WO2012073826A1 - Illumination device, display device and television receiving device - Google Patents

Illumination device, display device and television receiving device Download PDF

Info

Publication number
WO2012073826A1
WO2012073826A1 PCT/JP2011/077197 JP2011077197W WO2012073826A1 WO 2012073826 A1 WO2012073826 A1 WO 2012073826A1 JP 2011077197 W JP2011077197 W JP 2011077197W WO 2012073826 A1 WO2012073826 A1 WO 2012073826A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
region
chromaticity
guide member
led
Prior art date
Application number
PCT/JP2011/077197
Other languages
French (fr)
Japanese (ja)
Inventor
良武 石元
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012073826A1 publication Critical patent/WO2012073826A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0091Positioning aspects of the light source relative to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • the display elements of image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display panels such as liquid crystal panels and plasma display panels, which enables thinning of image display devices.
  • a backlight device is separately required as a lighting device, and the backlight device is roughly classified into a direct type and an edge light type according to the mechanism.
  • an edge light type backlight device In order to further reduce the thickness of the liquid crystal display device, it is preferable to use an edge light type backlight device, and an example described in Patent Document 1 below is known.
  • the light source is arranged in a facing manner with respect to a corner portion of the light guide member.
  • the light emitted from the light source is propagated through the light guide member and then emitted to the outside from the light exit surface of the light guide member.
  • Light on the short wavelength side such as light tends to scatter and tend to be emitted to the outside as compared to light on the long wavelength side such as light in the yellow or red wavelength region.
  • the long wavelength side such as light in the yellow or red wavelength region.
  • the present invention has been completed based on the above situation, and an object thereof is to suppress the occurrence of uneven color in the emitted light.
  • An illuminating device of the present invention includes a light source, a light guide member having an end facing the light source and having a light exit surface that emits light incident on the end from the light source, and the light guide.
  • a first member that is disposed in contact with a surface adjacent to the light emitting surface of the light member and reflects the light in the light guide member, wherein the reflecting member is at least relatively close to the light source.
  • the second region relatively far from the light source, the first region has both x and y values that are chromaticity coordinate values of the CIE1931 chromaticity diagram as compared to the second region. It is relatively large.
  • the light that has entered the end of the light guide member from the light source is reflected by a reflecting member disposed in contact with a surface adjacent to the light emitting surface, propagates through the inside, and is then emitted from the light emitting surface.
  • Light on the short wavelength side included in the light propagating through the light guide member tends to scatter and tend to be emitted to the outside as compared with light on the long wavelength side. For this reason, in the region relatively close to the light source of the light guide member, the emission of light on the short wavelength side tends to be excessive, and conversely in the region relatively far from the light source, the emission of light on the short wavelength side is insufficient. This tends to cause color unevenness in the light emitted from the light guide member.
  • the x value and the y value which are chromaticity coordinate values of the CIE1931 chromaticity diagram related to the first region relatively close to the light source, of the reflecting member are set to the second region relatively far from the light source. Both the x value and the y value are relatively large. According to such a configuration, the first region relatively close to the light source tends to reflect more light on the longer wavelength side and reduce the amount of reflected light on the shorter wavelength side than the second region. Therefore, in the region of the light guide member that is relatively close to the light source, emission is promoted for light on the long wavelength side, which tends to be short, whereas light on the short wavelength side, which tends to be excessive, is promoted. The emission is suppressed.
  • the second region relatively far from the light source tends to reflect more light on the short wavelength side and reduce the amount of reflected light on the long wavelength side than the first region.
  • the emission of long-wavelength light that tends to be excessive is suppressed, whereas the emission of short-wavelength light that tends to be insufficient is promoted.
  • color unevenness that can occur between the light emitted from the region relatively close to the light source in the light guide member and the light emitted from the relatively distant region can be reduced. Suitable for enlargement.
  • the reflection member prevents light from being emitted from the surface of the light guide member adjacent to the light emission surface, and the reflection member includes the first region and the second region described above. Therefore, the light from the light source can be efficiently used as the emitted light, the luminance can be improved, and the color unevenness can be prevented.
  • a surface adjacent to the light exit surface includes a light incident surface on which light from the light source is incident
  • the reflective member includes the light guide member of the light guide member.
  • a surface adjacent to the light exit surface is disposed over the entire area excluding the light incident surface.
  • the light source has a light distribution in which an optical axis that is a traveling direction of light having a peak emission intensity is parallel to the light emitting surface, and the reflecting member is orthogonal to the optical axis. It has a surface to do. In this way, light having a peak emission intensity among the light from the light source can be efficiently reflected by the reflecting member orthogonal to the optical axis that is the traveling direction, so that the use of light is possible.
  • the efficiency and brightness are higher, and it is more suitable for preventing color unevenness.
  • arranged in contact with the surface on the opposite side to the said light-projection surface among the said light guide members is provided. If it does in this way, the light from the light source which entered into the light guide member is opposite to the light emission surface of the light guide member and the reflection member in contact with the surface adjacent to the light emission surface of the light guide member. After being propagated through the light guide member by being reflected by the second reflecting member in contact with the surface on the side, the light is emitted from the light emitting surface.
  • the second reflecting member When the second reflecting member is divided into at least a first region relatively close to the light source and a second region relatively distant from the light source, the first region is compared with the second region. Both the x value and the y value, which are chromaticity coordinate values in the CIE 1931 chromaticity diagram, are relatively large.
  • the second reflecting member that is in contact with the surface opposite to the light emitting surface includes the first region and the second region in the same manner as the reflecting member described above. Among these, the color unevenness that can occur between the outgoing light from the region relatively close to the light source and the outgoing light from the region far from the light source can be alleviated more effectively.
  • the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the first area is (x1, y1)
  • the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the second area is (x2, y2)
  • white When the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the reference chromaticity is (x0, y0), the first area and the second area are in a relationship satisfying the following expressions (1) and (2) Each has a degree coordinate value.
  • the chromaticity of the second region can be made closer to the white reference chromaticity as compared with the case where the x1 value is smaller than the x0 value and the y1 value is smaller than the y0 value.
  • the light reflection efficiency of the reflecting member becomes better as the chromaticity becomes closer to the white reference chromaticity. Therefore, the light reflection efficiency in the second region becomes better, thereby improving the luminance of the emitted light. It is suitable. Further, it is useful when the light emitted from the light source is white light or light having a color close to it.
  • the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the first area is (x1, y1)
  • the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the second area is (x2, y2)
  • white When the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the reference chromaticity is (x0, y0), the first region and the second region have colors satisfying the following expressions (3) and (4) Each has a degree coordinate value.
  • the chromaticity of the first region makes it possible to make the chromaticity of the first region closer to the white reference chromaticity as compared with the case where the x2 value is larger than the x0 value and the y2 value is larger than the y0 value.
  • the light reflection efficiency of the reflecting member becomes better as the chromaticity becomes closer to the white reference chromaticity. Therefore, the light reflection efficiency in the first region becomes better, thereby improving the luminance of the emitted light. It is suitable. Further, it is useful when the light emitted from the light source is white light or light having a color close to it.
  • the first area and the second area have chromaticity coordinate values that satisfy the following expressions (5) and (6).
  • both the first region and the second region have chromaticity close to the white reference chromaticity, both the light reflection efficiency in the first region and the second region are good, Therefore, it is more effective in improving the brightness of the emitted light.
  • the color exhibited by the first region and the color exhibited by the second region have a complementary relationship, it is particularly useful when the emitted light from the light source is white light.
  • the reflective member When the reflective member is divided into a third region adjacent to both the first region and the second region in addition to the first region, the third region is compared to the second region, Both the x value and the y value, which are chromaticity coordinate values in the CIE 1931 chromaticity diagram, are relatively small, and both the x value and the y value are relatively large compared to the first region.
  • the third region adjacent to both the first region and the second region of the reflecting member is light on the short wavelength side with respect to the reflected light amount of the light on the long wavelength side compared to the first region.
  • the ratio of the reflected light amount of the short wavelength side to the reflected light amount of the light on the long wavelength side tends to be relatively small as compared with the second region. That is, in the third region, the ratio of the reflected light amount of the short wavelength side to the reflected light amount of the long wavelength side light is a value between the adjacent first region and the second region. Color unevenness is less likely to occur in the emitted light.
  • the light guide member has a substantially square plate shape when seen in a plan view, and the one plate surface constitutes the light emitting surface, whereas the reflection member is arranged in contact with the end surface.
  • the reflection member is composed of a plurality of divided reflection members divided for each of the end surfaces corresponding to the sides of the light guide member. In this way, when installing the reflecting member, it is only necessary to arrange the plurality of divided reflecting members for each end face corresponding to each side of the light guide member. Therefore, a reflecting member having a shape straddling a plurality of sides is used. Compared to the case, the positioning with respect to the light guide member is facilitated and the workability is excellent.
  • the plurality of divided reflecting members include those in which the entire region is the first region and those in which the entire region is the second region. In this way, compared to the case where the first region and the second region are mixed in one divided reflecting member, the divided reflecting member can be easily manufactured, and the manufacturing cost can be reduced. Can be planned.
  • the first region and the second region are made different from each other in chromaticity coordinate values of the CIE1931 chromaticity diagram by applying paint on the surface of the reflecting member. If it does in this way, the chromaticity in a 1st field and the 2nd field can be made appropriate by selecting the coating range (coating area), the kind of paint, etc. with respect to the surface of a reflective member, respectively. .
  • the dots are arranged such that the chromaticity coordinate values of the CIE 1931 chromaticity diagram in the first area and the second area become smaller in the direction away from the light source. In this way, since the chromaticity in the first region and the second region changes gently according to the distance from the light source, color unevenness of the emitted light in the light guide member can be more suitably suppressed.
  • the first region and the second region may have different chromaticity coordinate values in the CIE 1931 chromaticity diagram by including a pigment in the reflecting member. If it does in this way, chromaticity in the 1st field and the 2nd field can be made appropriate by selecting the quantity (content concentration etc.) of the pigment contained in a reflective member, the kind of pigment, etc., respectively. .
  • the light guide member has a substantially square shape when seen in a plane, the light source is opposed to a corner portion of the end portion of the light guide member and its optical axis is
  • the light guide member is arranged to be inclined with respect to the side. In this way, it is possible to reduce the number of light sources installed and to set the optical axis of the light source relative to the side as compared with the case where a plurality of light sources are arranged in parallel along one side of the end portion of the light guide member. By tilting, light can be efficiently supplied into the light guide member.
  • the light source is arranged so that an optical axis thereof substantially coincides with a diagonal line in the light guide member. In this way, compared to the case where the optical axis is set to intersect the diagonal line, the light from the light source reaches the corner on the side opposite to the light source in the light guide member along the optical axis. Since the distance becomes longer, a difference in the chromaticity of the emitted light is likely to occur between the light source member near the corner on the light source side and the corner near the light source side. Color unevenness can be effectively suppressed.
  • the light guide member has a substantially square shape when seen in a plan view, a plurality of the light sources are arranged in parallel along one side of the end portions of the light guide member. In this way, light from a plurality of light sources can be incident on the light guide member, which is suitable for improving the luminance of the emitted light.
  • the light guide member has a substantially rectangular shape when seen in a plane
  • the light source includes a plurality of light sources arranged in parallel along one short side of the end portions of the light guide member and each light.
  • the axis is arranged so that it is almost coincident with the long side.
  • the light guide member since the distance from the light source to the short side of the light guide member opposite to the light source along the optical axis is equal to the long side of the light guide member, the light guide member Among them, although the difference in chromaticity of the emitted light is likely to occur between the short side near the light source and the short side opposite to the light source, the above-described configuration effectively suppresses uneven color of the emitted light. Can do.
  • the light source is an LED. In this way, high brightness and low power consumption can be achieved.
  • the LED includes an LED element that emits substantially blue monochromatic light, and a phosphor that emits light when excited by light from the LED element.
  • the light emitted from the LED contains a lot of light in the blue wavelength region. Since a large amount of light in the blue wavelength region tends to be emitted in a region relatively close to the LED of the light guide member, there is a concern that the light will attenuate until reaching a region relatively far from the LED.
  • the above-described configuration can effectively suppress color unevenness that may occur in the light emitted from the light guide member.
  • a display device of the present invention includes the above-described illumination device and a display panel that performs display using light from the illumination device.
  • the illumination device that supplies light to the display panel can suppress color unevenness in the emitted light, so that display with excellent display quality can be realized. It becomes.
  • a liquid crystal panel can be exemplified as the display panel.
  • Such a display device can be applied as a liquid crystal display device to various uses such as a display of a television or a personal computer, and is particularly suitable for a large screen.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • the exploded perspective view which shows schematic structure of the liquid crystal display device with which a television receiver is equipped
  • the top view which shows the arrangement configuration of the chassis, the light guide member, the 1st reflection sheet, and LED (LED board
  • arranged to the long-side end surface of the light guide member The side view which shows the 2nd division
  • the top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on Embodiment 2 of this invention, a light guide member, a 1st reflective sheet, and LED (LED board
  • Enlarged view of relevant parts in CIE1931 chromaticity diagram The graph which shows the change of the chromaticity coordinate value from the X1 end (Y1 end) to the X2 end (Y2 end) in the first divided reflection sheet.
  • the graph which shows the change of the chromaticity coordinate value from the Y1 end to the Y2 end in the first divided reflection sheet The graph which shows the change of the chromaticity coordinate value from the X1 end to the X2 end in the second divided reflection sheet
  • the top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on Embodiment 7 of this invention, a light guide member, a 1st reflective sheet, and LED (LED board
  • the graph which shows the change of the chromaticity coordinate value from the Y1 end to the Y2 end in the first divided reflection sheet The top view which shows the arrangement structure of the chassis in the backlight apparatus which concerns on Embodiment 8 of this invention, a light guide member, a 1st reflective sheet, and LED (LED board
  • the top view which shows the arrangement configuration of the chassis, the light guide member, the 1st reflective sheet, and LED (LED board
  • the top view which shows the arrangement configuration of the chassis, the 1st reflective sheet, and LED (LED board
  • the graph which shows the change of the chromaticity coordinate value from the X1 end (Y1 end) to the X2 end (Y2 end) in the divided reflection sheet.
  • Plan sectional drawing which shows the arrangement configuration of the chassis, the 1st reflective sheet, and LED (LED board
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the upper side shown in FIG. 4 be a front side, and let the lower side of the figure be a back side.
  • the television receiver TV includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, a tuner T, And a stand S.
  • the liquid crystal display device (display device) 10 has a horizontally long (longitudinal) rectangular shape (rectangular shape) as a whole and is accommodated in a vertically placed state.
  • the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, which are integrated by a frame-like bezel 13 or the like. Is supposed to be retained.
  • the liquid crystal panel 11 has a horizontally long (longitudinal) rectangular shape (rectangular shape), that is, a rectangular shape when viewed in plan, and is attached with a pair of glass substrates separated by a predetermined gap.
  • the liquid crystal is sealed between the glass substrates.
  • One glass substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like.
  • the substrate is provided with a color filter and counter electrodes in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, and an alignment film.
  • a polarizing plate is disposed on the outside of both substrates.
  • the backlight device 12 covers a substantially box-shaped chassis 14 having an opening that opens toward the light emission surface side (the liquid crystal panel 11 side), and covers the opening of the chassis 14.
  • the optical member 15 group arranged as described above.
  • an LED 17 Light Emitting Diode
  • an LED substrate 18 on which the LED 17 is mounted a heat dissipation member 20 to which the LED substrate 18 is attached, and light from the LED 17 are guided.
  • the light guide member 19 that leads to the optical member 15 (the liquid crystal panel 11), the reflection sheet 21 that is disposed in contact with the surface of the light guide member 19 and reflects the light in the light guide member 19, and the light guide member And a frame 16 for holding 19 from the front side.
  • the backlight device 12 is of a so-called edge light type (side light type) in which the LEDs 17 are arranged opposite to each other at one end portion of the light guide member 19. Below, each component of the backlight apparatus 12 is demonstrated in detail.
  • the chassis 14 is made of a metal plate such as an aluminum plate or an electrogalvanized steel plate (SECC), for example, and as shown in FIGS. 2 and 3, a bottom plate having a horizontally long rectangular shape (rectangular shape) like the liquid crystal panel 11. 14a and a pair of side plates 14b rising from both outer ends on the long side of the bottom plate 14a.
  • the long side direction of the chassis 14 (bottom plate 14a) coincides with the X-axis direction (horizontal direction), and the short side direction coincides with the Y-axis direction (vertical direction).
  • the frame 16 and the bezel 13 can be screwed to the side plate 14b.
  • the optical member 15 has a horizontally long rectangular shape (rectangular shape) in a plan view, like the liquid crystal panel 11 and the chassis 14.
  • the optical member 15 is placed on the front side (light emitting side) of the light guide member 19 and is disposed between the liquid crystal panel 11 and the light guide member 19.
  • the optical member 15 includes a diffusion plate 15a disposed on the back side (light guide member 19 side, opposite to the light emitting side) and an optical sheet 15b disposed on the front side (liquid crystal panel 11 side, light emitting side). Composed.
  • the diffusing plate 15a has a structure in which a large number of diffusing particles are dispersed in a substantially transparent resin-made base material having a predetermined thickness, and has a function of diffusing transmitted light.
  • the optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and two optical sheets 15b are laminated.
  • Specific types of the optical sheet 15b include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used.
  • the frame 16 is made of synthetic resin, and is formed in a frame shape (frame shape) extending along the outer peripheral end of the light guide member 19. It is possible to hold the outer peripheral edge from the front side over almost the entire circumference. Further, the frame 16 can receive the outer peripheral end of the liquid crystal panel 11 from the back side.
  • the LED 17 has a configuration in which an LED chip (LED element, light emitting element) made of, for example, an InGaN-based material is sealed with a resin material on a substrate portion fixed to the LED substrate 18. Is done.
  • the LED chip mounted on the substrate portion has a single peak wavelength in a range of 435 nm to 480 nm, that is, a blue wavelength region, and emits blue monochromatic light.
  • the main emission wavelength of the LED chip is more preferably in the range of 440 nm to 460 nm, specifically, for example, 451 nm. As a result, blue single color light having excellent color purity is emitted from the LED chip.
  • the resin material that seals the LED chip is dispersed and blended with a phosphor that emits a predetermined color when excited by the blue light emitted from the LED chip, and generally emits white light as a whole. It is said.
  • a phosphor for example, a yellow phosphor that emits yellow light, a green phosphor that emits green light, and a red phosphor that emits red light are used in appropriate combination, or any one of them is used. It can be used alone.
  • the LED 17 is a so-called top type in which a surface opposite to the mounting surface with respect to the LED substrate 18 is a light emitting surface.
  • the light emitted from the LED 17 spreads radially to some extent within a predetermined angle range around the optical axis LA, but its directivity is higher than that of a cold cathode tube or the like.
  • the “optical axis LA” is the traveling direction of light having the highest light emission intensity (the light emission intensity reaches a peak) among the light emitted from the light emitting surface of the LED 17.
  • the LED substrate 18 has a plate shape made of synthetic resin (such as glass epoxy resin), and has a white surface with excellent light reflectivity. As shown in FIGS. 3 and 4, the LED substrate 18 is arranged at one corner (lower left corner shown in FIG. 3) of the four corners in the chassis 14, and the plate surface is the Z axis. Although it is orthogonal to the direction, it is inclined to both the X-axis direction and the Y-axis direction and is opposed to the corner of the light guide member 19. The LED 17 is surface-mounted on the plate surface of the LED substrate 18 facing the light guide member 19 side, and this is the mounting surface.
  • synthetic resin such as glass epoxy resin
  • the mounted LED 17 has an orientation distribution in which the optical axis LA is parallel to a surface (light emitting surface 19a described later) along the X-axis direction and the Y-axis direction.
  • the optical axis LA of the LED 17 is along the normal direction with respect to the mounting surface (plate surface) of the LED substrate 18 and is orthogonal to the Z-axis direction, but is in the X-axis direction and the Y-axis direction (guided).
  • the optical member 19 is inclined with respect to both the long side and the short side).
  • the optical axis LA is illustrated by a two-dot chain line.
  • a wiring pattern (not shown) made of a metal film (copper foil or the like) is formed on the mounting surface of the LED substrate 18, and terminal portions formed at both ends of the wiring pattern are connected to an external drive circuit. As a result, driving power can be supplied to each LED 17.
  • a raw material used for the LED board 18 it is also possible to set it as the structure which used metal materials, such as the same aluminum-type material as the chassis 14, for example, and formed the wiring pattern through the insulating layer on the surface.
  • the heat dissipating member 20 is made of metal having excellent thermal conductivity, and is composed of a bottom portion 20a along the bottom plate 14a of the chassis 14 and a rising portion 20b rising from the end of the bottom portion 20a toward the front side.
  • the cross section is substantially L-shaped.
  • the rising portion 20 b of the heat radiating member 20 is attached to the surface of the LED substrate 18 opposite to the mounting surface of the LED 17.
  • the light guide member 19 is made of a synthetic resin material (for example, acrylic or the like) having a refractive index sufficiently higher than that of air and substantially transparent (excellent translucency). As shown in FIGS. 2 and 3, the light guide member 19 is formed in a plate shape and has a horizontally long substantially rectangular shape (substantially rectangular shape) when viewed in plan, like the liquid crystal panel 11 and the chassis 14. The long side direction on the surface coincides with the X-axis direction, the short side direction coincides with the Y-axis direction, and the plate thickness direction (direction along the end surface) perpendicular to the plate surface coincides with the Z-axis direction.
  • a synthetic resin material for example, acrylic or the like
  • the LED 17 described above is arranged in an opposing manner at one corner (lower left corner shown in FIG. 3) and light from the LED 17 A light incident surface 19b is formed.
  • the light incident surface 19b is parallel to the plate surface of the LED substrate 18 and the light emitting surface of the LED 17, and is in the X-axis direction and the Y-axis direction, that is, both the long side and the short side of the light guide member 19. Inclined form. That is, the light incident surface 19b is formed by obliquely cutting a corner portion of the light guide member 19 facing the LED 17. It can be said that the light incident surface 19 b constitutes a part of the outer peripheral end surface of the light guide member 19.
  • the LED 17 has an optical axis LA that substantially coincides with the diagonal line of the light guide member 19, and is directed to the corner of the light guide member 19 opposite to the LED 17 side.
  • the light guide member 19 has a function of introducing the light emitted from the LED 17 and raising and emitting the light toward the optical member 15 side (Z-axis direction) while propagating the light inside.
  • the light emission surface 19a is a surface parallel to the X-axis direction and the Y-axis direction (parallel to the optical axis LA of the LED 17), in other words, on the light incident surface 19b (each end surface of the light guide member 19).
  • the surface is substantially orthogonal to the surface.
  • the reflection sheet 21 is in contact with the end surface 19 d of the outer peripheral end surface of the light guide member 19 excluding the light incident surface 19 b and the back surface (bottom surface) 19 c of the light guide member 19.
  • the reflection sheet 21 By reflecting the light in the light guide member 19 by the reflection sheet 21, it is possible to efficiently use the light from the LED 17 as outgoing light.
  • the reflection sheet 21 will be described in detail.
  • the reflection sheet 21 is formed of a base material made of a synthetic resin material having a white surface with excellent light reflectivity. As shown in FIG. 2, the reflection sheet 21 is formed on the outer peripheral end surface of the light guide member 19, that is, the light emission surface 19a. Among the adjacent surfaces, the first reflection sheet 22 arranged in contact with the end surface 19d excluding the light incident surface 19b, and the plate surface 19c on the back side of the plate surface of the light guide member 19, that is, the light emission surface 19a The second reflection sheet 23 is arranged in contact with the opposite plate surface 19c. Among these, the 2nd reflective sheet 23 is demonstrated previously. As shown in FIGS.
  • the second reflection sheet 23 has a horizontally long rectangular shape (rectangular shape) as viewed from above and is larger than the light guide member 19.
  • the light guide member 19 covers the entire plate surface 19c opposite to the light exit surface 19a.
  • the 2nd reflection sheet 23 can reflect the light which goes to the back side (bottom plate 14a side) among the lights which exist in the light guide member 19 efficiently with almost no leakage.
  • Most of the light reflected by the second reflection sheet 23 goes directly to the light exit surface 19a.
  • the second reflection sheet 23 protrudes outward from the light incident surface 19b of the light guide member 19, that is, to the LED 17 side, so that the light from the LED 17 can be efficiently incident on the light incident surface 19b ( FIG. 4). It can be said that the second reflection sheet 23 is arranged in a shape sandwiched between the bottom plate 14 a of the chassis 14 and the light guide member 19.
  • At least one of the light exit surface 19a and the plate surface 19c on the opposite side of the light guide member 19 has a reflecting portion (not shown) that reflects internal light or a scattering portion that scatters internal light ( (Not shown) is patterned so as to have a predetermined in-plane distribution, and thereby, the emitted light from the light emitting surface 19a is controlled to have a uniform distribution in the surface.
  • the first reflection sheet 22 covers almost the entire region of the end surface 19 d excluding the light incident surface 19 b in the outer peripheral end surface of the light guide member 19.
  • the first reflective sheet 22 efficiently reflects light toward the end surface 19 d of the outer peripheral end surface of the light guide member 19 excluding the light incident surface 19 b with almost no leakage. Therefore, the amount of light emitted from the light exit surface 19a, that is, the brightness of the emitted light can be improved by preventing light from exiting from the end surface 19d to the outside as much as possible.
  • the first reflection sheet 22 has a surface along the Z-axis direction, that is, a surface orthogonal to the optical axis LA of the LED 17, light having a peak emission intensity among the light emitted from the LED 17. The light can be efficiently reflected, and thus the light utilization efficiency and the brightness of the emitted light can be further increased. More specifically, the first reflection sheet 22 is divided into four corresponding to the pair of long side end surfaces 19d1 and the pair of short side end surfaces 19d2 constituting the end surface 19d of the light guide member 19. That is, the first reflection sheet 22 is composed of four divided reflection sheets 22 ⁇ / b> S divided for each of the four end surfaces 19 d 1 and 19 d 2 corresponding to the long sides and the short sides of the light guide member 19.
  • Each divided reflection sheet 22S has substantially the same size (area) as the corresponding end face 22d of the light guide member 19, and each of the divided reflection sheets 22S has a long side direction (X-axis direction) or a short side direction ( It has an elongated rectangular shape extending along the (Y-axis direction).
  • Each divided reflection sheet 22S is fixed to each end face 19d of the light guide member 19 with almost no gap using a substantially transparent adhesive or the like.
  • the edge light type backlight device 12 As described above, the light emitted from the LED 17 is reflected by the reflection sheet 21 or totally reflected by the light emitting surface 19 a of the light guide member 19. Thus, after propagating through the light guide member 19, the light is emitted from the light exit surface 19 a of the light guide member 19 to the outside.
  • light on the short wavelength side included in the light emitted from the LED 17, specifically light in the blue wavelength region, for example, is light in the long wavelength side, specifically in the yellow or red wavelength region, for example. Compared to light or the like, scattering tends to occur and tends to be emitted to the outside.
  • the first reflection sheet 22 disposed in contact with the end surface 19 d adjacent to the light emission surface 19 a of the light guide member 19 is relatively relative to the LED 17.
  • the CIE Commission Internationale de l'Eclairage
  • the x and y values, which are chromaticity coordinate values in the 1931 chromaticity diagram, are set to be relatively large.
  • the CIE 1931 chromaticity diagram is as shown in FIG.
  • the x-axis on the horizontal axis and the y-axis on the vertical axis indicate the x value and y value, which are chromaticity coordinate values, respectively.
  • the point W represents the white reference chromaticity
  • the blueness becomes stronger.
  • the yellowness tends to increase as the x value and the y value both increase.
  • the first region 22 ⁇ / b> A and the second region 22 ⁇ / b> B are included in the four corners of the light guide member 19 in the first reflection sheet 22 disposed on the end surface 19 d of the light guide member 19.
  • the light incident surface 19b is divided with a pair of corners at a diagonal position excluding the corners as a boundary.
  • a diagonal line connecting a pair of corners located at the boundary between the regions 22A and 22B in the first reflection sheet 22 has a relationship intersecting the optical axis LA of the LED 17.
  • the area ratios of the first region 22A and the second region 22B are substantially equal.
  • the first region 22 ⁇ / b> A and the second region 22 ⁇ / b> B having different chromaticities are illustrated in different shades for distinction.
  • a pair of ones arranged adjacent to the LED 17 (light incident surface 19b of the light guide member 19) is the first region 22A.
  • the remaining pair of sheets is the second divided reflection sheet 22SB that forms the second region 22B.
  • the first divided reflection sheet 22SA is arranged on the long side end surface 19d1 and the short side end surface 19d2 adjacent to each other across the light incident surface 19b of the end surface 19d of the light guide member 19 in the divided reflection sheet 22S. .
  • the second divided reflection sheet 22SB has a long side end face 19d1 and a short edge adjacent to each other across a corner portion diagonal to the light incident surface 19b of the end face 19d of the light guide member 19 in the divided reflection sheet 22S. It is arranged on the side end face 19d2.
  • the first divided reflection sheet 22SA and the second divided reflection sheet 22SB have different chromaticities as shown in FIGS. 5 and 6, and will be described in detail below.
  • the first divided reflection sheet 22SA constituting the first region 22A and the second divided reflection sheet 22SB constituting the second region 22B are coated (printed) on the surface of the base material forming each divided reflection sheet 22S. By doing so, they have different chromaticities.
  • printing means such as screen printing and ink jet printing can be employed.
  • two types of paints having different chromaticities are used in the first region 22A (first divided reflection sheet 22SA) and the second region 22B (second divided reflection sheet 22SB), respectively. That is, the first paint is used for the first region 22A, and the second paint having a chromaticity different from that of the first paint is used for the second region 22B.
  • the first paint is such that the reflected light from its application surface is more yellowish than at least the light emitted from the LED 17, and the second paint is applied to the first paint.
  • the reflected light from the surface contains at least a short wavelength side light more than the light emitted from the LED 17 and is bluish.
  • FIG. 8 is an enlarged view of the 1931 chromaticity diagram, where point A represents the chromaticity of the first region 22A, point B represents the chromaticity of the second region 22B, and point W is white. It represents the reference chromaticity.
  • 9 shows the chromaticity coordinate values from the X1 end (Y1 end) on the LED 17 side shown in FIG. 3 to the opposite X2 end (Y2 end) in the first divided reflective sheet 22SA of the first reflective sheets 22. It is the graph which plotted x value and y value which are.
  • FIG. 9 shows the chromaticity coordinate values from the X3 end (Y3 end) on the LED 17 side shown in FIG. 3 to the X4 end (Y4 end) on the opposite side in the second divided reflection sheet 22SB of the first reflection sheet 22. It is the graph which plotted x value and y value which are. In the graphs of FIGS. 9 and 10, for convenience, the x value and the y value are shown on the same coordinate axis, but the x value and the y value are only from the X1 end (Y1 end) or the X3 end (Y3 end).
  • the values (magnitudes) tend to be the same until the X2 end (Y2 end) or the X4 end (Y4 end), and that the x value and the y value are necessarily the same value. It is not a thing. That is, the x value (x1) and the y value (y1) related to the point A may be the same value or different values, and the x value (x2) and the y value (y2) related to the point B are These may be the same value or different values.
  • the white reference chromaticity described above is used as the chromaticity of the emitted light (white light) in the LED 17 included in the backlight device 12, and the chromaticity coordinate value (x0, y0) is, for example, (0.
  • the chromaticity coordinate values of each chromaticity in the first area 22A and the second area 22B are obtained by irradiating each area 22A, 22B with light emitted from the LED 17 included in the backlight device 12, and using the reflected light as a chromaticity meter. It is obtained by measuring by.
  • the chromaticity coordinate value related to the chromaticity of the first region 22A is (x1, y1)
  • the chromaticity coordinate value related to the chromaticity of the second region 22B is (x2, y2)
  • the color related to the white reference chromaticity is (x0, y0)
  • the chromaticity coordinate values in the first region 22A and the second region 22B satisfy the following expressions (5) and (6), respectively.
  • the chromaticity coordinate values (x1, y1) relating to the chromaticity of the first region 22A are respectively larger than the chromaticity coordinate values (x2, y2) relating to the chromaticity of the second region 22B, and the white reference color
  • the chromaticity coordinate values (x0, y0) related to the degree are each larger. Therefore, when the light (white light) from the LED 17 is irradiated to the first region 22A, the reflected light contains at least a longer wavelength side light than the light emitted from the LED 17 and becomes yellowish. . Most of the reflected light from the first region 22 ⁇ / b> A is directed to a region relatively close to the LED 17 in the light emitting surface 19 a of the light guide member 19.
  • the light on the short wavelength side is easily emitted as described above, and the emitted light tends to have a blue tint.
  • the emitted light can be made substantially white light by adding a yellowish color that is a complementary color to the reflected light.
  • the chromaticity coordinate values (x2, y2) relating to the chromaticity of the second region 22B are smaller than the chromaticity coordinate values (x1, y1) relating to the chromaticity of the first region 22A, respectively, and the white reference
  • the chromaticity coordinate values (x0, y0) relating to chromaticity are each smaller. Therefore, when the light from the LED 17 is irradiated to the second region 22B, the reflected light is at least bluer than the light emitted from the LED 17. That is, it can be said that the reflected light (blueish light) from the second region 22B has a complementary color relationship with the reflected light (yellowish light) from the first region 22A.
  • the reflected light by the second region 22B is directed to a region relatively far from the LED 17 in the light emitting surface 19a of the light guide member 19.
  • the light on the long wavelength side is likely to be emitted as described above, and the emitted light tends to be yellowish.
  • the reflected light of the color bluish which is a complementary color
  • the emitted light can be made substantially white light. As described above, the light emitted from the light exit surface 19a is less likely to cause color unevenness over the entire area.
  • the point A related to the chromaticity of the first region 22A is a straight line connecting the point B related to the chromaticity of the second region 22B and the point W related to the white reference chromaticity.
  • the point B relating to the chromaticity of the second region 22B exists on a straight line connecting the point A relating to the chromaticity of the first region 22A and the point W relating to the white reference chromaticity.
  • the point W exists in the substantially middle position of the point A and the point B. In other words, the point A and the point B are in the position which sandwiched the point W and the distance from the point W is substantially equal. Is done.
  • both the first region 22A and the second region 22B have chromaticity close to the white reference chromaticity, both the light reflection efficiency in the first region 22A and the second region 22B is good. It has become a thing. The reason is that, as the chromaticity of the surface of the reflection sheet 21 approaches the reference chromaticity of white, the amount of light absorption decreases and the light is reflected to all wavelengths without loss, and the light reflection efficiency (utilization efficiency) is high. This is because the design can be increased. In other words, the first reflection sheet 22 according to the present embodiment suppresses the decrease in the light use efficiency by minimizing the light absorption generated by giving the first region 22A and the second region 22B color. By doing so, the brightness of the reflected light can be maintained high.
  • the chromaticity coordinate values in the first area 22A and the second area 22B are constant values over the entire area, as shown in FIGS.
  • a first coating material having a constant concentration is applied to the base material of the first divided reflection sheet 22SA forming the first region 22A with a uniform film thickness.
  • the second coating material having a constant concentration may be applied with a uniform film thickness to the base material of the second divided reflection sheet 22SB forming the second region 22B.
  • This embodiment has the structure as described above, and its operation will be described next.
  • the drive of the liquid crystal panel 11 is controlled by a control circuit (not shown), and the drive of the LEDs 17 on the LED substrate 18 is controlled.
  • Light from the LED 17 is guided to the liquid crystal panel 11 by being guided by the light guide member 19, and a predetermined image is displayed on the liquid crystal panel 11.
  • the operation of the light guide member 19 will be described in detail.
  • the emitted light enters the light guide member 19 from the light incident surface 19 b disposed at one corner of the light guide member 19, and the reflection sheet 21. Or is totally reflected by the light exit surface 19a which is an interface with the outside of the light guide member 19, and propagates inside.
  • the light propagating through the light guide member 19 is scattered by the scattering portion, so that the incident angle with respect to the light exit surface 19a does not exceed the critical angle, and the light is emitted from the light exit surface 19a on the front side (the liquid crystal panel 11 side). It is emitted to the outside.
  • the light existing in the light guide member 19 contacts the reflection sheet 21 in contact with the surfaces 19c and 19d except for the light exit surface 19a of the light guide member 19, that is, the end surfaces 19d except for the light incident surface 19b. While being reflected by the first reflection sheet 22 and the second reflection sheet 23 in contact with the plate surface 19c opposite to the light emission surface 19a, only emission from the light emission surface 19a is allowed. The emission from the other surfaces 19c and 19d is restricted.
  • the end face 19d of the light guide member 19 is orthogonal to the optical axis LA of the LED 17, the light traveling along the optical axis LA has an incident angle that does not exceed the critical angle with respect to the end face 19d.
  • the emission of light traveling along the optical axis LA by the first reflection sheet 22 it is possible to improve the light utilization efficiency.
  • the brightness of the emitted light can be improved.
  • the light on the short wavelength side tends to be scattered as compared with the light on the long wavelength side, so that it is relatively close to the LED 17 on the light exit surface 19 a.
  • the region region overlapped with the first region 22A in plan view
  • light on the short wavelength side tends to be emitted more than light on the long wavelength side, and the amount of emitted light tends to be excessive.
  • the amount of light emitted from the short wavelength side tends to be insufficient compared to the light from the long wavelength side.
  • the first region of the first reflection sheet 22 constituting the reflection sheet 21 is relatively close to the LED 17 and has a relatively large chromaticity coordinate value.
  • 22A and the second region 22B that is relatively far from the LED 17 and relatively small in chromaticity coordinate value are included, so that the reflected light from the first region 22A includes a lot of light on the long wavelength side.
  • a large amount of light on the short wavelength side can be included in the reflected light from the second region 22B.
  • Most of the reflected light from the first region 22A is directed directly to a region relatively close to the LED 17 on the light emitting surface 19a (a region overlapping the first region 22A in plan view), and thus tends to be insufficient in the same region.
  • the emission of light on the long wavelength side can be promoted.
  • the light emitted from the region relatively close to the LED 17 in the light emitting surface 19a includes the light on the short wavelength side and the light on the long wavelength side with a good balance.
  • most of the reflected light from the second region 22B is directly directed to a region relatively far from the LED 17 in the light emitting surface 19a (a region overlapping the second region 22B in plan view), so that the shortage in the same region is insufficient.
  • the light emitted from the region relatively far from the LED 17 in the light emitting surface 19a includes the light on the short wavelength side and the light on the long wavelength side in a well-balanced manner.
  • the difference in color that can occur between the outgoing light from the region of the light emitting surface 19a that is relatively close to the LED 17 and the outgoing light from the region of the light emitting surface 19a that is relatively far from the LED 17 is alleviated. Therefore, the display image of the liquid crystal display device 10 can be made to have high display quality without color unevenness. This problem of color unevenness tends to become more prominent as the liquid crystal display device 10 becomes larger in screen size.
  • the liquid crystal display device 10 is particularly enlarged. Preferred above.
  • the first reflection sheet 22 having the first region 22A and the second region 22B prevents light from being emitted from the end surface 19d adjacent to the light emitting surface 19a of the light guide member 19. Therefore, the utilization efficiency of the light emitted from the LED 17 and the luminance of the emitted light can be improved, and it is preferable for preventing color unevenness.
  • the backlight device (illumination device) 12 emits light incident on the end portion of the LED 17 from the LED 17 and the end portion of the LED 17 that is opposed to the LED 17.
  • a light guide member 19 having a light emitting surface 19a to be operated, and a first light reflecting the light in the light guide member 19 while being arranged in contact with an end surface 19d which is a surface adjacent to the light emitting surface 19a of the light guide member 19
  • the first reflection sheet 22 is divided into at least a first area 22A that is relatively close to the LED 17 and a second area 22B that is relatively far from the LED 17, the first area 22A is provided.
  • both the x value and the y value which are chromaticity coordinate values in the CIE 1931 chromaticity diagram, are relatively large.
  • the x value and the y value that are the chromaticity coordinate values of the CIE 1931 chromaticity diagram relating to the first region 22A that is relatively close to the LED 17 in the first reflective sheet 22 are relatively determined from the LED 17. Both the x value and the y value related to the distant second region 22B are relatively large. According to such a configuration, the first region 22A relatively close to the LED 17 reflects more light on the long wavelength side and reduces the amount of reflected light on the short wavelength side than the second region 22B. In the region of the light guide member 19 that is relatively close to the LED 17, the emission of the long-wavelength side that tends to be short is promoted, whereas the short-wavelength side that tends to be excessive tends to be excessive.
  • the emission of light is suppressed.
  • the second region 22B that is relatively far from the LED 17 tends to reflect more light on the short wavelength side and reduce the amount of reflected light on the long wavelength side than the first region 22A.
  • the emission of the long wavelength light that tends to be excessive is suppressed, whereas the light of the short wavelength that tends to be insufficient is emitted. Is promoted.
  • color unevenness that can occur between the light emitted from the region of the light guide member 19 that is relatively close to the LED 17 and the light that is emitted from the region far from the LED 17 can be reduced. This is suitable for increasing the size of the device 12.
  • the first reflection sheet 22 prevents light from being emitted from the end surface 19 d that is a surface adjacent to the light emission surface 19 a of the light guide member 19, and the first reflection sheet 22. Since the first region 22A and the second region 22B described above are included in the light, the light from the LED 17 can be efficiently used as the emitted light, the luminance can be improved, and color unevenness can be achieved. It is more suitable for prevention.
  • the light guide member 19 includes a light incident surface 19 b on which light from the LED 17 is incident on a surface adjacent to the light emitting surface 19 a, and the first reflective sheet 22 is formed of the light guide member 19.
  • a surface adjacent to the light exit surface 19a is arranged over the entire area excluding the light incident surface 19b. If it does in this way, the light which injected into the light-incidence surface 19b contained in the surface adjacent to the light-projection surface 19a among the light guide members 19 from LED17 will be in the surface adjacent to the light-projection surface 19a among the light-guide members 19.
  • the first reflection sheet 22 disposed over the entire area excluding the light incident surface 19b the light is efficiently emitted from the light emitting surface 19a. As a result, the light utilization efficiency and luminance can be further improved, and it is more suitable for preventing color unevenness.
  • the LED 17 has a light distribution in which the optical axis LA, which is the traveling direction of the light whose emission intensity reaches a peak, is parallel to the light emitting surface 19a, and the first reflective sheet 22 is in relation to the optical axis LA. It has an orthogonal plane. If it does in this way, since the light from which the light emission intensity becomes a peak among the light from LED17 can be efficiently reflected by the 1st reflective sheet 22 orthogonal to the optical axis LA which is the advancing direction. The light utilization efficiency and luminance are higher, and it is more suitable for preventing color unevenness.
  • a second reflection sheet 23 is provided which is disposed in contact with the plate surface 19c which is the surface opposite to the light emitting surface 19a of the light guide member 19.
  • the light from the LED 17 that has entered the light guide member 19 is guided to the first reflection sheet 22 that is in contact with the end surface 19d that is the surface of the light guide member 19 adjacent to the light exit surface 19a.
  • the second reflection sheet 23 After being propagated through the light guide member 19 by being reflected by the second reflection sheet 23 in contact with the plate surface 19c which is the surface opposite to the light exit surface 19a of the light member 19, the light exit surface 19a Emitted.
  • the chromaticity coordinate value of the CIE 1931 chromaticity diagram relating to the first region 22A is set to (x1, y1)
  • the chromaticity coordinate value of the CIE 1931 chromaticity diagram relating to the second region 22B is set to (x2, y2)
  • white color When the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the reference chromaticity is (x0, y0), the first region 22A and the second region 22B have a chromaticity in a relationship satisfying the following expressions (1) and (2). Each has a coordinate value.
  • the chromaticity of the second region 22B can be made closer to the white reference chromaticity as compared with the case where the x1 value is smaller than the x0 value and the y1 value is smaller than the y0 value. Since the light reflection efficiency in the first reflection sheet 22 becomes better as the chromaticity approaches the white reference chromaticity, the light reflection efficiency in the second region 22B becomes better, and thus the luminance of the emitted light. It is suitable for improving the above. Further, it is useful when the light emitted from the LED 17 is white light or light having a color close to it.
  • the chromaticity coordinate value of the CIE 1931 chromaticity diagram relating to the first region 22A is set to (x1, y1)
  • the chromaticity coordinate value of the CIE 1931 chromaticity diagram relating to the second region 22B is set to (x2, y2)
  • white color When the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the reference chromaticity is (x0, y0), the first region 22A and the second region 22B have chromaticities in a relationship satisfying the following expressions (3) and (4). Each has a coordinate value.
  • the chromaticity of the first region 22A can be made closer to the white reference chromaticity as compared with the case where the x2 value is larger than the x0 value and the y2 value is larger than the y0 value.
  • the light reflection efficiency in the first reflection sheet 22 becomes better as the chromaticity becomes closer to the white reference chromaticity. Therefore, the light reflection efficiency in the first region 22A becomes better, and thus the luminance of the emitted light. It is suitable for improving the above. Further, it is useful when the light emitted from the LED 17 is white light or light having a color close to it.
  • first area 22A and the second area 22B have chromaticity coordinate values that satisfy the above-described expressions (5) and (6).
  • both the first region 22A and the second region 22B have chromaticity close to the white reference chromaticity, both the light reflection efficiency in the first region 22A and the second region 22B are good. Therefore, it is more effective in improving the brightness of the emitted light. Moreover, since the color exhibited by the first region 22A and the color exhibited by the second region 22B have a complementary relationship, it is particularly useful when the emitted light from the LED 17 is white light.
  • the light guide member 19 has a substantially square plate shape when seen in a plan view, and its one plate surface constitutes the light emission surface 19a, whereas the first reflection sheet 22 is arranged in contact with the end surface.
  • the first reflection sheet 22 includes a plurality of divided reflection sheets (divided reflection members) 22 ⁇ / b> S divided for each end surface 19 d corresponding to each side of the light guide member 19. In this way, when the first reflection sheet 22 is installed, the plurality of divided reflection sheets 22S may be arranged for each end surface 19d corresponding to each side of the light guide member 19, so that it temporarily spans a plurality of sides. Compared to the case where the first reflective sheet is used, the alignment with respect to the light guide member 19 is facilitated and the workability is excellent.
  • the plurality of divided reflection sheets 22S include those in which the entire region is the first region 22A and those in which the entire region is the second region 22B. In this way, it is easier to manufacture the divided reflection sheet 22S than the case where the first area 22A and the second area 22B are mixed in one divided reflection sheet 22S, and the manufacturing cost is reduced. Can be reduced.
  • first region 22A and the second region 22B have different chromaticity coordinate values in the CIE 1931 chromaticity diagram by applying paint on the surface of the first reflection sheet 22.
  • the chromaticity in the first region 22A and the second region 22B can be set appropriately by selecting the coating range (coating area) of the coating on the surface of the first reflection sheet 22 and the type of coating. It can be.
  • the light guide member 19 has a substantially square shape when viewed in plan, whereas the LED 17 is opposed to a corner portion of the end portion of the light guide member 19 and its optical axis LA is guided. It is arranged to be inclined with respect to the side of the optical member 19. In this way, compared to the case where a plurality of LEDs 17 are arranged in parallel along one side of the end portion of the light guide member 19, the number of LEDs 17 can be reduced, and the optical axis LA of the LEDs 17 can be reduced. The light can be efficiently supplied into the light guide member 19 by being inclined with respect to.
  • the LED 17 is arranged so that its optical axis LA substantially coincides with the diagonal line in the light guide member 19. In this way, light from the LED 17 reaches the corner of the light guide member 19 opposite to the LED 17 along the optical axis LA, as compared with the case where the optical axis is set to intersect the diagonal line. Since the distance to the LED 17 side of the light guide member 19 and the vicinity of the corner on the opposite side of the LED 17 in the light guide member 19 are likely to be different, the chromaticity of the emitted light is easily generated. Color unevenness of emitted light can be effectively suppressed.
  • the light source is the LED 17. In this way, high brightness and low power consumption can be achieved.
  • the LED 17 includes an LED chip (LED element) that emits substantially blue monochromatic light and a phosphor that emits light when excited by light from the LED chip. In this way, the light emitted from the LED 17 contains a lot of light in the blue wavelength region. Since a large amount of light in the blue wavelength region tends to be emitted in a region relatively close to the LED 17 in the light guide member 19, there is a concern that the light is attenuated until reaching a region relatively far from the LED 17. However, the above-described configuration can effectively suppress color unevenness that may occur in the light emitted from the light guide member 19.
  • LED element LED element
  • Embodiment 1 of this invention was shown, this invention is not restricted to the said embodiment, For example, the following modifications can also be included.
  • members similar to those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and illustration and description thereof may be omitted.
  • the first reflective sheet 22 (not shown) according to the present modification represents the chromaticity of the first region 22A (first divided reflective sheet 22SA) as shown in FIG. 11 which is an enlarged view of the 1931 chromaticity diagram.
  • the point A is configured to coincide with the point W representing the white reference chromaticity. That is, the first region 22A has the same chromaticity as the light emitted from the LED 17.
  • the chromaticity coordinate values (x1, y1) in the first region 22A satisfy the following expressions (7) and (8).
  • the chromaticity coordinate values (x2, y2) in the second region 22B are the chromaticity coordinate values (x1, y1) in the first region 22A and the white reference chromaticity.
  • the chromaticity coordinate values (x0, y0) are each smaller. Therefore, when the light (white light) from the LED 17 is irradiated on the first region 22A of the first reflective sheet 22 according to this modification, the reflected light is almost white light, whereas the second region 22B When the light from the LED 17 (white light) is irradiated, the reflected light contains at least a shorter wavelength side light than the emitted light of the LED 17 and is bluish.
  • the first reflection sheet 22 having such a configuration, for example, a predetermined paint is applied only to the base material forming the second divided reflection sheet 22SB forming the second region 22B, and the first region 22A is formed.
  • the first divided reflection sheet 22SA is not coated with a paint, and light may be reflected by the surface of the white base material.
  • the first reflective sheet 22 (not shown) according to the present modification represents the chromaticity of the second region 22B (second divided reflective sheet 22SB) as shown in FIG. 12 which is an enlarged view of the 1931 chromaticity diagram.
  • the point B is configured to coincide with the point W representing the white reference chromaticity.
  • the second region 22B has the same chromaticity as the light emitted from the LED 17.
  • the chromaticity coordinate values (x2, y2) in the second region 22B satisfy the following expressions (9) and (10).
  • the chromaticity coordinate values (x1, y1) in the first region 22A are the chromaticity coordinate values (x2, y2) in the second region 22B and the white reference chromaticity.
  • the chromaticity coordinate values (x0, y0) are respectively larger. Therefore, when the light (white light) from the LED 17 is applied to the second region 22B of the first reflective sheet 22 according to the present modification, the reflected light is substantially white light, whereas the first region 22A When the light from the LED 17 (white light) is irradiated, the reflected light contains more light on the long wavelength side than at least the emitted light of the LED 17 and becomes yellowish.
  • the first reflective sheet 22 having such a configuration, for example, a predetermined paint is applied only to the base material forming the first divided reflective sheet 22SA forming the first region, and the second region 22B forming the second region 22B.
  • the two-divided reflection sheet 22SB is not coated with a paint, and light may be reflected by the surface of the white base material.
  • the first reflective sheet 22 (not shown) according to this modification example has a first area 22A (first divided reflective sheet 22SA) and a second area 22B.
  • Each chromaticity (point A, point B) in (second divided reflection sheet 22SB) is set to a chromaticity closer to yellow than the white reference chromaticity (point W).
  • the chromaticity coordinate values of the first region 22A and the second region 22B have a relationship satisfying the following expressions (11) and (12). Specifically, the chromaticity coordinate values (x2, y2) in the second region 22B.
  • the chromaticity coordinate values (x1, y1) in the first region 22A are smaller than the chromaticity coordinate values (x1, y1) in the first region 22A, but larger than the chromaticity coordinate values (x0, y0) in the white reference chromaticity. Therefore, when the light (white light) from the LED 17 is irradiated on the second region 22B of the first reflective sheet 22 according to the present modification, the reflected light is very light yellowish, whereas the light is reflected in the first region 22A. When the light (white light) from the LED 17 is irradiated, the reflected light is tinged with a darker yellow color than the reflected light of the second region 22B.
  • the same paint is used for the first divided reflection sheet 22SA forming the first region 22A and the second divided reflection sheet 22SB forming the second region 22B. It is possible to apply a paint having a relatively low concentration to the second divided reflection sheet 22SB and apply a paint having a relatively high concentration to the first divided reflection sheet 22SA. Of course, different paints may be used for the first region 22A and the second region 22B.
  • the first reflective sheet 22 (not shown) according to this modification example has a first area 22A (first divided reflective sheet 22SA) and a second area 22B.
  • Each chromaticity (point A, point B) in (second divided reflection sheet 22SB) is set to a chromaticity closer to blue than white reference chromaticity (point W).
  • the chromaticity coordinate values of the first region 22A and the second region 22B have a relationship satisfying the following equations (13) and (14). Specifically, the chromaticity coordinate values (x1, y1) in the first region 22A.
  • the reflected light has a very light blue color, whereas the second region 22B When the light (white light) from the LED 17 is irradiated, the reflected light has a relatively dark blue color than the reflected light of the first region 22A.
  • the same paint is used for the first divided reflection sheet 22SA forming the first region 22A and the second divided reflection sheet 22SB forming the second region 22B. It is possible to apply a paint having a relatively low concentration to the first divided reflection sheet 22SA and apply a paint having a relatively high concentration to the second divided reflection sheet 22SB. Of course, different paints may be used for the first region 22A and the second region 22B.
  • Modification 5 of Embodiment 1 will be described with reference to FIG. Here, the chromaticity relationship of the first region 22A and the second region 22B with respect to the white reference chromaticity is changed.
  • the first reflective sheet 22 (not shown) according to this modification is related to the chromaticity of the first region 22A (first divided reflective sheet 22SA) as shown in FIG. 15 which is an enlarged view of the 1931 chromaticity diagram.
  • the point W related to the white reference chromaticity does not exist on a straight line connecting the point A and the point B related to the chromaticity of the second region 22B (second divided reflection sheet 22SB).
  • the straight line connecting W is not the same straight line as in the first embodiment and the modifications 1 to 4 described above, but has a relationship that intersects each other.
  • the point A related to the chromaticity of the first region 22A is located on the right side (red side) with respect to the point W related to the white reference chromaticity in the 1931 chromaticity diagram shown in FIG. Slightly red.
  • the point B related to the chromaticity of the second region 22B is located below (magenta color) near the point W related to the white reference chromaticity in the 1931 chromaticity diagram shown in FIG.
  • the color is somewhat magenta.
  • the point A related to the chromaticity of the first region 22A is a white reference color in the 1931 chromaticity diagram shown in FIG. It is located on the upper side (green side) with respect to the point W related to the degree, and the color is slightly greenish.
  • the point B related to the chromaticity of the second region 22B is shifted to the left (cyan shift) with respect to the point W related to the white reference chromaticity in the 1931 chromaticity diagram shown in FIG. ) And has a slightly cyan color.
  • Embodiment 2 A second embodiment of the present invention will be described with reference to FIGS.
  • this Embodiment 2 what changed the division
  • the first reflective sheet 122 is divided into three regions 122A to 122C having different chromaticities. Specifically, the first region 122A closest to the LED 17 and the most LED 17 The second region 122B far from the first region 122B, and the third region 22C is disposed between the first region 122A and the second region 122B and is adjacent to the second region 122B. Specifically, among the four divided reflective sheets 122S constituting the first reflective sheet 122, a pair of first divided reflective sheets 122SA arranged adjacent to the LED 17 (light incident surface 19b of the light guide member 19) is provided.
  • the remaining pair of second divided reflection sheets 122SB includes the entire area of the second area 122B and the third area 22C.
  • the side closer to the LED 17 (X1 end side or Y1 end side) is the first region 122A, and the side relatively far from the LED 17 (X2 end side or Y2 end side) is the third region 22C.
  • the pair of second divided reflection sheets 122SB adjacent to each other across the corner portion diagonal to the light incident surface 19b of the light guide member 19 has the second region 122B and the second region 122B at substantially the center position in the extending direction. It is divided into three regions 22C, and the side relatively close to the LED 17 (X3 end side or Y3 end side) is the third region 22C and is relatively far from the LED 17 (X4 end side or Y4 end side). Is the second region 122B.
  • the first region 122A and the second region 122B have substantially the same area, whereas the third region 22C has an area that is the sum of the areas of the first region 122A and the second region 122B. have. Of these, the chromaticity of the third region 22C is different from the chromaticity of the first region 122A and the second region 122B, and will be described in detail below.
  • the chromaticity in the third region 22C is represented by a point C, and this point C coincides with the point W related to the white reference chromaticity. Therefore, when the light (white light) from the LED 17 is applied to the third region 22C of the first reflective sheet 122, the reflected light is substantially white light.
  • the chromaticity coordinate values (x3, y3) in the third region 22C are the chromaticity coordinate values (x1, y1) in the first region 122A, the chromaticity coordinate values (x2, y2) in the second region 122B, and It has the relationship which satisfy
  • the first reflective sheet 122 having such a configuration, for example, among the base material forming the first divided reflective sheet 122SA and the first divided reflective sheet 122SA, the first region 122A and the second region 122B are respectively predetermined.
  • the third region 22C is not coated with the paint, and the light may be reflected by the surface of the white base material.
  • the chromaticity coordinate values in the third area 22C are substantially constant over the entire area, and the chromaticity coordinate values in the first area 122A and the second area 122B are also in the entire area. Almost constant over time.
  • both the x value and the y value which are chromaticity coordinate values in the CIE 1931 chromaticity diagram, are relatively small compared to the second region 122B, and the x value and y value are relatively small compared to the first region 122A. Both are relatively large.
  • the third region 22C adjacent to both the first region 122A and the second region 122B in the first reflective sheet 122 reflects light on the longer wavelength side compared to the first region 122A.
  • the ratio of the amount of reflected light of the short wavelength side to the amount of light is relatively large, the ratio of the amount of reflected light of the short wavelength side to the amount of reflected light of the long wavelength side is relatively larger than that of the second region 122B. Tend to be smaller. That is, in the third region 22C, the ratio of the reflected light amount of the short wavelength side to the reflected light amount of the long wavelength side light is a value between the adjacent first region 122A and the second region 122B. Color unevenness is less likely to occur in the emitted light from the optical member 19.
  • the first reflective sheet 222 is configured such that the color of the surface changes in a gradation according to the distance from the LED 17, as shown in FIG. Specifically, as shown in FIG. 22, a large number of dots DA and DB made of paint are formed on each divided reflection sheet 222S constituting the first reflection sheet 222. 21 and 22 mainly show the first divided reflective sheet 222SA on the long side forming the first region 222A and its dots DA, but the second divided reflective sheet 222SB forming the second region 222B and The dot DB has the same configuration, and the X3 end, the Y4 end, and the dot DB are shown in parentheses in the drawing.
  • the first region 222A (first divided reflection sheet 222SA) is coated with a first paint such that the reflected light from the application surface is yellowish, while the second region 222B (second divided reflection sheet 222SB). ) Is coated with a second paint such that the reflected light from the coated surface has a blue tint.
  • the area of the dots DA formed in the first region 222A gradually increases in the direction approaching the LED 17 (the direction from the X2 end or Y2 end toward the X1 end or Y1 end) and conversely away from the LED 17 (The area gradually decreases in the direction from the X1 end or Y1 end toward the X2 end or Y2 end. That is, as the first region 222A approaches the LED 17, as shown in FIG. The yellowish color increases, and as it moves away from the LED 17, the yellowish color becomes lighter and has a chromaticity distribution that tends to approach white (chromaticity coordinate values x0, y0).
  • the dot DB formed in the second region 222B gradually decreases in the direction toward the LED 17 (the direction from the X4 end or the Y4 end to the X3 end or the Y3 end), and conversely, the direction away from the LED 17
  • the area gradually increases in the direction (from the X3 end or the Y3 end toward the X4 end or the Y4 end). That is, as shown in FIG. 24, in the second region 222B, the blueness increases as the distance from the LED 17 increases, and the blueness decreases as the distance from the LED 17 decreases to white (chromaticity coordinate values x0, y0). It has a chromaticity distribution that tends to approach. Therefore, as shown in FIGS.
  • the chromaticity coordinate values in the first region 222A and the second region 222B tend to gradually increase as the distance from the LED 17 increases, and conversely decrease as the distance from the LED 17 decreases.
  • the chromaticity coordinate value continuously decreases toward the direction away from the LED 17, and conversely, the chromaticity coordinate value continues toward the direction closer to the LED 17.
  • the chromaticity distribution gradually increases.
  • the chromaticity in the first region 222A and the second region 222B changes gently according to the distance from the LED 17, so the color unevenness of the emitted light in the light guide member 19 Can be more suitably suppressed.
  • the areas of the paint dots DA and DB may be the same, and the interval between the dots DA and DB may be changed.
  • the first reflecting sheet 222 is formed with a large number of dots DA and DB made of paint. In this way, it is possible to easily control the chromaticity in the first region 222A and the second region 222B according to the modes (area, distribution density, etc.) of the dots DA and DB.
  • the dots DA and DB are arranged so that the chromaticity coordinate values of the CIE 1931 chromaticity diagram in the first area 222A and the second area 222B become smaller in the direction away from the LED 17, respectively. In this way, since the chromaticity in the first region 222A and the second region 222B changes gently according to the distance from the LED 17, the color unevenness of the emitted light in the light guide member 19 is more suitably suppressed. Can do.
  • Embodiment 4 of the present invention will be described.
  • this Embodiment 4 what changed the manufacturing method of the 1st reflective sheet 22 is shown.
  • the first reflective sheet 22 contains a polycyclic pigment as an organic pigment in the synthetic resin material that forms the base material.
  • the first divided reflection sheet 22SA that forms the first region 22A of the first reflection sheet 22 contains a yellow polycyclic pigment
  • the second division 22B that forms the second region 22B contains a polycyclic pigment exhibiting a blue color.
  • specific polycyclic pigments exhibiting yellow for example, isoindolinone, isoindoline, quinophthalone, pyrazolone, flavatron, anthraquinone and the like can be used.
  • polycyclic pigments exhibiting blue for example, phthalocyanine, anthraquinone, indigoid, carbonium and the like can be used.
  • phthalocyanine, anthraquinone, indigoid, carbonium and the like can be used.
  • each chromaticity in the first region 22A and the second region 22A is the same as that in the first embodiment, overlapping description will be omitted.
  • the first region 22A and the second region 22B have the chromaticity coordinate values of the CIE 1931 chromaticity diagram different from each other by containing the pigment in the first reflection sheet 22. Is done.
  • the chromaticity in the first region 22A and the second region 22B can be appropriately selected by selecting the amount of pigment to be contained in the first reflection sheet 22 (content concentration, etc.) and the type of pigment. It can be.
  • the second reflective sheet 423 is divided into a first region 423A that is relatively close to the LED 17 and a second region 423B that is relatively far from the LED 17.
  • both the x value and the y value which are chromaticity coordinate values of the CIE 1931 chromaticity diagram, are set to be relatively large.
  • the first region 423A and the second region 423B related to the second reflection sheet 423 are the optical axis LA of the LED 17 out of a pair of diagonal lines formed by connecting corners at diagonal positions in the second reflection sheet 423. And in other words, a diagonal line that does not pass through the LED 17 as a boundary. Note that, in FIG.
  • first region 423A and the second region 423B having different chromaticities are illustrated in a different shaded shape for distinction. Therefore, both the first region 423A and the second region 423B have a substantially right triangle shape when seen in a plane, and the area ratios are substantially equal.
  • the first area 423A of the second reflection sheet 423 has the same chromaticity coordinate value in the CIE 1931 chromaticity diagram as that of the first area 22A (first divided reflection sheet 22SA) of the first reflection sheet 22.
  • the second area 423B of the second reflection sheet 423 has the same chromaticity coordinate value of the CIE 1931 chromaticity diagram as that of the second area 22B (second divided reflection sheet 22SB) of the first reflection sheet 22. .
  • a paint having a different chromaticity is applied to each of the regions 423 ⁇ / b> A and 423 ⁇ / b> B of the second reflective sheet 423, similar to the first reflective sheet 22.
  • the second reflective sheet 423 when the second reflective sheet 423 is divided into at least the first region 423A relatively close to the LED 17 and the second region 423B relatively distant from the LED 17, the first region Compared to the second region 423B, 423A has both x and y values that are chromaticity coordinate values of the CIE 1931 chromaticity diagram relatively large.
  • the second region 423 that contacts the plate surface 19c that is the surface opposite to the light exit surface 19a is also the first region 423A and the second region similar to the first reflector sheet 22 described above. 423B, the color unevenness that can occur between the light emitted from the region of the light guide member 19 that is relatively close to the LED 17 and the light that is emitted from the region far from the LED 17 is more effectively mitigated. can do.
  • Embodiment 6 A sixth embodiment of the present invention will be described with reference to FIGS. In this Embodiment 6, what changed the structure of LED517 and LED board 518 is shown. In addition, the overlapping description about the same structure, an effect
  • the LED 517 and the LED substrate 518 are arranged so as to face one end of the light guide member 519 on the long side.
  • the LED substrate 518 has an elongated flat plate shape extending along the long side direction (X-axis direction) of the light guide member 519, and a plurality of LEDs 517 are intermittently arranged in parallel on the surface facing the light guide member 519. It is implemented in the form.
  • the plurality of LEDs 517 are arranged on the LED substrate 518 with substantially equal intervals along the extending direction, and the respective optical axes almost coincide with the short side direction (Y-axis direction) of the light guide member 519. ing.
  • the light incident surface 519 b of the light guide member 519 is configured by an end surface on the one long side facing the LED 517 and the LED substrate 518 among the outer peripheral end surfaces of the light guide member 519. Therefore, the first reflection sheet 522 has an end surface 519d excluding the light incident surface 519b in the outer peripheral end surface of the light guide member 519, specifically, one long side end surface 519d1 opposite to the light incident surface 519b, and a pair of short surfaces. They are arranged in contact with the side end face 519d2.
  • the LED substrate 518 is attached in a state where the surface opposite to the mounting surface of the LED 517 is in contact with the inner surface of the side plate 514b on the long side of the chassis 514.
  • the divided reflection sheet 522S constituting the first reflection sheet 522 includes a pair of first divided reflection sheets 522SA that are in contact with the pair of short-side end surfaces 519d2 of the light guide member 519 and a light incident surface 519b of the light guide member 519. And a second divided reflective sheet in contact with the one long side end face 519d1 on the opposite side.
  • the second divided reflective sheet 522SB is entirely the second area 522B (FIG. 28), whereas the first divided reflective sheet 522SA is different from the first area 522A and the first area 522A that have different chromaticities. 2 regions 522B. As shown in FIGS.
  • the first divided reflection sheet 522SA is divided into a first region 522A and a second region 522B at a substantially central position in the extending direction (Y-axis direction).
  • the side closer to the LED 17 (Y1 end side) is the first region 522A, and the side relatively far from the LED 17 (Y2 end side, the side adjacent to the second divided reflection sheet 522SB) is the second region 522B.
  • the first paint may be applied to half of the base material, while the second paint may be applied to the other half.
  • region 522A is the same as that of above-mentioned Embodiment 1, it omits the overlapping description.
  • the light guide member 519 has a substantially rectangular shape when viewed in plan, whereas the LED 517 includes a plurality of LEDs 517 along one side of the end portion of the light guide member 519. They are arranged in parallel. In this way, light from the plurality of LEDs 517 can be incident on the light guide member 519, which is suitable for improving the luminance of the emitted light.
  • FIG. 7 A seventh embodiment of the present invention will be described with reference to FIGS. 29 and 30.
  • FIG. 7 what changed the division
  • the first reflection sheet 622 is divided into three regions 622A, 622B, and 622C having different chromaticities as shown in FIGS. Specifically, among the first reflective sheet 622, the second divided reflective sheet 622SB has the entire region as the second region 622B, whereas the first divided reflective sheet 622SA has the region closest to the LED 517 as the first region.
  • the region 622A is the region farthest from the LED 517 and is the second region 622B.
  • the region is further sandwiched between the first region 622A and the second region 622B, and the first region 622A and the second region 622B. A region adjacent to both of these is defined as a third region 622C.
  • the first divided reflective sheet 622SA is divided into three equal parts into three regions 622A, 622B, and 622C.
  • region 622A, 622B, 622C is the same as that of above-mentioned Embodiment 2, it omits the overlapping description.
  • the LED 717 and the LED substrate 718 are arranged so as to face one end of the light guide member 719 on the short side.
  • the LED substrate 718 has an elongated flat plate shape extending along the short side direction (Y-axis direction) of the light guide member 719, and a plurality of LEDs 717 are intermittently arranged in parallel on the surface facing the light guide member 719. It is implemented in the form.
  • the plurality of LEDs 717 are arranged on the LED substrate 718 at substantially equal intervals along the extending direction, and the respective optical axes almost coincide with the long side direction (X-axis direction) of the light guide member 719. ing.
  • the light incident surface 719 b of the light guide member 719 is configured by an end surface on one short side facing the LED 717 and the LED substrate 718 among the outer peripheral end surfaces of the light guide member 719. Therefore, the first reflection sheet 722 includes an end surface 719d excluding the light incident surface 719b of the outer peripheral end surface of the light guide member 719, more specifically, one short side end surface 719d2 opposite to the light incident surface 719b, and a pair of long lengths. They are arranged in contact with the side end surface 519d1.
  • the LED substrate 718 is attached in a state where the surface opposite to the mounting surface of the LED 717 is in contact with the inner surface of the side plate 714 b on the short side of the chassis 714.
  • the divided reflection sheet 722 ⁇ / b> S constituting the first reflection sheet 722 includes a pair of first divided reflection sheets 722 ⁇ / b> SA that are in contact with the pair of long-side end surfaces 719 d ⁇ b> 1 of the light guide member 719 and a light incident surface 719 b of the light guide member 719. And a second divided reflective sheet in contact with the one short side end face 719d2 on the opposite side.
  • the second divided reflective sheet 722SB is entirely the second area 722B
  • the first divided reflective sheet 722SA is a first area 722A and a second area 722B having different chromaticities. Have both.
  • the first divided reflection sheet 722SA is divided into a first region 722A and a second region 722B at a substantially central position in the extending direction (X-axis direction), and is relatively close to the LED 17 (X1 end side). ) Is the first region 722A, and the side relatively far from the LED 17 (X2 end side, the side adjacent to the second divided reflection sheet 722SB) is the second region 722B.
  • region 722A is the same as that of above-mentioned Embodiment 1, 6, it abbreviate
  • the light guide member 719 has a substantially rectangular shape when viewed in plan, whereas the LED 717 is along one short side of the end portion of the light guide member 719.
  • a plurality of the optical axes are arranged in parallel, and the optical axes thereof are substantially aligned with the long sides. In this way, the distance until the light from the LED 717 reaches the short side of the light guide member 719 opposite to the LED 717 along the optical axis is equal to the long side of the light guide member 719.
  • the above-described configuration effectively eliminates uneven color of the emitted light. Can be suppressed.
  • a ninth embodiment of the present invention will be described with reference to FIG.
  • the first reflection sheet 822 is divided into three regions 822A, 822B, and 822C having different chromaticities as shown in FIG. Specifically, among the first reflective sheet 822, the second divided reflective sheet 822SB has the entire area as the second area 822B, whereas the first divided reflective sheet 822SA has the area closest to the LED 717 as the first area.
  • the region 822A is the region farthest from the LED 717 and is the second region 822B.
  • the region is further sandwiched between the first region 822A and the second region 822B, and the first region 822A and the second region 822B. A region adjacent to both of these is defined as a third region 822C.
  • the first divided reflection sheet 822SA is divided into three equal parts into three regions 822A, 822B, and 822C.
  • region 822A, 822B, and 822C is the same as that of Embodiment 2 and 7 mentioned above, the overlapping description is omitted.
  • the first reflection sheet 922 is configured as one component.
  • action, and effect as above-mentioned Embodiment 1 is abbreviate
  • the first reflection sheet 922 has a size that surrounds the entire end surface 19d of the light guide member 19 excluding the light incident surface 19b. That is, the first reflection sheet 922 has a band shape in which the length dimension of the pair of long side end faces 19d1 and the length dimension of the pair of short side end faces 19d2 in the light guide member 19 are added. Thus, the end surface 19d is surrounded over the entire circumference while straddling the corners existing between the adjacent end surfaces 19d1, 19d2.
  • the first reflective sheet 922 having such a configuration, for example, among the base material forming the first reflective sheet 922, a range corresponding to the length dimension of the long side end surface 19d1 from one end and a short side from the other end What is necessary is just to apply
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the LED as the light source is illustrated as being disposed at a position that is asymmetric with respect to the reflective sheet (light guide member, chassis, etc.). It is also possible to adopt a configuration in which they are arranged at symmetrical positions.
  • a pair of LEDs 17-1 are arranged corresponding to a pair of diagonal corners in the light guide member 19-1. can do.
  • the divided reflection sheet 22 constituting the first reflection sheet 22-1 may be configured to have both the first region 22A-1 and the second region 22B-1, respectively, as shown in FIGS.
  • the side relatively closer to the LED 17-1 (X1 end side or Y1 end side) is the first region 22A-1, and the side relatively far from the LED 17-1 (X2 end side or Y2 end side) is the second region. What is necessary is just 22B-1. Note that the above-described configuration can be similarly applied to the configurations described in the above-described Embodiments 2 to 10.
  • a divided reflection sheet having both the first area and the second area having different chromaticities may be further divided for each area.
  • the first divided reflection sheet 522SA-2 in contact with the pair of short-side end faces 19d2-2 of the light guide member 19-2 is further divided into two, and the LED 17- The division part closer to 2 may be the first area 522A-2, and the division part relatively far from the LED 17-2 may be the second area 522B-2.
  • the above-described configuration can be similarly applied to Embodiments 2, 7 to 9, and (1).
  • the divided reflective sheet may be divided into three.
  • the chromaticity is continuously and gradually changed.
  • the chromaticity is continuously and gradually changed.
  • a configuration having a third region is also possible. Specifically, as shown in FIG. 38, the chromaticity is constant between the first region 22A-4 and the second region 22B-4 where the chromaticity continuously and gradually changes according to the distance from the LED.
  • the third region 22C-4 having the chromaticity coordinate value (x3, y3) that is the same as the chromaticity coordinate value (x0, y0) related to the white reference chromaticity may be interposed.
  • the first reflective sheet is divided into three regions having different chromaticities, and the chromaticity of the third region is white.
  • the chromaticity of the third region may be designed differently from the white reference chromaticity. Specifically, as shown in FIG. 39, the design is such that the point C related to the chromaticity of the third region is interposed between the white reference chromaticity and the point A related to the chromaticity of the first region ( It is possible to use a chromaticity closer to yellow. Furthermore, as shown in FIG.
  • the design is such that the point C related to the chromaticity of the third region is interposed between the white reference chromaticity and the point B related to the chromaticity of the second region (blue It is also possible to use a chromaticity design.
  • the white reference chromaticity is the chromaticity related to the light emitted from the LED used in the backlight device, and the chromaticity coordinate value is (0.272, 0.277)
  • the white reference chromaticity can be appropriately changed in addition to the above.
  • white reference chromaticity for example, D65 light source (0.3157, 0.3290), A light source (0.4476, 0.4074), B light source (0.3484, 0.3516), C Light source (0.3101, 0.3161), white reference chromaticity according to CIE color system (0.3333, 0.3333), white reference chromaticity according to NTSC standard (0.3100, 0.3160) It is also possible to use white reference chromaticity (0.3127, 0.3290) according to the Adobe ⁇ ⁇ ⁇ RGB standard.
  • the relative positional relationship of the chromaticities of the first region and the second region with respect to the white reference chromaticity in the CIE 1931 chromaticity diagram can be changed as appropriate.
  • the chromaticity of the first region can be designed to be closer to cyan or magenta with respect to the white reference chromaticity.
  • the chromaticity of the second region can be designed to be closer to green or red with respect to the white reference chromaticity.
  • the chromaticity of the third region is equal to the white reference chromaticity, or blue with respect to the white reference chromaticity
  • the chromaticity of the third region is shown as being closer to red or green, closer to red, green, cyan or magenta than the white reference chromaticity. can do.
  • Embodiments 1 to 3 and 5 to 9 described above the case where two types of paints are used to adjust the chromaticity of the reflection sheet has been described.
  • only one type of paint is used, and
  • the chromaticity of the first region and the second region may be made different by making the concentration of the paint, the coating area, the coating film thickness, etc. different between the first region and the second region. It is also possible to use three or more kinds of paints.
  • the configuration in which the first reflective sheet has a surface orthogonal to the optical axis of the LED is exemplified, but the surface of the first reflective sheet is acute or obtuse with respect to the optical axis of the LED.
  • the present invention can also be applied to a configuration that is inclined (intersected) to form
  • the first region and the second region of the second reflecting sheet that are in contact with the plate surface opposite to the light emitting surface of the light guide member are the first region of the first reflecting sheet and the second region.
  • region was illustrated, either one or both of the 1st area
  • the second reflection sheet in contact with the plate surface opposite to the light emitting surface of the light guide member has the first region and the second region having different chromaticities.
  • the second reflective sheet has the third region in addition to the first region and the second region. It is also possible to have a configuration.
  • the specific configurations of the first region and the second region of the second reflective sheet can be applied to the above-described modifications of the first embodiment and the configurations described in the second to tenth embodiments. .
  • the color filters of the color filter included in the liquid crystal panel are exemplified by three colors R, G, and B.
  • the color parts may be four or more colors.
  • the present invention includes an LED using a type of LED in which three types of LED chips each emitting C (cyan), M (magenta), and Y (yellow) are monochromatic.
  • the TFT is used as the switching element of the liquid crystal display device.
  • the present invention can be applied to a liquid crystal display device using a switching element other than the TFT (for example, a thin film diode (TFD)).
  • a switching element other than the TFT for example, a thin film diode (TFD)
  • the present invention can also be applied to a liquid crystal display device for monochrome display.
  • the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified.
  • the present invention can be applied to display devices using other types of display panels.
  • the television receiver provided with the tuner substrate is exemplified, but the present invention is also applicable to a display device that does not include the tuner substrate.
  • SYMBOLS 10 Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Backlight device (illumination device), 17,517,717 ... LED (light source), 19,519,719 ... Light guide member, 19a ... Light exit surface, 19b, 519b, 719b ... Light incident surface, 19c ... Plate surface (surface opposite to the light exit surface), 19d, 519d, 719d ... End surface (surface adjacent to the light exit surface), 22 , 122, 222, 522, 622, 722, 822, 922...
  • First reflective sheet (reflective member), 22A, 122A, 222A, 522A, 622A, 722A, 822A, 922A,..., First region, 22B, 122B, 222B, 522B, 622B, 722B, 822B, 922B ... 2nd area, 22C, 622C, 822C ... 3rd area, 22S, 122S, 222S, 522S 622S, 722S, 822S ... split reflective sheet (split reflective member), 23, 423 ... second reflective sheet, 423A ... first region, 423B ... second region, DA, DB ... dot, LA ... optical axis, TV ... TV Receiver

Abstract

The disclosed backlight device (illumination device) (12) is provided with: an LED (light source) (17); a light guide member (19) having a light emitting surface (19a) arranged with the edge part facing the LED (17) and emitting the light incident from said LED (17) to the edge part; and a first reflective sheet (reflective member) (22) reflecting the light in the light guide member (19) and arranged so as to be in contact with the edge surface (19d) of the light guide member (19), which is a surface adjacent to the light emitting surface (19a). When the first reflective sheet (22) is divided into at least a first region (22A) nearer the LED (17) and a second region (22B) farther from the LED (17), then, compared to the second region (22B), the first region (22A) has larger x and y chromaticity coordinate values in the CIE 1931 chromaticity diagram.

Description

照明装置、表示装置、及びテレビ受信装置Lighting device, display device, and television receiver
 本発明は、照明装置、表示装置、及びテレビ受信装置に関する。 The present invention relates to a lighting device, a display device, and a television receiver.
 近年、テレビ受信装置をはじめとする画像表示装置の表示素子は、従来のブラウン管から液晶パネルやプラズマディスプレイパネルなどの薄型の表示パネルに移行しつつあり、画像表示装置の薄型化を可能としている。液晶表示装置は、これに用いる液晶パネルが自発光しないため、別途に照明装置としてバックライト装置を必要としており、バックライト装置はその機構によって直下型とエッジライト型とに大別されている。液晶表示装置の一層の薄型化を実現するには、エッジライト型のバックライト装置を用いるのが好ましく、その一例として下記特許文献1に記載されたものが知られている。このものでは、導光部材における一角部に対して対向状に光源を配するようにしている。 In recent years, the display elements of image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display panels such as liquid crystal panels and plasma display panels, which enables thinning of image display devices. Since the liquid crystal panel used for the liquid crystal display device does not emit light by itself, a backlight device is separately required as a lighting device, and the backlight device is roughly classified into a direct type and an edge light type according to the mechanism. In order to further reduce the thickness of the liquid crystal display device, it is preferable to use an edge light type backlight device, and an example described in Patent Document 1 below is known. In this device, the light source is arranged in a facing manner with respect to a corner portion of the light guide member.
特開2006-172785号公報JP 2006-172785 A
(発明が解決しようとする課題)
 ところで、光源から発せられた光は、導光部材内を伝播した後、導光部材の光出射面から外部へと出射されるのであるが、光源からの発光光に含まれる青色の波長領域の光などの短波長側の光は、黄色や赤色の波長領域の光などの長波長側の光に比べると、散乱が生じ易くて外部へ出射し易い傾向にある。このため、導光部材の光出射面のうち光源に近い側と遠い側とでは、出射光の色味に差が生じる可能性があり、特に液晶表示装置が大型化されるとその傾向が顕著となるきらいがあった。
(Problems to be solved by the invention)
By the way, the light emitted from the light source is propagated through the light guide member and then emitted to the outside from the light exit surface of the light guide member. Light on the short wavelength side such as light tends to scatter and tend to be emitted to the outside as compared to light on the long wavelength side such as light in the yellow or red wavelength region. For this reason, there is a possibility that a difference in the color of the emitted light may occur between the light emitting surface of the light guide member on the side closer to the light source and the side far from the light source, and this tendency is particularly noticeable when the liquid crystal display device is enlarged. There was a disagreement.
 本発明は上記のような事情に基づいて完成されたものであって、出射光に色ムラが生じるのを抑制することを目的とする。 The present invention has been completed based on the above situation, and an object thereof is to suppress the occurrence of uneven color in the emitted light.
(課題を解決するための手段)
 本発明の照明装置は、光源と、前記光源に対して端部が対向状に配されるとともに前記光源から前記端部に入射した光を出射させる光出射面を有する導光部材と、前記導光部材のうち前記光出射面に隣り合う面に接して配されるとともに前記導光部材内の光を反射させる反射部材とを備え、前記反射部材を少なくとも前記光源に相対的に近い第1領域と、前記光源から相対的に遠い第2領域とに区分したとき、前記第1領域は、前記第2領域に比べると、CIE1931色度図の色度座標値であるx値及びy値が共に相対的に大きなものとされる。
(Means for solving problems)
An illuminating device of the present invention includes a light source, a light guide member having an end facing the light source and having a light exit surface that emits light incident on the end from the light source, and the light guide. A first member that is disposed in contact with a surface adjacent to the light emitting surface of the light member and reflects the light in the light guide member, wherein the reflecting member is at least relatively close to the light source. And the second region relatively far from the light source, the first region has both x and y values that are chromaticity coordinate values of the CIE1931 chromaticity diagram as compared to the second region. It is relatively large.
 光源から導光部材の端部に入射した光は、光出射面に隣り合う面に接して配される反射部材により反射されるなどして内部を伝播した後、光出射面から出射される。導光部材内を伝播する光に含まれる短波長側の光は、長波長側の光に比べると、散乱が生じ易くて外部へ出射し易い傾向にある。このため、導光部材のうち光源に相対的に近い領域では短波長側の光の出射が過剰になりがちとなり、逆に光源から相対的に遠い領域では短波長側の光の出射が不足しがちとなるため、導光部材の出射光に色ムラが生じることが懸念される。 The light that has entered the end of the light guide member from the light source is reflected by a reflecting member disposed in contact with a surface adjacent to the light emitting surface, propagates through the inside, and is then emitted from the light emitting surface. Light on the short wavelength side included in the light propagating through the light guide member tends to scatter and tend to be emitted to the outside as compared with light on the long wavelength side. For this reason, in the region relatively close to the light source of the light guide member, the emission of light on the short wavelength side tends to be excessive, and conversely in the region relatively far from the light source, the emission of light on the short wavelength side is insufficient. This tends to cause color unevenness in the light emitted from the light guide member.
 そこで、本発明では、反射部材のうち、光源に相対的に近い第1領域に係るCIE1931色度図の色度座標値であるx値及びy値を、光源から相対的に遠い第2領域に係る同x値及びy値に比べて共に相対的に大きなものとしている。このような構成によれば、光源に相対的に近い第1領域は、第2領域に比べると、長波長側の光をより多く反射させ、短波長側の光の反射光量が少なくなる傾向にあるので、導光部材のうち光源に相対的に近い領域では、不足しがちな長波長側の光については出射が促進されるのに対して、過剰になりがちな短波長側の光については出射が抑制される。その一方で、光源から相対的に遠い第2領域は、第1領域に比べると、短波長側の光をより多く反射させ、長波長側の光の反射光量が少なくなる傾向にあるので、導光部材のうち光源から相対的に遠い領域では、過剰になりがちな長波長側の光については出射が抑制されるのに対して、不足しがちな短波長側の光については出射が促進される。以上により、導光部材のうち光源に相対的に近い領域からの出射光と、相対的に遠い領域からの出射光との間で生じ得る色ムラを緩和することができ、特に当該照明装置の大型化に好適となる。さらには、本発明では、反射部材によって導光部材のうち光出射面に隣り合う面からの光の出射を防ぐようにしており、その反射部材に上記した第1領域と第2領域とを含ませるようにしているから、光源からの光を出射光として効率的に利用することができて輝度を向上させることができるとともに、色ムラの防止により好適とされる。 Therefore, in the present invention, the x value and the y value, which are chromaticity coordinate values of the CIE1931 chromaticity diagram related to the first region relatively close to the light source, of the reflecting member are set to the second region relatively far from the light source. Both the x value and the y value are relatively large. According to such a configuration, the first region relatively close to the light source tends to reflect more light on the longer wavelength side and reduce the amount of reflected light on the shorter wavelength side than the second region. Therefore, in the region of the light guide member that is relatively close to the light source, emission is promoted for light on the long wavelength side, which tends to be short, whereas light on the short wavelength side, which tends to be excessive, is promoted. The emission is suppressed. On the other hand, the second region relatively far from the light source tends to reflect more light on the short wavelength side and reduce the amount of reflected light on the long wavelength side than the first region. In the region of the optical member that is relatively far from the light source, the emission of long-wavelength light that tends to be excessive is suppressed, whereas the emission of short-wavelength light that tends to be insufficient is promoted. The As described above, color unevenness that can occur between the light emitted from the region relatively close to the light source in the light guide member and the light emitted from the relatively distant region can be reduced. Suitable for enlargement. Furthermore, in the present invention, the reflection member prevents light from being emitted from the surface of the light guide member adjacent to the light emission surface, and the reflection member includes the first region and the second region described above. Therefore, the light from the light source can be efficiently used as the emitted light, the luminance can be improved, and the color unevenness can be prevented.
 本発明の実施態様として、次の構成が好ましい。
(1)前記導光部材のうち前記光出射面に隣り合う面には、前記光源からの光が入射される光入射面が含まれており、前記反射部材は、前記導光部材のうち前記光出射面に隣り合う面において前記光入射面を除いた全域にわたって配されている。このようにすれば、光源から導光部材のうち光出射面に隣り合う面に含まれる光入射面に入射した光は、導光部材のうち光出射面に隣り合う面において光入射面を除いた全域にわたって配される反射部材によって反射されることで、効率的に光出射面から出射される。これにより、光の利用効率及び輝度を一層向上させることができるとともに、色ムラの防止に一層好適とされる。
The following configuration is preferable as an embodiment of the present invention.
(1) Of the light guide member, a surface adjacent to the light exit surface includes a light incident surface on which light from the light source is incident, and the reflective member includes the light guide member of the light guide member. A surface adjacent to the light exit surface is disposed over the entire area excluding the light incident surface. In this way, light incident on the light incident surface included in the surface adjacent to the light exit surface of the light guide member from the light source excludes the light entrance surface on the surface adjacent to the light exit surface of the light guide member. By being reflected by the reflecting member disposed over the entire area, the light is efficiently emitted from the light emitting surface. As a result, the light utilization efficiency and luminance can be further improved, and it is more suitable for preventing color unevenness.
(2)前記光源は、発光強度がピークとなる光の進行方向である光軸が前記光出射面に並行する配光分布を有しており、前記反射部材は、前記光軸に対して直交する面を有している。このようにすれば、光源からの光のうち、発光強度がピークとなる光を、その進行方向である光軸に対して直交する反射部材によって効率的に反射させることができるから、光の利用効率及び輝度がより高いものとなるとともに、色ムラの防止により好適とされる。 (2) The light source has a light distribution in which an optical axis that is a traveling direction of light having a peak emission intensity is parallel to the light emitting surface, and the reflecting member is orthogonal to the optical axis. It has a surface to do. In this way, light having a peak emission intensity among the light from the light source can be efficiently reflected by the reflecting member orthogonal to the optical axis that is the traveling direction, so that the use of light is possible. The efficiency and brightness are higher, and it is more suitable for preventing color unevenness.
(3)前記導光部材のうち前記光出射面とは反対側の面に接して配される第2反射部材が備えられている。このようにすれば、導光部材内に入射した光源からの光は、導光部材のうち光出射面に隣り合う面に接する形の反射部材と、導光部材のうち光出射面とは反対側の面に接する第2反射部材とによって反射されることで導光部材内を伝播された後に、光出射面から出射される。 (3) The 2nd reflection member distribute | arranged in contact with the surface on the opposite side to the said light-projection surface among the said light guide members is provided. If it does in this way, the light from the light source which entered into the light guide member is opposite to the light emission surface of the light guide member and the reflection member in contact with the surface adjacent to the light emission surface of the light guide member. After being propagated through the light guide member by being reflected by the second reflecting member in contact with the surface on the side, the light is emitted from the light emitting surface.
(4)前記第2反射部材を少なくとも前記光源に相対的に近い第1領域と、前記光源から相対的に遠い第2領域とに区分したとき、前記第1領域は、前記第2領域に比べると、CIE1931色度図の色度座標値であるx値及びy値が共に相対的に大きなものとされる。このようにすれば、光出射面とは反対側の面に接する第2反射部材についても、上記した反射部材と同様に、第1領域と第2領域とを含んでいるから、導光部材のうち光源に相対的に近い領域からの出射光と、相対的に遠い領域からの出射光との間で生じ得る色ムラを一層効果的に緩和することができる。 (4) When the second reflecting member is divided into at least a first region relatively close to the light source and a second region relatively distant from the light source, the first region is compared with the second region. Both the x value and the y value, which are chromaticity coordinate values in the CIE 1931 chromaticity diagram, are relatively large. In this way, the second reflecting member that is in contact with the surface opposite to the light emitting surface includes the first region and the second region in the same manner as the reflecting member described above. Among these, the color unevenness that can occur between the outgoing light from the region relatively close to the light source and the outgoing light from the region far from the light source can be alleviated more effectively.
(5)前記第1領域に係るCIE1931色度図の色度座標値を(x1,y1)とし、前記第2領域に係るCIE1931色度図の色度座標値を(x2,y2)とし、白色の基準色度に係るCIE1931色度図の色度座標値を(x0,y0)としたとき、前記第1領域及び前記第2領域は、下記式(1),(2)を満たす関係の色度座標値をそれぞれ有する。 (5) The chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the first area is (x1, y1), the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the second area is (x2, y2), and white When the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the reference chromaticity is (x0, y0), the first area and the second area are in a relationship satisfying the following expressions (1) and (2) Each has a degree coordinate value.
 [数1]
 x2<x0≦x1     (1)
[Equation 1]
x2 <x0 ≦ x1 (1)
 [数2]
 y2<y0≦y1     (2)
[Equation 2]
y2 <y0 ≦ y1 (2)
 このようにすれば、仮にx1値がx0値よりも小さく且つy1値がy0値よりも小さい場合に比べると、第2領域の色度を白色の基準色度に近くすることができる。反射部材における光の反射効率は、色度が白色の基準色度に近くなるほど良好なものとなるから、第2領域における光の反射効率が良好なものとなり、もって出射光の輝度を向上させる上で好適である。また、光源からの出射光を白色光またはそれに近い色味の光とした場合に有用とされる。 In this way, the chromaticity of the second region can be made closer to the white reference chromaticity as compared with the case where the x1 value is smaller than the x0 value and the y1 value is smaller than the y0 value. The light reflection efficiency of the reflecting member becomes better as the chromaticity becomes closer to the white reference chromaticity. Therefore, the light reflection efficiency in the second region becomes better, thereby improving the luminance of the emitted light. It is suitable. Further, it is useful when the light emitted from the light source is white light or light having a color close to it.
(6)前記第1領域に係るCIE1931色度図の色度座標値を(x1,y1)とし、前記第2領域に係るCIE1931色度図の色度座標値を(x2,y2)とし、白色の基準色度に係るCIE1931色度図の色度座標値を(x0,y0)としたとき、前記第1領域及び前記第2領域は、下記式(3),(4)を満たす関係の色度座標値をそれぞれ有する。 (6) The chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the first area is (x1, y1), the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the second area is (x2, y2), and white When the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the reference chromaticity is (x0, y0), the first region and the second region have colors satisfying the following expressions (3) and (4) Each has a degree coordinate value.
 [数3]
 x2≦x0<x1     (3)
[Equation 3]
x2 ≦ x0 <x1 (3)
 [数4]
 y2≦y0<y1     (4)
[Equation 4]
y2 ≦ y0 <y1 (4)
 このようにすれば、仮にx2値がx0値よりも大きく且つy2値がy0値よりも大きい場合に比べると、第1領域の色度を白色の基準色度に近くすることができる。反射部材における光の反射効率は、色度が白色の基準色度に近くなるほど良好なものとなるから、第1領域における光の反射効率が良好なものとなり、もって出射光の輝度を向上させる上で好適である。また、光源からの出射光を白色光またはそれに近い色味の光とした場合に有用とされる。 This makes it possible to make the chromaticity of the first region closer to the white reference chromaticity as compared with the case where the x2 value is larger than the x0 value and the y2 value is larger than the y0 value. The light reflection efficiency of the reflecting member becomes better as the chromaticity becomes closer to the white reference chromaticity. Therefore, the light reflection efficiency in the first region becomes better, thereby improving the luminance of the emitted light. It is suitable. Further, it is useful when the light emitted from the light source is white light or light having a color close to it.
(7)前記第1領域及び前記第2領域は、下記式(5),(6)を満たす関係の色度座標値を有する。 (7) The first area and the second area have chromaticity coordinate values that satisfy the following expressions (5) and (6).
 [数5]
 x2<x0<x1     (5)
[Equation 5]
x2 <x0 <x1 (5)
 [数6]
 y2<y0<y1     (6)
[Equation 6]
y2 <y0 <y1 (6)
 このようにすれば、第1領域及び第2領域が共に白色の基準色度に近い色度を有することになるから、第1領域及び第2領域における光の反射効率が共に良好なものとなり、もって出射光の輝度を向上させる上で一層有効である。しかも、第1領域が呈する色と第2領域が呈する色とが補色の関係になるから、光源からの出射光を白色光とした場合に特に有用とされる。 In this way, since both the first region and the second region have chromaticity close to the white reference chromaticity, both the light reflection efficiency in the first region and the second region are good, Therefore, it is more effective in improving the brightness of the emitted light. In addition, since the color exhibited by the first region and the color exhibited by the second region have a complementary relationship, it is particularly useful when the emitted light from the light source is white light.
(8)前記反射部材を、前記第1領域及び前記第2領域に加えてこれらの双方に対して隣り合う第3領域に区分したとき、前記第3領域は、前記第2領域に比べると、CIE1931色度図の色度座標値であるx値及びy値が共に相対的に小さく、且つ前記第1領域に比べると、前記x値及び前記y値が共に相対的に大きなものとされる。このようにすれば、反射部材のうち第1領域及び第2領域の双方に対して隣り合う第3領域は、第1領域に比べると、長波長側の光の反射光量に対する短波長側の光の反射光量の比率が相対的に大きくなるものの、第2領域に比べると、長波長側の光の反射光量に対する短波長側の光の反射光量の比率が相対的に小さくなる傾向にある。つまり、第3領域では、長波長側の光の反射光量に対する短波長側の光の反射光量の比率が、隣り合う第1領域と第2領域との間の値となるから、導光部材における出射光に色ムラが一層生じ難くなる。 (8) When the reflective member is divided into a third region adjacent to both the first region and the second region in addition to the first region, the third region is compared to the second region, Both the x value and the y value, which are chromaticity coordinate values in the CIE 1931 chromaticity diagram, are relatively small, and both the x value and the y value are relatively large compared to the first region. According to this configuration, the third region adjacent to both the first region and the second region of the reflecting member is light on the short wavelength side with respect to the reflected light amount of the light on the long wavelength side compared to the first region. However, the ratio of the reflected light amount of the short wavelength side to the reflected light amount of the light on the long wavelength side tends to be relatively small as compared with the second region. That is, in the third region, the ratio of the reflected light amount of the short wavelength side to the reflected light amount of the long wavelength side light is a value between the adjacent first region and the second region. Color unevenness is less likely to occur in the emitted light.
(9)前記導光部材は、平面に視て略方形の板状をなし、その一板面が前記光出射面を構成しているのに対し、端面に接する形で前記反射部材が配されており、前記反射部材は、前記導光部材の各辺に対応する前記端面毎に分割された複数の分割反射部材からなる。このようにすれば、反射部材の設置に際して、複数の分割反射部材を、導光部材の各辺に対応する端面毎に配すればよいから、仮に複数の辺に跨る形の反射部材を用いた場合に比べると、導光部材に対する位置合わせなどが容易となって作業性に優れる。 (9) The light guide member has a substantially square plate shape when seen in a plan view, and the one plate surface constitutes the light emitting surface, whereas the reflection member is arranged in contact with the end surface. The reflection member is composed of a plurality of divided reflection members divided for each of the end surfaces corresponding to the sides of the light guide member. In this way, when installing the reflecting member, it is only necessary to arrange the plurality of divided reflecting members for each end face corresponding to each side of the light guide member. Therefore, a reflecting member having a shape straddling a plurality of sides is used. Compared to the case, the positioning with respect to the light guide member is facilitated and the workability is excellent.
(10)複数の前記分割反射部材には、全域が前記第1領域とされるものと、全域が前記第2領域とされるものとが含まれている。このようにすれば、仮に1つの分割反射部材に第1領域と第2領域とが混在する構成とした場合に比べると、分割反射部材の製造が容易なものとなって製造コストの低減などを図ることができる。 (10) The plurality of divided reflecting members include those in which the entire region is the first region and those in which the entire region is the second region. In this way, compared to the case where the first region and the second region are mixed in one divided reflecting member, the divided reflecting member can be easily manufactured, and the manufacturing cost can be reduced. Can be planned.
(11)前記第1領域及び前記第2領域は、前記反射部材の表面に塗料が塗布されることで、CIE1931色度図の色度座標値が互いに異なるものとされる。このようにすれば、反射部材の表面に対する塗料の塗布範囲(塗布面積)や塗料の種類などを選択することで、第1領域及び第2領域における色度をそれぞれ適切なものとすることができる。 (11) The first region and the second region are made different from each other in chromaticity coordinate values of the CIE1931 chromaticity diagram by applying paint on the surface of the reflecting member. If it does in this way, the chromaticity in a 1st field and the 2nd field can be made appropriate by selecting the coating range (coating area), the kind of paint, etc. with respect to the surface of a reflective member, respectively. .
(12)前記反射部材には、前記塗料からなる多数のドットが形成されている。このようにすれば、ドットの態様(面積、分布密度など)により第1領域及び第2領域における色度をそれぞれ容易に制御することが可能となる。 (12) A large number of dots made of the paint are formed on the reflecting member. In this way, it is possible to easily control the chromaticity in the first region and the second region according to the dot mode (area, distribution density, etc.).
(13)前記ドットは、前記第1領域及び前記第2領域におけるCIE1931色度図の色度座標値が前記光源から遠ざかる方向へ向けてそれぞれ小さくなるよう配されている。このようにすれば、第1領域及び第2領域における色度が、光源からの距離に応じてなだらかに変化するから、導光部材における出射光の色ムラを一層好適に抑制することができる。 (13) The dots are arranged such that the chromaticity coordinate values of the CIE 1931 chromaticity diagram in the first area and the second area become smaller in the direction away from the light source. In this way, since the chromaticity in the first region and the second region changes gently according to the distance from the light source, color unevenness of the emitted light in the light guide member can be more suitably suppressed.
(14)前記第1領域及び前記第2領域は、前記反射部材に顔料を含有させることで、CIE1931色度図の色度座標値が互いに異なるものとされる。このようにすれば、反射部材に含有させる顔料の量(含有濃度など)や顔料の種類などを選択することで、第1領域及び第2領域における色度をそれぞれ適切なものとすることができる。 (14) The first region and the second region may have different chromaticity coordinate values in the CIE 1931 chromaticity diagram by including a pigment in the reflecting member. If it does in this way, chromaticity in the 1st field and the 2nd field can be made appropriate by selecting the quantity (content concentration etc.) of the pigment contained in a reflective member, the kind of pigment, etc., respectively. .
(15)前記導光部材は、平面に視て略方形をなしているのに対し、前記光源は、前記導光部材の端部のうち一角部に対して対向状をなすとともにその光軸が前記導光部材の辺に対して傾くよう配されている。このようにすれば、仮に光源を導光部材の端部のうち一辺に沿って複数並列配置した場合に比べると、光源の設置数を削減することができ、しかも光源の光軸を辺に対して傾けることで導光部材内に効率的に光を供給することができる。 (15) Whereas the light guide member has a substantially square shape when seen in a plane, the light source is opposed to a corner portion of the end portion of the light guide member and its optical axis is The light guide member is arranged to be inclined with respect to the side. In this way, it is possible to reduce the number of light sources installed and to set the optical axis of the light source relative to the side as compared with the case where a plurality of light sources are arranged in parallel along one side of the end portion of the light guide member. By tilting, light can be efficiently supplied into the light guide member.
(16)前記光源は、その光軸が前記導光部材における対角線とほぼ一致するよう配されている。このようにすれば、仮に光軸を上記対角線と交差する設定とした場合に比べると、光源からの光が光軸に沿って導光部材における光源とは反対側の角部に到達するまでの距離が長くなるため、導光部材のうち光源側の角部付近と、光源とは反対側の角部付近とで出射光の色度に差が生じ易くなるものの、上記した構成により出射光の色ムラを効果的に抑制することができる。 (16) The light source is arranged so that an optical axis thereof substantially coincides with a diagonal line in the light guide member. In this way, compared to the case where the optical axis is set to intersect the diagonal line, the light from the light source reaches the corner on the side opposite to the light source in the light guide member along the optical axis. Since the distance becomes longer, a difference in the chromaticity of the emitted light is likely to occur between the light source member near the corner on the light source side and the corner near the light source side. Color unevenness can be effectively suppressed.
(17)前記導光部材は、平面に視て略方形をなしているのに対し、前記光源は、前記導光部材の端部のうち一辺に沿って複数が並列して配されている。このようにすれば、複数の光源からの光を導光部材内に入射させることができるから、出射光の輝度を向上させる上で好適となる。 (17) Whereas the light guide member has a substantially square shape when seen in a plan view, a plurality of the light sources are arranged in parallel along one side of the end portions of the light guide member. In this way, light from a plurality of light sources can be incident on the light guide member, which is suitable for improving the luminance of the emitted light.
(18)前記導光部材は、平面に視て略長方形をなしているのに対し、前記光源は、前記導光部材の端部のうち一短辺に沿って複数が並列するとともにそれぞれの光軸が長辺とほぼ一致するよう配されている。このようにすれば、光源からの光が光軸に沿って導光部材における光源とは反対側の短辺に到達するまでの距離が導光部材の長辺と同等となるため、導光部材のうち光源側の短辺付近と、光源とは反対側の短辺付近とで出射光の色度に差が生じ易くなるものの、上記した構成により出射光の色ムラを効果的に抑制することができる。 (18) Whereas the light guide member has a substantially rectangular shape when seen in a plane, the light source includes a plurality of light sources arranged in parallel along one short side of the end portions of the light guide member and each light. The axis is arranged so that it is almost coincident with the long side. In this way, since the distance from the light source to the short side of the light guide member opposite to the light source along the optical axis is equal to the long side of the light guide member, the light guide member Among them, although the difference in chromaticity of the emitted light is likely to occur between the short side near the light source and the short side opposite to the light source, the above-described configuration effectively suppresses uneven color of the emitted light. Can do.
(19)前記光源は、LEDとされる。このようにすれば、高輝度化及び低消費電力化などを図ることができる。 (19) The light source is an LED. In this way, high brightness and low power consumption can be achieved.
(20)前記LEDは、青色の略単色光を発するLED素子と、前記LED素子からの光により励起されて発光する蛍光体とからなるものとされる。このようにすれば、LEDからの出射光には、青色の波長領域の光が多く含まれる。青色の波長領域の光は、導光部材のうちLEDに相対的に近い領域にて多くが出射される傾向にあるため、LEDから相対的に遠い領域に到達するまでの減衰することが懸念されるが、上記した構成により導光部材からの出射光に生じ得る色ムラを効果的に抑制することができる。 (20) The LED includes an LED element that emits substantially blue monochromatic light, and a phosphor that emits light when excited by light from the LED element. In this way, the light emitted from the LED contains a lot of light in the blue wavelength region. Since a large amount of light in the blue wavelength region tends to be emitted in a region relatively close to the LED of the light guide member, there is a concern that the light will attenuate until reaching a region relatively far from the LED. However, the above-described configuration can effectively suppress color unevenness that may occur in the light emitted from the light guide member.
 次に、上記課題を解決するために、本発明の表示装置は、上記記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える。 Next, in order to solve the above problem, a display device of the present invention includes the above-described illumination device and a display panel that performs display using light from the illumination device.
 このような表示装置によると、表示パネルに対して光を供給する照明装置が、出射光に色ムラが生じるのが抑制されたものであるから、表示品質の優れた表示を実現することが可能となる。 According to such a display device, the illumination device that supplies light to the display panel can suppress color unevenness in the emitted light, so that display with excellent display quality can be realized. It becomes.
 前記表示パネルとしては液晶パネルを例示することができる。このような表示装置は液晶表示装置として、種々の用途、例えばテレビやパソコンのディスプレイ等に適用でき、特に大型画面用として好適である。 A liquid crystal panel can be exemplified as the display panel. Such a display device can be applied as a liquid crystal display device to various uses such as a display of a television or a personal computer, and is particularly suitable for a large screen.
(発明の効果)
 本発明によれば、導光部材からの出射光に色ムラが生じるのを抑制することができる。
(The invention's effect)
According to the present invention, it is possible to suppress the occurrence of color unevenness in the light emitted from the light guide member.
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention. テレビ受信装置が備える液晶表示装置の概略構成を示す分解斜視図The exploded perspective view which shows schematic structure of the liquid crystal display device with which a television receiver is equipped 液晶表示装置に備わるバックライト装置におけるシャーシと導光部材と第1反射シートとLED(LED基板)との配置構成を示す平面図The top view which shows the arrangement configuration of the chassis, the light guide member, the 1st reflection sheet, and LED (LED board | substrate) in the backlight apparatus with which a liquid crystal display device is equipped. 図3のiv-iv線断面図Sectional view taken along line iv-iv in FIG. 導光部材の長辺側端面に配された第1分割反射シートを示す側面図The side view which shows the 1st division | segmentation reflective sheet distribute | arranged to the long-side end surface of the light guide member 導光部材の短辺側端面に配された第2分割反射シートを示す側面図The side view which shows the 2nd division | segmentation reflective sheet distribute | arranged to the short side end surface of the light guide member CIE(国際照明委員会)による1931年策定の色度図Chromaticity diagram developed in 1931 by the CIE (International Lighting Commission) 図7における要部拡大図Enlarged view of the main part in FIG. 第1分割反射シートにおけるX1端(Y1端)からX2端(Y2端)に至るまでの色度座標値の変化を示すグラフThe graph which shows the change of the chromaticity coordinate value from the X1 end (Y1 end) to the X2 end (Y2 end) in the first divided reflection sheet. 第2分割反射シートにおけるX3端(Y3端)からX4端(Y4端)に至るまでの色度座標値の変化を示すグラフThe graph which shows the change of the chromaticity coordinate value from the X3 end (Y3 end) to the X4 end (Y4 end) in the second split reflection sheet. 実施形態1の変形例1に係るCIE1931色度図における要部拡大図The principal part enlarged view in the CIE1931 chromaticity diagram which concerns on the modification 1 of Embodiment 1. FIG. 実施形態1の変形例2に係るCIE1931色度図における要部拡大図The principal part enlarged view in the CIE1931 chromaticity diagram which concerns on the modification 2 of Embodiment 1. 実施形態1の変形例3に係るCIE1931色度図における要部拡大図The principal part enlarged view in the CIE1931 chromaticity diagram which concerns on the modification 3 of Embodiment 1. FIG. 実施形態1の変形例4に係るCIE1931色度図における要部拡大図The principal part enlarged view in the CIE1931 chromaticity diagram which concerns on the modification 4 of Embodiment 1. FIG. 実施形態1の変形例5に係るCIE1931色度図における要部拡大図The principal part enlarged view in the CIE1931 chromaticity diagram which concerns on the modification 5 of Embodiment 1. FIG. 実施形態1の変形例6に係るCIE1931色度図における要部拡大図The principal part enlarged view in the CIE1931 chromaticity diagram which concerns on the modification 6 of Embodiment 1. FIG. 本発明の実施形態2に係るバックライト装置におけるシャーシと導光部材と第1反射シートとLED(LED基板)との配置構成を示す平面図The top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on Embodiment 2 of this invention, a light guide member, a 1st reflective sheet, and LED (LED board | substrate). CIE1931色度図における要部拡大図Enlarged view of relevant parts in CIE1931 chromaticity diagram 第1分割反射シートにおけるX1端(Y1端)からX2端(Y2端)に至るまでの色度座標値の変化を示すグラフThe graph which shows the change of the chromaticity coordinate value from the X1 end (Y1 end) to the X2 end (Y2 end) in the first divided reflection sheet. 第2分割反射シートにおけるX3端(Y3端)からX4端(Y4端)に至るまでの色度座標値の変化を示すグラフThe graph which shows the change of the chromaticity coordinate value from the X3 end (Y3 end) to the X4 end (Y4 end) in the second split reflection sheet. 本発明の実施形態3に係る分割反射シートの側面図The side view of the division | segmentation reflective sheet | seat which concerns on Embodiment 3 of this invention. 分割反射シートの拡大側面図Expanded side view of split reflective sheet 第1分割反射シートにおけるX1端(Y1端)からX2端(Y2端)に至るまでの色度座標値の変化を示すグラフThe graph which shows the change of the chromaticity coordinate value from the X1 end (Y1 end) to the X2 end (Y2 end) in the first divided reflection sheet. 第2分割反射シートにおけるX3端(Y3端)からX4端(Y4端)に至るまでの色度座標値の変化を示すグラフThe graph which shows the change of the chromaticity coordinate value from the X3 end (Y3 end) to the X4 end (Y4 end) in the second split reflection sheet. 本発明の実施形態5に係る第2反射シートの色度分布を示す平面図The top view which shows chromaticity distribution of the 2nd reflection sheet which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係るバックライト装置におけるシャーシと導光部材と第1反射シートとLED(LED基板)との配置構成を示す平面図The top view which shows the arrangement structure of the chassis in the backlight apparatus which concerns on Embodiment 6 of this invention, a light guide member, a 1st reflective sheet, and LED (LED board | substrate). 第1分割反射シートにおけるY1端からY2端に至るまでの色度座標値の変化を示すグラフThe graph which shows the change of the chromaticity coordinate value from the Y1 end to the Y2 end in the first divided reflection sheet 第2分割反射シートにおけるX1端からX2端に至るまでの色度座標値の変化を示すグラフThe graph which shows the change of the chromaticity coordinate value from the X1 end to the X2 end in the second divided reflection sheet 本発明の実施形態7に係るバックライト装置におけるシャーシと導光部材と第1反射シートとLED(LED基板)との配置構成を示す平面図The top view which shows the arrangement configuration of the chassis in the backlight apparatus which concerns on Embodiment 7 of this invention, a light guide member, a 1st reflective sheet, and LED (LED board | substrate). 第1分割反射シートにおけるY1端からY2端に至るまでの色度座標値の変化を示すグラフThe graph which shows the change of the chromaticity coordinate value from the Y1 end to the Y2 end in the first divided reflection sheet 本発明の実施形態8に係るバックライト装置におけるシャーシと導光部材と第1反射シートとLED(LED基板)との配置構成を示す平面図The top view which shows the arrangement structure of the chassis in the backlight apparatus which concerns on Embodiment 8 of this invention, a light guide member, a 1st reflective sheet, and LED (LED board | substrate). 本発明の実施形態9に係るバックライト装置におけるシャーシと導光部材と第1反射シートとLED(LED基板)との配置構成を示す平面図The top view which shows the arrangement configuration of the chassis, the light guide member, the 1st reflective sheet, and LED (LED board | substrate) in the backlight apparatus which concerns on Embodiment 9 of this invention. 本発明の実施形態10に係るバックライト装置におけるシャーシと導光部材と第1反射シートとLED(LED基板)との配置構成を示す平面図The top view which shows the arrangement structure of the chassis in the backlight apparatus which concerns on Embodiment 10 of this invention, a light guide member, a 1st reflective sheet, and LED (LED board | substrate). 本発明の他の実施形態(1)に係るバックライト装置におけるシャーシと第1反射シートとLED(LED基板)との配置構成を示す平面図The top view which shows the arrangement configuration of the chassis, the 1st reflective sheet, and LED (LED board | substrate) in the backlight apparatus which concerns on other embodiment (1) of this invention. 分割反射シートにおけるX1端(Y1端)からX2端(Y2端)に至るまでの色度座標値の変化を示すグラフThe graph which shows the change of the chromaticity coordinate value from the X1 end (Y1 end) to the X2 end (Y2 end) in the divided reflection sheet. 本発明の他の実施形態(2)に係るバックライト装置におけるシャーシと第1反射シートとLED(LED基板)との配置構成を示す平断面図Plan sectional drawing which shows the arrangement configuration of the chassis, the 1st reflective sheet, and LED (LED board | substrate) in the backlight apparatus which concerns on other embodiment (2) of this invention. 本発明の他の実施形態(3)に係る分割反射シートにおけるX1端,X3端(Y1端,Y3端)からX2端,X4端(Y2端,Y4端)に至るまでの色度座標値の変化を示すグラフThe chromaticity coordinate values from the X1 end and X3 end (Y1 end, Y3 end) to the X2 end, X4 end (Y2 end, Y4 end) in the divided reflection sheet according to another embodiment (3) of the present invention Graph showing change 本発明の他の実施形態(4)に係る分割反射シートにおけるX1端,X3端(Y1端,Y3端)からX2端,X4端(Y2端,Y4端)に至るまでの色度座標値の変化を示すグラフChromaticity coordinate values from the X1 end and X3 end (Y1 end, Y3 end) to the X2 end, X4 end (Y2 end, Y4 end) in the divided reflection sheet according to another embodiment (4) of the present invention Graph showing change 本発明の他の実施形態(5)に係るCIE1931色度図における要部拡大図The principal part enlarged view in the CIE1931 chromaticity diagram which concerns on other embodiment (5) of this invention. 本発明の他の実施形態(5)に係るCIE1931色度図における要部拡大図The principal part enlarged view in the CIE1931 chromaticity diagram which concerns on other embodiment (5) of this invention.
 <実施形態1>
 本発明の実施形態1を図1から図10によって説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図4に示す上側を表側とし、同図下側を裏側とする。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the liquid crystal display device 10 is illustrated. In addition, a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing. Moreover, let the upper side shown in FIG. 4 be a front side, and let the lower side of the figure be a back side.
 本実施形態に係るテレビ受信装置TVは、図1に示すように、液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネットCa,Cbと、電源Pと、チューナTと、スタンドSとを備えて構成される。液晶表示装置(表示装置)10は、全体として横長(長手)の方形状(矩形状)をなし、縦置き状態で収容されている。この液晶表示装置10は、図2に示すように、表示パネルである液晶パネル11と、外部光源であるバックライト装置(照明装置)12とを備え、これらが枠状のベゼル13などにより一体的に保持されるようになっている。 As shown in FIG. 1, the television receiver TV according to the present embodiment includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, a tuner T, And a stand S. The liquid crystal display device (display device) 10 has a horizontally long (longitudinal) rectangular shape (rectangular shape) as a whole and is accommodated in a vertically placed state. As shown in FIG. 2, the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, which are integrated by a frame-like bezel 13 or the like. Is supposed to be retained.
 液晶パネル11は、図2に示すように、平面に視て横長(長手)の方形状(矩形状)、つまり長方形状をなしており、一対のガラス基板が所定のギャップを隔てた状態で貼り合わせられるとともに、両ガラス基板間に液晶が封入された構成とされる。一方のガラス基板には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT)と、そのスイッチング素子に接続された画素電極、さらには配向膜等が設けられ、他方のガラス基板には、R(赤色),G(緑色),B(青色)等の各着色部が所定配列で配置されたカラーフィルタや対向電極、さらには配向膜等が設けられている。なお、両基板の外側には偏光板が配されている。 As shown in FIG. 2, the liquid crystal panel 11 has a horizontally long (longitudinal) rectangular shape (rectangular shape), that is, a rectangular shape when viewed in plan, and is attached with a pair of glass substrates separated by a predetermined gap. In addition, the liquid crystal is sealed between the glass substrates. One glass substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like. The substrate is provided with a color filter and counter electrodes in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, and an alignment film. A polarizing plate is disposed on the outside of both substrates.
 バックライト装置12は、図2に示すように、光出射面側(液晶パネル11側)に向けて開口する開口部を有した略箱型をなすシャーシ14と、シャーシ14の開口部を覆うようにして配される光学部材15群とを備える。さらに、シャーシ14内には、光源であるLED17(Light Emitting Diode:発光ダイオード)と、LED17が実装されたLED基板18と、LED基板18が取り付けられる放熱部材20と、LED17からの光を導光して光学部材15(液晶パネル11)へと導く導光部材19と、導光部材19の面に接して配されるとともに導光部材19内の光を反射させる反射シート21と、導光部材19を表側から押さえるフレーム16とが備えられる。このバックライト装置12は、導光部材19の端部の中でも一角部にLED17を対向状に配してなる、いわゆるエッジライト型(サイドライト型)とされている。以下では、バックライト装置12の各構成部品について詳しく説明する。 As shown in FIG. 2, the backlight device 12 covers a substantially box-shaped chassis 14 having an opening that opens toward the light emission surface side (the liquid crystal panel 11 side), and covers the opening of the chassis 14. The optical member 15 group arranged as described above. Further, in the chassis 14, an LED 17 (Light Emitting Diode) as a light source, an LED substrate 18 on which the LED 17 is mounted, a heat dissipation member 20 to which the LED substrate 18 is attached, and light from the LED 17 are guided. The light guide member 19 that leads to the optical member 15 (the liquid crystal panel 11), the reflection sheet 21 that is disposed in contact with the surface of the light guide member 19 and reflects the light in the light guide member 19, and the light guide member And a frame 16 for holding 19 from the front side. The backlight device 12 is of a so-called edge light type (side light type) in which the LEDs 17 are arranged opposite to each other at one end portion of the light guide member 19. Below, each component of the backlight apparatus 12 is demonstrated in detail.
 シャーシ14は、例えばアルミニウム板や電気亜鉛めっき綱板(SECC)などの金属板からなり、図2及び図3に示すように、液晶パネル11と同様に横長の方形状(長方形状)をなす底板14aと、底板14aにおける長辺側の両外端からそれぞれ立ち上がる一対の側板14bとからなる。シャーシ14(底板14a)は、その長辺方向がX軸方向(水平方向)と一致し、短辺方向がY軸方向(鉛直方向)と一致している。また、側板14bには、フレーム16及びベゼル13がねじ止め可能とされる。 The chassis 14 is made of a metal plate such as an aluminum plate or an electrogalvanized steel plate (SECC), for example, and as shown in FIGS. 2 and 3, a bottom plate having a horizontally long rectangular shape (rectangular shape) like the liquid crystal panel 11. 14a and a pair of side plates 14b rising from both outer ends on the long side of the bottom plate 14a. The long side direction of the chassis 14 (bottom plate 14a) coincides with the X-axis direction (horizontal direction), and the short side direction coincides with the Y-axis direction (vertical direction). Further, the frame 16 and the bezel 13 can be screwed to the side plate 14b.
 光学部材15は、図2に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形状(長方形状)をなしている。光学部材15は、導光部材19の表側(光出射側)に載せられていて液晶パネル11と導光部材19との間に介在して配される。光学部材15は、裏側(導光部材19側、光出射側とは反対側)に配される拡散板15aと、表側(液晶パネル11側、光出射側)に配される光学シート15bとから構成される。拡散板15aは、所定の厚みを持つほぼ透明な樹脂製で板状をなす基材内に拡散粒子を多数分散して設けた構成とされ、透過する光を拡散させる機能を有する。光学シート15bは、拡散板15aと比べると板厚が薄いシート状をなしており、2枚が積層して配されている。具体的な光学シート15bの種類としては、例えば拡散シート、レンズシート、反射型偏光シートなどがあり、これらの中から適宜に選択して使用することが可能である。 As shown in FIG. 2, the optical member 15 has a horizontally long rectangular shape (rectangular shape) in a plan view, like the liquid crystal panel 11 and the chassis 14. The optical member 15 is placed on the front side (light emitting side) of the light guide member 19 and is disposed between the liquid crystal panel 11 and the light guide member 19. The optical member 15 includes a diffusion plate 15a disposed on the back side (light guide member 19 side, opposite to the light emitting side) and an optical sheet 15b disposed on the front side (liquid crystal panel 11 side, light emitting side). Composed. The diffusing plate 15a has a structure in which a large number of diffusing particles are dispersed in a substantially transparent resin-made base material having a predetermined thickness, and has a function of diffusing transmitted light. The optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and two optical sheets 15b are laminated. Specific types of the optical sheet 15b include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used.
 フレーム16は、図2に示すように、合成樹脂製とされるとともに、導光部材19の外周端部に沿って延在する枠状(額縁状)に形成されており、導光部材19の外周端部をほぼ全周にわたって表側から押さえることが可能とされる。また、フレーム16は、液晶パネル11における外周端部を裏側から受けることができる。 As shown in FIG. 2, the frame 16 is made of synthetic resin, and is formed in a frame shape (frame shape) extending along the outer peripheral end of the light guide member 19. It is possible to hold the outer peripheral edge from the front side over almost the entire circumference. Further, the frame 16 can receive the outer peripheral end of the liquid crystal panel 11 from the back side.
 LED17は、図3及び図4に示すように、LED基板18に固着される基板部上に、例えばInGaN系の材料からなるLEDチップ(LED素子、発光素子)を樹脂材により封止した構成とされる。基板部に実装されるLEDチップは、435nm~480nmの範囲、つまり青色の波長領域に単一のピーク波長を有するものとされ、青色の単色光を発するものとされる。LEDチップの主発光波長は、440nm~460nmの範囲とされるのがより好ましく、具体的には例えば451nmとされる。これにより、LEDチップからは色純度に優れた青色の単色光が発せられるものとされる。その一方、LEDチップを封止する樹脂材には、LEDチップから発せられた青色の光により励起されて所定の色を発光する蛍光体が分散配合されており、全体として概ね白色光を発するものとされる。なお、蛍光体としては、例えば黄色光を発光する黄色蛍光体、緑色光を発光する緑色蛍光体、及び赤色光を発光する赤色蛍光体の中から適宜組み合わせて用いたり、またはいずれか1つを単独で用いることができる。このLED17は、LED基板18に対する実装面とは反対側の面が発光面となる、いわゆるトップ型とされている。このLED17から発せられた光は、光軸LAを中心にして所定の角度範囲内で三次元的にある程度放射状に広がるのであるが、その指向性は冷陰極管などと比べると高くなっている。ここで言う「光軸LA」は、LED17の発光面から発せられた光のうち最も発光強度の高い(発光強度がピークとなる)光の進行方向である。 As shown in FIGS. 3 and 4, the LED 17 has a configuration in which an LED chip (LED element, light emitting element) made of, for example, an InGaN-based material is sealed with a resin material on a substrate portion fixed to the LED substrate 18. Is done. The LED chip mounted on the substrate portion has a single peak wavelength in a range of 435 nm to 480 nm, that is, a blue wavelength region, and emits blue monochromatic light. The main emission wavelength of the LED chip is more preferably in the range of 440 nm to 460 nm, specifically, for example, 451 nm. As a result, blue single color light having excellent color purity is emitted from the LED chip. On the other hand, the resin material that seals the LED chip is dispersed and blended with a phosphor that emits a predetermined color when excited by the blue light emitted from the LED chip, and generally emits white light as a whole. It is said. In addition, as the phosphor, for example, a yellow phosphor that emits yellow light, a green phosphor that emits green light, and a red phosphor that emits red light are used in appropriate combination, or any one of them is used. It can be used alone. The LED 17 is a so-called top type in which a surface opposite to the mounting surface with respect to the LED substrate 18 is a light emitting surface. The light emitted from the LED 17 spreads radially to some extent within a predetermined angle range around the optical axis LA, but its directivity is higher than that of a cold cathode tube or the like. Here, the “optical axis LA” is the traveling direction of light having the highest light emission intensity (the light emission intensity reaches a peak) among the light emitted from the light emitting surface of the LED 17.
 LED基板18は、合成樹脂製(ガラスエポキシ樹脂製など)の板状とされ、表面が光の反射性に優れた白色を呈するものとされる。LED基板18は、図3及び図4に示すように、シャーシ14内における四隅の角部のうち、一角部(図3に示す左下の角部)に配されており、その板面がZ軸方向に対しては直交するものの、X軸方向及びY軸方向の双方に対して傾くとともに導光部材19の角部に対して対向状をなす姿勢とされる。LED17は、LED基板18の板面のうち導光部材19側を向いた板面に表面実装されており、ここが実装面とされている。実装されたLED17は、光軸LAがX軸方向及びY軸方向に沿う面(後述する光出射面19a)に並行する配向分布を有することになる。詳しくは、LED17の光軸LAは、LED基板18の実装面(板面)に対する法線方向に沿うものとされ、Z軸方向に対しては直交するものの、X軸方向及びY軸方向(導光部材19の長辺及び短辺)の双方に対して傾いている。なお、図3では、光軸LAを二点鎖線にて図示している。LED基板18の実装面には、金属膜(銅箔など)からなる配線パターン(図示せず)が形成されており、この配線パターンの両端部に形成された端子部が外部の駆動回路に接続されることで、駆動電力を各LED17に供給することが可能とされる。なお、LED基板18に用いる素材としては、例えばシャーシ14と同じアルミ系材料などの金属材料とし、その表面に絶縁層を介して配線パターンを形成された構成とすることも可能である。 The LED substrate 18 has a plate shape made of synthetic resin (such as glass epoxy resin), and has a white surface with excellent light reflectivity. As shown in FIGS. 3 and 4, the LED substrate 18 is arranged at one corner (lower left corner shown in FIG. 3) of the four corners in the chassis 14, and the plate surface is the Z axis. Although it is orthogonal to the direction, it is inclined to both the X-axis direction and the Y-axis direction and is opposed to the corner of the light guide member 19. The LED 17 is surface-mounted on the plate surface of the LED substrate 18 facing the light guide member 19 side, and this is the mounting surface. The mounted LED 17 has an orientation distribution in which the optical axis LA is parallel to a surface (light emitting surface 19a described later) along the X-axis direction and the Y-axis direction. Specifically, the optical axis LA of the LED 17 is along the normal direction with respect to the mounting surface (plate surface) of the LED substrate 18 and is orthogonal to the Z-axis direction, but is in the X-axis direction and the Y-axis direction (guided). The optical member 19 is inclined with respect to both the long side and the short side). In FIG. 3, the optical axis LA is illustrated by a two-dot chain line. A wiring pattern (not shown) made of a metal film (copper foil or the like) is formed on the mounting surface of the LED substrate 18, and terminal portions formed at both ends of the wiring pattern are connected to an external drive circuit. As a result, driving power can be supplied to each LED 17. In addition, as a raw material used for the LED board 18, it is also possible to set it as the structure which used metal materials, such as the same aluminum-type material as the chassis 14, for example, and formed the wiring pattern through the insulating layer on the surface.
 放熱部材20は、熱伝導性に優れた金属製とされており、シャーシ14の底板14aに沿う底部20aと、底部20aの端部から表側へ向けて立ち上がる立ち上がり部20bとから構成されていて全体として断面略L字型をなしている。放熱部材20のうち立ち上がり部20bが、LED基板18の板面のうちLED17の実装面とは反対側の面に取り付けられている。放熱部材20のうち底部20aが、シャーシ14の底板14aに固定されることで、LED17及びLED基板18のシャーシ14に対する取り付けがなされるとともにLED17からシャーシ14への効率的な放熱が図られる。 The heat dissipating member 20 is made of metal having excellent thermal conductivity, and is composed of a bottom portion 20a along the bottom plate 14a of the chassis 14 and a rising portion 20b rising from the end of the bottom portion 20a toward the front side. The cross section is substantially L-shaped. The rising portion 20 b of the heat radiating member 20 is attached to the surface of the LED substrate 18 opposite to the mounting surface of the LED 17. By fixing the bottom portion 20a of the heat dissipation member 20 to the bottom plate 14a of the chassis 14, the LED 17 and the LED board 18 are attached to the chassis 14 and efficient heat dissipation from the LED 17 to the chassis 14 is achieved.
 導光部材19は、屈折率が空気よりも十分に高く且つほぼ透明な(透光性に優れた)合成樹脂材料(例えばアクリルなど)からなる。導光部材19は、図2及び図3に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の略方形(略長方形)をなすとともに板状に形成されており、その板面における長辺方向がX軸方向と、短辺方向がY軸方向とそれぞれ一致し、且つ板面と直交する板厚方向(端面に沿う方向)がZ軸方向と一致している。この導光部材19の外周端部を構成する四隅の角部のうち、一角部(図3に示す左下の角部)には、既述したLED17が対向状に配されるとともにLED17からの光が入射される光入射面19bが形成されている。光入射面19bは、LED基板18の板面及びLED17の発光面に対して並行する形態とされ、X軸方向及びY軸方向、つまり導光部材19の長辺及び短辺の双方に対して傾いた形態とされている。すなわち、導光部材19のうちLED17と対向する角部を斜めにカットすることで光入射面19bが形成されている。光入射面19bは、導光部材19の外周端面の一部を構成していると言える。LED17は、その光軸LAが導光部材19における対角線とほぼ一致しており、導光部材19のうちLED17側とは反対側の角部を指向している。そして、導光部材19は、LED17から発せられた光を導入するとともに、その光を内部で伝播させつつ光学部材15側(Z軸方向)へ向くよう立ち上げて出射させる機能を有する。 The light guide member 19 is made of a synthetic resin material (for example, acrylic or the like) having a refractive index sufficiently higher than that of air and substantially transparent (excellent translucency). As shown in FIGS. 2 and 3, the light guide member 19 is formed in a plate shape and has a horizontally long substantially rectangular shape (substantially rectangular shape) when viewed in plan, like the liquid crystal panel 11 and the chassis 14. The long side direction on the surface coincides with the X-axis direction, the short side direction coincides with the Y-axis direction, and the plate thickness direction (direction along the end surface) perpendicular to the plate surface coincides with the Z-axis direction. Of the four corners constituting the outer peripheral end of the light guide member 19, the LED 17 described above is arranged in an opposing manner at one corner (lower left corner shown in FIG. 3) and light from the LED 17 A light incident surface 19b is formed. The light incident surface 19b is parallel to the plate surface of the LED substrate 18 and the light emitting surface of the LED 17, and is in the X-axis direction and the Y-axis direction, that is, both the long side and the short side of the light guide member 19. Inclined form. That is, the light incident surface 19b is formed by obliquely cutting a corner portion of the light guide member 19 facing the LED 17. It can be said that the light incident surface 19 b constitutes a part of the outer peripheral end surface of the light guide member 19. The LED 17 has an optical axis LA that substantially coincides with the diagonal line of the light guide member 19, and is directed to the corner of the light guide member 19 opposite to the LED 17 side. The light guide member 19 has a function of introducing the light emitted from the LED 17 and raising and emitting the light toward the optical member 15 side (Z-axis direction) while propagating the light inside.
 液晶パネル11及び光学部材15に並行する平板状をなす導光部材19の一対の板面のうち、表側を向いた板面は、図4に示すように、内部の光を光学部材15及び液晶パネル11に向けて出射させる光出射面19aとなっている。この光出射面19aは、X軸方向及びY軸方向に沿って並行する(LED17の光軸LAに並行する)面とされ、別言すると光入射面19b(導光部材19の各端面)に対して略直交する面とされる。その一方、導光部材19の外周端面のうち光入射面19bを除いた端面19d、及び導光部材19の板面のうち裏側の板面(底面)19cには、それぞれ反射シート21が接する形で配されており、この反射シート21によって導光部材19内の光を反射することでLED17からの光を効率的に出射光として利用することが可能とされている。続いて、反射シート21について詳しく説明する。 Of the pair of plate surfaces of the light guide member 19 having a flat plate shape parallel to the liquid crystal panel 11 and the optical member 15, the plate surface facing the front side, as shown in FIG. A light exit surface 19 a that emits light toward the panel 11 is formed. The light emission surface 19a is a surface parallel to the X-axis direction and the Y-axis direction (parallel to the optical axis LA of the LED 17), in other words, on the light incident surface 19b (each end surface of the light guide member 19). The surface is substantially orthogonal to the surface. On the other hand, the reflection sheet 21 is in contact with the end surface 19 d of the outer peripheral end surface of the light guide member 19 excluding the light incident surface 19 b and the back surface (bottom surface) 19 c of the light guide member 19. By reflecting the light in the light guide member 19 by the reflection sheet 21, it is possible to efficiently use the light from the LED 17 as outgoing light. Next, the reflection sheet 21 will be described in detail.
 反射シート21は、表面が光の反射性に優れた白色を呈する合成樹脂材料により基材が構成されており、図2に示すように、導光部材19の外周端面、つまり光出射面19aに隣り合う面のうち光入射面19bを除いた端面19dに接する形で配される第1反射シート22と、導光部材19の板面のうち裏側の板面19c、つまり光出射面19aとは反対側の板面19cに接する形で配される第2反射シート23とからなる。このうち、第2反射シート23について先に説明する。第2反射シート23は、図2及び図4に示すように、平面に視て導光部材19と同様に横長の方形状(長方形状)をなすとともに導光部材19よりも一回り大きくなる大きさを有しており、導光部材19における光出射面19aとは反対側の板面19cを全域にわたって覆っている。これにより、第2反射シート23は、導光部材19内に存する光のうち裏側(底板14a側)へ向かう光を殆ど漏れなく効率的に反射させることが可能とされている。第2反射シート23にて反射された光は、その殆どが直接光出射面19aへ向かうものとされる。第2反射シート23は、導光部材19の光入射面19bから外向き、つまりLED17側に張り出しており、それによりLED17からの光を光入射面19bへと効率的に入射させることができる(図4)。この第2反射シート23は、シャーシ14の底板14aと導光部材19との間に挟まれた形で配されていると言える。 The reflection sheet 21 is formed of a base material made of a synthetic resin material having a white surface with excellent light reflectivity. As shown in FIG. 2, the reflection sheet 21 is formed on the outer peripheral end surface of the light guide member 19, that is, the light emission surface 19a. Among the adjacent surfaces, the first reflection sheet 22 arranged in contact with the end surface 19d excluding the light incident surface 19b, and the plate surface 19c on the back side of the plate surface of the light guide member 19, that is, the light emission surface 19a The second reflection sheet 23 is arranged in contact with the opposite plate surface 19c. Among these, the 2nd reflective sheet 23 is demonstrated previously. As shown in FIGS. 2 and 4, the second reflection sheet 23 has a horizontally long rectangular shape (rectangular shape) as viewed from above and is larger than the light guide member 19. The light guide member 19 covers the entire plate surface 19c opposite to the light exit surface 19a. Thereby, the 2nd reflection sheet 23 can reflect the light which goes to the back side (bottom plate 14a side) among the lights which exist in the light guide member 19 efficiently with almost no leakage. Most of the light reflected by the second reflection sheet 23 goes directly to the light exit surface 19a. The second reflection sheet 23 protrudes outward from the light incident surface 19b of the light guide member 19, that is, to the LED 17 side, so that the light from the LED 17 can be efficiently incident on the light incident surface 19b ( FIG. 4). It can be said that the second reflection sheet 23 is arranged in a shape sandwiched between the bottom plate 14 a of the chassis 14 and the light guide member 19.
 なお、導光部材19における光出射面19aまたはその反対側の板面19cの少なくともいずれか一方には、内部の光を反射させる反射部(図示せず)または内部の光を散乱させる散乱部(図示せず)が所定の面内分布を持つようパターニングされており、それにより光出射面19aからの出射光が面内において均一な分布となるよう制御されている。 Note that at least one of the light exit surface 19a and the plate surface 19c on the opposite side of the light guide member 19 has a reflecting portion (not shown) that reflects internal light or a scattering portion that scatters internal light ( (Not shown) is patterned so as to have a predetermined in-plane distribution, and thereby, the emitted light from the light emitting surface 19a is controlled to have a uniform distribution in the surface.
 続いて、第1反射シート22に関して詳しく説明する。第1反射シート22は、図2及び図3に示すように、導光部材19の外周端面のうち光入射面19bを除いた端面19dのほぼ全域を覆うものとされる。この第1反射シート22により、導光部材19内に存在する光のうち、導光部材19の外周端面のうち光入射面19bを除いた端面19dへ向かう光を殆ど漏れなく効率的に反射させることができるから、光が同端面19dから外部へ出射するのを極力防いで光出射面19aからの出射光量、すなわち出射光の輝度を向上させることができる。しかも、この第1反射シート22は、Z軸方向に沿う面、つまりLED17の光軸LAと直交する面を有しているから、LED17から発せられた光のうち発光強度がピークとなる光を効率的に反射させることができ、もって光の利用効率及び出射光の輝度を一層高いものとすることができる。さらに詳しくは、第1反射シート22は、導光部材19における上記端面19dを構成する一対の長辺側端面19d1、及び一対の短辺側端面19d2に対応して4つに分割されている。すなわち、第1反射シート22は、導光部材19の各長辺及び各短辺に対応する4つの端面19d1,19d2毎に分割された4つの分割反射シート22Sからなるものとされる。各分割反射シート22Sは、導光部材19における対応する各端面22dとほぼ同じ大きさ(面積)を有しており、それぞれ導光部材19の長辺方向(X軸方向)または短辺方向(Y軸方向)に沿って延在する、細長い長方形状をなしている。各分割反射シート22Sは、ほぼ透明な接着剤などを用いて導光部材19の各端面19dにほぼ隙間無く固着されている。 Subsequently, the first reflection sheet 22 will be described in detail. As shown in FIGS. 2 and 3, the first reflection sheet 22 covers almost the entire region of the end surface 19 d excluding the light incident surface 19 b in the outer peripheral end surface of the light guide member 19. Of the light existing in the light guide member 19, the first reflective sheet 22 efficiently reflects light toward the end surface 19 d of the outer peripheral end surface of the light guide member 19 excluding the light incident surface 19 b with almost no leakage. Therefore, the amount of light emitted from the light exit surface 19a, that is, the brightness of the emitted light can be improved by preventing light from exiting from the end surface 19d to the outside as much as possible. Moreover, since the first reflection sheet 22 has a surface along the Z-axis direction, that is, a surface orthogonal to the optical axis LA of the LED 17, light having a peak emission intensity among the light emitted from the LED 17. The light can be efficiently reflected, and thus the light utilization efficiency and the brightness of the emitted light can be further increased. More specifically, the first reflection sheet 22 is divided into four corresponding to the pair of long side end surfaces 19d1 and the pair of short side end surfaces 19d2 constituting the end surface 19d of the light guide member 19. That is, the first reflection sheet 22 is composed of four divided reflection sheets 22 </ b> S divided for each of the four end surfaces 19 d 1 and 19 d 2 corresponding to the long sides and the short sides of the light guide member 19. Each divided reflection sheet 22S has substantially the same size (area) as the corresponding end face 22d of the light guide member 19, and each of the divided reflection sheets 22S has a long side direction (X-axis direction) or a short side direction ( It has an elongated rectangular shape extending along the (Y-axis direction). Each divided reflection sheet 22S is fixed to each end face 19d of the light guide member 19 with almost no gap using a substantially transparent adhesive or the like.
 ところで、上記のようなエッジライト型のバックライト装置12においては、LED17から発せられた光は、上記した反射シート21にて反射されたり導光部材19の光出射面19aにて全反射されることで導光部材19内を伝播した後、導光部材19の光出射面19aから外部へと出射される。この過程において、LED17からの発光光に含まれる短波長側の光、具体的には例えば青色の波長領域の光などは、長波長側の光、具体的には例えば黄色や赤色の波長領域の光などに比べると、散乱が生じ易くて外部へ出射し易い傾向にある。その結果、導光部材19の光出射面19aのうちLED17に近い側では、短波長側の光がより多く出射して出射光が例えば青色味を帯び易くなる傾向にあるのに対し、LED17から遠い側では、長波長側の光がより多く出射して出射光が例えば黄色味を帯び易くなる傾向にある。このため、導光部材19の出射光に色ムラが生じる可能性があり、特に液晶表示装置10が大型化されるとその傾向が顕著となるきらいがあった。 By the way, in the edge light type backlight device 12 as described above, the light emitted from the LED 17 is reflected by the reflection sheet 21 or totally reflected by the light emitting surface 19 a of the light guide member 19. Thus, after propagating through the light guide member 19, the light is emitted from the light exit surface 19 a of the light guide member 19 to the outside. In this process, light on the short wavelength side included in the light emitted from the LED 17, specifically light in the blue wavelength region, for example, is light in the long wavelength side, specifically in the yellow or red wavelength region, for example. Compared to light or the like, scattering tends to occur and tends to be emitted to the outside. As a result, on the side of the light exit surface 19a of the light guide member 19 that is closer to the LED 17, more light on the short wavelength side is emitted and the emitted light tends to have a blue tint, for example. On the far side, more light on the long wavelength side is emitted, and the emitted light tends to be yellowish, for example. For this reason, color unevenness may occur in the light emitted from the light guide member 19, and particularly when the liquid crystal display device 10 is increased in size, the tendency tends to become remarkable.
 そこで、本実施形態では、導光部材19のうち光出射面19aに隣り合う端面19dに接して配される第1反射シート22について、図5及び図6に示すように、LED17に相対的に近い第1領域22Aと、LED17から相対的に遠い第2領域22Bとに区分したとき、第1領域22Aを、第2領域22Bに比べると、CIE(Commission Internationale de l'Eclairage:国際照明委員会)1931色度図の色度座標値であるx値及びy値が共に相対的に大きくなる設定としている。なお、CIE1931色度図は、図7に示す通りであり、横軸のx軸及び縦軸のy軸がそれぞれ色度座標値であるx値及びy値を示している。1931色度図である図7において点Wは、白色の基準色度を表しており、この白色の基準色度に係る点Wからx値及びy値が共に小さくなるほど青色味が強くなり、逆にx値及びy値が共に大きくなるほど黄色味が強くなる傾向とされる。以下、第1領域22A及び第2領域22Bにおける態様及び各色度について詳しく説明する。 Therefore, in the present embodiment, as shown in FIGS. 5 and 6, the first reflection sheet 22 disposed in contact with the end surface 19 d adjacent to the light emission surface 19 a of the light guide member 19 is relatively relative to the LED 17. When the first area 22A is divided into the first area 22A that is closer and the second area 22B that is relatively far from the LED 17, the CIE (Commission Internationale de l'Eclairage) is compared with the second region 22B. ) The x and y values, which are chromaticity coordinate values in the 1931 chromaticity diagram, are set to be relatively large. The CIE 1931 chromaticity diagram is as shown in FIG. 7, and the x-axis on the horizontal axis and the y-axis on the vertical axis indicate the x value and y value, which are chromaticity coordinate values, respectively. In FIG. 7 which is a 1931 chromaticity diagram, the point W represents the white reference chromaticity, and as the x value and the y value both decrease from the point W related to the white reference chromaticity, the blueness becomes stronger. In addition, the yellowness tends to increase as the x value and the y value both increase. Hereinafter, the aspect and each chromaticity in the first region 22A and the second region 22B will be described in detail.
 第1領域22A及び第2領域22Bは、図2及び図3に示すように、導光部材19の端面19dに配された第1反射シート22において、導光部材19の4つの角部のうち、光入射面19bが形成された角部を除いた対角位置にある一対の角部を境界にして区分されている。この第1反射シート22における各領域22A,22Bの境界に位置する一対の角部を結ぶ対角線は、LED17の光軸LAと交差する関係にある。これら第1領域22A及び第2領域22Bの面積比率は、ほぼ等しいものとされる。なお、図2,図5及び図6では互いに色度が異なる第1領域22A及び第2領域22Bについて、区別のため、異なる態様の網掛け状にしてそれぞれ図示している。具体的には、第1反射シート22を構成する4枚の分割反射シート22Sのうち、LED17(導光部材19における光入射面19b)に隣り合って配される一対のものが第1領域22Aを構成する第1分割反射シート22SAとされるのに対し、残りの一対のものが第2領域22Bを構成する第2分割反射シート22SBとされる。第1分割反射シート22SAは、分割反射シート22Sのうち導光部材19の端面19dのうち光入射面19bを挟んで隣り合う長辺側端面19d1及び短辺側端面19d2に配されるものである。一方、第2分割反射シート22SBは、分割反射シート22Sのうち導光部材19の端面19dのうち光入射面19bとは対角位置にある角部を挟んで隣り合う長辺側端面19d1及び短辺側端面19d2に配されるものである。そして、これら第1分割反射シート22SAと第2分割反射シート22SBとでは、図5及び図6に示すように、互いに色度が異なるものとされおり、以下に詳しく説明する。 As shown in FIGS. 2 and 3, the first region 22 </ b> A and the second region 22 </ b> B are included in the four corners of the light guide member 19 in the first reflection sheet 22 disposed on the end surface 19 d of the light guide member 19. The light incident surface 19b is divided with a pair of corners at a diagonal position excluding the corners as a boundary. A diagonal line connecting a pair of corners located at the boundary between the regions 22A and 22B in the first reflection sheet 22 has a relationship intersecting the optical axis LA of the LED 17. The area ratios of the first region 22A and the second region 22B are substantially equal. 2, 5, and 6, the first region 22 </ b> A and the second region 22 </ b> B having different chromaticities are illustrated in different shades for distinction. Specifically, among the four divided reflection sheets 22S constituting the first reflection sheet 22, a pair of ones arranged adjacent to the LED 17 (light incident surface 19b of the light guide member 19) is the first region 22A. The remaining pair of sheets is the second divided reflection sheet 22SB that forms the second region 22B. The first divided reflection sheet 22SA is arranged on the long side end surface 19d1 and the short side end surface 19d2 adjacent to each other across the light incident surface 19b of the end surface 19d of the light guide member 19 in the divided reflection sheet 22S. . On the other hand, the second divided reflection sheet 22SB has a long side end face 19d1 and a short edge adjacent to each other across a corner portion diagonal to the light incident surface 19b of the end face 19d of the light guide member 19 in the divided reflection sheet 22S. It is arranged on the side end face 19d2. The first divided reflection sheet 22SA and the second divided reflection sheet 22SB have different chromaticities as shown in FIGS. 5 and 6, and will be described in detail below.
 第1領域22Aを構成する第1分割反射シート22SA、及び第2領域22Bを構成する第2分割反射シート22SBは、各分割反射シート22Sをなす基材の表面に所定の塗料を塗布(印刷)することで、互いに異なる色度とされている。各分割反射シート22Sの基材に塗料を塗布するにあたっては、例えばスクリーン印刷、インクジェット印刷などの印刷手段を採用することができる。本実施形態では、第1領域22A(第1分割反射シート22SA)と第2領域22B(第2分割反射シート22SB)とで互いに色度が異なる2種類の塗料をそれぞれ使用するようにしている。つまり、第1領域22Aには、第1の塗料を、第2領域22Bには、上記した第1の塗料とは色度が異なる第2の塗料をそれぞれ用いるようにしている。第1の塗料は、その塗布面による反射光が、少なくともLED17の発光光よりは長波長側の光をより多く含んでいて黄色味を帯びるようなものであり、第2の塗料は、その塗布面による反射光が、少なくともLED17の発光光よりは短波長側の光をより多く含んでいて青色味を帯びるようなものである。 The first divided reflection sheet 22SA constituting the first region 22A and the second divided reflection sheet 22SB constituting the second region 22B are coated (printed) on the surface of the base material forming each divided reflection sheet 22S. By doing so, they have different chromaticities. In applying the paint to the base material of each divided reflection sheet 22S, for example, printing means such as screen printing and ink jet printing can be employed. In the present embodiment, two types of paints having different chromaticities are used in the first region 22A (first divided reflection sheet 22SA) and the second region 22B (second divided reflection sheet 22SB), respectively. That is, the first paint is used for the first region 22A, and the second paint having a chromaticity different from that of the first paint is used for the second region 22B. The first paint is such that the reflected light from its application surface is more yellowish than at least the light emitted from the LED 17, and the second paint is applied to the first paint. The reflected light from the surface contains at least a short wavelength side light more than the light emitted from the LED 17 and is bluish.
 続いて、第1領域22A及び第2領域22Bの各色度について図8~図10を用いて詳細に説明する。図8は1931色度図の拡大図であり、同図中の点Aが第1領域22Aの色度を表し、点Bが第2領域22Bの色度を表し、さらには点Wが白色の基準色度を表している。図9は、第1反射シート22のうち第1分割反射シート22SAにおいて、図3に示すLED17側のX1端(Y1端)から、その反対側のX2端(Y2端)までの色度座標値であるx値及びy値をプロットしたグラフとなっている。図9は、第1反射シート22のうち第2分割反射シート22SBにおいて、図3に示すLED17側のX3端(Y3端)から、その反対側のX4端(Y4端)までの色度座標値であるx値及びy値をプロットしたグラフとなっている。なお、図9及び図10のグラフでは、都合上、x値及びy値を同じ座標軸上に示しているが、あくまでx値及びy値がX1端(Y1端)またはX3端(Y3端)からX2端(Y2端)またはX4端(Y4端)までそれぞれの値(大きさ)が同様の傾向であることを示すものであり、必ずしもx値及びy値が同一の値であることを意味するものではない。つまり、点Aに係るx値(x1)及びy値(y1)は、同一値であっても異なる値であってもよく、また点Bに係るx値(x2)及びy値(y2)は、同一値であっても異なる値であってもよい。本実施形態では、上記した白色の基準色度を、バックライト装置12が有するLED17における発光光(白色光)の色度としており、その色度座標値(x0,y0)は、例えば(0.272,0.277)とされる。なお、第1領域22A及び第2領域22Bの各色度の色度座標値は、バックライト装置12が有するLED17からの発光光を各領域22A,22Bに照射し、その反射光を色度計などによって計測することで得るようにしている。 Subsequently, each chromaticity of the first region 22A and the second region 22B will be described in detail with reference to FIGS. FIG. 8 is an enlarged view of the 1931 chromaticity diagram, where point A represents the chromaticity of the first region 22A, point B represents the chromaticity of the second region 22B, and point W is white. It represents the reference chromaticity. 9 shows the chromaticity coordinate values from the X1 end (Y1 end) on the LED 17 side shown in FIG. 3 to the opposite X2 end (Y2 end) in the first divided reflective sheet 22SA of the first reflective sheets 22. It is the graph which plotted x value and y value which are. FIG. 9 shows the chromaticity coordinate values from the X3 end (Y3 end) on the LED 17 side shown in FIG. 3 to the X4 end (Y4 end) on the opposite side in the second divided reflection sheet 22SB of the first reflection sheet 22. It is the graph which plotted x value and y value which are. In the graphs of FIGS. 9 and 10, for convenience, the x value and the y value are shown on the same coordinate axis, but the x value and the y value are only from the X1 end (Y1 end) or the X3 end (Y3 end). This indicates that the values (magnitudes) tend to be the same until the X2 end (Y2 end) or the X4 end (Y4 end), and that the x value and the y value are necessarily the same value. It is not a thing. That is, the x value (x1) and the y value (y1) related to the point A may be the same value or different values, and the x value (x2) and the y value (y2) related to the point B are These may be the same value or different values. In the present embodiment, the white reference chromaticity described above is used as the chromaticity of the emitted light (white light) in the LED 17 included in the backlight device 12, and the chromaticity coordinate value (x0, y0) is, for example, (0. 272, 0.277). The chromaticity coordinate values of each chromaticity in the first area 22A and the second area 22B are obtained by irradiating each area 22A, 22B with light emitted from the LED 17 included in the backlight device 12, and using the reflected light as a chromaticity meter. It is obtained by measuring by.
 第1領域22Aの色度に係る色度座標値を(x1,y1)とし、第2領域22Bの色度に係る色度座標値を(x2,y2)とし、白色の基準色度に係る色度座標値を(x0,y0)としたとき、第1領域22A及び第2領域22Bにおける各色度座標値は、それぞれ下記式(5),(6)を満たす関係とされる。すなわち、第1領域22Aの色度に係る色度座標値(x1,y1)は、第2領域22Bの色度に係る色度座標値(x2,y2)よりもそれぞれ大きく、且つ白色の基準色度に係る色度座標値(x0,y0)よりもそれぞれさらに大きなものとされる。従って、第1領域22AにLED17からの光(白色光)を照射した場合、その反射光は、少なくともLED17の発光光よりは長波長側の光をより多く含んでいて黄色味を帯びることとなる。第1領域22Aによる反射光は、その多くが導光部材19の光出射面19aのうちLED17に相対的に近い領域へと向かうこととなる。その一方、光出射面19aのうちLED17に相対的に近い領域では、既述した通り短波長側の光が出射し易くて出射光が青色味を帯びやすい傾向にあることから、第1領域22Aによる反射光に補色である黄色味を帯びさせることで、出射光を略白色光とすることができる。 The chromaticity coordinate value related to the chromaticity of the first region 22A is (x1, y1), the chromaticity coordinate value related to the chromaticity of the second region 22B is (x2, y2), and the color related to the white reference chromaticity When the chromaticity coordinate value is (x0, y0), the chromaticity coordinate values in the first region 22A and the second region 22B satisfy the following expressions (5) and (6), respectively. That is, the chromaticity coordinate values (x1, y1) relating to the chromaticity of the first region 22A are respectively larger than the chromaticity coordinate values (x2, y2) relating to the chromaticity of the second region 22B, and the white reference color The chromaticity coordinate values (x0, y0) related to the degree are each larger. Therefore, when the light (white light) from the LED 17 is irradiated to the first region 22A, the reflected light contains at least a longer wavelength side light than the light emitted from the LED 17 and becomes yellowish. . Most of the reflected light from the first region 22 </ b> A is directed to a region relatively close to the LED 17 in the light emitting surface 19 a of the light guide member 19. On the other hand, in the region relatively close to the LED 17 in the light emitting surface 19a, the light on the short wavelength side is easily emitted as described above, and the emitted light tends to have a blue tint. The emitted light can be made substantially white light by adding a yellowish color that is a complementary color to the reflected light.
 [数7]
 x2<x0<x1     (5)
 [数8]
 y2<y0<y1     (6)
[Equation 7]
x2 <x0 <x1 (5)
[Equation 8]
y2 <y0 <y1 (6)
 逆に、第2領域22Bの色度に係る色度座標値(x2,y2)は、第1領域22Aの色度に係る色度座標値(x1,y1)よりもそれぞれ小さく、且つ白色の基準色度に係る色度座標値(x0,y0)よりもそれぞれさらに小さなものとされる。従って、第2領域22BにLED17からの光を照射した場合、その反射光は、少なくともLED17の発光光よりは青色味を帯びることとなる。つまり、第2領域22Bによる反射光(青色味を帯びた光)は、第1領域22Aによる反射光(黄色味を帯びた光)に対して補色の関係にあると言える。この第2領域22Bによる反射光は、その多くが導光部材19の光出射面19aのうちLED17から相対的に遠い領域へと向かうこととなる。その一方、光出射面19aのうちLED17から相対的に遠い領域では、既述した通り長波長側の光が出射し易くて出射光が黄色味を帯びやすい傾向にあることから、第2領域22Bによる反射光に補色である青色味を帯びさせることで、出射光を略白色光とすることができる。以上により、光出射面19aからの出射光には、その面内の全域にわたって色ムラが生じ難いものとされる。 Conversely, the chromaticity coordinate values (x2, y2) relating to the chromaticity of the second region 22B are smaller than the chromaticity coordinate values (x1, y1) relating to the chromaticity of the first region 22A, respectively, and the white reference The chromaticity coordinate values (x0, y0) relating to chromaticity are each smaller. Therefore, when the light from the LED 17 is irradiated to the second region 22B, the reflected light is at least bluer than the light emitted from the LED 17. That is, it can be said that the reflected light (blueish light) from the second region 22B has a complementary color relationship with the reflected light (yellowish light) from the first region 22A. Most of the reflected light by the second region 22B is directed to a region relatively far from the LED 17 in the light emitting surface 19a of the light guide member 19. On the other hand, in the region relatively far from the LED 17 in the light exit surface 19a, the light on the long wavelength side is likely to be emitted as described above, and the emitted light tends to be yellowish. By making the reflected light of the color bluish, which is a complementary color, the emitted light can be made substantially white light. As described above, the light emitted from the light exit surface 19a is less likely to cause color unevenness over the entire area.
 さらに詳しくは、第1領域22Aの色度に係る点Aは、図8に示すように、第2領域22Bの色度に係る点Bと、白色の基準色度に係る点Wとを結ぶ直線上に存しており、第2領域22Bの色度に係る点Bは、第1領域22Aの色度に係る点Aと、白色の基準色度に係る点Wとを結ぶ直線上に存している。そして、点Wは、点Aと点Bとのほぼ中間位置に存しており、言い換えると点A及び点Bは、点Wを挟んだ位置にあって点Wからの距離がほぼ等しいものとされる。このように第1領域22A及び第2領域22Bは、共に白色の基準色度に近い色度を有していることから、第1領域22A及び第2領域22Bにおける光の反射効率が共に良好なものとなっている。その理由は、反射シート21は、その表面の色度を白色の基準色度に近づけるほど光の吸収量が少なくなって全波長に光を損失なく反射し、光の反射効率(利用効率)が高くなる設計とすることが可能となるためである。言い換えると、本実施形態に係る第1反射シート22は、第1領域22A及び第2領域22Bに色味を持たせることで生じる光の吸収を最小限に留めて光の利用効率の低下を抑制することで、反射光の輝度を高く維持することができるものとされる。また、第1領域22A及び第2領域22Bにおける各色度座標値は、図9及び図10に示すように、それぞれ全域にわたって一定の値とされる。このような色度分布を有する第1反射シート22を製造するには、例えば第1領域22Aをなす第1分割反射シート22SAの基材に一定の濃度の第1の塗料を均一な膜厚でもって塗布するとともに、第2領域22Bをなす第2分割反射シート22SBの基材に一定の濃度の第2の塗料を均一な膜厚でもって塗布するようにすればよい。 More specifically, as shown in FIG. 8, the point A related to the chromaticity of the first region 22A is a straight line connecting the point B related to the chromaticity of the second region 22B and the point W related to the white reference chromaticity. The point B relating to the chromaticity of the second region 22B exists on a straight line connecting the point A relating to the chromaticity of the first region 22A and the point W relating to the white reference chromaticity. ing. And the point W exists in the substantially middle position of the point A and the point B. In other words, the point A and the point B are in the position which sandwiched the point W and the distance from the point W is substantially equal. Is done. Thus, since both the first region 22A and the second region 22B have chromaticity close to the white reference chromaticity, both the light reflection efficiency in the first region 22A and the second region 22B is good. It has become a thing. The reason is that, as the chromaticity of the surface of the reflection sheet 21 approaches the reference chromaticity of white, the amount of light absorption decreases and the light is reflected to all wavelengths without loss, and the light reflection efficiency (utilization efficiency) is high. This is because the design can be increased. In other words, the first reflection sheet 22 according to the present embodiment suppresses the decrease in the light use efficiency by minimizing the light absorption generated by giving the first region 22A and the second region 22B color. By doing so, the brightness of the reflected light can be maintained high. Further, the chromaticity coordinate values in the first area 22A and the second area 22B are constant values over the entire area, as shown in FIGS. In order to manufacture the first reflection sheet 22 having such a chromaticity distribution, for example, a first coating material having a constant concentration is applied to the base material of the first divided reflection sheet 22SA forming the first region 22A with a uniform film thickness. The second coating material having a constant concentration may be applied with a uniform film thickness to the base material of the second divided reflection sheet 22SB forming the second region 22B.
 本実施形態は以上のような構造であり、続いてその作用を説明する。上記した構成の液晶表示装置10の電源をONすると、図示しない制御回路により液晶パネル11の駆動が制御されるとともに、LED基板18のLED17の駆動が制御される。LED17からの光は、導光部材19により導光されることで、液晶パネル11に照射され、もって液晶パネル11に所定の画像が表示される。以下、導光部材19の作用について詳しく説明する。 This embodiment has the structure as described above, and its operation will be described next. When the power supply of the liquid crystal display device 10 having the above configuration is turned on, the drive of the liquid crystal panel 11 is controlled by a control circuit (not shown), and the drive of the LEDs 17 on the LED substrate 18 is controlled. Light from the LED 17 is guided to the liquid crystal panel 11 by being guided by the light guide member 19, and a predetermined image is displayed on the liquid crystal panel 11. Hereinafter, the operation of the light guide member 19 will be described in detail.
 LED17が点灯されると、その発光光は、図3及び図4に示すように、導光部材19の一角部に配された光入射面19bから導光部材19内に入射し、反射シート21により反射されたり、導光部材19における外部との界面である光出射面19aにて全反射することで内部を伝播する。導光部材19内を伝播した光は、散乱部にて散乱されることで光出射面19aに対する入射角が臨界角を超えないものとなって光出射面19aから表側(液晶パネル11側)の外部へと出射される。詳細には、導光部材19内に存する光は、導光部材19における光出射面19aを除いた各面19c,19dに接する反射シート21、つまり光入射面19bを除いた各端面19dに接する第1反射シート22と、光出射面19aとは反対側の板面19cに接する第2反射シート23とによって反射されることで、光出射面19aからの出射がのみ許容されるのに対してそれ以外の面19c,19dからの出射が規制される。特に、導光部材19の端面19dは、LED17の光軸LAに対して直交するため、光軸LAに沿って進行する光は、上記端面19dに対して臨界角を超えない入射角を持つこととなって外部への出射が懸念されるところであるが、第1反射シート22によって光軸LAに沿って進行する光の出射を規制することで、光の利用効率の向上を図ることができ、出射光の輝度を向上させることができる。ここで、導光部材19内を伝播する光のうち、短波長側の光は、長波長側の光に比べて散乱し易い傾向にあるため、光出射面19aのうちLED17に相対的に近い領域(第1領域22Aと平面視重畳する領域)では、短波長側の光が長波長側の光よりも多く出射してその出射光量が過剰になりがちであるのに対し、LED17から相対的に遠い領域(第2領域22Bと平面視重畳する領域)では、短波長側の光の出射光量が長波長側の光よりも不足しがちである。 When the LED 17 is turned on, as shown in FIGS. 3 and 4, the emitted light enters the light guide member 19 from the light incident surface 19 b disposed at one corner of the light guide member 19, and the reflection sheet 21. Or is totally reflected by the light exit surface 19a which is an interface with the outside of the light guide member 19, and propagates inside. The light propagating through the light guide member 19 is scattered by the scattering portion, so that the incident angle with respect to the light exit surface 19a does not exceed the critical angle, and the light is emitted from the light exit surface 19a on the front side (the liquid crystal panel 11 side). It is emitted to the outside. Specifically, the light existing in the light guide member 19 contacts the reflection sheet 21 in contact with the surfaces 19c and 19d except for the light exit surface 19a of the light guide member 19, that is, the end surfaces 19d except for the light incident surface 19b. While being reflected by the first reflection sheet 22 and the second reflection sheet 23 in contact with the plate surface 19c opposite to the light emission surface 19a, only emission from the light emission surface 19a is allowed. The emission from the other surfaces 19c and 19d is restricted. In particular, since the end face 19d of the light guide member 19 is orthogonal to the optical axis LA of the LED 17, the light traveling along the optical axis LA has an incident angle that does not exceed the critical angle with respect to the end face 19d. However, by controlling the emission of light traveling along the optical axis LA by the first reflection sheet 22, it is possible to improve the light utilization efficiency. The brightness of the emitted light can be improved. Here, among the light propagating in the light guide member 19, the light on the short wavelength side tends to be scattered as compared with the light on the long wavelength side, so that it is relatively close to the LED 17 on the light exit surface 19 a. In the region (region overlapped with the first region 22A in plan view), light on the short wavelength side tends to be emitted more than light on the long wavelength side, and the amount of emitted light tends to be excessive. In a region far away (a region overlapping the second region 22B in plan view), the amount of light emitted from the short wavelength side tends to be insufficient compared to the light from the long wavelength side.
 その点、本実施形態では、図2及び図3に示すように、反射シート21を構成する第1反射シート22に、相対的にLED17に近く且つ相対的に色度座標値が大きな第1領域22Aと、相対的にLED17から遠く且つ相対的に色度座標値が小さな第2領域22Bとを含ませているから、第1領域22Aによる反射光に、長波長側の光を多く含ませることができるとともに、第2領域22Bによる反射光に、短波長側の光を多く含ませることができる。第1領域22Aによる反射光は、その多くが光出射面19aのうちLED17に相対的に近い領域(第1領域22Aと平面視重畳する領域)へと直接向かうので、同領域において不足しがちな長波長側の光の出射を促進することができる。これにより、光出射面19aのうちLED17に相対的に近い領域からの出射光には、短波長側の光と長波長側の光とがバランス良く含まれることとなる。一方、第2領域22Bによる反射光は、その多くが光出射面19aのうちLED17から相対的に遠い領域(第2領域22Bと平面視重畳する領域)へと直接向かうので、同領域において不足しがちな短波長側の光の出射を促進することができる。これにより、光出射面19aのうちLED17から相対的に遠い領域からの出射光には、短波長側の光と長波長側の光とがバランス良く含まれることとなる。以上により、光出射面19aのうちLED17に相対的に近い領域からの出射光と、光出射面19aのうちLED17から相対的に遠い領域からの出射光との間で生じ得る色の差を緩和することができ、もって液晶表示装置10の表示画像を色ムラのない、表示品位の高いものとすることができる。この色ムラの問題は、液晶表示装置10が大画面化するほど顕著となる傾向にあることから、上記した構成により色ムラの問題を解消することで、特に液晶表示装置10の大型化を図る上で好適となる。さらには、本実施形態では、第1領域22A及び第2領域22Bを有する第1反射シート22によって導光部材19のうち光出射面19aに隣り合う端面19dからの光の出射を防ぐようにしているから、LED17から発せられた光の利用効率並びに出射光の輝度を向上させることができるとともに、色ムラの防止により好適とされる。 In this regard, in the present embodiment, as shown in FIGS. 2 and 3, the first region of the first reflection sheet 22 constituting the reflection sheet 21 is relatively close to the LED 17 and has a relatively large chromaticity coordinate value. 22A and the second region 22B that is relatively far from the LED 17 and relatively small in chromaticity coordinate value are included, so that the reflected light from the first region 22A includes a lot of light on the long wavelength side. In addition, a large amount of light on the short wavelength side can be included in the reflected light from the second region 22B. Most of the reflected light from the first region 22A is directed directly to a region relatively close to the LED 17 on the light emitting surface 19a (a region overlapping the first region 22A in plan view), and thus tends to be insufficient in the same region. The emission of light on the long wavelength side can be promoted. Thereby, the light emitted from the region relatively close to the LED 17 in the light emitting surface 19a includes the light on the short wavelength side and the light on the long wavelength side with a good balance. On the other hand, most of the reflected light from the second region 22B is directly directed to a region relatively far from the LED 17 in the light emitting surface 19a (a region overlapping the second region 22B in plan view), so that the shortage in the same region is insufficient. It is possible to promote the emission of light on the short wavelength side that tends to occur. As a result, the light emitted from the region relatively far from the LED 17 in the light emitting surface 19a includes the light on the short wavelength side and the light on the long wavelength side in a well-balanced manner. As described above, the difference in color that can occur between the outgoing light from the region of the light emitting surface 19a that is relatively close to the LED 17 and the outgoing light from the region of the light emitting surface 19a that is relatively far from the LED 17 is alleviated. Therefore, the display image of the liquid crystal display device 10 can be made to have high display quality without color unevenness. This problem of color unevenness tends to become more prominent as the liquid crystal display device 10 becomes larger in screen size. Therefore, by solving the problem of color unevenness with the above-described configuration, the liquid crystal display device 10 is particularly enlarged. Preferred above. Furthermore, in the present embodiment, the first reflection sheet 22 having the first region 22A and the second region 22B prevents light from being emitted from the end surface 19d adjacent to the light emitting surface 19a of the light guide member 19. Therefore, the utilization efficiency of the light emitted from the LED 17 and the luminance of the emitted light can be improved, and it is preferable for preventing color unevenness.
 以上説明したように本実施形態のバックライト装置(照明装置)12は、LED(光源)17と、LED17に対して端部が対向状に配されるとともにLED17から端部に入射した光を出射させる光出射面19aを有する導光部材19と、導光部材19のうち光出射面19aに隣り合う面である端面19dに接して配されるとともに導光部材19内の光を反射させる第1反射シート(反射部材)22とを備え、第1反射シート22を少なくともLED17に相対的に近い第1領域22Aと、LED17から相対的に遠い第2領域22Bとに区分したとき、第1領域22Aは、第2領域22Bに比べると、CIE1931色度図の色度座標値であるx値及びy値が共に相対的に大きなものとされる。 As described above, the backlight device (illumination device) 12 according to the present embodiment emits light incident on the end portion of the LED 17 from the LED 17 and the end portion of the LED 17 that is opposed to the LED 17. A light guide member 19 having a light emitting surface 19a to be operated, and a first light reflecting the light in the light guide member 19 while being arranged in contact with an end surface 19d which is a surface adjacent to the light emitting surface 19a of the light guide member 19 When the first reflection sheet 22 is divided into at least a first area 22A that is relatively close to the LED 17 and a second area 22B that is relatively far from the LED 17, the first area 22A is provided. Compared to the second region 22B, both the x value and the y value, which are chromaticity coordinate values in the CIE 1931 chromaticity diagram, are relatively large.
 LED17から導光部材19の端部に入射した光は、光出射面19aに隣り合う面である端面19dに接して配される第1反射シート22により反射されるなどして内部を伝播した後、光出射面19aから出射される。導光部材19内を伝播する光に含まれる短波長側の光は、長波長側の光に比べると、散乱が生じ易くて外部へ出射し易い傾向にある。このため、導光部材19のうちLED17に相対的に近い領域では短波長側の光の出射が過剰になりがちとなり、逆にLED17から相対的に遠い領域では短波長側の光の出射が不足しがちとなるため、導光部材19の出射光に色ムラが生じることが懸念される。 After the light incident on the end portion of the light guide member 19 from the LED 17 is reflected by the first reflection sheet 22 disposed in contact with the end surface 19d that is adjacent to the light emitting surface 19a, the light propagates through the inside. The light exits from the light exit surface 19a. Light on the short wavelength side included in the light propagating in the light guide member 19 tends to scatter and tend to be emitted to the outside as compared with light on the long wavelength side. For this reason, light emission on the short wavelength side tends to be excessive in a region relatively close to the LED 17 in the light guide member 19, and conversely, light emission on the short wavelength side is insufficient in a region relatively far from the LED 17. This tends to cause color unevenness in the light emitted from the light guide member 19.
 そこで、本実施形態では、第1反射シート22のうち、LED17に相対的に近い第1領域22Aに係るCIE1931色度図の色度座標値であるx値及びy値を、LED17から相対的に遠い第2領域22Bに係る同x値及びy値に比べて共に相対的に大きなものとしている。このような構成によれば、LED17に相対的に近い第1領域22Aは、第2領域22Bに比べると、長波長側の光をより多く反射させ、短波長側の光の反射光量が少なくなる傾向にあるので、導光部材19のうちLED17に相対的に近い領域では、不足しがちな長波長側の光については出射が促進されるのに対して、過剰になりがちな短波長側の光については出射が抑制される。その一方で、LED17から相対的に遠い第2領域22Bは、第1領域22Aに比べると、短波長側の光をより多く反射させ、長波長側の光の反射光量が少なくなる傾向にあるので、導光部材19のうちLED17から相対的に遠い領域では、過剰になりがちな長波長側の光については出射が抑制されるのに対して、不足しがちな短波長側の光については出射が促進される。以上により、導光部材19のうちLED17に相対的に近い領域からの出射光と、相対的に遠い領域からの出射光との間で生じ得る色ムラを緩和することができ、特に当該バックライト装置12の大型化に好適となる。さらには、本実施形態では、第1反射シート22によって導光部材19のうち光出射面19aに隣り合う面である端面19dからの光の出射を防ぐようにしており、その第1反射シート22に上記した第1領域22Aと第2領域22Bとを含ませるようにしているから、LED17からの光を出射光として効率的に利用することができて輝度を向上させることができるとともに、色ムラの防止により好適とされる。 Therefore, in the present embodiment, the x value and the y value that are the chromaticity coordinate values of the CIE 1931 chromaticity diagram relating to the first region 22A that is relatively close to the LED 17 in the first reflective sheet 22 are relatively determined from the LED 17. Both the x value and the y value related to the distant second region 22B are relatively large. According to such a configuration, the first region 22A relatively close to the LED 17 reflects more light on the long wavelength side and reduces the amount of reflected light on the short wavelength side than the second region 22B. In the region of the light guide member 19 that is relatively close to the LED 17, the emission of the long-wavelength side that tends to be short is promoted, whereas the short-wavelength side that tends to be excessive tends to be excessive. The emission of light is suppressed. On the other hand, the second region 22B that is relatively far from the LED 17 tends to reflect more light on the short wavelength side and reduce the amount of reflected light on the long wavelength side than the first region 22A. In the region of the light guide member 19 that is relatively far from the LED 17, the emission of the long wavelength light that tends to be excessive is suppressed, whereas the light of the short wavelength that tends to be insufficient is emitted. Is promoted. As described above, color unevenness that can occur between the light emitted from the region of the light guide member 19 that is relatively close to the LED 17 and the light that is emitted from the region far from the LED 17 can be reduced. This is suitable for increasing the size of the device 12. Further, in the present embodiment, the first reflection sheet 22 prevents light from being emitted from the end surface 19 d that is a surface adjacent to the light emission surface 19 a of the light guide member 19, and the first reflection sheet 22. Since the first region 22A and the second region 22B described above are included in the light, the light from the LED 17 can be efficiently used as the emitted light, the luminance can be improved, and color unevenness can be achieved. It is more suitable for prevention.
 また、導光部材19のうち光出射面19aに隣り合う面には、LED17からの光が入射される光入射面19bが含まれており、第1反射シート22は、導光部材19のうち光出射面19aに隣り合う面において光入射面19bを除いた全域にわたって配されている。このようにすれば、LED17から導光部材19のうち光出射面19aに隣り合う面に含まれる光入射面19bに入射した光は、導光部材19のうち光出射面19aに隣り合う面において光入射面19bを除いた全域にわたって配される第1反射シート22によって反射されることで、効率的に光出射面19aから出射される。これにより、光の利用効率及び輝度を一層向上させることができるとともに、色ムラの防止に一層好適とされる。 The light guide member 19 includes a light incident surface 19 b on which light from the LED 17 is incident on a surface adjacent to the light emitting surface 19 a, and the first reflective sheet 22 is formed of the light guide member 19. A surface adjacent to the light exit surface 19a is arranged over the entire area excluding the light incident surface 19b. If it does in this way, the light which injected into the light-incidence surface 19b contained in the surface adjacent to the light-projection surface 19a among the light guide members 19 from LED17 will be in the surface adjacent to the light-projection surface 19a among the light-guide members 19. By being reflected by the first reflection sheet 22 disposed over the entire area excluding the light incident surface 19b, the light is efficiently emitted from the light emitting surface 19a. As a result, the light utilization efficiency and luminance can be further improved, and it is more suitable for preventing color unevenness.
 また、LED17は、発光強度がピークとなる光の進行方向である光軸LAが光出射面19aに並行する配光分布を有しており、第1反射シート22は、光軸LAに対して直交する面を有している。このようにすれば、LED17からの光のうち、発光強度がピークとなる光を、その進行方向である光軸LAに対して直交する第1反射シート22によって効率的に反射させることができるから、光の利用効率及び輝度がより高いものとなるとともに、色ムラの防止により好適とされる。 Further, the LED 17 has a light distribution in which the optical axis LA, which is the traveling direction of the light whose emission intensity reaches a peak, is parallel to the light emitting surface 19a, and the first reflective sheet 22 is in relation to the optical axis LA. It has an orthogonal plane. If it does in this way, since the light from which the light emission intensity becomes a peak among the light from LED17 can be efficiently reflected by the 1st reflective sheet 22 orthogonal to the optical axis LA which is the advancing direction. The light utilization efficiency and luminance are higher, and it is more suitable for preventing color unevenness.
 また、導光部材19のうち光出射面19aとは反対側の面である板面19cに接して配される第2反射シート23が備えられている。このようにすれば、導光部材19内に入射したLED17からの光は、導光部材19のうち光出射面19aに隣り合う面である端面19dに接する形の第1反射シート22と、導光部材19のうち光出射面19aとは反対側の面である板面19cに接する第2反射シート23とによって反射されることで導光部材19内を伝播された後に、光出射面19aから出射される。 Further, a second reflection sheet 23 is provided which is disposed in contact with the plate surface 19c which is the surface opposite to the light emitting surface 19a of the light guide member 19. In this way, the light from the LED 17 that has entered the light guide member 19 is guided to the first reflection sheet 22 that is in contact with the end surface 19d that is the surface of the light guide member 19 adjacent to the light exit surface 19a. After being propagated through the light guide member 19 by being reflected by the second reflection sheet 23 in contact with the plate surface 19c which is the surface opposite to the light exit surface 19a of the light member 19, the light exit surface 19a Emitted.
 また、第1領域22Aに係るCIE1931色度図の色度座標値を(x1,y1)とし、第2領域22Bに係るCIE1931色度図の色度座標値を(x2,y2)とし、白色の基準色度に係るCIE1931色度図の色度座標値を(x0,y0)としたとき、第1領域22A及び第2領域22Bは、下記式(1),(2)を満たす関係の色度座標値をそれぞれ有する。 Further, the chromaticity coordinate value of the CIE 1931 chromaticity diagram relating to the first region 22A is set to (x1, y1), the chromaticity coordinate value of the CIE 1931 chromaticity diagram relating to the second region 22B is set to (x2, y2), and white color When the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the reference chromaticity is (x0, y0), the first region 22A and the second region 22B have a chromaticity in a relationship satisfying the following expressions (1) and (2). Each has a coordinate value.
 [数9]
 x2<x0≦x1     (1)
[Equation 9]
x2 <x0 ≦ x1 (1)
 [数10]
 y2<y0≦y1     (2)
[Equation 10]
y2 <y0 ≦ y1 (2)
 このようにすれば、仮にx1値がx0値よりも小さく且つy1値がy0値よりも小さい場合に比べると、第2領域22Bの色度を白色の基準色度に近くすることができる。第1反射シート22における光の反射効率は、色度が白色の基準色度に近くなるほど良好なものとなるから、第2領域22Bにおける光の反射効率が良好なものとなり、もって出射光の輝度を向上させる上で好適である。また、LED17からの出射光を白色光またはそれに近い色味の光とした場合に有用とされる。 In this way, the chromaticity of the second region 22B can be made closer to the white reference chromaticity as compared with the case where the x1 value is smaller than the x0 value and the y1 value is smaller than the y0 value. Since the light reflection efficiency in the first reflection sheet 22 becomes better as the chromaticity approaches the white reference chromaticity, the light reflection efficiency in the second region 22B becomes better, and thus the luminance of the emitted light. It is suitable for improving the above. Further, it is useful when the light emitted from the LED 17 is white light or light having a color close to it.
 また、第1領域22Aに係るCIE1931色度図の色度座標値を(x1,y1)とし、第2領域22Bに係るCIE1931色度図の色度座標値を(x2,y2)とし、白色の基準色度に係るCIE1931色度図の色度座標値を(x0,y0)としたとき、第1領域22A及び第2領域22Bは、下記式(3),(4)を満たす関係の色度座標値をそれぞれ有する。 Further, the chromaticity coordinate value of the CIE 1931 chromaticity diagram relating to the first region 22A is set to (x1, y1), the chromaticity coordinate value of the CIE 1931 chromaticity diagram relating to the second region 22B is set to (x2, y2), and white color When the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the reference chromaticity is (x0, y0), the first region 22A and the second region 22B have chromaticities in a relationship satisfying the following expressions (3) and (4). Each has a coordinate value.
 [数11]
 x2≦x0<x1     (3)
[Equation 11]
x2 ≦ x0 <x1 (3)
 [数12]
 y2≦y0<y1     (4)
[Equation 12]
y2 ≦ y0 <y1 (4)
 このようにすれば、仮にx2値がx0値よりも大きく且つy2値がy0値よりも大きい場合に比べると、第1領域22Aの色度を白色の基準色度に近くすることができる。第1反射シート22における光の反射効率は、色度が白色の基準色度に近くなるほど良好なものとなるから、第1領域22Aにおける光の反射効率が良好なものとなり、もって出射光の輝度を向上させる上で好適である。また、LED17からの出射光を白色光またはそれに近い色味の光とした場合に有用とされる。 In this way, the chromaticity of the first region 22A can be made closer to the white reference chromaticity as compared with the case where the x2 value is larger than the x0 value and the y2 value is larger than the y0 value. The light reflection efficiency in the first reflection sheet 22 becomes better as the chromaticity becomes closer to the white reference chromaticity. Therefore, the light reflection efficiency in the first region 22A becomes better, and thus the luminance of the emitted light. It is suitable for improving the above. Further, it is useful when the light emitted from the LED 17 is white light or light having a color close to it.
 また、第1領域22A及び第2領域22Bは、上記した式(5),(6)を満たす関係の色度座標値を有する。 Further, the first area 22A and the second area 22B have chromaticity coordinate values that satisfy the above-described expressions (5) and (6).
 このようにすれば、第1領域22A及び第2領域22Bが共に白色の基準色度に近い色度を有することになるから、第1領域22A及び第2領域22Bにおける光の反射効率が共に良好なものとなり、もって出射光の輝度を向上させる上で一層有効である。しかも、第1領域22Aが呈する色と第2領域22Bが呈する色とが補色の関係になるから、LED17からの出射光を白色光とした場合に特に有用とされる。 In this way, since both the first region 22A and the second region 22B have chromaticity close to the white reference chromaticity, both the light reflection efficiency in the first region 22A and the second region 22B are good. Therefore, it is more effective in improving the brightness of the emitted light. Moreover, since the color exhibited by the first region 22A and the color exhibited by the second region 22B have a complementary relationship, it is particularly useful when the emitted light from the LED 17 is white light.
 また、導光部材19は、平面に視て略方形の板状をなし、その一板面が光出射面19aを構成しているのに対し、端面に接する形で第1反射シート22が配されており、第1反射シート22は、導光部材19の各辺に対応する端面19d毎に分割された複数の分割反射シート(分割反射部材)22Sからなる。このようにすれば、第1反射シート22の設置に際して、複数の分割反射シート22Sを、導光部材19の各辺に対応する端面19d毎に配すればよいから、仮に複数の辺に跨る形の第1反射シートを用いた場合に比べると、導光部材19に対する位置合わせなどが容易となって作業性に優れる。 In addition, the light guide member 19 has a substantially square plate shape when seen in a plan view, and its one plate surface constitutes the light emission surface 19a, whereas the first reflection sheet 22 is arranged in contact with the end surface. The first reflection sheet 22 includes a plurality of divided reflection sheets (divided reflection members) 22 </ b> S divided for each end surface 19 d corresponding to each side of the light guide member 19. In this way, when the first reflection sheet 22 is installed, the plurality of divided reflection sheets 22S may be arranged for each end surface 19d corresponding to each side of the light guide member 19, so that it temporarily spans a plurality of sides. Compared to the case where the first reflective sheet is used, the alignment with respect to the light guide member 19 is facilitated and the workability is excellent.
 また、複数の分割反射シート22Sには、全域が第1領域22Aとされるものと、全域が第2領域22Bとされるものとが含まれている。このようにすれば、仮に1つの分割反射シート22Sに第1領域22Aと第2領域22Bとが混在する構成とした場合に比べると、分割反射シート22Sの製造が容易なものとなって製造コストの低減などを図ることができる。 Further, the plurality of divided reflection sheets 22S include those in which the entire region is the first region 22A and those in which the entire region is the second region 22B. In this way, it is easier to manufacture the divided reflection sheet 22S than the case where the first area 22A and the second area 22B are mixed in one divided reflection sheet 22S, and the manufacturing cost is reduced. Can be reduced.
 また、第1領域22A及び第2領域22Bは、第1反射シート22の表面に塗料が塗布されることで、CIE1931色度図の色度座標値が互いに異なるものとされる。このようにすれば、第1反射シート22の表面に対する塗料の塗布範囲(塗布面積)や塗料の種類などを選択することで、第1領域22A及び第2領域22Bにおける色度をそれぞれ適切なものとすることができる。 In addition, the first region 22A and the second region 22B have different chromaticity coordinate values in the CIE 1931 chromaticity diagram by applying paint on the surface of the first reflection sheet 22. In this case, the chromaticity in the first region 22A and the second region 22B can be set appropriately by selecting the coating range (coating area) of the coating on the surface of the first reflection sheet 22 and the type of coating. It can be.
 また、導光部材19は、平面に視て略方形をなしているのに対し、LED17は、導光部材19の端部のうち一角部に対して対向状をなすとともにその光軸LAが導光部材19の辺に対して傾くよう配されている。このようにすれば、仮にLED17を導光部材19の端部のうち一辺に沿って複数並列配置した場合に比べると、LED17の設置数を削減することができ、しかもLED17の光軸LAを辺に対して傾けることで導光部材19内に効率的に光を供給することができる。 The light guide member 19 has a substantially square shape when viewed in plan, whereas the LED 17 is opposed to a corner portion of the end portion of the light guide member 19 and its optical axis LA is guided. It is arranged to be inclined with respect to the side of the optical member 19. In this way, compared to the case where a plurality of LEDs 17 are arranged in parallel along one side of the end portion of the light guide member 19, the number of LEDs 17 can be reduced, and the optical axis LA of the LEDs 17 can be reduced. The light can be efficiently supplied into the light guide member 19 by being inclined with respect to.
 また、LED17は、その光軸LAが導光部材19における対角線とほぼ一致するよう配されている。このようにすれば、仮に光軸を上記対角線と交差する設定とした場合に比べると、LED17からの光が光軸LAに沿って導光部材19におけるLED17とは反対側の角部に到達するまでの距離が長くなるため、導光部材19のうちLED17側の角部付近と、LED17とは反対側の角部付近とで出射光の色度に差が生じ易くなるものの、上記した構成により出射光の色ムラを効果的に抑制することができる。 Further, the LED 17 is arranged so that its optical axis LA substantially coincides with the diagonal line in the light guide member 19. In this way, light from the LED 17 reaches the corner of the light guide member 19 opposite to the LED 17 along the optical axis LA, as compared with the case where the optical axis is set to intersect the diagonal line. Since the distance to the LED 17 side of the light guide member 19 and the vicinity of the corner on the opposite side of the LED 17 in the light guide member 19 are likely to be different, the chromaticity of the emitted light is easily generated. Color unevenness of emitted light can be effectively suppressed.
 また、光源は、LED17とされる。このようにすれば、高輝度化及び低消費電力化などを図ることができる。 Further, the light source is the LED 17. In this way, high brightness and low power consumption can be achieved.
 また、LED17は、青色の略単色光を発するLEDチップ(LED素子)と、LEDチップからの光により励起されて発光する蛍光体とからなるものとされる。このようにすれば、LED17からの出射光には、青色の波長領域の光が多く含まれる。青色の波長領域の光は、導光部材19のうちLED17に相対的に近い領域にて多くが出射される傾向にあるため、LED17から相対的に遠い領域に到達するまでの減衰することが懸念されるが、上記した構成により導光部材19からの出射光に生じ得る色ムラを効果的に抑制することができる。 The LED 17 includes an LED chip (LED element) that emits substantially blue monochromatic light and a phosphor that emits light when excited by light from the LED chip. In this way, the light emitted from the LED 17 contains a lot of light in the blue wavelength region. Since a large amount of light in the blue wavelength region tends to be emitted in a region relatively close to the LED 17 in the light guide member 19, there is a concern that the light is attenuated until reaching a region relatively far from the LED 17. However, the above-described configuration can effectively suppress color unevenness that may occur in the light emitted from the light guide member 19.
 以上、本発明の実施形態1を示したが、本発明は上記実施の形態に限られるものではなく、例えば以下のような変形例を含むこともできる。なお、以下の各変形例において、上記実施形態と同様の部材には、上記実施形態と同符号を付して図示及び説明を省略するものもある。 As mentioned above, although Embodiment 1 of this invention was shown, this invention is not restricted to the said embodiment, For example, the following modifications can also be included. In the following modifications, members similar to those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and illustration and description thereof may be omitted.
[実施形態1の変形例1]
 実施形態1の変形例1について図11を用いて説明する。ここでは、第1領域22Aの色度を変更したものを示す。
[Modification 1 of Embodiment 1]
A first modification of the first embodiment will be described with reference to FIG. Here, the chromaticity of the first region 22A is changed.
 本変形例に係る第1反射シート22(図示せず)は、1931色度図の拡大図である図11に示すように、第1領域22A(第1分割反射シート22SA)の色度を表す点Aが、白色の基準色度を表す点Wと一致する構成とされる。つまり、第1領域22Aは、LED17からの発光光と同一の色度を有していることになる。詳細には、第1領域22Aにおける色度座標値(x1,y1)は、下記式(7),(8)を満たす関係とされる。これに対して、第2領域22B(第2分割反射シート22SB)における色度座標値(x2,y2)は、第1領域22Aにおける色度座標値(x1,y1)及び白色の基準色度における色度座標値(x0,y0)よりもそれぞれ小さいものとされる。従って、本変形例に係る第1反射シート22の第1領域22AにLED17からの光(白色光)を照射した場合、その反射光がほぼ白色光とされるのに対し、第2領域22BにLED17からの光(白色光)を照射した場合には、その反射光が少なくともLED17の発光光よりは短波長側の光をより多く含んでいて青色味を帯びることとなる。このような構成の第1反射シート22を製造するには、例えば第2領域22Bをなす第2分割反射シート22SBをなす基材のみに所定の塗料を塗布するようにし、第1領域22Aをなす第1分割反射シート22SAには塗料を塗布せず、その白色を呈する基材の表面によって光を反射するようにすればよい。 The first reflective sheet 22 (not shown) according to the present modification represents the chromaticity of the first region 22A (first divided reflective sheet 22SA) as shown in FIG. 11 which is an enlarged view of the 1931 chromaticity diagram. The point A is configured to coincide with the point W representing the white reference chromaticity. That is, the first region 22A has the same chromaticity as the light emitted from the LED 17. Specifically, the chromaticity coordinate values (x1, y1) in the first region 22A satisfy the following expressions (7) and (8). In contrast, the chromaticity coordinate values (x2, y2) in the second region 22B (second divided reflection sheet 22SB) are the chromaticity coordinate values (x1, y1) in the first region 22A and the white reference chromaticity. The chromaticity coordinate values (x0, y0) are each smaller. Therefore, when the light (white light) from the LED 17 is irradiated on the first region 22A of the first reflective sheet 22 according to this modification, the reflected light is almost white light, whereas the second region 22B When the light from the LED 17 (white light) is irradiated, the reflected light contains at least a shorter wavelength side light than the emitted light of the LED 17 and is bluish. In order to manufacture the first reflection sheet 22 having such a configuration, for example, a predetermined paint is applied only to the base material forming the second divided reflection sheet 22SB forming the second region 22B, and the first region 22A is formed. The first divided reflection sheet 22SA is not coated with a paint, and light may be reflected by the surface of the white base material.
 [数13]
 x2<x0=x1     (7)
 [数14]
 y2<y0=y1     (8)
[Equation 13]
x2 <x0 = x1 (7)
[Formula 14]
y2 <y0 = y1 (8)
[実施形態1の変形例2]
 実施形態1の変形例2について図12を用いて説明する。ここでは、第2領域22Bの色度を変更したものを示す。
[Modification 2 of Embodiment 1]
A second modification of the first embodiment will be described with reference to FIG. Here, the chromaticity of the second region 22B is changed.
 本変形例に係る第1反射シート22(図示せず)は、1931色度図の拡大図である図12に示すように、第2領域22B(第2分割反射シート22SB)の色度を表す点Bが、白色の基準色度を表す点Wと一致する構成とされる。つまり、第2領域22Bは、LED17からの発光光と同一の色度を有していることになる。詳細には、第2領域22Bにおける色度座標値(x2,y2)は、下記式(9),(10)を満たす関係とされる。これに対して、第1領域22A(第1分割反射シート22SA)における色度座標値(x1,y1)は、第2領域22Bにおける色度座標値(x2,y2)及び白色の基準色度における色度座標値(x0,y0)よりもそれぞれ大きいものとされる。従って、本変形例に係る第1反射シート22の第2領域22BにLED17からの光(白色光)を照射した場合、その反射光がほぼ白色光とされるのに対し、第1領域22AにLED17からの光(白色光)を照射した場合には、その反射光が少なくともLED17の発光光よりは長波長側の光をより多く含んでいて黄色味を帯びることとなる。このような構成の第1反射シート22を製造するには、例えば第1領域をなす第1分割反射シート22SAをなす基材のみに所定の塗料を塗布するようにし、第2領域22Bをなす第2分割反射シート22SBには塗料を塗布せず、その白色を呈する基材の表面によって光を反射するようにすればよい。 The first reflective sheet 22 (not shown) according to the present modification represents the chromaticity of the second region 22B (second divided reflective sheet 22SB) as shown in FIG. 12 which is an enlarged view of the 1931 chromaticity diagram. The point B is configured to coincide with the point W representing the white reference chromaticity. In other words, the second region 22B has the same chromaticity as the light emitted from the LED 17. Specifically, the chromaticity coordinate values (x2, y2) in the second region 22B satisfy the following expressions (9) and (10). On the other hand, the chromaticity coordinate values (x1, y1) in the first region 22A (first divided reflection sheet 22SA) are the chromaticity coordinate values (x2, y2) in the second region 22B and the white reference chromaticity. The chromaticity coordinate values (x0, y0) are respectively larger. Therefore, when the light (white light) from the LED 17 is applied to the second region 22B of the first reflective sheet 22 according to the present modification, the reflected light is substantially white light, whereas the first region 22A When the light from the LED 17 (white light) is irradiated, the reflected light contains more light on the long wavelength side than at least the emitted light of the LED 17 and becomes yellowish. In order to manufacture the first reflective sheet 22 having such a configuration, for example, a predetermined paint is applied only to the base material forming the first divided reflective sheet 22SA forming the first region, and the second region 22B forming the second region 22B. The two-divided reflection sheet 22SB is not coated with a paint, and light may be reflected by the surface of the white base material.
 [数15]
 x2=x0<x1     (9)
 [数16]
 y2=y0<y1     (10)
[Equation 15]
x2 = x0 <x1 (9)
[Equation 16]
y2 = y0 <y1 (10)
[実施形態1の変形例3]
 実施形態1の変形例3について図13を用いて説明する。ここでは、第1領域22A及び第2領域22Bの色度を共に変更したものを示す。
[Modification 3 of Embodiment 1]
A third modification of the first embodiment will be described with reference to FIG. Here, the chromaticity of both the first area 22A and the second area 22B is changed.
 本変形例に係る第1反射シート22(図示せず)は、1931色度図の拡大図である図13に示すように、第1領域22A(第1分割反射シート22SA)及び第2領域22B(第2分割反射シート22SB)における各色度(点A,点B)が、白色の基準色度(点W)よりも黄色寄りの色度とされている。第1領域22A及び第2領域22Bの各色度座標値は、下記式(11),(12)を満たす関係を有しており、詳しくは第2領域22Bにおける色度座標値(x2,y2)は、第1領域22Aにおける色度座標値(x1,y1)よりもそれぞれ小さいものの、白色の基準色度における色度座標値(x0,y0)よりは大きな値とされる。従って、本変形例に係る第1反射シート22の第2領域22BにLED17からの光(白色光)を照射した場合、その反射光がごく淡い黄色味を帯びるのに対し、第1領域22AにLED17からの光(白色光)を照射した場合には、その反射光が第2領域22Bの反射光よりは相対的に濃い黄色味を帯びることとなる。このような構成の第1反射シート22を製造するには、例えば、第1領域22Aをなす第1分割反射シート22SAと第2領域22Bをなす第2分割反射シート22SBとで同一の塗料を用いることができ、第2分割反射シート22SBに相対的に濃度の低い塗料を塗布し、第1分割反射シート22SAに相対的に濃度が高い塗料を塗布するようにすればよい。なお、第1領域22Aと第2領域22Bとで異なる塗料を用いることも勿論可能である。 As shown in FIG. 13 which is an enlarged view of the 1931 chromaticity diagram, the first reflective sheet 22 (not shown) according to this modification example has a first area 22A (first divided reflective sheet 22SA) and a second area 22B. Each chromaticity (point A, point B) in (second divided reflection sheet 22SB) is set to a chromaticity closer to yellow than the white reference chromaticity (point W). The chromaticity coordinate values of the first region 22A and the second region 22B have a relationship satisfying the following expressions (11) and (12). Specifically, the chromaticity coordinate values (x2, y2) in the second region 22B. Are smaller than the chromaticity coordinate values (x1, y1) in the first region 22A, but larger than the chromaticity coordinate values (x0, y0) in the white reference chromaticity. Therefore, when the light (white light) from the LED 17 is irradiated on the second region 22B of the first reflective sheet 22 according to the present modification, the reflected light is very light yellowish, whereas the light is reflected in the first region 22A. When the light (white light) from the LED 17 is irradiated, the reflected light is tinged with a darker yellow color than the reflected light of the second region 22B. In order to manufacture the first reflection sheet 22 having such a configuration, for example, the same paint is used for the first divided reflection sheet 22SA forming the first region 22A and the second divided reflection sheet 22SB forming the second region 22B. It is possible to apply a paint having a relatively low concentration to the second divided reflection sheet 22SB and apply a paint having a relatively high concentration to the first divided reflection sheet 22SA. Of course, different paints may be used for the first region 22A and the second region 22B.
 [数17]
 x0<x2<x1     (11)
 [数18]
 y0<y2<y1     (12)
[Equation 17]
x0 <x2 <x1 (11)
[Equation 18]
y0 <y2 <y1 (12)
[実施形態1の変形例4]
 実施形態1の変形例4について図14を用いて説明する。ここでは、上記した変形例3から第1領域22A及び第2領域22Bの色度をさらに変更したものを示す。
[Modification 4 of Embodiment 1]
A fourth modification of the first embodiment will be described with reference to FIG. Here, what changed further the chromaticity of the 1st field 22A and the 2nd field 22B from the above-mentioned modification 3 is shown.
 本変形例に係る第1反射シート22(図示せず)は、1931色度図の拡大図である図14に示すように、第1領域22A(第1分割反射シート22SA)及び第2領域22B(第2分割反射シート22SB)における各色度(点A,点B)が、白色の基準色度(点W)よりも青色寄りの色度とされている。第1領域22A及び第2領域22Bの各色度座標値は、下記式(13),(14)を満たす関係を有しており、詳しくは第1領域22Aにおける色度座標値(x1,y1)は、第2領域22Bにおける色度座標値(x2,y2)よりもそれぞれ大きいものの、白色の基準色度における色度座標値(x0,y0)よりは小さな値とされる。従って、本変形例に係る第1反射シート22の第1領域22AにLED17からの光(白色光)を照射した場合、その反射光がごく淡い青色味を帯びるのに対し、第2領域22BにLED17からの光(白色光)を照射した場合には、その反射光が第1領域22Aの反射光よりは相対的に濃い青色味を帯びることとなる。このような構成の第1反射シート22を製造するには、例えば、第1領域22Aをなす第1分割反射シート22SAと第2領域22Bをなす第2分割反射シート22SBとで同一の塗料を用いることができ、第1分割反射シート22SAに相対的に濃度の低い塗料を塗布し、第2分割反射シート22SBに相対的に濃度が高い塗料を塗布するようにすればよい。なお、第1領域22Aと第2領域22Bとで異なる塗料を用いることも勿論可能である。 As shown in FIG. 14 which is an enlarged view of the 1931 chromaticity diagram, the first reflective sheet 22 (not shown) according to this modification example has a first area 22A (first divided reflective sheet 22SA) and a second area 22B. Each chromaticity (point A, point B) in (second divided reflection sheet 22SB) is set to a chromaticity closer to blue than white reference chromaticity (point W). The chromaticity coordinate values of the first region 22A and the second region 22B have a relationship satisfying the following equations (13) and (14). Specifically, the chromaticity coordinate values (x1, y1) in the first region 22A. Are larger than the chromaticity coordinate values (x2, y2) in the second region 22B, but smaller than the chromaticity coordinate values (x0, y0) in the white reference chromaticity. Therefore, when the light (white light) from the LED 17 is irradiated on the first region 22A of the first reflective sheet 22 according to this modification, the reflected light has a very light blue color, whereas the second region 22B When the light (white light) from the LED 17 is irradiated, the reflected light has a relatively dark blue color than the reflected light of the first region 22A. In order to manufacture the first reflection sheet 22 having such a configuration, for example, the same paint is used for the first divided reflection sheet 22SA forming the first region 22A and the second divided reflection sheet 22SB forming the second region 22B. It is possible to apply a paint having a relatively low concentration to the first divided reflection sheet 22SA and apply a paint having a relatively high concentration to the second divided reflection sheet 22SB. Of course, different paints may be used for the first region 22A and the second region 22B.
 [数19]
 x2<x1<x0     (13)
 [数20]
 y2<y1<y0     (14)
[Equation 19]
x2 <x1 <x0 (13)
[Equation 20]
y2 <y1 <y0 (14)
[実施形態1の変形例5]
 実施形態1の変形例5について図15を用いて説明する。ここでは、白色の基準色度に対する第1領域22A及び第2領域22Bの色度の関係を変更したものを示す。
[Modification 5 of Embodiment 1]
Modification 5 of Embodiment 1 will be described with reference to FIG. Here, the chromaticity relationship of the first region 22A and the second region 22B with respect to the white reference chromaticity is changed.
 本変形例に係る第1反射シート22(図示せず)は、1931色度図の拡大図である図15に示すように、第1領域22A(第1分割反射シート22SA)の色度に係る点Aと、第2領域22B(第2分割反射シート22SB)の色度に係る点Bとを結んだ直線上に白色の基準色度に係る点Wが存しない構成とされている。言い換えると、第1領域22Aの色度に係る点A及び白色の基準色度に係る点Wを結んだ直線と、第2領域22Bの色度に係る点B及び白色の基準色度に係る点Wを結んだ直線とが、上記した実施形態1及びその変形例1~4のように同一直線とはならず、互いに交わるような関係とされる。第1領域22Aの色度に係る点Aは、図15に示す1931色度図において、白色の基準色度に係る点Wに対して右寄り(赤色寄り)に位置しており、その色味としてはやや赤色気味となっている。一方、第2領域22Bの色度に係る点Bは、図15に示す1931色度図において、白色の基準色度に係る点Wに対して下寄り(マゼンタ色寄り)に位置しており、その色味としてはややマゼンタ色気味となっている。 The first reflective sheet 22 (not shown) according to this modification is related to the chromaticity of the first region 22A (first divided reflective sheet 22SA) as shown in FIG. 15 which is an enlarged view of the 1931 chromaticity diagram. The point W related to the white reference chromaticity does not exist on a straight line connecting the point A and the point B related to the chromaticity of the second region 22B (second divided reflection sheet 22SB). In other words, a straight line connecting the point A related to the chromaticity of the first region 22A and the point W related to the white reference chromaticity, and the point B related to the chromaticity of the second region 22B and the point related to the white reference chromaticity The straight line connecting W is not the same straight line as in the first embodiment and the modifications 1 to 4 described above, but has a relationship that intersects each other. The point A related to the chromaticity of the first region 22A is located on the right side (red side) with respect to the point W related to the white reference chromaticity in the 1931 chromaticity diagram shown in FIG. Slightly red. On the other hand, the point B related to the chromaticity of the second region 22B is located below (magenta color) near the point W related to the white reference chromaticity in the 1931 chromaticity diagram shown in FIG. The color is somewhat magenta.
[実施形態1の変形例6]
 実施形態1の変形例6について図16を用いて説明する。ここでは、上記した変形例5から白色の基準色度に対する第1領域22A及び第2領域22Bの色度の関係をさらに変更したものを示す。
[Modification 6 of Embodiment 1]
A sixth modification of the first embodiment will be described with reference to FIG. Here, a modification in which the relationship of the chromaticity of the first region 22A and the second region 22B with respect to the white reference chromaticity is further changed from the above-described modification example 5 is shown.
 本変形例に係る反射シート21(図示せず)では、第1領域22A(第1分割反射シート22SA)の色度に係る点Aが、図16に示す1931色度図において、白色の基準色度に係る点Wに対して上寄り(緑色寄り)に位置しており、その色味としてはやや緑色気味となっている。一方、第2領域22B(第2分割反射シート22SB)の色度に係る点Bは、図16に示す1931色度図において、白色の基準色度に係る点Wに対して左寄り(シアン色寄り)に位置しており、その色味としてはややシアン色気味となっている。 In the reflective sheet 21 (not shown) according to this modification, the point A related to the chromaticity of the first region 22A (first divided reflective sheet 22SA) is a white reference color in the 1931 chromaticity diagram shown in FIG. It is located on the upper side (green side) with respect to the point W related to the degree, and the color is slightly greenish. On the other hand, the point B related to the chromaticity of the second region 22B (second divided reflection sheet 22SB) is shifted to the left (cyan shift) with respect to the point W related to the white reference chromaticity in the 1931 chromaticity diagram shown in FIG. ) And has a slightly cyan color.
 <実施形態2>
 本発明の実施形態2を図17から図20によって説明する。この実施形態2では、第1反射シート122における各領域の区分態様を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 2>
A second embodiment of the present invention will be described with reference to FIGS. In this Embodiment 2, what changed the division | segmentation aspect of each area | region in the 1st reflection sheet 122 is shown. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る第1反射シート122は、図17に示すように、互いに色度が異なる3つの領域122A~122Cに区分されており、詳しくは最もLED17に近い第1領域122Aと、最もLED17から遠い第2領域122Bと、第1領域122Aと第2領域122Bとの間に配されるとともに双方に対して隣り合う第3領域22Cとに区分されている。具体的には、第1反射シート122を構成する4つの分割反射シート122Sのうち、LED17(導光部材19における光入射面19b)に隣り合って配される一対の第1分割反射シート122SAが第1領域122Aの全域と、第3領域22Cの一部(半分)を有しているのに対し、残りの一対の第2分割反射シート122SBが第2領域122Bの全域と、第3領域22Cの残りの部分(半分)を有している。さらに詳しくは、LED17に隣り合って配される一対の第1分割反射シート122SAは、それぞれ延在方向のほぼ中央位置にて第1領域122Aと第3領域22Cとに区分されており、相対的にLED17に近い側(X1端側またはY1端側)が第1領域122Aとされ、相対的にLED17から遠い側(X2端側またはY2端側)が第3領域22Cとされる。導光部材19のうち光入射面19bとは対角位置にある角部を挟んで隣り合う一対の第2分割反射シート122SBは、それぞれ延在方向のほぼ中央位置にて第2領域122Bと第3領域22Cとに区分されており、相対的にLED17に近い側(X3端側またはY3端側)が第3領域22Cとされ、相対的にLED17から遠い側(X4端側またはY4端側)が第2領域122Bとされる。第1領域122Aと第2領域122Bとは互いにほぼ同じ面積を有しているのに対し、第3領域22Cは、第1領域122Aと第2領域122Bとの面積を足し合わせた大きさの面積を有している。このうち第3領域22Cの色度は、第1領域122A及び第2領域122Bの色度とは異なるものとされており、以下に詳しく説明する。 As shown in FIG. 17, the first reflective sheet 122 according to the present embodiment is divided into three regions 122A to 122C having different chromaticities. Specifically, the first region 122A closest to the LED 17 and the most LED 17 The second region 122B far from the first region 122B, and the third region 22C is disposed between the first region 122A and the second region 122B and is adjacent to the second region 122B. Specifically, among the four divided reflective sheets 122S constituting the first reflective sheet 122, a pair of first divided reflective sheets 122SA arranged adjacent to the LED 17 (light incident surface 19b of the light guide member 19) is provided. While the entire area of the first area 122A and a part (half) of the third area 22C are included, the remaining pair of second divided reflection sheets 122SB includes the entire area of the second area 122B and the third area 22C. The remaining part (half). More specifically, the pair of first divided reflection sheets 122SA arranged adjacent to the LED 17 is divided into a first region 122A and a third region 22C at approximately the center position in the extending direction, respectively. The side closer to the LED 17 (X1 end side or Y1 end side) is the first region 122A, and the side relatively far from the LED 17 (X2 end side or Y2 end side) is the third region 22C. The pair of second divided reflection sheets 122SB adjacent to each other across the corner portion diagonal to the light incident surface 19b of the light guide member 19 has the second region 122B and the second region 122B at substantially the center position in the extending direction. It is divided into three regions 22C, and the side relatively close to the LED 17 (X3 end side or Y3 end side) is the third region 22C and is relatively far from the LED 17 (X4 end side or Y4 end side). Is the second region 122B. The first region 122A and the second region 122B have substantially the same area, whereas the third region 22C has an area that is the sum of the areas of the first region 122A and the second region 122B. have. Of these, the chromaticity of the third region 22C is different from the chromaticity of the first region 122A and the second region 122B, and will be described in detail below.
 図18に示す1931色度図の拡大図において、第3領域22Cにおける色度は、点Cにより表されており、この点Cは、白色の基準色度に係る点Wと一致している。従って、第1反射シート122における第3領域22CにLED17からの光(白色光)を照射した場合、その反射光がほぼ白色光とされる。詳しくは、第3領域22Cにおける色度座標値(x3,y3)は、第1領域122Aにおける色度座標値(x1,y1)、第2領域122Bにおける色度座標値(x2,y2)、及び白色の基準色度における色度座標値(x0,y0)に対して下記式(17),(18)を満たす関係を有する。このような構成の第1反射シート122を製造するには、例えば第1分割反射シート122SA及び第1分割反射シート122SAをなす基材のうち、第1領域122A及び第2領域122Bにはそれぞれ所定の塗料を塗布するのに対し、第3領域22Cには塗料を塗布せず、白色を呈する基材の表面によって光を反射するようにすればよい。なお、第3領域22Cにおける色度座標値は、図19及び図20に示すように、全域にわたってほぼ一定とされており、また第1領域122A及び第2領域122Bにおける色度座標値についても全域にわたってほぼ一定とされる。 In the enlarged view of the 1931 chromaticity diagram shown in FIG. 18, the chromaticity in the third region 22C is represented by a point C, and this point C coincides with the point W related to the white reference chromaticity. Therefore, when the light (white light) from the LED 17 is applied to the third region 22C of the first reflective sheet 122, the reflected light is substantially white light. Specifically, the chromaticity coordinate values (x3, y3) in the third region 22C are the chromaticity coordinate values (x1, y1) in the first region 122A, the chromaticity coordinate values (x2, y2) in the second region 122B, and It has the relationship which satisfy | fills following formula (17), (18) with respect to the chromaticity coordinate value (x0, y0) in white reference | standard chromaticity. In order to manufacture the first reflective sheet 122 having such a configuration, for example, among the base material forming the first divided reflective sheet 122SA and the first divided reflective sheet 122SA, the first region 122A and the second region 122B are respectively predetermined. In contrast, the third region 22C is not coated with the paint, and the light may be reflected by the surface of the white base material. As shown in FIGS. 19 and 20, the chromaticity coordinate values in the third area 22C are substantially constant over the entire area, and the chromaticity coordinate values in the first area 122A and the second area 122B are also in the entire area. Almost constant over time.
 [数17]
 x2<x0=x3<x1     (15)
 [数18]
 y2<y0=y3<y1     (16)
[Equation 17]
x2 <x0 = x3 <x1 (15)
[Equation 18]
y2 <y0 = y3 <y1 (16)
 以上説明したように本実施形態によれば、第1反射シート122を、第1領域122A及び第2領域122Bに加えてこれらの双方に対して隣り合う第3領域22Cに区分したとき、第3領域22Cは、第2領域122Bに比べると、CIE1931色度図の色度座標値であるx値及びy値が共に相対的に小さく、且つ第1領域122Aに比べると、x値及びy値が共に相対的に大きなものとされる。このようにすれば、第1反射シート122のうち第1領域122A及び第2領域122Bの双方に対して隣り合う第3領域22Cは、第1領域122Aに比べると、長波長側の光の反射光量に対する短波長側の光の反射光量の比率が相対的に大きくなるものの、第2領域122Bに比べると、長波長側の光の反射光量に対する短波長側の光の反射光量の比率が相対的に小さくなる傾向にある。つまり、第3領域22Cでは、長波長側の光の反射光量に対する短波長側の光の反射光量の比率が、隣り合う第1領域122Aと第2領域122Bとの間の値となるから、導光部材19における出射光に色ムラが一層生じ難くなる。 As described above, according to the present embodiment, when the first reflecting sheet 122 is divided into the third region 22C adjacent to both the first region 122A and the second region 122B, the third region In the region 22C, both the x value and the y value, which are chromaticity coordinate values in the CIE 1931 chromaticity diagram, are relatively small compared to the second region 122B, and the x value and y value are relatively small compared to the first region 122A. Both are relatively large. In this way, the third region 22C adjacent to both the first region 122A and the second region 122B in the first reflective sheet 122 reflects light on the longer wavelength side compared to the first region 122A. Although the ratio of the amount of reflected light of the short wavelength side to the amount of light is relatively large, the ratio of the amount of reflected light of the short wavelength side to the amount of reflected light of the long wavelength side is relatively larger than that of the second region 122B. Tend to be smaller. That is, in the third region 22C, the ratio of the reflected light amount of the short wavelength side to the reflected light amount of the long wavelength side light is a value between the adjacent first region 122A and the second region 122B. Color unevenness is less likely to occur in the emitted light from the optical member 19.
 <実施形態3>
 本発明の実施形態3を図21から図24によって説明する。この実施形態3では、第1反射シート222における色度分布を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 3>
A third embodiment of the present invention will be described with reference to FIGS. In the third embodiment, the chromaticity distribution in the first reflection sheet 222 is changed. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る第1反射シート222は、図21に示すように、表面の色味がLED17からの距離に応じてグラデーション状に変化するような構成とされている。詳しくは、第1反射シート222を構成する各分割反射シート222Sには、図22に示すように、それぞれ塗料からなる多数のドットDA,DBが形成されている。なお、図21及び図22は、第1領域222Aをなす長辺側の第1分割反射シート222SA及びそのドットDAを主に表しているが、第2領域222Bをなす第2分割反射シート222SB及びそのドットDBも同様の構成であり、それに係るX3端、Y4端及びドットDBを同図中に括弧書きにて示している。第1領域222A(第1分割反射シート222SA)には、塗布面による反射光が黄色味を帯びるような第1の塗料が塗布されるのに対し、第2領域222B(第2分割反射シート222SB)には、塗布面による反射光が青色味を帯びるような第2の塗料が塗布されている。そして、第1領域222Aに形成されたドットDAは、LED17に近づく方向(X2端またはY2端からX1端またはY1端へ向かう方向)へ向けてその面積が次第に大きくなり、逆にLED17から遠ざかる方向(X1端またはY1端からX2端またはY2端へ向かう方向へ向けてその面積が次第に小さくなる態様とされる。つまり、第1領域222Aは、図23に示すように、LED17に近づくに連れて黄色味が増し、LED17から遠ざかるに連れて黄色味が薄くなって白色(色度座標値がx0,y0)に近づく傾向の色度分布を有する。 The first reflective sheet 222 according to the present embodiment is configured such that the color of the surface changes in a gradation according to the distance from the LED 17, as shown in FIG. Specifically, as shown in FIG. 22, a large number of dots DA and DB made of paint are formed on each divided reflection sheet 222S constituting the first reflection sheet 222. 21 and 22 mainly show the first divided reflective sheet 222SA on the long side forming the first region 222A and its dots DA, but the second divided reflective sheet 222SB forming the second region 222B and The dot DB has the same configuration, and the X3 end, the Y4 end, and the dot DB are shown in parentheses in the drawing. The first region 222A (first divided reflection sheet 222SA) is coated with a first paint such that the reflected light from the application surface is yellowish, while the second region 222B (second divided reflection sheet 222SB). ) Is coated with a second paint such that the reflected light from the coated surface has a blue tint. The area of the dots DA formed in the first region 222A gradually increases in the direction approaching the LED 17 (the direction from the X2 end or Y2 end toward the X1 end or Y1 end) and conversely away from the LED 17 (The area gradually decreases in the direction from the X1 end or Y1 end toward the X2 end or Y2 end. That is, as the first region 222A approaches the LED 17, as shown in FIG. The yellowish color increases, and as it moves away from the LED 17, the yellowish color becomes lighter and has a chromaticity distribution that tends to approach white (chromaticity coordinate values x0, y0).
 一方、第2領域222Bに形成されたドットDBは、LED17に近づく方向(X4端またはY4端からX3端またはY3端へ向かう方向)へ向けてその面積が次第に小さくなり、逆にLED17から遠ざかる方向(X3端またはY3端からX4端またはY4端へ向かう方向)へ向けてその面積が次第に大きくなる態様とされる。つまり、第2領域222Bは、図24に示すように、LED17から遠ざかるに連れて青色味が増し、LED17に近づくに連れて青色味が薄くなって白色(色度座標値がx0,y0)に近づく傾向の色度分布を有する。従って、第1領域222A及び第2領域222Bにおける色度座標値は、図23及び図24に示すように、LED17に近づくに従って次第に大きくなり、逆にLED17から遠ざかるに従って次第に小さくなる傾向とされる。このように、本実施形態に係る第1反射シート222は、LED17から遠ざかる方向へ向けて色度座標値が連続的に漸次小さくなり、逆にLED17に近づく方向へ向けて色度座標値が連続的に漸次大きくなるような色度分布を有している。このような構成の第1反射シート222によれば、第1領域222A及び第2領域222Bにおける色度がLED17からの距離に応じてなだらかに変化するから、導光部材19における出射光の色ムラを一層好適に抑制することができる。なお、色度の調整手段として、塗料のドットDA,DBの面積は同一とし、そのドットDA,DB同士の間隔を変更するものとしても良い。 On the other hand, the dot DB formed in the second region 222B gradually decreases in the direction toward the LED 17 (the direction from the X4 end or the Y4 end to the X3 end or the Y3 end), and conversely, the direction away from the LED 17 The area gradually increases in the direction (from the X3 end or the Y3 end toward the X4 end or the Y4 end). That is, as shown in FIG. 24, in the second region 222B, the blueness increases as the distance from the LED 17 increases, and the blueness decreases as the distance from the LED 17 decreases to white (chromaticity coordinate values x0, y0). It has a chromaticity distribution that tends to approach. Therefore, as shown in FIGS. 23 and 24, the chromaticity coordinate values in the first region 222A and the second region 222B tend to gradually increase as the distance from the LED 17 increases, and conversely decrease as the distance from the LED 17 decreases. As described above, in the first reflective sheet 222 according to the present embodiment, the chromaticity coordinate value continuously decreases toward the direction away from the LED 17, and conversely, the chromaticity coordinate value continues toward the direction closer to the LED 17. The chromaticity distribution gradually increases. According to the first reflection sheet 222 having such a configuration, the chromaticity in the first region 222A and the second region 222B changes gently according to the distance from the LED 17, so the color unevenness of the emitted light in the light guide member 19 Can be more suitably suppressed. As a means for adjusting the chromaticity, the areas of the paint dots DA and DB may be the same, and the interval between the dots DA and DB may be changed.
 以上説明したように本実施形態によれば、第1反射シート222には、塗料からなる多数のドットDA,DBが形成されている。このようにすれば、ドットDA,DBの態様(面積、分布密度など)により第1領域222A及び第2領域222Bにおける色度をそれぞれ容易に制御することが可能となる。 As described above, according to the present embodiment, the first reflecting sheet 222 is formed with a large number of dots DA and DB made of paint. In this way, it is possible to easily control the chromaticity in the first region 222A and the second region 222B according to the modes (area, distribution density, etc.) of the dots DA and DB.
 また、ドットDA,DBは、第1領域222A及び第2領域222BにおけるCIE1931色度図の色度座標値がLED17から遠ざかる方向へ向けてそれぞれ小さくなるよう配されている。このようにすれば、第1領域222A及び第2領域222Bにおける色度が、LED17からの距離に応じてなだらかに変化するから、導光部材19における出射光の色ムラを一層好適に抑制することができる。 Further, the dots DA and DB are arranged so that the chromaticity coordinate values of the CIE 1931 chromaticity diagram in the first area 222A and the second area 222B become smaller in the direction away from the LED 17, respectively. In this way, since the chromaticity in the first region 222A and the second region 222B changes gently according to the distance from the LED 17, the color unevenness of the emitted light in the light guide member 19 is more suitably suppressed. Can do.
 <実施形態4>
 本発明の実施形態4を説明する。この実施形態4では、第1反射シート22の製造方法を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 4>
Embodiment 4 of the present invention will be described. In this Embodiment 4, what changed the manufacturing method of the 1st reflective sheet 22 is shown. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る第1反射シート22は、その基材をなす合成樹脂材料中に、有機顔料として多環式系顔料が含有されている。詳しくは、第1反射シート22のうち第1領域22Aをなす第1分割反射シート22SAには、黄色を呈する多環式系顔料が含有されているのに対し、第2領域22Bをなす第2分割反射シート22SBには、青色を呈する多環式系顔料が含有されている。黄色を呈する具体的な多環式系顔料としては、例えばイソインドリノン、イソインドリン、キノフタロン、ピラゾロン、フラバトロン、アントラキノンなどを用いることができる。青色を呈する具体的な多環式系顔料としては、例えばフタロシアニン、アントラキノン、インジゴイド、カルボニウムなどを用いることができる。なお、第1領域22A及び第2領域22Aにおける各色度は、上記した実施形態1と同様であるから、重複する説明については割愛する。 The first reflective sheet 22 according to the present embodiment contains a polycyclic pigment as an organic pigment in the synthetic resin material that forms the base material. Specifically, the first divided reflection sheet 22SA that forms the first region 22A of the first reflection sheet 22 contains a yellow polycyclic pigment, whereas the second division 22B that forms the second region 22B. The divided reflection sheet 22SB contains a polycyclic pigment exhibiting a blue color. As specific polycyclic pigments exhibiting yellow, for example, isoindolinone, isoindoline, quinophthalone, pyrazolone, flavatron, anthraquinone and the like can be used. As specific polycyclic pigments exhibiting blue, for example, phthalocyanine, anthraquinone, indigoid, carbonium and the like can be used. In addition, since each chromaticity in the first region 22A and the second region 22A is the same as that in the first embodiment, overlapping description will be omitted.
 以上説明したように本実施形態によれば、第1領域22A及び第2領域22Bは、第1反射シート22に顔料を含有させることで、CIE1931色度図の色度座標値が互いに異なるものとされる。このようにすれば、第1反射シート22に含有させる顔料の量(含有濃度など)や顔料の種類などを選択することで、第1領域22A及び第2領域22Bにおける色度をそれぞれ適切なものとすることができる。 As described above, according to the present embodiment, the first region 22A and the second region 22B have the chromaticity coordinate values of the CIE 1931 chromaticity diagram different from each other by containing the pigment in the first reflection sheet 22. Is done. In this way, the chromaticity in the first region 22A and the second region 22B can be appropriately selected by selecting the amount of pigment to be contained in the first reflection sheet 22 (content concentration, etc.) and the type of pigment. It can be.
 <実施形態5>
 本発明の実施形態5を図25によって説明する。この実施形態5では、第1反射シート22に加えて第2反射シート423についても色度が異なる2つの領域に区分するようにしたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 5>
A fifth embodiment of the present invention will be described with reference to FIG. In the fifth embodiment, the second reflecting sheet 423 in addition to the first reflecting sheet 22 is divided into two regions having different chromaticities. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る第2反射シート423は、図25に示すように、LED17に相対的に近い第1領域423Aと、LED17から相対的に遠い第2領域423Bとに区分したとき、第1領域423Aを、第2領域423Bに比べると、CIE1931色度図の色度座標値であるx値及びy値が共に相対的に大きくなる設定とされている。詳しくは、第2反射シート423に係る第1領域423A及び第2領域423Bは、第2反射シート423における対角位置にある角部同士を結んでなる一対の対角線のうち、LED17の光軸LAと交差する対角線、言い換えるとLED17を通らない対角線を境界にして区分されている。なお、図25では互いに色度が異なる第1領域423A及び第2領域423Bについて、区別のため、異なる態様の網掛け状にしてそれぞれ図示している。従って、第1領域423A及び第2領域423Bは、共に平面に視て略直角三角形状をなしており、その面積比率がほぼ等しいものとされる。そして、第2反射シート423が有する第1領域423Aは、CIE1931色度図の色度座標値が、第1反射シート22が有する第1領域22A(第1分割反射シート22SA)と同一とされる。同様に第2反射シート423が有する第2領域423Bは、CIE1931色度図の色度座標値が、第1反射シート22が有する第2領域22B(第2分割反射シート22SB)と同一とされる。また、第2反射シート423の各領域423A,423Bには、第1反射シート22と同じく色度が異なる塗料がそれぞれ塗布されている。このような構成とすれば、導光部材19の出射光に生じ得る色ムラを一層効果的に緩和することができる。 As shown in FIG. 25, the second reflective sheet 423 according to the present embodiment is divided into a first region 423A that is relatively close to the LED 17 and a second region 423B that is relatively far from the LED 17. When 423A is compared with the second region 423B, both the x value and the y value, which are chromaticity coordinate values of the CIE 1931 chromaticity diagram, are set to be relatively large. Specifically, the first region 423A and the second region 423B related to the second reflection sheet 423 are the optical axis LA of the LED 17 out of a pair of diagonal lines formed by connecting corners at diagonal positions in the second reflection sheet 423. And in other words, a diagonal line that does not pass through the LED 17 as a boundary. Note that, in FIG. 25, the first region 423A and the second region 423B having different chromaticities are illustrated in a different shaded shape for distinction. Therefore, both the first region 423A and the second region 423B have a substantially right triangle shape when seen in a plane, and the area ratios are substantially equal. The first area 423A of the second reflection sheet 423 has the same chromaticity coordinate value in the CIE 1931 chromaticity diagram as that of the first area 22A (first divided reflection sheet 22SA) of the first reflection sheet 22. . Similarly, the second area 423B of the second reflection sheet 423 has the same chromaticity coordinate value of the CIE 1931 chromaticity diagram as that of the second area 22B (second divided reflection sheet 22SB) of the first reflection sheet 22. . In addition, a paint having a different chromaticity is applied to each of the regions 423 </ b> A and 423 </ b> B of the second reflective sheet 423, similar to the first reflective sheet 22. With such a configuration, the color unevenness that may occur in the light emitted from the light guide member 19 can be more effectively reduced.
 以上説明したように本実施形態によれば、第2反射シート423を少なくともLED17に相対的に近い第1領域423Aと、LED17から相対的に遠い第2領域423Bとに区分したとき、第1領域423Aは、第2領域423Bに比べると、CIE1931色度図の色度座標値であるx値及びy値が共に相対的に大きなものとされる。このようにすれば、光出射面19aとは反対側の面である板面19cに接する第2反射シート423についても、上記した第1反射シート22と同様に、第1領域423Aと第2領域423Bとを含んでいるから、導光部材19のうちLED17に相対的に近い領域からの出射光と、相対的に遠い領域からの出射光との間で生じ得る色ムラを一層効果的に緩和することができる。 As described above, according to the present embodiment, when the second reflective sheet 423 is divided into at least the first region 423A relatively close to the LED 17 and the second region 423B relatively distant from the LED 17, the first region Compared to the second region 423B, 423A has both x and y values that are chromaticity coordinate values of the CIE 1931 chromaticity diagram relatively large. In this manner, the second region 423 that contacts the plate surface 19c that is the surface opposite to the light exit surface 19a is also the first region 423A and the second region similar to the first reflector sheet 22 described above. 423B, the color unevenness that can occur between the light emitted from the region of the light guide member 19 that is relatively close to the LED 17 and the light that is emitted from the region far from the LED 17 is more effectively mitigated. can do.
 <実施形態6>
 本発明の実施形態6を図26から図28によって説明する。この実施形態6では、LED517及びLED基板518の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 6>
A sixth embodiment of the present invention will be described with reference to FIGS. In this Embodiment 6, what changed the structure of LED517 and LED board 518 is shown. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係るLED517及びLED基板518は、図26に示すように、導光部材519における長辺側の一端部に対して対向状をなすよう配されている。LED基板518は、導光部材519の長辺方向(X軸方向)に沿って延在する細長い平板状をなしており、その導光部材519との対向面にLED517が複数間欠的に並列する形で実装されている。複数のLED517は、LED基板518においてその延在方向に沿ってほぼ等間隔を空けつつ配されており、それぞれの光軸が導光部材519の短辺方向(Y軸方向)と全てほぼ一致している。導光部材519における光入射面519bは、導光部材519の外周端面のうち、LED517及びLED基板518と対向する一長辺側の端面によって構成されている。従って、第1反射シート522は、導光部材519の外周端面のうち光入射面519bを除いた端面519d、詳しくは光入射面519bとは反対側の一長辺側端面519d1と、一対の短辺側端面519d2とにそれぞれ接する形で配されている。また、LED基板518は、LED517の実装面とは反対側の面がシャーシ514における一長辺側の側板514bの内面に対して接した状態で取り付けられている。 As shown in FIG. 26, the LED 517 and the LED substrate 518 according to this embodiment are arranged so as to face one end of the light guide member 519 on the long side. The LED substrate 518 has an elongated flat plate shape extending along the long side direction (X-axis direction) of the light guide member 519, and a plurality of LEDs 517 are intermittently arranged in parallel on the surface facing the light guide member 519. It is implemented in the form. The plurality of LEDs 517 are arranged on the LED substrate 518 with substantially equal intervals along the extending direction, and the respective optical axes almost coincide with the short side direction (Y-axis direction) of the light guide member 519. ing. The light incident surface 519 b of the light guide member 519 is configured by an end surface on the one long side facing the LED 517 and the LED substrate 518 among the outer peripheral end surfaces of the light guide member 519. Therefore, the first reflection sheet 522 has an end surface 519d excluding the light incident surface 519b in the outer peripheral end surface of the light guide member 519, specifically, one long side end surface 519d1 opposite to the light incident surface 519b, and a pair of short surfaces. They are arranged in contact with the side end face 519d2. The LED substrate 518 is attached in a state where the surface opposite to the mounting surface of the LED 517 is in contact with the inner surface of the side plate 514b on the long side of the chassis 514.
 第1反射シート522について詳しく説明する。第1反射シート522を構成する分割反射シート522Sは、導光部材519のうち一対の短辺側端面519d2にそれぞれ接する一対の第1分割反射シート522SAと、導光部材519のうち光入射面519bとは反対側の一長辺側端面519d1に接する1つの第2分割反射シートとからなる。このうち、第2分割反射シート522SBは、その全域が第2領域522Bとされる(図28)のに対して、第1分割反射シート522SAについては、互いに色度が異なる第1領域522Aと第2領域522Bとを併有している。第1分割反射シート522SAは、図26及び図27に示すように、その延在方向(Y軸方向)のほぼ中央位置にて第1領域522Aと第2領域522Bとに区分されており、相対的にLED17に近い側(Y1端側)が第1領域522Aとされ、相対的にLED17から遠い側(Y2端側、第2分割反射シート522SBに隣り合う側)が第2領域522Bとされる。このような構成の第1分割反射シート522SAを製造するには、例えば基材の半分に第1の塗料を塗布する一方で、残りの半分に第2の塗料を塗布するようにすればよい。なお、第1領域522A及び第2領域522Aにおける各色度は、上記した実施形態1と同様であるから、重複する説明については割愛する。 The first reflection sheet 522 will be described in detail. The divided reflection sheet 522S constituting the first reflection sheet 522 includes a pair of first divided reflection sheets 522SA that are in contact with the pair of short-side end surfaces 519d2 of the light guide member 519 and a light incident surface 519b of the light guide member 519. And a second divided reflective sheet in contact with the one long side end face 519d1 on the opposite side. Of these, the second divided reflective sheet 522SB is entirely the second area 522B (FIG. 28), whereas the first divided reflective sheet 522SA is different from the first area 522A and the first area 522A that have different chromaticities. 2 regions 522B. As shown in FIGS. 26 and 27, the first divided reflection sheet 522SA is divided into a first region 522A and a second region 522B at a substantially central position in the extending direction (Y-axis direction). The side closer to the LED 17 (Y1 end side) is the first region 522A, and the side relatively far from the LED 17 (Y2 end side, the side adjacent to the second divided reflection sheet 522SB) is the second region 522B. . In order to manufacture the first divided reflection sheet 522SA having such a configuration, for example, the first paint may be applied to half of the base material, while the second paint may be applied to the other half. In addition, since each chromaticity in 1st area | region 522A and 2nd area | region 522A is the same as that of above-mentioned Embodiment 1, it omits the overlapping description.
 以上説明したように本実施形態によれば、導光部材519は、平面に視て略方形をなしているのに対し、LED517は、導光部材519の端部のうち一辺に沿って複数が並列して配されている。このようにすれば、複数のLED517からの光を導光部材519内に入射させることができるから、出射光の輝度を向上させる上で好適となる。 As described above, according to the present embodiment, the light guide member 519 has a substantially rectangular shape when viewed in plan, whereas the LED 517 includes a plurality of LEDs 517 along one side of the end portion of the light guide member 519. They are arranged in parallel. In this way, light from the plurality of LEDs 517 can be incident on the light guide member 519, which is suitable for improving the luminance of the emitted light.
 <実施形態7>
 本発明の実施形態7を図29及び図30によって説明する。この実施形態7では、上記した実施形態6から第1反射シート622における各領域の区分態様を変更したものを示す。なお、上記した実施形態6と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 7>
A seventh embodiment of the present invention will be described with reference to FIGS. 29 and 30. FIG. In this Embodiment 7, what changed the division | segmentation aspect of each area | region in the 1st reflective sheet 622 from above-mentioned Embodiment 6 is shown. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 6 is abbreviate | omitted.
 本実施形態に係る第1反射シート622は、図29及び図30に示すように、互いに色度が異なる3つの領域622A,622B,622Cに区分されている。詳しくは、第1反射シート622のうち、第2分割反射シート622SBは、その全域が第2領域622Bとされるのに対し、第1分割反射シート622SAについては、最もLED517に近い領域が第1領域622Aとされ、最もLED517から遠い領域が第2領域622Bとされ、さらに上記した第1領域622A及び第2領域622Bの間に挟まれる形で配されるとともに第1領域622A及び第2領域622Bの双方に対して隣り合う領域が第3領域622Cとされる。第1分割反射シート622SAは、3つの領域622A,622B,622Cに三等分されている。なお、各領域622A,622B,622Cにおける各色度は、上記した実施形態2と同様であるから、重複する説明については割愛する。 The first reflection sheet 622 according to the present embodiment is divided into three regions 622A, 622B, and 622C having different chromaticities as shown in FIGS. Specifically, among the first reflective sheet 622, the second divided reflective sheet 622SB has the entire region as the second region 622B, whereas the first divided reflective sheet 622SA has the region closest to the LED 517 as the first region. The region 622A is the region farthest from the LED 517 and is the second region 622B. The region is further sandwiched between the first region 622A and the second region 622B, and the first region 622A and the second region 622B. A region adjacent to both of these is defined as a third region 622C. The first divided reflective sheet 622SA is divided into three equal parts into three regions 622A, 622B, and 622C. In addition, since each chromaticity in each area | region 622A, 622B, 622C is the same as that of above-mentioned Embodiment 2, it omits the overlapping description.
 <実施形態8>
 本発明の実施形態8を図31によって説明する。この実施形態8では、上記した実施形態6からLED717及びLED基板718の構成をさらに変更したものを示す。なお、上記した実施形態1,6と同様の構造、作用及び効果について重複する説明は省略する。
<Eighth embodiment>
An eighth embodiment of the present invention will be described with reference to FIG. In the eighth embodiment, the configuration of the LED 717 and the LED substrate 718 is further changed from the sixth embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1, 6 is abbreviate | omitted.
 本実施形態に係るLED717及びLED基板718は、図31に示すように、導光部材719における短辺側の一端部に対して対向状をなすよう配されている。LED基板718は、導光部材719の短辺方向(Y軸方向)に沿って延在する細長い平板状をなしており、その導光部材719との対向面にLED717が複数間欠的に並列する形で実装されている。複数のLED717は、LED基板718においてその延在方向に沿ってほぼ等間隔を空けつつ配されており、それぞれの光軸が導光部材719の長辺方向(X軸方向)と全てほぼ一致している。導光部材719における光入射面719bは、導光部材719の外周端面のうち、LED717及びLED基板718と対向する一短辺側の端面によって構成されている。従って、第1反射シート722は、導光部材719の外周端面のうち光入射面719bを除いた端面719d、詳しくは光入射面719bとは反対側の一短辺側端面719d2と、一対の長辺側端面519d1とにそれぞれ接する形で配されている。また、LED基板718は、LED717の実装面とは反対側の面がシャーシ714における一短辺側の側板714bの内面に対して接した状態で取り付けられている。 As shown in FIG. 31, the LED 717 and the LED substrate 718 according to this embodiment are arranged so as to face one end of the light guide member 719 on the short side. The LED substrate 718 has an elongated flat plate shape extending along the short side direction (Y-axis direction) of the light guide member 719, and a plurality of LEDs 717 are intermittently arranged in parallel on the surface facing the light guide member 719. It is implemented in the form. The plurality of LEDs 717 are arranged on the LED substrate 718 at substantially equal intervals along the extending direction, and the respective optical axes almost coincide with the long side direction (X-axis direction) of the light guide member 719. ing. The light incident surface 719 b of the light guide member 719 is configured by an end surface on one short side facing the LED 717 and the LED substrate 718 among the outer peripheral end surfaces of the light guide member 719. Therefore, the first reflection sheet 722 includes an end surface 719d excluding the light incident surface 719b of the outer peripheral end surface of the light guide member 719, more specifically, one short side end surface 719d2 opposite to the light incident surface 719b, and a pair of long lengths. They are arranged in contact with the side end surface 519d1. The LED substrate 718 is attached in a state where the surface opposite to the mounting surface of the LED 717 is in contact with the inner surface of the side plate 714 b on the short side of the chassis 714.
 第1反射シート722について詳しく説明する。第1反射シート722を構成する分割反射シート722Sは、導光部材719のうち一対の長辺側端面719d1にそれぞれ接する一対の第1分割反射シート722SAと、導光部材719のうち光入射面719bとは反対側の一短辺側端面719d2に接する1つの第2分割反射シートとからなる。このうち、第2分割反射シート722SBは、その全域が第2領域722Bとされるのに対して、第1分割反射シート722SAについては、互いに色度が異なる第1領域722Aと第2領域722Bとを併有している。第1分割反射シート722SAは、その延在方向(X軸方向)のほぼ中央位置にて第1領域722Aと第2領域722Bとに区分されており、相対的にLED17に近い側(X1端側)が第1領域722Aとされ、相対的にLED17から遠い側(X2端側、第2分割反射シート722SBに隣り合う側)が第2領域722Bとされる。なお、第1領域722A及び第2領域722Aにおける各色度は、上記した実施形態1,6と同様であるから、重複する説明については割愛する。 The first reflection sheet 722 will be described in detail. The divided reflection sheet 722 </ b> S constituting the first reflection sheet 722 includes a pair of first divided reflection sheets 722 </ b> SA that are in contact with the pair of long-side end surfaces 719 d <b> 1 of the light guide member 719 and a light incident surface 719 b of the light guide member 719. And a second divided reflective sheet in contact with the one short side end face 719d2 on the opposite side. Of these, the second divided reflective sheet 722SB is entirely the second area 722B, whereas the first divided reflective sheet 722SA is a first area 722A and a second area 722B having different chromaticities. Have both. The first divided reflection sheet 722SA is divided into a first region 722A and a second region 722B at a substantially central position in the extending direction (X-axis direction), and is relatively close to the LED 17 (X1 end side). ) Is the first region 722A, and the side relatively far from the LED 17 (X2 end side, the side adjacent to the second divided reflection sheet 722SB) is the second region 722B. In addition, since each chromaticity in 1st area | region 722A and 2nd area | region 722A is the same as that of above-mentioned Embodiment 1, 6, it abbreviate | omits about the overlapping description.
 以上説明したように本実施形態によれば、導光部材719は、平面に視て略長方形をなしているのに対し、LED717は、導光部材719の端部のうち一短辺に沿って複数が並列するとともにそれぞれの光軸が長辺とほぼ一致するよう配されている。このようにすれば、LED717からの光が光軸に沿って導光部材719におけるLED717とは反対側の短辺に到達するまでの距離が導光部材719の長辺と同等となるため、導光部材719のうちLED717側の短辺付近と、LED717とは反対側の短辺付近とで出射光の色度に差が生じ易くなるものの、上記した構成により出射光の色ムラを効果的に抑制することができる。 As described above, according to the present embodiment, the light guide member 719 has a substantially rectangular shape when viewed in plan, whereas the LED 717 is along one short side of the end portion of the light guide member 719. A plurality of the optical axes are arranged in parallel, and the optical axes thereof are substantially aligned with the long sides. In this way, the distance until the light from the LED 717 reaches the short side of the light guide member 719 opposite to the LED 717 along the optical axis is equal to the long side of the light guide member 719. Although the difference in chromaticity of the emitted light is likely to occur between the short side of the light member 719 on the LED 717 side and the short side on the opposite side of the LED 717, the above-described configuration effectively eliminates uneven color of the emitted light. Can be suppressed.
 <実施形態9>
 本発明の実施形態9を図32によって説明する。この実施形態9では、上記した実施形態8から第1反射シート822における各領域の区分態様を変更したものを示す。なお、上記した実施形態8と同様の構造、作用及び効果について重複する説明は省略する。
<Ninth Embodiment>
A ninth embodiment of the present invention will be described with reference to FIG. In the ninth embodiment, a configuration in which the division mode of each region in the first reflective sheet 822 is changed from the eighth embodiment described above. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 8 is abbreviate | omitted.
 本実施形態に係る第1反射シート822は、図32に示すように、互いに色度が異なる3つの領域822A,822B,822Cに区分されている。詳しくは、第1反射シート822のうち、第2分割反射シート822SBは、その全域が第2領域822Bとされるのに対し、第1分割反射シート822SAについては、最もLED717に近い領域が第1領域822Aとされ、最もLED717から遠い領域が第2領域822Bとされ、さらに上記した第1領域822A及び第2領域822Bの間に挟まれる形で配されるとともに第1領域822A及び第2領域822Bの双方に対して隣り合う領域が第3領域822Cとされる。第1分割反射シート822SAは、3つの領域822A,822B,822Cに三等分されている。なお、各領域822A,822B,822Cにおける各色度は、上記した実施形態2,7と同様であるから、重複する説明については割愛する。 The first reflection sheet 822 according to the present embodiment is divided into three regions 822A, 822B, and 822C having different chromaticities as shown in FIG. Specifically, among the first reflective sheet 822, the second divided reflective sheet 822SB has the entire area as the second area 822B, whereas the first divided reflective sheet 822SA has the area closest to the LED 717 as the first area. The region 822A is the region farthest from the LED 717 and is the second region 822B. The region is further sandwiched between the first region 822A and the second region 822B, and the first region 822A and the second region 822B. A region adjacent to both of these is defined as a third region 822C. The first divided reflection sheet 822SA is divided into three equal parts into three regions 822A, 822B, and 822C. In addition, since each chromaticity in each area | region 822A, 822B, and 822C is the same as that of Embodiment 2 and 7 mentioned above, the overlapping description is omitted.
 <実施形態10>
 本発明の実施形態10を図33によって説明する。この実施形態10では、第1反射シート922を一部品構成としたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 10>
A tenth embodiment of the present invention will be described with reference to FIG. In the tenth embodiment, the first reflection sheet 922 is configured as one component. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る第1反射シート922は、図33に示すように、導光部材19の外周端面のうち光入射面19bを除いた端面19dを全周にわたって取り囲む大きさを有している。つまり、第1反射シート922は、導光部材19における一対の長辺側端面19d1の長さ寸法と、一対の短辺側端面19d2の長さ寸法とを足し合わせた大きさの帯状をなしており、隣り合う端面19d1,19d2間に存する角部を跨ぎつつ端面19dを全周にわたって取り囲んでいる。このような構成の第1反射シート922を製造するには、例えば第1反射シート922をなす基材のうち、一端から長辺側端面19d1の長さ寸法分の範囲と、他端から短辺側端面19d2の長さ寸法分の範囲とを第1の塗料により塗布し、残りの領域を第2の塗料により塗布すればよい。それにより、第1反射シート922のうち、導光部材19において光入射面19bを挟んで隣り合う長辺側端面19d1及び短辺側端面19d2に接する部分を第1領域922Aとし、且つ導光部材19において光入射面19bとは対角位置にある角部を挟んで隣り合う長辺側端面19d1及び短辺側端面19d2に接する部分を第2領域922Bとすることができる。 33. As shown in FIG. 33, the first reflection sheet 922 according to this embodiment has a size that surrounds the entire end surface 19d of the light guide member 19 excluding the light incident surface 19b. That is, the first reflection sheet 922 has a band shape in which the length dimension of the pair of long side end faces 19d1 and the length dimension of the pair of short side end faces 19d2 in the light guide member 19 are added. Thus, the end surface 19d is surrounded over the entire circumference while straddling the corners existing between the adjacent end surfaces 19d1, 19d2. In order to manufacture the first reflective sheet 922 having such a configuration, for example, among the base material forming the first reflective sheet 922, a range corresponding to the length dimension of the long side end surface 19d1 from one end and a short side from the other end What is necessary is just to apply | coat the range for the length dimension of the side end surface 19d2 with a 1st coating material, and apply | coat the remaining area | region with a 2nd coating material. Accordingly, a portion of the first reflection sheet 922 that is in contact with the long-side end surface 19d1 and the short-side end surface 19d2 adjacent to each other across the light incident surface 19b in the light guide member 19 is defined as a first region 922A, and the light guide member In FIG. 19, the second region 922B can be a portion that is in contact with the long-side end surface 19d1 and the short-side end surface 19d2 that are adjacent to each other across the corner that is diagonal to the light incident surface 19b.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態では、光源であるLEDが反射シート(導光部材、シャーシなど)に対して非対称位置となる位置に配されるものを例示したが、LEDが反射シートに対して対称位置に配される構成とすることも可能である。具体的には、上記した実施形態1のさらなる変形例として、図34に示すように、導光部材19‐1における対角状をなす一対の角部に対応して一対のLED17‐1を配置することができる。この場合、第1反射シート22‐1をなす分割反射シート22は、図34及び図35に示すように、それぞれ第1領域22A‐1及び第2領域22B‐1を併有する構成とすればよく、相対的にLED17‐1に近い側(X1端側またはY1端側)を第1領域22A‐1とし、相対的にLED17‐1から遠い側(X2端側またはY2端側)を第2領域22B‐1とすればよい。なお、上記した構成は、上記した実施形態2~10に記載のものにも同様に適用可能である。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In each of the above-described embodiments, the LED as the light source is illustrated as being disposed at a position that is asymmetric with respect to the reflective sheet (light guide member, chassis, etc.). It is also possible to adopt a configuration in which they are arranged at symmetrical positions. Specifically, as a further modification of the above-described first embodiment, as shown in FIG. 34, a pair of LEDs 17-1 are arranged corresponding to a pair of diagonal corners in the light guide member 19-1. can do. In this case, the divided reflection sheet 22 constituting the first reflection sheet 22-1 may be configured to have both the first region 22A-1 and the second region 22B-1, respectively, as shown in FIGS. The side relatively closer to the LED 17-1 (X1 end side or Y1 end side) is the first region 22A-1, and the side relatively far from the LED 17-1 (X2 end side or Y2 end side) is the second region. What is necessary is just 22B-1. Note that the above-described configuration can be similarly applied to the configurations described in the above-described Embodiments 2 to 10.
 (2)上記した実施形態6の変形例として、色度が異なる第1領域と第2領域とを併有する分割反射シートについて、各領域毎にさらに分割する構成とすることも可能である。具体的には、図36に示すように、導光部材19‐2のうち一対の短辺側端面19d2‐2に接する第1分割反射シート522SA‐2をさらに2分割し、相対的にLED17‐2に近い側の分割部位を第1領域522A‐2とし、相対的にLED17‐2から遠い側の分割部位を第2領域522B‐2とすればよい。上記した構成は、実施形態2,7~9、及び上記(1)にも同様に適用可能である。特に、実施形態7,9に適用する場合には、分割反射シートを3分割すればよい。 (2) As a modified example of the above-described sixth embodiment, a divided reflection sheet having both the first area and the second area having different chromaticities may be further divided for each area. Specifically, as shown in FIG. 36, the first divided reflection sheet 522SA-2 in contact with the pair of short-side end faces 19d2-2 of the light guide member 19-2 is further divided into two, and the LED 17- The division part closer to 2 may be the first area 522A-2, and the division part relatively far from the LED 17-2 may be the second area 522B-2. The above-described configuration can be similarly applied to Embodiments 2, 7 to 9, and (1). In particular, when applied to the seventh and ninth embodiments, the divided reflective sheet may be divided into three.
 (3)上記した実施形態3では、第1反射シートにおける色度が連続的に漸次変化する態様を例示したが、色度の変化態様については適宜に変更可能である。具体的には、図37に示すように、第1反射シートの色度を段階的に逐次変化する態様とし、LEDから遠ざかるに従って色度座標値が階段状に減少するような設計とすることも可能である。 (3) In Embodiment 3 described above, the mode in which the chromaticity in the first reflecting sheet continuously and gradually changes is illustrated, but the mode of change in chromaticity can be changed as appropriate. Specifically, as shown in FIG. 37, the chromaticity of the first reflective sheet is changed in a stepwise manner, and the design is such that the chromaticity coordinate value decreases stepwise as the distance from the LED increases. Is possible.
 (4)上記した実施形態3では、第1反射シートを第1領域と第2領域とに区分した場合に色度が連続的に漸次変化する態様を示したが、色度が連続的に漸次変化する第1領域及び第2領域に加えて第3領域を有する構成とすることも可能である。具体的には、図38に示すように、LEDから距離に応じて色度が連続的に漸次変化する第1領域22A‐4と第2領域22B‐4との間に、色度が一定でその色度座標値(x3,y3)が白色の基準色度に係る色度座標値(x0,y0)と同じとされる第3領域22C‐4が介在する構成とすることができる。 (4) In the above-described third embodiment, when the first reflective sheet is divided into the first region and the second region, the chromaticity is continuously and gradually changed. However, the chromaticity is continuously and gradually changed. In addition to the changing first region and second region, a configuration having a third region is also possible. Specifically, as shown in FIG. 38, the chromaticity is constant between the first region 22A-4 and the second region 22B-4 where the chromaticity continuously and gradually changes according to the distance from the LED. The third region 22C-4 having the chromaticity coordinate value (x3, y3) that is the same as the chromaticity coordinate value (x0, y0) related to the white reference chromaticity may be interposed.
 (5)上記した実施形態2,7,9及び上記(4)では、第1反射シートが互いに色度の異なる3つの領域に区分される構成のものにおいて、第3領域の色度が白色の基準色度と等しくなるものを例示したが、第3領域の色度を白色の基準色度とは異なる設計とすることも可能である。具体的には、図39に示すように、第3領域の色度に係る点Cが、白色の基準色度と第1領域の色度に係る点Aとの間に介在するような設計(黄色寄りの色度とする設計)とすることが可能である。さらには、図40に示すように、第3領域の色度に係る点Cが、白色の基準色度と第2領域の色度に係る点Bとの間に介在するような設計(青色寄りの色度とする設計)とすることも可能である。 (5) In the above-described Embodiments 2, 7, 9 and (4), the first reflective sheet is divided into three regions having different chromaticities, and the chromaticity of the third region is white. Although the example in which the reference chromaticity is equal is illustrated, the chromaticity of the third region may be designed differently from the white reference chromaticity. Specifically, as shown in FIG. 39, the design is such that the point C related to the chromaticity of the third region is interposed between the white reference chromaticity and the point A related to the chromaticity of the first region ( It is possible to use a chromaticity closer to yellow. Furthermore, as shown in FIG. 40, the design is such that the point C related to the chromaticity of the third region is interposed between the white reference chromaticity and the point B related to the chromaticity of the second region (blue It is also possible to use a chromaticity design.
 (6)上記した(5)の構成を、上記した実施形態1の各変形例1~6に記載した構成に組み合わせることも勿論可能である。 (6) It is of course possible to combine the configuration of (5) described above with the configurations described in the first to sixth modifications of the first embodiment.
 (7)上記した実施形態2,5~10に記載の構成に、実施形態3,4に記載した構成を適用してもよい。 (7) The configurations described in the third and fourth embodiments may be applied to the configurations described in the second and fifth to tenth embodiments.
 (8)上記した実施形態6~10に記載の構成に、実施形態1の各変形例1~6に記載した構成を適用してもよい。 (8) The configurations described in the first to sixth modifications of the first embodiment may be applied to the configurations described in the sixth to tenth embodiments.
 (9)上記した各実施形態では、白色の基準色度を、バックライト装置に用いるLEDの発光光に係る色度とし、その色度座標値を(0.272,0.277)とした場合を例示したが、白色の基準色度は上記以外に適宜に変更可能である。具体的には、白色の基準色度として、例えばD65光源(0.3157,0.3290)、A光源(0.4476,0.4074)、B光源(0.3484,0.3516)、C光源(0.3101,0.3161)、CIE表色系に係る白色の基準色度(0.3333,0.3333)、NTSC規格に係る白色の基準色度(0.3100, 0.3160)、Adobe RGB規格に係る白色の基準色度(0.3127, 0.3290)などとすることも可能である。 (9) In each of the embodiments described above, when the white reference chromaticity is the chromaticity related to the light emitted from the LED used in the backlight device, and the chromaticity coordinate value is (0.272, 0.277) However, the white reference chromaticity can be appropriately changed in addition to the above. Specifically, as white reference chromaticity, for example, D65 light source (0.3157, 0.3290), A light source (0.4476, 0.4074), B light source (0.3484, 0.3516), C Light source (0.3101, 0.3161), white reference chromaticity according to CIE color system (0.3333, 0.3333), white reference chromaticity according to NTSC standard (0.3100, 0.3160) It is also possible to use white reference chromaticity (0.3127, 0.3290) according to the Adobe と す る RGB standard.
 (10)上記した各実施形態以外にも、CIE1931色度図における白色の基準色度に対する第1領域及び第2領域の各色度の相対的な位置関係は適宜に変更可能である。例えば、第1領域の色度を白色の基準色度に対してシアン色寄りまたはマゼンタ色寄りとなる設計とすることができる。また、第2領域の色度を白色の基準色度に対して緑色寄りまたは赤色寄りとなる設計とすることができる。 (10) Besides the above-described embodiments, the relative positional relationship of the chromaticities of the first region and the second region with respect to the white reference chromaticity in the CIE 1931 chromaticity diagram can be changed as appropriate. For example, the chromaticity of the first region can be designed to be closer to cyan or magenta with respect to the white reference chromaticity. In addition, the chromaticity of the second region can be designed to be closer to green or red with respect to the white reference chromaticity.
 (11)上記した実施形態2,7,9及び上記(4),(5)では、第3領域の色度が白色の基準色度と等しくなるものや、白色の基準色度に対して青色寄りまたは黄色寄りの色度とされるものを示したが、第3領域の色度を、白色の基準色度に対して赤色寄り、緑色寄り、シアン色寄り、またはマゼンタ色寄りとなる設計とすることができる。 (11) In the above-described Embodiments 2, 7, 9 and (4) and (5), the chromaticity of the third region is equal to the white reference chromaticity, or blue with respect to the white reference chromaticity The chromaticity of the third region is shown as being closer to red or green, closer to red, green, cyan or magenta than the white reference chromaticity. can do.
 (12)上記した各実施形態及び上記(10),(11)に記載した反射シートにおける各領域の色度の設計に関しては、具体的にはバックライト装置が有するLEDの発光光の色度に応じたものとすればよい。すなわち、バックライト装置が有するLEDの色度が白色の基準色度からずれており、例えばLEDの色度が黄色寄りであった場合には、上記した実施形態1の変形例1に記載した反射シートの色度設計が好ましく、LEDの色度が青色寄りであった場合には、上記した実施形態1の変形例2に記載した反射シートの色度設計が好ましいと言える。 (12) Regarding the design of chromaticity of each region in the reflective sheet described in each of the above embodiments and (10) and (11), specifically, the chromaticity of the emitted light of the LED included in the backlight device. What is necessary is just to respond. That is, when the chromaticity of the LED included in the backlight device is deviated from the white reference chromaticity, for example, when the chromaticity of the LED is close to yellow, the reflection described in the first modification of the first embodiment is performed. When the chromaticity design of the sheet is preferable and the chromaticity of the LED is close to blue, it can be said that the chromaticity design of the reflective sheet described in the second modification of the first embodiment is preferable.
 (13)上記した実施形態1~3,5~9では、反射シートにおける色度を調整するにあたり、2種類の塗料を用いた場合を示したが、例えば塗料を1種類のみ用いるようにし、第1領域と第2領域とで塗料の濃度、塗布面積、塗布膜厚などを異ならせるようにして第1領域と第2領域との色度を異ならせるようにしても構わない。また、塗料を3種類以上用いることも可能である。 (13) In Embodiments 1 to 3 and 5 to 9 described above, the case where two types of paints are used to adjust the chromaticity of the reflection sheet has been described. For example, only one type of paint is used, and The chromaticity of the first region and the second region may be made different by making the concentration of the paint, the coating area, the coating film thickness, etc. different between the first region and the second region. It is also possible to use three or more kinds of paints.
 (14)上記した実施形態4では、反射シートに用いる有機顔料として多環式系顔料を用いた場合を例示したが、アゾ顔料を用いることも可能である。また、有機顔料以外にも、無機顔料やレーキ顔料を用いることも可能である。 (14) In Embodiment 4 described above, the case where a polycyclic pigment is used as the organic pigment used in the reflective sheet is exemplified, but an azo pigment can also be used. In addition to organic pigments, inorganic pigments and lake pigments can also be used.
 (15)上記した各実施形態では、反射シートにおける色度を調整するにあたり、反射シートの基材の表面に塗料を塗布したり、反射シートの基材に顔料を含有させた場合を示したが、例えば反射シートの基材に対して別部品であるラミネートシートを貼り付けるようにし、そのラミネートシートに塗料を塗布したり、顔料を含有させることで、反射シートにおける色度を調整するようにしても構わない。 (15) In each of the above-described embodiments, when adjusting the chromaticity of the reflection sheet, a case where a paint is applied to the surface of the base material of the reflection sheet or a pigment is contained in the base material of the reflection sheet is shown. For example, a laminate sheet, which is a separate part, is attached to the base of the reflective sheet, and the chromaticity of the reflective sheet is adjusted by applying a paint or adding a pigment to the laminate sheet. It doesn't matter.
 (16)上記した各実施形態では、第1反射シートがLEDの光軸に対して直交する面を有する構成を例示したが、第1反射シートの面がLEDの光軸に対して鋭角または鈍角をなすよう傾斜(交差)した構成のものにも本発明は適用可能である。 (16) In each of the embodiments described above, the configuration in which the first reflective sheet has a surface orthogonal to the optical axis of the LED is exemplified, but the surface of the first reflective sheet is acute or obtuse with respect to the optical axis of the LED. The present invention can also be applied to a configuration that is inclined (intersected) to form
 (17)上記した実施形態5では、導光部材のうち光出射面とは反対側の板面に接する第2反射シートの第1領域及び第2領域が、第1反射シートの第1領域及び第2領域と同一の色度座標値を有する構成のものを例示したが、第2反射シートの第1領域と第2領域とのいずれか一方または双方が、第1反射シートの第1領域と第2領域とのいずれか一方または双方とは色度座標値が異なる設定とすることも可能である。 (17) In Embodiment 5 described above, the first region and the second region of the second reflecting sheet that are in contact with the plate surface opposite to the light emitting surface of the light guide member are the first region of the first reflecting sheet and the second region. Although the thing of the structure which has the same chromaticity coordinate value as a 2nd area | region was illustrated, either one or both of the 1st area | region and 2nd area | region of a 2nd reflective sheet are the 1st area | region of a 1st reflective sheet, and It is also possible to set a different chromaticity coordinate value from either one or both of the second regions.
 (18)上記した実施形態5では、導光部材のうち光出射面とは反対側の板面に接する第2反射シートが、互いに色度が異なる第1領域と第2領域とを有するものを例示したが、上記した実施形態2,7,9及び上記(4),(5)に記載した構成を適用して、第2反射シートが第1領域及び第2領域に加えて第3領域を有する構成とすることも可能である。また、第2反射シートが有する第1領域及び第2領域の具体的な構成は、上記した実施形態1の各変形例、及び実施形態2~10に記載した構成を適用することが可能である。 (18) In Embodiment 5 described above, the second reflection sheet in contact with the plate surface opposite to the light emitting surface of the light guide member has the first region and the second region having different chromaticities. Although illustrated, applying the configuration described in the above-described Embodiments 2, 7, 9 and (4), (5), the second reflective sheet has the third region in addition to the first region and the second region. It is also possible to have a configuration. The specific configurations of the first region and the second region of the second reflective sheet can be applied to the above-described modifications of the first embodiment and the configurations described in the second to tenth embodiments. .
 (19)上記した各実施形態では、導光部材のうち光出射面とは反対側の板面に接する第2反射シートを用いた場合を例示したが、第2反射シートを省略することも可能である。 (19) In each of the above-described embodiments, the case where the second reflection sheet in contact with the plate surface opposite to the light emitting surface of the light guide member is exemplified, but the second reflection sheet may be omitted. It is.
 (20)上記した各実施形態では、配光分布に偏りがあるLEDを用いた場合を示したが、ブロードな配光分布を有するLEDを用いることも勿論可能である。 (20) In each of the above-described embodiments, the case where an LED having a biased light distribution is used is shown, but it is of course possible to use an LED having a broad light distribution.
 (21)上記した各実施形態では、液晶パネルが有するカラーフィルタの着色部をR,G,Bの3色としたものを例示したが、着色部を4色以上とすることも可能である。 (21) In each of the above-described embodiments, the color filters of the color filter included in the liquid crystal panel are exemplified by three colors R, G, and B. However, the color parts may be four or more colors.
 (22)上記した各実施形態では、青色を単色発光するLEDチップを内蔵し、蛍光体によって略白色光を発光するタイプのLEDを用いた場合を示したが、紫外光(青紫光)を単色発光するLEDチップを内蔵し、蛍光体によって略白色光を発光するタイプのLEDを用いたものも本発明に含まれる。 (22) In each of the above-described embodiments, the case where an LED chip that emits blue light in a single color and a type of LED that emits substantially white light with a phosphor is used has been described, but ultraviolet light (blue-violet light) is monochromatic. The present invention also includes an LED chip that incorporates an LED chip that emits light and that emits substantially white light using a phosphor.
 (23)上記した各実施形態では、青色を単色発光するLEDチップを内蔵し、蛍光体によって略白色光を発光するタイプのLEDを用いた場合を示したが、赤色、緑色、青色をそれぞれ単色発光する3種類のLEDチップを内蔵したタイプのLEDを用いたものも本発明に含まれる。それ以外にも、C(シアン),M(マゼンタ),Y(イエロー)をそれぞれ単色発光する3種類のLEDチップを内蔵したタイプのLEDを用いたものも本発明に含まれる。 (23) In each of the above-described embodiments, the case where an LED chip that emits blue light in a single color and a type of LED that emits substantially white light with a phosphor is used has been described. What uses the LED of the type which incorporated three types of LED chips which light-emit is also contained in this invention. In addition, the present invention includes an LED using a type of LED in which three types of LED chips each emitting C (cyan), M (magenta), and Y (yellow) are monochromatic.
 (24)上記した各実施形態では、光源としてLEDを用いた場合を示したが、他の種類の光源(冷陰極管、熱陰極管、有機ELなど)を用いることも勿論可能である。 (24) In each of the above-described embodiments, the case where an LED is used as the light source has been described. However, it is of course possible to use other types of light sources (cold cathode tube, hot cathode tube, organic EL, etc.).
 (25)上記した各実施形態では、液晶表示装置のスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、カラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。 (25) In each of the embodiments described above, the TFT is used as the switching element of the liquid crystal display device. However, the present invention can be applied to a liquid crystal display device using a switching element other than the TFT (for example, a thin film diode (TFD)). In addition to the liquid crystal display device for display, the present invention can also be applied to a liquid crystal display device for monochrome display.
 (26)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネルを用いた表示装置にも本発明は適用可能である。 (26) In each of the above-described embodiments, the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified. However, the present invention can be applied to display devices using other types of display panels.
 (27)上記した各実施形態では、チューナ基板を備えたテレビ受信装置を例示したが、チューナ基板を備えない表示装置にも本発明は適用可能である。 (27) In each of the above-described embodiments, the television receiver provided with the tuner substrate is exemplified, but the present invention is also applicable to a display device that does not include the tuner substrate.
 10…液晶表示装置(表示装置)、11…液晶パネル(表示パネル)、12…バックライト装置(照明装置)、17,517,717…LED(光源)、19,519,719…導光部材、19a…光出射面、19b,519b,719b…光入射面、19c…板面(光出射面とは反対側の面)、19d,519d,719d…端面(光出射面に隣り合う面)、22,122,222,522,622,722,822,922…第1反射シート(反射部材)、22A,122A,222A,522A,622A,722A,822A,922A…第1領域、22B,122B,222B,522B,622B,722B,822B,922B…第2領域、22C,622C,822C…第3領域、22S,122S,222S,522S,622S,722S,822S…分割反射シート(分割反射部材)、23,423…第2反射シート、423A…第1領域、423B…第2領域、DA,DB…ドット、LA…光軸、TV…テレビ受信装置 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Backlight device (illumination device), 17,517,717 ... LED (light source), 19,519,719 ... Light guide member, 19a ... Light exit surface, 19b, 519b, 719b ... Light incident surface, 19c ... Plate surface (surface opposite to the light exit surface), 19d, 519d, 719d ... End surface (surface adjacent to the light exit surface), 22 , 122, 222, 522, 622, 722, 822, 922... First reflective sheet (reflective member), 22A, 122A, 222A, 522A, 622A, 722A, 822A, 922A,..., First region, 22B, 122B, 222B, 522B, 622B, 722B, 822B, 922B ... 2nd area, 22C, 622C, 822C ... 3rd area, 22S, 122S, 222S, 522S 622S, 722S, 822S ... split reflective sheet (split reflective member), 23, 423 ... second reflective sheet, 423A ... first region, 423B ... second region, DA, DB ... dot, LA ... optical axis, TV ... TV Receiver

Claims (24)

  1.  光源と、
     前記光源に対して端部が対向状に配されるとともに前記光源から前記端部に入射した光を出射させる光出射面を有する導光部材と、
     前記導光部材のうち前記光出射面に隣り合う面に接して配されるとともに前記導光部材内の光を反射させる反射部材とを備え、
     前記反射部材を少なくとも前記光源に相対的に近い第1領域と、前記光源から相対的に遠い第2領域とに区分したとき、前記第1領域は、前記第2領域に比べると、CIE1931色度図の色度座標値であるx値及びy値が共に相対的に大きなものとされる照明装置。
    A light source;
    A light guide member having a light exit surface that emits light incident on the end portion from the light source, the end portion being arranged opposite to the light source;
    A reflective member that is disposed in contact with a surface adjacent to the light emitting surface of the light guide member and reflects light in the light guide member;
    When the reflective member is divided into at least a first region relatively close to the light source and a second region relatively far from the light source, the first region has CIE 1931 chromaticity as compared to the second region. The illuminating device in which both x value and y value which are chromaticity coordinate values in the figure are relatively large.
  2.  前記導光部材のうち前記光出射面に隣り合う面には、前記光源からの光が入射される光入射面が含まれており、
     前記反射部材は、前記導光部材のうち前記光出射面に隣り合う面において前記光入射面を除いた全域にわたって配されている請求項1記載の照明装置。
    The surface adjacent to the light emitting surface of the light guide member includes a light incident surface on which light from the light source is incident,
    The illuminating device according to claim 1, wherein the reflecting member is disposed over the entire area of the light guide member adjacent to the light emitting surface, excluding the light incident surface.
  3.  前記光源は、発光強度がピークとなる光の進行方向である光軸が前記光出射面に並行する配光分布を有しており、
     前記反射部材は、前記光軸に対して直交する面を有している請求項1または請求項2記載の照明装置。
    The light source has a light distribution in which an optical axis which is a traveling direction of light having a peak emission intensity is parallel to the light exit surface,
    The lighting device according to claim 1, wherein the reflecting member has a surface orthogonal to the optical axis.
  4.  前記導光部材のうち前記光出射面とは反対側の面に接して配される第2反射部材が備えられている請求項1から請求項3のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 3, further comprising a second reflecting member disposed in contact with a surface of the light guide member opposite to the light emitting surface.
  5.  前記第2反射部材を少なくとも前記光源に相対的に近い第1領域と、前記光源から相対的に遠い第2領域とに区分したとき、前記第1領域は、前記第2領域に比べると、CIE1931色度図の色度座標値であるx値及びy値が共に相対的に大きなものとされる請求項4記載の照明装置。 When the second reflecting member is divided into at least a first region relatively close to the light source and a second region relatively far from the light source, the first region is CIE 1931 compared to the second region. The lighting device according to claim 4, wherein both the x value and the y value, which are chromaticity coordinate values in the chromaticity diagram, are relatively large.
  6.  前記第1領域に係るCIE1931色度図の色度座標値を(x1,y1)とし、前記第2領域に係るCIE1931色度図の色度座標値を(x2,y2)とし、白色の基準色度に係るCIE1931色度図の色度座標値を(x0,y0)としたとき、前記第1領域及び前記第2領域は、下記式(1),(2)を満たす関係の色度座標値をそれぞれ有する請求項1から請求項5のいずれか1項に記載の照明装置。
     [数1]
     x2<x0≦x1     (1)
     [数2]
     y2<y0≦y1     (2)
    The chromaticity coordinate value of the CIE1931 chromaticity diagram for the first area is (x1, y1), the chromaticity coordinate value of the CIE1931 chromaticity diagram for the second area is (x2, y2), and a white reference color When the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the degree is (x0, y0), the first region and the second region have a relationship of chromaticity coordinate values satisfying the following expressions (1) and (2): The lighting device according to any one of claims 1 to 5, wherein
    [Equation 1]
    x2 <x0 ≦ x1 (1)
    [Equation 2]
    y2 <y0 ≦ y1 (2)
  7.  前記第1領域に係るCIE1931色度図の色度座標値を(x1,y1)とし、前記第2領域に係るCIE1931色度図の色度座標値を(x2,y2)とし、白色の基準色度に係るCIE1931色度図の色度座標値を(x0,y0)としたとき、前記第1領域及び前記第2領域は、下記式(3),(4)を満たす関係の色度座標値をそれぞれ有する請求項1から請求項5のいずれか1項に記載の照明装置。
     [数3]
     x2≦x0<x1     (3)
     [数4]
     y2≦y0<y1     (4)
    The chromaticity coordinate value of the CIE1931 chromaticity diagram for the first area is (x1, y1), the chromaticity coordinate value of the CIE1931 chromaticity diagram for the second area is (x2, y2), and a white reference color When the chromaticity coordinate value of the CIE1931 chromaticity diagram relating to the degree is (x0, y0), the first region and the second region have a relationship of chromaticity coordinate values satisfying the following expressions (3) and (4): The lighting device according to any one of claims 1 to 5, wherein
    [Equation 3]
    x2 ≦ x0 <x1 (3)
    [Equation 4]
    y2 ≦ y0 <y1 (4)
  8.  前記第1領域及び前記第2領域は、下記式(5),(6)を満たす関係の色度座標値を有する請求項6または請求項7記載の照明装置。
     [数5]
     x2<x0<x1     (5)
     [数6]
     y2<y0<y1     (6)
    The lighting device according to claim 6 or 7, wherein the first region and the second region have chromaticity coordinate values having a relationship satisfying the following expressions (5) and (6).
    [Equation 5]
    x2 <x0 <x1 (5)
    [Equation 6]
    y2 <y0 <y1 (6)
  9.  前記反射部材を、前記第1領域及び前記第2領域に加えてこれらの双方に対して隣り合う第3領域に区分したとき、前記第3領域は、前記第2領域に比べると、CIE1931色度図の色度座標値であるx値及びy値が共に相対的に小さく、且つ前記第1領域に比べると、前記x値及び前記y値が共に相対的に大きなものとされる請求項1から請求項8のいずれか1項に記載の照明装置。 When the reflective member is divided into the third region adjacent to both the first region and the second region in addition to the first region, the third region has CIE 1931 chromaticity as compared with the second region. The x value and the y value, which are chromaticity coordinate values in the figure, are both relatively small, and both the x value and the y value are relatively large compared to the first region. The lighting device according to claim 8.
  10.  前記導光部材は、平面に視て略方形の板状をなし、その一板面が前記光出射面を構成しているのに対し、端面に接する形で前記反射部材が配されており、
     前記反射部材は、前記導光部材の各辺に対応する前記端面毎に分割された複数の分割反射部材からなる請求項1から請求項9のいずれか1項に記載の照明装置。
    The light guide member has a substantially square plate shape when seen in a plane, and the one plate surface constitutes the light emitting surface, whereas the reflection member is arranged in contact with the end surface,
    The lighting device according to any one of claims 1 to 9, wherein the reflection member includes a plurality of divided reflection members divided for each of the end surfaces corresponding to the sides of the light guide member.
  11.  複数の前記分割反射部材には、全域が前記第1領域とされるものと、全域が前記第2領域とされるものとが含まれている請求項10記載の照明装置。 The lighting device according to claim 10, wherein the plurality of divided reflection members include one in which the entire region is the first region and one in which the entire region is the second region.
  12.  前記第1領域及び前記第2領域は、前記反射部材の表面に塗料が塗布されることで、CIE1931色度図の色度座標値が互いに異なるものとされる請求項1から請求項11のいずれか1項に記載の照明装置。 The chromaticity coordinate values of the CIE1931 chromaticity diagram are different from each other in the first region and the second region by applying paint on the surface of the reflecting member. The lighting device according to claim 1.
  13.  前記反射部材には、前記塗料からなる多数のドットが形成されている請求項12記載の照明装置。 The lighting device according to claim 12, wherein the reflecting member is formed with a large number of dots made of the paint.
  14.  前記ドットは、前記第1領域及び前記第2領域におけるCIE1931色度図の色度座標値が前記光源から遠ざかる方向へ向けてそれぞれ小さくなるよう配されている請求項13記載の照明装置。 14. The illumination device according to claim 13, wherein the dots are arranged such that chromaticity coordinate values of a CIE1931 chromaticity diagram in the first region and the second region become smaller in a direction away from the light source.
  15.  前記第1領域及び前記第2領域は、前記反射部材に顔料を含有させることで、CIE1931色度図の色度座標値が互いに異なるものとされる請求項1から請求項11のいずれか1項に記載の照明装置。 The chromaticity coordinate values of the CIE1931 chromaticity diagram are different from each other in the first region and the second region by including a pigment in the reflecting member. The lighting device described in 1.
  16.  前記導光部材は、平面に視て略方形をなしているのに対し、前記光源は、前記導光部材の端部のうち一角部に対して対向状をなすとともにその光軸が前記導光部材の辺に対して傾くよう配されている請求項1から請求項15のいずれか1項に記載の照明装置。 The light guide member has a substantially square shape when viewed in plan, whereas the light source is opposed to a corner portion of the end portion of the light guide member and its optical axis is the light guide. The lighting device according to any one of claims 1 to 15, wherein the lighting device is arranged to be inclined with respect to a side of the member.
  17.  前記光源は、その光軸が前記導光部材における対角線とほぼ一致するよう配されている請求項16記載の照明装置。 The lighting device according to claim 16, wherein the light source is arranged so that an optical axis thereof substantially coincides with a diagonal line of the light guide member.
  18.  前記導光部材は、平面に視て略方形をなしているのに対し、前記光源は、前記導光部材の端部のうち一辺に沿って複数が並列して配されている請求項1から請求項15のいずれか1項に記載の照明装置。 The light guide member has a substantially square shape when seen in a plan view, whereas the light source is arranged in parallel along one side of the end portion of the light guide member. The lighting device according to claim 15.
  19.  前記導光部材は、平面に視て略長方形をなしているのに対し、前記光源は、前記導光部材の端部のうち一短辺に沿って複数が並列するとともにそれぞれの光軸が長辺とほぼ一致するよう配されている請求項18記載の照明装置。 The light guide member has a substantially rectangular shape when seen in a plan view, whereas the light source has a plurality of light sources arranged in parallel along one short side of the end portion of the light guide member and each optical axis is long. The lighting device according to claim 18, wherein the lighting device is arranged so as to substantially coincide with the side.
  20.  前記光源は、LEDとされる請求項1から請求項19のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 19, wherein the light source is an LED.
  21.  前記LEDは、青色の略単色光を発するLED素子と、前記LED素子からの光により励起されて発光する蛍光体とからなるものとされる請求項20記載の照明装置。 21. The illumination device according to claim 20, wherein the LED is composed of an LED element that emits substantially blue monochromatic light and a phosphor that emits light when excited by light from the LED element.
  22.  請求項1から請求項21のいずれか1項に記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える表示装置。 A display device comprising: the illumination device according to any one of claims 1 to 21; and a display panel that performs display using light from the illumination device.
  23.  前記表示パネルは、一対の基板間に液晶を封入してなる液晶パネルとされる請求項22記載の表示装置。 The display device according to claim 22, wherein the display panel is a liquid crystal panel in which liquid crystal is sealed between a pair of substrates.
  24.  請求項22または請求項23に記載された表示装置を備えるテレビ受信装置。 A television receiver comprising the display device according to claim 22 or 23.
PCT/JP2011/077197 2010-12-03 2011-11-25 Illumination device, display device and television receiving device WO2012073826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010270417 2010-12-03
JP2010-270417 2010-12-03

Publications (1)

Publication Number Publication Date
WO2012073826A1 true WO2012073826A1 (en) 2012-06-07

Family

ID=46171764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077197 WO2012073826A1 (en) 2010-12-03 2011-11-25 Illumination device, display device and television receiving device

Country Status (1)

Country Link
WO (1) WO2012073826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011834A1 (en) * 2013-07-26 2015-01-29 堺ディスプレイプロダクト株式会社 Optical unit and display apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135122A (en) * 1999-08-26 2001-05-18 Three M Innovative Properties Co Lighting device and liquid crystal display
JP2006172785A (en) * 2004-12-14 2006-06-29 Nichia Chem Ind Ltd Surface light emitting device and light guide plate for surface light emitting device
JP2006210309A (en) * 2004-12-27 2006-08-10 Mitsubishi Electric Corp Planar light source device and display device using same
JP2010039221A (en) * 2008-08-05 2010-02-18 Sharp Corp Liquid crystal display, and backlight
JP2010249993A (en) * 2009-04-14 2010-11-04 Sumitomo Bakelite Co Ltd Method for manufacturing light guide plate, and light guide plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135122A (en) * 1999-08-26 2001-05-18 Three M Innovative Properties Co Lighting device and liquid crystal display
JP2006172785A (en) * 2004-12-14 2006-06-29 Nichia Chem Ind Ltd Surface light emitting device and light guide plate for surface light emitting device
JP2006210309A (en) * 2004-12-27 2006-08-10 Mitsubishi Electric Corp Planar light source device and display device using same
JP2010039221A (en) * 2008-08-05 2010-02-18 Sharp Corp Liquid crystal display, and backlight
JP2010249993A (en) * 2009-04-14 2010-11-04 Sumitomo Bakelite Co Ltd Method for manufacturing light guide plate, and light guide plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011834A1 (en) * 2013-07-26 2015-01-29 堺ディスプレイプロダクト株式会社 Optical unit and display apparatus
US10393952B2 (en) 2013-07-26 2019-08-27 Sakai Display Products Corporation Optical unit and display apparatus

Similar Documents

Publication Publication Date Title
US10162220B2 (en) Lighting device, display device, and television device
EP2541312B1 (en) Display device and television receiver
WO2011142170A1 (en) Illumination device, display device, television receiving device
US8203665B2 (en) Blacklight unit, liquid crystal display device having the same, and method for providing substantially white light for liquid crystal display device
JP2015065168A (en) Backlight assembly
US9016919B2 (en) Lighting device, display device and television receiver
JP4495540B2 (en) Backlight assembly and liquid crystal display device having the same
KR101742625B1 (en) Liquid crystal display device
WO2010113363A1 (en) Illuminating device, display device and television receiver
JP5220381B2 (en) Surface lighting device
JP2010097909A (en) Backlight and liquid crystal display device
WO2014087875A1 (en) Display device and television reception device
KR20120061538A (en) Liquid crystal display device
JP2004287323A (en) Semitransmissive liquid crystal display device
WO2011122122A1 (en) Display apparatus and television receiver apparatus
WO2011092953A1 (en) Lighting device, display device, and television receiver device
WO2013065536A1 (en) Display device, television reception device, and method for producing display device
WO2012073826A1 (en) Illumination device, display device and television receiving device
US7580094B2 (en) Transreflective LCD panel and electronic device using the same
WO2012073830A1 (en) Illumination device, display device and television receiving device
WO2011102184A1 (en) Display device and television receiver
KR20140082203A (en) Liquid crystal display device
WO2012133036A1 (en) Illumination device, display device, and television reception device
KR101833506B1 (en) Liquid crystal display device
KR102109662B1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP