低い。より大きな分子を反応させることができるMWW型ゼオライト触媒を得るためのアプローチとして、例えば、MWW型ゼオライト層状前駆体の層間を界面活性剤等で膨潤させた後、膨潤したMWW型ゼオライト層状前駆体に超音波処理および焼成をしてMWW型ゼオライト層状前駆体を脱積層化(Delamination)する触媒の製造方法が知られている。該触媒は、MWW型ゼオライトの類縁物であるITQ2として広く知られている。特表2003−509479公報には、脱積層化により得られたITQ2の粉体をプレスしてタブレットを得、該タブレットを破砕、分級して、所定のサイズ以上の成形体を製造する方法が記載されている。
 しかしながら、チタン含有ゼオライトあるいはその類縁物を触媒として用いてオレフィンとハイドロパーオキサイドからオキシラン化合物を製造する場合、収率および操作性、ハンドリング性の観点で、該触媒の更なる改良が求められていた。
It is known that a titanium-containing silicon oxide catalyst having a zeolite structure is active in olefin epoxidation using hydrogen peroxide. The basic unit of the zeolite structure is TO 4 having a tetrahedral structure (T = Si, Al, P, Ti, B, etc.), and one TO 4 unit has four apex oxygens, respectively, and the next four TO 4 units. By sharing with each other, TO 4 units are successively connected three-dimensionally to form a crystalline porous structure. And there are zeolites with various structures due to the difference in the form of linkage of the TO 4 units, and they are classified by the Structure Commission of the International Zeolite Association (IZA-SC) according to the structure code of the three letters of the alphabet according to the form. Yes.
For example, a titanium-containing MWW type zeolite catalyst is known as the catalyst. The titanium-containing MWW-type zeolite is a titanium-containing silicon oxide catalyst having a structure similar to that of MCM-22 zeolite well known as an alkylation catalyst and having a structure code represented by MWW. However, the titanium-containing MWW-type zeolite catalyst has insufficient activity for olefin epoxidation using hydrogen peroxide. In addition, since the titanium-containing MWW-type zeolite catalyst has a small pore size, the epoxidation activity is very low when a large olefin or organic hydroperoxide is used. As an approach for obtaining an MWW-type zeolite catalyst capable of reacting larger molecules, for example, after swelling between layers of a MWW-type zeolite layered precursor with a surfactant or the like, the swollen MWW-type zeolite layered precursor is converted into a swollen MWW-type zeolite layered precursor. There is known a method for producing a catalyst in which an MWW-type zeolite layered precursor is delaminated by sonication and calcination. This catalyst is widely known as ITQ2, which is an analog of MWW type zeolite. JP-T-2003-509479 discloses a method of producing a compact having a predetermined size or more by pressing a powder of ITQ2 obtained by delaminating to obtain a tablet, and crushing and classifying the tablet. Has been.
However, when an oxirane compound is produced from an olefin and a hydroperoxide using a titanium-containing zeolite or an analogue thereof as a catalyst, further improvement of the catalyst has been demanded from the viewpoint of yield, operability and handling properties. .
 かかる現状において本発明が解決しようとする課題は、高収率でオレフィンとハイドロパーオキサイドからオキシラン化合物を製造することができるチタン含有珪素酸化物成形体の製造方法及びオキシラン化合物の製造方法を提供する点に存するものである。
 すなわち、本発明は、下記第一工程、下記第二工程および下記第三工程を有するチタン含有珪素酸化物成形体の製造方法に係るものである。
 第一工程:膨潤剤および溶媒を含む溶液に、チタン含有ゼオライト層状前駆体(1)を接触させることによって、膨潤されたチタン含有ゼオライト層状前駆体(2)を得る工程
 第二工程:前駆体(2)を加圧して、成形体(3)を得る工程
 第三工程:成形体(3)に含まれる膨潤剤を除去する工程
 また、本発明は、上記の製造方法で得られたチタン含有珪素酸化物成形体の存在下に、オレフィンとハイドロパーオキサイドとを反応させるオキシラン化合物の製造方法に係るものである。
Under such circumstances, the problem to be solved by the present invention is to provide a method for producing a titanium-containing silicon oxide molded body and a method for producing an oxirane compound, which can produce an oxirane compound from olefin and hydroperoxide in high yield. This is what the point is.
That is, this invention relates to the manufacturing method of the titanium containing silicon oxide molded object which has the following 1st process, the following 2nd process, and the following 3rd process.
First step: A step of obtaining a swollen titanium-containing zeolite layered precursor (2) by bringing the titanium-containing zeolite layered precursor (1) into contact with a solution containing a swelling agent and a solvent. Second step: precursor ( Step 2) Pressurizing to obtain molded body (3) Third step: Step of removing swelling agent contained in molded body (3) Further, the present invention is a titanium-containing silicon obtained by the above production method The present invention relates to a method for producing an oxirane compound in which an olefin and a hydroperoxide are reacted in the presence of an oxide compact.
 本発明のチタン含有珪素酸化物成形体の製造方法は、下記第一工程、下記第二工程および下記第三工程を有する。
 第一工程:膨潤剤および溶媒を含む溶液に、チタン含有ゼオライト層状前駆体(1)を接触させることによって、膨潤されたチタン含有ゼオライト層状前駆体(2)を得る工程
 第二工程:前駆体(2)を加圧して、成形体(3)を得る工程
 第三工程:成形体(3)に含まれる膨潤剤を除去する工程
 上記第一工程で原料として用いられるチタン含有ゼオライト層状前駆体とは、チタン原子が導入されたゼオライト層状前駆体である。ゼオライト層状前駆体とは、シート状の珪素酸化物が何層にも積層した構造を有する構造体であって、それを焼成することで3次元の結晶多孔質構造が形成されて、ゼオライトを形成し得る構造体である。ゼオライト層状前駆体を焼成することにより得られるゼオライトの構造としては、Structure Commission of the International Zeolite Association(IZA−SC)により規定されているMWW型、FER型、RRO型、CDO型などが挙げられる。なかでも、MWW型ゼオライト層状前駆体が好ましい。チタン含有MWW型ゼオライト層状前駆体の製造方法としては、例えば、特開2002−102709号公報に記載の方法が挙げられる。
 ゼオライト層状前駆体へのチタン原子の導入には、ゼオライト層状前駆体の構造を水熱合成等で形成させる際にチタン源を共存させてチタン原子を導入する直接導入法、チタン原子を含まないゼオライト層状前駆体を合成した後、イオン交換、同形置換、アトムプランティング等の方法によりチタン原子を導入するポスト導入法のいずれを用いてもよいが、チタン原子の導入は直接導入法で行うことが好ましい。
 ゼオライト層状前駆体の構造はX線回折法(XRD)により観察することができる。ゼオライト層状前駆体へのチタン原子の導入は紫外可視分光法(UV−Vis)等により確認することが出来る。
 以下、本発明の好適な実施形態の一例であるチタン原子が直接導入されたMWW型ゼオライト層状前駆体を原料として用いるケースについて詳細に記載するが、本発明はこの記載に何ら限定されるものではない。
 チタン含有MWW型ゼオライト層状前駆体は、ケイ素化合物、チタン化合物、ホウ素化合物、水及び構造規定剤を混合後、得られた混合物を水熱合成反応に付すことで得ることができる。
 前記ケイ素化合物としては、例えば、アルコキシシラン、アモルファスシリカ等が挙げられ、アルコキシシランとしては、例えば、テトラメチルオルトシリケート、テトラエチルオルトシリケート、テトラプロピルオルトシリケート等が挙げられ、アモルファスシリカとしては、例えば、ヒュームドシリカ等が挙げられる。
 前記チタン化合物としては、例えば、アルコキシチタン、ペルオキシチタン酸塩、ハロゲン化チタン、酢酸チタン、硝酸チタン、硫酸チタン、リン酸チタン等が挙げられ、アルコキシチタンとしては、例えば、テトラ−n−プロピルオルソチタネート、テトラ−イソプロピルオルソチタネート、テトラ−n−ブチルオルソチタネート等が挙げられ、ペルオキシチタン酸塩としては、例えば、ペルオキシチタン酸テトラ−n−ブチルアンモニウム等が挙げられ、ハロゲン化チタンとしては、例えば、四塩化チタン、四臭化チタン、四沃化チタン等が挙げられる。
 前記ホウ素化合物としては、例えば、ホウ酸、無水ホウ酸等が挙げられる。
 構造規定剤とは、ゼオライトあるいはその前駆体の構造形成の助剤として利用される有機化合物である。MWW型ゼオライト層状前駆体を得るために好適な構造規定剤としては、例えば、ピペリジン、ヘキサメチレンイミン、トリメチルアダマンタアンモニウムヒドロキシドが挙げられる。これらの構造規定剤は、単独で用いてもよく、所望の割合2種類以上の構造規定剤を混合して用いてもよい。なかでもピペリジンを単独で用いることが好ましい。
 前記各原料(ケイ素化合物、チタン化合物、ホウ素化合物、水及び構造規定剤)の使用割合は、ケイ素化合物中のケイ素原子の数を基準にして、チタン化合物はチタン原子として0.01~0.2モル倍であり、ホウ素化合物はホウ素原子として0.1~3モル倍であり、水は3~50モル倍であり、構造規定剤は0.1~3モル倍であることが好ましい。
 前記各原料は、好ましくは、0~60℃、さらに好ましくは10~50℃の温度で混合するのがよい。
 前記各原料の混合方法は、例えば、全ての原料を一括して混合してもよいし、各原料を順次混合していってもよい。特に、液体である原料を先に混合した後に固体である原料を混合することが、原料を均一に攪拌でき、ひいては、得られたチタン含有MWW型ゼオライト層状前駆体中のチタン原子の偏在を回避できるので好ましい。
 前記各原料の混合物は、チタン含有MWW型ゼオライト層状前駆体を得るために水熱合成反応に付される。ここで、チタン含有MWW型ゼオライト層状前駆体とは、焼成することでMWW型ゼオライトの構造に変化する構造体であって、チタン含有珪素酸化物からなる各層の中、および該層の間に構造規定剤が包含されている構造体を意味する。
 一般に、水熱合成とは、高温高圧の水の存在の下に行われる物質の合成法および結晶成長法をいい(「岩波 理化学辞典」、第4版、株式会社岩波書店、1987年、p.647参照)をいい、本発明において、具体的には、前記各原料を混合し、オートクレーブ中、自圧下に100~200℃程度の温度で原料の混合物を加熱して、数時間~数日間、混合物を攪拌あるいは静置することにより行われる。
 水熱合成で生成した固体はチタン含有MWW型ゼオライト層状前駆体以外の化合物を含んでいてもよく、チタン含有MWW型ゼオライト層状前駆体を含む固体は、通常、反応混合物を濾過し、残渣を必要に応じて水やメタノール等の有機溶媒で洗浄後、乾燥することで得ることができる。
 乾燥方法は、例えば、減圧雰囲気下、あるいは非還元性気体、たとえば窒素、アルゴン又は二酸化炭素もしくは酸素含有気体の存在下で、残渣を10~200℃で加熱する方法が好ましく、50~100℃が更に好ましい。
 水熱合成で生成したチタン含有MWW型ゼオライト層状前駆体は、後述の第一工程に付される前に酸によって処理され、反応活性点として機能しない、不要なTiを除去するのが好ましい。不要なTiの除去に用いられる酸としては、例えば、無機酸、有機酸が挙げられ、無機酸としては、例えば、塩酸、硫酸、硝酸等が挙げられ、有機酸としては、例えば、ギ酸、酢酸等が挙げられ、無機酸が好ましい。通常、酸は、該酸を溶媒で希釈した溶液として使用する。溶液における酸の濃度は0.5~10規定であることが好ましく、溶媒はアルコールやケトンなどの有機溶媒および水が使用できる。
 上記操作によって得られたチタン含有MWW型ゼオライト層状前駆体(1)を膨潤剤および溶媒を含む溶液と接触させることによって、膨潤されたチタン含有ゼオライト層状前駆体(2)を得ることができる。前駆体(1)を溶液と接触させる方法としては、前駆体(1)を溶液に浸漬する方法が挙げられる。
チタン含有MWW型ゼオライト層状前駆体が膨潤したことは、X線回折法(XRD)におけるMWW構造の002面に由来する前駆体(2)のピークが、前駆体(1)のピークよりも低角側へシフトしていることや、元素分析や灼熱減量分析によって、前駆体(1)と前駆体(2)に含まれる有機物量の差などから確認することが出来る。
 第一工程で用いられる膨潤剤とは、チタン含有MWW型ゼオライト層状前駆体の層間に侵入して層間距離を拡大する特性を有する化合物である。膨潤剤としては界面活性剤が好適に使用でき、なかでも下記の一般式(I)で表される第4級アンモニウムイオン含む化合物が好ましい。
 [NR     (I)
 (式(I)中、Rは炭素数2~36の直鎖状または分岐状の炭化水素基を表し、R~Rは、それぞれ独立して炭素数1~6のアルキル基を表す。)
 一般式(I)において、Rは炭素数2~36の直鎖状または分岐状の炭化水素基であり、好ましくは、炭素数10~18の直鎖状または分岐状の炭化水素基である。R~Rは、それぞれ独立して、炭素数1~6のアルキル基であり、R~Rの全てがメチル基であることが好ましい。
 一般式(I)で表される第4級アンモニウムイオンとしては、例えば、ヘキサデシルトリメチルアンモニウム、ドデシルトリメチルアンモニウム、ベンジルトリメチルアンモニウム、ジメチルジドデシルアンモニウム、ヘキサデシルピリジニウム等が挙げられ、ヘキサデシルトリメチルアンモニウムがより好ましい。
 膨潤剤は、一般式(I)で表される第4級アンモニウムイオンを1種類のみ含んでいてもよく、2種類以上を含んでいてもよい。
 溶液に含まれる溶媒としては、膨潤剤を溶解することが出来る、例えば、水、アルコール、ケトン等が挙げられ、アルコールとしては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール等が挙げられ、ケトンとしては、例えば、アセトン等が挙げられる。溶媒は2種以上混合して用いてもよい。
 また、前駆体(1)の膨潤を促進するために、溶液はアルカリ性であることが好ましい。アルカリ源としては4級アンモニウムヒドロキシドが好ましく、例えば、アンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド等が挙げられ、一般式(I)で表される第4級アンモニウムイオンの水酸化物がより好ましい。
 前駆体(1)を溶液に接触させる温度は通常40~120℃であり、60~100℃がより好ましい。前駆体(1)を溶液に接触させる時間は通常5~50時間である。また、必要に応じて、前駆体(1)を含む溶液に超音波を照射したり、前駆体(1)を含む溶液のpHを調整しても良い。
 通常、前駆体(1)を溶液に接触させた接触物を、濾過あるいは遠心分離して固体を得、必要に応じて該固体を水やメタノール等の有機溶媒で洗浄後、乾燥することで、膨潤されたチタン含有ゼオライト層状前駆体(2)を得ることができる。
 乾燥方法は、例えば、減圧雰囲気下、あるいは非還元性気体、たとえば窒素、アルゴン又は二酸化炭素もしくは酸素含有気体の存在下で、残渣を10~200℃で加熱する方法が好ましく、50~100℃が更に好ましい。
 本発明の第二工程は、第一工程で得られた膨潤されたチタン含有ゼオライト層状前駆体(2)を加圧して、成形体(3)を得る工程である。膨潤されたチタン含有ゼオライト層状前駆体(2)を加圧することが本発明の最重要事項であり、これにより、続く第三工程で成形体(3)から膨潤剤を除去することによって、触媒物性に優れるチタン含有珪素酸化物成形体を得ることができる。
 前駆体(2)を加圧する成形方法としては、ロールプレス成形(ブリケッティング、コンパクティング)、油圧プレス成形、打錠成形などに代表される圧縮成形、押出成形などのいずれの方法を用いてもよいが、圧縮成形がより好ましい。前駆体(2)を押出成形する場合、一般的に用いられる有機または無機バインダーを用いることができる。本発明においては、バインダーを用いない方法が好ましい。
 前駆体(2)を加圧するときの圧力は、通常、0.1~10トン/cmであり、好ましくは、0.2~5トン/cmであり、更に好しくは、0.5~2トン/cmである。
 圧縮成形に付される固体の水分含量は15%以下であることが好ましく、10%以下が更に好ましい。
 成形体(3)の形状は、錠剤、球、リングなどいずれの形状であってもよい。続く第三工程では、成形体(3)をそのままの形状で用いてもよいし、適当な大きさに破砕して用いてもよい。破砕した成形体(3)を用いる場合は、成形体(3)の破砕物を分級して所定の大きさ以上の破砕物を用いることが好ましい。成形体の大きさとしては0.2mm以上10mm以下が好ましく、0.5mm以上5mm以下が更に好ましい。
 本発明の第三工程は、第二工程で得られた成形体(3)に含まれる膨潤剤を除去してチタン含有珪素酸化物成形体を得る工程である。
 膨潤剤を除去する方法としては、第二工程で得られた成形体(3)を空気下400~700℃の高温で焼成する方法や、溶媒によって膨潤剤を抽出する方法が挙げられ、溶媒によって膨潤剤を除去する方法が好ましい。
 抽出に用いる溶媒は、膨潤剤を溶解し得るものであればよく、一般に炭素数1~12の常温で液状のオキサ及び/又はオキソ置換炭化水素を用いることができる。この種類の好適な溶媒としては、例えば、アルコール類、ケトン類、エーテル類(非環式化合物及び環式化合物)、エステル類等が挙げられ、アルコール類としては、例えば、メタノール、エタノール、エチレングリコール、プロピレングリコール、イソプロパノール、n−ブタノール、オクタノール等が挙げられ、ケトン類としては、例えば、アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられ、エーテル類としては、例えば、ジイソブチルエーテル、テトラヒドロフラン等が挙げられ、エステル類としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸ブチル等が挙げられる。また、水や上記の溶媒との混合溶液も用いることができる。
 これらの溶媒の成形体(3)に対する重量比は、通常、1~1000であり、好ましくは、5~300である。
 また、抽出効果を向上させるために、これらの溶媒に酸又は酸の塩を添加することが好ましい。用いる酸としては、例えば、無機酸、有機酸が挙げられ、無機酸としては、例えば、塩酸、硫酸、硝酸、臭酸等が挙げられ、有機酸としては、例えば、ぎ酸、酢酸、プロピオン酸等が挙げられる。また、酸の塩の例としては、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩等が挙げられる。酸又は酸の塩の溶媒中の濃度は10mol/l以下が好ましく、5mol/l以下が更に好ましい。
 溶媒と成形体(3)を十分に混合した後、液相をろ過又はデカンテーションなどの方法により分離する。この操作を必要回数繰り返す。また成形体(3)を管に充填して固定し、その固定された成形体(3)に洗浄溶媒を流通させる方法により膨潤剤を抽出することも可能である。膨潤剤の抽出の終了はたとえば液相の分析により知ることができる。抽出温度は0~200℃が好ましく、20~100℃が更に好ましい。抽出溶媒の沸点が低い場合は加圧下に抽出を行ってもよい。
 抽出処理後に得られたチタン含有珪素酸化物成形体は、乾燥してもよい。乾燥方法は、非還元性気体、たとえば窒素、アルゴン又は二酸化炭素もしくは酸素含有気体、たとえば空気の雰囲気下で、10~700℃で加熱する方法が好ましく、50~200℃が更に好ましい。
 上記の操作で得られたチタン含有珪素酸化物成形体は、チタン含有MWW型ゼオライト等を含んでいても構わないが、チタン含有MWW型ゼオライトの含有量が50%以下であることが好ましく、30%以下であることが更に好ましい。
 チタン含有珪素酸化物成形体は、オレフィンとハイドロパーオキサイドからオキシラン化合物を製造する方法における触媒として好適である。前記方法で得られるチタン含有珪素酸化物成形体をシリル化して得られるシリル化チタン含有珪素酸化物成形体も、オレフィンとハイドロパーオキサイドからオキシラン化合物を製造する方法における触媒として好適である。シリル化チタン含有珪素酸化物成形体は、チタン含有珪素酸化物成形体よりも疎水性が強い。そのため、シリル化チタン含有珪素酸化物成形体を触媒として用いることによって、オレフィンとハイドロパーオキサイドからオキシラン化合物を高収率で製造することができる。
 チタン含有珪素酸化物成形体をシリル化する方法としては、該成形体をシリル化剤と接触させる方法が挙げられる。シリル化剤としては、例えば、有機シラン、有機シリルアミン、有機シリルアミドとその誘導体、有機シラザン、その他のシリル化剤が挙げられる。
 有機シランとしては、例えば、クロロトリメチルシラン、ニトロトリメチルシラン、クロロトリエチルシラン、クロロジメチルフェニルシラン、ジメチル−n−プロピルクロロシラン、ジメチルイソプロピルクロロシラン、t−ブチルジメチルクロロシラン、トリプロピルクロロシラン、ジメチルオクチルクロロシラン、トリブチルクロロシラン、トリヘキシルクロロシラン、ジメチルエチルクロロシラン、ジメチルオクタデシルクロロシラン、n−ブチルジメチルクロロシラン、3−クロロプロピルジメチルクロロシラン、ジメトキシメチルクロロシラン、トリエトキシクロロシラン、ジメチルフェニルクロロシラン、ベンジルジメチルクロロシラン、ジフェニルメチルクロロシラン、ジフェニルビニルクロロシラン、トリベンジルクロロシラン、3−シアノプロピルジメチルクロロシランが挙げられる。
 有機シリルアミンとしては、例えば、N−トリメチルシリルイミダゾール、N−t−ブチルジメチルシリルイミダゾール、N−ジメチルエチルシリルイミダゾール、N−ジメチル−n−プロピルシリルイミダゾール、N−ジメチルイソプロピルシリルイミダゾール、N−トリメチルシリルジメチルアミン、N−トリメチルシリルジエチルアミン、N−トリメチルシリルピロール、N−トリメチルシリルピロリジン、N−トリメチルシリルピペリジン、1−シアノエチル(ジエチルアミノ)ジメチルシラン、ペンタフルオロフェニルジメチルシリルアミンが挙げられる。
 有機シリルアミド及びその誘導体としては、例えば、N,O−ビストリメチルシリルアセトアミド、N,O−ビストリメチルシリルトリフルオロアセトアミド、N−トリメチルシリルアセトアミド、N−メチル−N−トリメチルシリルアセトアミド、N−メチル−N−トリメチルシリルトリフルオロアセトアミド、N−メチル−N−トリメチルシリルヘプタフルオロブチルアミド、N−(t−ブチルジメチルシリル)−N−トリフルオロアセトアミド、N,O−ビス(ジエチルハイドロシリル)トリフルオロアセトアミドが挙げられる。
 有機シラザンとしては、例えば、ヘキサメチルジシラザン、ヘプタメチルジシラザン、1,1,3,3−テトラメチルジシラザン、1,3−ビス(クロロメチル)テトラメチルジシラザン、1,3−ジビニル−1,1,3,3−テトラメチルジシラザン、1,3−ジフェニルテトラメチルジシラザンが挙げられる。
 その他のシリル化剤としては、例えば、N−メトキシ−N,O−ビストリメチルシリルトリフルオロアセトアミド、N−メトキシ−N,O−ビストリメチルシリルカーバメート、N,O−ビストリメチルシリルスルファメートメート、トリメチルシリルトリフルオロメタンスルホナート、N,N’−ビストリメチルシリル尿素が挙げられる。
 好ましいシリル化剤はヘキサメチルジシラザンである。
 チタン含有珪素酸化物成形体のシリル化は、気相および液相のどちらでも行うことが出来る。液相でシリル化を行う場合は通常、シリル化剤と本質的に反応しない溶媒中でシリル化を行い、溶媒としては炭化水素が好適に用いられる。炭化水素溶媒としては、例えば、脂肪族炭化水素、芳香族炭化水素等が挙げられ、脂肪族炭化水素としては、例えば、ヘキサン、ヘプタン等が挙げられ、芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。シリル化温度は好ましくは0~300℃、より好ましくは50~150℃である。
 本発明の方法で得られるチタン含有珪素酸化物成形体およびシリル化チタン含有珪素酸化物成形体は、特にオレフィンとハイドロパーオキサイドを反応させるオキシラン化合物の製造方法における触媒として好適に使用され得る。
 オレフィンは、非環式、単環式、二環式又は多環式化合物であってよく、モノオレフィン、ジオレフィン又はポリオレフィンであってよい。オレフィン結合が2個以上ある場合には、これは共役結合又は非共役結合であってよい。炭素原子2~60個のオレフィンが一般に好ましい。オレフィンは置換基を有していてもよく、置換基は比較的安定な基であることが好ましい。モノオレフィンとしては、例えば、エチレン、プロピレン、ブテン−1、イソブチレン、ヘキセン−1、ヘキセン−2、ヘキセン−3、オクテン−1、デセン−1、スチレン、シクロヘキセン等が挙げられ、プロピレンが好ましい。ジオレフィンとしては、例えば、ブタジエン、イソプレンが挙げられる。置換基としては、例えば、ハロゲン原子、酸素原子、硫黄原子、または窒素原子を、水素及び/又は炭素原子と共に含有する種々の置換基等が挙げられ、置換基を有するオレフィンとしては、例えば、不飽和アルコール、ハロゲン原子で置換されたオレフィン等が挙げられ、不飽和アルコールとしては、例えば、アリルアルコール、クロチルアルコール等が挙げられ、ハロゲン原子で置換されたオレフィンとしては、例えば、塩化アリル等が挙げられる。
 本発明で好適に用いられるハイドロパーオキサイドとしては、過酸化水素や有機ハイドロパーオキサイドがあげられるが、有機ハイドロパーオキサイドがより好ましい。
 有機ハイドロパーオキサイドは、一般式
 R−O−O−H
(ここにRは1価のヒドロカルビル基である。)
で表される化合物であって、これはオレフィンと反応して、オキシラン化合物及び化合物R−OHを生成する。Rとして、好ましくは、炭素数3~20のヒドロカルビル基であり、より好ましくは、炭素数3~10のヒドロカルビル基であり、更に好ましくは、炭素数3~10の第2級若しくは第3級アルキル基およびシクロアルキル基、または炭素数8~10の第2級若しくは第3級アラルキル基であり、特に好ましくは、炭素数3~10の第3級アルキル基または炭素数8~10の第2級若しくは第3級アラルキル基である。炭素数3~10の第3級アルキル基としては、例えば、第3ブチル基、第3ペンチル基等が挙げられ、炭素数8~10の第3級アラルキル基としては、例えば、2−フェニルプロピル−2基等が挙げられる。更にまた、テトラリン分子の脂肪族側鎖から水素原子を除去することによって生じる種々のテトラニリル基も、Rの例として挙げられる。
 有機ハイドロパーオキサイドはクメンハイドロパーオキサイドであることが好ましく、その場合は、特開2008−266304公報に記載のプロピレンオキサイド単産プロセスの一部として、本発明のオキシラン化合物の製造方法を好適に利用できる。
 オキシラン化合物の製造は、溶媒を用いて液相中で実施できる。溶媒は、反応時の温度及び圧力のもとで液体であり、かつ、反応体及び生成物に対して実質的に不活性であることが好ましい。溶媒は使用されるハイドロパーオキサイド溶液中に存在する物質であってよい。例えば、クメンハイドロパーオキサイド溶液がクメンハイドロパーオキサイドとその原料であるクメンとからなる混合物である場合には、特に溶媒を添加することなく、この溶液を溶媒の代用とすることも可能である。
 反応温度は一般に0~200℃であるが、25~200℃の温度が好ましい。圧力は、反応混合物を液体の状態に保つことができる圧力であればよい。一般に圧力は、100~10000kPaであることが好ましい。
 反応の終了後に、オキシラン化合物を含有する液状混合物が触媒から容易に分離できる。
次いで液状混合物を適当な方法によって精製すればよい。精製は分別蒸留、選択抽出、濾過、洗浄等を含む。溶媒、触媒、未反応オレフィン、未反応ハイドロパーオキサイドは再循環して再び使用することもできる。
 オキシラン化合物の製造は、スラリーで行ってもよく、固定床を用いて行ってもよい。大規模な工業的操作の場合には、固定床を用いる方法が好ましい。本発明によって得られるチタン含有珪素酸化物成形体またはシリル化チタン含有珪素酸化物成形体を固定床に用いた場合は、粉体を使用した場合に比べ、反応管前後の圧力損失が小さいためオペレーションが容易で、また触媒の下流への流出も少なく、更には充填などの際のハンドリング性にも優れている。
The manufacturing method of the titanium containing silicon oxide molded object of this invention has the following 1st process, the following 2nd process, and the following 3rd process.
First step: A step of obtaining a swollen titanium-containing zeolite layered precursor (2) by bringing the titanium-containing zeolite layered precursor (1) into contact with a solution containing a swelling agent and a solvent. Second step: precursor ( Step 2) Pressurizing to obtain molded body (3) Third step: Step of removing swelling agent contained in molded body (3) What is a titanium-containing zeolite layered precursor used as a raw material in the first step? A zeolite layered precursor in which titanium atoms are introduced. Zeolite layered precursor is a structure that has a structure in which multiple layers of sheet-like silicon oxide are laminated. By firing it, a three-dimensional crystalline porous structure is formed to form zeolite. This is a possible structure. Examples of the structure of the zeolite obtained by calcining the zeolite layered precursor include MWW type, FER type, RRO type, and CDO type defined by the Structure Commission of the International Zeolization Association (IZA-SC). Of these, an MWW-type zeolite layered precursor is preferable. Examples of the method for producing the titanium-containing MWW-type zeolite layered precursor include the method described in JP-A No. 2002-102709.
For the introduction of titanium atoms into the zeolite layered precursor, when the structure of the zeolite layered precursor is formed by hydrothermal synthesis or the like, a direct introduction method in which titanium atoms are introduced in the presence of a titanium source, zeolite not containing titanium atoms After synthesizing the layered precursor, any of post-introduction methods in which titanium atoms are introduced by a method such as ion exchange, isomorphous substitution, or atom planting may be used, but the introduction of titanium atoms may be performed by a direct introduction method. preferable.
The structure of the zeolite layered precursor can be observed by X-ray diffraction (XRD). Introduction of titanium atoms into the zeolite layered precursor can be confirmed by ultraviolet-visible spectroscopy (UV-Vis) or the like.
Hereinafter, a case where an MWW-type zeolite layered precursor directly introduced with titanium atoms, which is an example of a preferred embodiment of the present invention, will be described in detail, but the present invention is not limited to this description. Absent.
The titanium-containing MWW-type zeolite layered precursor can be obtained by mixing a silicon compound, a titanium compound, a boron compound, water and a structure directing agent, and then subjecting the obtained mixture to a hydrothermal synthesis reaction.
Examples of the silicon compound include alkoxysilane and amorphous silica. Examples of the alkoxysilane include tetramethylorthosilicate, tetraethylorthosilicate, and tetrapropylorthosilicate. Examples of the amorphous silica include Examples thereof include fumed silica.
Examples of the titanium compound include alkoxy titanium, peroxy titanate, titanium halide, titanium acetate, titanium nitrate, titanium sulfate, and titanium phosphate. Examples of the alkoxy titanium include tetra-n-propyl ortho. Examples thereof include titanate, tetra-isopropyl orthotitanate, tetra-n-butyl orthotitanate, etc., and examples of peroxytitanate include tetra-n-butylammonium peroxytitanate, and examples of titanium halide include, for example, , Titanium tetrachloride, titanium tetrabromide, titanium tetraiodide and the like.
Examples of the boron compound include boric acid and anhydrous boric acid.
The structure directing agent is an organic compound that is used as an aid for forming a structure of zeolite or a precursor thereof. Examples of the structure directing agent suitable for obtaining the MWW-type zeolite layered precursor include piperidine, hexamethyleneimine, and trimethyladamanta ammonium hydroxide. These structure directing agents may be used alone, or two or more structure directing agents having a desired ratio may be mixed and used. Of these, piperidine is preferably used alone.
The use ratio of each of the raw materials (silicon compound, titanium compound, boron compound, water and structure directing agent) is based on the number of silicon atoms in the silicon compound, and the titanium compound is 0.01 to 0.2 as titanium atoms. It is preferable that the boron compound is 0.1 to 3 mol times as a boron atom, water is 3 to 50 mol times, and the structure directing agent is 0.1 to 3 mol times.
The raw materials are preferably mixed at a temperature of 0 to 60 ° C., more preferably 10 to 50 ° C.
As the mixing method of the respective raw materials, for example, all the raw materials may be mixed at once, or the respective raw materials may be mixed sequentially. In particular, mixing the raw material that is liquid first and then mixing the raw material that is solid can uniformly stir the raw material, and thus avoid the uneven distribution of titanium atoms in the obtained titanium-containing MWW-type zeolite layered precursor. It is preferable because it is possible.
The mixture of each raw material is subjected to a hydrothermal synthesis reaction to obtain a titanium-containing MWW-type zeolite layered precursor. Here, the titanium-containing MWW-type zeolite layered precursor is a structure that changes to the structure of the MWW-type zeolite upon firing, and has a structure in and between each layer of titanium-containing silicon oxide. It means the structure in which the directing agent is included.
In general, hydrothermal synthesis refers to a synthesis method and crystal growth method of a substance carried out in the presence of high-temperature and high-pressure water (“Iwanami Physical and Chemical Dictionary”, 4th edition, Iwanami Shoten, 1987, p. In the present invention, specifically, the raw materials are mixed, and the mixture of raw materials is heated at a temperature of about 100 to 200 ° C. under autoclaving in an autoclave for several hours to several days. It is carried out by stirring or standing the mixture.
Solids generated by hydrothermal synthesis may contain compounds other than titanium-containing MWW-type zeolite layered precursors, and solids containing titanium-containing MWW-type zeolite layered precursors usually require filtration of the reaction mixture and residue. Depending on the case, it can be obtained by washing with an organic solvent such as water or methanol and then drying.
The drying method is preferably, for example, a method in which the residue is heated at 10 to 200 ° C. in a reduced pressure atmosphere or in the presence of a non-reducing gas such as nitrogen, argon, carbon dioxide or oxygen-containing gas, and 50 to 100 ° C. is preferable. Further preferred.
The titanium-containing MWW-type zeolite layered precursor produced by hydrothermal synthesis is preferably treated with an acid before being subjected to the first step described later to remove unnecessary Ti that does not function as a reactive site. Examples of acids used for removing unnecessary Ti include inorganic acids and organic acids. Examples of inorganic acids include hydrochloric acid, sulfuric acid, and nitric acid. Examples of organic acids include formic acid and acetic acid. An inorganic acid is preferable. Usually, the acid is used as a solution obtained by diluting the acid with a solvent. The concentration of the acid in the solution is preferably 0.5 to 10 N, and an organic solvent such as alcohol or ketone and water can be used as the solvent.
A swollen titanium-containing zeolite layered precursor (2) can be obtained by bringing the titanium-containing MWW-type zeolite layered precursor (1) obtained by the above operation into contact with a solution containing a swelling agent and a solvent. Examples of the method of bringing the precursor (1) into contact with the solution include a method of immersing the precursor (1) in the solution.
The swelling of the titanium-containing MWW-type zeolite layered precursor is that the peak of the precursor (2) derived from the 002 plane of the MWW structure in the X-ray diffraction method (XRD) is lower than the peak of the precursor (1). It can be confirmed from the difference in the amount of organic substances contained in the precursor (1) and the precursor (2) by elemental analysis or ignition loss analysis.
The swelling agent used in the first step is a compound having a characteristic of entering the interlayer of the titanium-containing MWW-type zeolite layered precursor to increase the interlayer distance. As the swelling agent, a surfactant can be suitably used, and among them, a compound containing a quaternary ammonium ion represented by the following general formula (I) is preferable.
[NR 1 R 2 R 3 R 4 ] + (I)
(In Formula (I), R 1 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms, and R 2 to R 4 each independently represents an alkyl group having 1 to 6 carbon atoms. .)
In the general formula (I), R 1 is a linear or branched hydrocarbon group having 2 to 36 carbon atoms, preferably a linear or branched hydrocarbon group having 10 to 18 carbon atoms. . R 2 to R 4 are each independently an alkyl group having 1 to 6 carbon atoms, and preferably all of R 2 to R 4 are methyl groups.
Examples of the quaternary ammonium ion represented by the general formula (I) include hexadecyltrimethylammonium, dodecyltrimethylammonium, benzyltrimethylammonium, dimethyldidodecylammonium, hexadecylpyridinium, and the like. More preferred.
The swelling agent may contain only one type of quaternary ammonium ion represented by the general formula (I), or may contain two or more types.
Examples of the solvent contained in the solution can dissolve the swelling agent. Examples of the solvent include water, alcohol, and ketone. Examples of the alcohol include methanol, ethanol, 1-propanol, and 2-propanol. Examples of ketones include acetone. Two or more solvents may be mixed and used.
In order to promote swelling of the precursor (1), the solution is preferably alkaline. As the alkali source, quaternary ammonium hydroxide is preferable, and examples thereof include ammonium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and the like, and the fourth represented by the general formula (I). More preferred is a hydroxide of a quaternary ammonium ion.
The temperature at which the precursor (1) is brought into contact with the solution is usually 40 to 120 ° C, more preferably 60 to 100 ° C. The time for bringing the precursor (1) into contact with the solution is usually 5 to 50 hours. Moreover, you may irradiate the solution containing a precursor (1) with an ultrasonic wave as needed, or may adjust pH of the solution containing a precursor (1).
Usually, a contact product obtained by bringing the precursor (1) into contact with the solution is filtered or centrifuged to obtain a solid. If necessary, the solid is washed with an organic solvent such as water or methanol, and then dried. A swollen titanium-containing zeolite layered precursor (2) can be obtained.
The drying method is preferably, for example, a method in which the residue is heated at 10 to 200 ° C. in a reduced pressure atmosphere or in the presence of a non-reducing gas such as nitrogen, argon, carbon dioxide or oxygen-containing gas, and 50 to 100 ° C. is preferable. Further preferred.
The second step of the present invention is a step of pressing the swollen titanium-containing zeolite layered precursor (2) obtained in the first step to obtain a molded body (3). It is the most important matter of the present invention to pressurize the swollen titanium-containing zeolite layered precursor (2), thereby removing the swelling agent from the molded body (3) in the subsequent third step, thereby providing catalyst physical properties. Can be obtained.
As a molding method for pressurizing the precursor (2), any method such as roll press molding (briqueting, compacting), hydraulic press molding, compression molding represented by tableting molding, extrusion molding or the like is used. However, compression molding is more preferable. In the case of extruding the precursor (2), generally used organic or inorganic binders can be used. In the present invention, a method using no binder is preferred.
The pressure when pressurizing the precursor (2) is usually 0.1 to 10 ton / cm 2 , preferably 0.2 to 5 ton / cm 2 , and more preferably 0.5 ton / cm 2. ~ 2 tons / cm 2 .
The water content of the solid subjected to compression molding is preferably 15% or less, more preferably 10% or less.
The shape of the molded body (3) may be any shape such as a tablet, a sphere, and a ring. In the subsequent third step, the molded body (3) may be used as it is, or may be used after being crushed to an appropriate size. When using the crushed compact (3), it is preferable to classify the crushed material of the compact (3) and use a crushed material of a predetermined size or more. The size of the molded body is preferably from 0.2 mm to 10 mm, and more preferably from 0.5 mm to 5 mm.
The 3rd process of this invention is a process of removing the swelling agent contained in the molded object (3) obtained at the 2nd process, and obtaining a titanium containing silicon oxide molded object.
Examples of the method for removing the swelling agent include a method of firing the molded product (3) obtained in the second step at a high temperature of 400 to 700 ° C. in air, and a method of extracting the swelling agent with a solvent. A method of removing the swelling agent is preferred.
The solvent used for the extraction is not particularly limited as long as it can dissolve the swelling agent. Generally, oxa and / or oxo substituted hydrocarbons having 1 to 12 carbon atoms and liquid at normal temperature can be used. Suitable solvents of this type include, for example, alcohols, ketones, ethers (acyclic compounds and cyclic compounds), esters, etc., and alcohols include, for example, methanol, ethanol, ethylene glycol , Propylene glycol, isopropanol, n-butanol, octanol and the like. Examples of ketones include acetone, diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone and the like. Examples of ethers include diisobutyl ether, tetrahydrofuran and the like. Examples of the esters include methyl acetate, ethyl acetate, butyl acetate, butyl propionate, and the like. Moreover, a mixed solution with water or the above-mentioned solvent can also be used.
The weight ratio of these solvents to the molded body (3) is usually 1 to 1000, preferably 5 to 300.
In order to improve the extraction effect, it is preferable to add an acid or an acid salt to these solvents. Examples of the acid used include inorganic acids and organic acids. Examples of the inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, and odorous acid. Examples of the organic acids include formic acid, acetic acid, and propionic acid. Etc. Examples of acid salts include alkali metal salts, alkaline earth metal salts, ammonium salts and the like. The concentration of the acid or acid salt in the solvent is preferably 10 mol / l or less, and more preferably 5 mol / l or less.
After sufficiently mixing the solvent and the molded body (3), the liquid phase is separated by a method such as filtration or decantation. This operation is repeated as many times as necessary. It is also possible to extract the swelling agent by a method in which the molded body (3) is filled and fixed in a tube and a washing solvent is passed through the fixed molded body (3). The end of extraction of the swelling agent can be known, for example, by liquid phase analysis. The extraction temperature is preferably 0 to 200 ° C, more preferably 20 to 100 ° C. When the boiling point of the extraction solvent is low, the extraction may be performed under pressure.
The titanium-containing silicon oxide molded body obtained after the extraction treatment may be dried. The drying method is preferably a method of heating at 10 to 700 ° C., more preferably 50 to 200 ° C. in an atmosphere of a non-reducing gas such as nitrogen, argon or carbon dioxide or an oxygen-containing gas such as air.
The titanium-containing silicon oxide molded body obtained by the above operation may contain titanium-containing MWW-type zeolite and the like, but the content of titanium-containing MWW-type zeolite is preferably 50% or less, 30 % Or less is more preferable.
The titanium-containing silicon oxide molded article is suitable as a catalyst in a method for producing an oxirane compound from an olefin and a hydroperoxide. A silylated titanium-containing silicon oxide molded body obtained by silylating a titanium-containing silicon oxide molded body obtained by the above method is also suitable as a catalyst in a method for producing an oxirane compound from an olefin and a hydroperoxide. Silylated titanium-containing silicon oxide compacts are more hydrophobic than titanium-containing silicon oxide compacts. Therefore, an oxirane compound can be produced in high yield from an olefin and a hydroperoxide by using a silylated titanium-containing silicon oxide molded article as a catalyst.
Examples of the method for silylating the titanium-containing silicon oxide molded body include a method of bringing the molded body into contact with a silylating agent. Examples of the silylating agent include organic silanes, organic silylamines, organic silylamides and derivatives thereof, organic silazanes, and other silylating agents.
Examples of the organic silane include chlorotrimethylsilane, nitrotrimethylsilane, chlorotriethylsilane, chlorodimethylphenylsilane, dimethyl-n-propylchlorosilane, dimethylisopropylchlorosilane, t-butyldimethylchlorosilane, tripropylchlorosilane, dimethyloctylchlorosilane, and tributyl. Chlorosilane, trihexylchlorosilane, dimethylethylchlorosilane, dimethyloctadecylchlorosilane, n-butyldimethylchlorosilane, 3-chloropropyldimethylchlorosilane, dimethoxymethylchlorosilane, triethoxychlorosilane, dimethylphenylchlorosilane, benzyldimethylchlorosilane, diphenylmethylchlorosilane, diphenylvinylchlorosilane , Tribenzylchloro Orchids include 3-cyanopropyl dimethylchlorosilane.
Examples of the organic silylamine include N-trimethylsilylimidazole, Nt-butyldimethylsilylimidazole, N-dimethylethylsilylimidazole, N-dimethyl-n-propylsilylimidazole, N-dimethylisopropylsilylimidazole, N-trimethylsilyldimethylamine. N-trimethylsilyldiethylamine, N-trimethylsilylpyrrole, N-trimethylsilylpyrrolidine, N-trimethylsilylpiperidine, 1-cyanoethyl (diethylamino) dimethylsilane, pentafluorophenyldimethylsilylamine.
Examples of organic silylamides and derivatives thereof include N, O-bistrimethylsilylacetamide, N, O-bistrimethylsilyltrifluoroacetamide, N-trimethylsilylacetamide, N-methyl-N-trimethylsilylacetamide, N-methyl-N-trimethylsilyltriamide. Examples include fluoroacetamide, N-methyl-N-trimethylsilylheptafluorobutyramide, N- (t-butyldimethylsilyl) -N-trifluoroacetamide, and N, O-bis (diethylhydrosilyl) trifluoroacetamide.
Examples of the organic silazane include hexamethyldisilazane, heptamethyldisilazane, 1,1,3,3-tetramethyldisilazane, 1,3-bis (chloromethyl) tetramethyldisilazane, 1,3-divinyl- Examples include 1,1,3,3-tetramethyldisilazane and 1,3-diphenyltetramethyldisilazane.
Examples of other silylating agents include N-methoxy-N, O-bistrimethylsilyltrifluoroacetamide, N-methoxy-N, O-bistrimethylsilylcarbamate, N, O-bistrimethylsilylsulfamate, trimethylsilyltrifluoromethane. Examples thereof include sulfonate and N, N′-bistrimethylsilylurea.
A preferred silylating agent is hexamethyldisilazane.
The silylation of the titanium-containing silicon oxide molded body can be performed in either a gas phase or a liquid phase. When silylation is carried out in the liquid phase, silylation is usually carried out in a solvent that does not essentially react with the silylating agent, and a hydrocarbon is preferably used as the solvent. Examples of the hydrocarbon solvent include aliphatic hydrocarbons and aromatic hydrocarbons. Examples of the aliphatic hydrocarbons include hexane and heptane. Examples of the aromatic hydrocarbon include benzene, Examples include toluene and xylene. The silylation temperature is preferably 0 to 300 ° C, more preferably 50 to 150 ° C.
The titanium-containing silicon oxide molded body and silylated titanium-containing silicon oxide molded body obtained by the method of the present invention can be suitably used as a catalyst particularly in a method for producing an oxirane compound in which an olefin and a hydroperoxide are reacted.
The olefin may be an acyclic, monocyclic, bicyclic or polycyclic compound, and may be a monoolefin, diolefin or polyolefin. If there are two or more olefinic bonds, this may be a conjugated bond or a non-conjugated bond. Olefins having 2 to 60 carbon atoms are generally preferred. The olefin may have a substituent, and the substituent is preferably a relatively stable group. Examples of the monoolefin include ethylene, propylene, butene-1, isobutylene, hexene-1, hexene-2, hexene-3, octene-1, decene-1, styrene, cyclohexene, and propylene is preferable. Examples of the diolefin include butadiene and isoprene. Examples of the substituent include various substituents containing a halogen atom, an oxygen atom, a sulfur atom, or a nitrogen atom together with hydrogen and / or a carbon atom. Examples of the olefin having a substituent include Saturated alcohols, olefins substituted with a halogen atom, and the like. Examples of unsaturated alcohols include allyl alcohol and crotyl alcohol. Examples of olefins substituted with a halogen atom include allyl chloride. Can be mentioned.
Examples of the hydroperoxide suitably used in the present invention include hydrogen peroxide and organic hydroperoxide, and organic hydroperoxide is more preferable.
Organic hydroperoxides have the general formula R—O—O—H
(Where R is a monovalent hydrocarbyl group.)
Which reacts with an olefin to produce an oxirane compound and a compound R—OH. R is preferably a hydrocarbyl group having 3 to 20 carbon atoms, more preferably a hydrocarbyl group having 3 to 10 carbon atoms, and still more preferably a secondary or tertiary alkyl group having 3 to 10 carbon atoms. Group and a cycloalkyl group, or a secondary or tertiary aralkyl group having 8 to 10 carbon atoms, particularly preferably a tertiary alkyl group having 3 to 10 carbon atoms or a secondary alkyl group having 8 to 10 carbon atoms. Or it is a tertiary aralkyl group. Examples of the tertiary alkyl group having 3 to 10 carbon atoms include a tertiary butyl group and a third pentyl group. Examples of the tertiary aralkyl group having 8 to 10 carbon atoms include 2-phenylpropyl. -2 groups and the like. Furthermore, various tetranylyl groups generated by removing hydrogen atoms from the aliphatic side chain of the tetralin molecule are also exemplified as R.
The organic hydroperoxide is preferably cumene hydroperoxide, and in that case, the method for producing an oxirane compound of the present invention can be suitably used as part of the propylene oxide single production process described in JP-A-2008-266304. .
The oxirane compound can be produced in a liquid phase using a solvent. The solvent is preferably a liquid under the temperature and pressure during the reaction, and is substantially inert to the reactants and products. The solvent may be a substance present in the hydroperoxide solution used. For example, when the cumene hydroperoxide solution is a mixture of cumene hydroperoxide and cumene, which is a raw material thereof, this solution can be used as a substitute for the solvent without particularly adding a solvent.
The reaction temperature is generally 0 to 200 ° C., but a temperature of 25 to 200 ° C. is preferred. The pressure may be any pressure that can keep the reaction mixture in a liquid state. In general, the pressure is preferably 100 to 10,000 kPa.
After completion of the reaction, the liquid mixture containing the oxirane compound can be easily separated from the catalyst.
The liquid mixture may then be purified by an appropriate method. Purification includes fractional distillation, selective extraction, filtration, washing and the like. The solvent, catalyst, unreacted olefin and unreacted hydroperoxide can be recycled and reused.
Manufacture of an oxirane compound may be performed with a slurry and may be performed using a fixed bed. In the case of large-scale industrial operation, a method using a fixed bed is preferable. When the titanium-containing silicon oxide molded body or silylated titanium-containing silicon oxide molded body obtained by the present invention is used for a fixed bed, the pressure loss before and after the reaction tube is smaller than when powder is used. In addition, the catalyst is less likely to flow out downstream, and is excellent in handling properties during filling.
 以下に実施例により本発明を説明する。
〔実施例1〕
(1)チタン含有ゼオライト層状前駆体の調製
 1リットルのセパラブルフラスコに171gのイオン交換水と60gのピペリジンを入れて攪拌し、ここに室温で5gのテトラ−n−ブチルオルソチタネートを滴下した。これらを0.5時間撹拌した後、42gのホウ酸を加え更に0.5時間攪拌した。続いて30gのヒュームドシリカ(キャボット社製Cab−O−Sil M−7D)を加えた後、1時間攪拌した。その後171gのイオン交換水を加えて攪拌し、均一となった混合物を4分割して、それぞれを200mlポリテトラフルオロエチレン内筒オートクレーブ4本に仕込み、攪拌下、170℃で7日間水熱合成を行った。生じた固体を濾取して集め、少量のイオン交換水で水洗した。得られた固体211gを2リットルのフラスコに入れ、1125mlのメタノールを加えた。攪拌しながらリフラックス温度で1.5時間加熱し、放冷後、濾過により溶液を除去した。回収した固体について、1125mlのメタノールを用いて同様の操作をもう一度繰り返した。最後に、濾取した固体を少量のメタノールで洗浄後、70℃、10mmHgで7時間乾燥させたところチタン含有ゼオライト層状前駆体を含む固体27gが得られた。
(2)膨潤されたチタン含有ゼオライト層状前駆体を得る工程(第一工程)
 上記(1)の方法で得られたチタン含有ゼオライト層状前駆体を含む固体(700℃灼熱減量19.7%)4g、イオン交換水54g、29%ヘキサデシルトリメチルアンモニウムヒドロキシド水・メタノール溶液30g、及びヘキサデシルトリメチルアンモニウムクロライド11gを200mlポリテトラフルオロエチレン内筒オートクレーブに仕込み、攪拌下、80℃で16時間加熱した。生じた固体を遠心分離し1リットルのイオン交換水で水洗した後、70℃、10mmHgで7時間乾燥させたところ、4.4gの膨潤されたチタン含有ゼオライト層状前駆体(白色固体、700℃灼熱減量60.0%)4.4gが得られた。
(3)成形体の作製(第二工程)
 第一工程で得られた白色固体4.4gを、内径が3cmである錠剤成型器を用いて0.5トン/cmの圧力で圧縮成型した。得られた錠剤を破砕し、篩を用いて1.0~1.7mmの成形体を得た。1.0mm未満の固体はリサイクルして、再度圧縮成型し、得られた錠剤を破砕し、篩を用いて1.0~1.7mmの成形体を得た。また、得られた成形体を粉砕して、(株)リガク製MiniFlexIIを用いて粉末X線回折(XRD)分析を行ったところ、MWW構造の002面に由来するピークが、チタン含有ゼオライト層状前駆体を測定して観測されるピークに比較して、低角側へシフトしたことが確認された。
(4)膨潤剤の除去(第三工程)
 第二工程で得られた成形体4gをフラスコに入れ、200mlのメタノールと濃塩酸(含量36重量%)40gとの混合溶液を加えた。攪拌しながらリフラックス温度で1時間加熱した。放冷後、デカンテーションにより溶液を除去した。次に200mlのメタノールを加え1時間リフラックスさせた。放冷後、濾過により固体を得た。該固体を少量のメタノールで洗浄した後、70℃、10mmHgで3時間乾燥させたところ、チタン含有珪素酸化物成形体1.7gが得られた。
(5)シリル化(第四工程)
 第三工程で得られたチタン含有珪素酸化物成形体1g、ヘキサメチルジシラザン1g、及びトルエン20gを混合し、リフラックス下1.5時間加熱した。放冷後、固体を濾取し、120℃、10mmHgで1.5時間乾燥することにより、シリル化チタン含有珪素酸化物成形体1gを得た。
(6)プロピレンキサイド(PO)合成
 上記の方法で得られたシリル化チタン含有珪素酸化物成形体0.25g、60gの25%クメンハイドロパーオキサイド(CHPO)/クメン溶液および33gのプロピレンをオートクレーブに仕込み、自生圧力下、100℃で1.5時間(昇温時間込み)反応を行った。オートクレーブを冷却し、プロピレンをパージした後、オートクレーブを開放し、反応後液のサンプリングおよび分析を行った。反応成績を表1に示す。
(7)触媒分析
 (株)リガク製MiniFlexIIを用いて、上記の方法で得られたシリル化チタン含有珪素酸化物成形体の粉末X線回折(XRD)分析を行った。触媒分析結果を表1に示す。
〔実施例2〕
 第三工程の膨潤剤の除去を溶媒抽出ではなく、100ml/分の空気気流下540℃で5時間成形体を焼成することにより行ったこと以外は実施例1と同様の操作を行った。触媒分析結果および反応成績を表1に示す。
〔比較例1〕
 実施例1の第二工程と第三工程の順序を入れ替えて、膨潤剤除去(溶媒抽出)後に成型を行うこと以外は実施例1と同様の操作を行った。触媒分析結果および反応成績を表1に示す。
〔比較例2〕
 実施例2の第二工程と第三工程の順序を入れ替えて、膨潤剤除去(焼成)後に成型を行うこと以外は実施例2と同様の操作を行った。触媒分析結果および反応成績を表1に示す。
Figure JPOXMLDOC01-appb-T000001
The following examples illustrate the invention.
[Example 1]
(1) Preparation of Titanium-containing Zeolite Layered Precursor 171 g of ion exchange water and 60 g of piperidine were placed in a 1 liter separable flask and stirred, and 5 g of tetra-n-butyl orthotitanate was added dropwise thereto at room temperature. After stirring these for 0.5 hour, 42 g of boric acid was added and further stirred for 0.5 hour. Subsequently, 30 g of fumed silica (Cabot-O-Sil M-7D manufactured by Cabot) was added, followed by stirring for 1 hour. Thereafter, 171 g of ion-exchanged water was added and stirred, and the homogenous mixture was divided into 4 parts. Each mixture was charged into 4 200 ml polytetrafluoroethylene inner cylinder autoclaves, and hydrothermal synthesis was performed at 170 ° C. for 7 days with stirring. went. The resulting solid was collected by filtration and washed with a small amount of ion-exchanged water. 211 g of the obtained solid was put into a 2 liter flask and 1125 ml of methanol was added. While stirring, the mixture was heated at the reflux temperature for 1.5 hours, allowed to cool, and then the solution was removed by filtration. For the recovered solid, the same operation was repeated once again using 1125 ml of methanol. Finally, the solid collected by filtration was washed with a small amount of methanol, and then dried at 70 ° C. and 10 mmHg for 7 hours to obtain 27 g of a solid containing a titanium-containing zeolite layered precursor.
(2) Step of obtaining swollen titanium-containing zeolite layered precursor (first step)
4 g of a solid containing a titanium-containing zeolite layered precursor obtained by the method (1) (700 ° C. loss on ignition 19.7%), 54 g of ion-exchanged water, 30 g of 29% hexadecyltrimethylammonium hydroxide water / methanol solution, Then, 11 g of hexadecyltrimethylammonium chloride was charged into a 200 ml polytetrafluoroethylene inner cylinder autoclave and heated at 80 ° C. for 16 hours with stirring. The resulting solid was centrifuged, washed with 1 liter of ion-exchanged water, and then dried at 70 ° C. and 10 mmHg for 7 hours. As a result, 4.4 g of swollen titanium-containing zeolite layered precursor (white solid, 700 ° C. heated) 4.4 g) was obtained.
(3) Production of molded body (second step)
4.4 g of the white solid obtained in the first step was compression-molded at a pressure of 0.5 ton / cm 2 using a tablet molding machine having an inner diameter of 3 cm. The obtained tablets were crushed and a 1.0 to 1.7 mm shaped body was obtained using a sieve. Solids less than 1.0 mm were recycled and compression-molded again, and the resulting tablets were crushed and a 1.0 to 1.7 mm shaped body was obtained using a sieve. Moreover, when the obtained molded body was pulverized and subjected to powder X-ray diffraction (XRD) analysis using MiniFlex II manufactured by Rigaku Corporation, a peak derived from the 002 plane of the MWW structure showed a titanium-containing zeolite layered precursor. Compared to the peak observed by measuring the body, it was confirmed that it shifted to the lower angle side.
(4) Removal of swelling agent (third step)
4 g of the molded product obtained in the second step was placed in a flask, and a mixed solution of 200 ml of methanol and 40 g of concentrated hydrochloric acid (content 36% by weight) was added. While stirring, the mixture was heated at the reflux temperature for 1 hour. After standing to cool, the solution was removed by decantation. Next, 200 ml of methanol was added and refluxed for 1 hour. After allowing to cool, a solid was obtained by filtration. The solid was washed with a small amount of methanol and then dried at 70 ° C. and 10 mmHg for 3 hours. As a result, 1.7 g of a titanium-containing silicon oxide compact was obtained.
(5) Silylation (fourth step)
1 g of the titanium-containing silicon oxide molded body obtained in the third step, 1 g of hexamethyldisilazane, and 20 g of toluene were mixed and heated under reflux for 1.5 hours. After allowing to cool, the solid was collected by filtration and dried at 120 ° C. and 10 mmHg for 1.5 hours to obtain 1 g of a silylated titanium-containing silicon oxide molded body.
(6) Propylene oxide (PO) synthesis 0.25 g of a silylated titanium-containing silicon oxide molded body obtained by the above method, 60 g of 25% cumene hydroperoxide (CHPO) / cumene solution and 33 g of propylene were autoclaved. The reaction was carried out at 100 ° C. for 1.5 hours (including the heating time) under autogenous pressure. After the autoclave was cooled and purged with propylene, the autoclave was opened, and the reaction mixture was sampled and analyzed. The reaction results are shown in Table 1.
(7) Catalyst analysis Using MiniFlex II manufactured by Rigaku Corporation, a powder X-ray diffraction (XRD) analysis of the silylated titanium-containing silicon oxide molded body obtained by the above method was performed. The results of catalyst analysis are shown in Table 1.
[Example 2]
The same operation as in Example 1 was performed except that the swelling agent was removed in the third step not by solvent extraction but by firing the molded body for 5 hours at 540 ° C. in an air stream of 100 ml / min. The catalyst analysis results and reaction results are shown in Table 1.
[Comparative Example 1]
The same operation as in Example 1 was performed except that the order of the second step and the third step in Example 1 was changed and molding was performed after removal of the swelling agent (solvent extraction). The catalyst analysis results and reaction results are shown in Table 1.
[Comparative Example 2]
The same operation as in Example 2 was performed except that the order of the second step and the third step in Example 2 was changed and molding was performed after removing (sintering) the swelling agent. The catalyst analysis results and reaction results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、高収率でオレフィンとハイドロパーオキサイドからオキシラン化合物を製造することができる。 According to the present invention, an oxirane compound can be produced from olefin and hydroperoxide in high yield.

Claims (9)

  1.  以下の第一工程、第二工程および第三工程を有するチタン含有珪素酸化物成形体の製造方法。
     第一工程:膨潤剤および溶媒を含む溶液に、チタン含有ゼオライト層状前駆体(1)を接触させることによって、膨潤されたチタン含有ゼオライト層状前駆体(2)を得る工程
     第二工程:前駆体(2)を加圧して、成形体(3)を得る工程
     第三工程:成形体(3)に含まれる膨潤剤を除去する工程
    The manufacturing method of the titanium containing silicon oxide molded object which has the following 1st processes, 2nd processes, and 3rd processes.
    First step: A step of obtaining a swollen titanium-containing zeolite layered precursor (2) by bringing the titanium-containing zeolite layered precursor (1) into contact with a solution containing a swelling agent and a solvent. Second step: precursor ( Step of pressurizing 2) to obtain a molded body (3) Third step: Step of removing a swelling agent contained in the molded body (3)
  2.  前駆体(1)がチタン含有MWW型ゼオライト層状前駆体である第1項に記載の製造方法。 The production method according to item 1, wherein the precursor (1) is a titanium-containing MWW-type zeolite layered precursor.
  3.  膨潤剤が式(I)で表される第4級アンモニウムイオンを含む第1項または第2項に記載の方法。
     [NR     (I)
     (Rは炭素数2~36の直鎖状または分岐状の炭化水素基を表し、R、RおよびRは、それぞれ独立して炭素数1~6のアルキル基を表す。)
    Item 3. The method according to Item 1 or 2, wherein the swelling agent contains a quaternary ammonium ion represented by the formula (I).
    [NR 1 R 2 R 3 R 4 ] + (I)
    (R 1 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms, and R 2 , R 3 and R 4 each independently represents an alkyl group having 1 to 6 carbon atoms.)
  4.  膨潤剤および溶媒を含む溶液がアルカリ性である第1項~第3項のいずれかに記載の方法。 4. The method according to any one of items 1 to 3, wherein the solution containing the swelling agent and the solvent is alkaline.
  5.  シリル化チタン含有珪素酸化物成形体の製造方法であって、第1項~第4項のいずれかに記載の方法で得られたチタン含有珪素酸化物成形体をシリル化する工程を含む方法。 A method for producing a silylated titanium-containing silicon oxide molded article, comprising a step of silylating a titanium-containing silicon oxide molded article obtained by the method according to any one of Items 1 to 4.
  6.  オキシラン化合物の製造方法であって、第1項~第4項のいずれかに記載の方法で得られたチタン含有珪素酸化物成形体または第5項に記載の方法で得られたシリル化チタン含有珪素酸化物成形体の存在下に、オレフィンとハイドロパーオキサイドとを反応させる方法。 A method for producing an oxirane compound, comprising a titanium-containing silicon oxide molded body obtained by the method according to any one of Items 1 to 4 or a titanium silicide-containing material obtained by the method according to Item 5. A method of reacting an olefin and a hydroperoxide in the presence of a silicon oxide molded body.
  7.  オレフィンがプロピレンである第6項に記載の方法。 7. The method according to item 6, wherein the olefin is propylene.
  8.  ハイドロパーオキサイドが有機ハイドロパーオキサイドである第6項または第7項に記載の方法。 Item 8. The method according to Item 6 or 7, wherein the hydroperoxide is an organic hydroperoxide.
  9.  有機ハイドロパーオキサイドがクメンハイドロパーオキサイドである第8項に記載の方法。 9. The method according to item 8, wherein the organic hydroperoxide is cumene hydroperoxide.
PCT/JP2011/077738 2010-11-30 2011-11-24 Method for producing titanium-containing silicon oxide moldings and method for producing oxirane compounds WO2012074033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-266208 2010-11-30
JP2010266208 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012074033A1 true WO2012074033A1 (en) 2012-06-07

Family

ID=46171958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077738 WO2012074033A1 (en) 2010-11-30 2011-11-24 Method for producing titanium-containing silicon oxide moldings and method for producing oxirane compounds

Country Status (2)

Country Link
JP (1) JP2012131696A (en)
WO (1) WO2012074033A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110240176A (en) * 2019-07-16 2019-09-17 上海纳米技术及应用国家工程研究中心有限公司 A kind of preparation method of mesoporous titanium-silicon molecular screen nanoparticle
CN111818997A (en) * 2018-03-15 2020-10-23 住友化学株式会社 Method for producing titanium-containing silicon oxide molded body and titanium-containing silicon oxide molded body

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102184609B1 (en) * 2012-10-18 2020-12-01 바스프 에스이 Post-treatment of deboronated mww zeolite
MX2017003132A (en) * 2014-09-09 2017-06-14 Basf Se A process for the preparation of an mww zeolitic material comprising boron and titanium.
KR20220014870A (en) * 2019-05-29 2022-02-07 스미또모 가가꾸 가부시끼가이샤 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292171A (en) * 2002-03-07 2004-10-21 Showa Denko Kk Titanosilicate, its production method, and production method of oxidation compound using titanosilicate
JP2010159245A (en) * 2008-09-19 2010-07-22 Sumitomo Chemical Co Ltd Method for producing oxidized compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292171A (en) * 2002-03-07 2004-10-21 Showa Denko Kk Titanosilicate, its production method, and production method of oxidation compound using titanosilicate
JP2010159245A (en) * 2008-09-19 2010-07-22 Sumitomo Chemical Co Ltd Method for producing oxidized compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818997A (en) * 2018-03-15 2020-10-23 住友化学株式会社 Method for producing titanium-containing silicon oxide molded body and titanium-containing silicon oxide molded body
CN111818997B (en) * 2018-03-15 2023-04-04 住友化学株式会社 Method for producing titanium-containing silicon oxide molded body and titanium-containing silicon oxide molded body
CN110240176A (en) * 2019-07-16 2019-09-17 上海纳米技术及应用国家工程研究中心有限公司 A kind of preparation method of mesoporous titanium-silicon molecular screen nanoparticle

Also Published As

Publication number Publication date
JP2012131696A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
WO2012074033A1 (en) Method for producing titanium-containing silicon oxide moldings and method for producing oxirane compounds
JP4889865B2 (en) Method for producing titanium-containing silicon oxide catalyst
WO2006062111A1 (en) Process for producing titanium-containing silicon oxide catalyst, the catalyst, and process for producing olefin oxide compound with the catalyst
KR100693773B1 (en) Molded catalyst, process for producing the molded catalyst, and process for producing oxirane compound
JP4265212B2 (en) Method for producing titanium-containing silicon oxide catalyst
TW568797B (en) Method for producing titanium-containing silicon oxide catalyst and catalyst prepared thereby
JP3797107B2 (en) Catalyst molded body, method for producing the catalyst molded body, and method for producing oxirane compound
JP4834982B2 (en) Method for producing titanium-containing silicon oxide catalyst and catalyst
JP2006255586A (en) Method for production of titanium-containing silicon oxide catalyst, and catalyst
WO2006098421A1 (en) Method for storing titanium-containing silicon oxide catalyst
JP7128884B2 (en) Manufacturing method of titanium-containing silicon oxide molded body, and titanium-containing silicon oxide molded body
JP2012115742A (en) Method for manufacturing titanium-containing silicon oxide catalyst, and method for manufacturing oxirane compound
RU2775224C2 (en) Method for production of titanium-containing silicon oxide molded product, and titanium-containing silicon oxide molded product
JP2003200056A (en) Method for producing titanium-containing silicone oxide catalyst and the catalyst
JP4495272B2 (en) Method for producing oxirane compound
WO2020241052A1 (en) Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
JP2006159058A (en) Method for manufacturing titanium-containing silicon oxide catalyst and catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845891

Country of ref document: EP

Kind code of ref document: A1