WO2012073384A1 - Plasma cvd device, magnetic recording medium and method for manufacturing same - Google Patents

Plasma cvd device, magnetic recording medium and method for manufacturing same Download PDF

Info

Publication number
WO2012073384A1
WO2012073384A1 PCT/JP2010/071772 JP2010071772W WO2012073384A1 WO 2012073384 A1 WO2012073384 A1 WO 2012073384A1 JP 2010071772 W JP2010071772 W JP 2010071772W WO 2012073384 A1 WO2012073384 A1 WO 2012073384A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
chamber
plasma
gap
disposed
Prior art date
Application number
PCT/JP2010/071772
Other languages
French (fr)
Japanese (ja)
Inventor
本多 祐二
荒木 智幸
晶久 老川
田中 正史
Original Assignee
株式会社ユーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーテック filed Critical 株式会社ユーテック
Priority to PCT/JP2010/071772 priority Critical patent/WO2012073384A1/en
Priority to SG2013041132A priority patent/SG190912A1/en
Priority to JP2012546649A priority patent/JP5764789B2/en
Publication of WO2012073384A1 publication Critical patent/WO2012073384A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8408Processes or apparatus specially adapted for manufacturing record carriers protecting the magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Definitions

  • the present invention relates to a plasma CVD apparatus, a magnetic recording medium, and a manufacturing method thereof.
  • FIG. 4A is a cross-sectional view schematically showing a conventional plasma CVD apparatus
  • FIG. 4B is a diagram showing a cathode and an AC power source as viewed from the direction of the arrow shown in FIG. 4A. is there.
  • This plasma CVD apparatus has a symmetrical structure with respect to the deposition target substrate (for example, a disk substrate) 101, and is an apparatus capable of forming films on both sides of the deposition target substrate 101 simultaneously. ) Shows the left side with respect to the deposition target substrate 101, and the right side is omitted.
  • the plasma CVD apparatus has a chamber 102, and a gas introduction flange 115 is attached to the chamber 102.
  • a film forming chamber is formed by the gas introduction flange 115 and the chamber 102.
  • a hot cathode (cathode electrode) 103 is formed in the gas introduction flange 115. Both ends of the hot cathode 103 are electrically connected to an AC power source 105 located outside the gas introduction flange 115. One end of the AC power source 105 is electrically connected to the ground 106.
  • a disc-shaped cathode back plate 111 is formed in the gas introduction flange 115, and the cathode back plate 111 is located between the hot cathode 103 and the AC power source 105 and has a float potential.
  • An anode 104 including an anode cone 104a and an anode base 104b is disposed in the gas introduction flange 115, and a gap 113 is provided between the anode cone 104a and the cathode back plate 111.
  • the anode base 104b is electrically connected to the DC power source 107.
  • the positive potential side of the DC power source 107 is electrically connected to the anode base 104 b, and the negative potential side of the DC power source 107 is electrically connected to the ground 106.
  • a deposition target substrate 101 is disposed in the chamber 102.
  • the deposition target substrate 101 is electrically connected to a DC power source (DC power source) 112 as a power source for ion acceleration.
  • the negative potential side of the DC power source 112 is electrically connected to the deposition target substrate 101, and the positive potential side of the DC power source 112 is electrically connected to the ground 106.
  • a plasma wall 108 is disposed in the gas introduction flange 115 and the chamber 102 connected to the ground so as to cover the space between the hot cathode 103 and the anode 104 and the deposition target substrate 101.
  • the plasma wall 108 is electrically connected to a float potential (not shown).
  • the plasma wall 108 has a cylindrical shape.
  • a ring-shaped space 114 is provided between the plasma wall 108 and the anode cone 104a, and the width of the space 114 is about 15 mm.
  • a magnet 109 is disposed outside the chamber 102.
  • the inside of the chamber 102 is set to a predetermined vacuum state, and for example, toluene (C 7 H 8 ) gas is introduced into the chamber 102 as a film forming source gas from the gas introduction portion 115 a of the gas introduction flange 115.
  • the hot cathode 103 is heated by supplying an AC current to the hot cathode 103 from the AC power source 105.
  • a direct current is supplied to the anode 104 by a DC power source 107, and a direct current is supplied to the deposition target substrate 101 by a DC power source 112.
  • a direct current is supplied to the deposition target substrate 101 by a DC power source 112.
  • the carbon film 110a may adhere to the deposition target substrate 101 and cause a defect.
  • the electric power consumed by the discharge generated in the back surface or the space 114 of the anode cone 104a is a loss that does not contribute to the film formation on the deposition target substrate 101, the power loss is used for the decomposition of the source gas. As the energy decreases, the film quality of the film formed on the deposition target substrate 101 may decrease.
  • An object of one embodiment of the present invention is to provide a plasma CVD apparatus capable of suppressing the occurrence of discharge on the back surface of an anode, a magnetic recording medium using the plasma CVD apparatus, or a manufacturing method thereof.
  • One embodiment of the present invention includes a chamber; A plasma wall disposed in the chamber and having a cylindrical shape with open ends or a polygonal cross section; and A holding unit that is disposed in the chamber and holds a deposition target substrate disposed in the vicinity of an opening at one end of the plasma wall; An anode disposed in the chamber and disposed to cover an opening at the other end of the plasma wall; A filament-shaped cathode disposed in the chamber, disposed inside the anode and in the vicinity of the opening of the other end of the plasma wall, and opposed to the substrate to be processed held in the holding unit; An AC power source or a DC power source disposed outside the chamber, electrically connected to one end of the cathode via a first wiring, and electrically connected to the other end of the cathode via a second wiring; , A hole provided in the anode, through which each of the first wiring and the second wiring; A first DC power source disposed outside the chamber and electrically connected to the anode; A second DC power source disposed outside the
  • the maximum gap between the other end of the plasma wall and the anode is 5 mm or less, and the maximum gap between the hole and each of the first wiring and the second wiring is It is preferable that it is 5 mm or less.
  • the plasma CVD apparatus which can suppress that discharge arises in the back surface of an anode can be provided.
  • the gap between the chamber and the anode is connected to the gap between the other end of the plasma wall and the anode, and the maximum portion of the gap is 5 mm or less. preferable. Thereby, it can suppress more effectively that discharge arises in the back surface of an anode.
  • one aspect of the present invention is a method of manufacturing a magnetic recording medium using the plasma CVD apparatus described above. Holding the film formation substrate on which at least the magnetic layer is formed on the nonmagnetic substrate in the holding unit, The source gas is turned into a plasma state by discharge between the filament-shaped cathode and the anode heated under vacuum in the chamber, and the plasma is applied to the surface of the deposition target substrate held in the holding portion.
  • a method of manufacturing a magnetic recording medium comprising forming a protective layer mainly composed of carbon by accelerated collision.
  • the source gas is a source gas for forming a DLC layer as the protective layer on the deposition target substrate, and a gas containing carbon and hydrogen It is preferable to contain.
  • One aspect of the present invention is a magnetic recording medium manufactured using the above-described method for manufacturing a magnetic recording medium, The deposition substrate; The DLC layer formed on the deposition target substrate; A magnetic recording medium comprising:
  • a plasma CVD apparatus capable of suppressing the occurrence of discharge on the back surface of the anode, a magnetic recording medium using the plasma CVD apparatus, or a method for manufacturing the same.
  • FIG. 1A is a cross-sectional view schematically showing a plasma CVD apparatus according to an embodiment
  • FIG. 1B is a view showing a cathode and an AC power source viewed from the direction of an arrow 16 shown in FIG.
  • FIG. 2A is a photograph showing that no carbon film adheres to the gap between the anode 4 and the gas introduction flange 15 after the 8-hour continuous discharge test was performed on the plasma CVD apparatus shown in FIG. 2 (B) is a photograph showing that no carbon film adheres to the gap between the anode cone 4a and the first and second wirings 17a and 17b
  • FIG. 2 (C) is shown in FIG.
  • FIG. 1A is a cross-sectional view schematically showing a plasma CVD apparatus according to an embodiment
  • FIG. 1B is a view showing a cathode and an AC power source viewed from the direction of an arrow 16 shown in FIG.
  • FIG. 2A is a photograph showing that no carbon film adheres to the gap between the anode
  • FIG. 2D is a photograph showing that a carbon film is adhered to the gap between the anode 104 and the gas introduction flange 115 after the 8-hour continuous discharge test in the plasma CVD apparatus.
  • FIG. It is a photograph which shows that there exists adhesion of a carbon film in the clearance gap with the backplate 111.
  • FIG. 3 is a diagram showing a relationship curve between the contact angle of water and Knoop hardness.
  • 4A is a cross-sectional view schematically showing a conventional plasma CVD apparatus
  • FIG. 4B is a view showing a cathode and an AC power source viewed from the direction of an arrow 116 shown in FIG. 4A. .
  • FIG. 1A is a cross-sectional view schematically showing a plasma CVD apparatus according to an embodiment of the present invention.
  • FIG. 1B shows a cathode viewed from the direction of arrow 16 shown in FIG. It is a figure which shows an alternating current power supply.
  • This plasma CVD apparatus has a symmetrical structure with respect to a film formation substrate (for example, a disk substrate) 1, and is an apparatus that can form films on both surfaces of the film formation substrate 1 simultaneously. ) Shows the left side with respect to the deposition target substrate 1, and the right side is omitted.
  • the plasma CVD apparatus has a chamber 2, and a gas introduction flange 15 is attached to the chamber 2.
  • the gas introduction flange 15 is connected to the ground. Since the film forming chamber is formed by the gas introduction flange 15 and the chamber 2, the gas introduction flange 15 and the chamber 2 may be referred to as a chamber.
  • a plasma wall 8 is disposed in the chamber.
  • the plasma wall 8 is attached to a gas introduction flange 15, and the plasma wall 8 is electrically connected to a float potential (not shown).
  • the plasma wall 8 is disposed in a state of being insulated from the chamber 2 and is also insulated from the gas introduction flange 15.
  • the plasma wall 8 has a cylindrical shape with both ends opened or a polygonal cross section.
  • a film thickness correction plate 8a is provided at one end of the plasma wall 8, and the film thickness correction plate 8a is electrically connected to the float potential. The thickness of the film formed on the outer peripheral portion of the deposition target substrate 1 can be controlled by the film thickness correction plate 8a.
  • a film formation substrate 1 is disposed in the vicinity of the opening at one end of the plasma wall 8, and the film formation substrate 1 is provided by a holder (holding unit) not shown and a transfer device (handling robot or rotary index table) not shown. Are sequentially supplied to the illustrated positions.
  • the deposition target substrate 1 is electrically connected to a DC power source (direct current power source) 12 as an ion accelerating power source, and the DC power source 12 is disposed in an insulated state with respect to the chamber 2.
  • the negative potential side of the DC power source 12 is electrically connected to the deposition target substrate 1, and the positive potential side of the DC power source 12 is electrically connected to the ground 6.
  • the DC power source 12 for example, a power source of 0 to 1500 V, 0 to 100 mA (milliampere) can be used.
  • An anode 4 composed of an anode cone 4a and an anode base 4b is disposed in the gas introduction flange 15.
  • the cathode back plate 111 as shown in FIG. 4 is not provided, and the anode cone 4a shown in FIG. 1 is shaped so that the anode cone 104a and the cathode back plate 111 shown in FIG.
  • the gap between the anode cone 104a and the cathode back plate 111 shown in FIG. 4 is filled. Thereby, it can suppress that discharge arises in the back surface of the anode cone 4a, and a CVD film adheres.
  • the anode cone 4 a is disposed so as to cover the opening at the other end of the plasma wall 8. Further, the anode cone 4 a is shaped like a speaker, and the anode cone 4 a is disposed with the maximum inner diameter side facing the film formation substrate 1.
  • a gap 18a is provided between the anode cone 4a and the other end of the plasma wall 8, and the maximum portion of the gap 18a is preferably 5 mm or less, more preferably 3 mm or less. In the present embodiment, the interval of the maximum portion of the gap 18a is 3 mm.
  • the maximum gap between the anode cone 4a and the other end of the plasma wall 8 is set to 5 mm or less so as not to prevent the plasma from being confined in the space surrounded by the anode cone 4a and the plasma wall 8.
  • the maximum gap to 5 mm or less, it is possible to suppress the formation of a CVD film on the back surface or outside of the anode cone 4a.
  • gaps 18b and 18c between the gas introduction flange 15 and the anode 4 and the plasma wall 8 are connected to the gap 18a, and the maximum portions of the gaps 18b and 18c are preferably 5 mm or less.
  • the entire gap 18b between the gas introduction flange 15 and the anode 4 may be up to 5 mm or less, but a part of the gap 18b between the gas introduction flange 15 and the anode 4 is up to 5 mm and a part thereof.
  • the gap 18b may be connected to the gap 18a.
  • the entire gap 18c between the gas introduction flange 15 and the plasma wall 8 may be up to 5 mm or less, but a part of the gap 18c between the gas introduction flange 15 and the plasma wall 8 is up to 5 mm or less.
  • a state where a part of the gap 18c is connected to the gap 18a may be used. In this way, by setting at least a part of each of the gaps 18b and 18c connected to the gap 18a to 5 mm or less, it is possible to more effectively suppress abnormal discharge on the back surface of the anode 4, and It can suppress more effectively that a CVD film will be formed.
  • An anode base 4b is provided outside the anode cone 4a (the side opposite to the inside of the plasma wall 8), and the anode base 4b is connected to the anode cone 4a.
  • the anode base 4 b is electrically connected to a DC power source (DC power source) 7, and the DC power source 7, the anode base 4 b and the anode cone 4 a are disposed in a state of being insulated from the gas introduction flange 15.
  • the positive potential side of the DC power source 7 is electrically connected to the anode base 4 b and the anode cone 4 a, and the negative potential side of the DC power source 7 is electrically connected to the ground 6.
  • a power source of 0 to 500V, 0 to 7.5A (ampere) can be used.
  • a filament-like cathode (hot cathode) 3 made of, for example, tantalum is formed in the gas introduction flange 15, and the hot cathode 3 is disposed so as to face the deposition target substrate 1.
  • the hot cathode 3 is disposed inside the anode cone 4a and in the vicinity of the opening at the other end of the plasma wall 8, and is disposed so as to be surrounded by the anode cone 4a. Both ends of the hot cathode 3 are electrically connected to an AC power source 5 located outside the gas introduction flange 15.
  • the AC power supply 5 is disposed in an insulated state with respect to the gas introduction flange 15.
  • a power source of 0 to 50V, 10 to 50A (ampere) can be used.
  • One end of the AC power supply 5 is electrically connected to the ground 6.
  • the AC power supply 5 is used, but a DC power supply may be used instead of the AC power supply 5.
  • Each of the first wiring 17a and the second wiring 17b extends from the inside to the outside of the anode cone 4a through a hole 4c provided in the anode cone 4a.
  • the hole 4c may be one hole or two holes. That is, both the first wiring 17a and the second wiring 17b may pass through one hole, the first wiring 17a passes through one hole, and the second wiring 17b passes through the other hole. You may make it pass through a hole.
  • the maximum gap between the hole 4c and each of the first wiring 17a and the second wiring 17b is preferably 5 mm or less, more preferably 3 mm or less.
  • the maximum gap it is possible to prevent the plasma from being confined in the space surrounded by the anode cone 4 a and the plasma wall 8. That is, if the maximum gap is larger than 5 mm, the plasma is dispersed from the gap larger than 5 mm to the back and outside of the anode cone 4a, and abnormal discharge may occur on the back and outside. In other words, by setting the maximum gap to 5 mm or less, it is possible to suppress the formation of a CVD film on the back surface or outside of the anode cone 4a.
  • the gap between the hole 4c and each of the first wiring 17a and the second wiring 17b is connected to the gap between the gas introduction flange 15 and the anode 4, and the maximum portion of the gap is 5 mm or less. May be. However, it is not essential that the maximum portion of the gap is 5 mm or less.
  • the gap between the gas introduction flange 15 and the anode 4 may be 5 mm or less at the maximum, but a part of the gap between the gas introduction flange 15 and the anode 4 is 5 mm or less and this part. This gap may be connected to the gap between the hole 4c and each of the first wiring 17a and the second wiring 17b.
  • FIG. A neodymium magnet 9 is disposed outside the gas introduction flange 15.
  • the neodymium magnet 9 has, for example, a cylindrical shape or a polygonal cross section, and the distance between the inner diameter of the cylindrical side surface or the polygonal side surface passing through the center of the cylindrical direction and the hot cathode 3 is within 50 mm (more preferably within 35 mm).
  • the center of the inner diameter is the center of the magnet, and the center of the magnet is positioned so as to face the approximate center of the hot cathode 3 and the approximate center of the film formation substrate 1.
  • the neodymium magnet 9 preferably has a magnetic force at the center of the magnet of 50G to 200G (Gauss), more preferably 50G to 150G.
  • the reason why the magnetic force at the magnet center is set to 200 G or less is that in the case of a neodymium magnet, it is a manufacturing limit to increase the magnetic force at the magnet center to 200 G.
  • the reason why the magnetic force at the center of the magnet is preferably 150 G or less is that if the magnetic force at the center of the magnet exceeds 150 G, the cost of making the magnet increases.
  • the plasma CVD apparatus has an evacuation mechanism (not shown) for evacuating the chamber. Further, the plasma CVD apparatus has a gas supply mechanism (not shown) for supplying a film forming raw material gas into the chamber, and a gas introduction portion 15 a of the gas supply mechanism is provided in the gas introduction flange 15.
  • a method for forming a DLC film on the deposition target substrate 1 using the plasma CVD apparatus shown in FIG. 1 will be described. First, the vacuum evacuation mechanism is activated, the inside of the chamber is brought into a predetermined vacuum state, and, for example, toluene (C 7 H 8 ) gas is introduced into the chamber as a film forming source gas by the gas introduction mechanism.
  • the hot cathode 3 is heated by supplying an AC current to the hot cathode 3 from the AC power supply 5. Further, a direct current is supplied to the anode 4 by a DC power source 7, and a direct current is supplied to the deposition target substrate 1 by a DC power source 12.
  • a large amount of electrons are emitted from the hot cathode 3 toward the anode cone 4a, and glow discharge is started between the hot cathode 3 and the anode cone 4a.
  • Toluene gas as a film forming raw material gas inside the chamber is ionized by a large amount of electrons to be in a plasma state.
  • the plasma can be densified by this magnetic field, and ionization efficiency is improved. Can do.
  • the deposition raw material molecules in the plasma state are directly accelerated by the negative potential of the deposition target substrate 1, fly toward the deposition target substrate 1, and adhere to the surface of the deposition target substrate 1. Is done. Thereby, a thin DLC film is formed on the deposition target substrate 1. At this time, the reaction of the following formula (1) occurs on the surface of the film formation substrate 1.
  • a method for manufacturing a magnetic recording medium using the plasma CVD apparatus shown in FIG. 1 will be described.
  • a film formation substrate having at least a magnetic layer formed on a nonmagnetic substrate is prepared, and this film formation substrate is held by a holding unit.
  • the raw material gas is changed to a plasma state by discharge between the hot cathode 3 and the anode cone 4a heated in a predetermined vacuum condition in the chamber, and the surface of the deposition target substrate held in the holding unit. Accelerate collision.
  • a protective layer mainly composed of carbon is formed on the surface of the film formation substrate.
  • the maximum gap between the hole 4c of 4a and each of the first wiring 17a and the second wiring 17b is 5 mm or less, and the maximum gap between the anode cone 4a and the other end of the plasma wall 8 is 5 mm or less.
  • Example 1 The plasma CVD apparatus shown in FIG. 1 was subjected to a continuous discharge test for 8 hours.
  • Communication test conditions Deposition substrate: Si wafer Material gas: C 7 H 8 Gas flow rate: 3.25sccm Pressure: 0.3 Pa
  • Anode voltage Vp (voltage of DC power supply 7): 75V
  • Plasma current Ip (current of DC power supply 7): 1650 mA
  • Substrate bias (voltage of DC power supply 12): ⁇ 250V
  • Hot cathode 3 Tantalum filament
  • External magnetic field 50 gauss (Result) No carbon film adhered to the gaps between the anode cone 4a and the first and second wirings 17a and 17b (see FIG. 2B).
  • Example 2 A DLC film with a thickness of 40 nm is formed on a 3.5-inch medium using the plasma CVD apparatus shown in FIG. 1 under the following common test conditions, and the contact angle of the formed DLC film with water is measured. Then, the hardness of the DLC film was evaluated. The relationship between the contact angle and the hardness is as shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

Provided is a plasma CVD device in which discharge at the rear face of an anode can be suppressed. The plasma CVD device of the present invention is characterized by comprising: a chamber; a plasma wall (8) which is arranged within the chamber and has openings at both ends; a holding part which holds a substrate (1) on which a film is to be deposited, the substrate (1) being arranged in the vicinity of an opening at one end of the plasma wall; an anode which is arranged so as to cover the opening at the other end of the plasma wall; a filament-shaped cathode which is arranged inside of the anode and in the vicinity of the opening at the other end of the plasma wall; an AC power source which is electrically connected to one end of the cathode by way of a first wire, and is electrically connected to the other end of the cathode by way of a second wire; and holes which are provided in the anode and have the first and second wires passing therethrough.

Description

プラズマCVD装置、磁気記録媒体及びその製造方法Plasma CVD apparatus, magnetic recording medium, and manufacturing method thereof
 本発明は、プラズマCVD装置、磁気記録媒体及びその製造方法に関する。 The present invention relates to a plasma CVD apparatus, a magnetic recording medium, and a manufacturing method thereof.
 図4(A)は、従来のプラズマCVD装置を模式的に示す断面図であり、図4(B)は、図4(A)に示す矢印の方向から視たカソード及び交流電源を示す図である。
 このプラズマCVD装置は被成膜基板(例えばディスク基板)101に対して左右対称の構造を有しており、被成膜基板101の両面に同時に成膜可能な装置であるが、図4(A)では、被成膜基板101に対して左側を示し、右側は省略している。
 プラズマCVD装置はチャンバー102を有しており、このチャンバー102にはガス導入フランジ115が取り付けられている。ガス導入フランジ115及びチャンバー102によって成膜室が形成されている。ガス導入フランジ115内にはホットカソード(カソード電極)103が形成されている。ホットカソード103の両端はガス導入フランジ115の外部に位置する交流電源105に電気的に接続されている。交流電源105の一端はアース106に電気的に接続されている。
 ガス導入フランジ115内には円盤形状のカソード背板111が形成されており、このカソード背板111はホットカソード103と交流電源105の間に位置し、フロート電位とされている。また、ガス導入フランジ115内にはアノードコーン104a及びアノードベース104bからなるアノード104が配置されており、アノードコーン104aとカソード背板111との間には隙間113が設けられている。
 アノードベース104bはDC電源107に電気的に接続されている。このDC電源107のプラス電位側がアノードベース104bに電気的に接続されており、DC電源107のマイナス電位側がアース106に電気的に接続されている。
 チャンバー102内には被成膜基板101が配置されている。被成膜基板101はイオン加速用電源としてのDC電源(直流電源)112に電気的に接続されている。このDC電源112のマイナス電位側が被成膜基板101に電気的に接続されており、DC電源112のプラス電位側がアース106に電気的に接続されている。
 アースに接続されたガス導入フランジ115及びチャンバー102の内には、ホットカソード103及びアノード104それぞれと被成膜基板101との間の空間を覆うようにプラズマウォール108が配置されている。このプラズマウォール108は、フロート電位(図示せず)に電気的に接続されている。また、プラズマウォール108は円筒形状を有している。プラズマウォール108とアノードコーン104aとの間にはリング状の空間114が設けられており、この空間114の幅は15mm程度である。また、チャンバー102の外側にはマグネット109が配置されている。
 次に、図4に示すプラズマCVD装置を用いて被成膜基板101にDLC(Diamond Like Carbon)膜を成膜する方法について説明する。
 まず、チャンバー102の内部を所定の真空状態とし、チャンバー102の内部に成膜原料ガスとして例えばトルエン(C)ガスをガス導入フランジ115のガス導入部115aから導入する。チャンバー102内が所定の圧力になった後、ホットカソード103に交流電源105によって交流電流を供給することによりホットカソード103が加熱される。また、アノード104にDC電源107によって直流電流を供給し、被成膜基板101にDC電源112によって直流電流を供給する。
 ホットカソード103の加熱によって、ホットカソード103からアノードコーン104aに向けて多量の電子が放出され、ホットカソード103とアノードコーン104aとの間でグロー放電が開始される。多量の電子によってチャンバー102の内部の成膜原料ガスとしてのトルエンガスがイオン化され、プラズマ状態とされる。この際、マグネット109によってホットカソード103の近傍に位置するトルエンガスをプラズマ化する領域に磁場が発生されているので、この磁場によってプラズマを高密度化することができる。そして、プラズマ状態の成膜原料分子は、被成膜基板101のマイナス電位によって直接に加速されて、被成膜基板101の方向に向かって飛走して、被成膜基板101の表面に付着される。これにより、被成膜基板101には薄いDLC膜が形成される(例えば特許文献1参照)。
 上記従来のプラズマCVD装置では、カソード背板111とアノードコーン104aとの間に隙間113があるため、被成膜基板101にDLC膜を形成する際に、アノードコーン104aの背面で放電が生じて炭素膜110aが付着することがある。また、プラズマウォール108とアノードコーン104aとの間の空間114で放電が生じて空間114の壁面にも炭素膜が付着することがある。これらの付着した炭素膜110aが剥離してアノードベース104bとガス導入フランジ115との間に堆積し、その結果、堆積した炭素膜のパーティクル110bによってアノード104とガス導入フランジ115との間の絶縁性が劣化し、安定的に放電させることが困難となる。また、炭素膜110aが剥離すると被成膜基板101に付着して不良が発生してしまうことがある。
 また、上述したアノードコーン104aの背面または空間114で生じる放電によって消費される電力は被成膜基板101への成膜に貢献しないロスであるため、この電力ロス分だけ原料ガスの分解に使われるエネルギーが低下することに伴い、被成膜基板101に成膜される膜の膜質が低下するおそれがある。
4A is a cross-sectional view schematically showing a conventional plasma CVD apparatus, and FIG. 4B is a diagram showing a cathode and an AC power source as viewed from the direction of the arrow shown in FIG. 4A. is there.
This plasma CVD apparatus has a symmetrical structure with respect to the deposition target substrate (for example, a disk substrate) 101, and is an apparatus capable of forming films on both sides of the deposition target substrate 101 simultaneously. ) Shows the left side with respect to the deposition target substrate 101, and the right side is omitted.
The plasma CVD apparatus has a chamber 102, and a gas introduction flange 115 is attached to the chamber 102. A film forming chamber is formed by the gas introduction flange 115 and the chamber 102. A hot cathode (cathode electrode) 103 is formed in the gas introduction flange 115. Both ends of the hot cathode 103 are electrically connected to an AC power source 105 located outside the gas introduction flange 115. One end of the AC power source 105 is electrically connected to the ground 106.
A disc-shaped cathode back plate 111 is formed in the gas introduction flange 115, and the cathode back plate 111 is located between the hot cathode 103 and the AC power source 105 and has a float potential. An anode 104 including an anode cone 104a and an anode base 104b is disposed in the gas introduction flange 115, and a gap 113 is provided between the anode cone 104a and the cathode back plate 111.
The anode base 104b is electrically connected to the DC power source 107. The positive potential side of the DC power source 107 is electrically connected to the anode base 104 b, and the negative potential side of the DC power source 107 is electrically connected to the ground 106.
A deposition target substrate 101 is disposed in the chamber 102. The deposition target substrate 101 is electrically connected to a DC power source (DC power source) 112 as a power source for ion acceleration. The negative potential side of the DC power source 112 is electrically connected to the deposition target substrate 101, and the positive potential side of the DC power source 112 is electrically connected to the ground 106.
A plasma wall 108 is disposed in the gas introduction flange 115 and the chamber 102 connected to the ground so as to cover the space between the hot cathode 103 and the anode 104 and the deposition target substrate 101. The plasma wall 108 is electrically connected to a float potential (not shown). The plasma wall 108 has a cylindrical shape. A ring-shaped space 114 is provided between the plasma wall 108 and the anode cone 104a, and the width of the space 114 is about 15 mm. A magnet 109 is disposed outside the chamber 102.
Next, a method for forming a DLC (Diamond Like Carbon) film on the deposition target substrate 101 using the plasma CVD apparatus illustrated in FIG. 4 will be described.
First, the inside of the chamber 102 is set to a predetermined vacuum state, and for example, toluene (C 7 H 8 ) gas is introduced into the chamber 102 as a film forming source gas from the gas introduction portion 115 a of the gas introduction flange 115. After the chamber 102 reaches a predetermined pressure, the hot cathode 103 is heated by supplying an AC current to the hot cathode 103 from the AC power source 105. Further, a direct current is supplied to the anode 104 by a DC power source 107, and a direct current is supplied to the deposition target substrate 101 by a DC power source 112.
By heating the hot cathode 103, a large amount of electrons are emitted from the hot cathode 103 toward the anode cone 104a, and glow discharge is started between the hot cathode 103 and the anode cone 104a. Toluene gas as a film forming raw material gas inside the chamber 102 is ionized by a large amount of electrons to be in a plasma state. At this time, since a magnetic field is generated in the region where the toluene gas located in the vicinity of the hot cathode 103 is converted into plasma by the magnet 109, the plasma can be densified by this magnetic field. Then, the film-forming raw material molecules in the plasma state are directly accelerated by the negative potential of the film formation substrate 101, fly toward the film formation substrate 101, and adhere to the surface of the film formation substrate 101. Is done. Accordingly, a thin DLC film is formed on the deposition target substrate 101 (see, for example, Patent Document 1).
In the conventional plasma CVD apparatus, since there is a gap 113 between the cathode back plate 111 and the anode cone 104a, when a DLC film is formed on the deposition target substrate 101, discharge occurs on the back surface of the anode cone 104a. The carbon film 110a may adhere. In addition, a discharge may occur in the space 114 between the plasma wall 108 and the anode cone 104a, and a carbon film may adhere to the wall surface of the space 114. The adhered carbon film 110a is peeled off and deposited between the anode base 104b and the gas introduction flange 115, and as a result, the insulation between the anode 104 and the gas introduction flange 115 is caused by the deposited carbon film particles 110b. Deteriorates and it becomes difficult to discharge stably. Further, when the carbon film 110a is peeled off, the carbon film 110a may adhere to the deposition target substrate 101 and cause a defect.
In addition, since the electric power consumed by the discharge generated in the back surface or the space 114 of the anode cone 104a is a loss that does not contribute to the film formation on the deposition target substrate 101, the power loss is used for the decomposition of the source gas. As the energy decreases, the film quality of the film formed on the deposition target substrate 101 may decrease.
特開2010−7126号公報JP 2010-7126 A
 本発明の一態様は、アノードの背面で放電が生じるのを抑制できるプラズマCVD装置又はこのプラズマCVD装置を用いた磁気記録媒体又はその製造方法を提供することを課題とする。 An object of one embodiment of the present invention is to provide a plasma CVD apparatus capable of suppressing the occurrence of discharge on the back surface of an anode, a magnetic recording medium using the plasma CVD apparatus, or a manufacturing method thereof.
 本発明の一態様は、チャンバーと、
 前記チャンバー内に配置され、両端が開口された円筒形状又は断面が多角形状を有するプラズマウォールと、
 前記チャンバー内に配置され、前記プラズマウォールの一方端の開口近傍に配置された被成膜基板を保持する保持部と、
 前記チャンバー内に配置され、前記プラズマウォールの他方端の開口を覆うように配置されたアノードと、
 前記チャンバー内に配置され、前記アノードの内側で且つ前記プラズマウォールの他方端の開口近傍に配置され、前記保持部に保持された前記被処理基板と対向して配置されたフィラメント状のカソードと、
 前記チャンバー外に配置され、前記カソードの一端に第1の配線を介して電気的に接続され、前記カソードの他端に第2の配線を介して電気的に接続された交流電源または直流電源と、
 前記アノードに設けられ、前記第1の配線及び前記第2の配線それぞれが通る孔と、
 前記チャンバー外に配置され、前記アノードに電気的に接続された第1の直流電源と、
 前記チャンバー外に配置され、前記保持部に保持された前記被成膜基板に電気的に接続された第2の直流電源と、
 前記チャンバー内に原料ガスを供給するガス供給機構と、
 前記チャンバー内を排気する排気機構と、
を具備することを特徴とするプラズマCVD装置である。
 上記本発明の一態様によれば、プラズマウォールの他方端の開口を覆うようにアノードを配置することにより、アノードの背面で放電が生じるのを抑制できるプラズマCVD装置を提供することができる。
 また、本発明の一態様において、前記プラズマウォールの他方端と前記アノードとの最大の隙間が5mm以下であり、前記孔と前記第1の配線及び前記第2の配線それぞれとの最大の隙間が5mm以下であることが好ましい。これにより、アノードの背面で放電が生じるのを抑制できるプラズマCVD装置を提供することができる。
 また、本発明の一態様において、前記プラズマウォールの他方端と前記アノードとの隙間に繋げられた、前記チャンバーと前記アノードとの隙間を有し、前記隙間の最大部分が5mm以下であることが好ましい。これにより、アノードの背面で放電が生じるのをより効果的に抑制できる。
 また、本発明の一態様において、前記プラズマウォールの他方端と前記アノードとの隙間に繋げられた、前記チャンバーと前記プラズマウォールとの隙間を有し、前記隙間の最大部分が5mm以下であることが好ましい。これにより、アノードの背面で放電が生じるのをより効果的に抑制できる。
 本発明の一態様は、上述したプラズマCVD装置を用いた磁気記録媒体の製造方法において、
 非磁性基板上に少なくとも磁性層を形成した被成膜基板を前記保持部に保持し、
 前記チャンバー内で真空条件下に加熱された前記フィラメント状のカソードと前記アノードとの間の放電により前記原料ガスをプラズマ状態とし、このプラズマを前記保持部に保持された被成膜基板の表面に加速衝突させて炭素が主成分である保護層を形成することを特徴とする磁気記録媒体の製造方法である。
 また、本発明に係る磁気記録媒体の製造方法において、前記原料ガスは、前記被成膜基板に前記保護層としてのDLC層を形成するための原料ガスであって、炭素と水素を含有するガスを含むことが好ましい。
 本発明の一態様は、上述した磁気記録媒体の製造方法を用いて製造された磁気記録媒体であって、
 前記被成膜基板と、
 前記被成膜基板上に形成された前記DLC層と、
を具備することを特徴とする磁気記録媒体である。
One embodiment of the present invention includes a chamber;
A plasma wall disposed in the chamber and having a cylindrical shape with open ends or a polygonal cross section; and
A holding unit that is disposed in the chamber and holds a deposition target substrate disposed in the vicinity of an opening at one end of the plasma wall;
An anode disposed in the chamber and disposed to cover an opening at the other end of the plasma wall;
A filament-shaped cathode disposed in the chamber, disposed inside the anode and in the vicinity of the opening of the other end of the plasma wall, and opposed to the substrate to be processed held in the holding unit;
An AC power source or a DC power source disposed outside the chamber, electrically connected to one end of the cathode via a first wiring, and electrically connected to the other end of the cathode via a second wiring; ,
A hole provided in the anode, through which each of the first wiring and the second wiring;
A first DC power source disposed outside the chamber and electrically connected to the anode;
A second DC power source disposed outside the chamber and electrically connected to the deposition target substrate held by the holding unit;
A gas supply mechanism for supplying a source gas into the chamber;
An exhaust mechanism for exhausting the chamber;
A plasma CVD apparatus characterized by comprising:
According to one embodiment of the present invention, it is possible to provide a plasma CVD apparatus that can suppress the occurrence of discharge on the back surface of the anode by disposing the anode so as to cover the opening at the other end of the plasma wall.
In one embodiment of the present invention, the maximum gap between the other end of the plasma wall and the anode is 5 mm or less, and the maximum gap between the hole and each of the first wiring and the second wiring is It is preferable that it is 5 mm or less. Thereby, the plasma CVD apparatus which can suppress that discharge arises in the back surface of an anode can be provided.
In one embodiment of the present invention, the gap between the chamber and the anode is connected to the gap between the other end of the plasma wall and the anode, and the maximum portion of the gap is 5 mm or less. preferable. Thereby, it can suppress more effectively that discharge arises in the back surface of an anode.
In one embodiment of the present invention, there is a gap between the chamber and the plasma wall connected to a gap between the other end of the plasma wall and the anode, and the maximum portion of the gap is 5 mm or less. Is preferred. Thereby, it can suppress more effectively that discharge arises in the back surface of an anode.
One aspect of the present invention is a method of manufacturing a magnetic recording medium using the plasma CVD apparatus described above.
Holding the film formation substrate on which at least the magnetic layer is formed on the nonmagnetic substrate in the holding unit,
The source gas is turned into a plasma state by discharge between the filament-shaped cathode and the anode heated under vacuum in the chamber, and the plasma is applied to the surface of the deposition target substrate held in the holding portion. A method of manufacturing a magnetic recording medium, comprising forming a protective layer mainly composed of carbon by accelerated collision.
Further, in the method for manufacturing a magnetic recording medium according to the present invention, the source gas is a source gas for forming a DLC layer as the protective layer on the deposition target substrate, and a gas containing carbon and hydrogen It is preferable to contain.
One aspect of the present invention is a magnetic recording medium manufactured using the above-described method for manufacturing a magnetic recording medium,
The deposition substrate;
The DLC layer formed on the deposition target substrate;
A magnetic recording medium comprising:
 本発明の一態様を適用することで、アノードの背面で放電が生じるのを抑制できるプラズマCVD装置又はこのプラズマCVD装置を用いた磁気記録媒体又はその製造方法を提供することができる。 By applying one embodiment of the present invention, it is possible to provide a plasma CVD apparatus capable of suppressing the occurrence of discharge on the back surface of the anode, a magnetic recording medium using the plasma CVD apparatus, or a method for manufacturing the same.
 図1(A)は実施の形態によるプラズマCVD装置を模式的に示す断面図であり、図1(B)は図1(A)に示す矢印16の方向から視たカソード及び交流電源を示す図である。
 図2(A)は、図1に示すプラズマCVD装置に8時間連続放電試験を行った後のアノード4とガス導入フランジ15との隙間に炭素膜の付着が無いことを示す写真であり、図2(B)は、アノードコーン4aと第1及び第2の配線17a,17bそれぞれとの隙間には炭素膜の付着が無いことを示す写真であり、図2(C)は、図4に示すプラズマCVD装置に8時間連続放電試験を行った後のアノード104とガス導入フランジ115との隙間には炭素膜の付着が有ることを示す写真であり、図2(D)は、アノード104とカソード背板111との隙間には炭素膜の付着が有ることを示す写真である。
 図3は、水の接触角とヌープ硬度との関係曲線を示す図である。
 図4(A)は従来のプラズマCVD装置を模式的に示す断面図であり、図4(B)は図4(A)に示す矢印116の方向から視たカソード及び交流電源を示す図である。
FIG. 1A is a cross-sectional view schematically showing a plasma CVD apparatus according to an embodiment, and FIG. 1B is a view showing a cathode and an AC power source viewed from the direction of an arrow 16 shown in FIG. It is.
FIG. 2A is a photograph showing that no carbon film adheres to the gap between the anode 4 and the gas introduction flange 15 after the 8-hour continuous discharge test was performed on the plasma CVD apparatus shown in FIG. 2 (B) is a photograph showing that no carbon film adheres to the gap between the anode cone 4a and the first and second wirings 17a and 17b, and FIG. 2 (C) is shown in FIG. FIG. 2D is a photograph showing that a carbon film is adhered to the gap between the anode 104 and the gas introduction flange 115 after the 8-hour continuous discharge test in the plasma CVD apparatus. FIG. It is a photograph which shows that there exists adhesion of a carbon film in the clearance gap with the backplate 111. FIG.
FIG. 3 is a diagram showing a relationship curve between the contact angle of water and Knoop hardness.
4A is a cross-sectional view schematically showing a conventional plasma CVD apparatus, and FIG. 4B is a view showing a cathode and an AC power source viewed from the direction of an arrow 116 shown in FIG. 4A. .
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 図1(A)は、本発明の実施の形態によるプラズマCVD装置を模式的に示す断面図であり、図1(B)は、図1(A)に示す矢印16の方向から視たカソード及び交流電源を示す図である。
 このプラズマCVD装置は被成膜基板(例えばディスク基板)1に対して左右対称の構造を有しており、被成膜基板1の両面に同時に成膜可能な装置であるが、図1(A)では、被成膜基板1に対して左側を示し、右側は省略している。
 プラズマCVD装置はチャンバー2を有しており、このチャンバー2にはガス導入フランジ15が取り付けられている。ガス導入フランジ15はアースに接続されている。ガス導入フランジ15及びチャンバー2によって成膜室が形成されているため、ガス導入フランジ15及びチャンバー2を含めてチャンバーと呼んでも良い。
 チャンバー内にはプラズマウォール8が配置されている。このプラズマウォール8はガス導入フランジ15に取り付けられており、プラズマウォール8はフロート電位(図示せず)に電気的に接続されている。プラズマウォール8は、チャンバー2に対して絶縁された状態で配置されており、ガス導入フランジ15に対しても絶縁されている。また、プラズマウォール8は両端が開口された円筒形状又は断面が多角形状を有している。
 プラズマウォール8の一方端には膜厚補正板8aが設けられており、膜厚補正板8aはフロート電位に電気的に接続されている。この膜厚補正板8aにより被成膜基板1の外周部分に成膜される膜の厚さを制御することができる。
 プラズマウォール8の一方端の開口近傍には被成膜基板1が配置されており、被成膜基板1は、図示しないホルダー(保持部)および図示しないトランスファー装置(ハンドリングロボットあるいはロータリインデックステーブル)により、図示の位置に、順次供給されるようになっている。
 被成膜基板1はイオン加速用電源としてのDC電源(直流電源)12に電気的に接続されており、このDC電源12はチャンバー2に対して絶縁された状態で配置されている。このDC電源12のマイナス電位側が被成膜基板1に電気的に接続されており、DC電源12のプラス電位側がアース6に電気的に接続されている。DC電源12としては例えば0~1500V、0~100mA(ミリアンペア)の電源を用いることができる。
 ガス導入フランジ15内にはアノードコーン4a及びアノードベース4bからなるアノード4が配置されている。なお、図4に示すようなカソード背板111は設けられておらず、図1に示すアノードコーン4aは、図4に示すアノードコーン104aとカソード背板111を一体化したような形状とされ、図4に示すアノードコーン104aとカソード背板111との隙間が埋められた状態となっている。これにより、アノードコーン4aの背面で放電が生じてCVD膜が付着することを抑制できる。
 言い換えると、アノードコーン4aはプラズマウォール8の他方端の開口を覆うように配置されている。また、アノードコーン4aはスピーカーのような形状とされており、アノードコーン4aはその最大内径側を被成膜基板1に向けて配置されている。
 アノードコーン4aとプラズマウォール8の他方端との間には隙間18aが設けられており、この隙間18aの最大部分が5mm以下であることが好ましく、より好ましくは3mm以下である。なお、本実施の形態では、この隙間18aの最大部分の間隔を3mmとしている。このようにアノードコーン4aとプラズマウォール8の他方端との最大の隙間を5mm以下とすることにより、アノードコーン4aとプラズマウォール8によって囲まれた空間にプラズマを閉じ込めることを妨げないようにすることができる。つまり、この最大の隙間を5mmより大きくすると、この5mmより大きい隙間からアノードコーン4aの背面や外側(即ちアノードコーン4aとプラズマウォール8によって囲まれた空間の外側)にプラズマが分散してしまったり、背面や外側で異常放電を起こすおそれがある。言い換えると、この最大の隙間を5mm以下とすることにより、アノードコーン4aの背面や外側にCVD膜が成膜されてしまうことを抑制できる。
 また、隙間18aには、ガス導入フランジ15とアノード4及びプラズマウォール8それぞれとの隙間18b,18cが繋げられており、隙間18b,18cの最大部分が5mm以下であることが好ましい。
 なお、ガス導入フランジ15とアノード4との隙間18bの全部が最大5mm以下であっても良いが、ガス導入フランジ15とアノード4との隙間18bの一部が最大5mm以下であり且つこの一部の隙間18bが隙間18aに繋げられている状態であっても良い。また、ガス導入フランジ15とプラズマウォール8との隙間18cの全部が最大5mm以下であっても良いが、ガス導入フランジ15とプラズマウォール8との隙間18cの一部が最大5mm以下であり且つこの一部の隙間18cが隙間18aに繋げられている状態であっても良い。このように隙間18aに繋げられた隙間18b,18cそれぞれの少なくとも一部を最大5mm以下とすることにより、アノード4の背面で異常放電を起こすことをより効果的に抑制でき、アノード4の背面にCVD膜が成膜されてしまうことをより効果的に抑制できる。
 アノードコーン4aの外側(プラズマウォール8の内側とは反対側)にはアノードベース4bが設けられており、アノードベース4bはアノードコーン4aと接続されている。アノードベース4bはDC電源(直流電源)7に電気的に接続されており、このDC電源7、アノードベース4b及びアノードコーン4aはガス導入フランジ15に対して絶縁された状態で配置されている。DC電源7のプラス電位側がアノードベース4b及びアノードコーン4aに電気的に接続されており、DC電源7のマイナス電位側がアース6に電気的に接続されている。DC電源7としては例えば0~500V、0~7.5A(アンペア)の電源を用いることができる。
 ガス導入フランジ15内には、例えばタンタルからなるフィラメント状のカソード(ホットカソード)3が形成されており、このホットカソード3は被成膜基板1に対向するように配置されている。ホットカソード3は、アノードコーン4aの内側で且つプラズマウォール8の他方端の開口近傍に配置されており、アノードコーン4aによって囲まれるように配置されている。
 ホットカソード3の両端はガス導入フランジ15の外部に位置する交流電源5に電気的に接続されている。即ち、ホットカソード3の一端には第1の配線17aを介して交流電源5に電気的に接続され、ホットカソード3の他端には第2の配線17bを介して交流電源5に電気的に接続されている。交流電源5はガス導入フランジ15に対して絶縁された状態で配置されている。交流電源5としては例えば0~50V、10~50A(アンペア)の電源を用いることができる。交流電源5の一端はアース6に電気的に接続されている。なお、本実施の形態では、交流電源5を用いているが、交流電源5に代えて直流電源を用いても良い。
 第1の配線17a及び第2の配線17bそれぞれは、アノードコーン4aに設けられた孔4cを通ってアノードコーン4aの内側から外側に延伸している。孔4cは、一つの孔でも二つの孔でも良い。即ち、第1の配線17a及び第2の配線17bの両者が一つの孔を通るようにしても良いし、第1の配線17aが一つの孔を通り、第2の配線17bが他の一つの孔を通るようにしても良い。
 孔4cと第1の配線17a及び前記第2の配線17bそれぞれとの最大の隙間は5mm以下であることが好ましく、より好ましくは3mm以下である。このように最大の隙間を5mm以下とすることにより、アノードコーン4aとプラズマウォール8によって囲まれた空間にプラズマを閉じ込めることを妨げないようにすることができる。つまり、この最大の隙間を5mmより大きくすると、この5mmより大きい隙間からアノードコーン4aの背面や外側にプラズマが分散してしまい、背面や外側で異常放電を起こすおそれがある。言い換えると、この最大の隙間を5mm以下とすることにより、アノードコーン4aの背面や外側にCVD膜が成膜されてしまうことを抑制できる。
 また、孔4cと第1の配線17a及び前記第2の配線17bそれぞれとの隙間には、ガス導入フランジ15とアノード4との隙間が繋げられており、この隙間の最大部分が5mm以下であっても良い。ただし、この隙間の最大部分が5mm以下であることは必須ではない。
 なお、上記のガス導入フランジ15とアノード4との隙間の全部が最大5mm以下であっても良いが、ガス導入フランジ15とアノード4との隙間の一部が最大5mm以下であり且つこの一部の隙間が、孔4cと第1の配線17a及び前記第2の配線17bそれぞれとの隙間に繋げられている状態であっても良い。このようにすることにより、アノード4の背面で異常放電を起こすことをより効果的に抑制でき、アノード4の背面にCVD膜が成膜されてしまうことをより効果的に抑制できる。
 ガス導入フランジ15の外側にはネオジウム磁石9が配置されている。このネオジウム磁石9は例えば円筒形状又は断面が多角形状を有しており、この円筒側面又は多角側面の筒方向の中心を通る内径とホットカソード3との距離は50mm以内(より好ましくは35mm以内)であることが好ましい。この内径の中心は磁石中心となり、この磁石中心はホットカソード3の略中心及び被成膜基板1の略中心それぞれと対向するように位置している。ネオジウム磁石9は、その磁石中心の磁力が50G以上200G(ガウス)以下であることが好ましく、より好ましくは50G以上150G以下である。磁石中心の磁力を200G以下とする理由は、ネオジウム磁石では磁石中心の磁力を200Gまで高めるのが製造上の限界であるからである。また、磁石中心の磁力を150G以下とするのがより好ましい理由は、磁石中心の磁力を150G超とすると磁石を作るコストが増大するからである。
 また、プラズマCVD装置はチャンバー内を真空排気する真空排気機構(図示せず)を有している。また、プラズマCVD装置はチャンバー内に成膜原料ガスを供給するガス供給機構(図示せず)を有しており、このガス供給機構のガス導入部15aはガス導入フランジ15に設けられている。
 次に、図1に示すプラズマCVD装置を用いて被成膜基板1にDLC膜を成膜する方法について説明する。
 まず、前記真空排気機構を起動させ、チャンバーの内部を所定の真空状態とし、チャンバーの内部に前記ガス導入機構によって成膜原料ガスとして例えばトルエン(C)ガスを導入する。チャンバー内が所定の圧力になった後、ホットカソード3に交流電源5によって交流電流を供給することによりホットカソード3が加熱される。また、アノード4にDC電源7によって直流電流を供給し、被成膜基板1にDC電源12によって直流電流を供給する。
 ホットカソード3の加熱によって、ホットカソード3からアノードコーン4aに向けて多量の電子が放出され、ホットカソード3とアノードコーン4aとの間でグロー放電が開始される。多量の電子によってチャンバーの内部の成膜原料ガスとしてのトルエンガスがイオン化され、プラズマ状態とされる。この際、ネオジウム磁石9によってホットカソード3の近傍に位置するトルエンガスをプラズマ化する領域に磁場が発生されているので、この磁場によってプラズマを高密度化することができ、イオン化効率を向上させることができる。そして、プラズマ状態の成膜原料分子は、被成膜基板1のマイナス電位によって直接に加速されて、被成膜基板1の方向に向かって飛走して、被成膜基板1の表面に付着される。これにより、被成膜基板1には薄いDLC膜が形成される。この際、被成膜基板1の表面では下記式(1)の反応が起きている。
 C+e → C +xH↑ ・・・(1)
 次に、図1に示すプラズマCVD装置を用いた磁気記録媒体の製造方法について説明する。
 まず、非磁性基板上に少なくとも磁性層を形成した被成膜基板を用意し、この被成膜基板を保持部に保持させる。次いで、チャンバー内で所定の真空条件下に加熱されたホットカソード3とアノードコーン4aとの間の放電により原料ガスをプラズマ状態とし、このプラズマを前記保持部に保持された被成膜基板の表面に加速衝突させる。これにより、この被成膜基板の表面には炭素が主成分である保護層が形成される。なお、保護層としてのDLC層を形成する場合は、原料ガスとして炭素と水素を含有するガスを用いることができる。
 次に、本実施の形態によって得られる効果を説明する。
 図4に示す従来のプラズマCVD装置では、カソード背板111とアノードコーン104aとの間に隙間113があるため、アノードコーン104aの背面で放電が生じて炭素膜110aが付着することがある。
 これに対し、図1に示す本実施の形態のプラズマCVD装置では、図1に示すアノードコーン4aを図4に示すアノードコーン104aとカソード背板111を一体化したような形状とし、且つアノードコーン4aの孔4cと第1の配線17a及び前記第2の配線17bそれぞれとの最大の隙間を5mm以下とし、且つアノードコーン4aとプラズマウォール8の他方端との最大の隙間を5mm以下とすることにより、アノードコーン4aの背面で放電が生じてCVD膜が付着することを抑制できる。また、従来技術のように付着したCVD膜が剥離することで、この剥離したCVD膜が被成膜基板に付着して磁気記録媒体に不良が発生することを抑制できる。
 アノードコーン4aの背面で放電が生じるのを抑制することにより、従来技術のような消費電力のロスがなくなるため、この電力ロス分だけ原料ガスの分解に使われるエネルギーが低下することもなくなり、被成膜基板1に成膜される膜の膜質が低下するおそれもなくなる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
FIG. 1A is a cross-sectional view schematically showing a plasma CVD apparatus according to an embodiment of the present invention. FIG. 1B shows a cathode viewed from the direction of arrow 16 shown in FIG. It is a figure which shows an alternating current power supply.
This plasma CVD apparatus has a symmetrical structure with respect to a film formation substrate (for example, a disk substrate) 1, and is an apparatus that can form films on both surfaces of the film formation substrate 1 simultaneously. ) Shows the left side with respect to the deposition target substrate 1, and the right side is omitted.
The plasma CVD apparatus has a chamber 2, and a gas introduction flange 15 is attached to the chamber 2. The gas introduction flange 15 is connected to the ground. Since the film forming chamber is formed by the gas introduction flange 15 and the chamber 2, the gas introduction flange 15 and the chamber 2 may be referred to as a chamber.
A plasma wall 8 is disposed in the chamber. The plasma wall 8 is attached to a gas introduction flange 15, and the plasma wall 8 is electrically connected to a float potential (not shown). The plasma wall 8 is disposed in a state of being insulated from the chamber 2 and is also insulated from the gas introduction flange 15. The plasma wall 8 has a cylindrical shape with both ends opened or a polygonal cross section.
A film thickness correction plate 8a is provided at one end of the plasma wall 8, and the film thickness correction plate 8a is electrically connected to the float potential. The thickness of the film formed on the outer peripheral portion of the deposition target substrate 1 can be controlled by the film thickness correction plate 8a.
A film formation substrate 1 is disposed in the vicinity of the opening at one end of the plasma wall 8, and the film formation substrate 1 is provided by a holder (holding unit) not shown and a transfer device (handling robot or rotary index table) not shown. Are sequentially supplied to the illustrated positions.
The deposition target substrate 1 is electrically connected to a DC power source (direct current power source) 12 as an ion accelerating power source, and the DC power source 12 is disposed in an insulated state with respect to the chamber 2. The negative potential side of the DC power source 12 is electrically connected to the deposition target substrate 1, and the positive potential side of the DC power source 12 is electrically connected to the ground 6. As the DC power source 12, for example, a power source of 0 to 1500 V, 0 to 100 mA (milliampere) can be used.
An anode 4 composed of an anode cone 4a and an anode base 4b is disposed in the gas introduction flange 15. The cathode back plate 111 as shown in FIG. 4 is not provided, and the anode cone 4a shown in FIG. 1 is shaped so that the anode cone 104a and the cathode back plate 111 shown in FIG. The gap between the anode cone 104a and the cathode back plate 111 shown in FIG. 4 is filled. Thereby, it can suppress that discharge arises in the back surface of the anode cone 4a, and a CVD film adheres.
In other words, the anode cone 4 a is disposed so as to cover the opening at the other end of the plasma wall 8. Further, the anode cone 4 a is shaped like a speaker, and the anode cone 4 a is disposed with the maximum inner diameter side facing the film formation substrate 1.
A gap 18a is provided between the anode cone 4a and the other end of the plasma wall 8, and the maximum portion of the gap 18a is preferably 5 mm or less, more preferably 3 mm or less. In the present embodiment, the interval of the maximum portion of the gap 18a is 3 mm. Thus, the maximum gap between the anode cone 4a and the other end of the plasma wall 8 is set to 5 mm or less so as not to prevent the plasma from being confined in the space surrounded by the anode cone 4a and the plasma wall 8. Can do. That is, if the maximum gap is larger than 5 mm, the plasma may be dispersed from the gap larger than 5 mm to the back surface or outside of the anode cone 4a (that is, outside the space surrounded by the anode cone 4a and the plasma wall 8). Otherwise, abnormal discharge may occur on the back or outside. In other words, by setting the maximum gap to 5 mm or less, it is possible to suppress the formation of a CVD film on the back surface or outside of the anode cone 4a.
Further, gaps 18b and 18c between the gas introduction flange 15 and the anode 4 and the plasma wall 8 are connected to the gap 18a, and the maximum portions of the gaps 18b and 18c are preferably 5 mm or less.
The entire gap 18b between the gas introduction flange 15 and the anode 4 may be up to 5 mm or less, but a part of the gap 18b between the gas introduction flange 15 and the anode 4 is up to 5 mm and a part thereof. The gap 18b may be connected to the gap 18a. Further, the entire gap 18c between the gas introduction flange 15 and the plasma wall 8 may be up to 5 mm or less, but a part of the gap 18c between the gas introduction flange 15 and the plasma wall 8 is up to 5 mm or less. A state where a part of the gap 18c is connected to the gap 18a may be used. In this way, by setting at least a part of each of the gaps 18b and 18c connected to the gap 18a to 5 mm or less, it is possible to more effectively suppress abnormal discharge on the back surface of the anode 4, and It can suppress more effectively that a CVD film will be formed.
An anode base 4b is provided outside the anode cone 4a (the side opposite to the inside of the plasma wall 8), and the anode base 4b is connected to the anode cone 4a. The anode base 4 b is electrically connected to a DC power source (DC power source) 7, and the DC power source 7, the anode base 4 b and the anode cone 4 a are disposed in a state of being insulated from the gas introduction flange 15. The positive potential side of the DC power source 7 is electrically connected to the anode base 4 b and the anode cone 4 a, and the negative potential side of the DC power source 7 is electrically connected to the ground 6. As the DC power source 7, for example, a power source of 0 to 500V, 0 to 7.5A (ampere) can be used.
A filament-like cathode (hot cathode) 3 made of, for example, tantalum is formed in the gas introduction flange 15, and the hot cathode 3 is disposed so as to face the deposition target substrate 1. The hot cathode 3 is disposed inside the anode cone 4a and in the vicinity of the opening at the other end of the plasma wall 8, and is disposed so as to be surrounded by the anode cone 4a.
Both ends of the hot cathode 3 are electrically connected to an AC power source 5 located outside the gas introduction flange 15. That is, one end of the hot cathode 3 is electrically connected to the AC power source 5 via the first wiring 17a, and the other end of the hot cathode 3 is electrically connected to the AC power source 5 via the second wiring 17b. It is connected. The AC power supply 5 is disposed in an insulated state with respect to the gas introduction flange 15. As the AC power source 5, for example, a power source of 0 to 50V, 10 to 50A (ampere) can be used. One end of the AC power supply 5 is electrically connected to the ground 6. In the present embodiment, the AC power supply 5 is used, but a DC power supply may be used instead of the AC power supply 5.
Each of the first wiring 17a and the second wiring 17b extends from the inside to the outside of the anode cone 4a through a hole 4c provided in the anode cone 4a. The hole 4c may be one hole or two holes. That is, both the first wiring 17a and the second wiring 17b may pass through one hole, the first wiring 17a passes through one hole, and the second wiring 17b passes through the other hole. You may make it pass through a hole.
The maximum gap between the hole 4c and each of the first wiring 17a and the second wiring 17b is preferably 5 mm or less, more preferably 3 mm or less. Thus, by setting the maximum gap to 5 mm or less, it is possible to prevent the plasma from being confined in the space surrounded by the anode cone 4 a and the plasma wall 8. That is, if the maximum gap is larger than 5 mm, the plasma is dispersed from the gap larger than 5 mm to the back and outside of the anode cone 4a, and abnormal discharge may occur on the back and outside. In other words, by setting the maximum gap to 5 mm or less, it is possible to suppress the formation of a CVD film on the back surface or outside of the anode cone 4a.
Further, the gap between the hole 4c and each of the first wiring 17a and the second wiring 17b is connected to the gap between the gas introduction flange 15 and the anode 4, and the maximum portion of the gap is 5 mm or less. May be. However, it is not essential that the maximum portion of the gap is 5 mm or less.
The gap between the gas introduction flange 15 and the anode 4 may be 5 mm or less at the maximum, but a part of the gap between the gas introduction flange 15 and the anode 4 is 5 mm or less and this part. This gap may be connected to the gap between the hole 4c and each of the first wiring 17a and the second wiring 17b. By doing in this way, it can suppress more effectively that abnormal discharge arises in the back surface of the anode 4, and it can suppress more effectively that a CVD film is formed in the back surface of the anode 4. FIG.
A neodymium magnet 9 is disposed outside the gas introduction flange 15. The neodymium magnet 9 has, for example, a cylindrical shape or a polygonal cross section, and the distance between the inner diameter of the cylindrical side surface or the polygonal side surface passing through the center of the cylindrical direction and the hot cathode 3 is within 50 mm (more preferably within 35 mm). It is preferable that The center of the inner diameter is the center of the magnet, and the center of the magnet is positioned so as to face the approximate center of the hot cathode 3 and the approximate center of the film formation substrate 1. The neodymium magnet 9 preferably has a magnetic force at the center of the magnet of 50G to 200G (Gauss), more preferably 50G to 150G. The reason why the magnetic force at the magnet center is set to 200 G or less is that in the case of a neodymium magnet, it is a manufacturing limit to increase the magnetic force at the magnet center to 200 G. The reason why the magnetic force at the center of the magnet is preferably 150 G or less is that if the magnetic force at the center of the magnet exceeds 150 G, the cost of making the magnet increases.
Further, the plasma CVD apparatus has an evacuation mechanism (not shown) for evacuating the chamber. Further, the plasma CVD apparatus has a gas supply mechanism (not shown) for supplying a film forming raw material gas into the chamber, and a gas introduction portion 15 a of the gas supply mechanism is provided in the gas introduction flange 15.
Next, a method for forming a DLC film on the deposition target substrate 1 using the plasma CVD apparatus shown in FIG. 1 will be described.
First, the vacuum evacuation mechanism is activated, the inside of the chamber is brought into a predetermined vacuum state, and, for example, toluene (C 7 H 8 ) gas is introduced into the chamber as a film forming source gas by the gas introduction mechanism. After the inside of the chamber reaches a predetermined pressure, the hot cathode 3 is heated by supplying an AC current to the hot cathode 3 from the AC power supply 5. Further, a direct current is supplied to the anode 4 by a DC power source 7, and a direct current is supplied to the deposition target substrate 1 by a DC power source 12.
By heating the hot cathode 3, a large amount of electrons are emitted from the hot cathode 3 toward the anode cone 4a, and glow discharge is started between the hot cathode 3 and the anode cone 4a. Toluene gas as a film forming raw material gas inside the chamber is ionized by a large amount of electrons to be in a plasma state. At this time, since a magnetic field is generated in the region where the toluene gas located in the vicinity of the hot cathode 3 is converted into plasma by the neodymium magnet 9, the plasma can be densified by this magnetic field, and ionization efficiency is improved. Can do. The deposition raw material molecules in the plasma state are directly accelerated by the negative potential of the deposition target substrate 1, fly toward the deposition target substrate 1, and adhere to the surface of the deposition target substrate 1. Is done. Thereby, a thin DLC film is formed on the deposition target substrate 1. At this time, the reaction of the following formula (1) occurs on the surface of the film formation substrate 1.
C 7 H 8 + e → C a H b + xH 2 ↑ (1)
Next, a method for manufacturing a magnetic recording medium using the plasma CVD apparatus shown in FIG. 1 will be described.
First, a film formation substrate having at least a magnetic layer formed on a nonmagnetic substrate is prepared, and this film formation substrate is held by a holding unit. Next, the raw material gas is changed to a plasma state by discharge between the hot cathode 3 and the anode cone 4a heated in a predetermined vacuum condition in the chamber, and the surface of the deposition target substrate held in the holding unit. Accelerate collision. As a result, a protective layer mainly composed of carbon is formed on the surface of the film formation substrate. Note that in the case of forming a DLC layer as a protective layer, a gas containing carbon and hydrogen can be used as a source gas.
Next, effects obtained by the present embodiment will be described.
In the conventional plasma CVD apparatus shown in FIG. 4, since there is a gap 113 between the cathode back plate 111 and the anode cone 104a, discharge may occur on the back surface of the anode cone 104a, and the carbon film 110a may adhere.
On the other hand, in the plasma CVD apparatus of the present embodiment shown in FIG. 1, the anode cone 4a shown in FIG. 1 is shaped so that the anode cone 104a and the cathode back plate 111 shown in FIG. The maximum gap between the hole 4c of 4a and each of the first wiring 17a and the second wiring 17b is 5 mm or less, and the maximum gap between the anode cone 4a and the other end of the plasma wall 8 is 5 mm or less. Thus, it is possible to suppress the occurrence of discharge on the back surface of the anode cone 4a and the deposition of the CVD film. Further, when the attached CVD film is peeled off as in the prior art, it is possible to prevent the peeled CVD film from adhering to the deposition target substrate and causing a defect in the magnetic recording medium.
By suppressing the occurrence of discharge on the back surface of the anode cone 4a, there is no loss of power consumption as in the prior art, so that the energy used for decomposition of the raw material gas is not reduced by this power loss. There is no possibility that the film quality of the film formed on the film formation substrate 1 will deteriorate.
[実施例1]
 図1に示すプラズマCVD装置に8時間連続放電試験を行った。
 (共通の試験条件)
 被成膜基板 : Siウエハ
 原料ガス : C
 ガス流量 : 3.25sccm
 圧力 : 0.3Pa
 アノード電圧Vp(DC電源7の電圧) : 75V
 プラズマ電流Ip(DC電源7の電流) : 1650mA
 基板バイアス(DC電源12の電圧) : −250V
 ホットカソード3 : タンタルフィラメント
 交流電源5の出力 : 200W
 外部磁場 : 50ガウス
 (結果)
 アノードコーン4aと第1及び第2の配線17a,17bそれぞれとの隙間には炭素膜の付着が無かった(図2(B)参照)。
 アノード4とガス導入フランジ15との隙間には炭素膜の付着が無く、なおかつ異常放電の痕跡が無かった(図2(A)参照)。
[比較例1]
 図4に示すプラズマCVD装置に8時間連続放電試験を行った。
 (共通の試験条件)
 被成膜基板 : Siウエハ
 原料ガス : C
 ガス流量 : 3.25sccm
 圧力 : 0.3Pa
 アノード電圧Vp(DC電源7の電圧) : 75V
 プラズマ電流Ip(DC電源7の電流) : 1650mA
 基板バイアス(DC電源12の電圧) : −250V
 ホットカソード3 : タンタルフィラメント
 交流電源5の出力 : 200W
 外部磁場 : 50ガウス
 (結果)
 アノード104とカソード背板111との隙間には炭素膜の付着が有った(図2(C),(D))。
 アノード104とガス導入フランジ115との隙間には炭素膜の付着が有り、なおかつ所々に異常放電の痕跡が有った(図2(C))。
[実施例2]
 図1に示すプラズマCVD装置を用いて3.5インチのメディアに厚さ40nmのDLC膜を下記の共通試験条件で成膜し、成膜されたDLC膜の水との接触角を測定することでDLC膜の硬度を評価した。接触角と硬度の関係は図3に示すとおりである。
 (共通の試験条件)
 被成膜基板 : 3.5インチのメディア
 原料ガス : C
 ガス流量 : 3.25sccm
 圧力 : 0.3Pa
 アノード電圧Vp(DC電源7の電圧) : 75V
 プラズマ電流Ip(DC電源7の電流) : 1650mA
 基板バイアス(DC電源12の電圧) : −250V、−300V、−350V
 ホットカソード3 : タンタルフィラメント
 交流電源5の出力 : 200W
 外部磁場 : 50ガウス
 (結果)
 基板バイアス −250V : ヌープ硬度 2930HK(接触角 57°)
 基板バイアス −300V : ヌープ硬度 2970HK(接触角 56°)
 基板バイアス −350V : ヌープ硬度 3000HK(接触角 55°)
[比較例2]
 図4に示すプラズマCVD装置を用いて3.5インチのメディアに厚さ40nmのDLC膜を下記の共通試験条件で成膜し、成膜されたDLC膜の水との接触角を測定することでDLC膜の硬度を評価した。接触角と硬度の関係は図2に示すとおりである。
 (共通の試験条件)
 被成膜基板 : 3.5インチのメディア
 原料ガス : C
 ガス流量 : 3.25sccm
 圧力 : 0.3Pa
 アノード電圧Vp(DC電源7の電圧) : 75V
 プラズマ電流Ip(DC電源7の電流) : 1650mA
 基板バイアス(DC電源12の電圧) : −250V、−300V、−350V
 ホットカソード3 : タンタルフィラメント
 交流電源5の出力 : 200W
 外部磁場 : 50ガウス
 (結果)
 基板バイアス −250V : ヌープ硬度 2650HK(接触角 65°)
 基板バイアス −300V : ヌープ硬度 2770HK(接触角 62°)
 基板バイアス −350V : ヌープ硬度 2830HK(接触角 60°)
 実施例2及び比較例2それぞれの結果によれば、実施例2の方が比較例2に比べて接触角が小さいので、実施例2の方が比較例2に比べて高硬度のDLC膜が成膜されたことを確認した。
[Example 1]
The plasma CVD apparatus shown in FIG. 1 was subjected to a continuous discharge test for 8 hours.
(Common test conditions)
Deposition substrate: Si wafer Material gas: C 7 H 8
Gas flow rate: 3.25sccm
Pressure: 0.3 Pa
Anode voltage Vp (voltage of DC power supply 7): 75V
Plasma current Ip (current of DC power supply 7): 1650 mA
Substrate bias (voltage of DC power supply 12): −250V
Hot cathode 3: Tantalum filament Output of AC power supply 5: 200W
External magnetic field: 50 gauss (Result)
No carbon film adhered to the gaps between the anode cone 4a and the first and second wirings 17a and 17b (see FIG. 2B).
No carbon film adhered to the gap between the anode 4 and the gas introduction flange 15 and there was no trace of abnormal discharge (see FIG. 2A).
[Comparative Example 1]
The plasma CVD apparatus shown in FIG. 4 was subjected to a continuous discharge test for 8 hours.
(Common test conditions)
Deposition substrate: Si wafer Material gas: C 7 H 8
Gas flow rate: 3.25sccm
Pressure: 0.3 Pa
Anode voltage Vp (voltage of DC power supply 7): 75V
Plasma current Ip (current of DC power supply 7): 1650 mA
Substrate bias (voltage of DC power supply 12): −250V
Hot cathode 3: Tantalum filament Output of AC power supply 5: 200W
External magnetic field: 50 gauss (Result)
A carbon film adhered to the gap between the anode 104 and the cathode back plate 111 (FIGS. 2C and 2D).
A carbon film adhered to the gap between the anode 104 and the gas introduction flange 115, and there were traces of abnormal discharge in some places (FIG. 2C).
[Example 2]
A DLC film with a thickness of 40 nm is formed on a 3.5-inch medium using the plasma CVD apparatus shown in FIG. 1 under the following common test conditions, and the contact angle of the formed DLC film with water is measured. Then, the hardness of the DLC film was evaluated. The relationship between the contact angle and the hardness is as shown in FIG.
(Common test conditions)
Film formation substrate: 3.5-inch media Material gas: C 7 H 8
Gas flow rate: 3.25sccm
Pressure: 0.3 Pa
Anode voltage Vp (voltage of DC power supply 7): 75V
Plasma current Ip (current of DC power supply 7): 1650 mA
Substrate bias (voltage of DC power supply 12): -250V, -300V, -350V
Hot cathode 3: Tantalum filament Output of AC power supply 5: 200W
External magnetic field: 50 gauss (Result)
Substrate bias −250V: Knoop hardness 2930HK (contact angle 57 °)
Substrate bias −300V: Knoop hardness 2970HK (contact angle 56 °)
Substrate bias −350V: Knoop hardness 3000 HK (contact angle 55 °)
[Comparative Example 2]
A DLC film having a thickness of 40 nm is formed on a 3.5-inch medium using the plasma CVD apparatus shown in FIG. 4 under the following common test conditions, and the contact angle of the formed DLC film with water is measured. Then, the hardness of the DLC film was evaluated. The relationship between the contact angle and the hardness is as shown in FIG.
(Common test conditions)
Film formation substrate: 3.5-inch media Material gas: C 7 H 8
Gas flow rate: 3.25sccm
Pressure: 0.3 Pa
Anode voltage Vp (voltage of DC power supply 7): 75V
Plasma current Ip (current of DC power supply 7): 1650 mA
Substrate bias (voltage of DC power supply 12): -250V, -300V, -350V
Hot cathode 3: Tantalum filament Output of AC power supply 5: 200W
External magnetic field: 50 gauss (Result)
Substrate bias −250V: Knoop hardness 2650HK (contact angle 65 °)
Substrate bias −300V: Knoop hardness 2770HK (contact angle 62 °)
Substrate bias −350V: Knoop hardness 2830HK (contact angle 60 °)
According to the results of Example 2 and Comparative Example 2, since the contact angle of Example 2 is smaller than that of Comparative Example 2, the DLC film having a higher hardness than that of Comparative Example 2 is obtained in Example 2. It was confirmed that the film was formed.
 1,101…被成膜基板
 2,102…チャンバー
 3,103…カソード(ホットカソード)
 4,104…アノード
 4a,104a…アノードコーン
 4b,104b…アノードベース
 4c…孔
 5,105…交流電源
 6,106…アース
 7,107…DC電源
 8,108…プラズマウォール
 8a…膜厚補正板
 9…ネオジウム磁石
 12,112…DC電源
 15,115…ガス導入フランジ
 15a,115a…ガス導入部
 17a…第1の配線
 17b…第2の配線
 109…マグネット
 110a…炭素膜
 110b…炭素膜のパーティクル
 111…カソード背板
 113…隙間
 114…リング状の空間
 116…矢印
DESCRIPTION OF SYMBOLS 1,101 ... Film-forming substrate 2,102 ... Chamber 3,103 ... Cathode (hot cathode)
4, 104 ... anode 4a, 104a ... anode cone 4b, 104b ... anode base 4c ... hole 5, 105 ... AC power source 6, 106 ... ground 7, 107 ... DC power source 8, 108 ... plasma wall 8a ... film thickness correction plate 9 ... Neodymium magnet 12,112 ... DC power supply 15,115 ... Gas introduction flange 15a, 115a ... Gas introduction part 17a ... First wiring 17b ... Second wiring 109 ... Magnet 110a ... Carbon film 110b ... Carbon film particle 111 ... Cathode back plate 113 ... gap 114 ... ring-shaped space 116 ... arrow

Claims (7)

  1.  チャンバーと、
     前記チャンバー内に配置され、両端が開口された円筒形状又は断面が多角形状を有するプラズマウォールと、
     前記チャンバー内に配置され、前記プラズマウォールの一方端の開口近傍に配置された被成膜基板を保持する保持部と、
     前記チャンバー内に配置され、前記プラズマウォールの他方端の開口を覆うように配置されたアノードと、
     前記チャンバー内に配置され、前記アノードの内側で且つ前記プラズマウォールの他方端の開口近傍に配置され、前記保持部に保持された前記被処理基板と対向して配置されたフィラメント状のカソードと、
     前記チャンバー外に配置され、前記カソードの一端に第1の配線を介して電気的に接続され、前記カソードの他端に第2の配線を介して電気的に接続された交流電源または直流電源と、
     前記アノードに設けられ、前記第1の配線及び前記第2の配線それぞれが通る孔と、
     前記チャンバー外に配置され、前記アノードに電気的に接続された第1の直流電源と、
     前記チャンバー外に配置され、前記保持部に保持された前記被成膜基板に電気的に接続された第2の直流電源と、
     前記チャンバー内に原料ガスを供給するガス供給機構と、
     前記チャンバー内を排気する排気機構と、
    を具備することを特徴とするプラズマCVD装置。
    A chamber;
    A plasma wall disposed in the chamber and having a cylindrical shape with open ends or a polygonal cross section; and
    A holding unit that is disposed in the chamber and holds a deposition target substrate disposed in the vicinity of an opening at one end of the plasma wall;
    An anode disposed in the chamber and disposed to cover an opening at the other end of the plasma wall;
    A filament-shaped cathode disposed in the chamber, disposed inside the anode and in the vicinity of the opening of the other end of the plasma wall, and opposed to the substrate to be processed held in the holding unit;
    An AC power source or a DC power source disposed outside the chamber, electrically connected to one end of the cathode via a first wiring, and electrically connected to the other end of the cathode via a second wiring; ,
    A hole provided in the anode, through which each of the first wiring and the second wiring;
    A first DC power source disposed outside the chamber and electrically connected to the anode;
    A second DC power source disposed outside the chamber and electrically connected to the deposition target substrate held by the holding unit;
    A gas supply mechanism for supplying a source gas into the chamber;
    An exhaust mechanism for exhausting the chamber;
    A plasma CVD apparatus comprising:
  2.  請求項1において、
     前記プラズマウォールの他方端と前記アノードとの最大の隙間が5mm以下であり、
     前記孔と前記第1の配線及び前記第2の配線それぞれとの最大の隙間が5mm以下であることを特徴とするプラズマCVD装置。
    In claim 1,
    The maximum gap between the other end of the plasma wall and the anode is 5 mm or less,
    A plasma CVD apparatus, wherein a maximum gap between the hole and each of the first wiring and the second wiring is 5 mm or less.
  3.  請求項2において、
     前記プラズマウォールの他方端と前記アノードとの隙間に繋げられた、前記チャンバーと前記アノードとの隙間を有し、前記隙間の最大部分が5mm以下であることを特徴とするプラズマCVD装置。
    In claim 2,
    A plasma CVD apparatus having a gap between the chamber and the anode connected to a gap between the other end of the plasma wall and the anode, wherein a maximum portion of the gap is 5 mm or less.
  4.  請求項2または3において、
     前記プラズマウォールの他方端と前記アノードとの隙間に繋げられた、前記チャンバーと前記プラズマウォールとの隙間を有し、前記隙間の最大部分が5mm以下であることを特徴とするプラズマCVD装置。
    In claim 2 or 3,
    A plasma CVD apparatus having a gap between the chamber and the plasma wall connected to a gap between the other end of the plasma wall and the anode, wherein a maximum portion of the gap is 5 mm or less.
  5.  請求項1乃至4のいずれか一項に記載のプラズマCVD装置を用いた磁気記録媒体の製造方法において、
     非磁性基板上に少なくとも磁性層を形成した被成膜基板を前記保持部に保持し、
     前記チャンバー内で真空条件下に加熱された前記フィラメント状のカソードと前記アノードとの間の放電により前記原料ガスをプラズマ状態とし、このプラズマを前記保持部に保持された被成膜基板の表面に加速衝突させて炭素が主成分である保護層を形成することを特徴とする磁気記録媒体の製造方法。
    In the manufacturing method of the magnetic-recording medium using the plasma CVD apparatus as described in any one of Claims 1 thru | or 4,
    Holding the film formation substrate on which at least the magnetic layer is formed on the nonmagnetic substrate in the holding unit,
    The source gas is turned into a plasma state by discharge between the filament-shaped cathode and the anode heated under vacuum in the chamber, and the plasma is applied to the surface of the deposition target substrate held in the holding portion. A method of manufacturing a magnetic recording medium, comprising forming a protective layer containing carbon as a main component by accelerated collision.
  6.  請求項5において、前記原料ガスは、前記被成膜基板に前記保護層としてのDLC層を形成するための原料ガスであって、炭素と水素を含有するガスを含むことを特徴とする磁気記録媒体の製造方法。 6. The magnetic recording according to claim 5, wherein the source gas is a source gas for forming a DLC layer as the protective layer on the deposition target substrate and includes a gas containing carbon and hydrogen. A method for producing a medium.
  7.  請求項6に記載の磁気記録媒体の製造方法を用いて製造された磁気記録媒体であって、
     前記被成膜基板と、
     前記被成膜基板上に形成された前記DLC層と、
    を具備することを特徴とする磁気記録媒体。
    A magnetic recording medium manufactured using the method for manufacturing a magnetic recording medium according to claim 6,
    The deposition substrate;
    The DLC layer formed on the deposition target substrate;
    A magnetic recording medium comprising:
PCT/JP2010/071772 2010-11-29 2010-11-29 Plasma cvd device, magnetic recording medium and method for manufacturing same WO2012073384A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/071772 WO2012073384A1 (en) 2010-11-29 2010-11-29 Plasma cvd device, magnetic recording medium and method for manufacturing same
SG2013041132A SG190912A1 (en) 2010-11-29 2010-11-29 Plasma cvd apparatus, magnetic recording medium and method for manufacturing the same
JP2012546649A JP5764789B2 (en) 2010-11-29 2010-11-29 Plasma CVD apparatus and method for manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/071772 WO2012073384A1 (en) 2010-11-29 2010-11-29 Plasma cvd device, magnetic recording medium and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2012073384A1 true WO2012073384A1 (en) 2012-06-07

Family

ID=46171367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071772 WO2012073384A1 (en) 2010-11-29 2010-11-29 Plasma cvd device, magnetic recording medium and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP5764789B2 (en)
SG (1) SG190912A1 (en)
WO (1) WO2012073384A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025117A (en) * 2012-07-27 2014-02-06 Yuutekku:Kk Plasma cvd apparatus and method of manufacturing magnetic recording medium
WO2015194031A1 (en) * 2014-06-20 2015-12-23 株式会社ユーテック Plasma cvd device and method for producing magnetic recording medium
WO2020007605A1 (en) * 2018-07-05 2020-01-09 Diarotech Method and device for diamond synthesis by cvd
RU2801649C2 (en) * 2018-07-05 2023-08-11 Диаротек Method and device for diamond synthesis by chemical deposition from gas phase

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226669A (en) * 1999-02-02 2000-08-15 Mitsubishi Chemicals Corp Cvd device, film forming method and production of magnetic recording medium
JP2010007126A (en) * 2008-06-26 2010-01-14 Utec:Kk Plasma cvd system and method for producing magnetic recording medium
JP2010013675A (en) * 2008-07-01 2010-01-21 Utec:Kk Plasma cvd apparatus, method for producing thin film, and method for manufacturing magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226669A (en) * 1999-02-02 2000-08-15 Mitsubishi Chemicals Corp Cvd device, film forming method and production of magnetic recording medium
JP2010007126A (en) * 2008-06-26 2010-01-14 Utec:Kk Plasma cvd system and method for producing magnetic recording medium
JP2010013675A (en) * 2008-07-01 2010-01-21 Utec:Kk Plasma cvd apparatus, method for producing thin film, and method for manufacturing magnetic recording medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025117A (en) * 2012-07-27 2014-02-06 Yuutekku:Kk Plasma cvd apparatus and method of manufacturing magnetic recording medium
WO2015194031A1 (en) * 2014-06-20 2015-12-23 株式会社ユーテック Plasma cvd device and method for producing magnetic recording medium
US20170133048A1 (en) * 2014-06-20 2017-05-11 Youtec Co., Ltd. Plasma cvd device and method of manufacturing magnetic recording medium
JPWO2015194031A1 (en) * 2014-06-20 2017-05-25 株式会社ユーテック Plasma CVD apparatus and method for manufacturing magnetic recording medium
US10657999B2 (en) 2014-06-20 2020-05-19 Advanced Material Technologies, Inc. Plasma CVD device and method of manufacturing magnetic recording medium
WO2020007605A1 (en) * 2018-07-05 2020-01-09 Diarotech Method and device for diamond synthesis by cvd
CN112384640A (en) * 2018-07-05 2021-02-19 迪亚罗科技 Diamond synthesis method and device based on CVD
RU2801649C2 (en) * 2018-07-05 2023-08-11 Диаротек Method and device for diamond synthesis by chemical deposition from gas phase

Also Published As

Publication number Publication date
JP5764789B2 (en) 2015-08-19
SG190912A1 (en) 2013-07-31
JPWO2012073384A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JPS60135573A (en) Method and device for sputtering
JP4344019B2 (en) Ionized sputtering method
JP2016528677A (en) Substrate processing system, ion implantation system, and beamline ion implantation system
JP2009179867A (en) Parallel flat plate type magnetron sputtering apparatus, method for producing solid electrolyte thin film, and method for producing thin film solid lithium ion secondary battery
JP2009158416A (en) Manufacturing method for solid electrolyte thin film, parallel flat-plate type magnetron sputtering device, and manufacturing method for thin-film solid lithium ion secondary battery
JP2015078440A (en) Cathode unit, and sputtering apparatus equipped with the cathode unit
WO2010070845A1 (en) Sputtering device and sputtering method
JP5764789B2 (en) Plasma CVD apparatus and method for manufacturing magnetic recording medium
JP2009187682A (en) Method for manufacturing cathode electrode, and method for manufacturing thin film solid lithium-ion secondary battery
JP5095524B2 (en) Plasma CVD apparatus and method for manufacturing magnetic recording medium
JP2012052191A (en) Sputtering apparatus
JP2012138411A (en) Plasma processing apparatus
US9368331B2 (en) Sputtering apparatus
JP2007197840A (en) Ionized sputtering apparatus
JP6007380B2 (en) Plasma CVD apparatus and method for manufacturing magnetic recording medium
JP5982678B2 (en) Plasma CVD apparatus and method for manufacturing magnetic recording medium
JP5265309B2 (en) Sputtering method
JP2013079420A (en) Sputtering apparatus
JP3391245B2 (en) Thin film forming equipment
JP6713623B2 (en) Plasma CVD apparatus, magnetic recording medium manufacturing method and film forming method
JP4621345B2 (en) Plasma CVD equipment
JP2004213824A (en) Protective film for magnetic head and method for forming protective film
JP7219941B2 (en) Plasma CVD device, magnetic recording medium manufacturing method and film forming method
JP4184814B2 (en) Parallel plate type plasma CVD apparatus and method for manufacturing film formation substrate
JPH10330946A (en) Thin coating forming device and formation of thin coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860316

Country of ref document: EP

Kind code of ref document: A1