WO2012073794A1 - Water generation device for plants, and plant cultivation system - Google Patents

Water generation device for plants, and plant cultivation system Download PDF

Info

Publication number
WO2012073794A1
WO2012073794A1 PCT/JP2011/077100 JP2011077100W WO2012073794A1 WO 2012073794 A1 WO2012073794 A1 WO 2012073794A1 JP 2011077100 W JP2011077100 W JP 2011077100W WO 2012073794 A1 WO2012073794 A1 WO 2012073794A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
main body
plant
temperature
thermoelectric element
Prior art date
Application number
PCT/JP2011/077100
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 宮内
太田 敏博
藤 寛
貴之 結城
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012073794A1 publication Critical patent/WO2012073794A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/005Reservoirs connected to flower-pots through conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/0072Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/009Collecting, removing and/or treatment of the condensate

Definitions

  • the present invention relates to a plant water generating apparatus that generates water to be supplied to a plant, and a plant cultivation system capable of automatically supplying water to a plant.
  • Patent Document 1 discloses an apparatus that generates water from a necessary place without generating water by generating water from air.
  • Patent Document 1 discloses an apparatus for extracting water from air.
  • FIG. 8 is a cross-sectional view showing the configuration of the water generating device 500 described in Patent Document 1.
  • Patent Document 1 water for drinking water is generated by a water generating device 500.
  • the water generating device 500 includes a thermoelectric device 507, a cold sink 505 and a heat sink 506 arranged side by side via the thermoelectric device 507, and a thermoelectric device 507, the cold sink 505 and the heat sink 506.
  • a pipe diverter 508 disposed below.
  • the water generating device 500 includes blowers 502, 504, and 544, ultraviolet light bulbs 518 and 517, and an ultraviolet light source 515.
  • the thermoelectric device 507 is for controlling the temperature of the cold sink 505 and the heat sink 506.
  • the cold sink 505 includes a cooling sink fin that is thermally coupled to the low temperature side of the thermoelectric device 507.
  • the cold sink 505 cools the air flowing in by the blower 502 below the dew point and condenses the water droplets 542. Then, the water droplet 542 is output to the outside from an outlet 509 provided in the pipe diverter 508.
  • An ultraviolet light source 515 is disposed at the outlet 509, and the water passing through the outlet 509 is exposed to ultraviolet light to sterilize the water.
  • the air cooled by the cold sink 505 flows into the heat sink 506 through the pipe diverter 508.
  • the heat sink 506 includes heat sink fins that are thermally coupled to the high temperature side of the thermoelectric device 507.
  • the air cooled by the cold sink 505 is caused to flow into the heat sink 506, and the heat of the heat sink 506 is taken away, thereby increasing the efficiency of the thermoelectric device 507.
  • the cold sink 505 controls the temperature to be below the dew point by sequentially controlling the operating speed of the blowers 502, 544, and 504.
  • the cold sink 505 and the heat sink 506 are sterilized by the ultraviolet light bulb 518 provided in the cold sink 505 and the ultraviolet light bulb 517 provided in the heat sink 506.
  • water is generated from the air, so that it is possible to generate water at a place where it is used, and it is possible to reduce time and effort for carrying the water.
  • the water generation apparatus 500 of Patent Document 1 as described above is intended to obtain drinking water, and is strictly controlled using ultraviolet sterilization for sterilization, so that the configuration of the apparatus becomes complicated. .
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a water generation apparatus and a plant cultivation system for supplying plants that generate water to be supplied to plants with a simple configuration. It is.
  • a water generating device for supplying plants is a water generating device for supplying plants that generates water to be supplied to a plant to be cultivated, and a main body that generates dew inside, A water filter that is disposed below the main body and performs filtering of condensation generated inside the main body, and a supply pipe for supplying water that has passed through the water filter to plants to be cultivated.
  • the main body is provided with a thermoelectric element storage portion in which a thermoelectric element is stored, an air filter for filtering air flowing into the main body, and an opening. And a main body bottom portion for guiding the generated dew condensation to the opening.
  • the main body since the main body allows the air filtered by the air filter to flow into the main body, it is possible to prevent bacteria, molds, and algae spores from entering the main body. it can. That is, clean air sterilized can flow into the main body.
  • thermoelectric element storage part in which the thermoelectric element is stored in the inside
  • dew condensation can be generated inside the said main body by controlling the temperature of the said thermoelectric element.
  • the air inside the main body is clean air that has been sterilized, so the dew condensation that has occurred inside the main body is also clean, from which bacteria, mold, algae spores, etc. have been sterilized. .
  • dew condensation generated inside the main body that has passed through the water filter flows through the supply pipe and is supplied to the plant. In this way, as the water supplied to the plant, sufficiently sterilized water can be supplied to the plant.
  • water to be supplied to the plant can be generated with a simple configuration.
  • the water supply device for supplying plants is a water supply device for supplying plants that generates water to be supplied to a plant to be cultivated, and a main body that generates dew inside and disposed below the main body.
  • a water filter for filtering dew condensation generated inside, and a supply pipe for supplying water that has passed through the water filter to a plant to be cultivated, and the main body has a thermoelectric element inside.
  • a stored thermoelectric element storage section, an air filter for filtering air flowing into the main body, and an opening are provided, and the dew generated in the main body is guided to the opening. And a main body bottom.
  • FIG. 1 is a diagram illustrating a configuration of a plant cultivation system 1 according to the first embodiment.
  • the plant cultivation system 1 includes a cooling fan 2 a, a dew condensation device 10, a reservoir 20, a liquid feeding device 30, a plant cultivation device 40, a decompression / blower device 50, and a moisture amount adjustment unit. 60 and a water content storage unit 61.
  • the plant cultivation system 1 is a system for cultivating a plant capable of automatically supplying water to the plant 41 cultivated by the plant cultivation apparatus 40 and supplying clean water and air.
  • the dew condensation device (water generation device) 10 is a plant supply water generation device that generates water to be supplied to the plant 41 to be cultivated.
  • the dew condensation device 10 is transmitted through a main body 11, a water filter storage unit 13 disposed below the main body 11 and having a water filter disposed therein, and a water filter stored in the water filter storage unit 13.
  • a drain pipe (supply pipe) 14 for supplying water to the plant 41 is provided.
  • the main body 11 includes a thermoelectric element storage portion 15 in which a thermoelectric element is stored, an air filter 16, and a main body bottom portion 17.
  • the main body 11 and the water filter storage unit 13 are connected by a pipe 12.
  • One end of the drain pipe 14 is connected to the water filter storage unit 13.
  • the drain pipe 14 passes through the lid 21 of the reservoir 20, and the other end is disposed inside the reservoir 20.
  • dew condensation is generated inside by the air filtered by the air filter 16.
  • the dew condensation device 10 further causes the dew generated inside to pass through the water filter in the water filter storage unit 13, and stores the water that has passed through the water filter in the reservoir 20 through the drain pipe 14. .
  • the cooling fan 2 rotationally drives the fan according to an instruction from a cooling fan drive control unit (blower control unit) 72 provided in the temperature control unit 70.
  • the cooling fan 2 rotates the fan and sends air to the thermoelectric element storage unit 15 to cool the thermoelectric element storage unit 15 (and the internal thermoelectric element), and the thermoelectric element storage unit 15 (and the internal thermoelectric element). This is for adjusting the temperature.
  • the temperature control unit 70 controls the temperature of the thermoelectric element included in the dew condensation device 10 based on the output from each sensor disposed in the dew condensation device 10 so as to be equal to or lower than the dew point temperature of the outside air.
  • the temperature control unit 70 includes a dew point temperature calculation unit 71, a cooling fan drive control unit 72, and a temperature management unit 73.
  • the temperature control unit 70 outputs the temperature Ta of the high temperature side thermoelectric element 5a (see FIG. 2) output from the high temperature side thermometer 6a (see FIG. 2) and the low temperature side thermometer 6b (see FIG. 2).
  • the temperature Tl of the thermoelectric element 5b on the low temperature side, the humidity Ha of the air outside the dew condensation device 10 output from the temperature / humidity meter 6c (see FIG. 2), and the temperature Ta of the air outside the dew condensation device 10 are acquired.
  • the temperature control unit 70 sets the target setting temperature Tt (Tt ⁇ Td) of the temperature Tl so that the temperature Tl can be reliably maintained at a temperature lower than the dew point temperature Td inside the main body 11 (calculation method). ) Is preferably stored in advance.
  • the target setting temperature Tt is stored in the temperature control unit 70 so that a value can be calculated and set from the condensation temperature Td calculated by the condensation temperature calculation unit 71.
  • the dew condensation temperature calculation unit 71 calculates the dew point temperature Td inside the main body 11 from the temperature Ta and the humidity Ha acquired by the temperature control unit 70. Further, the dew condensation temperature calculation unit 71 sets the target set temperature Tt based on the calculated dew condensation temperature Td from the setting method of the target set temperature Tt stored in the temperature control unit 70 in advance.
  • the cooling fan drive control unit 72 controls the driving of the cooling fan 2.
  • the cooling fan drive control unit 72 compares the dew point temperature Td calculated by the dew point temperature calculation unit 71 with the temperature Tl of the low-temperature-side thermoelectric element 5 b acquired by the temperature control unit 70. Then, the cooling fan drive control unit 72 controls the rotation speed of the cooling fan 2a, the on / off time of driving of the cooling fan 2a, and the like so that the temperature Tl becomes lower than the dew point temperature Td.
  • the cooling fan drive control unit 72 sets the target set temperature Tt set by the dew point temperature calculating unit 71 and the low temperature side thermoelectric element 5b acquired by the temperature control unit 70. Compare with temperature Tl. Then, the cooling fan drive control unit 72 controls the rotation speed of the cooling fan 2a, the on / off time of driving of the cooling fan 2a, and the like so that the temperature Tl becomes lower than the target set temperature Tt.
  • the temperature management unit 73 determines whether the temperature management unit 73 has a temperature Th acquired by the temperature control unit 70 or a temperature difference ⁇ T that is a difference between the temperature Th and the temperature Tl is an abnormal value (a value exceeding a preset limit value). To monitor. If the temperature management unit 73 determines that the temperature Th or the temperature difference ⁇ T is an abnormal value, the temperature management unit 73 causes the cooling fan drive control unit 72 to forcibly stop driving the cooling fan 2.
  • the cooling fan 2 is controlled to turn on (ON) or off (OFF) the fan and control the number of rotations according to an instruction from the cooling fan drive control unit 72.
  • the temperature of the thermoelectric element storage unit 15 and the internal thermoelectric element can be adjusted, and the thermoelectric element storage unit 15 and the thermoelectric element are brought into the environment of the outside air.
  • a suitable temperature can be set.
  • the cooling fan 2 is arranged so that the wind output from the cooling fan 2 touches the upper surface of the thermoelectric element storage unit 15 and is sent to the side opposite to the side where the cooling fan 2 is arranged. Thereby, the thermoelectric element storage part 15 can be efficiently cooled by the wind blown by the cooling fan 2.
  • the reservoir 20 is for storing water flowing in through the drain pipe 14.
  • the reservoir 20 is disposed below the dew condensation device 10.
  • the reservoir 20 is hermetically sealed by providing a lid 21 in an opening provided above.
  • the liquid feeding device 30 is for supplying the water stored in the reservoir 20 to the plant 41 cultivated by the plant cultivation device 40.
  • the liquid feeding device 30 includes an inflow pipe 31, a liquid feeding device main body 32, and a drain pipe 33.
  • One end of the inflow pipe 31 is connected to the reservoir 20 in the vicinity of the bottom of the reservoir 20, and the other is connected to the liquid feeder main body 32.
  • One end of the drain pipe 33 is connected to the liquid feeding device main body 32, and the other end is connected to the plant cultivation device 40.
  • the liquid feeder main body 32 is a pump that causes the water stored in the reservoir 20 to flow from the inflow pipe 31 and send it to the plant cultivation apparatus 40 through the drain pipe 33.
  • the plant cultivation device 40 is for cultivating the plant 41.
  • the plant cultivation device 40 is arranged in a container 42, a soil 43 that is a medium for growing the plant 41, a soil moisture sensor (medium moisture measuring device) 44 that measures the moisture content of the soil 43, and soil. And a plant 41 cultivated in Japan. Further, in order to prevent the soil 43 from drying, a lid 45 is disposed, and a plant 41 and a soil moisture sensor 44 are disposed in an opening provided in the lid 45.
  • the soil moisture sensor 44 measures the moisture content of the soil 43 by measuring the conductivity of the soil 43.
  • As the soil moisture sensor 44 a commonly used one can be used.
  • the decompression / blower device (blower device) 50 decompresses the inside of the main body 11 of the dew condensation device 10 through the drain pipe 14 by decompressing the inside of the reservoir 20.
  • the pressure in the main body 11 of the dew condensation device 10 is adjusted to be lower than the atmospheric pressure by the decompression / blower device (blower device) 50.
  • the pressure in the main body 11 of the dew condensation device 10 is depressurized by the decompression / blower device (blower device) 50, so that air flows into the main body 11 of the dew condensation device 10 through the air filter 16.
  • the decompression / blower device 50 includes an inflow pipe 51, a decompression / blower apparatus body 52, and a blower pipe 53.
  • One end of the inflow pipe 51 is inside the reservoir 20 and is arranged so as to be separated from the water stored in the reservoir 20.
  • the inflow pipe 51 passes through the lid 21, and the other end of the inflow pipe 51 is connected to the decompression / blower device main body 52.
  • blower pipe 53 One end of the blower pipe 53 is connected to the decompression / blower device main body 52, and the other end is so that the wind sent through the blower pipe 53 is blown to the plant 41. It is arranged toward the plant 41.
  • the decompression / blower device main body 52 is a pump that causes the air in the reservoir 20 to flow from the inflow pipe 51 and blows the air to the plant 41 through the blower pipe 53.
  • the air in the reservoir 20 is clean air that has been sterilized because it has passed through the air filter 16. By blowing such sterilized air directly to the plant 41, the air around the plant 41 can be made clean and sterilized air.
  • the decompression / blower main body 52 blows the sterilized wind of about 0.3 to 0.8 m / s to the plant 41.
  • moderate air blowing of about 0.3 to 0.8 m / s can help the plant 41 to exchange gas and promote the growth of the plant 41.
  • the water content storage unit 61 stores a preferable water content of the soil 43 according to the plant 41 to be cultivated.
  • the moisture amount adjustment unit (moisture amount comparison means) 60 is a computer including a CPU, a hard disk, a memory, and the like.
  • the moisture amount storage unit 61 may be disposed inside the moisture amount adjustment unit 60 or may be disposed outside the moisture amount adjustment unit 60.
  • the moisture content adjustment unit (moisture content comparison means) 60 acquires the moisture content of the soil 43 measured by the soil moisture sensor 44 from the soil moisture sensor 44. Then, the moisture amount adjustment unit 60 refers to the moisture amount storage unit 61 and compares the moisture amount of the soil 43 acquired from the soil moisture sensor 44 with the moisture amount stored in the moisture amount storage unit 61.
  • the moisture content adjustment part 60 determines that the moisture content of the soil 43 measured by the soil moisture sensor 44 is less than a preset moisture content, the determination result is output to the fluid delivery device 30 to deliver the fluid.
  • the apparatus 30 causes the water stored in the reservoir 20 to be supplied to the soil 43 of the plant cultivation apparatus 40.
  • the water content adjusting unit 60 determines that the water content of the soil 43 measured by the soil water sensor 44 is equal to or greater than a preset water content, the determination result is output to the liquid delivery device 30 and sent.
  • the liquid device 30 supplies the water stored in the reservoir 20 to the soil 43 of the plant cultivation device 40, the supply of water is stopped.
  • the moisture amount adjusting unit 60 compares the moisture amount set in advance with the moisture amount of the soil 43 to control the ON / OFF of the liquid feeding device 30 or the liquid feeding device 30. Increase or slow the moisture supply rate.
  • the water content in the rhizosphere of the plant 41 can be automatically managed, and the soil 43 can be managed in a water content suitable for the plant 41 to be cultivated.
  • the flow of processing performed by the moisture amount adjusting unit 60 will be described later.
  • the plant cultivation system 1 includes the dew condensation device 10, the reservoir 20 that stores water flowing in through the drain pipe 14 of the dew condensation device 10, the plant cultivation device 40 that grows the plant 41, and the reservoir 20. And a liquid feeding device 30 that supplies the stored water to the plant 41.
  • the water generated by the dew condensation device 10 is stored in the reservoir 20 through the drain pipe 14. Then, the water stored in the reservoir 20 is supplied to the plant 41 cultivated by the plant cultivation device 40 by the liquid feeding device 30.
  • the moisture amount measured by the soil moisture sensor 44 is a preset moisture amount, and the moisture amount of the soil 43 is adjusted. Can be maintained in an environment suitable for the type of plant 41.
  • the water generated by the dew condensation device 10 can be automatically supplied to the plant 41 cultivated by the plant cultivation device 40, so that water is supplied to the plant 41. This saves you the trouble of carrying water.
  • FIG. 2 is a cross-sectional view showing the configuration of the dew condensation apparatus 10.
  • the main body 11 of the dew condensation apparatus 10 includes a thermoelectric element storage portion 15 (main body upper portion), an air filter 16 and a main body bottom portion 17 which are arranged in order from the upper side to the lower side.
  • thermoelectric element 5 is arranged in the thermoelectric element storage unit 15.
  • the thermoelectric element 5 includes a high-temperature-side thermoelectric element 5a disposed relatively upward and a low-temperature-side thermoelectric element 5b disposed below the high-temperature-side thermoelectric element 5a.
  • the dew condensation apparatus 10 includes a high temperature side thermometer 6a, a low temperature side thermometer 6b, and a temperature and humidity meter 6c.
  • the high temperature side thermometer 6a is a thermometer for measuring the temperature of the thermoelectric element 5a.
  • the high temperature side thermometer 6 a is arranged in the vicinity of the thermoelectric element 5 a and on the upper surface of the thermoelectric element storage unit 15.
  • the high temperature side thermometer 6 a measures the temperature Th of the high temperature side thermoelectric element 5 a and outputs the measured temperature Th of the high temperature side thermoelectric element 5 a to the temperature control unit 70.
  • the low temperature side thermometer 6b is a thermometer for measuring the temperature of the thermoelectric element 5b.
  • the low temperature side thermometer 6 b is disposed in the vicinity of the thermoelectric element 5 b and on the lower surface of the thermoelectric element storage unit 15.
  • the low temperature side thermometer 6 b measures the temperature Tl of the low temperature side thermoelectric element 5 b, and outputs the measured temperature Tl of the low temperature side thermoelectric element 5 b to the temperature control unit 70.
  • the temperature / humidity meter 6 c is a temperature / humidity meter for measuring the temperature / humidity of the air flowing into the main body 11 through the air filter 16.
  • the thermohygrometer 6 c is located near the air filter 16 and is disposed on the side surface of the thermoelectric element storage unit 15.
  • the temperature / humidity meter 6c measures the humidity Ha of the air outside the dew condensation device 10 and the temperature Ta of the air outside the dew condensation device 10 and measures the measured air humidity Ha outside the dew condensation device 10 and the outside of the dew condensation device 10.
  • the air temperature Ta is output to the temperature control unit 70.
  • the high temperature side thermometer 6a, the low temperature side thermometer 6b, the temperature / humidity meter 6c, and the temperature controller 70 are wired or wirelessly connected to the high temperature side thermometer 6a, the low temperature side thermometer 6b, and the temperature / humidity meter 6c, respectively. Is connected so that the measured temperature and humidity can be transmitted.
  • thermoelectric element storage unit 15 and the thermoelectric element 5 are cooled by the air A blown from the cooling fan 2. In this manner, the temperature of the thermoelectric element storage unit 15 and the thermoelectric element 5 is adjusted. That is, in the plant cultivation system 1 according to the present embodiment, the cooling fan 2 blows the air A in the horizontal direction.
  • the main body interior 11 a is a space constituted by the thermoelectric element storage portion 15, the air filter 16, and the main body bottom portion 17.
  • the upper surface of the main body interior 11 a is the bottom surface of the thermoelectric element storage unit 15.
  • thermoelectric element storage section 15 A temperature difference is provided in the thermoelectric element storage section 15 by the thermoelectric element 5a on the high temperature side and the thermoelectric element 5b on the low temperature side.
  • moisture in the air in the thermoelectric element storage 15 near the thermoelectric element 5b on the low temperature side that is, moisture in the air inside the main body 11a is condensed. In this way, condensation adheres to the upper surface of the main body inside 11a.
  • the air filter 16 is a filter for air flowing into the main body inside 11a.
  • a HEPA filter High (Efficiency ParticulateicAir Filter) can be used.
  • the interior 11a of the main body is decompressed as described above. That is, the atmospheric pressure inside the main body 11a is lower than the atmospheric pressure.
  • the air outside the main body 11 flows into the main body interior 11a through the air filter 16.
  • the air flowing into the main body interior 11a passes through the air filter 16, it is possible to prevent bacteria, fungi, and algae from entering the main body interior 11a.
  • the main body bottom 17 is provided with an opening 17a.
  • the pipe 12 is connected to the opening 17 a of the main body bottom 17.
  • the main body bottom part 17 inclines so that the dew condensation 3 which generate
  • thermoelectric element storage portion 15 As described above, in the main body 11, the thermoelectric element storage portion 15, the air filter 16, and the main body bottom portion 17 are arranged in order from the top to the bottom.
  • the air filter 16 is disposed between the thermoelectric element storage portion 15 and the main body bottom portion 17. For this reason, since the thermoelectric element storage portion 15 and the main body bottom portion 17 are arranged apart from each other, the volume of the main body interior 11a increases, and a large amount of air passes through the air filter 16 to the main body interior 11a. Can be introduced. For this reason, the dew condensation 3 can be efficiently generated in the main body inside 11a.
  • the main body bottom portion 17 is disposed below the thermoelectric element storage portion 15, the dew condensation 3 adhering to the surface (lower surface) of the thermoelectric element storage portion 15 falls to the main body bottom portion 17 due to gravity.
  • the dew condensation 3 that has dropped to the main body bottom 17 is collected in the opening 17a through the inclined main body bottom 17 and collected.
  • the main body 11 can collect the dew condensation 3 attached to the thermoelectric element storage unit 15 with a simple configuration.
  • the pipe 12 is provided with a tube connecting pipe 12a such as a silicon tube.
  • a water filter 7 is disposed in the water filter storage unit 13.
  • the inside of the water filter storage unit 13 is decompressed by the decompression / blower device (blower device) 50 described above. That is, in the water filter storage unit 13, the air pressure is lower in the lower part of the water filter 7 than in the upper part of the water filter 7. For this reason, the dew condensation 3 that has flowed from the main body inside 11 a of the dew condensation device 10 passes through the water filter 7.
  • the water filter 7 is a membrane filter made of, for example, aromatic polyamide.
  • the hole diameter of the water filter 7 is smaller than the hole diameter of the air filter 16.
  • the hole diameter of the water filter 7 is about 5 ⁇ m
  • the hole diameter of the air filter 16 is about 20 to 30 ⁇ m.
  • a plurality of water filters 7 may be installed in a multistage manner. Thereby, the reliability of contamination prevention of condensation 3 can be further improved.
  • a drain pipe 14 is connected to the lower surface of the water filter storage unit 13. In the vicinity of one end of the drain pipe 14 connected to the water filter storage section 13, a connecting pipe 14 a such as a silicon tube is disposed.
  • the water filter storage section 13 can be removed.
  • the water filter 7 has a smaller hole diameter than the air filter 16 and is easily clogged. For this reason, it is set as the structure which is easy to replace
  • the air inside the main body 11a is clean air that has been filtered by the air filter 16, that is, sterilized, so that the condensation 3 generated inside the main body 11a is also caused by bacteria, mold, algae spores, and the like. It is clean and sterilized.
  • the dew condensation 3 guided to the opening 17 a of the main body bottom portion 17 flows through the opening 17 a of the main body bottom portion 17 by gravity, and the water filter 7. Transparent. Thereby, bacteria of dew condensation 3, mold, algae spores and the like generated in the inside 11a of the main body are further sterilized.
  • the dew condensation 3 that has passed through the water filter 7 flows through the drain pipe 14 and is supplied to the plant 41. In this way, sufficiently sterilized water can be supplied to the plant 41 as the water to be supplied to the plant 41.
  • the dew condensation apparatus 10 the water supplied to the plant 41 can be generated with a simple configuration as described above. Moreover, the dew condensation apparatus 10 reduces the labor of water supply management, and is highly convenient.
  • the plant 41 can be easily cultivated particularly at home.
  • the dew condensation device 10 generates dew condensation 3 using the thermoelectric element 5.
  • the thermoelectric element 5 for example, it is possible to reduce the size and weight compared to a cooling device using a compressor or the like.
  • a desiccant adssorbent
  • FIG. 3 is a diagram for explaining a processing flow of the temperature control unit 70 of the plant cultivation system 1.
  • the temperature control unit 70 includes a dew point temperature calculation unit 71, a cooling fan drive control unit 72, and a temperature management unit 73.
  • the temperature controller 70 includes a temperature Th of the high temperature side thermoelectric element 5a output from the high temperature side thermometer 6a, a temperature Tl of the low temperature side thermoelectric element 5b output from the low temperature side thermometer 6b, and a thermohygrometer 6c.
  • the humidity Ha of the air outside the dew condensation device 10 and the temperature Ta of the air outside the dew condensation device 10 that have been output from are acquired (step S11). It is assumed that the temperature difference ⁇ T between the temperature Th and the temperature Tl.
  • the dew point temperature calculation unit 71 calculates the dew point temperature Td of the air outside the dew condensation device 10 from the air humidity Ha acquired by the temperature control unit 70 and the air temperature Ta, and from the calculated dew point temperature Td, A target set temperature Tt for the temperature Tl is set (step S12).
  • the dew point temperature calculation unit 71 sets the target set temperature Tt to be lower than the calculated dew point temperature Td (Td> Tt).
  • a setting method (calculation method) is stored in the temperature control unit 70 so that the target set temperature Tt can be calculated from the dew point temperature Td calculated by the dew point temperature calculation unit 71.
  • the dew point temperature calculating unit 71 outputs the calculated dew point temperature Td and the set target set temperature Tt to the cooling fan drive control unit 72.
  • the cooling fan drive control unit 72 controls the cooling fan 2 to stop when the dew point temperature Td acquired from the dew point temperature calculation unit 71 is Td ⁇ 0 ° C. (YES in step S13). Thereby, the cooling fan 2 stops driving (step S14). And it returns to the process of step S11.
  • step S13 when Td> 0 (NO in step S13), the cooling fan drive controller 72 compares the target set temperature Tt acquired from the dew point temperature calculator 71 with the temperature T1 acquired by the temperature controller 70. Then, the rotational speed R of the cooling fan 2 and the on / off time of the cooling fan 2 are controlled so that the temperature Tl becomes 0 (° C.) ⁇ Tl (° C.) ⁇ Tt (° C.).
  • the cooling fan drive control unit 72 rotates the cooling fan 2 if the temperature Tl acquired by the temperature control unit 70 is 0 (° C.) ⁇ Tl (° C.) ⁇ Tt (° C.) (YES in step S15). Control is performed so as to maintain the number R as it is. As a result, the cooling fan 2 is driven while maintaining the rotational speed R (step S16). Then, the process returns to step S11.
  • cooling Fan drive control unit 72 determines that the temperature Tl acquired by the temperature control unit 70 is Tl (° C.) ⁇ Tt (° C.) (NO in step S15, YES in step S17)
  • cooling Control is performed to increase the rotational speed R of the fan 2.
  • the cooling fan 2 is driven by increasing the rotation speed R (step S18), and controls the temperature of the thermoelectric elements 5a and 5b so that the temperature Tl becomes smaller than the target set temperature Tt.
  • step S17 If NO in step S17, since Tl (° C.) ⁇ 0 (° C.), the cooling fan drive control unit 72 controls to reduce the rotation speed R of the cooling fan 2 or to stop driving the cooling fan 2. To do. Thereby, the cooling fan 2 reduces the rotation speed R or stops driving (step S19), and controls the temperature of the thermoelectric elements 5a and 5b so that the temperature Tl becomes higher than 0 ° C. Then, the process returns to step S11.
  • the temperature management unit 73 also has an abnormal value (a value exceeding a preset limit value) for the temperature Th acquired by the temperature control unit 70 and the temperature difference ⁇ T. You may make it monitor whether there is.
  • the temperature management unit 73 determines that the temperature Th and the temperature difference ⁇ T are abnormal values, the temperature management unit 73 outputs an operation stop notification to the cooling fan drive control unit 72.
  • the cooling fan drive control unit 72 receives the operation stop notification from the temperature management unit 73, the cooling fan drive control unit 72 forcibly stops driving the cooling fan 2.
  • the cooling fan drive control unit 72 controls the rotational speed R of the cooling fan 2 so that the temperature Tl of the thermoelectric element 5b is lower than the target set temperature Tt that is lower than the dew point temperature Td. For this reason, the temperature Tl of the thermoelectric element 5b can be reliably made smaller than the dew point temperature Td, and the efficiency of dew condensation generation can be improved.
  • the target set temperature Tt is not set, and in step S15, the cooling fan drive controller 72 sets the temperature Tl to a range of 0 (° C.) ⁇ Tl (° C.) ⁇ Td (° C.). You may make it control the rotation speed R of the cooling fan 2 so that it may become inside.
  • thermoelectric elements 5a and 5b Next, a specific example of temperature control of the thermoelectric elements 5a and 5b will be described.
  • the temperature controller 70 controls the temperature of the thermoelectric elements 5a and 5b as follows.
  • the cooling fan drive controller 72 sets the target setting acquired from the dew point temperature calculator 71.
  • the driving of the cooling fan 2 is controlled so as to be maintained. Thereby, the rotation speed R of the cooling fan 2 is maintained as it is (step S16).
  • FIG. 4 is a diagram for explaining the flow of processing of the water content adjustment unit 60 of the plant cultivation system 1.
  • a lower limit value 40% and an upper limit value 60% of the moisture content of the soil 43 are set and stored in the moisture content storage unit 61 in advance.
  • Step S21 When the moisture amount adjusting unit 60 is operated, the moisture amount adjusting unit 60 acquires the lower limit value 40% and the upper limit value 60% of the moisture amount of the soil 43 stored in the moisture amount storage unit 61.
  • the soil moisture sensor 44 outputs data obtained by measuring the moisture content of the soil 43 to the moisture content adjusting unit 60 at predetermined time intervals (for example, every 1 second).
  • the moisture content adjustment unit 60 acquires the measurement data of the moisture content of the soil 43 output from the soil moisture sensor 44 (step S22) and constantly monitors it.
  • the moisture content adjustment part 60 determines with the moisture content measurement data of the soil 43 output from the soil moisture sensor 44 that the moisture content of the soil 43 has fallen below a lower limit (40%) (YES of S23).
  • the water content adjusting unit 60 controls the liquid feeding device 30 to increase the water supply rate. Thereby, the liquid feeding apparatus 30 increases the supply speed
  • the moisture content adjusting unit 60 is the measurement data of the moisture content of the soil 43 output from the soil moisture sensor 44, and the moisture content of the soil 43 has an upper limit value (60%). If it determines with having exceeded (YES of S25), the moisture content adjustment part 60 will control the liquid feeding apparatus 30 to stop supply of a water
  • the measurement data of the moisture content of the soil 43 output from the soil moisture sensor 44 includes a measurement lag.
  • the moisture content adjustment unit 60 acquires the measurement data of the moisture content of the soil 43 output from the soil moisture sensor 44 in step S22 (step S22), the moisture content measurement data acquired last time is obtained.
  • the water amount adjustment unit 60 may control the liquid feeding device 30 so as to decrease the water supply speed. Thereby, the liquid feeding apparatus 30 reduces the supply speed
  • FIG. 5 is a diagram illustrating a configuration of a dew condensation device (water generation device) 110 of the plant cultivation system 100 according to the second embodiment.
  • FIG. 6 is a perspective view illustrating a configuration of a dew condensation generator 111 provided in the dew condensation apparatus 110 according to the second embodiment.
  • the plant cultivation system 100 is different from the plant cultivation system 1 in that a condensation device 110 is provided instead of the condensation device 10 provided in the plant cultivation system 1.
  • Other configurations of the plant cultivation system 100 are the same as those of the plant cultivation system 1.
  • the dew condensation device 110 is different from the dew condensation device 10 in that it includes a dew condensation generator 111. Other configurations of the dew condensation device 110 are the same as those of the dew condensation device 10.
  • the dew generator 111 is inside the main body 11a, and is arranged on the bottom surface of the thermoelectric element storage 15 (that is, the top surface of the main body inside 11a).
  • the dew condensation generator 111 includes a substrate 112 and a plurality of protrusions 113.
  • the substrate 112 and the plurality of protrusions 113 are made of, for example, aluminum or copper.
  • the substrate 112 is a base for the plurality of protrusions 113.
  • the substrate 112 has a plurality of protrusions 113 on one surface.
  • the other surface of the substrate 112 is disposed on the bottom surface of the thermoelectric element storage 15 in the main body interior 11a (that is, the upper surface of the main body interior 11a).
  • the dew condensation generator 111 is arranged in the vicinity of the low-temperature-side thermoelectric element 5b among the thermoelectric elements 5a and 5b stored in the thermoelectric element storage unit 15.
  • the protrusion 113 has, for example, a columnar shape such as a square column or a cylinder.
  • the base of the projection 113 is disposed on the substrate 112, and the tip is separated from the main body bottom 17. Note that the tip of the protrusion 113 may be sharp.
  • the dew condensation device 110 is the inside 11a of the main body, and a plurality of protrusions 113 are arranged on the lower surface of the thermoelectric element storage portion 15a via the substrate 12.
  • a dew condensation generator 111 in which a large number of protrusions 113 are arranged is provided inside the main body 11a. For this reason, the air that has passed through the air filter 16 and has flowed into the inside 11 a of the main body comes into contact with the large number of protrusions 113 and the substrate 112, so that condensation 3 occurs at the large number of protrusions 113 and the substrate 112.
  • the dew condensation device 110 is provided with a large number of protrusions 113, the air contact area in the main body interior 11a is increased, and the generation efficiency of dew condensation in the main body interior 11a can be improved.
  • the large number of protrusions 113 are arranged so as to protrude downward from the upper surface of the main body interior 11a (that is, the lower surface of the thermoelectric element storage portion 15). For this reason, the dew condensation 3 generated on the surface of the protrusion 113 and the surface of the substrate 112 is quickly moved downward by gravity through the protrusion 113. For this reason, the generation efficiency of dew condensation can be improved.
  • the condensation 3 generated on the surface of the protrusion 113 and the surface of the substrate 112 quickly moves downward, water droplets are likely to collect, the water droplets become large, and immediately from the tip of the protrusion 113. , And can be dropped below the inside 11a of the main body. For this reason, the efficiency which collects the dew condensation 3 can be improved.
  • FIG. 3 the structure of the plant cultivation system which concerns on the 3rd Embodiment of this invention is demonstrated using FIG.
  • members having the same functions as those in the drawings described in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 7 is a diagram illustrating the configuration of the dew condensation device 10 and the cooling fan 2 of the plant cultivation system 101 according to the third embodiment.
  • the cooling fan 2 blows the air A in the horizontal direction so as to touch the upper surface of the thermoelectric element storage unit 15.
  • the cooling fan 2 is disposed above the thermoelectric element storage unit 15, and the air A is directed vertically downward toward the upper surface of the thermoelectric element storage unit 15. To blow.
  • thermoelectric element storage unit 15 When the air A blown from the cooling fan 2 touches the upper surface of the thermoelectric element storage unit 15, it is warmed by the high temperature side thermoelectric element 5 a disposed in the vicinity of the upper surface of the thermoelectric element storage unit 15. The warmed air A is sent below the dew condensation device 10 along the outer surface of the air filter 16. For this reason, the outer surface of the air filter 16 is warmed by the air A.
  • the water generating device for supplying plants is a water generating device for supplying plants that generates water to be supplied to plants to be cultivated, and includes a main body that generates dew inside, A water filter disposed below and filtering the condensation generated inside the main body, and a supply pipe for supplying water that has passed through the water filter to a plant to be cultivated; Is provided with a thermoelectric element storage portion in which a thermoelectric element is stored, an air filter for filtering air flowing into the main body, and an opening. And a bottom portion of the main body for guiding the liquid to the opening.
  • the main body since the main body allows the air filtered by the air filter to flow into the main body, it is possible to prevent bacteria, molds, and algae spores from entering the main body. it can. That is, clean air sterilized can flow into the main body.
  • thermoelectric element storage part in which the thermoelectric element is stored in the inside
  • dew condensation can be generated inside the said main body by controlling the temperature of the said thermoelectric element.
  • the air inside the main body is clean air that has been sterilized, so the dew condensation that has occurred inside the main body is also clean, from which bacteria, mold, algae spores, etc. have been sterilized. .
  • dew condensation generated inside the main body that has passed through the water filter flows through the supply pipe and is supplied to the plant. In this way, as the water supplied to the plant, sufficiently sterilized water can be supplied to the plant.
  • water to be supplied to the plant can be generated with a simple configuration.
  • the pore diameter of the water filter is preferably smaller than the pore diameter of the air filter.
  • thermoelectric element storage unit, the air filter, and the main body bottom are arranged in order from the top to the bottom.
  • the thermoelectric element storage unit, the air filter, and the main body bottom are arranged in order from the top to the bottom.
  • thermoelectric element storage part since the bottom part of the main body is arranged below the thermoelectric element storage part, the dew that adheres to the surface of the thermoelectric element storage part falls to the bottom part of the main body due to gravity. And the fallen dew condensation is collected. For this reason, the dew condensation adhering to the said thermoelectric element storage part can be collect
  • thermoelectric element storage unit it is preferable that a plurality of protrusions are arranged inside the main body and on the lower surface of the thermoelectric element storage unit. According to the above configuration, since a large amount of air inside the main body comes into contact with the plurality of protrusions, a large amount of condensation can be generated on the surfaces of the plurality of protrusions. Thereby, the generation efficiency of dew condensation can be improved.
  • the pressure inside the main body is lower than the atmospheric pressure.
  • the plant cultivation system of this invention is provided with the ventilation part which sends a wind to the said thermoelectric element storage part, and the ventilation control part which controls the drive of the said ventilation part.
  • the strength of the wind sent from the air blowing unit is controlled by the air blowing control unit, whereby the strength of the wind sent to the thermoelectric element housing unit can be controlled, and the thermoelectric power in the thermoelectric element housing unit can be controlled.
  • the temperature of the element can be adjusted.
  • thermoelectric element can be set to a temperature suitable for the outside air environment.
  • the plant cultivation system of the present invention includes the water generating device for supplying the plant and a blower unit that is arranged above the thermoelectric element storage unit and sends wind toward the upper surface of the thermoelectric element storage unit. It is preferable to provide.
  • the said ventilation part is toward the upper surface of the said thermoelectric element storage part among the said thermoelectric element storage parts, the said air filter, and the said main body bottom part which are distribute
  • the wind sent from the said ventilation part is warmed by the said thermoelectric element storage part, and the said warmed wind is sent below along the outer surface of the said air filter.
  • the outer surface of the air filter is warmed by the wind sent from the blower.
  • the water supply device for supplying the plant, a water storage unit for storing water flowing in through the supply pipe, a plant cultivation device for cultivating a plant, and water stored in the water storage unit, It is preferable to include a liquid feeding device that supplies the plant cultivated by the plant cultivation device.
  • the water generated by the water generator is stored in the water storage section through the supply pipe. And the water stored by the said water storage part by the said liquid feeding apparatus is supplied to the plant cultivated with the said plant cultivation apparatus.
  • generation apparatus can be supplied to the plant cultivated with the said plant cultivation apparatus, it can save the effort of carrying water in order to supply water to a plant. it can.
  • the said plant cultivation apparatus is equipped with the culture medium which grows the said plant, and the culture medium moisture measuring apparatus which measures the moisture content of the said culture medium.
  • the said culture medium can be managed to the moisture content suitable for the plant to grow.
  • a moisture amount comparison means for comparing the amount of moisture of the medium measured by the medium moisture measuring device with a preset amount of moisture, When the moisture content of the culture medium measured by the culture medium moisture measuring device is less than a preset moisture content, when the moisture content comparing means determines that the fluid feeding device is configured to store the water stored in the water reservoir. Is preferably supplied to the medium of the plant cultivation apparatus.
  • the liquid feeding device when it is determined by the upper water content comparing means that the water content measured by the medium water content measuring device is less than the preset water content, the liquid feeding device is stored in the water storage section. Water is supplied to the medium. Thereby, it can prevent that the said culture medium becomes water shortage and the plant currently grown is withered.
  • the air in the said water storage part is the air which passed the said air filter, it is the clean air which was disinfected.
  • the air around the plant can be sterilized clean air.
  • the present invention condenses the moisture of the air filtered with the air filter, and further filters the condensed water with the water filter, so that sterilized water is generated enough to supply to the plant to be cultivated. Since it can be used, it can utilize for the apparatus which produces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)

Abstract

A dew drops formation device (10) comprises a main body (11) which can generate dew drops (3) in the inside thereof, a water filter (7) which is arranged below the main body (11) and can filter the dew drops (3) that have been generated in the main body (11), and a supply tube (14) which can supply water that passes through the water filter (7) to a plant (41), wherein the main body (11) comprises an electric heating element accommodation unit (15) in which an electric heating element (5) is accommodated, an air filter (16) which can filter air that flows into the inside of the main body (11), and a main body bottom part (17) in which an opening (17a) is formed and which can guide the dew drops (3) that have been generated in the main body (11) to the opening (17a). This device enables the generation of water for supplying to a plant in a simple configuration.

Description

植物用の水生成装置、植物栽培システムPlant water generator, plant cultivation system
 本発明は、植物に供給する水を生成する植物用の水生成装置、植物に自動で水を供給することが可能な植物栽培システムに関する。 The present invention relates to a plant water generating apparatus that generates water to be supplied to a plant, and a plant cultivation system capable of automatically supplying water to a plant.
 家庭菜園や観葉植物など、家庭等で、手軽に植物を育成する機会が増加している。しかし、農薬を使わずに植物を栽培すると、バクテリアやカビ・藻類の胞子の侵入によって、病害や藻類の発生が起こりやすい。 Opportunities to grow plants easily at home, such as home gardens and foliage plants, are increasing. However, when plants are grown without using pesticides, diseases and algae are likely to occur due to the invasion of spores of bacteria, mold and algae.
 また、作業者が、バケツやジョウロ等を用いて水遣りを行う場合、水を持ち運びする必要があり、手間がかかるという課題が生じる。 Also, when an operator uses a bucket or watering device to carry out watering, it is necessary to carry the water, which causes a problem that it takes time.
 そこで、特許文献1では、空気から水を生成することで、水を持ち運ばず、必要な場所で水を生成する装置が開示されている。 Therefore, Patent Document 1 discloses an apparatus that generates water from a necessary place without generating water by generating water from air.
 特許文献1には、空気から水を抽出する装置が開示されている。 Patent Document 1 discloses an apparatus for extracting water from air.
 図8は、特許文献1に記載の水生成装置500の構成を表す断面図である。 FIG. 8 is a cross-sectional view showing the configuration of the water generating device 500 described in Patent Document 1.
 特許文献1では、水生成装置500によって、飲み水用の水を生成している。 In Patent Document 1, water for drinking water is generated by a water generating device 500.
 図8に示すように、水生成装置500は、熱電装置507と、熱電装置507を介して、横並びに配されているコールドシンク505及びヒートシンク506と、熱電装置507、コールドシンク505及びヒートシンク506の下方に配されている配管分流部508と、を備えている。 As shown in FIG. 8, the water generating device 500 includes a thermoelectric device 507, a cold sink 505 and a heat sink 506 arranged side by side via the thermoelectric device 507, and a thermoelectric device 507, the cold sink 505 and the heat sink 506. A pipe diverter 508 disposed below.
 さらに、水生成装置500は、送風機502・504・544、及び紫外線電球518・517、紫外線光源515を備えている。 Furthermore, the water generating device 500 includes blowers 502, 504, and 544, ultraviolet light bulbs 518 and 517, and an ultraviolet light source 515.
 熱電装置507は、コールドシンク505及びヒートシンク506の温度制御を行うためのものである。 The thermoelectric device 507 is for controlling the temperature of the cold sink 505 and the heat sink 506.
 コールドシンク505は、熱電装置507の低温側と熱結合された冷却シンクフィンを備えている。コールドシンク505で、送風機502によって流入した空気を露点以下に冷却し、水滴542を凝縮する。そして、水滴542は、配管分流部508に設けられた流出口509から外部に出力される。そして、流出口509には、紫外線光源515が配されており、流出口509を通過する水に紫外光を浴びせることで、水の殺菌がなされる。 The cold sink 505 includes a cooling sink fin that is thermally coupled to the low temperature side of the thermoelectric device 507. The cold sink 505 cools the air flowing in by the blower 502 below the dew point and condenses the water droplets 542. Then, the water droplet 542 is output to the outside from an outlet 509 provided in the pipe diverter 508. An ultraviolet light source 515 is disposed at the outlet 509, and the water passing through the outlet 509 is exposed to ultraviolet light to sterilize the water.
 コールドシンク505で冷却された空気は、配管分流部508を通り、ヒートシンク506に流入する。 The air cooled by the cold sink 505 flows into the heat sink 506 through the pipe diverter 508.
 ヒートシンク506は、熱電装置507の高温側と熱結合されたヒートシンクフィンを備えている。コールドシンク505で冷却された空気を、ヒートシンク506に流入させ、ヒートシンク506の熱を奪うことで、熱電装置507の効率を高めている。 The heat sink 506 includes heat sink fins that are thermally coupled to the high temperature side of the thermoelectric device 507. The air cooled by the cold sink 505 is caused to flow into the heat sink 506, and the heat of the heat sink 506 is taken away, thereby increasing the efficiency of the thermoelectric device 507.
 水生成装置500では、送風機502・544・504の動作速度を順次制御することで、コールドシンク505が温度を露点以下となるように制御している。 In the water generation device 500, the cold sink 505 controls the temperature to be below the dew point by sequentially controlling the operating speed of the blowers 502, 544, and 504.
 さらに、コールドシンク505内に設けられた紫外線電球518と、ヒートシンク506内に設けられた紫外線電球517とによって、コールドシンク505及びヒートシンク506の殺菌がなされる。 Further, the cold sink 505 and the heat sink 506 are sterilized by the ultraviolet light bulb 518 provided in the cold sink 505 and the ultraviolet light bulb 517 provided in the heat sink 506.
 このように、水生成装置500では、空気から水が生成されるので、使用する場所で水を生成することができ、水を持ち運ぶ手間を削減することができる。 Thus, in the water generating device 500, water is generated from the air, so that it is possible to generate water at a place where it is used, and it is possible to reduce time and effort for carrying the water.
日本国公開特許公報「特表2006‐526089(2006年11月16日公表)」Japanese Patent Publication “Special Table 2006-526089 (announced on November 16, 2006)”
 上述のような特許文献1の水生成装置500は、飲料水を得ることが目的であり、除菌には、紫外線殺菌を用いて、厳密に管理がなされるので、装置の構成が複雑となる。 The water generation apparatus 500 of Patent Document 1 as described above is intended to obtain drinking water, and is strictly controlled using ultraviolet sterilization for sterilization, so that the configuration of the apparatus becomes complicated. .
 一方、植物に供給するための水を得るには、過度の除菌は必要なく、手軽に、植物栽培を行うためには、装置を簡易化する必要がある。 On the other hand, excessive sterilization is not necessary to obtain water to be supplied to the plant, and it is necessary to simplify the apparatus for easy plant cultivation.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、簡易な構成で、植物に供給する水を生成する植物供給用の水生成装置、植物栽培システムを提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a water generation apparatus and a plant cultivation system for supplying plants that generate water to be supplied to plants with a simple configuration. It is.
 上記課題を解決するために、本発明の植物供給用の水生成装置は、栽培する植物に供給する水を生成する植物供給用の水生成装置であって、内部で結露を発生させる本体と、上記本体の下方に配され、上記本体の内部で発生した結露のフィルタリングを行うための水用フィルタと、上記水用フィルタを透過した水を、栽培する植物に供給するための供給管とを備え、上記本体は、内部に熱電素子が格納されている熱電素子格納部と、上記本体の内部に流入する空気をフィルタリングするための空気用フィルタと、開口が設けられており、上記本体の内部で発生した結露を上記開口に導くための本体底部とを備えていることを特徴とする。 In order to solve the above-mentioned problem, a water generating device for supplying plants according to the present invention is a water generating device for supplying plants that generates water to be supplied to a plant to be cultivated, and a main body that generates dew inside, A water filter that is disposed below the main body and performs filtering of condensation generated inside the main body, and a supply pipe for supplying water that has passed through the water filter to plants to be cultivated. The main body is provided with a thermoelectric element storage portion in which a thermoelectric element is stored, an air filter for filtering air flowing into the main body, and an opening. And a main body bottom portion for guiding the generated dew condensation to the opening.
 上記構成によると、上記本体は、上記空気フィルタによりフィルタリングされた空気を、上記本体の内部に流入させるので、上記本体の内部に、バクテリア、カビや藻類の胞子が混入することを防止することができる。すなわち、除菌されたきれいな空気を、上記本体の内部に流入させることができる。 According to the above configuration, since the main body allows the air filtered by the air filter to flow into the main body, it is possible to prevent bacteria, molds, and algae spores from entering the main body. it can. That is, clean air sterilized can flow into the main body.
 そして、上記本体は、内部に熱電素子が格納されている熱電素子格納部を備えているので、上記熱電素子の温度制御を行うことで、上記本体の内部に結露を発生させることができる。 And since the said main body is equipped with the thermoelectric element storage part in which the thermoelectric element is stored in the inside, dew condensation can be generated inside the said main body by controlling the temperature of the said thermoelectric element.
 また、上述したように、上記本体の内部の空気は、除菌されたきれいな空気なので、上記本体の内部で発生した結露も、バクテリア、カビや藻類の胞子等が除菌されたきれいなものである。 In addition, as described above, the air inside the main body is clean air that has been sterilized, so the dew condensation that has occurred inside the main body is also clean, from which bacteria, mold, algae spores, etc. have been sterilized. .
 さらに、上記本体の下方に、上記水用フィルタが配されているので、上記本体底部の開口に導かれた上記本体の内部で発生した結露は、重力により上記開口を流れ、上記水用フィルタを透過する。これにより、さらに、上記本体の内部で発生した結露のバクテリア、カビや藻類の胞子等が除菌される。 Further, since the water filter is arranged below the main body, the dew condensation generated inside the main body led to the opening at the bottom of the main body flows through the opening due to gravity, and the water filter is To Penetrate. This further sterilizes condensation bacteria, mold, algae spores and the like generated inside the main body.
 そして、上記水用フィルタを透過した、上記本体の内部で発生した結露は、上記供給管を流れ、上記植物に供給される。このようにして、植物に供給する水としては、充分に除菌された水を上記植物に供給することができる。 And the dew condensation generated inside the main body that has passed through the water filter flows through the supply pipe and is supplied to the plant. In this way, as the water supplied to the plant, sufficiently sterilized water can be supplied to the plant.
 このように、上記構成によると、簡単な構成で、上記植物に供給する水を生成することができる。 Thus, according to the above configuration, water to be supplied to the plant can be generated with a simple configuration.
 本発明の植物供給用の水生成装置は、栽培する植物に供給する水を生成する植物供給用の水生成装置で、内部で結露を発生させる本体と、上記本体の下方に配され、上記本体の内部で発生した結露のフィルタリングを行うための水用フィルタと、上記水用フィルタを透過した水を、栽培する植物に供給するための供給管とを備え、上記本体は、内部に熱電素子が格納されている熱電素子格納部と、上記本体の内部に流入する空気をフィルタリングするための空気用フィルタと、開口が設けられており、上記本体の内部で発生した結露を上記開口に導くための本体底部とを備えている。 The water supply device for supplying plants according to the present invention is a water supply device for supplying plants that generates water to be supplied to a plant to be cultivated, and a main body that generates dew inside and disposed below the main body. A water filter for filtering dew condensation generated inside, and a supply pipe for supplying water that has passed through the water filter to a plant to be cultivated, and the main body has a thermoelectric element inside. A stored thermoelectric element storage section, an air filter for filtering air flowing into the main body, and an opening are provided, and the dew generated in the main body is guided to the opening. And a main body bottom.
 これにより、簡易な構成で、植物に供給する水を生成するという効果を奏する。 This produces an effect of generating water to be supplied to the plant with a simple configuration.
本発明の一実施形態に係る植物栽培システムの構成を表す図である。It is a figure showing the structure of the plant cultivation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る結露装置の構成を表す図である。It is a figure showing the structure of the dew condensation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る植物栽培システムの温度制御部の処理の流れを説明する図である。It is a figure explaining the flow of a process of the temperature control part of the plant cultivation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る植物栽培システムの水分量調整部の処理の流れを説明する図である。It is a figure explaining the flow of a process of the moisture content adjustment part of the plant cultivation system which concerns on one Embodiment of this invention. 本発明の第2の実施形態にかかる植物栽培システムの水発生装置の構成を表す図である。It is a figure showing the structure of the water generator of the plant cultivation system concerning the 2nd Embodiment of this invention. 本発明の第2の実施形態にかかる植物栽培システムの水発生装置が備えている結露発生器の構成を表す斜視図である。It is a perspective view showing the structure of the dew condensation generator with which the water generator of the plant cultivation system concerning the 2nd Embodiment of this invention is equipped. 本発明の第3の実施形態にかかる植物栽培システムの水発生装置及び送風部の構成を表す図である。It is a figure showing the structure of the water generator of a plant cultivation system concerning the 3rd Embodiment of this invention, and a ventilation part. 従来の水生成装置の構成を表す図である。It is a figure showing the structure of the conventional water generating apparatus.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 〔実施の形態1〕
 (植物栽培システム1の構成)
 図1は、第1の実施の形態にかかる植物栽培システム1の構成を表す図である。
[Embodiment 1]
(Configuration of plant cultivation system 1)
FIG. 1 is a diagram illustrating a configuration of a plant cultivation system 1 according to the first embodiment.
 図1に示すように、植物栽培システム1は、冷却ファン2aと、結露装置10と、リザーバー20と、送液装置30と、植物栽培装置40と、減圧・送風装置50と、水分量調整部60と、水分量記憶部61とを備えている。 As shown in FIG. 1, the plant cultivation system 1 includes a cooling fan 2 a, a dew condensation device 10, a reservoir 20, a liquid feeding device 30, a plant cultivation device 40, a decompression / blower device 50, and a moisture amount adjustment unit. 60 and a water content storage unit 61.
 植物栽培システム1は、植物栽培装置40で栽培されている植物41に自動で給水し、クリーンな水と空気を供給することが可能な植物を栽培するためのシステムである。 The plant cultivation system 1 is a system for cultivating a plant capable of automatically supplying water to the plant 41 cultivated by the plant cultivation apparatus 40 and supplying clean water and air.
 結露装置(水生成装置)10は、栽培する植物41に供給する水を生成する植物供給用の水生成装置である。 The dew condensation device (water generation device) 10 is a plant supply water generation device that generates water to be supplied to the plant 41 to be cultivated.
 結露装置10は、本体11と、本体11の下方に配され、内部に水用フィルタが配されている水用フィルタ格納部13と、水用フィルタ格納部13に格納された水用フィルタ透過した水を、植物41に供給するための排水管(供給管)14とを備えている。 The dew condensation device 10 is transmitted through a main body 11, a water filter storage unit 13 disposed below the main body 11 and having a water filter disposed therein, and a water filter stored in the water filter storage unit 13. A drain pipe (supply pipe) 14 for supplying water to the plant 41 is provided.
 本体11は、内部に熱電素子が格納された熱電素子格納部15と、空気用フィルタ16と、本体底部17とを備えている。 The main body 11 includes a thermoelectric element storage portion 15 in which a thermoelectric element is stored, an air filter 16, and a main body bottom portion 17.
 本体11と、水用フィルタ格納部13とは、配管12によって接続されている。排水管14は、一方の端部が水用フィルタ格納部13と接続されている。そして、排水管14は、リザーバー20の蓋21を貫通し、他方の端部は、リザーバー20の内部に配されている。 The main body 11 and the water filter storage unit 13 are connected by a pipe 12. One end of the drain pipe 14 is connected to the water filter storage unit 13. The drain pipe 14 passes through the lid 21 of the reservoir 20, and the other end is disposed inside the reservoir 20.
 結露装置10では、空気用フィルタ16でフィルタリングされた空気によって、内部で結露を発生させる。そして、結露装置10は、内部で発生した結露をさらに、水用フィルタ格納部13内の水用フィルタを透過させ、当該水用フィルタを透過した水を、排水管14を通じて、リザーバー20に貯水させる。 In the dew condensation device 10, dew condensation is generated inside by the air filtered by the air filter 16. The dew condensation device 10 further causes the dew generated inside to pass through the water filter in the water filter storage unit 13, and stores the water that has passed through the water filter in the reservoir 20 through the drain pipe 14. .
 このため、結露装置10によると、植物41に供給する水としては、充分に除菌された水を植物41に供給することができる。 For this reason, according to the dew condensation apparatus 10, as the water supplied to the plant 41, sufficiently sterilized water can be supplied to the plant 41.
 なお、結露装置10の詳細な構成については後述する。 The detailed configuration of the dew condensation apparatus 10 will be described later.
 冷却ファン2は、温度制御部70が備える冷却ファン駆動制御部(送風制御部)72からの指示によってファンを回転駆動する。冷却ファン2は、ファンを回転させ、熱電素子格納部15に風を送ることで、熱電素子格納部15(及び内部の熱電素子)を冷やし、熱電素子格納部15(及び内部の熱電素子)の温度調整を行うためのものである。 The cooling fan 2 rotationally drives the fan according to an instruction from a cooling fan drive control unit (blower control unit) 72 provided in the temperature control unit 70. The cooling fan 2 rotates the fan and sends air to the thermoelectric element storage unit 15 to cool the thermoelectric element storage unit 15 (and the internal thermoelectric element), and the thermoelectric element storage unit 15 (and the internal thermoelectric element). This is for adjusting the temperature.
 温度制御部70は、結露装置10に配されている各センサからの出力に基づいて結露装置10が備える熱電素子の温度を、外気の露点温度以下となるように、制御するものである。温度制御部70は、露点温度算出部71と、冷却ファン駆動制御部72と、温度管理部73とを備えている。 The temperature control unit 70 controls the temperature of the thermoelectric element included in the dew condensation device 10 based on the output from each sensor disposed in the dew condensation device 10 so as to be equal to or lower than the dew point temperature of the outside air. The temperature control unit 70 includes a dew point temperature calculation unit 71, a cooling fan drive control unit 72, and a temperature management unit 73.
 温度制御部70は、高温側温度計6a(図2参照)から出力されてきた高温側の熱電素子5a(図2参照)の温度Ta、低温側温度計6b(図2参照)から出力されてきた低温側の熱電素子5bの温度Tl、温湿度計6c(図2参照)から出力されてきた結露装置10の外部の空気の湿度Ha及び結露装置10の外部の空気の温度Taを取得する。 The temperature control unit 70 outputs the temperature Ta of the high temperature side thermoelectric element 5a (see FIG. 2) output from the high temperature side thermometer 6a (see FIG. 2) and the low temperature side thermometer 6b (see FIG. 2). The temperature Tl of the thermoelectric element 5b on the low temperature side, the humidity Ha of the air outside the dew condensation device 10 output from the temperature / humidity meter 6c (see FIG. 2), and the temperature Ta of the air outside the dew condensation device 10 are acquired.
 また、温度制御部70には、温度Tlを、本体11の内部の露点温度Tdより確実に低い温度に維持できるように、温度Tlの目標設定温度Tt(Tt<Td)の設定方法(演算方法)を、予め記憶しておくことが好ましい。目標設定温度Ttは、結露温度算出部71が算出した結露温度Tdから演算で値を算出し、設定できるように、設定方法を温度制御部70に記憶しておく。 In addition, the temperature control unit 70 sets the target setting temperature Tt (Tt <Td) of the temperature Tl so that the temperature Tl can be reliably maintained at a temperature lower than the dew point temperature Td inside the main body 11 (calculation method). ) Is preferably stored in advance. The target setting temperature Tt is stored in the temperature control unit 70 so that a value can be calculated and set from the condensation temperature Td calculated by the condensation temperature calculation unit 71.
 結露温度算出部71は、温度制御部70が取得した温度Ta及び湿度Haから、本体11の内部の露点温度Tdを算出する。さらに、結露温度算出部71は、予め温度制御部70に記憶されている目標設定温度Ttの設定方法から、算出した結露温度Tdに基づいて目標設定温度Ttを設定する。 The dew condensation temperature calculation unit 71 calculates the dew point temperature Td inside the main body 11 from the temperature Ta and the humidity Ha acquired by the temperature control unit 70. Further, the dew condensation temperature calculation unit 71 sets the target set temperature Tt based on the calculated dew condensation temperature Td from the setting method of the target set temperature Tt stored in the temperature control unit 70 in advance.
 冷却ファン駆動制御部72は、冷却ファン2の駆動を制御するものである。冷却ファン駆動制御部72は、露点温度算出部71が算出した露点温度Tdと、温度制御部70が取得した低温側の熱電素子5bの温度Tlとを比較する。そして、冷却ファン駆動制御部72は、温度Tlが露点温度Tdより低くなるように、冷却ファン2aの回転数や、冷却ファン2aの駆動のオン、オフ時間をなど制御する。 The cooling fan drive control unit 72 controls the driving of the cooling fan 2. The cooling fan drive control unit 72 compares the dew point temperature Td calculated by the dew point temperature calculation unit 71 with the temperature Tl of the low-temperature-side thermoelectric element 5 b acquired by the temperature control unit 70. Then, the cooling fan drive control unit 72 controls the rotation speed of the cooling fan 2a, the on / off time of driving of the cooling fan 2a, and the like so that the temperature Tl becomes lower than the dew point temperature Td.
 または、目標設定温度Ttが設定されているときは、冷却ファン駆動制御部72は、露点温度算出部71が設定した目標設定温度Ttと、温度制御部70が取得した低温側の熱電素子5bの温度Tlとを比較する。そして、冷却ファン駆動制御部72は、温度Tlが目標設定温度Ttより低くなるように、冷却ファン2aの回転数や、冷却ファン2aの駆動のオン、オフ時間をなど制御する。 Alternatively, when the target set temperature Tt is set, the cooling fan drive control unit 72 sets the target set temperature Tt set by the dew point temperature calculating unit 71 and the low temperature side thermoelectric element 5b acquired by the temperature control unit 70. Compare with temperature Tl. Then, the cooling fan drive control unit 72 controls the rotation speed of the cooling fan 2a, the on / off time of driving of the cooling fan 2a, and the like so that the temperature Tl becomes lower than the target set temperature Tt.
 温度管理部73は、温度制御部70が取得した温度Thや、温度Thと温度Tlとの差分である温度差ΔTが異常な値(予め設定された限界値を越える値)になっていないかを監視する。温度管理部73は、温度Thや、温度差ΔTが異常な値となっていると判定すると、冷却ファン駆動制御部72に、冷却ファン2の駆動を強制的に停止させる。 Whether the temperature management unit 73 has a temperature Th acquired by the temperature control unit 70 or a temperature difference ΔT that is a difference between the temperature Th and the temperature Tl is an abnormal value (a value exceeding a preset limit value). To monitor. If the temperature management unit 73 determines that the temperature Th or the temperature difference ΔT is an abnormal value, the temperature management unit 73 causes the cooling fan drive control unit 72 to forcibly stop driving the cooling fan 2.
 冷却ファン2は、冷却ファン駆動制御部72からの指示によって、ファンの回転のオン(ON)、オフ(OFF)の制御や、回転数の制御がなされる。このように、冷却ファン2の回転数を制御することで、熱電素子格納部15及び内部の熱電素子の温度調整を行うことができ、熱電素子格納部15及び上記熱電素子を、外気の環境に適した温度に設定することができる。 The cooling fan 2 is controlled to turn on (ON) or off (OFF) the fan and control the number of rotations according to an instruction from the cooling fan drive control unit 72. Thus, by controlling the rotation speed of the cooling fan 2, the temperature of the thermoelectric element storage unit 15 and the internal thermoelectric element can be adjusted, and the thermoelectric element storage unit 15 and the thermoelectric element are brought into the environment of the outside air. A suitable temperature can be set.
 冷却ファン2は、冷却ファン2から出力された風が、熱電素子格納部15の上面に触れて、冷却ファン2が配されている側とは逆側に送られるように配されている。これにより、冷却ファン2が送風する風により、効率よく熱電素子格納部15を冷却することができる。 The cooling fan 2 is arranged so that the wind output from the cooling fan 2 touches the upper surface of the thermoelectric element storage unit 15 and is sent to the side opposite to the side where the cooling fan 2 is arranged. Thereby, the thermoelectric element storage part 15 can be efficiently cooled by the wind blown by the cooling fan 2.
 リザーバー20は、排水管14を通って流入してくる水を貯水するためのものである。 The reservoir 20 is for storing water flowing in through the drain pipe 14.
 リザーバー20は、結露装置10の下方に配されている。リザーバー20は、上方に設けられた開口に蓋21が配されていることで密閉されている。 The reservoir 20 is disposed below the dew condensation device 10. The reservoir 20 is hermetically sealed by providing a lid 21 in an opening provided above.
 送液装置30は、リザーバー20に貯水された水を、植物栽培装置40で栽培されている植物41に供給するためのものである。 The liquid feeding device 30 is for supplying the water stored in the reservoir 20 to the plant 41 cultivated by the plant cultivation device 40.
 送液装置30は、流入管31と、送液装置本体32と、排水管33とを備えている。流入管31の一方の端部は、リザーバー20の底部近傍で、リザーバー20と接続されており、他方は、送液装置本体32と接続されている。 The liquid feeding device 30 includes an inflow pipe 31, a liquid feeding device main body 32, and a drain pipe 33. One end of the inflow pipe 31 is connected to the reservoir 20 in the vicinity of the bottom of the reservoir 20, and the other is connected to the liquid feeder main body 32.
 排水管33の一方の端部は、送液装置本体32と接続されており、他方の端部は、植物栽培装置40と接続されている。 One end of the drain pipe 33 is connected to the liquid feeding device main body 32, and the other end is connected to the plant cultivation device 40.
 送液装置本体32は、リザーバー20に貯水されている水を、流入管31から流入させ、排水管33を通って植物栽培装置40に送るポンプである。 The liquid feeder main body 32 is a pump that causes the water stored in the reservoir 20 to flow from the inflow pipe 31 and send it to the plant cultivation apparatus 40 through the drain pipe 33.
 植物栽培装置40は、植物41を栽培するためのものである。植物栽培装置40は、容器42と、容器42内に配され、植物41を栽培する培地である土43と、土43の水分量を測定する土壌水分センサ(培地水分測定装置)44と、土で栽培されている植物41とを備えている。また、土43の乾燥を防止するために、蓋45が配されており、この蓋45に設けられた開口部分に植物41と、土壌水分センサ44とが配されている。 The plant cultivation device 40 is for cultivating the plant 41. The plant cultivation device 40 is arranged in a container 42, a soil 43 that is a medium for growing the plant 41, a soil moisture sensor (medium moisture measuring device) 44 that measures the moisture content of the soil 43, and soil. And a plant 41 cultivated in Japan. Further, in order to prevent the soil 43 from drying, a lid 45 is disposed, and a plant 41 and a soil moisture sensor 44 are disposed in an opening provided in the lid 45.
 土壌水分センサ44は、土43の導電率を測定することで、土43の水分量を測定するものである。土壌水分センサ44は、一般的に使用されているものを用いることができる。 The soil moisture sensor 44 measures the moisture content of the soil 43 by measuring the conductivity of the soil 43. As the soil moisture sensor 44, a commonly used one can be used.
 減圧・送風装置(送風装置)50は、リザーバー20内を減圧することで、排水管14を通じて、結露装置10の本体11内を減圧するものである。 The decompression / blower device (blower device) 50 decompresses the inside of the main body 11 of the dew condensation device 10 through the drain pipe 14 by decompressing the inside of the reservoir 20.
 減圧・送風装置(送風装置)50により、結露装置10の本体11内の気圧は、大気圧より低くなるように調整されている。 The pressure in the main body 11 of the dew condensation device 10 is adjusted to be lower than the atmospheric pressure by the decompression / blower device (blower device) 50.
 このように、減圧・送風装置(送風装置)50により、結露装置10の本体11内が減圧されることで、空気用フィルタ16を通して、結露装置10の本体11内に空気が流入する。 In this way, the pressure in the main body 11 of the dew condensation device 10 is depressurized by the decompression / blower device (blower device) 50, so that air flows into the main body 11 of the dew condensation device 10 through the air filter 16.
 減圧・送風装置50は、流入管51と、減圧・送風装置本体52と、送風管53とを備えている。 The decompression / blower device 50 includes an inflow pipe 51, a decompression / blower apparatus body 52, and a blower pipe 53.
 流入管51の一方の端部は、リザーバー20の内部であり、リザーバー20内に貯水されている水と離間するように配されている。流入管51は、蓋21を貫通し、流入管51の他方の端部は減圧・送風装置本体52と接続されている。 One end of the inflow pipe 51 is inside the reservoir 20 and is arranged so as to be separated from the water stored in the reservoir 20. The inflow pipe 51 passes through the lid 21, and the other end of the inflow pipe 51 is connected to the decompression / blower device main body 52.
 送風管53の一方の端部は、減圧・送風装置本体52と接続されており、他方の端部は、送風管53を通って送られてくる風が、植物41に送風されるように、植物41に向かって配されている。 One end of the blower pipe 53 is connected to the decompression / blower device main body 52, and the other end is so that the wind sent through the blower pipe 53 is blown to the plant 41. It is arranged toward the plant 41.
 減圧・送風装置本体52は、リザーバー20内の空気を、流入管51から流入させ、送風管53を通って、植物41に送風するポンプである。 The decompression / blower device main body 52 is a pump that causes the air in the reservoir 20 to flow from the inflow pipe 51 and blows the air to the plant 41 through the blower pipe 53.
 リザーバー20内の空気は、空気用フィルタ16を通ってきた空気なので、除菌されたきれいな空気である。このような除菌された空気を、植物41に、直接、送風することで、植物41の周囲の空気を除菌されたきれいな空気とすることができる。 The air in the reservoir 20 is clean air that has been sterilized because it has passed through the air filter 16. By blowing such sterilized air directly to the plant 41, the air around the plant 41 can be made clean and sterilized air.
 減圧・送風装置本体52は、約0.3~0.8m/s程度の除菌された風を、植物41に送風する。 The decompression / blower main body 52 blows the sterilized wind of about 0.3 to 0.8 m / s to the plant 41.
 このように、約0.3~0.8m/s程度の適度な送風は、植物41のガス交換を助け、植物41の成長を促進することができる。 As described above, moderate air blowing of about 0.3 to 0.8 m / s can help the plant 41 to exchange gas and promote the growth of the plant 41.
 水分量記憶部61には、栽培する植物41に応じて、土43の好ましい水分量が記憶されている。 The water content storage unit 61 stores a preferable water content of the soil 43 according to the plant 41 to be cultivated.
 水分量調整部(水分量比較手段)60は、CPU、ハードディスク、メモリなどを備えているコンピュータである。なお、水分量記憶部61は、水分量調整部60の内部に配されていてもよいし、水分量調整部60の外部に配されていてもよい。 The moisture amount adjustment unit (moisture amount comparison means) 60 is a computer including a CPU, a hard disk, a memory, and the like. The moisture amount storage unit 61 may be disposed inside the moisture amount adjustment unit 60 or may be disposed outside the moisture amount adjustment unit 60.
 水分量調整部(水分量比較手段)60は、土壌水分センサ44から、土壌水分センサ44が測定した土43の水分量を取得する。そして、水分量調整部60は、水分量記憶部61を参照し、土壌水分センサ44から取得した土43の水分量と、水分量記憶部61に記憶されている水分量とを比較する。 The moisture content adjustment unit (moisture content comparison means) 60 acquires the moisture content of the soil 43 measured by the soil moisture sensor 44 from the soil moisture sensor 44. Then, the moisture amount adjustment unit 60 refers to the moisture amount storage unit 61 and compares the moisture amount of the soil 43 acquired from the soil moisture sensor 44 with the moisture amount stored in the moisture amount storage unit 61.
 そして、水分量調整部60は、土壌水分センサ44が測定した土43の水分量は、予め設定された水分量より少ないと判定すると、当該判定結果を、送液装置30に出力し、送液装置30に、リザーバー20に貯水された水を、植物栽培装置40の土43に供給させる。 And if the moisture content adjustment part 60 determines that the moisture content of the soil 43 measured by the soil moisture sensor 44 is less than a preset moisture content, the determination result is output to the fluid delivery device 30 to deliver the fluid. The apparatus 30 causes the water stored in the reservoir 20 to be supplied to the soil 43 of the plant cultivation apparatus 40.
 これにより、土43が水不足となり、栽培されている植物41が枯れることを防止することができる。 This can prevent the soil 43 from running out of water and the cultivated plant 41 from withering.
 一方、水分量調整部60は、土壌水分センサ44が測定した土43の水分量は、予め設定された水分量以上であると判定すると、当該判定結果を、送液装置30に出力し、送液装置30が、リザーバー20に貯水された水を、植物栽培装置40の土43に供給している場合は、水の供給を停止させる。 On the other hand, if the water content adjusting unit 60 determines that the water content of the soil 43 measured by the soil water sensor 44 is equal to or greater than a preset water content, the determination result is output to the liquid delivery device 30 and sent. When the liquid device 30 supplies the water stored in the reservoir 20 to the soil 43 of the plant cultivation device 40, the supply of water is stopped.
 これにより、土43への水の供給が過剰となり、栽培されている植物41が枯れることを防止することができる。 This can prevent the water supply to the soil 43 from becoming excessive and the plant 41 being cultivated from withering.
 このようにして、水分量調整部60は、これをあらかじめ設定した水分量と、土43の水分量とを比較して、送液装置30のON/OFFを制御したり、送液装置30の水分の供給速度を増加させたり、減速させたりする。 In this way, the moisture amount adjusting unit 60 compares the moisture amount set in advance with the moisture amount of the soil 43 to control the ON / OFF of the liquid feeding device 30 or the liquid feeding device 30. Increase or slow the moisture supply rate.
 このため、植物41の根圏の水分量を自動で管理することができ、土43を、栽培する植物41に適した水分量に管理することができる。なお、水分量調整部60が行う処理の流れは後述する。 For this reason, the water content in the rhizosphere of the plant 41 can be automatically managed, and the soil 43 can be managed in a water content suitable for the plant 41 to be cultivated. The flow of processing performed by the moisture amount adjusting unit 60 will be described later.
 このように植物栽培システム1は、結露装置10と、結露装置10の排水管14を通って流入してくる水を貯水するリザーバー20と、植物41を栽培する植物栽培装置40と、リザーバー20に貯水された水を、植物41に供給する送液装置30とを備えている。 As described above, the plant cultivation system 1 includes the dew condensation device 10, the reservoir 20 that stores water flowing in through the drain pipe 14 of the dew condensation device 10, the plant cultivation device 40 that grows the plant 41, and the reservoir 20. And a liquid feeding device 30 that supplies the stored water to the plant 41.
 これにより、結露装置10で生成された水は、排水管14を通ってリザーバー20に貯水される。そして、送液装置30によって、リザーバー20に貯水された水は、植物栽培装置40で栽培されている植物41に供給される。 Thus, the water generated by the dew condensation device 10 is stored in the reservoir 20 through the drain pipe 14. Then, the water stored in the reservoir 20 is supplied to the plant 41 cultivated by the plant cultivation device 40 by the liquid feeding device 30.
 ここで、土43の表面を見ただけでは、土43が乾燥しているか否かを判断することはわかりづらく、特に夏場は、土43の水分の蒸発が早いので、土43を水不足にしてしまう場合がある。 Here, it is difficult to determine whether or not the soil 43 is dry only by looking at the surface of the soil 43. Especially in the summer, the moisture of the soil 43 evaporates quickly. May end up.
 そこで、植物栽培システム1では、上述したように、土壌水分センサ44で測定した水分量が、予め設定した水分量となっているかを判断して、土43の水分量を調整するので、土43の環境を、植物41の種類に適した環境に維持することができる。 Therefore, in the plant cultivation system 1, as described above, it is determined whether the moisture amount measured by the soil moisture sensor 44 is a preset moisture amount, and the moisture amount of the soil 43 is adjusted. Can be maintained in an environment suitable for the type of plant 41.
 このようにして、植物栽培システム1では、結露装置10で生成された水は、植物栽培装置40で栽培されている植物41に自動で供給することができるので、植物41に水を供給するために水を持ち運ぶ手間を省くことができる。 In this way, in the plant cultivation system 1, the water generated by the dew condensation device 10 can be automatically supplied to the plant 41 cultivated by the plant cultivation device 40, so that water is supplied to the plant 41. This saves you the trouble of carrying water.
 (結露装置の構成)
 次に、図2を用いて、結露装置10の詳細な構成について説明する。
(Condensation device configuration)
Next, the detailed structure of the dew condensation apparatus 10 is demonstrated using FIG.
 図2は、結露装置10の構成を表す断面図である。 FIG. 2 is a cross-sectional view showing the configuration of the dew condensation apparatus 10.
 結露装置10の本体11は、上方から下方にかけて、順に配された、熱電素子格納部15(本体上部)と、空気用フィルタ16と、本体底部17とを備えている。 The main body 11 of the dew condensation apparatus 10 includes a thermoelectric element storage portion 15 (main body upper portion), an air filter 16 and a main body bottom portion 17 which are arranged in order from the upper side to the lower side.
 熱電素子格納部15内には、熱電素子5が配されている。熱電素子5は、相対的に上方に配されている高温側の熱電素子5aと、高温側の熱電素子5aの下方に配されている低温側の熱電素子5bとからなる。 A thermoelectric element 5 is arranged in the thermoelectric element storage unit 15. The thermoelectric element 5 includes a high-temperature-side thermoelectric element 5a disposed relatively upward and a low-temperature-side thermoelectric element 5b disposed below the high-temperature-side thermoelectric element 5a.
 また、結露装置10は、高温側温度計6aと、低温側温度計6bと、温湿度計6cとを備えている。 Further, the dew condensation apparatus 10 includes a high temperature side thermometer 6a, a low temperature side thermometer 6b, and a temperature and humidity meter 6c.
 高温側温度計6aは、熱電素子5aの温度を測定するための温度計である。高温側温度計6aは、熱電素子5aの近傍であり、熱電素子格納部15の上面に配されている。高温側温度計6aは、高温側の熱電素子5aの温度Thを測定し、当該測定した高温側の熱電素子5aの温度Thを温度制御部70に出力する。 The high temperature side thermometer 6a is a thermometer for measuring the temperature of the thermoelectric element 5a. The high temperature side thermometer 6 a is arranged in the vicinity of the thermoelectric element 5 a and on the upper surface of the thermoelectric element storage unit 15. The high temperature side thermometer 6 a measures the temperature Th of the high temperature side thermoelectric element 5 a and outputs the measured temperature Th of the high temperature side thermoelectric element 5 a to the temperature control unit 70.
 低温側温度計6bは熱電素子5bの温度を測定するための温度計である。低温側温度計6bは、熱電素子5bの近傍であり、熱電素子格納部15の下面に配されている。低温側温度計6bは、低温側の熱電素子5bの温度Tlを測定し、当該測定した低温側の熱電素子5bの温度Tlを温度制御部70に出力する。 The low temperature side thermometer 6b is a thermometer for measuring the temperature of the thermoelectric element 5b. The low temperature side thermometer 6 b is disposed in the vicinity of the thermoelectric element 5 b and on the lower surface of the thermoelectric element storage unit 15. The low temperature side thermometer 6 b measures the temperature Tl of the low temperature side thermoelectric element 5 b, and outputs the measured temperature Tl of the low temperature side thermoelectric element 5 b to the temperature control unit 70.
 温湿度計6cは空気用フィルタ16を介して本体11の内部に流入する空気の温湿度を測定するための温湿度計である。温湿度計6cは、空気用フィルタ16の近傍であり、熱電素子格納部15の側面に配されている。温湿度計6cは、結露装置10の外部の空気の湿度Ha、結露装置10の外部の空気の温度Taを測定し、当該測定した結露装置10の外部の空気の湿度Ha、結露装置10の外部の空気の温度Taを温度制御部70に出力する。 The temperature / humidity meter 6 c is a temperature / humidity meter for measuring the temperature / humidity of the air flowing into the main body 11 through the air filter 16. The thermohygrometer 6 c is located near the air filter 16 and is disposed on the side surface of the thermoelectric element storage unit 15. The temperature / humidity meter 6c measures the humidity Ha of the air outside the dew condensation device 10 and the temperature Ta of the air outside the dew condensation device 10 and measures the measured air humidity Ha outside the dew condensation device 10 and the outside of the dew condensation device 10. The air temperature Ta is output to the temperature control unit 70.
 高温側温度計6a、低温側温度計6b、及び温湿度計6cと、温度制御部70とは、有線又は無線により、高温側温度計6a、低温側温度計6b、及び温湿度計6cのそれぞれが測定した温度、湿度を送信可能に接続されている。 The high temperature side thermometer 6a, the low temperature side thermometer 6b, the temperature / humidity meter 6c, and the temperature controller 70 are wired or wirelessly connected to the high temperature side thermometer 6a, the low temperature side thermometer 6b, and the temperature / humidity meter 6c, respectively. Is connected so that the measured temperature and humidity can be transmitted.
 冷却ファン2から送風されてきた空気Aは、熱電素子格納部15の上面を通過する。このようにして、冷却ファン2から送風されてきた空気Aによって、熱電素子格納部15及び熱電素子5が冷やされる。このようにして、熱電素子格納部15及び熱電素子5の温度調整がなされる。すなわち、本実施の形態に係る植物栽培システム1では、冷却ファン2は、水平方向に空気Aを送風する。 The air A blown from the cooling fan 2 passes through the upper surface of the thermoelectric element storage unit 15. In this manner, the thermoelectric element storage unit 15 and the thermoelectric element 5 are cooled by the air A blown from the cooling fan 2. In this manner, the temperature of the thermoelectric element storage unit 15 and the thermoelectric element 5 is adjusted. That is, in the plant cultivation system 1 according to the present embodiment, the cooling fan 2 blows the air A in the horizontal direction.
 本体内部11aは、熱電素子格納部15と、空気用フィルタ16と、本体底部17とによって構成されている空間である。また、本体内部11aの上面は、熱電素子格納部15の底面である。 The main body interior 11 a is a space constituted by the thermoelectric element storage portion 15, the air filter 16, and the main body bottom portion 17. The upper surface of the main body interior 11 a is the bottom surface of the thermoelectric element storage unit 15.
 高温側の熱電素子5aと、低温側の熱電素子5bとによって、熱電素子格納部15に温度差が設けられる。これにより、低温側の熱電素子5bの近傍の熱電素子格納部15の空気、すなわち、本体内部11aの空気中の水分が結露する。このようにして、本体内部11aの上面に結露が付着する。 A temperature difference is provided in the thermoelectric element storage section 15 by the thermoelectric element 5a on the high temperature side and the thermoelectric element 5b on the low temperature side. As a result, moisture in the air in the thermoelectric element storage 15 near the thermoelectric element 5b on the low temperature side, that is, moisture in the air inside the main body 11a is condensed. In this way, condensation adheres to the upper surface of the main body inside 11a.
 空気用フィルタ16は、本体内部11aに流入する空気用のフィルタである。空気用フィルタ16として、例えば、HEPAフィルタ(High Efficiency Particulate Air Filter)を用いることができる。 The air filter 16 is a filter for air flowing into the main body inside 11a. As the air filter 16, for example, a HEPA filter (High (Efficiency ParticulateicAir Filter) can be used.
 本体内部11aは、上述したように減圧されている。すなわち、本体内部11aの気圧は、大気圧より低い。 The interior 11a of the main body is decompressed as described above. That is, the atmospheric pressure inside the main body 11a is lower than the atmospheric pressure.
 このため、本体11の外側の空気は、空気用フィルタ16を通って、本体内部11aに流入する。このように、本体内部11aに流入する空気は、空気用フィルタ16を通っているので、本体内部11aに、バクテリア、カビ、藻類が混入することを防止することができる。 For this reason, the air outside the main body 11 flows into the main body interior 11a through the air filter 16. Thus, since the air flowing into the main body interior 11a passes through the air filter 16, it is possible to prevent bacteria, fungi, and algae from entering the main body interior 11a.
 本体底部17には開口17aが設けられている。この本体底部17の開口17aに配管12が接続されている。そして、本体底部17は、本体内部11aで発生した結露3を開口17aに導くように傾斜している。 The main body bottom 17 is provided with an opening 17a. The pipe 12 is connected to the opening 17 a of the main body bottom 17. And the main body bottom part 17 inclines so that the dew condensation 3 which generate | occur | produced in the main body inside 11a may be guide | induced to the opening 17a.
 上述したように、本体11は、熱電素子格納部15と、空気用フィルタ16と、本体底部17とが、上方から下方に向けて順に配されている。 As described above, in the main body 11, the thermoelectric element storage portion 15, the air filter 16, and the main body bottom portion 17 are arranged in order from the top to the bottom.
 換言すると、熱電素子格納部15と、本体底部17との間は、空気用フィルタ16が配されている。このため、熱電素子格納部15と、本体底部17とは離間して配されることになるので、本体内部11aの体積が大きくなり、空気用フィルタ16を通って、本体内部11aに多くの空気を流入させることができる。このため、本体内部11aで効率よく結露3を発生させることができる。 In other words, the air filter 16 is disposed between the thermoelectric element storage portion 15 and the main body bottom portion 17. For this reason, since the thermoelectric element storage portion 15 and the main body bottom portion 17 are arranged apart from each other, the volume of the main body interior 11a increases, and a large amount of air passes through the air filter 16 to the main body interior 11a. Can be introduced. For this reason, the dew condensation 3 can be efficiently generated in the main body inside 11a.
 さらに、本体底部17は、熱電素子格納部15の下方に配されているので、熱電素子格納部15の表面(下面)に付着した結露3は重力により、本体底部17に落下する。そして、本体底部17に落下した結露3は、傾斜した本体底部17伝って開口17aに集められ、回収される。このように、本体11は、簡単な構成で、熱電素子格納部15に付着した結露3を回収することができる。 Furthermore, since the main body bottom portion 17 is disposed below the thermoelectric element storage portion 15, the dew condensation 3 adhering to the surface (lower surface) of the thermoelectric element storage portion 15 falls to the main body bottom portion 17 due to gravity. The dew condensation 3 that has dropped to the main body bottom 17 is collected in the opening 17a through the inclined main body bottom 17 and collected. Thus, the main body 11 can collect the dew condensation 3 attached to the thermoelectric element storage unit 15 with a simple configuration.
 配管12には、シリコンチューブ等のチューブ連結管12aが設けられている。 The pipe 12 is provided with a tube connecting pipe 12a such as a silicon tube.
 水用フィルタ格納部13内には、水用フィルタ7が配されている。水用フィルタ格納部13内は、上述した減圧・送風装置(送風装置)50により減圧されている。すなわち、水用フィルタ格納部13内は、水用フィルタ7の上方に比べ、水用フィルタ7の下方の方が気圧が低い。このため、結露装置10の本体内部11aから流れてきた結露3は、水用フィルタ7を通過する。 A water filter 7 is disposed in the water filter storage unit 13. The inside of the water filter storage unit 13 is decompressed by the decompression / blower device (blower device) 50 described above. That is, in the water filter storage unit 13, the air pressure is lower in the lower part of the water filter 7 than in the upper part of the water filter 7. For this reason, the dew condensation 3 that has flowed from the main body inside 11 a of the dew condensation device 10 passes through the water filter 7.
 水用フィルタ7は、例えば、芳香族ポリアミドなどから構成されるメンブレンフィルターである。 The water filter 7 is a membrane filter made of, for example, aromatic polyamide.
 水用フィルタ7の孔径は、空気用フィルタ16の孔径より小さい。一例として、水用フィルタ7の孔径は5μm程度であり、空気用フィルタ16の孔径は20~30μm程度である。 The hole diameter of the water filter 7 is smaller than the hole diameter of the air filter 16. As an example, the hole diameter of the water filter 7 is about 5 μm, and the hole diameter of the air filter 16 is about 20 to 30 μm.
 これにより、結露装置10の本体内部11aの局所的な温度変化でできた氷や、空気用フィルタ16で濾過しきれなかった粒子などを取り除き、水用フィルタ7自体の寿命を延ばすことができる。さらに、結露3のコンタミネーション(以下、コンタミと称する)防止の信頼性を向上することができる。 This makes it possible to remove the ice formed by the local temperature change in the main body inside 11a of the dew condensation device 10 and the particles that could not be filtered by the air filter 16 and extend the life of the water filter 7 itself. Furthermore, the reliability of preventing contamination 3 (hereinafter referred to as contamination) of condensation 3 can be improved.
 なお、水用フィルタ7は、複数設置することで、多段式にしてもよい。これにより、さらに、結露3のコンタミ防止の信頼性を向上することができる。 It should be noted that a plurality of water filters 7 may be installed in a multistage manner. Thereby, the reliability of contamination prevention of condensation 3 can be further improved.
 水用フィルタ格納部13の下面には、排水管14が接続されている。そして、排水管14のうち、水用フィルタ格納部13と接続されている一方の端部の近傍には、シリコンチューブ等連結管14aが配されている。 A drain pipe 14 is connected to the lower surface of the water filter storage unit 13. In the vicinity of one end of the drain pipe 14 connected to the water filter storage section 13, a connecting pipe 14 a such as a silicon tube is disposed.
 このように、水用フィルタ格納部13の上下にそれぞれ連結管12aと、連結管14aとを設けることで、水用フィルタ格納部13を取り外し可能な構成としている。水用フィルタ7は、上述したように孔径が空気用フィルタ16より小さく、目詰まりがしやすい。このため、水用フィルタ格納部13の上下に連結管12a・14aを設けることで、水用フィルタ7を交換しやすい構成としている。 Thus, by providing the connecting pipe 12a and the connecting pipe 14a above and below the water filter storage section 13, respectively, the water filter storage section 13 can be removed. As described above, the water filter 7 has a smaller hole diameter than the air filter 16 and is easily clogged. For this reason, it is set as the structure which is easy to replace | exchange the water filter 7 by providing connection pipe 12a * 14a on the upper and lower sides of the water filter storage part 13. FIG.
 また、上述したように、本体内部11aの空気は、空気用フィルタ16でフィルタリング、すなわち、除菌されたきれいな空気なので、本体内部11aで発生した結露3も、バクテリア、カビや藻類の胞子等が除菌されたきれいなものである。 In addition, as described above, the air inside the main body 11a is clean air that has been filtered by the air filter 16, that is, sterilized, so that the condensation 3 generated inside the main body 11a is also caused by bacteria, mold, algae spores, and the like. It is clean and sterilized.
 このように、本体11の下方に、水用フィルタ7が配されているので、本体底部17の開口17aに導かれた結露3は、重力により本体底部17の開口17aを流れ、水用フィルタ7を透過する。これにより、さらに、本体内部11aで発生した結露3のバクテリア、カビや藻類の胞子等が除菌される。 Thus, since the water filter 7 is arranged below the main body 11, the dew condensation 3 guided to the opening 17 a of the main body bottom portion 17 flows through the opening 17 a of the main body bottom portion 17 by gravity, and the water filter 7. Transparent. Thereby, bacteria of dew condensation 3, mold, algae spores and the like generated in the inside 11a of the main body are further sterilized.
 そして、水用フィルタ7を透過した、結露3は、排水管14を流れ、植物41に供給される。このようにして、植物41に供給する水として、充分に除菌された水を植物41に供給することができる。 Then, the dew condensation 3 that has passed through the water filter 7 flows through the drain pipe 14 and is supplied to the plant 41. In this way, sufficiently sterilized water can be supplied to the plant 41 as the water to be supplied to the plant 41.
 上述した特許文献1の水生成装置100では、飲み水を生成しているので、紫外線により、生成した水や、コールドシンク105、ヒートシンク106を除菌する必要があり、装置が大型し、複雑化する。 In the water generating apparatus 100 of Patent Document 1 described above, since drinking water is generated, it is necessary to sterilize the generated water, the cold sink 105, and the heat sink 106 with ultraviolet rays, and the apparatus becomes large and complicated. To do.
 また、特許文献1の水生成装置500では、投入するエネルギーに対し、得られる水の量が少なく、水資源が豊富な国では利点が見出し難い。 Also, in the water generating device 500 of Patent Document 1, it is difficult to find an advantage in a country where the amount of water obtained is small relative to the input energy and the water resources are abundant.
 一方、結露装置10によると、上述したように、簡単な構成で、植物41に供給する水を生成することができる。また、結露装置10は、給水管理の手間を軽減し、利便性が高い。 On the other hand, according to the dew condensation apparatus 10, the water supplied to the plant 41 can be generated with a simple configuration as described above. Moreover, the dew condensation apparatus 10 reduces the labor of water supply management, and is highly convenient.
 このため、特に、家庭で、手軽に植物41を栽培することができる。 Therefore, the plant 41 can be easily cultivated particularly at home.
 さらに、結露装置10は、熱電素子5を利用して結露3を発生させている。このように、熱電素子5を利用することで、例えば、コンプレッサーなどを用いる冷却機器に比べ小型化・軽量化が可能である。さらに、例えば、デシカント(吸着剤)を利用して、結露を収集する機器と比べて、水の回収が容易で、不純物混入のリスクが小さい。 Furthermore, the dew condensation device 10 generates dew condensation 3 using the thermoelectric element 5. Thus, by using the thermoelectric element 5, for example, it is possible to reduce the size and weight compared to a cooling device using a compressor or the like. Furthermore, for example, compared to a device that collects dew condensation using a desiccant (adsorbent), water can be easily recovered, and the risk of contamination is small.
 (温度制御部70の動作説明)
 次に、図1~図3を用いて温度制御部70の処理の流れについて説明する。図3は、植物栽培システム1の温度制御部70の処理の流れを説明する図である。
(Description of operation of temperature controller 70)
Next, a processing flow of the temperature control unit 70 will be described with reference to FIGS. FIG. 3 is a diagram for explaining a processing flow of the temperature control unit 70 of the plant cultivation system 1.
 温度制御部70は、露点温度算出部71と、冷却ファン駆動制御部72と、温度管理部73とを備えている。 The temperature control unit 70 includes a dew point temperature calculation unit 71, a cooling fan drive control unit 72, and a temperature management unit 73.
 温度制御部70は、高温側温度計6aから出力されてきた高温側の熱電素子5aの温度Th、低温側温度計6bから出力されてきた低温側の熱電素子5bの温度Tl、温湿度計6cから出力されてきた結露装置10の外部の空気の湿度Ha、結露装置10の外部の空気の温度Taを取得する(ステップS11)。なお、温度Thと温度Tlとの温度差ΔTとする。 The temperature controller 70 includes a temperature Th of the high temperature side thermoelectric element 5a output from the high temperature side thermometer 6a, a temperature Tl of the low temperature side thermoelectric element 5b output from the low temperature side thermometer 6b, and a thermohygrometer 6c. The humidity Ha of the air outside the dew condensation device 10 and the temperature Ta of the air outside the dew condensation device 10 that have been output from are acquired (step S11). It is assumed that the temperature difference ΔT between the temperature Th and the temperature Tl.
 露点温度算出部71は、温度制御部70が取得した空気の湿度Haと、空気の温度Taとから、結露装置10の外部の空気の露点温度Tdを算出すると共に、算出した露点温度Tdから、温度Tlの目標設定温度Ttを設定する(ステップS12)。 The dew point temperature calculation unit 71 calculates the dew point temperature Td of the air outside the dew condensation device 10 from the air humidity Ha acquired by the temperature control unit 70 and the air temperature Ta, and from the calculated dew point temperature Td, A target set temperature Tt for the temperature Tl is set (step S12).
 ここで、露点温度算出部71は、目標設定温度Ttを、算出した露点温度Tdより低くなる(Td>Tt)ように設定する。目標設定温度Ttは、露点温度算出部71が算出した露点温度Tdから値を演算できるように、設定方法(演算方法)を温度制御部70に記憶しておく。 Here, the dew point temperature calculation unit 71 sets the target set temperature Tt to be lower than the calculated dew point temperature Td (Td> Tt). A setting method (calculation method) is stored in the temperature control unit 70 so that the target set temperature Tt can be calculated from the dew point temperature Td calculated by the dew point temperature calculation unit 71.
 そして、露点温度算出部71は、算出した露点温度Tdと、設定した目標設定温度Ttとを冷却ファン駆動制御部72に出力する。 The dew point temperature calculating unit 71 outputs the calculated dew point temperature Td and the set target set temperature Tt to the cooling fan drive control unit 72.
 冷却ファン駆動制御部72は、露点温度算出部71から取得した露点温度Tdが、Td≦0℃のとき(ステップS13のYES)、冷却ファン2を停止するように制御する。これにより、冷却ファン2は駆動を停止する(ステップS14)。そして、ステップS11の処理に戻る。 The cooling fan drive control unit 72 controls the cooling fan 2 to stop when the dew point temperature Td acquired from the dew point temperature calculation unit 71 is Td ≦ 0 ° C. (YES in step S13). Thereby, the cooling fan 2 stops driving (step S14). And it returns to the process of step S11.
 これは、0℃以下では水が凍ってしまうためである。すなわち、露点温度TdがTd≦0℃のときは、結露装置10内の結露3が凍ってしまい、結露3を回収することができない。このため、露点温度TdがTd>0℃のとき、すなわち、冷却ファン駆動制御部72は、冷却ファン2を、結露3が回収できるときにのみ運転させる。 This is because water freezes below 0 ° C. That is, when the dew point temperature Td is Td ≦ 0 ° C., the dew condensation 3 in the dew condensation apparatus 10 is frozen, and the dew condensation 3 cannot be recovered. For this reason, when the dew point temperature Td is Td> 0 ° C., that is, the cooling fan drive controller 72 operates the cooling fan 2 only when the dew condensation 3 can be recovered.
 ステップS13で、Td>0のとき(ステップS13のNO)、冷却ファン駆動制御部72は、露点温度算出部71から取得した目標設定温度Ttと、温度制御部70が取得した温度T1とを比較し、温度Tlを0(℃)<Tl(℃)<Tt(℃)となるように、冷却ファン2の回転数Rや、冷却ファン2のオン、オフ時間を制御する。 In step S13, when Td> 0 (NO in step S13), the cooling fan drive controller 72 compares the target set temperature Tt acquired from the dew point temperature calculator 71 with the temperature T1 acquired by the temperature controller 70. Then, the rotational speed R of the cooling fan 2 and the on / off time of the cooling fan 2 are controlled so that the temperature Tl becomes 0 (° C.) <Tl (° C.) <Tt (° C.).
 すなわち、冷却ファン駆動制御部72は、温度制御部70が取得した温度Tlが、0(℃)<Tl(℃)<Tt(℃)であれば(ステップS15のYES)、冷却ファン2の回転数Rをそのまま維持するように制御する。これにより、冷却ファン2は、回転数Rをそのまま維持して駆動する(ステップS16)。そして、ステップS11に戻る。 That is, the cooling fan drive control unit 72 rotates the cooling fan 2 if the temperature Tl acquired by the temperature control unit 70 is 0 (° C.) <Tl (° C.) <Tt (° C.) (YES in step S15). Control is performed so as to maintain the number R as it is. As a result, the cooling fan 2 is driven while maintaining the rotational speed R (step S16). Then, the process returns to step S11.
 また、冷却ファン駆動制御部72は、温度制御部70が取得した温度Tlが、Tl(℃)≧Tt(℃)であると判定すると(ステップS15のNOの後、ステップS17のYES)、冷却ファン2の回転数Rを上げるように制御する。これにより、冷却ファン2は、回転数Rを上げて駆動し(ステップS18)、温度Tlが目標設定温度Ttより小さくなるように熱電素子5a・5bの温度を制御する。 In addition, when the cooling fan drive control unit 72 determines that the temperature Tl acquired by the temperature control unit 70 is Tl (° C.) ≧ Tt (° C.) (NO in step S15, YES in step S17), cooling Control is performed to increase the rotational speed R of the fan 2. Thereby, the cooling fan 2 is driven by increasing the rotation speed R (step S18), and controls the temperature of the thermoelectric elements 5a and 5b so that the temperature Tl becomes smaller than the target set temperature Tt.
 また、ステップS17でNOの場合、Tl(℃)≦0(℃)なので、冷却ファン駆動制御部72は、冷却ファン2の回転数Rを下げるか、冷却ファン2の駆動を停止するように制御する。これにより、冷却ファン2は、回転数Rを下げるか、駆動を停止し(ステップS19)、温度Tlが0℃より大きくなるように、熱電素子5a・5bの温度を制御する。そして、ステップS11に戻る。 If NO in step S17, since Tl (° C.) ≦ 0 (° C.), the cooling fan drive control unit 72 controls to reduce the rotation speed R of the cooling fan 2 or to stop driving the cooling fan 2. To do. Thereby, the cooling fan 2 reduces the rotation speed R or stops driving (step S19), and controls the temperature of the thermoelectric elements 5a and 5b so that the temperature Tl becomes higher than 0 ° C. Then, the process returns to step S11.
 また、ステップS11の処理の際、あわせて、温度管理部73が、温度制御部70が取得した温度Thや、温度差ΔTが異常な値(予め設定された限界値を越える値)になっていないかを監視するようにしてもよい。 In addition, at the time of the process of step S11, the temperature management unit 73 also has an abnormal value (a value exceeding a preset limit value) for the temperature Th acquired by the temperature control unit 70 and the temperature difference ΔT. You may make it monitor whether there is.
 温度管理部73は、温度Thや、温度差ΔTが異常な値となっていると判定すると、冷却ファン駆動制御部72に動作停止通知を出力する。冷却ファン駆動制御部72は、温度管理部73から動作停止通知を取得すると、冷却ファン2の駆動を強制的に停止する。 When the temperature management unit 73 determines that the temperature Th and the temperature difference ΔT are abnormal values, the temperature management unit 73 outputs an operation stop notification to the cooling fan drive control unit 72. When the cooling fan drive control unit 72 receives the operation stop notification from the temperature management unit 73, the cooling fan drive control unit 72 forcibly stops driving the cooling fan 2.
 このように、冷却ファン駆動制御部72は、熱電素子5bの温度Tlを、露点温度Tdより温度が低い目標設定温度Ttより低くなるように冷却ファン2の回転数Rを制御する。このため、熱電素子5bの温度Tlを、確実に、露点温度Tdより小さくすることができ、結露発生の効率を向上させることができる。 Thus, the cooling fan drive control unit 72 controls the rotational speed R of the cooling fan 2 so that the temperature Tl of the thermoelectric element 5b is lower than the target set temperature Tt that is lower than the dew point temperature Td. For this reason, the temperature Tl of the thermoelectric element 5b can be reliably made smaller than the dew point temperature Td, and the efficiency of dew condensation generation can be improved.
 なお、結露発生の効率は下がるが、目標設定温度Ttを設定せず、ステップS15で、冷却ファン駆動制御部72は、温度Tlを0(℃)<Tl(℃)<Td(℃)の範囲内となるように冷却ファン2の回転数Rを制御するようにしてもよい。 Although the efficiency of dew condensation is reduced, the target set temperature Tt is not set, and in step S15, the cooling fan drive controller 72 sets the temperature Tl to a range of 0 (° C.) <Tl (° C.) <Td (° C.). You may make it control the rotation speed R of the cooling fan 2 so that it may become inside.
 次に、熱電素子5a・5bの温度制御の具体例について説明する。 Next, a specific example of temperature control of the thermoelectric elements 5a and 5b will be described.
 温度制御部70は、以下のように、熱電素子5a・5bの温度制御を行う。 The temperature controller 70 controls the temperature of the thermoelectric elements 5a and 5b as follows.
 一例として、目標設定温度Ttを、Tt=Td/2として演算するように設定方法が温度制御部70に記憶されている場合について説明する。また、前提としてΔT=25(℃)とする。 As an example, a case where a setting method is stored in the temperature control unit 70 so as to calculate the target set temperature Tt as Tt = Td / 2 will be described. As a premise, ΔT = 25 (° C.).
 温度制御部70は、温湿度計6cから温度Ta=25℃及び湿度Ha=40%RHを取得する(ステップS11)。また、温度制御部70は、高温側温度計6aから出力されてきた高温側の熱電素子5aの温度Th=30.2(℃)、低温側温度計6bから出力されてきた低温側の熱電素子5bの温度Tl=5.2(℃)を取得する(ステップS11)。 Temperature controller 70 acquires temperature Ta = 25 ° C. and humidity Ha = 40% RH from thermohygrometer 6c (step S11). Further, the temperature control unit 70 includes a temperature Th = 30.2 (° C.) of the high temperature side thermoelectric element 5a output from the high temperature side thermometer 6a, and a low temperature side thermoelectric element output from the low temperature side thermometer 6b. The temperature Tl = 5.2 (° C.) of 5b is acquired (step S11).
 また、温度管理部73は、温度制御部70が取得した温度T=30.2℃や、温度Tl=5.2℃と温度T=30.2℃との温度差ΔT25℃が異状な値になっているか否かを監視する。 Further, the temperature management unit 73 sets the temperature T = 30.2 ° C. acquired by the temperature control unit 70 or the temperature difference ΔT 25 ° C. between the temperature Tl = 5.2 ° C. and the temperature T = 30.2 ° C. to an abnormal value. Monitor whether or not
 次に、露点温度算出部71は、温度制御部70が取得した温度Ta=25℃及び湿度Ha=40%RHから、露点温度Td=10.5℃と算出し、さらに、算出した露点温度Td=10.5℃から目標設定温度Ttを5.25℃(=Td/2)と算出し、設定する(ステップS12)。露点温度算出部71は、算出した露点温度Td=10.5℃、及び設定した目標設定温度Tt=5.25℃を冷却ファン駆動制御部72に出力する。 Next, the dew point temperature calculation unit 71 calculates the dew point temperature Td = 10.5 ° C. from the temperature Ta = 25 ° C. and the humidity Ha = 40% RH acquired by the temperature control unit 70, and further calculates the calculated dew point temperature Td. The target set temperature Tt is calculated as 5.25 ° C. (= Td / 2) from 10.5 ° C. and set (step S12). The dew point temperature calculation unit 71 outputs the calculated dew point temperature Td = 10.5 ° C. and the set target set temperature Tt = 5.25 ° C. to the cooling fan drive control unit 72.
 次に、冷却ファン駆動制御部72は、露点温度Td=10.5℃が0℃より大きいので(ステップS13のNO)、冷却ファン駆動制御部72は、露点温度算出部71から取得した目標設定温度Tt=5.25℃と、温度制御部70が取得した温度Tl=5.2℃とを比較する。そして、冷却ファン駆動制御部72は、温度Tl=5.2℃が、目標設定温度Tt=5.25℃を下回っており、0℃より大きいので(ステップS15のYES)、回転数Rをそのまま維持するように冷却ファン2の駆動を制御する。これにより、冷却ファン2の回転数Rはそのまま維持される(ステップS16)。 Next, since the dew point temperature Td = 10.5 ° C. is higher than 0 ° C. (NO in step S13), the cooling fan drive controller 72 sets the target setting acquired from the dew point temperature calculator 71. The temperature Tt = 5.25 ° C. is compared with the temperature Tl = 5.2 ° C. acquired by the temperature control unit 70. Then, the cooling fan drive controller 72 determines that the temperature Tl = 5.2 ° C. is lower than the target set temperature Tt = 5.25 ° C. and higher than 0 ° C. (YES in step S15), so that the rotational speed R remains unchanged. The driving of the cooling fan 2 is controlled so as to be maintained. Thereby, the rotation speed R of the cooling fan 2 is maintained as it is (step S16).
 (水分量調整部60の処理の流れ)
 図4を用いて、水分量調整部60の処理の流れについて説明する。
(Processing flow of the water content adjusting unit 60)
With reference to FIG. 4, the flow of processing of the moisture amount adjusting unit 60 will be described.
 図4は、植物栽培システム1の水分量調整部60の処理の流れを説明する図である。 FIG. 4 is a diagram for explaining the flow of processing of the water content adjustment unit 60 of the plant cultivation system 1.
 一例として、土43の水分量を40%以上60%以下で管理する場合、水分量記憶部61に、予め、土43の水分量の下限値40%と、上限値60%とを設定し記憶しておく(ステップS21)。水分量調整部60を動作させると、水分量調整部60は、水分量記憶部61に記憶されている土43の水分量の下限値40%と、上限値60%とを取得する。 As an example, when managing the moisture content of the soil 43 at 40% or more and 60% or less, a lower limit value 40% and an upper limit value 60% of the moisture content of the soil 43 are set and stored in the moisture content storage unit 61 in advance. (Step S21). When the moisture amount adjusting unit 60 is operated, the moisture amount adjusting unit 60 acquires the lower limit value 40% and the upper limit value 60% of the moisture amount of the soil 43 stored in the moisture amount storage unit 61.
 そして、土壌水分センサ44は、土43の水分量を測定したデータを、所定時間間隔(例えば1秒おき)に、水分量調整部60に出力する。 Then, the soil moisture sensor 44 outputs data obtained by measuring the moisture content of the soil 43 to the moisture content adjusting unit 60 at predetermined time intervals (for example, every 1 second).
 水分量調整部60は、土壌水分センサ44から出力されてくる土43の水分量の測定データを取得し(ステップS22)、常時監視する。 The moisture content adjustment unit 60 acquires the measurement data of the moisture content of the soil 43 output from the soil moisture sensor 44 (step S22) and constantly monitors it.
 そして、水分量調整部60は、土壌水分センサ44から出力されてくる土43の水分量の測定データで、土43の水分量が下限値(40%)を下回ったと判定すると(S23のYES)、水分量調整部60は、送液装置30を、水分の供給速度を増加させるように制御する。これにより、送液装置30は、水分の供給速度を増加させる(ステップS24)。そして、ステップS12の処理に戻る。 And if the moisture content adjustment part 60 determines with the moisture content measurement data of the soil 43 output from the soil moisture sensor 44 that the moisture content of the soil 43 has fallen below a lower limit (40%) (YES of S23). The water content adjusting unit 60 controls the liquid feeding device 30 to increase the water supply rate. Thereby, the liquid feeding apparatus 30 increases the supply speed | rate of a water | moisture content (step S24). Then, the process returns to step S12.
 水分量調整部60は、ステップS13の処理でNOと判定したあと、土壌水分センサ44から出力されてくる土43の水分量の測定データで、土43の水分量が上限値(60%)を上回ったと判定すると(S25のYES)、水分量調整部60は、送液装置30を、水分の供給を停止するように制御する。これにより、送液装置30は、水分の供給を停止する(ステップS26)。そして、ステップS22の処理に戻る。 After determining NO in the process of step S13, the moisture content adjusting unit 60 is the measurement data of the moisture content of the soil 43 output from the soil moisture sensor 44, and the moisture content of the soil 43 has an upper limit value (60%). If it determines with having exceeded (YES of S25), the moisture content adjustment part 60 will control the liquid feeding apparatus 30 to stop supply of a water | moisture content. Thereby, the liquid feeding apparatus 30 stops supply of a water | moisture content (step S26). Then, the process returns to step S22.
 また、土壌水分センサ44から出力されてくる土43の水分量の測定データには測定ラグがある。 In addition, the measurement data of the moisture content of the soil 43 output from the soil moisture sensor 44 includes a measurement lag.
 このため、例えば、ステップS22で、水分量調整部60は、土壌水分センサ44から出力されてくる土43の水分量の測定データを取得すると(ステップS22)、前回、取得した水分量の測定データと比較し、水分量の増加量が大きいと判定した場合、水分量調整部60は、送液装置30を、水分の供給速度を減少させるように制御するようにしてもよい。これにより、送液装置30は、水分の供給速度を減少させる。そして、ステップS23以降の処理を行う。 Therefore, for example, when the moisture content adjustment unit 60 acquires the measurement data of the moisture content of the soil 43 output from the soil moisture sensor 44 in step S22 (step S22), the moisture content measurement data acquired last time is obtained. When it is determined that the increase amount of the water amount is large, the water amount adjustment unit 60 may control the liquid feeding device 30 so as to decrease the water supply speed. Thereby, the liquid feeding apparatus 30 reduces the supply speed | rate of a water | moisture content. And the process after step S23 is performed.
 〔実施の形態2〕
 次に、図5、6を用いて、本発明の第2の実施の形態に係る植物栽培システムの構成について説明する。なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Next, the structure of the plant cultivation system which concerns on the 2nd Embodiment of this invention is demonstrated using FIG. For convenience of explanation, members having the same functions as those in the drawings described in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図5は、第2の実施の形態にかかる植物栽培システム100の結露装置(水生成装置)110の構成を表す図である。図6は、第2の実施の形態に係る結露装置110が備えている結露発生器111の構成を表す斜視図である。 FIG. 5 is a diagram illustrating a configuration of a dew condensation device (water generation device) 110 of the plant cultivation system 100 according to the second embodiment. FIG. 6 is a perspective view illustrating a configuration of a dew condensation generator 111 provided in the dew condensation apparatus 110 according to the second embodiment.
 本実施の形態に係る植物栽培システム100は、植物栽培システム1が備えていた結露装置10に替えて、結露装置110を備えている点で、植物栽培システム1と相違する。植物栽培システム100の他の構成は植物栽培システム1と同様である。 The plant cultivation system 100 according to the present embodiment is different from the plant cultivation system 1 in that a condensation device 110 is provided instead of the condensation device 10 provided in the plant cultivation system 1. Other configurations of the plant cultivation system 100 are the same as those of the plant cultivation system 1.
 結露装置110は、結露発生器111を備えている点で、結露装置10と相違する。結露装置110の他の構成は、結露装置10と同様である。 The dew condensation device 110 is different from the dew condensation device 10 in that it includes a dew condensation generator 111. Other configurations of the dew condensation device 110 are the same as those of the dew condensation device 10.
 結露発生器111は、本体内部11aであり、熱電素子格納部15の底面(すなわち、本体内部11aの上面)に配されている。結露発生器111は、基板112と、複数の突起部113とから構成されている。 The dew generator 111 is inside the main body 11a, and is arranged on the bottom surface of the thermoelectric element storage 15 (that is, the top surface of the main body inside 11a). The dew condensation generator 111 includes a substrate 112 and a plurality of protrusions 113.
 基板112と、複数の突起部113とは、例えば、アルミニウムや銅などから構成されている。 The substrate 112 and the plurality of protrusions 113 are made of, for example, aluminum or copper.
 基板112は、複数の突起部113の土台である。基板112は、一方の面に複数の突起部113が配されている。そして、基板112の他方の面は、本体内部11aの熱電素子格納部15の底面(すなわち、本体内部11aの上面)に配されている。このように、結露発生器111は、熱電素子格納部15に格納されている熱電素子5a・5bのうち、低温側の熱電素子5bの近傍に配されている。 The substrate 112 is a base for the plurality of protrusions 113. The substrate 112 has a plurality of protrusions 113 on one surface. The other surface of the substrate 112 is disposed on the bottom surface of the thermoelectric element storage 15 in the main body interior 11a (that is, the upper surface of the main body interior 11a). As described above, the dew condensation generator 111 is arranged in the vicinity of the low-temperature-side thermoelectric element 5b among the thermoelectric elements 5a and 5b stored in the thermoelectric element storage unit 15.
 突起部113は、例えば、四角柱や円柱などの柱状形状である。突起部113の基部は、基板112に配されており、先端部は本体底部17と離間している。なお、突起部113の先端部は尖っていてもよい。 The protrusion 113 has, for example, a columnar shape such as a square column or a cylinder. The base of the projection 113 is disposed on the substrate 112, and the tip is separated from the main body bottom 17. Note that the tip of the protrusion 113 may be sharp.
 このように、結露装置110は、本体内部11aであり、熱電素子格納部15aの下面に、基板12を介して、複数の突起部113が配されている。
本体内部11aに、多数の突起部113が配された結露発生器111を備えている。このため、空気用フィルタ16を通過し、本体内部11aに流入した空気は、多数の突起部113や、基板112と接触することで、多数の突起部113や基板112で結露3が発生する。このように、結露装置110は、多数の突起部113が配されているので、本体内部11aの空気の接触面積が大きくなり、本体内部11aでの結露の発生効率を向上させることができる。
As described above, the dew condensation device 110 is the inside 11a of the main body, and a plurality of protrusions 113 are arranged on the lower surface of the thermoelectric element storage portion 15a via the substrate 12.
A dew condensation generator 111 in which a large number of protrusions 113 are arranged is provided inside the main body 11a. For this reason, the air that has passed through the air filter 16 and has flowed into the inside 11 a of the main body comes into contact with the large number of protrusions 113 and the substrate 112, so that condensation 3 occurs at the large number of protrusions 113 and the substrate 112. Thus, since the dew condensation device 110 is provided with a large number of protrusions 113, the air contact area in the main body interior 11a is increased, and the generation efficiency of dew condensation in the main body interior 11a can be improved.
 また、多数の突起部113は、本体内部11aの上面(すなわち、熱電素子格納部15の下面)から、下方に向けて突出するように配されている。このため、突起部113の表面や、基板112の表面で発生して結露3は、突起部113を伝って、速やかに重力により下方に移動する。このため、結露の発生効率を良くすることができる。 Further, the large number of protrusions 113 are arranged so as to protrude downward from the upper surface of the main body interior 11a (that is, the lower surface of the thermoelectric element storage portion 15). For this reason, the dew condensation 3 generated on the surface of the protrusion 113 and the surface of the substrate 112 is quickly moved downward by gravity through the protrusion 113. For this reason, the generation efficiency of dew condensation can be improved.
 さらに、突起部113の表面や、基板112の表面で発生して結露3は、速やかに下方に移動するため、水滴が集まりやすくなり、水滴が大きくなり、速やかに、突起部113の先端部から、本体内部11aの下方へと落下させることができる。このため、結露3を収集する効率を向上させることができる。 Furthermore, since the condensation 3 generated on the surface of the protrusion 113 and the surface of the substrate 112 quickly moves downward, water droplets are likely to collect, the water droplets become large, and immediately from the tip of the protrusion 113. , And can be dropped below the inside 11a of the main body. For this reason, the efficiency which collects the dew condensation 3 can be improved.
 〔実施の形態3〕
 次に、図7を用いて、本発明の第3の実施の形態に係る植物栽培システムの構成について説明する。なお、説明の便宜上、前記実施の形態1、2にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
Next, the structure of the plant cultivation system which concerns on the 3rd Embodiment of this invention is demonstrated using FIG. For convenience of explanation, members having the same functions as those in the drawings described in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
 図7は、第3の実施の形態にかかる植物栽培システム101の結露装置10及び冷却ファン2の構成を表す図である。 FIG. 7 is a diagram illustrating the configuration of the dew condensation device 10 and the cooling fan 2 of the plant cultivation system 101 according to the third embodiment.
 実施形態1、2では、冷却ファン2は、熱電素子格納部15の上面と触れるようにして、水平方向に空気Aを送風していた。一方、本実施の形態に係る植物栽培栽培システム101では、冷却ファン2は、熱電素子格納部15の上方に配されており、熱電素子格納部15の上面に向けて、鉛直方向下向きに空気Aを送風する。 In Embodiments 1 and 2, the cooling fan 2 blows the air A in the horizontal direction so as to touch the upper surface of the thermoelectric element storage unit 15. On the other hand, in the plant cultivation and cultivation system 101 according to the present embodiment, the cooling fan 2 is disposed above the thermoelectric element storage unit 15, and the air A is directed vertically downward toward the upper surface of the thermoelectric element storage unit 15. To blow.
 冷却ファン2から送風された空気Aは、熱電素子格納部15の上面に触れると、熱電素子格納部15の上面の近傍に配されている高温側の熱電素子5aによって温められる。そして、温められた空気Aは、空気用フィルタ16の外側表面を伝って、結露装置10の下方に送られる。このため、空気用フィルタ16の外側表面は、空気Aによって温められる。 When the air A blown from the cooling fan 2 touches the upper surface of the thermoelectric element storage unit 15, it is warmed by the high temperature side thermoelectric element 5 a disposed in the vicinity of the upper surface of the thermoelectric element storage unit 15. The warmed air A is sent below the dew condensation device 10 along the outer surface of the air filter 16. For this reason, the outer surface of the air filter 16 is warmed by the air A.
 このように、空気用フィルタ16の外側表面を温めることで、空気用フィルタ16の外側表面に結露が発生することを防止することができる。これにより、空気用フィルタ16の孔に結露3が付着することにより孔が塞がれ、空気用フィルタ16を通って、本体内部11aに流入する空気の量が低下することを防止することができ、本体内部11aで発生する結露3の量が低下することを防止することができる。 Thus, by heating the outer surface of the air filter 16, it is possible to prevent dew condensation from occurring on the outer surface of the air filter 16. This prevents the condensation 3 from adhering to the holes of the air filter 16 so that the holes are blocked, and the amount of air flowing into the main body interior 11a through the air filter 16 can be prevented from decreasing. It is possible to prevent the amount of condensation 3 generated in the main body inside 11a from being lowered.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 以上のように、本発明の植物供給用の水生成装置は、栽培する植物に供給する水を生成する植物供給用の水生成装置であって、内部で結露を発生させる本体と、上記本体の下方に配され、上記本体の内部で発生した結露のフィルタリングを行うための水用フィルタと、上記水用フィルタを透過した水を、栽培する植物に供給するための供給管とを備え、上記本体は、内部に熱電素子が格納されている熱電素子格納部と、上記本体の内部に流入する空気をフィルタリングするための空気用フィルタと、開口が設けられており、上記本体の内部で発生した結露を上記開口に導くための本体底部とを備えていることを特徴とする。 As described above, the water generating device for supplying plants according to the present invention is a water generating device for supplying plants that generates water to be supplied to plants to be cultivated, and includes a main body that generates dew inside, A water filter disposed below and filtering the condensation generated inside the main body, and a supply pipe for supplying water that has passed through the water filter to a plant to be cultivated; Is provided with a thermoelectric element storage portion in which a thermoelectric element is stored, an air filter for filtering air flowing into the main body, and an opening. And a bottom portion of the main body for guiding the liquid to the opening.
 上記構成によると、上記本体は、上記空気フィルタによりフィルタリングされた空気を、上記本体の内部に流入させるので、上記本体の内部に、バクテリア、カビや藻類の胞子が混入することを防止することができる。すなわち、除菌されたきれいな空気を、上記本体の内部に流入させることができる。 According to the above configuration, since the main body allows the air filtered by the air filter to flow into the main body, it is possible to prevent bacteria, molds, and algae spores from entering the main body. it can. That is, clean air sterilized can flow into the main body.
 そして、上記本体は、内部に熱電素子が格納されている熱電素子格納部を備えているので、上記熱電素子の温度制御を行うことで、上記本体の内部に結露を発生させることができる。 And since the said main body is equipped with the thermoelectric element storage part in which the thermoelectric element is stored in the inside, dew condensation can be generated inside the said main body by controlling the temperature of the said thermoelectric element.
 また、上述したように、上記本体の内部の空気は、除菌されたきれいな空気なので、上記本体の内部で発生した結露も、バクテリア、カビや藻類の胞子等が除菌されたきれいなものである。 In addition, as described above, the air inside the main body is clean air that has been sterilized, so the dew condensation that has occurred inside the main body is also clean, from which bacteria, mold, algae spores, etc. have been sterilized. .
 さらに、上記本体の下方に、上記水用フィルタが配されているので、上記本体底部の開口に導かれた上記本体の内部で発生した結露は、重力により上記開口を流れ、上記水用フィルタを透過する。これにより、さらに、上記本体の内部で発生した結露のバクテリア、カビや藻類の胞子等が除菌される。 Further, since the water filter is arranged below the main body, the dew condensation generated inside the main body led to the opening at the bottom of the main body flows through the opening due to gravity, and the water filter is To Penetrate. This further sterilizes condensation bacteria, mold, algae spores and the like generated inside the main body.
 そして、上記水用フィルタを透過した、上記本体の内部で発生した結露は、上記供給管を流れ、上記植物に供給される。このようにして、植物に供給する水としては、充分に除菌された水を上記植物に供給することができる。 And the dew condensation generated inside the main body that has passed through the water filter flows through the supply pipe and is supplied to the plant. In this way, as the water supplied to the plant, sufficiently sterilized water can be supplied to the plant.
 このように、上記構成によると、簡単な構成で、上記植物に供給する水を生成することができる。 Thus, according to the above configuration, water to be supplied to the plant can be generated with a simple configuration.
 また、上記水用フィルタの孔径は、上記空気用フィルタの孔径より小さいことが好ましい。これにより、上記構成により、植物に供給される水のコンタミネーション防止の信頼性を向上させることができる。 Also, the pore diameter of the water filter is preferably smaller than the pore diameter of the air filter. Thereby, the said structure WHEREIN: The reliability of the contamination prevention of the water supplied to a plant can be improved.
 また、上記熱電素子格納部と、上記空気用フィルタと、上記本体底部とは、上方から下方に向けて順に配されていることが好ましい。上記構成により、上記熱電素子格納部と、上記本体底部との間は、上記空気用フィルタが配されているので、上記熱電素子格納部と、上記本体底部とは離間して配されることになる。このため、上記本体の内部の体積が大きくなり、空気用フィルタを通って、本体の内部に多くの空気を流入させることができるので、本体の内部で効率よく結露を発生させることができる。 Moreover, it is preferable that the thermoelectric element storage unit, the air filter, and the main body bottom are arranged in order from the top to the bottom. With the above configuration, since the air filter is arranged between the thermoelectric element storage part and the main body bottom part, the thermoelectric element storage part and the main body bottom part are arranged apart from each other. Become. For this reason, since the volume inside the said main body becomes large and it can flow in into the inside of a main body through the filter for air, dew condensation can be efficiently generated inside a main body.
 さらに、上記本体底部は、上記熱電素子格納部の下方に配されているので、熱電素子格納部の表面に付着した結露は重力により、上記本体底部に落下する。そして、当該落下した結露を回収される。このため、簡単な構成で、上記熱電素子格納部に付着した結露を回収することができる。 Furthermore, since the bottom part of the main body is arranged below the thermoelectric element storage part, the dew that adheres to the surface of the thermoelectric element storage part falls to the bottom part of the main body due to gravity. And the fallen dew condensation is collected. For this reason, the dew condensation adhering to the said thermoelectric element storage part can be collect | recovered with a simple structure.
 また、上記本体の内部であり、上記熱電素子格納部の下面には、複数の突起部が配されていることが好ましい。上記構成によると、上記本体の内部の多くの空気が、上記複数の突起部と接触することになるので、上記複数の突起部の表面で、多くの結露を発生させることができる。これにより、結露の発生効率を向上することができる。 Also, it is preferable that a plurality of protrusions are arranged inside the main body and on the lower surface of the thermoelectric element storage unit. According to the above configuration, since a large amount of air inside the main body comes into contact with the plurality of protrusions, a large amount of condensation can be generated on the surfaces of the plurality of protrusions. Thereby, the generation efficiency of dew condensation can be improved.
 また、上記本体の内部の気圧は、大気圧より低いことが好ましい。上記構成により、上記空気用フィルタを通して、外部の空気を本体の内部に流入させることができる。 Moreover, it is preferable that the pressure inside the main body is lower than the atmospheric pressure. With the above configuration, external air can be introduced into the main body through the air filter.
 また、本発明の植物栽培システムは、上記熱電素子格納部に風を送る送風部と、当該送風部の駆動を制御する送風制御部とを備えていることが好ましい。 Moreover, it is preferable that the plant cultivation system of this invention is provided with the ventilation part which sends a wind to the said thermoelectric element storage part, and the ventilation control part which controls the drive of the said ventilation part.
 上記構成によると、上記送風制御部によって上記送風部の風を送る強度を制御することで、上記熱電素子格納部に送られる風の強さを制御することができ、当該熱電素子格納部内の熱電素子の温度調整を行うことができる。 According to the above configuration, the strength of the wind sent from the air blowing unit is controlled by the air blowing control unit, whereby the strength of the wind sent to the thermoelectric element housing unit can be controlled, and the thermoelectric power in the thermoelectric element housing unit can be controlled. The temperature of the element can be adjusted.
 このため、上記熱電素子を、外気の環境に適した温度に設定することができる。 Therefore, the thermoelectric element can be set to a temperature suitable for the outside air environment.
 また、本発明の植物栽培システムは、上記植物供給用の水生成装置と、上記熱電素子格納部の上方に配されており、上記熱電素子格納部の上面に向けて風を送る送風部とを備えていることが好ましい。 Moreover, the plant cultivation system of the present invention includes the water generating device for supplying the plant and a blower unit that is arranged above the thermoelectric element storage unit and sends wind toward the upper surface of the thermoelectric element storage unit. It is preferable to provide.
 上記構成によると、上記送風部は、上方から下方に向けて順に配されている上記熱電素子格納部と、上記空気用フィルタと、上記本体底部とのうち、上記熱電素子格納部の上面に向けて風を送る。このため、上記送風部から送られた風は、上記熱電素子格納部で温められ、当該温められた風が上記空気フィルタの外側表面を伝って、下方に送られる。これにより、上記空気フィルタの外側表面は、上記送風部から送られた風によって温められる。 According to the said structure, the said ventilation part is toward the upper surface of the said thermoelectric element storage part among the said thermoelectric element storage parts, the said air filter, and the said main body bottom part which are distribute | arranged in order toward the downward direction from the upper direction. Send the wind. For this reason, the wind sent from the said ventilation part is warmed by the said thermoelectric element storage part, and the said warmed wind is sent below along the outer surface of the said air filter. Thereby, the outer surface of the air filter is warmed by the wind sent from the blower.
 このように、上記空気フィルタの外側表面を温めることで、上記空気用フィルタの孔が結露により塞がれることを防止することができ、上記本体の内部で発生する結露の量が低下することを防止することができる。 Thus, by heating the outer surface of the air filter, it is possible to prevent the holes of the air filter from being blocked by condensation, and the amount of condensation generated inside the main body is reduced. Can be prevented.
 また、上記植物供給用の水生成装置と、上記供給管を通って流入してくる水を貯水する貯水部と、植物を栽培する植物栽培装置と、上記貯水部に貯水された水を、上記植物栽培装置が栽培する植物に供給する送液装置とを備えていることが好ましい。 The water supply device for supplying the plant, a water storage unit for storing water flowing in through the supply pipe, a plant cultivation device for cultivating a plant, and water stored in the water storage unit, It is preferable to include a liquid feeding device that supplies the plant cultivated by the plant cultivation device.
 上記構成によると、上記水生成装置で生成された水は、上記供給管を通って上記貯水部に貯水される。そして、上記送液装置によって、上記貯水部に貯水された水は、上記植物栽培装置で栽培されている植物に供給される。 According to the above configuration, the water generated by the water generator is stored in the water storage section through the supply pipe. And the water stored by the said water storage part by the said liquid feeding apparatus is supplied to the plant cultivated with the said plant cultivation apparatus.
 このようにして、上記水生成装置で生成された水は、上記植物栽培装置で栽培されている植物に供給することができるので、植物に水を供給するために水を持ち運ぶ手間を省くことができる。 Thus, since the water produced | generated with the said water production | generation apparatus can be supplied to the plant cultivated with the said plant cultivation apparatus, it can save the effort of carrying water in order to supply water to a plant. it can.
 また、上記植物栽培装置は、上記植物を栽培する培地と、当該培地の水分量を測定する培地水分測定装置とを備えていることが好ましい。上記構成により、上記培地を、栽培する植物に適した水分量に管理することができる。 Moreover, it is preferable that the said plant cultivation apparatus is equipped with the culture medium which grows the said plant, and the culture medium moisture measuring apparatus which measures the moisture content of the said culture medium. By the said structure, the said culture medium can be managed to the moisture content suitable for the plant to grow.
 また、上記培地水分測定装置が測定した上記培地の水分量と、予め設定された水分量とを比較する水分量比較手段と、
 上記培地水分測定装置が測定した上記培地の水分量は、予め設定された水分量より少ないと、上記水分量比較手段により判定されたとき、上記送液装置は、上記貯水部に貯水された水を、上記植物栽培装置の培地に供給することが好ましい。
In addition, a moisture amount comparison means for comparing the amount of moisture of the medium measured by the medium moisture measuring device with a preset amount of moisture,
When the moisture content of the culture medium measured by the culture medium moisture measuring device is less than a preset moisture content, when the moisture content comparing means determines that the fluid feeding device is configured to store the water stored in the water reservoir. Is preferably supplied to the medium of the plant cultivation apparatus.
 上記構成により、上位水分量比較手段により、上記培地水分測定装置が測定した水分量が、上記予め設定された水分量より少ないと判定されると、上記送液装置は、上記貯水部に貯水された水を、上記培地に供給する。これにより、上記培地が水不足となり、栽培されている植物が枯れることを防止することができる。 With the above configuration, when it is determined by the upper water content comparing means that the water content measured by the medium water content measuring device is less than the preset water content, the liquid feeding device is stored in the water storage section. Water is supplied to the medium. Thereby, it can prevent that the said culture medium becomes water shortage and the plant currently grown is withered.
 また、上記貯水部内の空気を、上記植物栽培装置で栽培されている植物に送風する送風装置を備えていることが好ましい。上記構成によると、上記貯水部内の空気は、上記空気フィルタを通ってきた空気なので、除菌されたきれいな空気である。このような除菌された空気を、上記植物栽培装置で栽培されている植物に、直接、送風することで、当該植物の周囲の空気を除菌されたきれいな空気とすることができる。 Moreover, it is preferable to provide a blower that blows the air in the water storage section to the plants cultivated by the plant cultivation apparatus. According to the said structure, since the air in the said water storage part is the air which passed the said air filter, it is the clean air which was disinfected. By directly blowing such sterilized air to the plant cultivated by the plant cultivation apparatus, the air around the plant can be sterilized clean air.
 本発明は、空気用フィルタでフィルタリングされた空気の水分を結露させ、さらに、結露した水を水用フィルタでフィルタリングするので、栽培する植物に供給するには充分、除菌された水を生成することができるので、植物を栽培する水を生成する装置に利用することができる。 The present invention condenses the moisture of the air filtered with the air filter, and further filters the condensed water with the water filter, so that sterilized water is generated enough to supply to the plant to be cultivated. Since it can be used, it can utilize for the apparatus which produces | generates the water which grows a plant.
 1、100、101 植物栽培システム
 2 冷却ファン(送風部)
 3 結露
 5a・5b 熱電素子
 7 水用フィルタ
 10、110 結露装置(水生成装置)
 11 本体
 11a 本体内部
 13 水用フィルタ格納部
 14 排水管(供給管)
 15 熱電素子格納部
 16 空気用フィルタ
 17 本体底部
 17a 開口
 20 リザーバー(貯水部)
 30 送液装置
 40 植物栽培装置
 41 植物
 44 土壌水分センサ
 50 減圧・送風装置(送風装置)
 60 水分量調整部(水分量比較手段)
 61 水分量記憶部
 72 冷却ファン駆動制御部(送風制御部)
 113 突起部
1, 100, 101 Plant cultivation system 2 Cooling fan (air blower)
3 Condensation 5a, 5b Thermoelectric element 7 Water filter 10, 110 Condensation device (water generator)
11 Body 11a Inside the body 13 Water filter storage 14 Drain pipe (supply pipe)
15 Thermoelectric Element Storage 16 Air Filter 17 Body Bottom 17a Opening 20 Reservoir (Water Reservoir)
DESCRIPTION OF SYMBOLS 30 Liquid feeding apparatus 40 Plant cultivation apparatus 41 Plant 44 Soil moisture sensor 50 Pressure reduction and blower (blower)
60 Moisture content adjustment unit (moisture content comparison means)
61 Moisture amount storage unit 72 Cooling fan drive control unit (fan control unit)
113 Projection

Claims (11)

  1.  栽培する植物に供給する水を生成する植物供給用の水生成装置であって、
     内部で結露を発生させる本体と、
     上記本体の下方に配され、上記本体の内部で発生した結露のフィルタリングを行うための水用フィルタと、
     上記水用フィルタを透過した水を、栽培する植物に供給するための供給管とを備え、
     上記本体は、内部に熱電素子が格納されている熱電素子格納部と、上記本体の内部に流入する空気をフィルタリングするための空気用フィルタと、開口が設けられており、上記本体の内部で発生した結露を上記開口に導くための本体底部とを備えていることを特徴とする植物供給用の水生成装置。
    A water supply device for supplying plants that generates water to be supplied to plants to be cultivated,
    A body that generates condensation inside,
    A water filter disposed below the main body for filtering condensation that has occurred inside the main body;
    A supply pipe for supplying water that has passed through the water filter to a plant to be cultivated,
    The main body is provided with a thermoelectric element storage portion in which a thermoelectric element is stored, an air filter for filtering air flowing into the main body, and an opening, and is generated inside the main body. A water supply device for supplying a plant, comprising: a main body bottom portion for guiding the condensed dew to the opening.
  2.  上記水用フィルタの孔径は、上記空気用フィルタの孔径より小さいことを特徴とする請求項1に記載の植物供給用の水生成装置。 2. The water generating device for supplying plants according to claim 1, wherein the pore diameter of the water filter is smaller than the pore diameter of the air filter.
  3.  上記熱電素子格納部と、上記空気用フィルタと、上記本体底部とは、順に、上方から下方に向けて配されていることを特徴とする請求項1又は2に記載の植物供給用の水生成装置。 The said thermoelectric element storage part, the said filter for air, and the said main body bottom part are distribute | arranged in order toward the downward direction from the upper direction, The water production | generation for plant supply of Claim 1 or 2 characterized by the above-mentioned. apparatus.
  4.  上記本体の内部であり、上記熱電素子格納部の下面には、複数の突起部が配されていることを特徴とする請求項3に記載の植物供給用の水生成装置。 The water generating apparatus for supplying plants according to claim 3, wherein a plurality of protrusions are arranged inside the main body and on a lower surface of the thermoelectric element storage part.
  5.  上記本体の内部の気圧は、大気圧より低いことを特徴とする請求項1~4の何れか1項に記載の植物供給用の水生成装置。 The water supply device for supplying plants according to any one of claims 1 to 4, wherein the pressure inside the main body is lower than atmospheric pressure.
  6.  請求項1~5の何れか1項に記載の植物供給用の水生成装置と、上記熱電素子格納部に風を送る送風部と、当該送風部の駆動を制御する送風制御部とを備えていることを特徴とする植物栽培システム。 6. A water supply device for supplying plants according to any one of claims 1 to 5, a blower unit that sends wind to the thermoelectric element storage unit, and a blower control unit that controls driving of the blower unit. A plant cultivation system characterized by
  7.  請求項3に記載の植物供給用の水生成装置と、上記熱電素子格納部の上方に配されており、上記熱電素子格納部の上面に向けて風を送る送風部とを備えていることを特徴とする植物栽培システム。 A water generation device for supplying plants according to claim 3 and a blower unit that is arranged above the thermoelectric element storage unit and sends air toward the upper surface of the thermoelectric element storage unit. Characteristic plant cultivation system.
  8.  請求項1~5の何れか1項に記載の植物供給用の水生成装置と、
     上記供給管を通って流入してくる水を貯水する貯水部と、
     植物を栽培する植物栽培装置と、
     上記貯水部に貯水された水を、上記植物栽培装置で栽培されている植物に供給する送液装置とを備えていることを特徴とする植物栽培システム。
    A water supply device for supplying plants according to any one of claims 1 to 5;
    A water storage section for storing water flowing in through the supply pipe;
    A plant cultivation device for cultivating plants;
    A plant cultivation system comprising: a liquid feeding device that supplies water stored in the water storage unit to a plant cultivated by the plant cultivation device.
  9.  上記植物栽培装置は、上記植物を栽培する培地と、当該培地の水分量を測定する培地水分測定装置とを備えていることを特徴とする請求項8に記載の植物栽培システム。 The plant cultivation system according to claim 8, wherein the plant cultivation apparatus includes a medium for cultivating the plant and a medium moisture measuring apparatus for measuring the moisture content of the medium.
  10.  上記培地水分測定装置が測定した上記培地の水分量と、予め設定された水分量とを比較する水分量比較手段と、
     上記培地水分測定装置が測定した上記培地の水分量は、予め設定された水分量より少ないと、上記水分量比較手段により判定されたとき、上記送液装置は、上記貯水部に貯水された水を、上記植物栽培装置の培地に供給することを特徴とする請求項9に記載の植物栽培システム。
    A moisture content comparing means for comparing the moisture content of the culture medium measured by the media moisture measuring device with a preset moisture content;
    When the moisture content of the culture medium measured by the culture medium moisture measuring device is less than a preset moisture content, when the moisture content comparing means determines that the fluid feeding device is configured to store the water stored in the water reservoir. Is supplied to the medium of the plant cultivation apparatus.
  11.  上記貯水部内の空気を、上記植物栽培装置で栽培されている植物に送風する送風装置を備えていることを特徴とする請求項8に記載の植物栽培システム。 The plant cultivation system according to claim 8, further comprising a blower that blows air in the water storage section to a plant cultivated by the plant cultivation device.
PCT/JP2011/077100 2010-12-01 2011-11-24 Water generation device for plants, and plant cultivation system WO2012073794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-268676 2010-12-01
JP2010268676 2010-12-01

Publications (1)

Publication Number Publication Date
WO2012073794A1 true WO2012073794A1 (en) 2012-06-07

Family

ID=46171735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077100 WO2012073794A1 (en) 2010-12-01 2011-11-24 Water generation device for plants, and plant cultivation system

Country Status (1)

Country Link
WO (1) WO2012073794A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105862976A (en) * 2016-05-14 2016-08-17 张萍 Air water generator adopting solar energy heating technology
US10113777B2 (en) 2014-11-12 2018-10-30 The University Of Tulsa Ambient water condensing apparatus
CN109744135A (en) * 2019-03-19 2019-05-14 方尹 A kind of automatic water collecting irrigation device for potting maintenance
US10583389B2 (en) 2016-12-21 2020-03-10 Genesis Systems Llc Atmospheric water generation systems and methods
WO2022176398A1 (en) * 2021-02-19 2022-08-25 パナソニックIpマネジメント株式会社 Water generation device and water generation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634342A (en) * 1995-12-22 1997-06-03 Peeters; John P. Electronic household plant watering device
JP2003287316A (en) * 2002-03-28 2003-10-10 Matsushita Refrig Co Ltd Water feeder
JP2005282974A (en) * 2004-03-30 2005-10-13 No Hayashi Distilling plant
JP2008095331A (en) * 2006-10-10 2008-04-24 Tottori Univ Fresh water generator
JP2009102965A (en) * 2007-10-23 2009-05-14 Yuuman Network:Kk Small fresh water generating unit and fresh water generating air-conditioner using small fresh water generating unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634342A (en) * 1995-12-22 1997-06-03 Peeters; John P. Electronic household plant watering device
JP2003287316A (en) * 2002-03-28 2003-10-10 Matsushita Refrig Co Ltd Water feeder
JP2005282974A (en) * 2004-03-30 2005-10-13 No Hayashi Distilling plant
JP2008095331A (en) * 2006-10-10 2008-04-24 Tottori Univ Fresh water generator
JP2009102965A (en) * 2007-10-23 2009-05-14 Yuuman Network:Kk Small fresh water generating unit and fresh water generating air-conditioner using small fresh water generating unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113777B2 (en) 2014-11-12 2018-10-30 The University Of Tulsa Ambient water condensing apparatus
US10443907B1 (en) 2014-11-12 2019-10-15 The University Of Tulsa Ambient water condensing apparatus
CN105862976A (en) * 2016-05-14 2016-08-17 张萍 Air water generator adopting solar energy heating technology
US10583389B2 (en) 2016-12-21 2020-03-10 Genesis Systems Llc Atmospheric water generation systems and methods
US11000799B2 (en) 2016-12-21 2021-05-11 Genesis Systems Llc Atmospheric water generation systems and methods
US11623177B2 (en) 2016-12-21 2023-04-11 Genesis Systems Llc Atmospheric water generation systems and methods
CN109744135A (en) * 2019-03-19 2019-05-14 方尹 A kind of automatic water collecting irrigation device for potting maintenance
WO2022176398A1 (en) * 2021-02-19 2022-08-25 パナソニックIpマネジメント株式会社 Water generation device and water generation method

Similar Documents

Publication Publication Date Title
WO2012073794A1 (en) Water generation device for plants, and plant cultivation system
JP5796131B2 (en) Forced evaporation humidifier using nano vapor
CN101278164B (en) Water condenser
US10736274B2 (en) Growing system mixing box
CN112770624A (en) Automatic plant cultivation system
EP1819214B1 (en) Greenhouse, greenhouse climate control system and method of controlling greenhouse climate
KR101922439B1 (en) vertical planting planter
US20160235219A1 (en) Product display system providing product humidification
WO2019217592A1 (en) Improved growing system mixing box
JP2005337694A (en) Refrigerator
KR20170103252A (en) Dehumidifier capable of heating and disinfection for greenhouse
KR101883060B1 (en) Plants cultivating apparatus
KR102458447B1 (en) Desert climate applied greenhouse cooling system
JP2014168420A (en) Hydroponics system
WO2017156109A2 (en) Environmental control and transport system for agricultural products and method
JP2015204787A (en) plant factory
US11801980B1 (en) Container-integrated controlled environment systems and methods
KR102122307B1 (en) Greenhouse control system including graphene barrier
JP6800728B2 (en) Air conditioning system
KR101153858B1 (en) Forced evaporation type humidifier for airconditioning
KR20120126519A (en) dehumidifying device of house
JPH11127703A (en) Horticultural greenhouse
CN109588165A (en) A kind of thermoregulating system and its control method of nursery greenhouse
KR20150137567A (en) Cold air disinfection regenerative heat exchanger
RU2005132791A (en) SURFACE CLEANING UNIT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP