WO2012073718A1 - コンテンツ分析システム、コンテンツ分析装置、コンテンツ分析方法、コンテンツ分析プログラム - Google Patents

コンテンツ分析システム、コンテンツ分析装置、コンテンツ分析方法、コンテンツ分析プログラム Download PDF

Info

Publication number
WO2012073718A1
WO2012073718A1 PCT/JP2011/076562 JP2011076562W WO2012073718A1 WO 2012073718 A1 WO2012073718 A1 WO 2012073718A1 JP 2011076562 W JP2011076562 W JP 2011076562W WO 2012073718 A1 WO2012073718 A1 WO 2012073718A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
user
propagation
correlation
propagation pattern
Prior art date
Application number
PCT/JP2011/076562
Other languages
English (en)
French (fr)
Inventor
千央 伊藤
白木 孝
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012546772A priority Critical patent/JPWO2012073718A1/ja
Priority to US13/883,440 priority patent/US20130226658A1/en
Priority to CN2011800479650A priority patent/CN103154945A/zh
Publication of WO2012073718A1 publication Critical patent/WO2012073718A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data

Definitions

  • the present invention relates to a content analysis technique, and in particular, a content analysis system, a content analysis device, a content analysis method, and a content for finding a correlation of a propagation pattern to a user with respect to certain arbitrary content. Concerning analysis program.
  • Correlation analysis is an analysis method that describes the relationship between two variables numerically, and is used for information recommendation and marketing.
  • an algorithm called collaborative filtering is often used as a recommendation method for recommending highly similar or relevant content by obtaining the correlation between content and users from the history that the user has used or evaluated the content.
  • collaborative filtering is often used as a recommendation method for recommending highly similar or relevant content by obtaining the correlation between content and users from the history that the user has used or evaluated the content.
  • Non-Patent Document 1 Patent Document 1
  • Patent Document 2 Patent Document 2
  • Non-Patent Document 1 is a paper describing the earliest basic collaborative filtering algorithm.
  • Patent Document 1 uses the personal registration arrangement information (for example, bookmark) of each user to recommend arrangement information from a category highly relevant to each category, thereby managing arrangement information such as addition of a URL. This is a recommended technology that has the effect of reducing work.
  • Patent Document 2 groups users into a plurality of groups from access history, assigns whether the users belong to the plurality of groups, and constructs a recommendation rule by extracting frequent transitions using time-series access history. This is collaborative filtering that has the effect of not recommending advanced ones to beginners.
  • Patent Document 2 uses the frequency of the frequency pattern of the time series transition, but this also uses only the frequency of the transition pattern before and after the transition from the content 1 to the content 2, and the content is It does not consider the similarity of propagation to the user, how it was propagated to the user. For this reason, it has not been possible to recommend content at the timing of accurate propagation for the user.
  • the problem with the above related technology is that it has discovered a feature called correlation of propagation patterns of content to users and has not been utilized in application fields such as information recommendation and marketing analysis.
  • the correlation which is a feature between contents
  • the correlation is obtained using only the frequency that the user has used (evaluated) the contents, and how the contents are propagated to the users. This is because the correlation of the propagation pattern is not considered.
  • the object of the present invention is to solve the above-mentioned problems and discover the feature of correlation of propagation patterns to users between contents that can be used for information recommendation and marketing analysis. For example, in information recommendation, content at the timing of proper propagation Content analysis system, content analysis device, content analysis method, and content analysis program can be provided.
  • a first content analysis system includes a user terminal and a content analysis device that receives a predetermined request from the user terminal and returns a result thereof, and the content analysis device includes a plurality of content usage histories. For each content included in the history data, a propagation pattern extracting means for extracting a propagation pattern indicating how the content has been propagated to the user, and a correlation calculating means for obtaining a correlation of the propagation pattern between the contents, Prepare.
  • the first content analysis device of the present invention is a content analysis device that receives a predetermined request from a user terminal and returns the result, and for each content included in history data composed of a plurality of content usage histories, Propagation pattern extraction means for extracting a propagation pattern indicating how the content has been propagated to the user, and correlation calculation means for obtaining the correlation of the propagation pattern between the contents.
  • a first content analysis method of the present invention is a content analysis method of a content analysis apparatus that receives a predetermined request from a user terminal and returns the result, and is included in history data composed of a plurality of content usage histories. For each content, a propagation pattern extraction step for extracting a propagation pattern indicating how the content has been propagated to the user, and a correlation calculation step for obtaining a correlation of the propagation pattern between the contents are included.
  • a first content analysis program of the present invention is a content analysis program that operates on a computer functioning as a content analysis device that receives a predetermined request from a user terminal and returns the result, and uses a plurality of contents on the computer. For each content included in the history data composed of history, a propagation pattern extraction process for extracting a propagation pattern indicating how the content has propagated to the user, and a correlation for obtaining a correlation of the propagation pattern between the contents Calculation processing is executed.
  • the feature of correlation of propagation patterns to users between contents that can be used for information recommendation and marketing analysis is discovered. For example, in information recommendation, contents can be recommended at the timing of proper propagation.
  • FIG. 1 order of propagation
  • movement of Example 1 of this invention It is the illustration 1 (order of propagation) of the extracted propagation pattern in Example 1.
  • FIG. It is the intermediate data in the case of the correlation calculation in the example 1 of the propagation pattern of Example 1.
  • FIG. 2 stage of propagation
  • FIG. It is the intermediate data in the case of the correlation calculation in the example 2 of the propagation pattern of Example 1.
  • FIG. It is the illustration 3 (network structure of propagation) of the extracted propagation pattern in Example 1.
  • FIG. It is the intermediate data in the case of the correlation calculation in the example 3 of the propagation pattern of Example 1.
  • FIG. It is a block diagram which shows the structure of the 2nd Embodiment of this invention. It is a flowchart which shows operation
  • FIG. 1 is a block diagram showing a configuration of a content analysis system 1000 according to the first embodiment of the present invention.
  • a content analysis system 1000 includes a user terminal 200 and a content analysis device 100.
  • the user terminal 200 is a terminal where a user uses content.
  • the user terminal 200 transmits the identifier of the content whose propagation pattern is to be investigated to the content analysis apparatus 100 using the input / output means 201 (not shown). Further, the result is received from the content analysis apparatus 100.
  • the content analysis apparatus 1000 includes an input / output unit 101 that exchanges data with the user terminal 200, a propagation pattern extraction unit 102 that extracts a propagation pattern to the user for each content, and propagation between the predetermined contents to the user. And correlation calculation means 103 for obtaining a pattern correlation.
  • the input / output unit 101 receives a predetermined request from the user terminal 200 and returns an output corresponding to the request to the user terminal. Specifically, a content identifier is received from the user, and a correlation between the content and one or more other contents is returned as an output.
  • the input / output unit 101 accepts a content identifier as an input, and returns a correlation of a propagation pattern to the user between the content and each other content. At this time, the identifiers of the other contents may be returned together.
  • the propagation pattern extraction unit 102 extracts a propagation pattern to the user for each content included in the history data.
  • History data is data indicating a history of usage of each predetermined content.
  • an example of the history data is shown in FIG.
  • history data is recorded by separately providing a predetermined database, content information management server, etc., but the present invention is not limited to this, and the content analysis apparatus 10 may be provided with storage means. Since the history data storage method itself is not directly related to the present invention, its details and illustration are omitted.
  • the propagation pattern to the user is a pattern representing how the content has been propagated to the user, and indicates the order of propagation, network structure, time interval, speed, and the like.
  • propagated means that there is some relationship between the user and the content, such as being used or evaluated by the user.
  • Correlation calculation means 103 calculates the correlation of propagation between contents using the propagation pattern to the user. Alternatively, only the correlation of the propagation pattern to the user between the content received as input and other content may be obtained.
  • FIG. 3 is a flowchart showing the operation of the content analysis system 1000 according to this embodiment.
  • the input / output means 101 receives a content identifier as an input from the user terminal 200 (step A1).
  • the propagation pattern extraction unit 102 acquires history data and extracts a propagation pattern to the user for each content included in the history data (step A2).
  • the correlation calculation means 103 obtains the correlation of the propagation pattern to the user between the content received as input and each other content (step A3).
  • the input / output unit 101 returns the correlation obtained by the correlation calculation unit 103 together with the content identifier (step A4).
  • the identifiers of the contents may be sorted and returned in the order of contents having a high correlation with the input contents.
  • FIG. 4 is a flowchart showing the operation of the first embodiment of the present invention.
  • the input / output means 101 receives Item A (content identifier indicating Item A) as an input from the user terminal 200 (step A1 ').
  • the propagation pattern extraction means 102 acquires history data, and extracts a propagation pattern to the user for each content included in the history data (step A2 ').
  • the history data includes at least the use date and time, the use user, and the identifier of the used content.
  • the correlation calculation means 103 obtains the correlation of the propagation pattern to the user between Item A and each other content (step A3 ').
  • the propagation pattern to the user is a pattern indicating how the content is propagated to the user, and various examples can be considered.
  • the propagation pattern extraction unit 102 extracts 1) the order of propagation, 2) the stage of propagation, and 3) the network structure of propagation will be described.
  • Propagation Order A case will be described in which the propagation order of content to the user is extracted, and the correlation of the propagation pattern to the user is calculated based on the propagation order.
  • the propagation pattern extraction means 102 extracts the order of propagation to the user as a propagation pattern for each content included in the history data.
  • An example of the extracted propagation pattern is shown in P100 of FIG.
  • the propagation patterns of Item A and Item B are extracted.
  • Propagation pattern P101 is a propagation pattern of Item A, and it can be confirmed that Item A has been propagated to the user in the order of ⁇ User01, User02, User05, User04 ⁇ .
  • the propagation pattern P102 is an ItemB propagation pattern, and it can be confirmed that the ItemB has been propagated to the user in the order of ⁇ User01, User02, User04 ⁇ .
  • P100 ' is obtained by adding a predetermined change to P100 in order to calculate Spearman's rank correlation coefficient, which will be described later.
  • the correlation calculation unit 103 obtains the correlation of the propagation pattern to the user between the contents using the propagation pattern.
  • the calculation may be performed using a correlation coefficient such as Spearman or Kendall.
  • ItemA is accepted as an input, and therefore Spearman's ranking is used using Item's propagation order between ItemA and each other content (ItemB in this embodiment), centering on ItemA. A correlation coefficient is calculated.
  • the correlation coefficient When the correlation coefficient is positive, it is a coefficient representing a state where there is a correlation between two variables, conversely, when it is negative, a state where there is a negative correlation, and when it is 0, it is a coefficient indicating an uncorrelated state .
  • the following shows an example of calculating the correlation between Item A and Item B propagation users using Spearman's rank correlation coefficient.
  • FIG. 6 is intermediate data for correlation calculation, in which the difference in rank of each user for each Item is obtained based on P100 'of FIG.
  • FIG. 6 shows the order of propagation to the user for each Item (Item A, Item B). Moreover, the difference of the order of ItemA and ItemB is shown for every user.
  • ItemA propagates in the order ⁇ User01, User02, User05, User04 ⁇ .
  • ItemB pretends that it has propagated in the order of ⁇ User01, User02, User04 ⁇ and then propagated to User05.
  • the difference in the rank of each user is an absolute value of the difference between the rank of Item A and the rank of Item B.
  • Item B is the only other content, but when there are a plurality of other content, the correlation coefficient with Item A can be calculated for those content as well as Item B. Note that the correlation coefficient calculation method is not limited to this.
  • the propagation pattern extraction unit 102 divides each content included in the history data into a plurality of groups (stages) based on the innovator theory.
  • FIG. 7 shows the result of the grouping.
  • Innovator theory is a marketing theory advocated by Prof. Rogers at Stanford University. Consumers' attitudes toward purchasing products are changed from early purchase time to new products innovators (Innovators: 2.5%) and early adapters (Early). Adapters: 13.5%), Early Majority (Early Majority: 34%), Late Majority (Late Majority: 34%), and Lagard (Laggards: 16%).
  • this inbeta theory is applied to classify users into types in order of content propagation.
  • P200 is a propagation pattern in which the users propagated by Item A and Item B are classified according to innovator theory.
  • P201 can confirm that the users propagated by Item A and Item B are grouped in five stages according to innovator theory.
  • the number of people in each stage is assumed from the number of all users, using the ratio of each stage of innovator theory.
  • Innovator 1 is 2.5%, Early Adapter 13.5%, Early Majority: 34%, Late Majority: 34%, Lagard: 16%. It is assumed that there are three people, three early adaptors, eight early majority, nine late majority, and four lagards.
  • the correlation calculation means 103 obtains the correlation of the propagation pattern to the users between the contents using the number of overlapping users at each stage and the ratio thereof.
  • propagation to the user can be assumed as ⁇ User06, User05 ⁇ of P202.
  • the correlation may be obtained using only a part of the stage, such as using only an innovator for the correlation.
  • FIG. 8 is intermediate data for correlation calculation, in which the ratio of user overlap at each stage is obtained based on FIG. 7.
  • Item B is the only other content, but when there are a plurality of other content, the correlation coefficient with Item A can be calculated for those content as well as Item B.
  • the overlap of users at all stages is used, but a correlation using arbitrary stages may be obtained, such as the overlap of users of only innovators.
  • the correlation coefficient calculation method is not limited to the above.
  • the propagation network structure is extracted for each content included in the history data.
  • the history data always needs information of the reference source user (transition source user).
  • the extraction results are shown in FIG.
  • the reference source user is, for example, another user when a certain user uses a predetermined content and the information of the other user is associated with the content.
  • a situation is assumed in a service that recommends highly relevant content with a catch phrase such as “The person who bought this product also bought such a product” in a shopping mall or an online shop.
  • P301 is the network structure of ItemA and P302 is the network structure of ItemB.
  • the transition source users of Item A and Item B are compared.
  • the overlap is 1, and when they are different, the overlap is 0.
  • the correlation coefficient of Item A and Item B can be calculated as 2/5 by taking the overlap ratio.
  • Item B is the only other content, but when there are a plurality of other content, the correlation coefficient with Item A can be calculated for those content as well as Item B.
  • the propagation pattern to the user for each content is used to obtain the correlation of the propagation pattern to the user, the correlation of the propagation pattern to the user with respect to a certain arbitrary content You can discover highly relevant content and use it for information recommendation and marketing analysis.
  • the object of the present invention can be achieved even with the minimum configuration comprising the propagation pattern extraction means 102 and the correlation calculation means 103.
  • FIG. 11 is a block diagram showing a configuration of the content analysis system 1000 according to the present embodiment.
  • the content analysis system 1000 includes an input / output unit 101, a propagation pattern extraction unit 102, a correlation calculation unit 103, and a user score calculation unit 104.
  • a user score calculation means 104 is provided.
  • the input / output unit 101 receives a predetermined request from the user terminal 200 and returns an output corresponding to the request to the user terminal.
  • a content identifier is accepted as an input, and each user's score for the content is returned together with the user identifier as an output.
  • the propagation pattern extraction means 102 extracts the propagation pattern to the user for each content from the history data, as in the first embodiment.
  • Correlation calculation means 103 obtains the correlation of the propagation pattern to the user between the contents as in the first embodiment.
  • the user score calculation means 104 calculates the score of each user for each content from the propagation pattern of each content to the user and the correlation of the propagation pattern to the user between each content. Moreover, it is good also as calculating
  • FIG. 12 is a flowchart showing the operation of the content analysis system 1000 according to this embodiment.
  • steps B1 to B3 are the same as steps A1 to A3 of the first embodiment shown in FIG. 3, the description of steps B1 to B3 is omitted here.
  • the user score calculation means 104 calculates the score of each user for the content received as input using the correlation of the propagation pattern to the user between the content received as input and each other content. (Step B4). Details of the calculation method will be described in Example 2 below.
  • the input / output unit 101 returns the score of each user for the content received as input together with the user identifier to the user terminal 200 (step B5).
  • FIG. 13 is a flowchart showing the operation of the second embodiment of the present invention.
  • the input / output unit 101 first receives Item B (content identifier indicating Item B) as an input from the user terminal 200 (step B1 ').
  • the propagation pattern extraction unit 102 acquires history data and extracts the propagation pattern to the user for each content included in the history data, as in the first embodiment (step B2 ').
  • the order of propagation is extracted as a propagation pattern.
  • An example of the extraction result is shown in P400 of FIG.
  • propagation patterns to the user regarding Item B, Item A, and Item C are extracted.
  • the correlation calculation means 103 obtains the correlation of the propagation pattern to the user for Item B and Item A, and Item B and Item C (step B3 ').
  • the calculation method is the same as in the first embodiment.
  • the user score calculation unit 104 uses the propagation pattern of each content calculated by the propagation pattern extraction unit 102 to the user and the correlation of the propagation pattern to the user calculated by the correlation calculation unit 103, thereby calculating the score of each user. Is calculated (step B4 ′).
  • the user score calculation means 104 performs calculation so as to give a higher score to a user whose item B and the propagation pattern to the user have a high correlation and whose propagation order is early.
  • the user score calculation unit 104 performs a calculation for ItemA, except for the user who is propagating ItemB, from the remaining users, with a score (propagation score) for the propagation order in the order of propagation. Do.
  • the propagation score can be given, for example, the reciprocal of the propagation order.
  • Item01 propagates in User01, User02, and User04. Therefore, in ItemA, User05 has the earliest propagation order in ItemA. As a result, the propagation score “1” is given to User 05.
  • a propagation score “1” is assigned to User 03, and a propagation score “1/2” is assigned to User 05.
  • the user score calculation means 104 calculates the score of each user for Item B using the following formula 2.
  • the score of User 05 for Item B is the product of the propagation score of User 05 for Item A and the correlation of the propagation pattern of Item B and Item A to the user, and the propagation score of User 05 for Item C and the user of Item B and Item C Is the sum of the product of the correlations of the propagation patterns.
  • the input / output means 101 returns the score of each user with respect to Item B together with the user identifier to the user terminal 200 (step B5 ').
  • the present embodiment since it is configured to calculate a user's score for arbitrary content, marketing analysis for investigating and predicting the propagation pattern of a certain content, and recommending content at an appropriate propagation timing It can be applied to information recommendation.
  • FIG. 15 is a block diagram showing a configuration of the content analysis system 1000 according to the present embodiment.
  • the content analysis system 1000 includes an input / output unit 101, a propagation pattern extraction unit 102, a correlation calculation unit 103, and a content score calculation unit 105.
  • content score calculation means 105 is provided.
  • the input / output unit 101 receives a predetermined request from the user terminal 200 and returns an output corresponding to the request to the user terminal.
  • a user identifier is accepted as an input, and a list of recommended content identifiers for the user is returned.
  • the propagation pattern extraction unit 102 extracts a propagation pattern to the user for each content from the history data, as in the first and second embodiments.
  • Correlation calculation means 103 obtains the correlation of propagation between contents using the propagation pattern of each content to the user.
  • the user score calculation means 104 calculates the score of each user for each content from the propagation pattern of each content to the user and the correlation of the propagation pattern to the user between each content.
  • the content score calculation means 105 calculates the content score for each user from the correlation of the propagation pattern to the user between the contents and the usage history of the content of each user. Moreover, it is good also as calculating
  • FIG. 16 is a flowchart showing the operation of the content analysis system 1000 according to this embodiment.
  • the input / output means 101 receives a user identifier as an input from the user terminal 200 (C1).
  • the propagation pattern extraction unit 102 acquires history data, and extracts a propagation pattern to the user for each content included in the history data (step C2).
  • the correlation calculation means 103 obtains the correlation of the propagation pattern to the user between the contents for the contents (step C3).
  • the correlation is obtained for all combinations of contents included in the history data.
  • the content score calculation unit 105 calculates the score of each content for the user using the correlation obtained by the correlation calculation unit 103 and the usage history of each content of the user received as an input. (Step C4).
  • the identifier of the content sorted in descending order of the content score is returned to the user terminal 200 to the user who has received the input (step C5). Also, the content score may be returned together.
  • FIG. 17 is a flowchart showing the operation of the third embodiment of the present invention.
  • the input / output unit 101 receives User05 (user identifier indicating User05) as an input from the user terminal 200 (step C1 ').
  • the propagation pattern extraction unit 102 acquires the history data and extracts the propagation pattern to the user for each content included in the history data, as in the first embodiment (step C2 '). Also in the present embodiment, it is assumed that the propagation order is extracted as a propagation pattern as in the second embodiment. An example of the extraction result is shown in P500 of FIG.
  • propagation patterns to the user regarding Item A, Item B, and Item C are extracted.
  • the correlation calculation means 103 obtains the correlation of the propagation pattern to the user between the contents (step C3 '). Specifically, the correlation calculation means 103 obtains the correlation of the propagation pattern to the user for Item A and Item B, Item A and Item C, and Item B and Item C.
  • the content score calculation means 105 uses the propagation pattern of each content to the user calculated by the propagation pattern extraction means 102 and the correlation of the propagation pattern to the user between the contents calculated by the correlation calculation means 103. , The score of each content for User05 is calculated (step C4 ′).
  • the content score calculation means 105 is higher for content that has already been propagated to User05 and that has a high correlation between the content that has been propagated to User05 and the content that has been propagated to User05.
  • the content score is calculated so as to give a propagation score.
  • the score of Item B for User 05 is obtained as follows.
  • the content score calculation means 105 calculates the time of propagation to User 05 for other content as a propagation score.
  • the propagation score of User05 is given after excluding the user propagating ItemB. Similarly, the propagation score of User05 is assigned to ItemC. As in the case of the second embodiment, for example, an inverse number of the propagation order can be given as the propagation score.
  • ItemB has already been propagated to User01, User02, and User04, so when looking into them, the propagation order of User05 is the first in ItemA. As a result, the propagation score “1” is given to User 05.
  • the content score calculation means 105 calculates the content score for User 05 using the following equation (3).
  • the score of Item B content for User 05 is the product of the propagation score of User 05 in Item A and the correlation of the propagation score of Item B and Item A to the user, and the propagation score of User 05 in Item C and the user of Item B and Item C. This is the sum of the product of the correlation of the propagation scores to
  • the input / output means 101 returns the identifiers of the contents sorted in descending order of the scores of the contents to the user terminal 200 (step C5 ′). .
  • the score of the content may also be returned.
  • the present embodiment is configured to recommend content to an arbitrary user based on the content score calculated based on the similarity of the propagation pattern. Therefore, information recommending appropriate content for a certain user It can be applied to recommendations.
  • FIG. 19 is a block diagram illustrating a hardware configuration example of the content analysis apparatus 100.
  • the content analysis apparatus 100 has a hardware configuration similar to that of a general computer apparatus, and includes a data work area including a memory such as a CPU (Central Processing Unit) 801 and a RAM (Random Access Memory). And a main storage unit 802 used for a temporary data saving area, a communication unit 803 that transmits and receives data via a network, an input / output interface that transmits and receives data by connecting to the input device 805, the output device 806, and the storage device 807 A unit 804 and a system bus 808 for interconnecting the above components.
  • the storage device 807 is realized by, for example, a hard disk device including a non-volatile memory such as a ROM (Read Only Memory), a magnetic disk, and a semiconductor memory.
  • the input / output unit 101, the propagation pattern extraction unit 102, the correlation calculation unit 103, the user score calculation unit 104, and the content score calculation unit 105 of the content analysis apparatus 100 according to the present invention include an LSI (Large Scale Integration) or the like incorporating a program.
  • LSI Large Scale Integration
  • the various components of the present invention do not necessarily have to be independent of each other.
  • a plurality of components are formed as a single member, a single component is formed of a plurality of members, a certain component is a part of another component, a certain component And a part of other components may overlap.
  • the plurality of procedures of the method and the computer program of the present invention are not limited to being executed at different timings. For this reason, another procedure may occur during execution of a certain procedure, and some or all of the execution timing of a certain procedure and the execution timing of another procedure may overlap.
  • a user terminal A content analysis device that receives a predetermined request from the user terminal and returns the result, The content analysis device includes: Propagation pattern extraction means for extracting a propagation pattern indicating how the content has been propagated to the user for each content included in the history data composed of a plurality of content usage histories, Correlation calculating means for obtaining the correlation of the propagation patterns between the contents;
  • a content analysis system comprising:
  • Appendix 2 The content analysis system according to appendix 1, wherein the history data includes at least a use date, a use user, and an identifier of the used content.
  • the propagation pattern extraction means includes: The content analysis system according to Supplementary Note 1 or Supplementary Note 2, wherein the order of propagation to the user is extracted in time series for each content as the propagation pattern.
  • the propagation pattern extraction means includes: The content analysis system according to Supplementary Note 1 or Supplementary Note 2, wherein, as the propagation pattern, for each content, a group in which a user who has propagated the content is divided into a plurality of stages based on a propagation order is extracted.
  • the propagation pattern extraction means includes: The content analysis system according to Supplementary Note 1 or Supplementary Note 2, wherein for each content, a network structure of a user to whom the content is propagated is extracted as the propagation pattern.
  • Appendix 6 The content according to any one of appendix 1 to appendix 5, wherein for the input content received as input from the user terminal, a correlation of the propagation pattern between the input content and each of the other contents is obtained. Analysis system.
  • Appendix 7 Using the propagation pattern of each content and the correlation of the propagation pattern between the contents, regarding the input content received as input from the user terminal, a user score indicating the possibility that the input content is propagated,
  • the content analysis system according to any one of appendix 1 to appendix 5, further comprising user score calculation means for calculating a user who has not propagated to the input content.
  • the user score calculating means includes For a user not included in the propagation pattern of the input content, the propagation score of the user in other content is calculated, and the propagation score and the correlation of the propagation pattern between the input content and the other content are integrated.
  • the value obtained is the user score, and there are a plurality of other contents, a value obtained by summing up each integration result is the user score
  • the propagation score is The content analysis system according to appendix 7, wherein calculation is performed based on a propagation order in the propagation pattern of the other content excluding a user included in the propagation pattern of the input content.
  • the content score calculation means includes For the content not propagated to the input user, the propagation score of the input user in other content is calculated, and the value obtained by integrating the propagation score and the correlation of the propagation pattern with the other content is the content score. When there are a plurality of the other contents, a value obtained by summing up the respective integration results is set as the content score, The propagation score is The content analysis system according to appendix 9, wherein calculation is performed based on a propagation order in the propagation pattern of the other content excluding users included in the propagation pattern of the content not propagated to the input user.
  • a content analysis device that receives a predetermined request from a user terminal and returns the result, Propagation pattern extraction means for extracting a propagation pattern indicating how the content has been propagated to the user for each content included in the history data composed of a plurality of content usage histories, Correlation calculating means for obtaining the correlation of the propagation patterns between the contents;
  • a content analysis apparatus comprising:
  • Appendix 12 The content analysis apparatus according to appendix 11, wherein the history data includes at least a use date and time, a use user, and an identifier of the used content.
  • the propagation pattern extraction means includes: The content analysis apparatus according to appendix 11 or appendix 12, wherein the order of propagation to the user is extracted in time series for each content as the propagation pattern.
  • the propagation pattern extraction means includes: 13. The content analysis apparatus according to appendix 11 or appendix 12, wherein as the propagation pattern, a group in which a user who has propagated the content is divided into a plurality of stages based on the propagation order is extracted for each content.
  • the propagation pattern extraction means includes: 13. The content analysis apparatus according to appendix 11 or appendix 12, wherein for each content, a network structure of a user to whom the content is propagated is extracted as the propagation pattern.
  • Appendix 16 16. The content according to any one of appendix 11 to appendix 15, wherein for the input content received as input from the user terminal, a correlation of the propagation pattern between the input content and each of the other contents is obtained. Analysis equipment.
  • the user score calculating means includes For a user not included in the propagation pattern of the input content, the propagation score of the user in other content is calculated, and the propagation score and the correlation of the propagation pattern between the input content and the other content are integrated.
  • the value obtained is the user score, and there are a plurality of other contents, a value obtained by summing up each integration result is the user score, The propagation score is 18.
  • the content analysis apparatus according to appendix 17, wherein calculation is performed based on a propagation order in the propagation pattern of the other content excluding a user included in the propagation pattern of the input content.
  • the content score calculation means includes For the content not propagated to the input user, the propagation score of the input user in other content is calculated, and the value obtained by integrating the propagation score and the correlation of the propagation pattern with the other content is the content score. When there are a plurality of the other contents, a value obtained by summing up the respective integration results is set as the content score, The propagation score is The content analysis apparatus according to appendix 19, wherein calculation is performed based on a propagation order in a propagation pattern of the other content excluding users included in the propagation pattern of content not propagated to the input user.
  • a content analysis method of a content analysis apparatus that receives a predetermined request from a user terminal and returns the result, A propagation pattern extraction step for extracting a propagation pattern indicating how the content has been propagated to the user for each content included in the history data composed of a plurality of content usage histories; A correlation calculating step for obtaining a correlation of the propagation patterns between the contents;
  • the content analysis method characterized by including.
  • Appendix 22 The content analysis method according to appendix 21, wherein the history data includes at least a use date, a use user, and an identifier of the used content.
  • Appendix 23 In the propagation pattern extraction step, 23.
  • Appendix 24 In the propagation pattern extraction step, 23.
  • Appendix 25 In the propagation pattern extraction step, 23.
  • Appendix 26 26.
  • Appendix 27 Using the propagation pattern of each content and the correlation of the propagation pattern between the contents, regarding the input content received as input from the user terminal, a user score indicating the possibility that the input content is propagated, 26.
  • the propagation score calculating step For the content not propagated to the input user, the propagation score of the input user in other content is calculated, and the value obtained by integrating the propagation score and the correlation of the propagation pattern with the other content is the content score. When there are a plurality of the other contents, a value obtained by summing up the respective integration results is set as the content score, The propagation score is The content analysis method according to appendix 29, wherein the content analysis method is calculated based on a propagation order in the propagation pattern of the other content excluding users included in the propagation pattern of the content not propagated to the input user.
  • Appendix 31 A content analysis program that operates on a computer that functions as a content analysis device that receives a predetermined request from a user terminal and returns the result, In the computer, Propagation pattern extraction processing for extracting a propagation pattern indicating how the content has been propagated to the user for each content included in the history data composed of a plurality of content usage histories, A content analysis program for executing a correlation calculation process for obtaining a correlation of the propagation patterns between the contents.
  • Appendix 32 32.
  • Appendix 35 In the propagation pattern extraction process, The content analysis program according to appendix 31 or appendix 32, wherein for each content, a network structure of a user to whom the content is propagated is extracted as the propagation pattern.
  • Appendix 36 36.
  • the present invention can be applied to uses such as marketing analysis for analyzing a propagation pattern of a certain content. It can also be applied to uses such as information recommendation using the correlation of propagation patterns of certain contents.

Landscapes

  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 情報推薦やマーケティング分析に活用できるコンテンツ間のユーザへの伝播パタンの相関という特徴を発見し、例えば情報推薦においては、的確な伝播のタイミングでコンテンツを推薦する。 ユーザ端末200と、ユーザ端末200から所定の要求を受け、その結果を返すコンテンツ分析装置100とを備え、コンテンツ分析装置100は、複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出手段102と、各コンテンツ間の、伝播パタンの相関を求める相関計算手段103と、を備える。

Description

コンテンツ分析システム、コンテンツ分析装置、コンテンツ分析方法、コンテンツ分析プログラム
 本発明は、コンテンツ分析技術に関し、特に、ある任意のコンテンツに対して、他のコンテンツとの間のユーザへの伝播パタンの相関性を発見するコンテンツ分析システム、コンテンツ分析装置、コンテンツ分析方法およびコンテンツ分析プログラムに関する。
 相関分析は、2つの変数間の関係を数値で記述する分析方法であり、情報推薦やマーケティングに利用されている。
 例えば、情報推薦では、ユーザがコンテンツを利用した、または評価したという履歴から、コンテンツやユーザ間の相関を求め、類似性や関連性の高いコンテンツを推薦する推薦方式として、協調フィルタリングというアルゴリズムがよく知られている。
 特に近年、膨大なコンテンツ(電子書籍、ニュース、動画、音楽など)の中から、利用者にとって興味のあるコンテンツを自動的に把握して、利用者に提示するレコメンドシステムの重要性が高まっており、ショッピングモール等においても、「この商品を買った人はこんな商品も買っています」等のキャッチコピーで、関連性の高いコンテンツを推薦するサービスが提供されている。
 相関性を情報推薦に活用した協調フィルタリングについての関連技術が、例えば、非特許文献1、特許文献1、特許文献2に記載されている。
 非特許文献1は、最も初期の基本的な協調フィルタリングのアルゴリズムについて述べられた論文である。
 また、特許文献1は、各ユーザの個人登録配置情報(例えばブックマーク等)を利用して、カテゴリ毎に関連性が高いカテゴリから配置情報を推薦することで、URLの追加などの配置情報の管理作業が軽減される効果を持つ推薦技術である。
 また、特許文献2は、アクセス履歴からユーザを複数のグループにグルーピングし、該複数のグループに属するかを割り当てるとともに、時系列のアクセス履歴を用いて頻度の高い推移を抽出して推薦ルールを構築することで、初心者に対して上級者のものを推薦したりしないようにする効果を持つ協調フィルタリングである。
 これらの技術は、コンテンツ間、ユーザ間、また、カテゴリ間の相関を求め、いずれも類似性、関連性の高いコンテンツを的確に推薦できるようにするものである。
 しかし、これらはいずれも、コンテンツの利用または評価の度数の相関を求めているにすぎない。
 特許文献2は、時系列の遷移の頻度パタンの度数を利用しているが、これも、コンテンツ1からコンテンツ2に遷移したという前後の遷移パタンの度数を利用しているにすぎず、コンテンツが、どのようにユーザに伝播していったかという、ユーザへの伝播の類似性については考慮していない。そのため、ユーザにとって的確な伝播のタイミングでコンテンツを推薦するということができなかった。
特許第4118580号公報 特開2008-176398号公報 特開2004-3662208号公報 特開2010-140162号公報
P.ResnIck,N.Iacovou,M.Suchak,P.Bergstrom,and J.RIedl著、"GroupLens:Open ArchItecture for CollaboratIve FIlterIng of Netnews."、Conference on Computer Supported CooperatIve Work,p.175-186,1994
 上記関連技術における問題点は、コンテンツのユーザへの伝播パタンの相関と言う特徴を発見し、情報推薦やマーケティング分析などの応用分野に活用できていなかった点である。
 例えば、情報推薦においては、伝播パタンの異なるコンテンツも同等に扱われてしまうために、ユーザにとって的確な伝播のタイミングでコンテンツを推薦することができないという問題があった。
 その理由は、コンテンツ間の特徴である相関を求める際に、当該ユーザがコンテンツを利用した(評価した)という度数のみを用いて相関を求めており、そのコンテンツがどのようにユーザへ伝播したかという伝播パタンの相関を考慮していなかったためである。
(発明の目的)
 本発明の目的は、上述した課題を解決し、情報推薦やマーケティング分析に活用できるコンテンツ間のユーザへの伝播パタンの相関という特徴を発見し、例えば情報推薦においては、的確な伝播のタイミングでコンテンツを推薦できるコンテンツ分析システム、コンテンツ分析装置、コンテンツ分析方法およびコンテンツ分析プログラムを提供することである。
 本発明の第1のコンテンツ分析システムは、ユーザ端末と、ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置とを備え、コンテンツ分析装置は、複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出手段と、各コンテンツ間の、伝播パタンの相関を求める相関計算手段と、を備える。
 本発明の第1のコンテンツ分析装置は、ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置であって、複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出手段と、各コンテンツ間の、伝播パタンの相関を求める相関計算手段と、を備える。
 本発明の第1のコンテンツ分析方法は、ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置のコンテンツ分析方法であって、複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出ステップと、各コンテンツ間の、伝播パタンの相関を求める相関計算ステップと、を含む。
 本発明の第1のコンテンツ分析プログラムは、ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置として機能するコンピュータ上で動作するコンテンツ分析プログラムであって、コンピュータに、複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出処理と、各コンテンツ間の、伝播パタンの相関を求める相関計算処理と、を実行させる。
 本発明によれば、情報推薦やマーケティング分析に活用できるコンテンツ間のユーザへの伝播パタンの相関という特徴を発見し、例えば情報推薦においては、的確な伝播のタイミングでコンテンツを推薦できる。
本発明の第1の実施の形態の構成を示すブロック図である。 第1の実施の形態における履歴データの例示である。 第1の実施の形態によるコンテンツ分析システムの動作を示すフローチャートである。 本発明の実施例1の動作を示すフローチャートである。 実施例1における抽出した伝播パタンの例示1(伝播の順序)である。 実施例1の伝播パタンの例示1における相関算出の際の中間データである。 実施例1における抽出した伝播パタンの例示2(伝播の段階)である。 実施例1の伝播パタンの例示2における相関算出の際の中間データである。 実施例1における抽出した伝播パタンの例示3(伝播のネットワーク構造)である。 実施例1の伝播パタンの例示3における相関算出の際の中間データである。 本発明の第2の実施の形態の構成を示すプロック図である。 第2の実施の形態の動作を示すフローチャートである。 本発明の実施例2の動作を示すフローチャートである。 実施例2における抽出した伝播パタンの例示である。 本発明の第3の実施の形態の構成を示すブロック図である。 第3の実施の形態の動作を示すフローチャートである。 本発明の実施例3の動作を示すフローチャートである。 実施例3における抽出した伝播パタンの例示である。 本発明のコンテンツ分析装置のハードウェア構成例を示すブロック図である。
 本発明の実施の形態について図面を参照して詳細に説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施の形態)
 本発明の第1の実施の形態について、図面を参照して詳細に説明する。以下の図において、本発明の本質に関わらない部分の構成については適宜省略してあり、図示されていない。
 図1は、本発明の第1の実施の形態によるコンテンツ分析システム1000の構成を示すブロック図である。
 図1を参照すると、本実施の形態によるコンテンツ分析システム1000は、ユーザ端末200と、コンテンツ分析装置100とから構成されている。
 ユーザ端末200は、ユーザがコンテンツを利用等する端末である。ユーザ端末200は、図示しない入出力手段201を用いて、伝播パタンを調査したいコンテンツの識別子をコンテンツ分析装置100へ送信する。また、その結果をコンテンツ分析装置100から受け取る。
 コンテンツ分析装置1000は、ユーザ端末200とデータのやりとりを行う入出力手段101と、コンテンツ毎にユーザへの伝播パタンを抽出する伝播パタン抽出手段102と、所定のコンテンツ間の、該ユーザへの伝播パタンの相関を求める相関計算手段103とを含む。
 これらの手段はそれぞれ概略つぎのように動作する。
 入出力手段101は、ユーザ端末200から所定の要求を受け付け、前記要求に対応する出力をユーザ端末に返す。具体的には、ユーザからコンテンツの識別子を受け付け、出力として該コンテンツに対する他の1つ以上のコンテンツとの相関とその識別子を返す。
 本実施の形態では、入出力手段101は、入力としてコンテンツの識別子を受け付け、該コンテンツとその他の各コンテンツ間との、ユーザへの伝播パタンの相関を返す。この時、該その他の各コンテンツの識別子もあわせて返してもよい。
 伝播パタン抽出手段102は、履歴データに含まれる各コンテンツについて、ユーザへの伝播パタンを抽出する。
 履歴データとは、所定の各コンテンツの利用状況の履歴を示すデータである。ここで、履歴データの例を図2に示す。
 履歴データは、所定のデータベースやコンテンツ情報管理サーバ等を別途設けて記録することを想定するが、これに限定はされず、コンテンツ分析装置10が格納手段を設けても良い。履歴データの格納方式そのものは本発明とは直接的には関係しないため、その詳細及び図示については省略する。
 ユーザへの伝播パタンとは、コンテンツが、ユーザへどのように伝播したかを表すパタンであり、伝播の順序、ネットワーク構造、時間間隔、スピードなどを示す。
 なお、伝播したとは、ユーザに利用された、評価された等、ユーザとコンテンツの間に何らかの関係があった場合を意味する。
 相関計算手段103は、ユーザへの伝播パタンを用いて、コンテンツ間の伝播の相関を算出する。また、入力として受け付けたコンテンツとその他のコンテンツとの間のユーザへの伝播パタンの相関だけを求めることとしてもよい。
(第1の実施の形態の動作の説明)
 次に、本実施の形態によるコンテンツ分析システム1000の動作について、図面を参照して詳細に説明する。
 図3は、本実施の形態によるコンテンツ分析システム1000の動作を示すフローチャートである。
 図3を参照すると、まず、入出力手段101が、ユーザ端末200から入力としてコンテンツの識別子を受け付ける(ステップA1)。
 次いで、伝播パタン抽出手段102が、履歴データを取得し、該履歴データに含まれる各コンテンツについて、ユーザへの伝播パタンを抽出する(ステップA2)。
 次いで、相関計算手段103が、入力として受け付けたコンテンツとその他の各コンテンツとの間の、ユーザへの伝播パタンの相関を求める(ステップA3)。
 次いで、入出力手段101が、相関計算手段103が求めた該相関を、コンテンツの識別子とともに返す(ステップA4)。
 この時、入力されたコンテンツと相関が高いコンテンツの順に、該コンテンツの識別子をソートして返しても良い。
 なお、各コンテンツのユーザへの伝播パタンと、各コンテンツ間の相関それぞれを事前に算出し内部に記録しておき、入出力手段101から要求を受け付けたときに、該内部に記録した相関を参照し、該相関とコンテンツの識別子を返すように構成してもよい。これにより、要求受け付け後のステップA2、ステップA3の処理が省略できる。
 次に、具体的な実施例を用いて本実施の形態の動作を説明する。
 図4は、本発明の第1の実施例の動作を示すフローチャートである。
 図4を参照すると、まず、入出力手段101が、ユーザ端末200から入力としてItemA(ItemAを示すコンテンツの識別子)を受け付ける(ステップA1’)。
 次いで、伝播パタン抽出手段102が、履歴データを取得し、該履歴データに含まれる各コンテンツについて、ユーザへの伝播パタンを抽出する(ステップA2’)。履歴データには少なくとも、利用日時、利用ユーザ、利用したコンテンツの識別子を含む。
 次いで、相関計算手段103が、ItemAとその他の各コンテンツとの間の、ユーザへの伝播パタンの相関を求める(ステップA3’)。
 ユーザへの伝播パタンは、コンテンツがユーザへどのように伝播したかを示すパタンであり、様々な例が考えられる。本実施例では、1)伝播の順序、2)伝播の段階、3)伝播のネットワーク構造、を伝播パタン抽出手段102が抽出する例について説明する。
 なお、上述のようなパタンに加えて、ユーザ間の伝播の時間間隔やスピードを考慮する方法なども考えられる。
1)伝播の順序
 コンテンツのユーザへの伝播パタンの抽出として、コンテンツのユーザへの伝播順序を抽出し、該伝播順序に基づいてユーザへの伝播パタンの相関を算出する場合について説明する。
 まず、伝播パタン抽出手段102が、履歴データに含まれる各コンテンツについて、それぞれユーザへの伝播の順序を伝播パタンとして抽出する。抽出された伝播パタンの例を図示したものを、図5のP100に示す。
 図5のP100を参照すると、本実施例では、ItemA及びItemBの伝播パタンが抽出されている。
 伝播パタンP101は、ItemAの伝播パタンであり、ItemAが{User01、User02、User05、User04}の順にユーザへ伝播したことが確認できる。
 伝播パタンP102は、ItemBの伝播パタンであり、ItemBが{User01、User02、User04}の順にユーザへ伝播したことが確認できる。
 なお、P100’は、後述するスピアマンの順位相関係数の算出のために、P100に所定の変更を加えたものである。
 伝播パタン抽出手段102が伝播パタンを抽出した後、相関計算手段103は、該伝播パタンを用いて、コンテンツ間のユーザへの伝播パタンの相関を求める。上述のようなコンテンツ間のユーザへの伝播順序の相関の算出では、スピアマンやケンドールなどの相関係数などで算出を行えばよい。
 本実施例では、ItemAを入力として受け付けているため、ItemAを中心に、ItemAと、その他の各コンテンツ(本実施例ではItemB)との間で、のユーザの伝播順序を用いて、スピアマンの順位相関係数を算出する。
 スピアマンの順位相関係数は、2変数間の順位の差をD、ケース数をNとすると、下記数1で与えられ、1~-1の値をとる。
Figure JPOXMLDOC01-appb-M000001
 
 相関係数が正の場合は、二変数間には相関関係がある状態、逆に負の場合は、負の相関関係がある状態、さらに0の場合は、無相関の状態を表す係数である。
 以下に、ItemAとItemBの伝播ユーザの相関をスピアマンの順位相関係数を用いて算出する例を示す。
 まず、ItemAとItemBの伝播ユーザを比較すると、ItemAにはUser05が存在するが、ItemBにはUser05が存在しない。
 このように、どちらか片方にまだ伝播していないユーザが存在する場合は、図5のP101’のように、該伝播していないユーザを、最後尾に伝播したものとするなどの仮定を置いて計算する。
 ここで、図6を参照すると、図6は、図5のP100’を基に各Item毎の各ユーザの順位の差を求めた、相関算出の際の中間データである。
 図6は、各Item(ItemA、ItemB)毎に、ユーザへの伝播順序を示している。また、各ユーザ毎に、ItemAとItemBの順位の差を示している。
 図6を参照すると、ItemAは、{User01、User02、User05、User04}の順に伝播している。ItemBは、{User01、User02、User04}の順に伝播し、その後にUser05に伝播したものと擬制している。各ユーザの順位の差は、ItemAの順位とItemBの順位の差の絶対値である。
 また、ItemAとItemBは、User01、User02、User04、User05の4つのケースがあるため、ケース数N=4であることが求まる。
 この図6に示す中間データを、スピアマンの順位相関係数の算出式に代入すると、ρ(ItemA、ItemB)=1-6(1+1)/4(16-1)=0.8となる。
 上記の例では、その他のコンテンツはItemBだけであったが、その他のコンテンツが複数ある場合は、それらのコンテンツについても、ItemBと同様にしてItemAとの相関係数を算出することができる。なお、相関係数の算出方法はこれに限定されない。
2)伝播の段階
 次に、コンテンツのユーザへの伝播パタンの抽出として、伝播の段階が同じグループを抽出する場合について説明する。
 まず、伝播パタン抽出手段102が、履歴データに含まれる各コンテンツについて、イノベーター理論をもとに、該コンテンツが伝播したユーザを複数のグループ(段階)に分ける。該グループ分けの結果を図示したものを図7に示す。
 イノベーター理論は、スタンフォード大学のロジャース教授が提唱したマーケティングの理論で、消費者の商品購入に対する態度を、新しい商品に対する購入時期の早い順から、イノベーター(Innovators:2.5%)、アーリーアダプター(Early Adopters:13.5%)、アーリーマジョリティ(Early Majority:34%)、レイトマジョリティ(Late Majority:34%)、ラガード(Laggards:16%)の5段階のタイプに分類したものである。
 本例では、このインベータ理論を応用して、コンテンツが伝播した順に、ユーザを5段階にタイプに分類する。
 図7を参照すると、P200は、ItemA、ItemBが伝播したユーザをイノベーター理論によって分類した伝播パタンである。
 P201は、ItemA、ItemBが伝播したユーザを、イノベーター理論によって、5段階のグループ分けされていることが確認できる。
 グループ分けでは、全ユーザの人数から、イノベーター理論の各段階の割合を用いて、各段階の人数を仮定する。
 図7の場合は、全ユーザが25人であり、イノベーター:2.5%、アーリーアダプター13.5%、アーリーマジョリティ:34%、レイトマジョリティ:34%、ラガード:16%という割合から、イノベーター1人、アーリーアダプター3人、アーリーマジョリティ8人、レイトマジョリティ9人、ラガード4人であるという仮定をし、ユーザを割り当てている。
 次に、相関計算手段103が、各段階の重複ユーザ数やその比を用いて、コンテンツ間のユーザへの伝播パタンの相関を求める。
 伝播していないユーザが存在するときは、分母を揃えるため、P202の{User06、User05}のようにユーザへの伝播を仮定することができる。あるいは、イノベーターのみを相関に用いるなど、一部の段階のみを用いて相関を求めてもよい。
 ここで図8を参照すると、図8は、図7を基に各段階のユーザの重なりの比を求めた、相関算出の際の中間データである。
 ItemAとItemBのユーザへの伝播パタンの相関を、各グループの重複ユーザの重なりの比の総和から求めると、ItemAとItemBの相関係数は、(1+2+6+5+1)/25=0.6のように算出できる。
上記の例では、その他のコンテンツはItemBだけであったが、その他のコンテンツが複数ある場合は、それらのコンテンツについても、ItemBと同様にしてItemAとの相関係数を算出することができる。
 また、上記の例では各段階すべてのユーザの重なりを用いたが、イノベーターのみのユーザの重なりをみるなど、任意の段階を用いた相関を求めても良い。また、相関係数の算出方法は上記に限定されない。
3)伝播のネットワーク構造
 次に、コンテンツの伝播パタンの抽出として、伝播のネットワーク構造を抽出する場合について説明する。
 まず、履歴データに含まれる各コンテンツについて、伝播のネットワーク構造を抽出する。この場合、履歴データには必ず、参照元ユーザ(遷移元ユーザ)の情報が必要になる。該抽出の結果を図9に示す。
 参照元ユーザとは、例えば、あるユーザが所定のコンテンツを利用した場合、該コンテンツに他のユーザの情報が関連付けられていた場合の、該他のユーザのことである。このような状況は、例えば、ショッピングモールやオンラインショップ等において、「この商品を買った人はこんな商品も買っています」等のキャッチコピーで、関連性の高いコンテンツを推薦するサービス等において想定される。
 図9を参照すると、P301はItemA、P302はItemBの伝播のネットワーク構造である。
 このネットワーク構造から、特徴として、ユーザ毎に親ノードとなる遷移元ユーザの重なりをみると、ItemA、ItemBそれぞれの遷移関係は図10に示す様になる。
 図9を参照すると、ItemA、ItemBともに、伝播の最初はUser01であるため、図10でUser01の遷移元ユーザは”None”となる。他のユーザについても同様にして当てはめを行うことができ、その結果が図10となる。
 そして、ユーザ毎に、ItemA、ItemBの遷移元ユーザを比較し、遷移元ユーザが同じ場合は重なりを1とし、異なる場合は重なりを0としている。
 ItemA、ItemBの相関係数は、重なりの比をとって2/5のように算出できる。
 上記の例では、その他のコンテンツはItemBだけであったが、その他のコンテンツが複数ある場合は、それらのコンテンツについても、ItemBと同様にしてItemAとの相関係数を算出することができる。
 上記1)~3)のようにして、ItemAとItemBとのユーザへの伝播パタンの相関が求められると、最後に、入出力手段101が、入力として受け付けたItemBと他の各コンテンツとの相関を、該他の各コンテンツの識別子とともにユーザ端末200に返却する(ステップA4’)。
 このようにして、コンテンツ間のユーザへの伝播パタンの相関性という、情報推薦やマーケティング分析などに役立つ特徴を発見することができる。
(第1の実施の形態による効果)
 次に本実施の形態の効果について説明する。
 本実施の形態では、コンテンツ毎のユーザへの伝播パタンを用いて、該ユーザへの伝播パタンの相関を求めるように構成されているため、ある任意のコンテンツに対してユーザへの伝播パタンの相関性の高いコンテンツを発見し、情報推薦やマーケティング分析などに活用することができる。
 なお、伝播パタン抽出手段102と相関計算手段103とからなる最小限の構成であっても、本発明の目的を達成することができる。
(第2の実施の形態)
 本発明の第2の実施の形態について、図面を参照して詳細に説明する。以下の図において、本発明の本質に関わらない部分の構成については省略してあり、図示されていない。
 図11は、本実施の形態によるコンテンツ分析システム1000の構成を示すブロック図である。
 図11を参照すると、本実施の形態によるコンテンツ分析システム1000は、入出力手段101と、伝播パタン抽出手段102と、相関計算手段103と、ユーザスコア計算手段104とから構成されている。本実施の形態では、第1の実施の形態に加え、ユーザスコア計算手段104を備える。
 これらの手段はそれぞれ概略つぎのように動作する。
 入出力手段101は、ユーザ端末200から所定の要求を受け付け、前記要求に対応する出力をユーザ端末に返す。本実施の形態では、入力としてコンテンツの識別子を受け付け、出力として該コンテンツに対する各ユーザのスコアをユーザの識別子とともに返す。
 伝播パタン抽出手段102は、第1の実施の形態と同様に、履歴データから、コンテンツ毎にユーザへの伝播パタンを抽出する。
 相関計算手段103は、第1の実施の形態と同様に、コンテンツ間のユーザへの伝播パタンの相関を求める。
 ユーザスコア計算手段104は、各コンテンツのユーザへの伝播パタンと、各コンテンツ間のユーザへの伝播パタンの相関とから、各コンテンツに対する各ユーザのスコアを算出する。また、入力として受け付けたコンテンツに対する各ユーザのスコアだけを求めることとしてもよい。
(第2の実施の形態の動作の説明)
 次に、本発明の第2の実施の形態によるコンテンツ分析システム1000の動作について、図面を参照して詳細に説明する。
 図12は、本実施の形態によるコンテンツ分析システム1000の動作を示すフローチャートである。
 図12を参照すると、まず、ステップB1~B3は、図3に示す第1の実施の形態のステップA1~A3と同じであるので、ここではステップB1~B3の説明を省略する。
 ステップB3の後、次いで、ユーザスコア計算手段104が、入力として受け付けたコンテンツとその他の各コンテンツ間のユーザへの伝播パタンの相関を用いて、入力として受け付けたコンテンツに対する各ユーザのスコアを算出する(ステップB4)。該算出方法の詳細については、下記実施例2で説明する。
 そして、最後に、入出力手段101が、入力として受け付けたコンテンツに対する、各ユーザのスコアを該ユーザの識別子と共にユーザ端末200に返す(ステップB5)。
 次に、具体的な実施例を用いて本実施の形態の動作を説明する。
 図13は、本発明の第2の実施例の動作を示すフローチャートである。
 図13を参照すると、まず、入出力手段101が、ユーザ端末200から入力としてItemB(ItemBを示すコンテンツ識別子)を受け付ける(ステップB1’)。
 次いで、伝播パタン抽出手段102が、実施例1と同様に、履歴データを取得し、該履歴データに含まれる各コンテンツについて、ユーザへの伝播パタンを抽出する(ステップB2’)。本実施例では、伝播の順序を伝播パタンとして抽出したとする。該抽出結果の例を図14のP400に示す。
 図14を参照すると、本実施例では、ItemB、ItemA、ItemCについてのユーザへの伝播パタンが抽出されている。
 次いで、相関計算手段103が、ItemBとItemA、及びItemBとItemCについて、ユーザへの伝播パタンの相関を求める(ステップB3’)。算出方法は、実施例1と同様である。
 次いで、ユーザスコア計算手段104が、伝播パタン抽出手段102で算出した各コンテンツのユーザへの伝播パタンと、相関計算手段103で算出したユーザへの伝播パタンの相関とを用いて、各ユーザのスコアを算出する(ステップB4’)。
ユーザスコア計算手段104は、ItemBとユーザへの伝播パタンの相関が高いコンテンツで、かつ、伝播順序の早いユーザに、より高スコアを付与するように計算する。
 具体的には、まず、ユーザスコア算出手段104は、ItemAについて、ItemBが伝播しているユーザを除き、残されたユーザから、伝播が早い順に伝播順序に対するスコア(伝播スコア)を付与する計算を行う。ItemCについても同様である。伝播スコアは、例えば伝播順序の逆数などを付与することができる。
 上記計算例を図示化した例を、図14のP400’に示す。
 P400’では、User01、User02、User04はItemBが伝播しているため、これを除くと、ItemAでは、User05が伝播順序が最も早くなる。この結果、User05には伝播スコア”1”が付与される。
 同様に、ItemCでは、User03に伝播スコア”1”が付与され、User05に伝播スコア”1/2”が付与される。
 次いで、ユーザスコア計算手段104は、下記数2を用いて、ItemBに対する各ユーザのスコアを算出する。
Figure JPOXMLDOC01-appb-M000002
 
 上記数2を用いると、例えばItemBに対するUser05のスコアは、ItemAに対するUser05の伝播スコア及びItemBとItemAのユーザへの伝播パタンの相関の積と、ItemCに対するUser05の伝播スコア及びItemBとItemCのユーザへの伝播パタンの相関の積との総和となる。
 同様にして、ItemBに対する各ユーザのスコアを求めた後、最後に、入出力手段101が、ItemBに対する各ユーザのスコアを、ユーザの識別子とともにユーザ端末200に返却する(ステップB5’)。このとき、ユーザの識別子を、スコアの降順、または昇順に並べる処理を行ってもよい。また、ユーザの識別子だけを返却することとしても良い。
 このように、ユーザへの伝播パタンの相関性を利用して、あるコンテンツに対するユーザのスコアを計算することで、より早く伝播する可能性の高いユーザ群を抽出することができる。
(第2の実施の形態による効果)
 次に本実施の形態の効果について説明する。
 本実施の形態によれば、任意のコンテンツに対するユーザのスコアを算出するように構成されているため、あるコンテンツの伝播パタンを調査・予測するマーケティング分析や、適切な伝播のタイミングでコンテンツを推薦する情報推薦などに応用できる。
(第3の実施の形態)
 本発明の第3の実施の形態について、図面を参照して詳細に説明する。以下の図において、本発明の本質に関わらない部分の構成については省略してあり、図示されていない。
 図15は、本実施の形態によるコンテンツ分析システム1000の構成を示すブロック図である。
 図15を参照すると、本実施の形態によるコンテンツ分析システム1000は、入出力手段101と、伝播パタン抽出手段102と、相関計算手段103と、コンテンツスコア計算手段105とから構成されている。本実施の形態では、第1の実施の形態に加え、コンテンツスコア計算手段105を備える。
 これらの手段はそれぞれ概略つぎのように動作する。
 入出力手段101は、ユーザ端末200から所定の要求を受け付け、前記要求に対応する出力をユーザ端末に返す。
 本実施の形態では、入力としてユーザの識別子を受けつけ、該ユーザに対するおすすめのコンテンツ識別子のリストを返す。
 伝播パタン抽出手段102は、第1、第2の実施の形態と同様に、履歴データから、コンテンツ毎にユーザへの伝播パタンを抽出する。
 相関計算手段103は、各コンテンツのユーザへの伝播パタンを用いて、各コンテンツ間の伝播の相関を求める。
 ユーザスコア計算手段104は、各コンテンツのユーザへの伝播パタンと、各コンテンツ間のユーザへの伝播パタンの相関とから、各コンテンツに対する各ユーザのスコアを算出する。
 コンテンツスコア計算手段105は、各コンテンツ間のユーザへの伝播パタンの相関と、各ユーザのコンテンツの利用履歴とから、各ユーザに対するコンテンツのスコアを算出する。また、入力として受け付けたユーザに対する各コンテンツのスコアだけを求めることとしてもよい。コンテンツのスコアの具体的な算出方法は後述する。
(第3の実施の形態の動作の説明)
 次に、本実施の形態によるコンテンツ分析システムの動作について、図面を参照して詳細に説明する。
 図16は、本実施の形態によるコンテンツ分析システム1000の動作を示すフローチャートである。
 図16を参照すると、まず、入出力手段101が、ユーザ端末200から、入力としてユーザの識別子を受け付ける(C1)。
 次いで、伝播パタン抽出手段102が、履歴データを取得し、該履歴データに含まれる各コンテンツについて、ユーザへの伝播パタンを抽出する(ステップC2)。
 次いで、相関計算手段103が、該各コンテンツについて、各コンテンツ間のユーザへの伝播パタンの相関を求める(ステップC3)。本実施の形態では、履歴データに含まれるコンテンツのすべての組み合わせについて、該相関を求める。
 ステップC3の後、次いで、コンテンツスコア計算手段105が、相関計算手段103が求めた該相関と、入力として受け付けたユーザの各コンテンツの利用履歴とを用いて、該ユーザに対する各コンテンツのスコアを算出する(ステップC4)。
 そして、入力として受け付けたユーザに対し、コンテンツのスコアの高い順にソーティングしたコンテンツの識別子を、ユーザ端末200に返す(ステップC5)。また、コンテンツのスコアを併せて返しても良い。
 次に、具体的な実施例を用いて本実施の形態の動作を説明する。
 図17は、本発明の第3の実施例の動作を示すフローチャートである。
 図17を参照すると、まず、入出力手段101が、ユーザ端末200から入力としてUser05(User05を示すユーザ識別子)を受け付ける(ステップC1’)。
 次いで、伝播パタン抽出手段102が、実施例1と同様に、履歴データを取得し、該履歴データに含まれる各コンテンツについて、ユーザへの伝播パタンを抽出する(ステップC2’)。本実施例でも、実施例2と同様に、伝播順序を伝播パタンとして抽出したものとする。該抽出結果の例を図18のP500に示す。
 図18を参照すると、本実施例では、ItemA、ItemB、及びItemCについてのユーザへの伝播パタンが抽出されている。
 次いで、相関計算手段103が、各コンテンツ間のユーザへの伝播パタンの相関を求める(ステップC3’)。具体的には、相関計算手段103は、ItemAとItemB、ItemAとItemC、及びItemBとItemCについて、ユーザへの伝播パタンの相関を求める。
 次いで、コンテンツスコア計算手段105が、伝播パタン抽出手段102で算出した各コンテンツのユーザへの伝播パタンと、相関計算手段103で算出した、各コンテンツ間のユーザへの伝播パタンの相関とを用いて、User05に対する各コンテンツのスコアを算出する(ステップC4’)。
 コンテンツスコア計算手段105は、まず、User05に既に伝播したコンテンツの中で、User05への伝播の時期が早く、かつ、User05に伝播があったコンテンツと伝播パタンの相関が高いコンテンツに対してより高い伝播スコアを付与するように、コンテンツのスコアを算出する。
 例えば、User05に対するItemBのスコアは、下記の様に求められる。
 まず、コンテンツスコア算出手段105は、他のコンテンツに対する、User05への伝播の時期を伝播スコアとして算出する。
 ItemAについて、ItemBが伝播しているユーザを除いたうえで、User05の伝播スコアを付与する。ItemCについても同様にUser05の伝播スコアを付与する。伝播スコアは、実施例2同様、例えば伝播順序の逆数などを付与することができる。
 上記計算例を図示化した例を、図18のP500’に示す。
 P500’では、ItemBはUser01、User02、User04に既に伝播しているため、それらを覗くと、ItemAでは、User05の伝播順序は1番目である。この結果、User05に伝播スコア”1”が付与される。
 同様に、ItemCでは、User05の伝播順序は2番目である。この結果、User05に伝播スコア”1/2”が付与される。
 上記の様に、User05に対するItemBのコンテンツのスコアを求めるためには、まず他のコンテンツであるItemA、CにおけるUser05の伝播スコアを求める。説明は省略するが、User05に対するItemA又はItemCのコンテンツのスコアを求める場合も同様である。
 そして、ItemA、ItemCにおけるUser05の伝播スコアも求まると、次いで、コンテンツスコア計算手段105は、下記数3を用いて、User05に対するコンテンツのスコアを計算する。
Figure JPOXMLDOC01-appb-M000003
 
 上記数3を用いると、User05に対するItemBのコンテンツのスコアは、ItemAにおけるUser05の伝播スコア及びItemBとItemAのユーザへの伝播スコアの相関の積と、ItemCにおけるUser05の伝播スコア及びItemBとItemCのユーザへの伝播スコアの相関の積との総和となる。
 同様にして、User05に対するItemA、ItemBのスコアを求めた後、最後に、入出力手段101が、該コンテンツのスコアの高い順にソートした各コンテンツの識別子をユーザ端末200に返却する(ステップC5’)。このとき、コンテンツのスコアも併せて返却してもよい。
 このようにユーザへの伝播パタンの相関性を利用して、あるユーザに対する各コンテンツのスコアを計算することで、当該ユーザにより早く伝播する可能性の高いコンテンツ群を抽出することができる。
(第3の実施の形態による効果)
 次に本実施の形態の効果について説明する。
 本実施の形態によれば、任意のユーザに対して、伝播パタンの類似によって算出したコンテンツのスコアに基づいてコンテンツを推薦するように構成されているため、あるユーザに対する適切なコンテンツをレコメンドする情報推薦などに応用できる。
 次に、本発明のコンテンツ分析装置100のハードウェア構成例について、図19を参照して説明する。図19はコンテンツ分析装置100のハードウェア構成例を示すブロック図である。
 図19を参照すると、コンテンツ分析装置100は、一般的なコンピュータ装置と同様のハードウェア構成であり、CPU(Central Processing Unit)801、RAM(Random Access Memory)等のメモリからなる、データの作業領域やデータの一時退避領域に用いられる主記憶部802、ネットワークを介してデータの送受信を行う通信部803、入力装置805や出力装置806及び記憶装置807と接続してデータの送受信を行う入出力インタフェース部804、上記各構成要素を相互に接続するシステムバス808を備えている。記憶装置807は、例えば、ROM(Read Only Memory)、磁気ディスク、半導体メモリ等の不揮発性メモリから構成されるハードディスク装置等で実現される。
 本発明のコンテンツ分析装置100の入出力手段101、伝播パタン抽出手段102、相関計算手段103、ユーザスコア計算手段104、コンテンツスコア計算手段105は、プログラムを組み込んだ、LSI(Large Scale Integration)等のハードウェア部品である回路部品を実装することにより、その動作をハードウェア的に実現することは勿論として、その機能を提供するプログラムを、記憶装置807に格納し、そのプログラムを主記憶部802にロードしてCPU801で実行することにより、ソフトウェア的に実現することも可能である。
 以上好ましい実施の形態をあげて本発明を説明したが、本発明は必ずしも、上記実施の形態に限定されるものでなく、その技術的思想の範囲内において様々に変形して実施することができる。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
 また、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はない。例えば、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。
 また、本発明の方法およびコンピュータプログラムには複数の手順を順番に記載してあるが、その記載の順番は複数の手順を実行する順番を限定するものではない。このため、本発明の方法およびコンピュータプログラムを実施する時には、その複数の手順の順番は内容的に支障しない範囲で変更することができる。
 また、本発明の方法およびコンピュータプログラムの複数の手順は個々に相違するタイミングで実行されることに限定されない。このため、ある手順の実行中に他の手順が発生すること、ある手順の実行タイミングと他の手順の実行タイミングとの一部ないし全部が重複していること等があってもよい。
 さらに、上記実施形態の一部又は全部は、以下の付記のようにも記載されうるが、これに限定されない。
(付記1)
 ユーザ端末と、
 前記ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置とを備え、
 前記コンテンツ分析装置は、
 複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出手段と、
 前記各コンテンツ間の、前記伝播パタンの相関を求める相関計算手段と、
 を備えることを特徴とするコンテンツ分析システム。
(付記2)
 前記履歴データは、少なくとも利用日時、利用ユーザ、利用したコンテンツの識別子を含むことを特徴とする付記1に記載のコンテンツ分析システム。
(付記3)
 前記伝播パタン抽出手段は、
 前記伝播パタンとして、各コンテンツについて、ユーザへ伝播した順序を時系列に抽出することを特徴とする付記1又は付記2に記載のコンテンツ分析システム。
(付記4)
 前記伝播パタン抽出手段は、
 前記伝播パタンとして、各コンテンツについて、当該コンテンツが伝播したユーザを、伝播順序に基づいて複数の段階に分けたグループを抽出することを特徴とする付記1又は付記2に記載のコンテンツ分析システム。
(付記5)
 前記伝播パタン抽出手段は、
 前記伝播パタンとして、各コンテンツについて、当該コンテンツが伝播したユーザのネットワーク構造を抽出することを特徴とする付記1又は付記2に記載のコンテンツ分析システム。
(付記6)
 前記ユーザ端末から入力として受け付けた入力コンテンツに対し、当該入力コンテンツと他の前記各コンテンツとの前記伝播パタンの相関を求めることを特徴とする付記1から付記5の何れか1項に記載のコンテンツ分析システム。
(付記7)
 前記各コンテンツの前記伝播パタンと、前記各コンテンツ間の前記伝播パタンの相関とを用いて、前記ユーザ端末から入力として受け付けた入力コンテンツに関し、当該入力コンテンツが伝播する可能性を示すユーザスコアを、前記入力コンテンツに伝播していないユーザについて算出するユーザスコア算出手段を備えることを特徴とする付記1から付記5の何れか1項に記載のコンテンツ分析システム。
(付記8)
 前記ユーザスコア算出手段は、
 前記入力コンテンツの前記伝播パタンに含まれないユーザついて、他のコンテンツにおける当該ユーザの伝播スコアを算出し、前記伝播スコアと、前記入力コンテンツと前記他のコンテンツとの前記伝播パタンの相関とを積算した値を前記ユーザスコアとし、前記他のコンテンツが複数ある場合は、各積算結果を総和した値を前記ユーザスコアとし、
 前記伝播スコアを、
 前記入力コンテンツの伝播パタンに含まれるユーザを除いた、前記他のコンテンツの伝播パタンにおける伝播順序に基づいて算出することを特徴とする付記7に記載のコンテンツ分析システム。
(付記9)
 前記各コンテンツの前記伝播パタンと、前記各コンテンツ間の前記伝播パタンの相関とを用いて、前記ユーザ端末から入力として受け付けた入力ユーザへの推薦度を示すコンテンツスコアを、前記入力ユーザに伝播していない各コンテンツについて算出するコンテンツスコア算出手段を備えることを特徴とする付記1から付記5の何れか1項に記載のコンテンツ分析システム。
(付記10)
 前記コンテンツスコア算出手段は、
 前記入力ユーザに伝播していないコンテンツについて、他のコンテンツにおける当該入力ユーザの伝播スコアを算出し、前記伝播スコアと、前記他のコンテンツとの前記伝播パタンの相関とを積算した値を前記コンテンツスコアとし、前記他のコンテンツが複数ある場合は、各積算結果を総和した値を前記コンテンツスコアとし、
 前記伝播スコアを、
 前記入力ユーザに伝播していないコンテンツの前記伝播パタンに含まれるユーザを除いた、前記他のコンテンツの伝播パタンにおける伝播順序に基づいて算出することを特徴とする付記9に記載のコンテンツ分析システム。
(付記11)
 ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置であって、
 複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出手段と、
 前記各コンテンツ間の、前記伝播パタンの相関を求める相関計算手段と、
 を備えることを特徴とするコンテンツ分析装置。
(付記12)
 前記履歴データは、少なくとも利用日時、利用ユーザ、利用したコンテンツの識別子を含むことを特徴とする付記11に記載のコンテンツ分析装置。
(付記13)
 前記伝播パタン抽出手段は、
 前記伝播パタンとして、各コンテンツについて、ユーザへ伝播した順序を時系列に抽出することを特徴とする付記11又は付記12に記載のコンテンツ分析装置。
(付記14)
 前記伝播パタン抽出手段は、
 前記伝播パタンとして、各コンテンツについて、当該コンテンツが伝播したユーザを、伝播順序に基づいて複数の段階に分けたグループを抽出することを特徴とする付記11又は付記12に記載のコンテンツ分析装置。
(付記15)
 前記伝播パタン抽出手段は、
 前記伝播パタンとして、各コンテンツについて、当該コンテンツが伝播したユーザのネットワーク構造を抽出することを特徴とする付記11又は付記12に記載のコンテンツ分析装置。
(付記16)
 前記ユーザ端末から入力として受け付けた入力コンテンツに対し、当該入力コンテンツと他の前記各コンテンツとの前記伝播パタンの相関を求めることを特徴とする付記11から付記15の何れか1項に記載のコンテンツ分析装置。
(付記17)
 前記各コンテンツの前記伝播パタンと、前記各コンテンツ間の前記伝播パタンの相関とを用いて、前記ユーザ端末から入力として受け付けた入力コンテンツに関し、当該入力コンテンツが伝播する可能性を示すユーザスコアを、前記入力コンテンツに伝播していないユーザについて算出するユーザスコア算出手段を備えることを特徴とする付記11から付記15の何れか1項に記載のコンテンツ分析装置。
(付記18)
 前記ユーザスコア算出手段は、
 前記入力コンテンツの前記伝播パタンに含まれないユーザついて、他のコンテンツにおける当該ユーザの伝播スコアを算出し、前記伝播スコアと、前記入力コンテンツと前記他のコンテンツとの前記伝播パタンの相関とを積算した値を前記ユーザスコアとし、前記他のコンテンツが複数ある場合は、各積算結果を総和した値を前記ユーザスコアとし、
 前記伝播スコアを、
 前記入力コンテンツの伝播パタンに含まれるユーザを除いた、前記他のコンテンツの伝播パタンにおける伝播順序に基づいて算出することを特徴とする付記17に記載のコンテンツ分析装置。
(付記19)
 前記各コンテンツの前記伝播パタンと、前記各コンテンツ間の前記伝播パタンの相関とを用いて、前記ユーザ端末から入力として受け付けた入力ユーザへの推薦度を示すコンテンツスコアを、前記入力ユーザに伝播していない各コンテンツについて算出するコンテンツスコア算出手段を備えることを特徴とする付記11から付記15の何れか1項に記載のコンテンツ分析装置。
(付記20)
 前記コンテンツスコア算出手段は、
 前記入力ユーザに伝播していないコンテンツについて、他のコンテンツにおける当該入力ユーザの伝播スコアを算出し、前記伝播スコアと、前記他のコンテンツとの前記伝播パタンの相関とを積算した値を前記コンテンツスコアとし、前記他のコンテンツが複数ある場合は、各積算結果を総和した値を前記コンテンツスコアとし、
 前記伝播スコアを、
 前記入力ユーザに伝播していないコンテンツの前記伝播パタンに含まれるユーザを除いた、前記他のコンテンツの伝播パタンにおける伝播順序に基づいて算出することを特徴とする付記19に記載のコンテンツ分析装置。
(付記21)
 ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置のコンテンツ分析方法であって、
 複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出ステップと、
 前記各コンテンツ間の、前記伝播パタンの相関を求める相関計算ステップと、
 を含むことを特徴とするコンテンツ分析方法。
(付記22)
 前記履歴データは、少なくとも利用日時、利用ユーザ、利用したコンテンツの識別子を含むことを特徴とする付記21に記載のコンテンツ分析方法。
(付記23)
 前記伝播パタン抽出ステップで、
 前記伝播パタンとして、各コンテンツについて、ユーザへ伝播した順序を時系列に抽出することを特徴とする付記21又は付記22に記載のコンテンツ分析方法。
(付記24)
 前記伝播パタン抽出ステップで、
 前記伝播パタンとして、各コンテンツについて、当該コンテンツが伝播したユーザを、伝播順序に基づいて複数の段階に分けたグループを抽出することを特徴とする付記21又は付記22に記載のコンテンツ分析方法。
(付記25)
 前記伝播パタン抽出ステップで、
 前記伝播パタンとして、各コンテンツについて、当該コンテンツが伝播したユーザのネットワーク構造を抽出することを特徴とする付記21又は付記22に記載のコンテンツ分析方法。
(付記26)
 前記ユーザ端末から入力として受け付けた入力コンテンツに対し、当該入力コンテンツと他の前記各コンテンツとの前記伝播パタンの相関を求めることを特徴とする付記21から付記25の何れか1項に記載のコンテンツ分析方法。
(付記27)
 前記各コンテンツの前記伝播パタンと、前記各コンテンツ間の前記伝播パタンの相関とを用いて、前記ユーザ端末から入力として受け付けた入力コンテンツに関し、当該入力コンテンツが伝播する可能性を示すユーザスコアを、前記入力コンテンツに伝播していないユーザについて算出するユーザスコア算出ステップをさらに含むことを特徴とする付記21から付記25の何れか1項に記載のコンテンツ分析方法。
(付記28)
 前記ユーザスコア算出ステップで、
 前記入力コンテンツの前記伝播パタンに含まれないユーザついて、他のコンテンツにおける当該ユーザの伝播スコアを算出し、前記伝播スコアと、前記入力コンテンツと前記他のコンテンツとの前記伝播パタンの相関とを積算した値を前記ユーザスコアとし、前記他のコンテンツが複数ある場合は、各積算結果を総和した値を前記ユーザスコアとし、
 前記伝播スコアを、
 前記入力コンテンツの伝播パタンに含まれるユーザを除いた、前記他のコンテンツの伝播パタンにおける伝播順序に基づいて算出することを特徴とする付記27に記載のコンテンツ分析方法。
(付記29)
 前記各コンテンツの前記伝播パタンと、前記各コンテンツ間の前記伝播パタンの相関とを用いて、前記ユーザ端末から入力として受け付けた入力ユーザへの推薦度を示すコンテンツスコアを、前記入力ユーザに伝播していない各コンテンツについて算出するコンテンツスコア算出ステップをさらに含むことを特徴とする付記21から付記25の何れか1項に記載のコンテンツ分析方法。
(付記30)
 前記コンテンツスコア算出ステップで、
 前記入力ユーザに伝播していないコンテンツについて、他のコンテンツにおける当該入力ユーザの伝播スコアを算出し、前記伝播スコアと、前記他のコンテンツとの前記伝播パタンの相関とを積算した値を前記コンテンツスコアとし、前記他のコンテンツが複数ある場合は、各積算結果を総和した値を前記コンテンツスコアとし、
 前記伝播スコアを、
 前記入力ユーザに伝播していないコンテンツの前記伝播パタンに含まれるユーザを除いた、前記他のコンテンツの伝播パタンにおける伝播順序に基づいて算出することを特徴とする付記29に記載のコンテンツ分析方法。
(付記31)
 ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置として機能するコンピュータ上で動作するコンテンツ分析プログラムであって、
 前記コンピュータに、
 複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出処理と、
 前記各コンテンツ間の、前記伝播パタンの相関を求める相関計算処理と、を実行させることを特徴とするコンテンツ分析プログラム。
(付記32)
 前記履歴データは、少なくとも利用日時、利用ユーザ、利用したコンテンツの識別子を含むことを特徴とする付記31に記載のコンテンツ分析プログラム。
(付記33)
 前記伝播パタン抽出処理で、
 前記伝播パタンとして、各コンテンツについて、ユーザへ伝播した順序を時系列に抽出することを特徴とする付記31又は付記32に記載のコンテンツ分析プログラム。
(付記34)
 前記伝播パタン抽出処理で、
 前記伝播パタンとして、各コンテンツについて、当該コンテンツが伝播したユーザを、伝播順序に基づいて複数の段階に分けたグループを抽出することを特徴とする付記31又は付記32に記載のコンテンツ分析プログラム。
(付記35)
 前記伝播パタン抽出処理で、
 前記伝播パタンとして、各コンテンツについて、当該コンテンツが伝播したユーザのネットワーク構造を抽出することを特徴とする付記31又は付記32に記載のコンテンツ分析プログラム。
(付記36)
 前記ユーザ端末から入力として受け付けた入力コンテンツに対し、当該入力コンテンツと他の前記各コンテンツとの前記伝播パタンの相関を求めることを特徴とする付記31から付記35の何れか1項に記載のコンテンツ分析プログラム。
(付記37)
 前記コンピュータに、
 前記各コンテンツの前記伝播パタンと、前記各コンテンツ間の前記伝播パタンの相関とを用いて、前記ユーザ端末から入力として受け付けた入力コンテンツに関し、当該入力コンテンツが伝播する可能性を示すユーザスコアを、前記入力コンテンツに伝播していないユーザについて算出するユーザスコア算出処理をさらに実行させることを特徴とする付記31から付記35の何れか1項に記載のコンテンツ分析プログラム。
(付記38)
 前記ユーザスコア算出処理で、
 前記入力コンテンツの前記伝播パタンに含まれないユーザついて、他のコンテンツにおける当該ユーザの伝播スコアを算出し、前記伝播スコアと、前記入力コンテンツと前記他のコンテンツとの前記伝播パタンの相関とを積算した値を前記ユーザスコアとし、前記他のコンテンツが複数ある場合は、各積算結果を総和した値を前記ユーザスコアとし、
 前記伝播スコアを、
 前記入力コンテンツの伝播パタンに含まれるユーザを除いた、前記他のコンテンツの伝播パタンにおける伝播順序に基づいて算出することを特徴とする付記37に記載のコンテンツ分析プログラム。
(付記39)
 前記コンピュータに、
 前記各コンテンツの前記伝播パタンと、前記各コンテンツ間の前記伝播パタンの相関とを用いて、前記ユーザ端末から入力として受け付けた入力ユーザへの推薦度を示すコンテンツスコアを、前記入力ユーザに伝播していない各コンテンツについて算出するコンテンツスコア算出処理をさらに実行させることを特徴とする付記31から付記35の何れか1項に記載のコンテンツ分析プログラム。
(付記40)
 前記コンテンツスコア算出処理で、
 前記入力ユーザに伝播していないコンテンツについて、他のコンテンツにおける当該入力ユーザの伝播スコアを算出し、前記伝播スコアと、前記他のコンテンツとの前記伝播パタンの相関とを積算した値を前記コンテンツスコアとし、前記他のコンテンツが複数ある場合は、各積算結果を総和した値を前記コンテンツスコアとし、
 前記伝播スコアを、
 前記入力ユーザに伝播していないコンテンツの前記伝播パタンに含まれるユーザを除いた、前記他のコンテンツの伝播パタンにおける伝播順序に基づいて算出することを特徴とする付記39に記載のコンテンツ分析プログラム。
 この出願は、2010年11月29日に出願された日本出願特願2010-264735を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明によれば、あるコンテンツの伝播パタンを分析するマーケティング分析といった用途に適用できる。また、あるコンテンツの伝播パタンの相関を利用した情報推薦といった用途にも適用可能である。

Claims (10)

  1.  ユーザ端末と、
     前記ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置とを備え、
     前記コンテンツ分析装置は、
     複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出手段と、
     前記各コンテンツ間の、前記伝播パタンの相関を求める相関計算手段と、
     を備えることを特徴とするコンテンツ分析システム。
  2.  前記履歴データは、少なくとも利用日時、利用ユーザ、利用したコンテンツの識別子を含むことを特徴とする請求項1に記載のコンテンツ分析システム。
  3.  前記伝播パタン抽出手段は、
     前記伝播パタンとして、各コンテンツについて、ユーザへ伝播した順序を時系列に抽出することを特徴とする請求項1又は請求項2に記載のコンテンツ分析システム。
  4.  前記伝播パタン抽出手段は、
     前記伝播パタンとして、各コンテンツについて、当該コンテンツが伝播したユーザを、伝播順序に基づいて複数の段階に分けたグループを抽出することを特徴とする請求項1又は請求項2に記載のコンテンツ分析システム。
  5.  前記伝播パタン抽出手段は、
     前記伝播パタンとして、各コンテンツについて、当該コンテンツが伝播したユーザのネットワーク構造を抽出することを特徴とする請求項1又は請求項2に記載のコンテンツ分析システム。
  6.  前記各コンテンツの前記伝播パタンと、前記各コンテンツ間の前記伝播パタンの相関とを用いて、前記ユーザ端末から入力として受け付けた入力コンテンツに関し、当該入力コンテンツが伝播する可能性を示すユーザスコアを、前記入力コンテンツに伝播していないユーザについて算出するユーザスコア算出手段を備えることを特徴とする請求項1から請求項5の何れか1項に記載のコンテンツ分析システム。
  7.  前記各コンテンツの前記伝播パタンと、前記各コンテンツ間の前記伝播パタンの相関とを用いて、前記ユーザ端末から入力として受け付けた入力ユーザへの推薦度を示すコンテンツスコアを、前記入力ユーザに伝播していない各コンテンツについて算出するコンテンツスコア算出手段を備えることを特徴とする請求項1から請求項5の何れか1項に記載のコンテンツ分析システム。
  8.  ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置であって、
     複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出手段と、
     前記各コンテンツ間の、前記伝播パタンの相関を求める相関計算手段と、
     を備えることを特徴とするコンテンツ分析装置。
  9.  ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置のコンテンツ分析方法であって、
     複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出ステップと、
     前記各コンテンツ間の、前記伝播パタンの相関を求める相関計算ステップと、
     を含むことを特徴とするコンテンツ分析方法。
  10.  ユーザ端末から所定の要求を受け、その結果を返すコンテンツ分析装置として機能するコンピュータ上で動作するコンテンツ分析プログラムであって、
     前記コンピュータに、
     複数のコンテンツの利用履歴から構成される履歴データに含まれる各コンテンツについて、当該コンテンツがどのようにユーザへ伝播したかを示す伝播パタンを抽出する伝播パタン抽出処理と、
     前記各コンテンツ間の、前記伝播パタンの相関を求める相関計算処理と、を実行させることを特徴とするコンテンツ分析プログラム。
PCT/JP2011/076562 2010-11-29 2011-11-17 コンテンツ分析システム、コンテンツ分析装置、コンテンツ分析方法、コンテンツ分析プログラム WO2012073718A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012546772A JPWO2012073718A1 (ja) 2010-11-29 2011-11-17 コンテンツ分析システム、コンテンツ分析装置、コンテンツ分析方法、コンテンツ分析プログラム
US13/883,440 US20130226658A1 (en) 2010-11-29 2011-11-17 Content analyzing system, content analyzing apparatus, content analyzing method, and content analyzing program
CN2011800479650A CN103154945A (zh) 2010-11-29 2011-11-17 内容分析系统、内容分析设备、内容分析方法以及内容分析程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010264735 2010-11-29
JP2010-264735 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012073718A1 true WO2012073718A1 (ja) 2012-06-07

Family

ID=46171662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076562 WO2012073718A1 (ja) 2010-11-29 2011-11-17 コンテンツ分析システム、コンテンツ分析装置、コンテンツ分析方法、コンテンツ分析プログラム

Country Status (4)

Country Link
US (1) US20130226658A1 (ja)
JP (1) JPWO2012073718A1 (ja)
CN (1) CN103154945A (ja)
WO (1) WO2012073718A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2717215A1 (en) * 2012-10-04 2014-04-09 Palo Alto Research Center Incorporated Method and apparatus for optimizing message delivery in recommender systems
JP2015069502A (ja) * 2013-09-30 2015-04-13 日本写真印刷株式会社 セグメンテーション装置、セグメンテーションプログラム及びセグメンテーション方法
JP2017208044A (ja) * 2016-05-20 2017-11-24 日本電信電話株式会社 観測者検出装置、方法、プログラム、及びコンピュータ読み取り可能な記録媒体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11068929B2 (en) * 2013-03-13 2021-07-20 Eversight, Inc. Highly scalable internet-based controlled experiment methods and apparatus for obtaining insights from test promotion results
US10176491B2 (en) * 2013-03-13 2019-01-08 Eversight, Inc. Highly scalable internet-based randomized experiment methods and apparatus for obtaining insights from test promotion results
JP5964784B2 (ja) * 2013-06-10 2016-08-03 日本電信電話株式会社 ディジタルコンテンツ分類装置、ディジタルコンテンツ検索装置、方法、及びプログラム
US10460339B2 (en) * 2015-03-03 2019-10-29 Eversight, Inc. Highly scalable internet-based parallel experiment methods and apparatus for obtaining insights from test promotion results

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299542A (ja) * 2007-05-30 2008-12-11 Nippon Telegr & Teleph Corp <Ntt> コンテンツ提供方法、コンテンツ提供装置、コンテンツ提供プログラムおよびコンテンツ提供システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7594244B2 (en) * 2003-11-12 2009-09-22 Koninklijke Philips Electronics N.V. Program recommendation system
US7426557B2 (en) * 2004-05-14 2008-09-16 International Business Machines Corporation System, method, and service for inducing a pattern of communication among various parties
US20070265870A1 (en) * 2006-04-19 2007-11-15 Nec Laboratories America, Inc. Methods and systems for utilizing a time factor and/or asymmetric user behavior patterns for data analysis
CN101231641B (zh) * 2007-01-22 2010-05-19 北大方正集团有限公司 一种自动分析互联网上热点主题传播过程的方法及系统
US9224150B2 (en) * 2007-12-18 2015-12-29 Napo Enterprises, Llc Identifying highly valued recommendations of users in a media recommendation network
US8417560B2 (en) * 2008-04-18 2013-04-09 Steven Woods Systems, methods, and apparatus for analyzing the influence of marketing assets
US20100169316A1 (en) * 2008-12-30 2010-07-01 Yahoo! Inc. Search query concept based recommendations
CN101887441A (zh) * 2009-05-15 2010-11-17 华为技术有限公司 一种社会网络建立方法和系统及网络社区挖掘方法和系统
US8311950B1 (en) * 2009-10-01 2012-11-13 Google Inc. Detecting content on a social network using browsing patterns
US20110153663A1 (en) * 2009-12-21 2011-06-23 At&T Intellectual Property I, L.P. Recommendation engine using implicit feedback observations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299542A (ja) * 2007-05-30 2008-12-11 Nippon Telegr & Teleph Corp <Ntt> コンテンツ提供方法、コンテンツ提供装置、コンテンツ提供プログラムおよびコンテンツ提供システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOZOMI NORI: "Characterization of Tumblr articles by information flow pathway", DAI 89 KAI SPECIAL INTERNET GROUP ON KNOWLEDGE-BASED SOFTWARE SHIRYO (SIG-KBS-A904), 23 March 2010 (2010-03-23), pages 39 - 45 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2717215A1 (en) * 2012-10-04 2014-04-09 Palo Alto Research Center Incorporated Method and apparatus for optimizing message delivery in recommender systems
JP2015069502A (ja) * 2013-09-30 2015-04-13 日本写真印刷株式会社 セグメンテーション装置、セグメンテーションプログラム及びセグメンテーション方法
JP2017208044A (ja) * 2016-05-20 2017-11-24 日本電信電話株式会社 観測者検出装置、方法、プログラム、及びコンピュータ読み取り可能な記録媒体

Also Published As

Publication number Publication date
JPWO2012073718A1 (ja) 2014-05-19
CN103154945A (zh) 2013-06-12
US20130226658A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
WO2012073718A1 (ja) コンテンツ分析システム、コンテンツ分析装置、コンテンツ分析方法、コンテンツ分析プログラム
Chaudhury et al. Impact of FDI on economic growth in South Asia: does nature of FDI matters?
Weber et al. The flow of digital news in a network of sources, authorities, and hubs
US11270320B2 (en) Method and system for implementing author profiling
JP5615857B2 (ja) 分析装置、分析方法及び分析プログラム
CN110363604B (zh) 页面生成方法和装置
Huang et al. Social recommendation with interpersonal influence
Negahban et al. Managing production level in new product diffusion: an agent-based simulation approach
Ramkumar et al. Scoring products from reviews through application of fuzzy techniques
CN115423555A (zh) 一种商品推荐方法、装置、电子设备及存储介质
Xu Model for evaluating the mechanical product design quality with dual hesitant fuzzy information
JP6308339B1 (ja) クラスタリングシステム、方法およびプログラム、並びに、レコメンドシステム
KR101645554B1 (ko) 소비자 프로파일링을 통한 맞춤형 쇼핑정보 제공 시스템 및 방법
Anusha et al. Segmentation of retail mobile market using HMS algorithm
Gunnam et al. Quality function deployment and value engineering applications in smartphone cost management
JP2014102643A (ja) 情報処理装置、情報処理方法及び情報処理プログラム
WO2014050837A1 (ja) 判定装置、判定方法、及びコンピュータ読み取り可能な記録媒体
Volk et al. New e-commerce user interest patterns
CN101639856B (zh) 检测互联网信息传播的网页关联评价装置
CN107357847B (zh) 数据处理方法及其装置
CN109597702A (zh) 消息总线异常的根因分析方法、装置、设备及存储介质
Imanova et al. Some aspects of fuzzy decision making in digital marketing analysis
Zhang et al. Query performance prediction and classification for information search systems
US20170004511A1 (en) Identifying Drivers for a Metric-of-Interest
Fang et al. An empirical analysis of the impact of online reviews on product sales in the Chinese context

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047965.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546772

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13883440

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844396

Country of ref document: EP

Kind code of ref document: A1