WO2012073842A1 - Communication system and method of controlling communication - Google Patents

Communication system and method of controlling communication Download PDF

Info

Publication number
WO2012073842A1
WO2012073842A1 PCT/JP2011/077259 JP2011077259W WO2012073842A1 WO 2012073842 A1 WO2012073842 A1 WO 2012073842A1 JP 2011077259 W JP2011077259 W JP 2011077259W WO 2012073842 A1 WO2012073842 A1 WO 2012073842A1
Authority
WO
WIPO (PCT)
Prior art keywords
enb
bearer
communication
information
transmits
Prior art date
Application number
PCT/JP2011/077259
Other languages
French (fr)
Japanese (ja)
Inventor
仁也 立川
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2012546837A priority Critical patent/JPWO2012073842A1/en
Publication of WO2012073842A1 publication Critical patent/WO2012073842A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks

Definitions

  • the present invention relates to a communication system having a plurality of radio base stations and upper nodes, and a communication control method in the communication system.
  • a radio base station In 3GPP (Third Generation Partnership Project), in a communication system corresponding to LTE (Long Terminology Evolution) currently being developed, a radio base station (eNB) is an MME (Mobile Management Entity) and communicate with the MME.
  • eNB Radio base station
  • MME Mobile Management Entity
  • an object of the present invention is to provide a communication system and a communication control method that improve the reliability of communication between a radio base station and an upper node.
  • the present invention has the following features.
  • a feature of the present invention is a communication system (communication system 1) having a plurality of radio base stations (eNB 10-1, eNB 10-2, eNB 10-3) and an upper node (MME 20, packet transfer apparatus 25), A setting unit (communication path setting unit 112) for setting a plurality of communication paths via different second radio base stations between one radio base station and the upper node, and a plurality of communications set by the setting unit
  • the gist is to include a transmission unit (transmission processing unit 114) that distributes and transmits packets on the route.
  • a plurality of communication paths through the second radio base station are set between the first radio base station and the upper node, and packets are distributed and transmitted to the plurality of communication paths. Let Therefore, packets transmitted between the first radio base station and the upper node are concentrated on a specific second radio base station, and the load on the second radio base station becomes excessive. It is possible to improve the certainty of communication between the first radio base station and the upper node while preventing it.
  • a feature of the present invention is that the communication path setting unit is different between the first radio base station and the upper node based on information on a communication path for each second radio base station.
  • the gist is to set a plurality of communication paths through the radio base station.
  • a feature of the present invention is summarized in that the transmission unit sequentially distributes and transmits the packets to a plurality of communication paths set by the setting unit.
  • the feature of the present invention is that the information on the communication path includes information on the transmission speed of the communication path, and the transmission unit responds to the transmission speed corresponding to the plurality of communication paths set by the setting unit.
  • the gist is to distribute the amount of packets to be transmitted.
  • the gist of a feature of the present invention is that it includes an updating unit (updating unit 116) that updates information on the transmission rate when the transmission rate changes.
  • a feature of the present invention is summarized in that the transmission unit determines a ratio for distributing packets to each communication path based on the attribute of the communication path set by the setting unit, and then distributes and transmits the packet.
  • a feature of the present invention is summarized in that the transmission unit transmits the same packet to the plurality of communication paths set by the setting unit.
  • a feature of the present invention is a communication control method in a communication system having a plurality of radio base stations and an upper node, wherein a different second radio base station is provided between the first radio base station and the upper node.
  • the gist of the present invention includes a step of setting a plurality of communication paths through which the packet is routed and a transmission step of distributing and transmitting packets to the plurality of set communication paths.
  • FIG. 1 is an overall schematic configuration diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a setting state of the S1 interface in the communication system according to the embodiment of the present invention.
  • FIG. 3 is a configuration diagram of the eNB according to the embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a relay node according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of communication path information according to the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a setting state of the detour bearer in the communication system according to the embodiment of the present invention.
  • FIG. 7 is a sequence diagram showing a first operation of the communication system according to the embodiment of the present invention.
  • FIG. 8 is a sequence diagram showing a second operation of the communication system according to the embodiment of the present invention.
  • FIG. 9 is a sequence diagram showing a third operation of the communication system according to the embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a communication system according to the present embodiment.
  • the communication system 1 is configured using LTE technology.
  • 1 includes an LTE base station (eNB) 10-1, eNB 10-2, eNB 10-3, an MME (Mobile Management Entity) 20, a packet transfer device 25, an eNB 10- 1 to eNB 10-3 and a backhaul 30 connecting the MME 20, a radio terminal (UE) 40, a relay node 50-1, and a relay node 50-2.
  • the eNB 10-1 is assigned an IP address A
  • the eNB 10-2 is assigned an IP address B
  • the eNB 10-3 is assigned an IP address C
  • the MME 20 is assigned an IP address D
  • the packet transfer device 25 is assigned an IP address E.
  • the UE 40 exists in a cell formed by the eNB 10-1.
  • the relay node 50-1 exists in the overlapping area of the cell formed by the eNB 10-1 and the cell formed by the eNB 10-2.
  • the relay node 50-2 exists in the overlapping area of the cell formed by the eNB 10-1 and the cell formed by the eNB 10-3.
  • the eNB 10-1 can perform radio communication with the UE 40 in the cell formed by the eNB 10-1 via a radio section.
  • the communication method between the eNB 10-1 and the UE 40 is referred to as E-UTRAN (Evolved UMTS Terrestrial Radio Access Network).
  • FIG. 2 is a diagram illustrating a setting state of the S1 interface in the communication system 1.
  • an S1 interface # 1 that is a logical transmission path of the transport layer is set between the eNB 10-1 and the MME 20 via the backhaul 30.
  • an S1 interface # 2 is set between the eNB 10-2 and the MME 20 via the backhaul 30.
  • An S1 interface # 3 is set between the eNB 10-3 and the MME 20 via the backhaul 30.
  • FIG. 3 is a diagram illustrating a configuration of the eNB 10-1.
  • the eNB 10-1 illustrated in FIG. 3 includes a control unit 102, a storage unit 103, an I / F unit 104, a radio communication unit 106, and an antenna 108. Note that the eNB 10-2 and the eNB 10-3 have the same configuration as the eNB 10-1.
  • the control unit 102 is configured using, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), and controls various functions of the eNB 10-1.
  • the storage unit 103 is configured by a memory, for example, and stores various information used for control in the eNB 10-1.
  • the I / F unit 104 is connected to the backhaul 30.
  • the I / F unit 104 performs data transmission and reception with the MME 20, the eNB 10-2, and the eNB 10-3.
  • the wireless communication unit 106 includes an RF circuit, a baseband circuit, etc., performs modulation and demodulation, encoding and decoding, etc., and transmits and receives wireless signals to and from the UE 40 via the antenna 108. Further, the radio communication unit 106 can transmit and receive radio signals between the relay node 50-1 and the relay node 50-2.
  • the control unit 102 receives the uplink data addressed to the packet transfer device 25 from the UE 40 via the antenna 108 and the wireless communication unit 106.
  • the received uplink data has a configuration corresponding to the Uu-IF protocol.
  • the control unit 102 converts the uplink data from the Uu-IF protocol to the S1-MME-IF protocol. Further, the control unit 102 transmits the new uplink data obtained by the conversion to the packet transfer apparatus 25 via the I / F unit 104, the S1 interface set in the backhaul 30, and the MME 20 (S1). communication).
  • control unit 102 receives downlink data addressed to the UE 40 from the packet transfer device 25 via the I / F unit 104 (S1 communication).
  • the received downlink data has a configuration corresponding to the S1-MME-IF protocol.
  • the control unit 102 converts the downlink data from the S1-MME-IF protocol to the Uu-IF protocol. Further, the control unit 102 transmits new downlink data obtained by the conversion to the UE 40 via the radio communication unit 106 and the antenna 108.
  • FIG. 4 is a diagram showing a configuration of the relay node 50-1.
  • the relay node 50 illustrated in FIG. 4 includes a control unit 502, a storage unit 503, a wireless communication unit 504, an antenna 506, a wireless communication unit 508, and an antenna 510.
  • Relay node 50-2 has the same configuration as relay node 50-1.
  • the control unit 502 is configured using, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), and controls various functions of the relay node 50.
  • the storage unit 503 is configured by a memory, for example, and stores various types of information used for control in the relay node 50-1.
  • the wireless communication unit 504 includes an RF circuit, a baseband circuit, etc., performs modulation and demodulation, encoding and decoding, etc., and transmits and receives wireless signals to and from the eNB 10-1 via the antenna 506.
  • the radio communication unit 508 includes an RF circuit, a baseband circuit, etc., performs modulation, demodulation, encoding, decoding, etc., and transmits and receives radio signals to and from the eNB 10-2 via the antenna 510. . Note that the radio communication unit 508 in the relay node 50-2 transmits and receives radio signals to and from the eNB 10-3 via the antenna 510.
  • uplink communication between the eNB 10-1 and the MME 20 includes uplink communication via the relay node 50-1 and the eNB 10-2, and uplink communication via the relay node 50-2 and the eNB 10-3. Both are performed. Details will be described below.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-1 has a plurality of eNBs to be relay stations based on the communication path information stored in the storage unit 103 in communication with the MME 20. (Relay eNB) is selected.
  • FIG. 5 is a diagram showing an example of communication path information.
  • the communication path information illustrated in FIG. 5 is set for each of the eNB 10-2 and the eNB 10-3 that are eNBs other than the eNB 10-1 and capable of wireless communication with the eNB 10-1 via the relay node.
  • the communication path information corresponding to the eNB 10-2 includes the cell ID that is the identification information of the eNB 10-2 and the identification of the relay node 50-1 that relays when the eNB 10-1 performs wireless communication with the eNB 10-2.
  • the relay node ID is information, and the transmission rate information between the eNB 10-2 and the MME 20 is configured.
  • the communication path information corresponding to the eNB 10-3 includes the cell ID that is the identification information of the eNB 10-3 and the identification of the relay node 50-2 that relays when the eNB 10-1 performs wireless communication with the eNB 10-3.
  • the relay node ID is information, and information on the transmission rate between the eNB 10-3 and the MME 20.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-1 reads the communication path information from the storage unit 103.
  • the communication path setting unit 112 selects the eNB 10-2 and the eNB 10-3 corresponding to the cell ID included in each communication path information.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-1 sets an avoidance bearer # 1 between the relay node 50-1 that relays radio communication between the eNB 10-1 and the eNB 10-2.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-1 sets an avoidance bearer # 2 between the relay node 50-2 that relays wireless communication between the eNB 10-1 and the eNB 10-3. To do.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-1 transmits the alternative bearer generation instruction information 1 to the relay node 50-1 via the set avoidance bearer # 1.
  • the alternative bearer generation instruction information 1 is information for instructing generation of a bearer via the eNB 10-2.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-1 transmits the alternative bearer generation instruction information 2 to the relay node 50-2 via the set avoidance bearer # 2.
  • the alternative bearer generation instruction information 2 is information for instructing generation of a bearer via the eNB 10-3.
  • the control unit 502 of the relay node 50-1 receives the alternative bearer generation instruction information 1 from the eNB 10-1 via the avoidance bearer # 1. Further, the control unit 502 of the relay node 50-2 receives the alternative bearer generation instruction information 2 from the eNB 10-1 via the avoidance bearer # 2.
  • the control unit 502 of the relay node 50-1 is connected to the eNB 10-2 via a wireless section.
  • the control unit 502 of the relay node 50-2 connects to the eNB 10-3 via a radio section.
  • control unit 502 of the relay node 50-1 transmits the alternative bearer generation instruction information 1 to the eNB 10-2 through wireless communication.
  • control unit 502 of the relay node 50-2 transmits the alternative bearer generation instruction information 2 to the eNB 10-3 through wireless communication.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-2 receives the alternative bearer generation information 1 from the relay node 50-1. Further, the communication path setting unit 112 in the control unit 102 in the eNB 10-2 receives the alternative bearer generation information 2 from the relay node 50-1.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-2 transmits the alternative bearer notification information 1 to the MME 20 via the backhaul 30 by S1 communication.
  • the alternative bearer notification information 1 is information for notifying that a bearer needs to be generated between the eNB 10-1 and the packet transfer apparatus 25 via the eNB 10-2, and the IP address B of the eNB 10-2 It is included.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-3 transmits the alternative bearer notification information 2 to the MME 20 through the backhaul 30 by S1 communication.
  • the alternative bearer notification information 2 is information for notifying that a bearer needs to be generated between the eNB 10-1 and the packet transfer apparatus 25 via the eNB 10-3, and the IP address C of the eNB 10-3 It is included.
  • the MME 20 receives the alternative bearer notification information 1 from the eNB 10-2. Further, the MME 20 transmits the IP address E of the packet transfer device 25 held in advance to the eNB 10-2 via the backhaul 30 by S1 communication. Further, the MME 20 receives the alternative bearer notification information 2 from the eNB 10-3. Further, the MME 20 transmits the IP address E of the packet transfer device 25 held in advance to the eNB 10-3 via the backhaul 30 by S1 communication.
  • the MME 20 includes the IP address B of the eNB 10-2 that is the transmission source of the alternative bearer notification information 1 in the alternative bearer notification information 1. Further, the MME 20 transmits the alternative bearer notification information 1 including the IP address B to the packet transfer device 25. Further, the MME 20 includes the IP address C of the eNB 10-3 that is the transmission source of the alternative bearer notification information 2 in the alternative bearer notification information 2. Further, the MME 20 transmits the alternative bearer notification information 2 including the IP address C to the packet transfer device 25.
  • the packet transfer device 25 receives the alternative bearer notification information 1 and the alternative bearer notification information 2 from the MME 20.
  • the packet transfer device 25 transmits the alternative bearer generation permission information 1 corresponding to the alternative bearer notification information 1 to the eNB 10-2.
  • the packet transfer apparatus 25 can recognize the transmission destination of the alternative bearer generation permission information 1 by the IP address B of the eNB 10-2 included in the alternative bearer notification information 1.
  • the packet transfer apparatus 25 transmits the alternative bearer generation permission information 2 corresponding to the alternative bearer notification information 2 to the eNB 10-3.
  • the packet transfer apparatus 25 can recognize the transmission destination of the alternative bearer generation permission information 2 based on the IP address C of the eNB 10-3 included in the alternative bearer notification information 2.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-2 receives the alternative bearer generation permission information 1. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-2 transmits the alternative bearer generation permission information 1 to the relay node 50-1. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 receives the alternative bearer generation permission information 2. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 transmits the alternative bearer generation permission information 2 to the relay node 50-2.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-2 sets a bearer (alternative bearer # 1) via the eNB 10-2 between the relay node 50-1 and the packet transfer device 25.
  • the alternative bearer # 1 and the avoidance bearer # 1 set a detour bearer # 1 that is a communication path via the eNB 10-2.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-3 sets a bearer (alternative bearer # 2) via the eNB 10-3 between the relay node 50-2 and the packet transfer device 25. Between the eNB 10-1 and the packet transfer apparatus 25, the alternate bearer # 2 and the avoidance bearer # 2 set a detour bearer # 2 that is a communication path via the eNB 10-3.
  • the transmission processing unit 114 in the control unit 102 of the eNB 10-1 receives the packet from the UE 40. Further, the transmission processing unit 114 in the control unit 102 of the eNB 10-1 sorts the received packet into a packet for transmitting the bypass bearer # 1 and a packet for transmitting the bypass bearer # 2.
  • the transmission processing unit 114 in the control unit 102 of the eNB 10-1 alternately distributes the same amount of packets to the detour bearer # 1 and the detour bearer # 2. Although the description has been given using two bypass bearers, even when there are three or more bypass bearers, the transmission processing unit 114 sequentially distributes and transmits the received packets to the respective bypass bearers.
  • the transmission processing unit 114 in the control unit 102 of the eNB 10-1 recognizes the transmission rate between the eNB 10-2 and the MME 20 based on the communication path information corresponding to the eNB 10-2, and Based on the corresponding communication path information, the transmission rate between the eNB 10-3 and the MME 20 is recognized.
  • the transmission processing unit 114 in the control unit 102 of the eNB 10-1 determines that the ratio between the amount of packets that transmit the detour bearer # 1 and the amount of packets that transmit the detour bearer # 2 is the eNB 10-2 and the MME 20 Between the detour bearer # 1 and the detour bearer # so as to match or approximate (a difference within a predetermined value) the ratio between the transmission rate between the eNB 10-3 and the MME 20 Alternating between 2 and 2.
  • the transmission processing unit 114 in the control unit 102 of the eNB 10-1 distributes the same packet to the bypass bearer # 1 and the bypass bearer # 2.
  • the transmission processing unit 114 in the control unit 102 of the eNB 10-1 distributes packets based on the attribute of the detour bearer.
  • the transmission processing unit 114 determines a distribution ratio of packets to the detour bearer # 1 and the detour bearer # 2 based on the attribute information and then distributes the packets.
  • the attribute information is information indicating whether the physical configuration of the communication path is wired or wireless.
  • the wired section is between eNB 10-2 and MME 20, and the wireless section is between eNB 10-3 and MME 20.
  • the transmission processing unit 114 in the control unit 102 of the eNB 10-1 performs the detour bearer via the eNB 10-3 corresponding to the radio section with respect to the detour bearer # 1 via the eNB 10-2 corresponding to the wired section. Distribute more packets than # 2.
  • the transmission processing unit 114 in the control unit 102 of the eNB 10-1 can acquire the attribute information of the UE 40
  • the transmission processor 114 transfers the packet to the bypass bearer # 1 and the bypass bearer # 2 based on the attribute information of the UE 40.
  • Distribute For example, when each UE is classified, and the transmission processing unit 114 in the control unit 102 of the eNB 10-1 can obtain information on the class of the UE 40, the higher the class, the faster the communication speed is. , Sort packets.
  • the transmission processing unit 114 in the control unit 102 of the eNB 10-1 transmits a packet for transmitting the detour bearer # 1 distributed by the above-described process to the eNB 10-2 via the detour bearer # 1. Also, the transmission processing unit 114 in the control unit 102 of the eNB 10-1 transmits a packet for transmitting the detour bearer # 2 distributed by the above-described process to the eNB 10-3 via the detour bearer # 2.
  • the transmission processing unit 114 in the control unit 102 of the eNB 10-2 receives the packet transmitted through the detour bearer # 1, and transmits the packet to the packet transfer apparatus 25 via the detour bearer # 1. Further, the transmission processing unit 114 in the control unit 102 of the eNB 10-3 receives the packet transmitted through the detour bearer # 2, and transmits the packet to the packet transfer apparatus 25 through the detour bearer # 2.
  • the update unit 116 in the control unit 102 of the eNB 10-1 updates the communication path information as needed. For example, when a new eNB is installed in the vicinity of the eNB 10-1, the update unit 116 in the control unit 102 of the eNB 10-1 generates communication path information corresponding to the new eNB. When the transmission rate between the eNB 10-2 and the MME 20 or the transmission rate between the eNB 10-3 and the MME 20 changes, the update unit 116 in the control unit 102 of the eNB 10-1 Update the transmission rate information in
  • avoidance bearer # 1 avoidance bearer # 2
  • alternative bearer # 1 alternative bearer # 2
  • alternative bearer # 2 alternative bearer # 2
  • eNB 10-1, eNB 10-2, and eNB 10- 3 performs again the setting process of the avoidance bearer or the alternative bearer described above.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-1 recovers from the failure of the backhaul 30 by the IP function of the S1-MME-IF protocol, and performs S1 communication between the eNB 10-1 and the MME 20 Detect that is possible.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-1 transmits the alternative bearer release instruction information 1 to the relay node 50-1 via the avoidance bearer # 1.
  • the alternative bearer release instruction information 1 is information for instructing the release of the bearer via the eNB 10-2.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-1 transmits the alternative bearer release instruction information 2 to the relay node 50-2 via the avoidance bearer # 2.
  • the alternative bearer release instruction information 2 is information for instructing the release of a bearer via the eNB 10-3.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-1 releases the avoidance bearer # 1 after transmitting the alternative bearer release instruction information 1, and releases the avoidance bearer # 2 after transmitting the alternative bearer release instruction information 2. To do.
  • the control unit 502 of the relay node 50-1 receives the alternative bearer release instruction information 1 from the eNB 10-1 via the avoidance bearer # 1. Also, the control unit 502 of the relay node 50-2 receives the alternative bearer release instruction information 2 from the eNB 10-1 via the avoidance bearer # 2.
  • control unit 502 of the relay node 50-1 transmits the alternative bearer release instruction information 1 to the eNB 10-2 by wireless communication.
  • the control unit 502 of the relay node 50-2 transmits the alternative bearer release instruction information 2 to the eNB 10-3 through wireless communication.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-2 receives the alternative bearer release information 1 from the relay node 50-1. Further, the communication path setting unit 112 in the control unit 102 in the eNB 10-2 receives the alternative bearer release information 2 from the relay node 50-1.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-2 transmits the alternative bearer release notification information 1 to the MME 20 via the backhaul 30 by S1 communication.
  • the alternative bearer release notification information 1 is information for notifying that the bearer needs to be released between the eNB 10-1 and the packet transfer apparatus 25 via the eNB 10-2, and the IP address of the eNB 10-2 B is included.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-3 transmits the alternative bearer release notification information 2 to the MME 20 via the backhaul 30 by S1 communication.
  • the alternative bearer release notification information 2 is information for notifying that the bearer needs to be released between the eNB 10-1 and the packet transfer apparatus 25 via the eNB 10-2, and the IP address of the eNB 10-3 C is included.
  • the MME 20 receives the alternative bearer release notification information 1 from the eNB 10-2 and also receives the alternative bearer release notification information 2 from the eNB 10-3.
  • the MME 20 includes the IP address B of the eNB 10-2 that is the transmission source of the alternative bearer release notification information 1 in the alternative bearer release notification information 1. Further, the MME 20 transmits the alternative bearer release notification information 1 including the IP address B to the packet transfer device 25. Further, the MME 20 includes the IP address C of the eNB 10-3 that is the transmission source of the alternative bearer release notification information 2 in the alternative bearer release notification information 2. Further, the MME 20 transmits the alternative bearer release notification information 2 including the IP address C to the packet transfer device 25.
  • the packet transfer device 25 receives the alternative bearer notification information 1 and the alternative bearer notification information 2 from the MME 20.
  • the packet transfer device 25 transmits the alternative bearer release permission information 1 corresponding to the alternative bearer release notification information 1 to the eNB 10-2.
  • the packet transfer apparatus 25 can recognize the transmission destination of the alternative bearer release permission information 1 by the IP address B of the eNB 10-2 included in the alternative bearer release notification information 1.
  • the packet transfer apparatus 25 transmits the alternative bearer release permission information 2 corresponding to the alternative bearer release notification information 2 to the eNB 10-3.
  • the packet transfer apparatus 25 can recognize the transmission destination of the alternative bearer release permission information 2 based on the IP address C of the eNB 10-3 included in the alternative bearer release notification information 2.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-2 receives the alternative bearer release permission information 1. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-2 transmits the alternative bearer release permission information 1 to the relay node 50-1. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 receives the alternative bearer release permission information 2. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 transmits the alternative bearer release permission information 2 to the relay node 50-2.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-2 releases the alternative bearer # 1.
  • the communication path setting unit 112 in the control unit 102 of the eNB 10-3 releases the alternative bearer # 2.
  • detour bearer # 1 and detour bearer # 2 are released through the above procedure.
  • step S101 the UE 40 transmits a packet addressed to the packet transfer device 25 to the eNB 10-1.
  • the eNB 10-1 receives the packet from the UE 40. Further, the eNB 10-1 transmits the packet to the MME 20.
  • the MME 20 receives the packet from the eNB 10-1. Further, the MME 20 transmits the packet to the packet transfer device 25.
  • the packet transfer device 25 receives a packet from the MME 20.
  • step S102 when a failure of the backhaul 30 occurs and S1 communication between the eNB 10-1 and the MME 20 becomes impossible, in step S103, the eNB 10-1 uses a plurality of relays based on the communication path information. Select an eNB. Here, eNB 10-2 and eNB 10-3 are selected.
  • step S104 the eNB 10-1 sets an avoidance bearer # 1 with the relay node 50-1 that relays wireless communication with the relay eNB 10-2.
  • step S105 the eNB 10-1 sets an avoidance bearer # 2 with the relay node 50-2 that relays wireless communication with the relay eNB 10-3.
  • step S106 the eNB 10-1 transmits the alternative bearer generation instruction information 1 to the relay node 50-1 via the set avoidance bearer # 1.
  • the relay node 50-1 receives the alternative bearer generation instruction information 1.
  • step S107 the eNB 10-1 transmits the alternative bearer generation instruction information 2 to the relay node 50-2 via the set avoidance bearer # 2.
  • the relay node 50-2 receives the alternative bearer generation instruction information 2.
  • step S108 the relay node 50-1 is connected to the eNB 10-2 via a wireless section.
  • step S109 the relay node 50-2 is connected to the eNB 10-3 via the radio section.
  • step S110 the relay node 50-1 transmits the alternative bearer generation instruction information 1 to the eNB 10-2.
  • the eNB 10-2 receives the alternative bearer generation instruction information 1.
  • step S111 the relay node 50-2 transmits the alternative bearer generation instruction information 2 to the eNB 10-3.
  • the eNB 10-3 receives the alternative bearer generation instruction information 2.
  • step S112 the eNB 10-2 transmits the alternative bearer notification information 1 to the MME 20.
  • the MME 20 receives the alternative bearer notification information 1.
  • step S113 the eNB 10-3 transmits the alternative bearer notification information 2 to the MME 20.
  • the MME 20 receives the alternative bearer notification information 2.
  • step S114 the MME 20 transmits the IP address E of the packet transfer device 25 to the eNB 10-2.
  • the eNB 10-2 receives the IP address E.
  • step S115 the MME 20 transmits the IP address E of the packet transfer device 25 to the eNB 10-3.
  • the eNB 10-3 receives the IP address E.
  • step S116 the MME 20 transmits the alternative bearer notification information 1 including the IP address B to the packet transfer device 25.
  • the packet transfer device 25 receives the alternative bearer notification information 1 including the IP address B.
  • step S117 the MME 20 transmits the alternative bearer notification information 2 including the IP address C to the packet transfer device 25.
  • the packet transfer device 25 receives the alternative bearer notification information 2 including the IP address C.
  • step S151 of FIG. 8 the packet transfer apparatus 25 transmits the alternative bearer generation permission information 1 to the eNB 10-2.
  • the eNB 10-2 receives the alternative bearer generation permission information 1.
  • step S152 the packet transfer apparatus 25 transmits the alternative bearer generation permission information 2 to the eNB 10-3.
  • the eNB 10-3 receives the alternative bearer generation permission information 2.
  • step S153 the eNB 10-2 transmits the alternative bearer generation permission information 1 to the relay node 50-1.
  • the relay node 50-1 receives the alternative bearer generation permission information 1.
  • step S154 the eNB 10-3 transmits the alternative bearer generation permission information 2 to the relay node 50-2.
  • the relay node 50-2 receives the alternative bearer generation permission information 2.
  • step S155 the eNB 10-2 sets an alternative bearer # 1 via the eNB 10-2 between the relay node 50-1 and the packet transfer device 25.
  • step S156 the eNB 10-3 sets an alternative bearer # 2 via the eNB 10-3 between the relay node 50-2 and the packet transfer device 25.
  • the UE 40 Send packet to -1.
  • the eNB 10-1 receives the packet.
  • step S160 the eNB 10-1 distributes the received packet to the detour bearer # 1 and the detour bearer # 2.
  • step S161 the eNB 10-1 transmits the packet distributed to the detour bearer # 1 to the packet transfer apparatus 25 via the detour bearer # 1.
  • the packet transfer device 25 receives the packet from the eNB 10-1 via the detour bearer # 1.
  • step S162 the eNB 10-1 transmits the packet distributed to the detour bearer # 2 to the packet transfer apparatus 25 via the detour bearer # 2.
  • the packet transfer device 25 receives the packet from the eNB 10-2 via the detour bearer # 2.
  • the eNB 10-1 substitutes for the relay node 50-1 in step S202.
  • Bearer release instruction information 1 is transmitted.
  • the relay node 50-1 receives the alternative bearer release instruction information 1.
  • the eNB 10-1 transmits the alternative bearer release instruction information 2 to the relay node 50-2.
  • the relay node 50-2 receives the alternative bearer release instruction information 2.
  • step S204 the relay node 50-1 transmits the alternative bearer release instruction information 1 to the eNB 10-2.
  • the eNB 10-2 receives the alternative bearer release instruction information 1.
  • step S205 the relay node 50-2 transmits the alternative bearer release instruction information 2 to the eNB 10-3.
  • the eNB 10-3 receives the alternative bearer release instruction information 2.
  • step S206 the eNB 10-2 transmits the alternative bearer release notification information 1 to the MME 20.
  • the MME 20 receives the alternative bearer release notification information 1.
  • step S207 the eNB 10-3 transmits the alternative bearer release notification information 2 to the MME 20.
  • the MME 20 receives the alternative bearer release notification information 2.
  • step S208 the MME 20 transmits the alternative bearer release notification information 1 including the IP address B to the packet transfer device 25.
  • the packet transfer apparatus 25 receives the alternative bearer release notification information 1 including the IP address B.
  • step S209 the MME 20 transmits the alternative bearer release notification information 2 including the IP address C to the packet transfer device 25.
  • the packet transfer apparatus 25 receives the alternative bearer release notification information 2 including the IP address C.
  • step S210 the packet transfer device 25 transmits the alternative bearer release permission information 1 to the eNB 10-2.
  • the eNB 10-2 receives the alternative bearer release permission information 1.
  • step S211 the packet transfer apparatus 25 transmits the alternative bearer release permission information 2 to the eNB 10-3.
  • the eNB 10-3 receives the alternative bearer release permission information 2.
  • step S212 the eNB 10-2 transmits the alternative bearer release permission information 1 to the relay node 50-1.
  • the relay node 50-1 receives the alternative bearer release permission information 1.
  • step S213 the eNB 10-3 transmits the alternative bearer release permission information 2 to the relay node 50-2.
  • the relay node 50-2 receives the alternative bearer release permission information 2.
  • the eNB 10-1 operates in the normal state, specifically, in the state before the failure of the backhaul 30 occurs, by the S1 communication.
  • the eNB 10-1 selects two eNBs, eNB 10-2 and eNB 10-3. Further, the eNB 10-1 and the eNB 10-2 perform processing for setting the bypass bearer # 1 via the eNB 10-2, and the eNB 10-1 and the eNB 10-3 set the bypass bearer # 2 via the eNB 10-3. Process. Further, the eNB 10-1 distributes the packet addressed to the packet transfer apparatus 25 to the detour bearer # 1 and the detour bearer # 2, and transmits the packet to the MME 20.
  • the eNB 10-1 distributes the packet to the detour bearer # 1 via the eNB 10-2 that is two relay eNBs and the detour bearer # 2 via the eNB 10-3.
  • the eNB 10-1 may select three or more relay eNBs, perform processing for setting detour bearers via each of the relay eNBs, and then distribute packets to each detour bearer. .
  • the detour bearer # 1 and the detour bearer # 2 are set, and the eNB 10-1 The packets are distributed and transmitted to the detour bearer # 1 and the detour bearer # 2.
  • the eNB 10-1 may distribute and transmit packets to the detour bearer # 1 and the detour bearer # 2 when conditions other than that the S1 communication is disabled are satisfied.
  • control unit 102 in the eNB 10-1 is necessary for setting the detour bearer # 1 and the detour bearer # 2 when the traffic volume in communication with the MME 20 is less than a predetermined threshold.
  • the packet may be distributed and transmitted to the detour bearer # 1 and the detour bearer # 2.
  • the relay node 50-1 when relaying is performed by the relay node 50-1, different frequency channels are used in the cell formed by the eNB 10-1 and the cell formed by the eNB 10-2. It is assumed that when relaying by relay node 50-2 is performed, it is assumed that different frequency channels are used in the cell formed by eNB 10-1 and the cell formed by eNB 10-3. However, even when the same frequency channel is used, interference can be suppressed by using SDMA or OFDM subchannels. Further, by TDMA, the relay node 50-1 and the relay node 50-2 can switch the connection destination eNB in a time division manner to suppress interference.
  • the reliability of communication with a radio base station and a high-order node can be improved, without making the load of another radio base station excessive.

Abstract

When a failure occurs in a backhaul (30) and the SI communication with MME(20) becomes impossible, an eNB (10-1) selects an eNB (10-2) and an eNB(10-3) that are two relay eNBs. Further, the eNB (10-1) and the eNB (10-2) perform processing to set a detour bearer (#1) via the eNB (10-2), while the eNB (10-1) and the eNB (10-3) perform processing to set a detour bearer (#2) via the eNB (10-3). Further, the eNB (10-1) assigns packets from a UE(40) to the detour bearer (#1) and the detour bearer (#2) and transmits the packets to the MME(20).

Description

通信システム及び通信制御方法Communication system and communication control method
 本発明は、複数の無線基地局と上位ノードとを有する通信システム、及び、当該通信システムにおける通信制御方法に関する。 The present invention relates to a communication system having a plurality of radio base stations and upper nodes, and a communication control method in the communication system.
 3GPP(Third Generation Partnership Project)において、現在、規格策定中のLTE(Long Term Evolution)に対応する通信システムでは、無線基地局(eNB)は、バックホールを介して、上位のノードであるMME(Mobile Management Entity)に接続され、当該MMEとの間で通信を行う。 In 3GPP (Third Generation Partnership Project), in a communication system corresponding to LTE (Long Terminology Evolution) currently being developed, a radio base station (eNB) is an MME (Mobile Management Entity) and communicate with the MME.
 しかしながら、バックホールに障害が発生し、eNBがMMEと通信を行うことができなくなった場合には、MMEとの通信を確保することが要求される。 However, when a failure occurs in the backhaul and the eNB cannot communicate with the MME, it is required to ensure communication with the MME.
 上記問題点に鑑み、本発明は、無線基地局と上位ノードとの通信の確実性を向上させた通信システム及び通信制御方法を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a communication system and a communication control method that improve the reliability of communication between a radio base station and an upper node.
 上述した課題を解決するために、本発明は以下のような特徴を有している。 In order to solve the above-described problems, the present invention has the following features.
 本発明の特徴は、複数の無線基地局(eNB10-1、eNB10-2、eNB10-3)と上位ノード(MME20、パケット転送装置25)とを有する通信システム(通信システム1)であって、第1の無線基地局と前記上位ノードとの間に、異なる第2の無線基地局を介する通信経路を複数設定する設定部(通信経路設定部112)と、前記設定部により設定された複数の通信経路に、パケットを振り分けて伝送させる伝送部(伝送処理部114)とを備えることを要旨とする。 A feature of the present invention is a communication system (communication system 1) having a plurality of radio base stations (eNB 10-1, eNB 10-2, eNB 10-3) and an upper node (MME 20, packet transfer apparatus 25), A setting unit (communication path setting unit 112) for setting a plurality of communication paths via different second radio base stations between one radio base station and the upper node, and a plurality of communications set by the setting unit The gist is to include a transmission unit (transmission processing unit 114) that distributes and transmits packets on the route.
 このような通信システムは、第1の無線基地局と前記上位ノードとの間に、第2の無線基地局を介する複数の通信経路を設定し、当該複数の通信経路に、パケットを振り分けて伝送させる。従って、第1の無線基地局と上位ノードとの間を伝送されるパケットが特定の第2の無線基地局に集中して、当該第2の無線基地局の負荷が過大となってしまうことを防止しつつ、第1の無線基地局と上位ノードとの間の通信の確実性を向上できる。 In such a communication system, a plurality of communication paths through the second radio base station are set between the first radio base station and the upper node, and packets are distributed and transmitted to the plurality of communication paths. Let Therefore, packets transmitted between the first radio base station and the upper node are concentrated on a specific second radio base station, and the load on the second radio base station becomes excessive. It is possible to improve the certainty of communication between the first radio base station and the upper node while preventing it.
 本発明の特徴は、前記通信経路設定部は、前記第1の無線基地局と前記上位ノードとの間に、前記第2の無線基地局毎の通信経路に関する情報に基づいて、異なる第2の無線基地局を介する通信経路を複数設定することを要旨とする。 A feature of the present invention is that the communication path setting unit is different between the first radio base station and the upper node based on information on a communication path for each second radio base station. The gist is to set a plurality of communication paths through the radio base station.
 本発明の特徴は、前記伝送部は、前記設定部により設定された複数の通信経路に、前記パケットを順次振り分けて伝送させることを要旨とする。 A feature of the present invention is summarized in that the transmission unit sequentially distributes and transmits the packets to a plurality of communication paths set by the setting unit.
 本発明の特徴は、前記通信経路に関する情報は、前記通信経路の伝送速度の情報を含み、前記伝送部は、前記設定部により設定された複数の通信経路に、対応する前記伝送速度に応じた量の前記パケットを振り分けて伝送させることを要旨とする。 The feature of the present invention is that the information on the communication path includes information on the transmission speed of the communication path, and the transmission unit responds to the transmission speed corresponding to the plurality of communication paths set by the setting unit. The gist is to distribute the amount of packets to be transmitted.
 本発明の特徴は、前記伝送速度が変化したとき、前記伝送速度の情報を更新する更新部(更新部116)を備えることを要旨とする。 The gist of a feature of the present invention is that it includes an updating unit (updating unit 116) that updates information on the transmission rate when the transmission rate changes.
 本発明の特徴は、前記伝送部は、前記設定部により設定された通信経路の属性に基づいて、通信経路それぞれにパケットを振り分ける割合を決めてから振り分けて伝送させることを要旨とする。 A feature of the present invention is summarized in that the transmission unit determines a ratio for distributing packets to each communication path based on the attribute of the communication path set by the setting unit, and then distributes and transmits the packet.
 本発明の特徴は、前記伝送部は、前記設定部により設定された前記複数の通信経路に、同一のパケットを伝送させることを要旨とする。 A feature of the present invention is summarized in that the transmission unit transmits the same packet to the plurality of communication paths set by the setting unit.
 このような通信システムでは、第1の無線基地局と上位ノードとの間を同一のパケットが異なる通信経路で伝送されるため、第1の無線基地局と上位ノードとの間の通信の確実性を向上できる。 In such a communication system, since the same packet is transmitted between the first radio base station and the upper node through different communication paths, the certainty of communication between the first radio base station and the upper node is ensured. Can be improved.
 本発明の特徴は、複数の無線基地局と上位ノードとを有する通信システムにおける通信制御方法であって、第1の無線基地局と前記上位ノードとの間に、異なる第2の無線基地局を介する通信経路を複数設定するステップと、設定された複数の通信経路に、パケットを振り分けて伝送させる伝送ステップとを含むことを要旨とする。 A feature of the present invention is a communication control method in a communication system having a plurality of radio base stations and an upper node, wherein a different second radio base station is provided between the first radio base station and the upper node. The gist of the present invention includes a step of setting a plurality of communication paths through which the packet is routed and a transmission step of distributing and transmitting packets to the plurality of set communication paths.
図1は、本発明の実施形態に係る通信システムの全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a communication system according to an embodiment of the present invention. 図2は、本発明の実施形態に係る通信システムにおけるS1インタフェースの設定状態を示す図である。FIG. 2 is a diagram showing a setting state of the S1 interface in the communication system according to the embodiment of the present invention. 図3は、本発明の実施形態に係るeNBの構成図である。FIG. 3 is a configuration diagram of the eNB according to the embodiment of the present invention. 図4は、本発明の実施形態に係るリレーノードの構成図である。FIG. 4 is a configuration diagram of a relay node according to the embodiment of the present invention. 図5は、本発明の実施形態に係る通信経路情報の一例を示す図である。FIG. 5 is a diagram showing an example of communication path information according to the embodiment of the present invention. 図6は、本発明の実施形態に係る通信システムにおける迂回ベアラの設定状態を示す図である。FIG. 6 is a diagram illustrating a setting state of the detour bearer in the communication system according to the embodiment of the present invention. 図7は、本発明の実施形態に係る通信システムの第1の動作を示すシーケンス図である。FIG. 7 is a sequence diagram showing a first operation of the communication system according to the embodiment of the present invention. 図8は、本発明の実施形態に係る通信システムの第2の動作を示すシーケンス図である。FIG. 8 is a sequence diagram showing a second operation of the communication system according to the embodiment of the present invention. 図9は、本発明の実施形態に係る通信システムの第3の動作を示すシーケンス図である。FIG. 9 is a sequence diagram showing a third operation of the communication system according to the embodiment of the present invention.
 次に、図面を参照して、本発明の実施形態を説明する。具体的には、通信システムの概略構成、LTE基地局(eNB)の構成、リレーノードの構成、通信システムの動作、作用・効果、その他の実施形態について説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 Next, an embodiment of the present invention will be described with reference to the drawings. Specifically, a schematic configuration of a communication system, a configuration of an LTE base station (eNB), a configuration of a relay node, an operation of the communication system, operations and effects, and other embodiments will be described. In the description of the drawings in the following embodiments, the same or similar parts are denoted by the same or similar reference numerals.
 (1)通信システムの概略構成
 図1は、本実施形態に係る通信システムの概略構成図である。本実施形態では、通信システム1は、LTE技術を用いて構成されている。図1に示す通信システム1は、無線基地局であるLTE基地局(eNB)10-1、eNB10-2、eNB10-3と、MME(Mobile Management Entity)20と、パケット転送装置25と、eNB10-1乃至eNB10-3とMME20とを接続するバックホール30と、無線端末(UE)40と、リレーノード50-1及びリレーノード50-2とを含む。
(1) Schematic Configuration of Communication System FIG. 1 is a schematic configuration diagram of a communication system according to the present embodiment. In the present embodiment, the communication system 1 is configured using LTE technology. 1 includes an LTE base station (eNB) 10-1, eNB 10-2, eNB 10-3, an MME (Mobile Management Entity) 20, a packet transfer device 25, an eNB 10- 1 to eNB 10-3 and a backhaul 30 connecting the MME 20, a radio terminal (UE) 40, a relay node 50-1, and a relay node 50-2.
 本実施形態において、eNB10-1は、IPアドレスAが付与され、eNB10-2は、IPアドレスBが付与され、eNB10-3は、IPアドレスCが付与されている。MME20は、IPアドレスDが付与され、パケット転送装置25は、IPアドレスEが付与されている。 In this embodiment, the eNB 10-1 is assigned an IP address A, the eNB 10-2 is assigned an IP address B, and the eNB 10-3 is assigned an IP address C. The MME 20 is assigned an IP address D, and the packet transfer device 25 is assigned an IP address E.
 図1において、UE40は、eNB10-1が形成するセル内に存在する。リレーノード50-1は、eNB10-1が形成するセルとeNB10-2が形成するセルの重複領域に存在する。リレーノード50-2は、eNB10-1が形成するセルとeNB10-3が形成するセルの重複領域に存在する。 In FIG. 1, the UE 40 exists in a cell formed by the eNB 10-1. The relay node 50-1 exists in the overlapping area of the cell formed by the eNB 10-1 and the cell formed by the eNB 10-2. The relay node 50-2 exists in the overlapping area of the cell formed by the eNB 10-1 and the cell formed by the eNB 10-3.
 eNB10-1は、当該eNB10-1が形成するセル内のUE40との間で、無線区間を介して無線通信を行うことができる。LTEにおいて、eNB10-1と、UE40との間の通信方式は、E-UTRAN(Evolved UMTS Terrestrial Radio Access Network)と称される。 The eNB 10-1 can perform radio communication with the UE 40 in the cell formed by the eNB 10-1 via a radio section. In LTE, the communication method between the eNB 10-1 and the UE 40 is referred to as E-UTRAN (Evolved UMTS Terrestrial Radio Access Network).
 図2は、通信システム1におけるS1インタフェースの設定状態を示す図である。図2において、eNB10-1とMME20との間には、バックホール30を介して、トランスポート層の論理的な伝送路であるS1インタフェース#1が設定される。また、eNB10-2とMME20との間には、バックホール30を介して、S1インタフェース#2が設定される。eNB10-3とMME20との間には、バックホール30を介して、S1インタフェース#3が設定される。 FIG. 2 is a diagram illustrating a setting state of the S1 interface in the communication system 1. In FIG. 2, an S1 interface # 1 that is a logical transmission path of the transport layer is set between the eNB 10-1 and the MME 20 via the backhaul 30. Further, an S1 interface # 2 is set between the eNB 10-2 and the MME 20 via the backhaul 30. An S1 interface # 3 is set between the eNB 10-3 and the MME 20 via the backhaul 30.
 (2)eNBの構成
 図3は、eNB10-1の構成を示す図である。図3に示すeNB10-1は、制御部102、記憶部103、I/F部104、無線通信部106、アンテナ108を含む。なお、eNB10-2及びeNB10-3も、eNB10-1と同様の構成を有する。
(2) Configuration of eNB FIG. 3 is a diagram illustrating a configuration of the eNB 10-1. The eNB 10-1 illustrated in FIG. 3 includes a control unit 102, a storage unit 103, an I / F unit 104, a radio communication unit 106, and an antenna 108. Note that the eNB 10-2 and the eNB 10-3 have the same configuration as the eNB 10-1.
 制御部102は、例えばCPU(Central Processing Unit)やDSP(Digital Signal Processor)を用いて構成され、eNB10-1が具備する各種機能を制御する。記憶部103は、例えばメモリによって構成され、eNB10-1における制御などに用いられる各種情報を記憶する。 The control unit 102 is configured using, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), and controls various functions of the eNB 10-1. The storage unit 103 is configured by a memory, for example, and stores various information used for control in the eNB 10-1.
 I/F部104は、バックホール30に接続されている。I/F部104は、MME20、eNB10-2及びeNB10-3との間でデータの送信及び受信を行う。 The I / F unit 104 is connected to the backhaul 30. The I / F unit 104 performs data transmission and reception with the MME 20, the eNB 10-2, and the eNB 10-3.
 無線通信部106は、RF回路、ベースバンド回路等を含み、変調及び復調、符号化及び復号等を行い、アンテナ108を介して、UE40との間で、無線信号の送信及び受信を行う。また、無線通信部106は、リレーノード50-1、リレーノード50-2との間で、無線信号の送信及び受信を行うことが可能である。 The wireless communication unit 106 includes an RF circuit, a baseband circuit, etc., performs modulation and demodulation, encoding and decoding, etc., and transmits and receives wireless signals to and from the UE 40 via the antenna 108. Further, the radio communication unit 106 can transmit and receive radio signals between the relay node 50-1 and the relay node 50-2.
 制御部102は、UE40からのパケット転送装置25宛の上りデータを、アンテナ108及び無線通信部106を介して受信する。受信される上りデータは、Uu-IFプロトコルに対応した構成を有する。 The control unit 102 receives the uplink data addressed to the packet transfer device 25 from the UE 40 via the antenna 108 and the wireless communication unit 106. The received uplink data has a configuration corresponding to the Uu-IF protocol.
 バックホール30に設定されたS1インタフェース#1を介する通信(S1通信)が可能である場合、制御部102は、上りデータについて、Uu-IFプロトコルからS1-MME-IFプロトコルへの変換を行う。更に、制御部102は、変換により得られた新たな上りデータを、I/F部104と、バックホール30に設定されたS1インタフェースと、MME20とを介してパケット転送装置25へ送信する(S1通信)。 When communication via the S1 interface # 1 set in the backhaul 30 (S1 communication) is possible, the control unit 102 converts the uplink data from the Uu-IF protocol to the S1-MME-IF protocol. Further, the control unit 102 transmits the new uplink data obtained by the conversion to the packet transfer apparatus 25 via the I / F unit 104, the S1 interface set in the backhaul 30, and the MME 20 (S1). communication).
 また、制御部102は、パケット転送装置25からのUE40宛の下りデータを、I/F部104を介して受信する(S1通信)。受信される下りデータは、S1-MME-IFプロトコルに対応した構成を有する。制御部102は、下りデータについて、S1-MME-IFプロトコルからUu-IFプロトコルへの変換を行う。更に、制御部102は、変換により得られた新たな下りデータを、無線通信部106及びアンテナ108を介して、UE40へ送信する。 Further, the control unit 102 receives downlink data addressed to the UE 40 from the packet transfer device 25 via the I / F unit 104 (S1 communication). The received downlink data has a configuration corresponding to the S1-MME-IF protocol. The control unit 102 converts the downlink data from the S1-MME-IF protocol to the Uu-IF protocol. Further, the control unit 102 transmits new downlink data obtained by the conversion to the UE 40 via the radio communication unit 106 and the antenna 108.
 (3)リレーノードの構成
 図4は、リレーノード50-1の構成を示す図である。図4に示すリレーノード50は、制御部502、記憶部503、無線通信部504、アンテナ506、無線通信部508及びアンテナ510を含む。なお、リレーノード50-2もリレーノード50-1と同様の構成を有する。
(3) Configuration of Relay Node FIG. 4 is a diagram showing a configuration of the relay node 50-1. The relay node 50 illustrated in FIG. 4 includes a control unit 502, a storage unit 503, a wireless communication unit 504, an antenna 506, a wireless communication unit 508, and an antenna 510. Relay node 50-2 has the same configuration as relay node 50-1.
 制御部502は、例えばCPU(Central Processing Unit)やDSP(Digital Signal Processor)を用いて構成され、リレーノード50が具備する各種機能を制御する。記憶部503は、例えばメモリによって構成され、リレーノード50-1における制御などに用いられる各種情報を記憶する。 The control unit 502 is configured using, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), and controls various functions of the relay node 50. The storage unit 503 is configured by a memory, for example, and stores various types of information used for control in the relay node 50-1.
 無線通信部504は、RF回路、ベースバンド回路等を含み、変調及び復調、符号化及び復号等を行い、アンテナ506を介して、eNB10-1との間で、無線信号の送信及び受信を行う。無線通信部508は、RF回路、ベースバンド回路等を含み、変調及び復調、符号化及び復号等を行い、アンテナ510を介して、eNB10-2との間で、無線信号の送信及び受信を行う。なお、リレーノード50-2内の無線通信部508は、アンテナ510を介して、eNB10-3との間で、無線信号の送信及び受信を行う。 The wireless communication unit 504 includes an RF circuit, a baseband circuit, etc., performs modulation and demodulation, encoding and decoding, etc., and transmits and receives wireless signals to and from the eNB 10-1 via the antenna 506. . The radio communication unit 508 includes an RF circuit, a baseband circuit, etc., performs modulation, demodulation, encoding, decoding, etc., and transmits and receives radio signals to and from the eNB 10-2 via the antenna 510. . Note that the radio communication unit 508 in the relay node 50-2 transmits and receives radio signals to and from the eNB 10-3 via the antenna 510.
 (4)通信システムの動作
 ここで、バックホール30の障害が発生し、eNB10-1とMME20との間のS1通信が不可になった場合を考える。この場合、本実施形態では、eNB10-1とMME20との上り通信は、リレーノード50-1及びeNB10-2を介した上り通信と、リレーノード50-2及びeNB10-3を介した上り通信との双方が行われる。以下、詳細を説明する。
(4) Operation of Communication System Here, consider a case where a failure of the backhaul 30 occurs and S1 communication between the eNB 10-1 and the MME 20 becomes impossible. In this case, in this embodiment, uplink communication between the eNB 10-1 and the MME 20 includes uplink communication via the relay node 50-1 and the eNB 10-2, and uplink communication via the relay node 50-2 and the eNB 10-3. Both are performed. Details will be described below.
 (4.1)上り通信におけるeNB10-1の制御部102の処理
 eNB10-1の制御部102内の通信経路設定部112は、S1-MME-IFプロトコルのIPの機能により、バックホール30の障害が発生し、eNB10-1とMME20との間のS1通信が不可になったことを検知する。
(4.1) Processing of the control unit 102 of the eNB 10-1 in uplink communication The communication path setting unit 112 in the control unit 102 of the eNB 10-1 uses the IP function of the S1-MME-IF protocol to It is detected that S1 communication between the eNB 10-1 and the MME 20 is disabled.
 この場合、eNB10-1の制御部102内の通信経路設定部112は、MME20との間の通信において、記憶部103に記憶されている通信経路情報に基づいて、中継局となるべき複数のeNB(中継eNB)を選択する。 In this case, the communication path setting unit 112 in the control unit 102 of the eNB 10-1 has a plurality of eNBs to be relay stations based on the communication path information stored in the storage unit 103 in communication with the MME 20. (Relay eNB) is selected.
 図5は、通信経路情報の一例を示す図である。図5に示す通信経路情報は、eNB10-1以外のeNBであって、当該eNB10-1とリレーノードを介する無線通信が可能なeNB10-2及びeNB10-3のそれぞれについて設定されている。eNB10-2に対応する通信経路情報は、当該eNB10-2の識別情報であるセルIDと、eNB10-1がeNB10-2との間で無線通信を行う際に中継するリレーノード50-1の識別情報であるリレーノードIDと、eNB10-2とMME20との間の伝送速度の情報により構成される。eNB10-3に対応する通信経路情報は、当該eNB10-3の識別情報であるセルIDと、eNB10-1がeNB10-3との間で無線通信を行う際に中継するリレーノード50-2の識別情報であるリレーノードIDと、eNB10-3とMME20との間の伝送速度の情報により構成される。 FIG. 5 is a diagram showing an example of communication path information. The communication path information illustrated in FIG. 5 is set for each of the eNB 10-2 and the eNB 10-3 that are eNBs other than the eNB 10-1 and capable of wireless communication with the eNB 10-1 via the relay node. The communication path information corresponding to the eNB 10-2 includes the cell ID that is the identification information of the eNB 10-2 and the identification of the relay node 50-1 that relays when the eNB 10-1 performs wireless communication with the eNB 10-2. The relay node ID is information, and the transmission rate information between the eNB 10-2 and the MME 20 is configured. The communication path information corresponding to the eNB 10-3 includes the cell ID that is the identification information of the eNB 10-3 and the identification of the relay node 50-2 that relays when the eNB 10-1 performs wireless communication with the eNB 10-3. The relay node ID is information, and information on the transmission rate between the eNB 10-3 and the MME 20.
 eNB10-1の制御部102内の通信経路設定部112は、記憶部103から通信経路情報を読み出す。通信経路設定部112は、各通信経路情報に含まれるセルIDに対応するeNB10-2及びeNB10-3を選択する。 The communication path setting unit 112 in the control unit 102 of the eNB 10-1 reads the communication path information from the storage unit 103. The communication path setting unit 112 selects the eNB 10-2 and the eNB 10-3 corresponding to the cell ID included in each communication path information.
 次に、eNB10-1の制御部102内の通信経路設定部112は、eNB10-1とeNB10-2との間の無線通信を中継するリレーノード50-1との間に、回避ベアラ#1を設定する。また、eNB10-1の制御部102内の通信経路設定部112は、eNB10-1とeNB10-3との間の無線通信を中継するリレーノード50-2との間に、回避ベアラ#2を設定する。 Next, the communication path setting unit 112 in the control unit 102 of the eNB 10-1 sets an avoidance bearer # 1 between the relay node 50-1 that relays radio communication between the eNB 10-1 and the eNB 10-2. Set. In addition, the communication path setting unit 112 in the control unit 102 of the eNB 10-1 sets an avoidance bearer # 2 between the relay node 50-2 that relays wireless communication between the eNB 10-1 and the eNB 10-3. To do.
 次に、eNB10-1の制御部102内の通信経路設定部112は、設定した回避ベアラ#1を介して、リレーノード50-1へ代替ベアラ生成指示情報1を送信する。代替ベアラ生成指示情報1は、eNB10-2を介するベアラの生成を指示するための情報である。また、eNB10-1の制御部102内の通信経路設定部112は、設定した回避ベアラ#2を介して、リレーノード50-2へ代替ベアラ生成指示情報2を送信する。代替ベアラ生成指示情報2は、eNB10-3を介するベアラの生成を指示するための情報である。 Next, the communication path setting unit 112 in the control unit 102 of the eNB 10-1 transmits the alternative bearer generation instruction information 1 to the relay node 50-1 via the set avoidance bearer # 1. The alternative bearer generation instruction information 1 is information for instructing generation of a bearer via the eNB 10-2. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-1 transmits the alternative bearer generation instruction information 2 to the relay node 50-2 via the set avoidance bearer # 2. The alternative bearer generation instruction information 2 is information for instructing generation of a bearer via the eNB 10-3.
 リレーノード50-1の制御部502は、回避ベアラ#1を介して、eNB10-1からの代替ベアラ生成指示情報1を受信する。また、リレーノード50-2の制御部502は、回避ベアラ#2を介して、eNB10-1からの代替ベアラ生成指示情報2を受信する。 The control unit 502 of the relay node 50-1 receives the alternative bearer generation instruction information 1 from the eNB 10-1 via the avoidance bearer # 1. Further, the control unit 502 of the relay node 50-2 receives the alternative bearer generation instruction information 2 from the eNB 10-1 via the avoidance bearer # 2.
 リレーノード50-1の制御部502は、無線区間を介してeNB10-2に接続する。また、リレーノード50-2の制御部502は、無線区間を介してeNB10-3に接続する。 The control unit 502 of the relay node 50-1 is connected to the eNB 10-2 via a wireless section. In addition, the control unit 502 of the relay node 50-2 connects to the eNB 10-3 via a radio section.
 その後、リレーノード50-1の制御部502は、無線通信により代替ベアラ生成指示情報1をeNB10-2へ送信する。リレーノード50-2の制御部502は、無線通信により代替ベアラ生成指示情報2をeNB10-3へ送信する。 Thereafter, the control unit 502 of the relay node 50-1 transmits the alternative bearer generation instruction information 1 to the eNB 10-2 through wireless communication. The control unit 502 of the relay node 50-2 transmits the alternative bearer generation instruction information 2 to the eNB 10-3 through wireless communication.
 eNB10-2の制御部102内の通信経路設定部112は、リレーノード50-1からの代替ベアラ生成情報1を受信する。また、eNB10-2内の制御部102内の通信経路設定部112は、リレーノード50-1からの代替ベアラ生成情報2を受信する。 The communication path setting unit 112 in the control unit 102 of the eNB 10-2 receives the alternative bearer generation information 1 from the relay node 50-1. Further, the communication path setting unit 112 in the control unit 102 in the eNB 10-2 receives the alternative bearer generation information 2 from the relay node 50-1.
 次に、eNB10-2の制御部102内の通信経路設定部112は、S1通信により、バックホール30を介して、代替ベアラ通知情報1をMME20へ送信する。代替ベアラ通知情報1は、eNB10-2を介してeNB10-1とパケット転送装置25との間にベアラが生成される必要があることを通知するための情報であり、eNB10-2のIPアドレスBが含まれている。また、eNB10-3の制御部102内の通信経路設定部112は、S1通信により、バックホール30を介して、代替ベアラ通知情報2をMME20へ送信する。代替ベアラ通知情報2は、eNB10-3を介してeNB10-1とパケット転送装置25との間にベアラが生成される必要があることを通知するための情報であり、eNB10-3のIPアドレスCが含まれている。 Next, the communication path setting unit 112 in the control unit 102 of the eNB 10-2 transmits the alternative bearer notification information 1 to the MME 20 via the backhaul 30 by S1 communication. The alternative bearer notification information 1 is information for notifying that a bearer needs to be generated between the eNB 10-1 and the packet transfer apparatus 25 via the eNB 10-2, and the IP address B of the eNB 10-2 It is included. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 transmits the alternative bearer notification information 2 to the MME 20 through the backhaul 30 by S1 communication. The alternative bearer notification information 2 is information for notifying that a bearer needs to be generated between the eNB 10-1 and the packet transfer apparatus 25 via the eNB 10-3, and the IP address C of the eNB 10-3 It is included.
 MME20は、eNB10-2からの代替ベアラ通知情報1を受信する。更に、MME20は、S1通信により、バックホール30を介して、予め保持しているパケット転送装置25のIPアドレスEをeNB10-2へ送信する。また、MME20は、eNB10-3からの代替ベアラ通知情報2を受信する。更に、MME20は、S1通信により、バックホール30を介して、予め保持しているパケット転送装置25のIPアドレスEをeNB10-3へ送信する。 The MME 20 receives the alternative bearer notification information 1 from the eNB 10-2. Further, the MME 20 transmits the IP address E of the packet transfer device 25 held in advance to the eNB 10-2 via the backhaul 30 by S1 communication. Further, the MME 20 receives the alternative bearer notification information 2 from the eNB 10-3. Further, the MME 20 transmits the IP address E of the packet transfer device 25 held in advance to the eNB 10-3 via the backhaul 30 by S1 communication.
 その後、MME20は、代替ベアラ通知情報1に当該代替ベアラ通知情報1の送信元であるeNB10-2のIPアドレスBを含ませる。更に、MME20は、IPアドレスBを含んだ代替ベアラ通知情報1をパケット転送装置25へ送信する。また、MME20は、代替ベアラ通知情報2に当該代替ベアラ通知情報2の送信元であるeNB10-3のIPアドレスCを含ませる。更に、MME20は、IPアドレスCを含んだ代替ベアラ通知情報2をパケット転送装置25へ送信する。 Thereafter, the MME 20 includes the IP address B of the eNB 10-2 that is the transmission source of the alternative bearer notification information 1 in the alternative bearer notification information 1. Further, the MME 20 transmits the alternative bearer notification information 1 including the IP address B to the packet transfer device 25. Further, the MME 20 includes the IP address C of the eNB 10-3 that is the transmission source of the alternative bearer notification information 2 in the alternative bearer notification information 2. Further, the MME 20 transmits the alternative bearer notification information 2 including the IP address C to the packet transfer device 25.
 パケット転送装置25は、MME20からの代替ベアラ通知情報1及び代替ベアラ通知情報2を受信する。 The packet transfer device 25 receives the alternative bearer notification information 1 and the alternative bearer notification information 2 from the MME 20.
 更に、パケット転送装置25は、代替ベアラ通知情報1に対応する代替ベアラ生成許可情報1をeNB10-2へ送信する。パケット転送装置25は、代替ベアラ通知情報1に含まれるeNB10-2のIPアドレスBによって、代替ベアラ生成許可情報1の送信先を認識できる。また、パケット転送装置25は、代替ベアラ通知情報2に対応する代替ベアラ生成許可情報2をeNB10-3へ送信する。パケット転送装置25は、代替ベアラ通知情報2に含まれるeNB10-3のIPアドレスCによって、代替ベアラ生成許可情報2の送信先を認識できる。 Further, the packet transfer device 25 transmits the alternative bearer generation permission information 1 corresponding to the alternative bearer notification information 1 to the eNB 10-2. The packet transfer apparatus 25 can recognize the transmission destination of the alternative bearer generation permission information 1 by the IP address B of the eNB 10-2 included in the alternative bearer notification information 1. Further, the packet transfer apparatus 25 transmits the alternative bearer generation permission information 2 corresponding to the alternative bearer notification information 2 to the eNB 10-3. The packet transfer apparatus 25 can recognize the transmission destination of the alternative bearer generation permission information 2 based on the IP address C of the eNB 10-3 included in the alternative bearer notification information 2.
 eNB10-2の制御部102内の通信経路設定部112は、代替ベアラ生成許可情報1を受信する。更に、eNB10-2の制御部102内の通信経路設定部112は、代替ベアラ生成許可情報1をリレーノード50-1へ送信する。また、eNB10-3の制御部102内の通信経路設定部112は、代替ベアラ生成許可情報2を受信する。更に、eNB10-3の制御部102内の通信経路設定部112は、代替ベアラ生成許可情報2をリレーノード50-2へ送信する。 The communication path setting unit 112 in the control unit 102 of the eNB 10-2 receives the alternative bearer generation permission information 1. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-2 transmits the alternative bearer generation permission information 1 to the relay node 50-1. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 receives the alternative bearer generation permission information 2. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 transmits the alternative bearer generation permission information 2 to the relay node 50-2.
 その後、eNB10-2の制御部102内の通信経路設定部112は、リレーノード50-1とパケット転送装置25との間に、eNB10-2を介するベアラ(代替ベアラ#1)を設定する。eNB10-1とパケット転送装置25との間には、代替ベアラ#1と回避ベアラ#1とによって、eNB10-2を介する通信経路である迂回ベアラ#1が設定される。 Thereafter, the communication path setting unit 112 in the control unit 102 of the eNB 10-2 sets a bearer (alternative bearer # 1) via the eNB 10-2 between the relay node 50-1 and the packet transfer device 25. Between the eNB 10-1 and the packet transfer apparatus 25, the alternative bearer # 1 and the avoidance bearer # 1 set a detour bearer # 1 that is a communication path via the eNB 10-2.
 また、eNB10-3の制御部102内の通信経路設定部112は、リレーノード50-2とパケット転送装置25との間に、eNB10-3を介するベアラ(代替ベアラ#2)を設定する。eNB10-1とパケット転送装置25との間には、代替ベアラ#2と回避ベアラ#2とによって、eNB10-3を介する通信経路である迂回ベアラ#2が設定される。 Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 sets a bearer (alternative bearer # 2) via the eNB 10-3 between the relay node 50-2 and the packet transfer device 25. Between the eNB 10-1 and the packet transfer apparatus 25, the alternate bearer # 2 and the avoidance bearer # 2 set a detour bearer # 2 that is a communication path via the eNB 10-3.
 その後、eNB10-1の制御部102内の伝送処理部114は、UE40からのパケットを受信する。更に、eNB10-1の制御部102内の伝送処理部114は、受信したパケットを、迂回ベアラ#1を伝送させるパケットと、迂回ベアラ#2を伝送させるパケットとに振り分ける。 Thereafter, the transmission processing unit 114 in the control unit 102 of the eNB 10-1 receives the packet from the UE 40. Further, the transmission processing unit 114 in the control unit 102 of the eNB 10-1 sorts the received packet into a packet for transmitting the bypass bearer # 1 and a packet for transmitting the bypass bearer # 2.
 具体的には、eNB10-1の制御部102内の伝送処理部114は、同量のパケットを迂回ベアラ#1と迂回ベアラ#2とに交互に振り分ける。なお、2つの迂回ベアラを用いて説明しているが、3つ以上の迂回ベアラがあった場合でも、伝送処理部114は、受信したパケットを、迂回ベアラそれぞれに順次振り分けて伝送させる。 Specifically, the transmission processing unit 114 in the control unit 102 of the eNB 10-1 alternately distributes the same amount of packets to the detour bearer # 1 and the detour bearer # 2. Although the description has been given using two bypass bearers, even when there are three or more bypass bearers, the transmission processing unit 114 sequentially distributes and transmits the received packets to the respective bypass bearers.
 あるいは、eNB10-1の制御部102内の伝送処理部114は、eNB10-2に対応する通信経路情報に基づいて、eNB10-2とMME20との間の伝送速度を認識するとともに、eNB10-3に対応する通信経路情報に基づいて、eNB10-3とMME20との間の伝送速度を認識する。更に、eNB10-1の制御部102内の伝送処理部114は、迂回ベアラ#1を伝送させるパケットの量と、迂回ベアラ#2を伝送させるパケットの量との比率が、eNB10-2とMME20との間の伝送速度と、eNB10-3とMME20との間の伝送速度との比率に一致、あるいは、近似する(所定値以内の差となる)ように、パケットを迂回ベアラ#1と迂回ベアラ#2とに交互に振り分ける。 Alternatively, the transmission processing unit 114 in the control unit 102 of the eNB 10-1 recognizes the transmission rate between the eNB 10-2 and the MME 20 based on the communication path information corresponding to the eNB 10-2, and Based on the corresponding communication path information, the transmission rate between the eNB 10-3 and the MME 20 is recognized. Further, the transmission processing unit 114 in the control unit 102 of the eNB 10-1 determines that the ratio between the amount of packets that transmit the detour bearer # 1 and the amount of packets that transmit the detour bearer # 2 is the eNB 10-2 and the MME 20 Between the detour bearer # 1 and the detour bearer # so as to match or approximate (a difference within a predetermined value) the ratio between the transmission rate between the eNB 10-3 and the MME 20 Alternating between 2 and 2.
 あるいは、eNB10-1の制御部102内の伝送処理部114は、同一のパケットを迂回ベアラ#1と迂回ベアラ#2とに振り分ける。 Alternatively, the transmission processing unit 114 in the control unit 102 of the eNB 10-1 distributes the same packet to the bypass bearer # 1 and the bypass bearer # 2.
 あるいは、eNB10-1の制御部102内の伝送処理部114は、迂回ベアラの属性に基づいてパケットを振り分ける。通信経路情報に、属性情報が含まれる場合には、伝送処理部114は、当該属性情報に基づいて、迂回ベアラ#1と迂回ベアラ#2とにパケットを振り分ける割合を決めてから振り分ける。例えば、属性情報が通信経路の物理的構成が有線であるか無線であるかを示す情報であり、eNB10-2とMME20との間が有線区間、eNB10-3とMME20との間が無線区間である場合には、eNB10-1の制御部102内の伝送処理部114は、有線区間に対応するeNB10-2を介する迂回ベアラ#1に対して、無線区間に対応するeNB10-3を介する迂回ベアラ#2よりも多くのパケットを振り分ける。 Alternatively, the transmission processing unit 114 in the control unit 102 of the eNB 10-1 distributes packets based on the attribute of the detour bearer. In the case where attribute information is included in the communication path information, the transmission processing unit 114 determines a distribution ratio of packets to the detour bearer # 1 and the detour bearer # 2 based on the attribute information and then distributes the packets. For example, the attribute information is information indicating whether the physical configuration of the communication path is wired or wireless. The wired section is between eNB 10-2 and MME 20, and the wireless section is between eNB 10-3 and MME 20. In some cases, the transmission processing unit 114 in the control unit 102 of the eNB 10-1 performs the detour bearer via the eNB 10-3 corresponding to the radio section with respect to the detour bearer # 1 via the eNB 10-2 corresponding to the wired section. Distribute more packets than # 2.
 あるいは、eNB10-1の制御部102内の伝送処理部114は、UE40の属性情報を取得できる場合には、当該UE40の属性情報に基づいて、パケットを迂回ベアラ#1と迂回ベアラ#2とに振り分ける。例えば、各UEがクラス分けされており、eNB10-1の制御部102内の伝送処理部114は、UE40のクラスに関する情報を取得できる場合には、クラスが高いほど、通信速度が速くなるように、パケットを振り分ける。 Alternatively, when the transmission processing unit 114 in the control unit 102 of the eNB 10-1 can acquire the attribute information of the UE 40, the transmission processor 114 transfers the packet to the bypass bearer # 1 and the bypass bearer # 2 based on the attribute information of the UE 40. Distribute. For example, when each UE is classified, and the transmission processing unit 114 in the control unit 102 of the eNB 10-1 can obtain information on the class of the UE 40, the higher the class, the faster the communication speed is. , Sort packets.
 eNB10-1の制御部102内の伝送処理部114は、上述した処理によって振り分けられた迂回ベアラ#1を伝送させるパケットを、迂回ベアラ#1を介してeNB10-2へ送信する。また、eNB10-1の制御部102内の伝送処理部114は、上述した処理によって振り分けられた迂回ベアラ#2を伝送させるパケットを、迂回ベアラ#2を介してeNB10-3へ送信する。 The transmission processing unit 114 in the control unit 102 of the eNB 10-1 transmits a packet for transmitting the detour bearer # 1 distributed by the above-described process to the eNB 10-2 via the detour bearer # 1. Also, the transmission processing unit 114 in the control unit 102 of the eNB 10-1 transmits a packet for transmitting the detour bearer # 2 distributed by the above-described process to the eNB 10-3 via the detour bearer # 2.
 eNB10-2の制御部102内の伝送処理部114は、迂回ベアラ#1を伝送されたパケットを受信し、当該パケットを迂回ベアラ#1を介して、パケット転送装置25へ送信する。また、eNB10-3の制御部102内の伝送処理部114は、迂回ベアラ#2を伝送されたパケットを受信し、当該パケットを迂回ベアラ#2を介して、パケット転送装置25へ送信する。 The transmission processing unit 114 in the control unit 102 of the eNB 10-2 receives the packet transmitted through the detour bearer # 1, and transmits the packet to the packet transfer apparatus 25 via the detour bearer # 1. Further, the transmission processing unit 114 in the control unit 102 of the eNB 10-3 receives the packet transmitted through the detour bearer # 2, and transmits the packet to the packet transfer apparatus 25 through the detour bearer # 2.
 上述したパケットの伝送処理と並行して、eNB10-1の制御部102内の更新部116は、通信経路情報を随時更新する。例えば、eNB10-1の近隣に新たなeNBが設置された場合、eNB10-1の制御部102内の更新部116は、当該新たなeNBに対応する通信経路情報を生成する。また、eNB10-2とMME20との間の伝送速度や、eNB10-3とMME20との間の伝送速度が変化した場合、eNB10-1の制御部102内の更新部116は、対応する通信経路情報内の伝送速度の情報を更新する。 In parallel with the packet transmission process described above, the update unit 116 in the control unit 102 of the eNB 10-1 updates the communication path information as needed. For example, when a new eNB is installed in the vicinity of the eNB 10-1, the update unit 116 in the control unit 102 of the eNB 10-1 generates communication path information corresponding to the new eNB. When the transmission rate between the eNB 10-2 and the MME 20 or the transmission rate between the eNB 10-3 and the MME 20 changes, the update unit 116 in the control unit 102 of the eNB 10-1 Update the transmission rate information in
 更に、パケットの伝送処理の間に、回避ベアラ#1、回避ベアラ#2、代替ベアラ#1及び代替ベアラ#2の何れかが切断された場合には、eNB10-1、eNB10-2及びeNB10-3は、上述した回避ベアラ又は代替ベアラの設定処理を再度行う。 Furthermore, if any of avoidance bearer # 1, avoidance bearer # 2, alternative bearer # 1, and alternative bearer # 2 is disconnected during the packet transmission process, eNB 10-1, eNB 10-2, and eNB 10- 3 performs again the setting process of the avoidance bearer or the alternative bearer described above.
 また、eNB10-1の制御部102内の通信経路設定部112は、S1-MME-IFプロトコルのIPの機能により、バックホール30の障害が復旧し、eNB10-1とMME20との間のS1通信が可能になったことを検知する。 Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-1 recovers from the failure of the backhaul 30 by the IP function of the S1-MME-IF protocol, and performs S1 communication between the eNB 10-1 and the MME 20 Detect that is possible.
 この場合、eNB10-1の制御部102内の通信経路設定部112は、回避ベアラ#1を介して、リレーノード50-1へ代替ベアラ解放指示情報1を送信する。代替ベアラ解放指示情報1は、eNB10-2を介するベアラの解放を指示するための情報である。また、eNB10-1の制御部102内の通信経路設定部112は、回避ベアラ#2を介して、リレーノード50-2へ代替ベアラ解放指示情報2を送信する。代替ベアラ解放指示情報2は、eNB10-3を介するベアラの解放を指示するための情報である。eNB10-1の制御部102内の通信経路設定部112は、代替ベアラ解放指示情報1の送信後、回避ベアラ#1を解放し、代替ベアラ解放指示情報2の送信後、回避ベアラ#2を解放する。 In this case, the communication path setting unit 112 in the control unit 102 of the eNB 10-1 transmits the alternative bearer release instruction information 1 to the relay node 50-1 via the avoidance bearer # 1. The alternative bearer release instruction information 1 is information for instructing the release of the bearer via the eNB 10-2. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-1 transmits the alternative bearer release instruction information 2 to the relay node 50-2 via the avoidance bearer # 2. The alternative bearer release instruction information 2 is information for instructing the release of a bearer via the eNB 10-3. The communication path setting unit 112 in the control unit 102 of the eNB 10-1 releases the avoidance bearer # 1 after transmitting the alternative bearer release instruction information 1, and releases the avoidance bearer # 2 after transmitting the alternative bearer release instruction information 2. To do.
 リレーノード50-1の制御部502は、回避ベアラ#1を介して、eNB10-1からの代替ベアラ解放指示情報1を受信する。また、リレーノード50-2の制御部502は、回避ベアラ#2を介して、eNB10-1からの代替ベアラ解放指示情報2を受信する。 The control unit 502 of the relay node 50-1 receives the alternative bearer release instruction information 1 from the eNB 10-1 via the avoidance bearer # 1. Also, the control unit 502 of the relay node 50-2 receives the alternative bearer release instruction information 2 from the eNB 10-1 via the avoidance bearer # 2.
 その後、リレーノード50-1の制御部502は、無線通信により代替ベアラ解放指示情報1をeNB10-2へ送信する。リレーノード50-2の制御部502は、無線通信により代替ベアラ解放指示情報2をeNB10-3へ送信する。 Thereafter, the control unit 502 of the relay node 50-1 transmits the alternative bearer release instruction information 1 to the eNB 10-2 by wireless communication. The control unit 502 of the relay node 50-2 transmits the alternative bearer release instruction information 2 to the eNB 10-3 through wireless communication.
 eNB10-2の制御部102内の通信経路設定部112は、リレーノード50-1からの代替ベアラ解放情報1を受信する。また、eNB10-2内の制御部102内の通信経路設定部112は、リレーノード50-1からの代替ベアラ解放情報2を受信する。 The communication path setting unit 112 in the control unit 102 of the eNB 10-2 receives the alternative bearer release information 1 from the relay node 50-1. Further, the communication path setting unit 112 in the control unit 102 in the eNB 10-2 receives the alternative bearer release information 2 from the relay node 50-1.
 次に、eNB10-2の制御部102内の通信経路設定部112は、S1通信により、バックホール30を介して、代替ベアラ解放通知情報1をMME20へ送信する。代替ベアラ解放通知情報1は、eNB10-2を介する、eNB10-1とパケット転送装置25との間にベアラが解放される必要があることを通知するための情報であり、eNB10-2のIPアドレスBが含まれている。また、eNB10-3の制御部102内の通信経路設定部112は、S1通信により、バックホール30を介して、代替ベアラ解放通知情報2をMME20へ送信する。代替ベアラ解放通知情報2は、eNB10-2を介する、eNB10-1とパケット転送装置25との間にベアラが解放される必要があることを通知するための情報であり、eNB10-3のIPアドレスCが含まれている。 Next, the communication path setting unit 112 in the control unit 102 of the eNB 10-2 transmits the alternative bearer release notification information 1 to the MME 20 via the backhaul 30 by S1 communication. The alternative bearer release notification information 1 is information for notifying that the bearer needs to be released between the eNB 10-1 and the packet transfer apparatus 25 via the eNB 10-2, and the IP address of the eNB 10-2 B is included. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 transmits the alternative bearer release notification information 2 to the MME 20 via the backhaul 30 by S1 communication. The alternative bearer release notification information 2 is information for notifying that the bearer needs to be released between the eNB 10-1 and the packet transfer apparatus 25 via the eNB 10-2, and the IP address of the eNB 10-3 C is included.
 MME20は、eNB10-2からの代替ベアラ解放通知情報1を受信するとともに、eNB10-3からの代替ベアラ解放通知情報2を受信する。 The MME 20 receives the alternative bearer release notification information 1 from the eNB 10-2 and also receives the alternative bearer release notification information 2 from the eNB 10-3.
 MME20は、代替ベアラ解放通知情報1に当該代替ベアラ解放通知情報1の送信元であるeNB10-2のIPアドレスBを含ませる。更に、MME20は、IPアドレスBを含んだ代替ベアラ解放通知情報1をパケット転送装置25へ送信する。また、MME20は、代替ベアラ解放通知情報2に当該代替ベアラ解放通知情報2の送信元であるeNB10-3のIPアドレスCを含ませる。更に、MME20は、IPアドレスCを含んだ代替ベアラ解放通知情報2をパケット転送装置25へ送信する。 The MME 20 includes the IP address B of the eNB 10-2 that is the transmission source of the alternative bearer release notification information 1 in the alternative bearer release notification information 1. Further, the MME 20 transmits the alternative bearer release notification information 1 including the IP address B to the packet transfer device 25. Further, the MME 20 includes the IP address C of the eNB 10-3 that is the transmission source of the alternative bearer release notification information 2 in the alternative bearer release notification information 2. Further, the MME 20 transmits the alternative bearer release notification information 2 including the IP address C to the packet transfer device 25.
 パケット転送装置25は、MME20からの代替ベアラ通知情報1及び代替ベアラ通知情報2を受信する。 The packet transfer device 25 receives the alternative bearer notification information 1 and the alternative bearer notification information 2 from the MME 20.
 更に、パケット転送装置25は、代替ベアラ解放通知情報1に対応する代替ベアラ解放許可情報1をeNB10-2へ送信する。パケット転送装置25は、代替ベアラ解放通知情報1に含まれるeNB10-2のIPアドレスBによって、代替ベアラ解放許可情報1の送信先を認識できる。また、パケット転送装置25は、代替ベアラ解放通知情報2に対応する代替ベアラ解放許可情報2をeNB10-3へ送信する。パケット転送装置25は、代替ベアラ解放通知情報2に含まれるeNB10-3のIPアドレスCによって、代替ベアラ解放許可情報2の送信先を認識できる。 Further, the packet transfer device 25 transmits the alternative bearer release permission information 1 corresponding to the alternative bearer release notification information 1 to the eNB 10-2. The packet transfer apparatus 25 can recognize the transmission destination of the alternative bearer release permission information 1 by the IP address B of the eNB 10-2 included in the alternative bearer release notification information 1. Further, the packet transfer apparatus 25 transmits the alternative bearer release permission information 2 corresponding to the alternative bearer release notification information 2 to the eNB 10-3. The packet transfer apparatus 25 can recognize the transmission destination of the alternative bearer release permission information 2 based on the IP address C of the eNB 10-3 included in the alternative bearer release notification information 2.
 eNB10-2の制御部102内の通信経路設定部112は、代替ベアラ解放許可情報1を受信する。更に、eNB10-2の制御部102内の通信経路設定部112は、代替ベアラ解放許可情報1をリレーノード50-1へ送信する。また、eNB10-3の制御部102内の通信経路設定部112は、代替ベアラ解放許可情報2を受信する。更に、eNB10-3の制御部102内の通信経路設定部112は、代替ベアラ解放許可情報2をリレーノード50-2へ送信する。 The communication path setting unit 112 in the control unit 102 of the eNB 10-2 receives the alternative bearer release permission information 1. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-2 transmits the alternative bearer release permission information 1 to the relay node 50-1. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 receives the alternative bearer release permission information 2. Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 transmits the alternative bearer release permission information 2 to the relay node 50-2.
 また、eNB10-2の制御部102内の通信経路設定部112は、代替ベアラ#1を解放する。同様に、eNB10-3の制御部102内の通信経路設定部112は、代替ベアラ#2を解放する。 Further, the communication path setting unit 112 in the control unit 102 of the eNB 10-2 releases the alternative bearer # 1. Similarly, the communication path setting unit 112 in the control unit 102 of the eNB 10-3 releases the alternative bearer # 2.
 上述の手順を経て、迂回ベアラ#1及び迂回ベアラ#2が解放される。 The detour bearer # 1 and detour bearer # 2 are released through the above procedure.
 次に、シーケンス図を参照しつつ、通信システム1の動作を説明する。図7、図8及び図9は、通信システム1の動作を示すシーケンス図である。 Next, the operation of the communication system 1 will be described with reference to the sequence diagram. 7, 8, and 9 are sequence diagrams illustrating the operation of the communication system 1.
 ステップS101において、UE40は、eNB10-1へパケット転送装置25宛のパケットを送信する。eNB10-1は、UE40からのパケットを受信する。更に、eNB10-1は、パケットをMME20へ送信する。MME20は、eNB10-1からのパケットを受信する。更に、MME20は、パケットをパケット転送装置25へ送信する。パケット転送装置25は、MME20からのパケットを受信する。 In step S101, the UE 40 transmits a packet addressed to the packet transfer device 25 to the eNB 10-1. The eNB 10-1 receives the packet from the UE 40. Further, the eNB 10-1 transmits the packet to the MME 20. The MME 20 receives the packet from the eNB 10-1. Further, the MME 20 transmits the packet to the packet transfer device 25. The packet transfer device 25 receives a packet from the MME 20.
 ステップS102において、バックホール30の障害が発生し、eNB10-1とMME20との間のS1通信が不可になった場合、ステップS103において、eNB10-1は、通信経路情報に基づいて、複数の中継eNBを選択する。ここでは、eNB10-2及びeNB10-3が選択される。 In step S102, when a failure of the backhaul 30 occurs and S1 communication between the eNB 10-1 and the MME 20 becomes impossible, in step S103, the eNB 10-1 uses a plurality of relays based on the communication path information. Select an eNB. Here, eNB 10-2 and eNB 10-3 are selected.
 ステップS104において、eNB10-1は、中継eNB10-2との間の無線通信を中継するリレーノード50-1との間で回避ベアラ#1を設定する。ステップS105において、eNB10-1は、中継eNB10-3との間の無線通信を中継するリレーノード50-2との間で回避ベアラ#2を設定する。 In step S104, the eNB 10-1 sets an avoidance bearer # 1 with the relay node 50-1 that relays wireless communication with the relay eNB 10-2. In step S105, the eNB 10-1 sets an avoidance bearer # 2 with the relay node 50-2 that relays wireless communication with the relay eNB 10-3.
 ステップS106において、eNB10-1は、設定した回避ベアラ#1を介して、リレーノード50-1へ代替ベアラ生成指示情報1を送信する。リレーノード50-1は、代替ベアラ生成指示情報1を受信する。ステップS107において、eNB10-1は、設定した回避ベアラ#2を介して、リレーノード50-2へ代替ベアラ生成指示情報2を送信する。リレーノード50-2は、代替ベアラ生成指示情報2を受信する。 In step S106, the eNB 10-1 transmits the alternative bearer generation instruction information 1 to the relay node 50-1 via the set avoidance bearer # 1. The relay node 50-1 receives the alternative bearer generation instruction information 1. In step S107, the eNB 10-1 transmits the alternative bearer generation instruction information 2 to the relay node 50-2 via the set avoidance bearer # 2. The relay node 50-2 receives the alternative bearer generation instruction information 2.
 ステップS108において、リレーノード50-1は、無線区間を介してeNB10-2に接続する。ステップS109において、リレーノード50-2は、無線区間を介してeNB10-3に接続する。 In step S108, the relay node 50-1 is connected to the eNB 10-2 via a wireless section. In step S109, the relay node 50-2 is connected to the eNB 10-3 via the radio section.
 ステップS110において、リレーノード50-1は、eNB10-2へ代替ベアラ生成指示情報1を送信する。eNB10-2は、代替ベアラ生成指示情報1を受信する。ステップS111において、リレーノード50-2は、eNB10-3へ代替ベアラ生成指示情報2を送信する。eNB10-3は、代替ベアラ生成指示情報2を受信する。 In step S110, the relay node 50-1 transmits the alternative bearer generation instruction information 1 to the eNB 10-2. The eNB 10-2 receives the alternative bearer generation instruction information 1. In step S111, the relay node 50-2 transmits the alternative bearer generation instruction information 2 to the eNB 10-3. The eNB 10-3 receives the alternative bearer generation instruction information 2.
 ステップS112において、eNB10-2は、MME20へ代替ベアラ通知情報1を送信する。MME20は、代替ベアラ通知情報1を受信する。ステップS113において、eNB10-3は、MME20へ代替ベアラ通知情報2を送信する。MME20は、代替ベアラ通知情報2を受信する。 In step S112, the eNB 10-2 transmits the alternative bearer notification information 1 to the MME 20. The MME 20 receives the alternative bearer notification information 1. In step S113, the eNB 10-3 transmits the alternative bearer notification information 2 to the MME 20. The MME 20 receives the alternative bearer notification information 2.
 ステップS114において、MME20は、eNB10-2へパケット転送装置25のIPアドレスEを送信する。eNB10-2は、IPアドレスEを受信する。ステップS115において、MME20は、eNB10-3へパケット転送装置25のIPアドレスEを送信する。eNB10-3は、IPアドレスEを受信する。 In step S114, the MME 20 transmits the IP address E of the packet transfer device 25 to the eNB 10-2. The eNB 10-2 receives the IP address E. In step S115, the MME 20 transmits the IP address E of the packet transfer device 25 to the eNB 10-3. The eNB 10-3 receives the IP address E.
 ステップS116において、MME20は、IPアドレスBを含んだ代替ベアラ通知情報1をパケット転送装置25へ送信する。パケット転送装置25は、IPアドレスBを含んだ代替ベアラ通知情報1を受信する。ステップS117において、MME20は、IPアドレスCを含んだ代替ベアラ通知情報2をパケット転送装置25へ送信する。パケット転送装置25は、IPアドレスCを含んだ代替ベアラ通知情報2を受信する。 In step S116, the MME 20 transmits the alternative bearer notification information 1 including the IP address B to the packet transfer device 25. The packet transfer device 25 receives the alternative bearer notification information 1 including the IP address B. In step S117, the MME 20 transmits the alternative bearer notification information 2 including the IP address C to the packet transfer device 25. The packet transfer device 25 receives the alternative bearer notification information 2 including the IP address C.
 図8のステップS151において、パケット転送装置25は、eNB10-2へ代替ベアラ生成許可情報1を送信する。eNB10-2は、代替ベアラ生成許可情報1を受信する。ステップS152において、パケット転送装置25は、eNB10-3へ代替ベアラ生成許可情報2を送信する。eNB10-3は、代替ベアラ生成許可情報2を受信する。 In step S151 of FIG. 8, the packet transfer apparatus 25 transmits the alternative bearer generation permission information 1 to the eNB 10-2. The eNB 10-2 receives the alternative bearer generation permission information 1. In step S152, the packet transfer apparatus 25 transmits the alternative bearer generation permission information 2 to the eNB 10-3. The eNB 10-3 receives the alternative bearer generation permission information 2.
 ステップS153において、eNB10-2は、代替ベアラ生成許可情報1をリレーノード50-1へ送信する。リレーノード50-1は、代替ベアラ生成許可情報1を受信する。ステップS154において、eNB10-3は、代替ベアラ生成許可情報2をリレーノード50-2へ送信する。リレーノード50-2は、代替ベアラ生成許可情報2を受信する。 In step S153, the eNB 10-2 transmits the alternative bearer generation permission information 1 to the relay node 50-1. The relay node 50-1 receives the alternative bearer generation permission information 1. In step S154, the eNB 10-3 transmits the alternative bearer generation permission information 2 to the relay node 50-2. The relay node 50-2 receives the alternative bearer generation permission information 2.
 ステップS155において、eNB10-2は、リレーノード50-1とパケット転送装置25との間に、eNB10-2を介する代替ベアラ#1を設定する。ステップS156において、eNB10-3は、リレーノード50-2とパケット転送装置25との間に、eNB10-3を介する代替ベアラ#2を設定する。 In step S155, the eNB 10-2 sets an alternative bearer # 1 via the eNB 10-2 between the relay node 50-1 and the packet transfer device 25. In step S156, the eNB 10-3 sets an alternative bearer # 2 via the eNB 10-3 between the relay node 50-2 and the packet transfer device 25.
 回避ベアラ#1と代替ベアラ#1とからなる迂回ベアラ#1が設定され、回避ベアラ#2と代替ベアラ#2とからなる迂回ベアラ#2が設定された後、ステップS159において、UE40は、eNB10-1へパケットを送信する。eNB10-1は、パケットを受信する。 After the bypass bearer # 1 consisting of the avoidance bearer # 1 and the alternative bearer # 1 is set and the bypass bearer # 2 consisting of the avoidance bearer # 2 and the alternative bearer # 2 is set, in step S159, the UE 40 Send packet to -1. The eNB 10-1 receives the packet.
 ステップS160において、eNB10-1は、受信したパケットを迂回ベアラ#1と迂回ベアラ#2とに振り分ける。 In step S160, the eNB 10-1 distributes the received packet to the detour bearer # 1 and the detour bearer # 2.
 ステップS161において、eNB10-1は、迂回ベアラ#1に振り分けられたパケットを、当該迂回ベアラ#1を介して、パケット転送装置25へ送信する。パケット転送装置25は、eNB10-1からのパケットを、迂回ベアラ#1を介して受信する。ステップS162において、eNB10-1は、迂回ベアラ#2に振り分けられたパケットを、当該迂回ベアラ#2を介して、パケット転送装置25へ送信する。パケット転送装置25は、eNB10-2からのパケットを、迂回ベアラ#2を介して受信する。 In step S161, the eNB 10-1 transmits the packet distributed to the detour bearer # 1 to the packet transfer apparatus 25 via the detour bearer # 1. The packet transfer device 25 receives the packet from the eNB 10-1 via the detour bearer # 1. In step S162, the eNB 10-1 transmits the packet distributed to the detour bearer # 2 to the packet transfer apparatus 25 via the detour bearer # 2. The packet transfer device 25 receives the packet from the eNB 10-2 via the detour bearer # 2.
 図9のステップS201において、バックホール30の障害が復旧し、eNB10-1とMME20との間のS1通信が可能になった場合、ステップS202において、eNB10-1は、リレーノード50-1へ代替ベアラ解放指示情報1を送信する。リレーノード50-1は、代替ベアラ解放指示情報1を受信する。ステップS203において、eNB10-1は、リレーノード50-2へ代替ベアラ解放指示情報2を送信する。リレーノード50-2は、代替ベアラ解放指示情報2を受信する。 When the failure of the backhaul 30 is recovered in step S201 in FIG. 9 and S1 communication between the eNB 10-1 and the MME 20 becomes possible, the eNB 10-1 substitutes for the relay node 50-1 in step S202. Bearer release instruction information 1 is transmitted. The relay node 50-1 receives the alternative bearer release instruction information 1. In step S203, the eNB 10-1 transmits the alternative bearer release instruction information 2 to the relay node 50-2. The relay node 50-2 receives the alternative bearer release instruction information 2.
 ステップS204において、リレーノード50-1は、eNB10-2へ代替ベアラ解放指示情報1を送信する。eNB10-2は、代替ベアラ解放指示情報1を受信する。ステップS205において、リレーノード50-2は、eNB10-3へ代替ベアラ解放指示情報2を送信する。eNB10-3は、代替ベアラ解放指示情報2を受信する。 In step S204, the relay node 50-1 transmits the alternative bearer release instruction information 1 to the eNB 10-2. The eNB 10-2 receives the alternative bearer release instruction information 1. In step S205, the relay node 50-2 transmits the alternative bearer release instruction information 2 to the eNB 10-3. The eNB 10-3 receives the alternative bearer release instruction information 2.
 ステップS206において、eNB10-2は、MME20へ代替ベアラ解放通知情報1を送信する。MME20は、代替ベアラ解放通知情報1を受信する。ステップS207において、eNB10-3は、MME20へ代替ベアラ解放通知情報2を送信する。MME20は、代替ベアラ解放通知情報2を受信する。 In step S206, the eNB 10-2 transmits the alternative bearer release notification information 1 to the MME 20. The MME 20 receives the alternative bearer release notification information 1. In step S207, the eNB 10-3 transmits the alternative bearer release notification information 2 to the MME 20. The MME 20 receives the alternative bearer release notification information 2.
 ステップS208において、MME20は、IPアドレスBを含んだ代替ベアラ解放通知情報1をパケット転送装置25へ送信する。パケット転送装置25は、IPアドレスBを含んだ代替ベアラ解放通知情報1を受信する。ステップS209において、MME20は、IPアドレスCを含んだ代替ベアラ解放通知情報2をパケット転送装置25へ送信する。パケット転送装置25は、IPアドレスCを含んだ代替ベアラ解放通知情報2を受信する。 In step S208, the MME 20 transmits the alternative bearer release notification information 1 including the IP address B to the packet transfer device 25. The packet transfer apparatus 25 receives the alternative bearer release notification information 1 including the IP address B. In step S209, the MME 20 transmits the alternative bearer release notification information 2 including the IP address C to the packet transfer device 25. The packet transfer apparatus 25 receives the alternative bearer release notification information 2 including the IP address C.
 ステップS210において、パケット転送装置25は、eNB10-2へ代替ベアラ解放許可情報1を送信する。eNB10-2は、代替ベアラ解放許可情報1を受信する。ステップS211において、パケット転送装置25は、eNB10-3へ代替ベアラ解放許可情報2を送信する。eNB10-3は、代替ベアラ解放許可情報2を受信する。 In step S210, the packet transfer device 25 transmits the alternative bearer release permission information 1 to the eNB 10-2. The eNB 10-2 receives the alternative bearer release permission information 1. In step S211, the packet transfer apparatus 25 transmits the alternative bearer release permission information 2 to the eNB 10-3. The eNB 10-3 receives the alternative bearer release permission information 2.
 ステップS212において、eNB10-2は、代替ベアラ解放許可情報1をリレーノード50-1へ送信する。リレーノード50-1は、代替ベアラ解放許可情報1を受信する。ステップS213において、eNB10-3は、代替ベアラ解放許可情報2をリレーノード50-2へ送信する。リレーノード50-2は、代替ベアラ解放許可情報2を受信する。 In step S212, the eNB 10-2 transmits the alternative bearer release permission information 1 to the relay node 50-1. The relay node 50-1 receives the alternative bearer release permission information 1. In step S213, the eNB 10-3 transmits the alternative bearer release permission information 2 to the relay node 50-2. The relay node 50-2 receives the alternative bearer release permission information 2.
 (5)作用・効果
 本実施形態に係る通信システム1において、eNB10-1は、通常状態、具体的には、バックホール30の障害が発生する前の状態の場合には、S1通信により、MME20へパケット転送装置25宛のパケットを送信する。一方、バックホール30に障害が発生してMME20との間のS1通信が不可能になった場合には、eNB10-1は、2つの中継eNBであるeNB10-2及びeNB10-3を選択する。更に、eNB10-1及びeNB10-2は、eNB10-2を介する迂回ベアラ#1を設定するための処理を行い、eNB10-1及びeNB10-3は、eNB10-3を介する迂回ベアラ#2を設定するための処理とを行う。更に、eNB10-1は、パケット転送装置25宛のパケットを、迂回ベアラ#1と迂回ベアラ#2とに振り分けて、MME20に向けて送信する。
(5) Actions / Effects In the communication system 1 according to the present embodiment, the eNB 10-1 operates in the normal state, specifically, in the state before the failure of the backhaul 30 occurs, by the S1 communication. To the packet transfer device 25. On the other hand, when a failure occurs in the backhaul 30 and S1 communication with the MME 20 becomes impossible, the eNB 10-1 selects two eNBs, eNB 10-2 and eNB 10-3. Further, the eNB 10-1 and the eNB 10-2 perform processing for setting the bypass bearer # 1 via the eNB 10-2, and the eNB 10-1 and the eNB 10-3 set the bypass bearer # 2 via the eNB 10-3. Process. Further, the eNB 10-1 distributes the packet addressed to the packet transfer apparatus 25 to the detour bearer # 1 and the detour bearer # 2, and transmits the packet to the MME 20.
 従って、バックホール30に障害が発生してMME20との間のS1通信が不可能になった場合に、eNB10-1とMME20との間を伝送されるパケットが、迂回のために1の中継eNBに集中して、当該中継eNBの負荷が過大となってしまうことを防止しつつ、eNB10-1とパケット転送装置25との間の通信の確実性を向上できる。 Therefore, when a failure occurs in the backhaul 30 and S1 communication with the MME 20 becomes impossible, a packet transmitted between the eNB 10-1 and the MME 20 is transferred to one relay eNB for detouring. Thus, the reliability of communication between the eNB 10-1 and the packet transfer apparatus 25 can be improved while preventing the load on the relay eNB from becoming excessive.
 (6)その他の実施形態
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
(6) Other Embodiments As described above, the present invention has been described according to the embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 上述した実施形態では、eNB10-1は、2つの中継eNBであるeNB10-2を介する迂回ベアラ#1と、eNB10-3を介する迂回ベアラ#2とにパケットを振り分けた。しかし、eNB10-1は、3つ以上の中継eNBを選択し、当該中継eNBのそれぞれを介する迂回ベアラを設定するための処理を行った上で、各迂回ベアラにパケットを振り分けるようにしてもよい。 In the embodiment described above, the eNB 10-1 distributes the packet to the detour bearer # 1 via the eNB 10-2 that is two relay eNBs and the detour bearer # 2 via the eNB 10-3. However, the eNB 10-1 may select three or more relay eNBs, perform processing for setting detour bearers via each of the relay eNBs, and then distribute packets to each detour bearer. .
 上述した実施形態では、バックホール30に障害が発生し、eNB10-1とMME20とのS1通信が不可になった場合に、迂回ベアラ#1と迂回ベアラ#2とが設定され、eNB10-1は、迂回ベアラ#1と迂回ベアラ#2とにパケットを振り分けて送信した。しかし、S1通信が不可となったこと以外の条件が満たされた場合に、eNB10-1は、迂回ベアラ#1と迂回ベアラ#2とにパケットを振り分けて送信してもよい。 In the embodiment described above, when a failure occurs in the backhaul 30 and S1 communication between the eNB 10-1 and the MME 20 becomes impossible, the detour bearer # 1 and the detour bearer # 2 are set, and the eNB 10-1 The packets are distributed and transmitted to the detour bearer # 1 and the detour bearer # 2. However, the eNB 10-1 may distribute and transmit packets to the detour bearer # 1 and the detour bearer # 2 when conditions other than that the S1 communication is disabled are satisfied.
 例えば、eNB10-1内の制御部102は、MME20との間の通信におけるトラフィック量が予め定められた閾値未満である場合には、迂回ベアラ#1と迂回ベアラ#2とを設定するために必要な処理を行い、当該迂回ベアラ#1と迂回ベアラ#2とにパケットを振り分けて送信してもよい。 For example, the control unit 102 in the eNB 10-1 is necessary for setting the detour bearer # 1 and the detour bearer # 2 when the traffic volume in communication with the MME 20 is less than a predetermined threshold. Thus, the packet may be distributed and transmitted to the detour bearer # 1 and the detour bearer # 2.
 また、上述した実施形態では、リレーノード50-1による中継が行われる場合には、eNB10-1によって形成されるセルとeNB10-2によって形成されるセルとにおいて、異なる周波数チャネルが用いられることを前提とし、リレーノード50-2による中継が行われる場合には、eNB10-1によって形成されるセルとeNB10-3によって形成されるセルとにおいて、異なる周波数チャネルが用いられることを前提とした。しかし、同一の周波数チャネルが用いられる場合であっても、SDMAやOFDMサブチャネルを用いることで、干渉を抑制可能である。また、TDMAにより、リレーノード50-1やリレーノード50-2が、時分割で接続先のeNBを切り替えることで、干渉を抑制可能である。 Further, in the above-described embodiment, when relaying is performed by the relay node 50-1, different frequency channels are used in the cell formed by the eNB 10-1 and the cell formed by the eNB 10-2. It is assumed that when relaying by relay node 50-2 is performed, it is assumed that different frequency channels are used in the cell formed by eNB 10-1 and the cell formed by eNB 10-3. However, even when the same frequency channel is used, interference can be suppressed by using SDMA or OFDM subchannels. Further, by TDMA, the relay node 50-1 and the relay node 50-2 can switch the connection destination eNB in a time division manner to suppress interference.
 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な請求の範囲の発明特定事項によってのみ限定されるものである。 なお、日本国特許出願第2010-269317号(2010年12月2日出願)の全内容が、参照により、本願明細書に組み込まれている。 Thus, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure. Note that the entire content of Japanese Patent Application No. 2010-269317 (filed on Dec. 2, 2010) is incorporated herein by reference.
 本発明によれば、他の無線基地局の負荷を過大にすることなく、無線基地局と上位ノードとの通信の確実性を向上できる。
 
ADVANTAGE OF THE INVENTION According to this invention, the reliability of communication with a radio base station and a high-order node can be improved, without making the load of another radio base station excessive.

Claims (8)

  1.  複数の無線基地局と上位ノードとを有する通信システムであって、
     第1の無線基地局と前記上位ノードとの間に、異なる第2の無線基地局を介する通信経路を複数設定する設定部と、
     前記設定部により設定された複数の通信経路に、パケットを振り分けて伝送させる伝送部と
     を備える通信システム。
    A communication system having a plurality of radio base stations and upper nodes,
    A setting unit configured to set a plurality of communication paths via different second radio base stations between the first radio base station and the upper node;
    A communication system comprising: a transmission unit that distributes and transmits packets to a plurality of communication paths set by the setting unit.
  2.  前記通信経路設定部は、前記第1の無線基地局と前記上位ノードとの間に、前記第2の無線基地局毎の通信経路に関する情報に基づいて、異なる第2の無線基地局を介する通信経路を複数設定する請求項1に記載の通信システム。 The communication path setting unit communicates between the first radio base station and the upper node via different second radio base stations based on information on a communication path for each second radio base station. The communication system according to claim 1, wherein a plurality of routes are set.
  3.  前記伝送部は、前記設定部により設定された複数の通信経路に、前記パケットを順次振り分けて伝送させる請求項1に記載の通信システム。 The communication system according to claim 1, wherein the transmission unit sequentially distributes and transmits the packets to a plurality of communication paths set by the setting unit.
  4.  前記通信経路に関する情報は、前記通信経路の伝送速度の情報を含み、
     前記伝送部は、前記設定部により設定された複数の通信経路に、対応する前記伝送速度に応じた量の前記パケットを振り分けて伝送させる請求項2に記載の通信システム。
    The information on the communication path includes information on the transmission speed of the communication path,
    3. The communication system according to claim 2, wherein the transmission unit distributes and transmits an amount of the packet corresponding to the transmission rate corresponding to the plurality of communication paths set by the setting unit.
  5.  前記伝送速度が変化したとき、前記伝送速度の情報を更新する更新部を備える請求項4に記載の通信システム。 The communication system according to claim 4, further comprising an update unit that updates information on the transmission rate when the transmission rate is changed.
  6.  前記伝送部は、前記設定部により設定された通信経路の属性に基づいて、通信経路それぞれにパケットを振り分ける割合を決めてから振り分けて伝送させる請求項2に記載の通信システム。 3. The communication system according to claim 2, wherein the transmission unit distributes and transmits the packet after determining a ratio of distributing the packet to each communication path based on the attribute of the communication path set by the setting unit.
  7.  前記伝送部は、前記設定部により設定された前記複数の通信経路に、同一のパケットを伝送させる請求項1に記載の通信システム。 2. The communication system according to claim 1, wherein the transmission unit transmits the same packet to the plurality of communication paths set by the setting unit.
  8.  複数の無線基地局と上位ノードとを有する通信システムにおける通信制御方法であって、
     第1の無線基地局と前記上位ノードとの間に、異なる第2の無線基地局を介する通信経路を複数設定するステップと、
     設定された複数の通信経路に、パケットを振り分けて伝送させる伝送ステップと を含む通信制御方法。
     
    A communication control method in a communication system having a plurality of radio base stations and upper nodes,
    Setting a plurality of communication paths through different second radio base stations between the first radio base station and the upper node;
    A communication control method comprising: a transmission step of distributing and transmitting packets to a plurality of set communication paths.
PCT/JP2011/077259 2010-12-02 2011-11-25 Communication system and method of controlling communication WO2012073842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012546837A JPWO2012073842A1 (en) 2010-12-02 2011-11-25 Communication system and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-269317 2010-12-02
JP2010269317 2010-12-02

Publications (1)

Publication Number Publication Date
WO2012073842A1 true WO2012073842A1 (en) 2012-06-07

Family

ID=46171777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077259 WO2012073842A1 (en) 2010-12-02 2011-11-25 Communication system and method of controlling communication

Country Status (2)

Country Link
JP (1) JPWO2012073842A1 (en)
WO (1) WO2012073842A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514147A (en) * 2015-04-08 2018-05-31 アルカテル−ルーセント Base station synchronization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320439A (en) * 2000-05-11 2001-11-16 Nec Software Chubu Ltd File transfer method, and its system
JP2003179536A (en) * 2001-12-10 2003-06-27 Mitsubishi Electric Corp Radio mobile communication system
JP2004072198A (en) * 2002-08-01 2004-03-04 Ntt Docomo Inc Communication path control system, communication path control method, and base station
JP2009232379A (en) * 2008-03-25 2009-10-08 Nec Infrontia Corp Communication path securing method, device and program when wired lan fails

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320439A (en) * 2000-05-11 2001-11-16 Nec Software Chubu Ltd File transfer method, and its system
JP2003179536A (en) * 2001-12-10 2003-06-27 Mitsubishi Electric Corp Radio mobile communication system
JP2004072198A (en) * 2002-08-01 2004-03-04 Ntt Docomo Inc Communication path control system, communication path control method, and base station
JP2009232379A (en) * 2008-03-25 2009-10-08 Nec Infrontia Corp Communication path securing method, device and program when wired lan fails

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514147A (en) * 2015-04-08 2018-05-31 アルカテル−ルーセント Base station synchronization
US10772055B2 (en) 2015-04-08 2020-09-08 Alcatel Lucent Base station synchronization

Also Published As

Publication number Publication date
JPWO2012073842A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
EP3925173B1 (en) A central unit (cu), a distributed unit (du) and methods therein for forwarding of data in an integrated access backhaul (iab) network
KR102630472B1 (en) Method, apparatus and system for integrated access and backhaul bearer management
CN109156005B (en) Base station and user terminal
EP2564636B1 (en) Handover preparations
US11233722B2 (en) System and method for network topology management
EP2910047B1 (en) Optimized user equipement relaying
EP2941914B1 (en) Method and apparatus for wireless link recovery between bss in a wireless communication system
MX2012011120A (en) Configuring relay cell identities in cellular networks.
JP6562571B2 (en) Radio resource control RRC connection method and apparatus, and RRC reconnection method and apparatus
ES2908084T3 (en) Method and apparatus for releasing side link radio bearer in a wireless communication system
US11770810B2 (en) Service data transmission method, first communications node, and base station
US10045171B2 (en) Positional information managing device, mobile terminal, and mobile device
US20220086749A1 (en) Cell selection on a radio link failure in wireless relay networks
WO2021151247A1 (en) Connection management in multi-hop networks
EP2625882B1 (en) Method for providing the identity of an apparatus in a communications network and apparatus thereof
JP5869492B2 (en) Communication system, radio base station, and communication control method
JP6820937B2 (en) Wireless terminals and network devices
US20130143582A1 (en) Transmitting radio configuration parameters from a base station to a relay node
CN114097299A (en) Communication method and device
WO2012073842A1 (en) Communication system and method of controlling communication
US20230048554A1 (en) Connection management in multi-hop networks
CN117121556A (en) Handover techniques for time-sensitive networking
GB2507437A (en) Handover from a relay node
EP4216594A1 (en) Communication control method
JP5498924B2 (en) Wireless communication system, wireless base station, and communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844249

Country of ref document: EP

Kind code of ref document: A1