WO2012072053A1 - 非确认模式下的上行加密参数同步方法和设备 - Google Patents
非确认模式下的上行加密参数同步方法和设备 Download PDFInfo
- Publication number
- WO2012072053A1 WO2012072053A1 PCT/CN2011/083488 CN2011083488W WO2012072053A1 WO 2012072053 A1 WO2012072053 A1 WO 2012072053A1 CN 2011083488 W CN2011083488 W CN 2011083488W WO 2012072053 A1 WO2012072053 A1 WO 2012072053A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- initial value
- encryption parameter
- terminal
- uplink
- radio bearer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/04—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
- H04L63/0428—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
- H04L63/0442—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload wherein the sending and receiving network entities apply asymmetric encryption, i.e. different keys for encryption and decryption
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/04—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
- H04L63/0428—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/02—Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/03—Protecting confidentiality, e.g. by encryption
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/02—Data link layer protocols
Definitions
- the terminal and the RNC radio network controller
- the encryption mechanism at the terminal and the network side is used to protect data transmitted between the terminal and the network from being stolen or attacked.
- the encryption input parameters include the encryption key CK, the encryption sequence number COUNT-C, the bearer identifier BEARER, the transmission direction DIRECTION, and the required key stream length LENGTH.
- Radio Link Control Radio Link Control
- TM transparent RLC mode
- Encryption is performed at the MAC sublayer (MAC-d entity).
- the sender encrypts the transmitted plaintext based on the encrypted key stream generated by the input parameter, and generates a corresponding ciphertext.
- the receiver After the receiver generates the decryption key stream using the same encryption parameters and encryption calculation method, the ciphertext is decrypted by using the decryption key stream.
- COUNT-C consists of RLC HFN (superframe number) and RLC SN (serial number). The upper 20 bits of HFN are initialized by the START value, and the rest is initialized with 0. The HFN is incremented by one when the RLC SN cycles one cycle.
- the terminal transmits the Start value to the RNC through signaling, and each terminal has a list of Start values.
- Start values Such as If the encryption parameters used by the terminal and the RNC are not synchronized, data reception errors will result.
- the UM RLC downlink data transmission error detection is implemented by the PDCP layer of the terminal. After the downlink data packet error is detected by the PDCP layer, the terminal initiates a cell update process, and the encryption parameter synchronization between the terminal and the RNC can be implemented through the cell update process.
- An embodiment of the present invention provides an uplink ciphering parameter synchronization method and device in a non-acknowledgment mode, which is used to solve an uplink ciphering parameter between a synchronous terminal and a radio network controller in a non-acknowledgment mode, resulting in a terminal and a wireless network.
- the communication link between the controllers is interrupted, which causes a defect of service interruption, and the speed of synchronization of the uplink encryption parameters is improved without interrupting the service.
- the embodiment of the present invention provides an uplink encryption parameter synchronization method in a non-acknowledgment mode, including:
- the uplink packet has an unrecoverable error or the uplink packet is invalid.
- the upstream encryption parameter is initialized according to the initial value of the encryption parameter.
- the embodiment of the present invention provides an uplink ciphering parameter synchronization method in a non-acknowledgment mode, including: Receiving an indication message sent by the radio network controller; the indication message is used to instruct the terminal to initialize an uplink encryption parameter;
- an embodiment of the present invention provides a terminal, including:
- the indication message receiving module is configured to receive an indication message sent by the radio network controller, where the indication message is used to instruct the terminal to initialize an uplink encryption parameter;
- a first initialization module configured to initialize an uplink encryption parameter according to the indication message and an initial value of the encryption parameter
- a response sending module configured to send a response message to the radio network controller.
- an embodiment of the present invention provides a radio network controller, including:
- the error detection module is configured to detect whether an uplink packet sent by the terminal in the unacknowledged mode has an unrecoverable error or whether the uplink packet is invalid.
- the indication message sending module is configured to send an indication message to the terminal, where the indication message is used to indicate that the terminal initializes an uplink encryption parameter, when the uplink packet is unrecoverable or the uplink packet is invalid.
- a response receiving module configured to receive a response message sent by the terminal
- the second initialization module is configured to initialize the uplink encryption parameter according to the initial value of the encryption parameter.
- the radio network controller detects that an unrecoverable error or invalidity occurs in the uplink packet, the radio network controller sends an indication message to the terminal, and instructs the terminal to perform encryption parameter initialization. After the radio network controller receives the response message of the terminal, indicating that the terminal has initialized the uplink encryption parameter, the radio network controller initializes the local uplink encryption parameter, thereby achieving the uplink encryption parameter between the terminal and the RNC. Synchronize.
- the uplink encryption parameter synchronization when the uplink encryption parameter synchronization is implemented, the communication link between the terminal and the radio network controller is not interrupted.
- the embodiment of the present invention further provides another uplink cipher parameter synchronization method in the non-acknowledgment mode, including:
- the uplink encryption parameter After receiving the cell update confirmation information sent by the radio network controller, the uplink encryption parameter is initialized according to the initial value of the encryption parameter.
- the embodiment of the present invention further provides another terminal, including:
- a sending failure detecting module configured to detect a number of consecutive transmission failures of uplink packets sent to the radio network controller in the non-acknowledgment mode
- a third initial value generating module configured to generate an initial value of the encryption parameter when detecting that the number of failed uplink packet transmission reaches a preset threshold
- a cell update requesting module configured to send, to the radio network controller, a cell update request that carries an initial value of the encryption parameter
- a cell update confirmation receiving module configured to receive cell update confirmation information sent by the radio network controller
- a third initialization module configured to initialize an uplink encryption parameter according to the initial value of the encryption parameter after receiving the cell update confirmation information sent by the radio network controller.
- the embodiment of the present invention provides another radio network controller, including: a cell update request receiving module, configured to receive a cell update request that is sent by a terminal and carries an initial value of an encryption parameter; and the cell update request is used to indicate The radio network controller initializes an uplink encryption parameter according to the initial value of the encryption parameter;
- a fourth initialization module configured to: according to the initial value of the encryption parameter in the cell update request, Initialize the upstream encryption parameters
- a cell update confirmation module configured to send cell update confirmation information to the terminal.
- the terminal detects an uplink packet transmission failure condition, and when the terminal detects that the uplink packet transmission fails, the terminal initiates a cell update procedure.
- the synchronization of the uplink encryption parameters between the RNC and the terminal is implemented during the cell update process.
- the uplink encryption parameter synchronization is implemented, the communication link between the terminal and the radio network controller is not interrupted. Therefore, the service between the terminal and the radio network controller is not interrupted, and the uplink encryption parameter synchronization is improved. speed.
- Embodiment 1A is a flowchart of Embodiment 1 of an uplink encryption parameter synchronization method in a non-acknowledgment mode according to the present invention
- FIG. 1B is a flowchart of a terminal side in Embodiment 1 of an uplink ciphering parameter synchronization method in a non-acknowledgment mode according to the present invention
- FIG. 2 is a flowchart of Embodiment 2 of an uplink ciphering parameter synchronization method in a non-acknowledgment mode according to the present invention
- FIG. 3 is a flowchart of Embodiment 3 of an uplink encryption parameter synchronization method in a non-acknowledgment mode according to the present invention
- FIG. 4A is a schematic structural diagram of a first embodiment of a terminal according to the present invention.
- FIG. 4B is a schematic structural diagram of a second embodiment of a terminal according to the present invention.
- 4C is a schematic structural diagram of an initial value generation indication message receiving submodule and a first initialization submodule in a second embodiment of the terminal according to the present invention
- FIG. 4D is a schematic diagram of an initialization indication message receiving submodule in a second embodiment of a terminal according to the present invention. Schematic diagram of the block and the second initialization sub-module;
- FIG. 5A is a schematic structural diagram of Embodiment 1 of a radio network controller according to the present invention
- FIG. 5B is a schematic structural diagram of Embodiment 2 of a radio network controller according to the present invention
- FIG. 5C is a schematic diagram of a wireless network provided by the present invention. The schematic diagram of the initial value generation indication message sending submodule and the third initializing submodule in the second embodiment of the controller;
- 5D is a schematic structural diagram of an initialization indication message sending sub-module and a fourth initialization sub-module in a second embodiment of a radio network controller according to the present invention
- FIG. 6 is a flowchart of Embodiment 1 of an uplink ciphering parameter synchronization method in another non-acknowledgment mode according to a fourth embodiment of the present invention
- FIG. 7 is a flowchart of Embodiment 2 of an uplink ciphering parameter synchronization method in another non-acknowledgment mode according to the present invention.
- FIG. 8 is a schematic structural diagram of another terminal embodiment according to the present invention.
- FIG. 8B is a schematic structural diagram of another terminal embodiment according to the present invention.
- FIG. 9A is a schematic structural diagram of another embodiment of a line network controller according to the present invention
- FIG. 9B is a schematic structural diagram of another embodiment of a line network controller according to the present invention.
- the detailed description of the embodiments of the present invention will be clearly and completely described in conjunction with the drawings in the embodiments of the present invention.
- the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
- FIG. 1A is a flowchart of Embodiment 1 of an uplink ciphering parameter synchronization method in a non-acknowledgment mode according to the present invention. As shown in FIG. 1A, this embodiment includes:
- Step 10 The radio network controller detects whether an uplink packet sent by the terminal in the non-acknowledgment mode has an unrecoverable error or is invalid.
- the upstream packet has an unrecoverable error or invalidation, including an upstream packet decryption error caused by the out-of-band encryption parameter being out of synchronization. If the uplink encryption parameter is out of step, the uplink packet is not recovered or is invalid.
- the uplink encryption parameter synchronization can be implemented by the embodiment of the present invention to solve the problem of the uplink packet error or invalidation.
- uplink packets sent by the terminal to the RNC There are various uplink packets sent by the terminal to the RNC. For example, some are uplink packets of the CS voice service, some are uplink packets of the VOIP service, and different services are carried on different RBs.
- the RNC can agree with the terminal to detect the uplink packet of the specific service to keep the uplink encryption parameters of the RB carrying the service synchronized. For example, the RNC and the terminal agree to detect the uplink packet of the CS voice service.
- the RNC can also determine which type of service uplink packet to be detected (in the embodiment of the present invention, the detection service determined by the RNC is called a designated service), for example, the RNC determines to detect the uplink packet of the VOIP service.
- Step 11 The radio network controller detects that the uplink packet sent by the terminal in the unacknowledged mode has an unrecoverable error or detects that the uplink packet is invalid, and sends an indication message to the terminal.
- the indication message is used to instruct the terminal to initialize the uplink encryption parameter.
- the RNC detects that the uplink packet of the agreed service is unrecoverable or invalid, it sends an indication message to the terminal to instruct the terminal to initialize the uplink ciphering parameter corresponding to the RB carrying the agreed service, and does not need to carry the RB identifier in the indication information.
- the terminal receives the indication message that does not carry the RB identifier, the terminal performs the uplink encryption parameter initialization on the RB that carries the agreed service.
- the RNC determines the specified service to be detected, the RNC detects that the uplink packet of the specified service has an unrecoverable error or is invalid, and carries the RB identifier carrying the specified service in the indication message and sends the RB identifier to the terminal to notify the terminal of which RB.
- Perform upstream encryption parameter initialization For example, the RNC determines the uplink packet for detecting the VOIP service, and the indication information sent to the terminal includes the bearer.
- the RB identifier corresponding to the RB of the VOIP service after receiving the indication message carrying the RB identifier, the terminal initializes the uplink ciphering parameter of the RB corresponding to the RB according to the RB identifier.
- Step 12 The radio network controller receives the response message sent by the terminal.
- the terminal After receiving the indication message of the initial uplink encryption parameter sent by the radio network controller, the terminal initializes the uplink encryption parameter corresponding to the RB according to the initial value of the encryption parameter, for example, the initialization protocol RB or the uplink encryption corresponding to the RNC. Serial number COUNT-C. After that, a response message is sent to the radio network controller.
- Step 13 The radio network controller initializes the uplink encryption parameter according to the initial value of the encryption parameter. After receiving the response message sent by the terminal, the radio network controller performs the same initialization operation as the terminal, and initializes the agreed RB according to the initial value of the encryption parameter or the local uplink encryption parameter corresponding to the RB specified in the indication message, to The upstream encryption parameters are synchronized.
- the initial value of the encryption parameter in the embodiment of the present invention may be an initial value of the encryption parameter generated by the terminal and sent to the radio network controller in the encryption negotiation phase; or may be an initial value of the encryption parameter generated by the terminal after being recalculated by the RNC. ; It can also be the initial value of the encryption parameter generated by the radio network controller when it detects an error that the uplink packet does not recover.
- the RNC instructs the terminal to generate the encryption parameter
- the RNC sends an initialization generation indication message to the terminal, instructs the terminal to generate an initial value of the encryption parameter, and initializes the uplink encryption parameter according to the initial value of the encryption parameter.
- the terminal After receiving the initial value generation indication message, the terminal generates an initial value of the encryption parameter.
- the initial value of the encryption parameter is carried in the response message and sent to the RNC.
- the RNC initializes the local uplink encryption parameter according to the initial value of the encryption parameter in the response message.
- the RNC transmits an initialization indication message including the initial value of the encryption parameter to the terminal.
- the terminal After receiving the initialization indication message, the terminal initializes the local uplink encryption parameter according to the initial value of the encryption parameter, and returns a response message to the RNC. After receiving the response message, the RNC initializes the local uplink encryption parameter according to the initial value of the generated encryption parameter.
- the radio network controller detects that the uplink packet has an unrecoverable error or no When the effect is valid, the wireless network controller sends an indication message to the terminal, instructing the terminal to perform initialization of the encryption parameter. After the radio network controller receives the response message of the terminal, indicating that the terminal has initialized the uplink encryption parameter, the radio network controller initializes the local uplink encryption parameter, thereby achieving the uplink encryption parameter between the terminal and the RNC. Synchronize.
- the uplink encryption parameter synchronization when the uplink encryption parameter synchronization is implemented, the communication link between the terminal and the radio network controller is not interrupted. Therefore, the service between the terminal and the radio network controller is not interrupted, and the synchronous uplink encryption parameter synchronization is shortened. time.
- FIG. 1B is a flowchart of a terminal side in Embodiment 1 of an uplink ciphering parameter synchronization method in a non-acknowledgment mode according to the present invention.
- This embodiment mainly describes the technical solution of the uplink encryption parameter synchronization method of the present invention from the terminal side. As shown in FIG. 1B, this embodiment includes:
- Step 1 Receive the indication message sent by the radio network controller.
- the indication message is used to instruct the terminal to initialize an uplink encryption parameter.
- Step 2 Initialize the upstream encryption parameters according to the indication message and the initial value of the encryption parameter.
- the terminal After receiving the indication message of the initial uplink encryption parameter sent by the radio network controller, the terminal initializes the uplink encryption parameter corresponding to the RB according to the initial value of the encryption parameter, for example, the initialization protocol RB or the uplink encryption corresponding to the RNC. Serial number COUNT-C.
- the initial value of the encryption parameter may be an initial value of the encryption parameter generated by the terminal and sent to the radio network controller in the encryption negotiation P segment; or may be an initial value of the encryption parameter generated by the terminal after being recalculated by the RNC; The initial value of the encryption parameter generated by the radio network controller when it detects an error that the uplink packet does not recover.
- Step 3 Send a response message to the radio network controller.
- the terminal after receiving the indication message sent by the RNC, the terminal performs an initialization operation of the uplink encryption parameter. And return a response message to the RNC.
- the radio network controller After the radio network controller receives the response message of the terminal, indicating that the terminal has initialized the uplink encryption parameter, the radio network controller initializes the local uplink encryption parameter, thereby achieving uplink between the terminal and the RNC. Synchronization of secret parameters.
- FIG. 2 is a flowchart of Embodiment 2 of an uplink ciphering parameter synchronization method in a non-acknowledgment mode according to the present invention.
- the RNC and the terminal agree to detect the uplink packet transmission of the CS voice service.
- the initial value of the encryption parameter used to initialize the uplink encryption parameter is generated by the RNC to indicate the terminal, and is sent to the RNC through the response message of the terminal.
- this embodiment includes:
- Step 20 The RNC detects whether the uplink packet carrying the CS voice service sent by the terminal in the unacknowledged mode has an unrecoverable error or is valid.
- the RNC detects the uplink packet transmission of the CS voice service in the non-acknowledgment mode according to the agreement with the terminal.
- Step 21 The RNC detects an unrecoverable error in the upstream packet of the 7-carrier CS voice service or when the upstream packet is invalid. Sending a first initial value generation indication message to the terminal.
- the first initial value generation indication message instructs the terminal to generate an initial value of the encryption parameter, and initializes an uplink encryption parameter of the RB carrying the CS voice service according to the initial value of the encryption parameter.
- the RNC may further instruct the terminal to further initialize the UM RLC entity corresponding to the RB carrying the CS service in the first initial value generation indication message sent to the terminal, thereby initializing other parameters related to sending the uplink packet.
- the RNC determines to detect the uplink packet of the specified service according to the specific situation.
- the RNC detects that the uplink packet of the specified service is in error or invalid
- the RB identifier corresponding to the RB that carries the specified service is carried in the second initial value generation indication information and sent to the terminal.
- the RNC determines to detect the uplink packet of the VOIP service.
- the RNC carries the RB identifier corresponding to the RB carrying the VOIP service in the second initial value generation indication information and sends the RB identifier to the terminal.
- the second initial value generation indication information indicates that the terminal generates an initial value of the encryption parameter, and initializes an uplink encryption parameter of the RB corresponding to the RB identifier according to the RB identifier carried in the second initial value generation indication information.
- the RNC may further indicate, in the second initial value generation indication information sent by the terminal, the UM RLC entity that instructs the terminal to further initialize the RB corresponding to the RB identifier.
- Step 22a The terminal generates an initial value of the encryption parameter, and initializes an uplink encryption parameter of the RB that carries the CS voice service according to the initial value of the encryption parameter.
- Step 23 The terminal sends a response message including an initial value of the encryption parameter to the RNC.
- the terminal After receiving the first initial value generation indication message sent by the RNC, the terminal first generates an initial value of the encryption parameter, and then initializes an uplink encryption parameter of the RB that carries the CS voice service according to the initial value of the encryption parameter. Thereafter, a response message including an initial value of the encryption parameter is transmitted to the RNC.
- the uplink encryption parameter is the uplink encryption sequence number COUNT-C (including HFN and SN).
- the terminal initializes the HFN with the start value, and optionally initializes the SN to 0. The start value is then carried in the response message and sent to the RNC.
- step 22b is further included after step 22a as shown in FIG. 2: Initializing the UM RLC entity of the RB carrying the CS voice service.
- the terminal receives the second initial value generation indication message that is sent by the RNC and carries the RB identifier, the terminal initializes the uplink encryption parameter of the RB corresponding to the RB identifier according to the RB identifier carried in the second initial value generation indication information.
- the terminal initializes the uplink encryption parameter number of the RB corresponding to the RB identifier according to the RB identifier of the second initial value generation indication information, and further initializes The RB identifies the UM RLC entity corresponding to the RB.
- Step 24a The RNC initializes an uplink encryption parameter of the RB carrying the CS voice service according to the initial value of the encryption parameter in the response message.
- the RNC After receiving the response message returned by the terminal, the RNC performs the same initialization operation as the terminal. Specifically, after receiving the response message, the RNC initializes the local uplink encryption parameter according to the initial value of the encryption parameter carried therein. For example, the RNC initializes the HFN in the encrypted sequence number COUNT-C according to the start value in the response message, and optionally initializes the SN in the COUNT-C to 0.
- the first initial value generation indication message further indicates that the terminal further initializes the RLC entity, as shown in FIG. 2, after step 24a, step 24b is further included: initializing the RLC entity of the RB carrying the CS voice service.
- the RNC initializes the uplink encryption parameter of the RB corresponding to the RB identifier according to the RB identifier.
- the RNC may further initialize the UM RLC entity of the RB after initializing the uplink encryption parameter of the RB corresponding to the RB identifier.
- the RNC and the terminal agree to detect an uplink packet of the CS voice service.
- the RNC detects that the CS voice service uplink packet has an unrecoverable error or is invalid
- the RNC sends a first initial value generation indication message without the RB identifier to the terminal.
- the terminal generates an indication message according to the first initial value, first generates an initial value of the encryption parameter, and then initializes the local uplink encryption parameter corresponding to the RB carrying the CS voice according to the initial value of the newly generated encryption parameter and according to the agreement with the RNC.
- the initial value of the generated encryption parameter is sent to the RNC in the response message, and the RNC initializes the local uplink encryption parameter corresponding to the RB that carries the CS voice service according to the initial value of the encryption parameter in the response message, so that the CS voice is between the terminal and the RNC.
- the uplink encryption parameters of the service are synchronized, and the CS voice service can be quickly recovered. Further, after the terminal and the RNC initialize the uplink encryption parameters, the RLC entity may also be initialized.
- the terminal and the RNC initialize the uplink cipher parameters of the RB corresponding to the RB identifier, and optionally initialize the UM RLC entity of the RB.
- FIG. 3 is a flowchart of Embodiment 3 of a method for synchronizing uplink cipher parameters in a non-acknowledgment mode according to the present invention.
- the initial value of the encryption parameter is generated by the RNC and sent to the terminal through the initialization indication message.
- the terminal After the terminal initializes the local uplink encryption parameter according to the initial value of the encryption parameter in the initialization indication message, the terminal returns a response message to the RNC.
- the RNC determines that the specified service to be detected is a VOIP service.
- the RNC carries the RB identifier corresponding to the RB carrying the VOIP service, and carries the initialization indication message to the terminal.
- this embodiment includes:
- Step 30 The RNC detects whether an uplink packet of the VOIP service sent by the terminal in the non-acknowledgment mode has an unrecoverable error or is invalid.
- Step 31 The RNC detects that the upstream packet of the VOIP service has an unrecoverable error or is invalid. When the initial value of the encryption parameter is generated.
- Step 32 The RNC sends a second initialization indication message carrying the initial value of the encryption parameter and the RB identifier corresponding to the RB carrying the VOIP service to the terminal.
- the initial value of the encryption parameter is first generated, and then the generated initial value of the encryption parameter and the RB identifier corresponding to the RB carrying the VOIP service are carried in the second initialization indication message.
- the second initialization indication message indicates that the terminal initializes the uplink encryption parameter of the RB corresponding to the RB according to the RB identifier and the initial value of the encryption parameter carried in the terminal.
- the second initialization indication message instructs the terminal to further initialize the UM RLC entity corresponding to the RB of the RB identifier
- the RNC transmits a first initialization indication message including an initial value of the encryption parameter to the terminal.
- the first initialization indication message is used to instruct the terminal to initialize an uplink encryption parameter of the radio bearer carrying the contract service according to the initial value of the encryption parameter carried in the first initialization indication message.
- the first initialization indication message may further instruct the terminal to further initialize the UM RLC entity that carries the contracted service.
- Step 33a The terminal initializes an uplink encryption parameter of the RB corresponding to the RB identifier according to the initial value of the encryption parameter and the RB identifier in the second initialization indication message.
- the method further includes: Step 33b: Initializing the UM RLC entity corresponding to the RB of the RB identifier.
- the terminal initializes the uplink encryption parameter corresponding to the RB carrying the contract service according to the initial value of the encryption parameter carried in the first initialization indication message.
- the terminal further performs the uplink encryption parameter corresponding to the RB of the service according to the initial value of the encryption parameter carried in the first initialization indication message.
- the UM RLC entity corresponding to the RB of the RB identifier is initialized.
- Step 35a The RNC initializes the uplink power p-parameter parameter of the RB corresponding to the RB identifier according to the generated initial value of the encryption parameter.
- the RNC After receiving the response message returned by the terminal, the RNC performs the same initialization operation as the terminal. Specifically, after receiving the response message of the terminal, the RNC obtains the initial value of the encryption parameter generated in step 31.
- the RB identifier carried in the initialization step 32 corresponds to the uplink ciphering parameter of the RB.
- the second initialization indication message instructs the terminal to further initialize the UM of the RB corresponding to the RB
- the RLC entity further includes a step 35b after the step 35a: initializing the UM RLC entity corresponding to the RB of the RB identifier.
- the RNC initializes the uplink encryption parameter corresponding to the RB carrying the agreed service.
- the RNC sends the first initialization indication message to the terminal in step 32, after initializing the uplink encryption parameter corresponding to the RB carrying the agreed service, the RNC further initializes the UM RLC entity corresponding to the RB carrying the agreed service.
- the initial value of the encryption parameter is generated by the RNC and then sent to the terminal, so that the terminal initializes the uplink encryption parameter according to the initial value of the encryption parameter.
- the RNC After receiving the returned response message, the RNC initializes the local uplink encryption parameter according to the initial value of the generated encryption parameter. Therefore, the uplink encryption parameters between the terminal and the RNC can be synchronized without interrupting the link, and the service can be quickly restored. Further, the terminal can also initialize the RLC entity according to the instructions of the RNC.
- FIG. 4A is a schematic structural diagram of a first embodiment of a terminal according to the present invention. As shown in FIG. 4A, the embodiment includes: an indication message receiving module 41, a first initialization module 42, and a response sending module 43.
- the indication message receiving module 41 is configured to receive an indication message sent by the radio network controller, where the indication message is used to instruct the terminal to initialize the uplink encryption parameter.
- the first initialization module 42 is configured to initialize the uplink encryption parameter according to the indication message received by the indication message receiving module 41 and the initial value of the encryption parameter.
- the response sending module 43 is configured to initialize the uplink encryption parameter in the first initialization module 42. After that, a response message is sent to the radio network controller.
- the terminal in this embodiment may be the terminal in the embodiment of the corresponding method in FIG. 1.
- the working content of the foregoing modules may be described in the corresponding method embodiment of FIG. 1 , and details are not described herein again.
- the radio network controller when the radio network controller detects that the uplink packet has an unrecoverable error or is invalid, the radio network controller sends an indication message to the terminal, instructing the terminal to perform uplink encryption parameter initialization. After the radio network controller receives the response message of the terminal, indicating that the terminal has initialized the uplink encryption parameter, the radio network controller initializes the local uplink encryption parameter, thereby achieving the uplink encryption parameter between the terminal and the RNC. Synchronize.
- the uplink encryption parameter synchronization when the uplink encryption parameter synchronization is implemented, the communication link between the terminal and the radio network controller is not interrupted. Therefore, the service between the terminal and the radio network controller is not interrupted, and the synchronous uplink encryption parameter synchronization is shortened. time.
- FIG. 4B is a schematic structural diagram of a second embodiment of a terminal according to the present invention. As shown in FIG. 4B, the method further includes: a first initial value generating module 44, configured to generate an initial value of the encryption parameter.
- the indication message receiving module 41 includes an initial value generation indication message receiving sub-module 411 and an initialization indication message receiving sub-module 412; the first initialization module 42 includes a first initialization sub-module 421 and a second initialization sub-module 422.
- the initial value generation indication message receiving sub-module 411 is configured to receive an initial value generation indication message sent by the radio network controller, where the initial value generation indication message is used to instruct the terminal to generate an initial value of the encryption parameter, and instruct the terminal to initialize the uplink according to the initial value of the encryption parameter.
- the first initialization sub-module 421 is configured to initialize an uplink encryption parameter according to an initial value generation indication message and an initial value of an encryption parameter generated by the initial value generation module.
- the response sending module 43 is further configured to send, to the radio network controller, a response message including an initial value of the encryption parameter generated by the initial value generating module;
- the initialization indication message receiving sub-module 412 is configured to receive an initialization indication message sent by the radio network controller, where the initialization indication message is used to indicate that the terminal carries the information according to the initialization indication message.
- the initial value of the encryption parameter initializes the uplink encryption parameter;
- the second initialization sub-module 422 is configured to initialize the uplink encryption parameter according to the initial value of the encryption parameter carried in the initialization indication message.
- the terminal in this embodiment may be the terminal in the embodiment of the method corresponding to FIG. 2 and FIG. 3, and the working content of each module may be described in the corresponding embodiments in FIG. 2 and FIG. 3, and details are not described herein again.
- the terminal may generate an initial value of the encryption parameter and initialize the uplink encryption parameter, and carry the initial value of the encryption parameter in the response message and return it to the RNC.
- the terminal may also initialize the uplink encryption parameter according to the initial value of the encryption parameter sent by the RNC.
- FIG. 4C is a schematic structural diagram of an initial value generation indication message receiving submodule and a first initialization submodule in a second embodiment of the terminal according to the present invention.
- the initial value generation indication message receiving sub-module 411 includes: a first receiving unit 4111 and a second receiving unit 4112.
- the first initialization sub-module 421 includes a first initialization unit 4211 and a second initialization unit 4212.
- the first receiving unit 4111 is configured to receive a first initial value generation indication message sent by the radio network controller, where the first initial value generation indication message is used to instruct the terminal to generate an initial value of the encryption parameter, and initialize the bearer contract service according to the initial value of the encryption parameter.
- the uplink encryption parameters of the radio bearer are configured to receive a first initial value generation indication message sent by the radio network controller, where the first initial value generation indication message is used to instruct the terminal to generate an initial value of the encryption parameter, and initialize the bearer contract service according to the initial value of the encryption parameter.
- the first initializing unit 4211 is configured to initialize an uplink encryption parameter of the radio bearer carrying the contract service according to the first initial value generation indication message and the initial value of the encryption parameter.
- the second receiving unit 4112 is configured to receive the second initial value generation indication information that is sent by the radio network controller, where the second initial value generation indication information is used to instruct the terminal to generate an initial value of the encryption parameter, and generate the indication information according to the second initial value.
- the radio bearer identifier initializes an uplink ciphering parameter of the radio bearer corresponding to the radio bearer identifier; the radio bearer identifier corresponds to the radio bearer carrying the specified service.
- the second initializing unit 4212 is configured to generate, according to the initial value of the encryption parameter and the second initial value, the radio bearer identifier carried by the indication information, and initialize the uplink strength parameter of the radio bearer corresponding to the radio bearer identifier.
- the terminal in this embodiment may be the terminal in the corresponding method embodiment of FIG. 2 and FIG. 3, and the foregoing modules are The working content can be described in the corresponding method embodiment of FIG. 2 and FIG. 3, and details are not described herein again.
- the response message is provided to the RNC.
- the initial value generation indication message sent by the RNC may carry the RB identifier. It is also possible not to carry the RB logo.
- the terminal After receiving the initial value generation indication message that does not carry the RB identifier, the terminal initializes the uplink encryption parameter corresponding to the RB that carries the agreed service according to the agreement with the RNC, and further initializes the UM RLC entity corresponding to the RB.
- the terminal After receiving the initial value generation indication message carrying the RB identifier, the terminal initializes the uplink encryption parameter of the RB corresponding to the RB identifier according to the RB identifier, and further initializes the UM RLC entity corresponding to the RB.
- the initialization indication message receiving sub-module 412 includes: a third receiving unit 4121 and a fourth receiving unit 4122; and a second initializing sub-module 422 includes a third initializing unit 4221 and a fourth initializing unit 4222.
- the third receiving unit 4121 is configured to receive first initial value generation indication information that is sent by the radio network controller, where the first initial value generation indication information is used to instruct the terminal to initialize the radio bearer that carries the contract service according to the initial value of the encryption parameter that is carried.
- the third initializing unit 4221 is configured to generate an initial value of the encryption parameter in the indication information according to the first initial value, and initialize an uplink encryption parameter of the radio bearer that carries the agreed service.
- the third initializing unit 4221 is further configured to initialize a radio bearer control entity that carries the radio bearer of the agreed service; the first initialization indication message is further used to instruct the terminal to initialize the radio link control entity that carries the radio bearer of the agreed service;
- the fourth receiving unit 4122 is configured to receive a second initialization indication message that is sent by the radio network controller, where the second initialization indication message is used to instruct the terminal to initialize the radio bearer according to the initial value of the encryption parameter and the radio bearer identifier carried by the second initialization indication message. Identifying an uplink ciphering parameter of the corresponding radio bearer; the radio bearer identifier corresponding to the radio bearer is a radio bearer carrying the designated service.
- the fourth initializing unit 4222 is configured to generate an initial value of the encryption parameter in the indication information according to the second initial value, and initialize an uplink encryption parameter of the radio bearer corresponding to the radio bearer identifier. Further, the fourth initializing unit 4222 is further configured to initialize a radio link control entity corresponding to the radio bearer of the radio bearer identifier. The second initialization indication message is further used to instruct the terminal to initialize the radio link control entity of the radio bearer corresponding to the radio bearer.
- the terminal in this embodiment may be the terminal in the embodiment of the method corresponding to FIG. 2 and FIG. 3, and the working content of each module may be described in the corresponding method embodiment of FIG. 2 and FIG. 3, and details are not described herein again.
- the initialization indication message sent by the RNC may carry the RB identifier. It is also possible not to carry the RB logo.
- the terminal After receiving the initialization indication message that does not carry the RB identifier, the terminal initializes the uplink ciphering parameter corresponding to the RB of the stipulated service according to the agreement with the RNC, and further initializes the UM RLC entity corresponding to the RB.
- the terminal After receiving the initialization indication message carrying the RB identifier, the terminal initializes the uplink encryption parameter of the RB corresponding to the RB identifier according to the RB identifier, and further initializes the UM RLC entity corresponding to the RB.
- FIG. 5A is a schematic structural diagram of Embodiment 1 of a radio network controller according to the present invention. As shown in FIG. 5A, the embodiment includes: an error detection module 51, an indication message sending module 52, a response receiving module 53 and a second initialization module 54.
- the error detection module 51 is configured to detect whether an uplink packet sent by the terminal in the unacknowledged mode has an unrecoverable error or is invalid.
- the indication message sending module 52 is configured to send an indication message to the terminal when the uplink packet is detected as an unrecoverable error or the uplink packet is invalid, and the indication message is used to instruct the terminal to initialize the uplink encryption parameter.
- the response receiving module 53 is configured to receive a response message sent by the terminal.
- the second initialization module 54 is configured to initialize the uplink encryption parameter according to the initial value of the encryption parameter.
- the radio network controller of this embodiment may be the radio network controller in the corresponding method embodiment of FIG. 1.
- the working content of the foregoing modules may be described in the corresponding method embodiment of FIG. 1 , and details are not described herein again.
- the radio network controller when the radio network controller detects that an unrecoverable error or invalidity occurs in the uplink packet, the radio network controller sends an indication message to the terminal, and instructs the terminal to perform encryption parameter initialization. After the radio network controller receives the response message from the terminal, it indicates that the terminal has uplinked After the encryption parameter is initialized, the radio network controller initializes the local uplink encryption parameter, thereby achieving synchronization of the uplink encryption parameter between the terminal and the RNC.
- the uplink encryption parameter synchronization when the uplink encryption parameter synchronization is implemented, the communication link between the terminal and the radio network controller is not interrupted. Therefore, the service between the terminal and the radio network controller is not interrupted, and the synchronous uplink encryption parameter synchronization is shortened. time.
- FIG. 5B is a schematic structural diagram of Embodiment 2 of a radio network controller according to the present invention.
- the embodiment further includes: a second initial value generating module 55, configured to generate an initial value of the encryption parameter.
- the indication message sending module 52 includes: an initial value generation indication message transmission sub-module 521 and an initialization indication message transmission sub-module 522; the second initialization module 54 includes: a third initialization sub-module 541 and a fourth initialization sub-module 542.
- the initial value generation indication message sending sub-module 521 is configured to: when detecting that an unrecoverable error occurs in the uplink packet or the uplink packet is invalid, send an initial value generation indication message to the terminal, where the initial value generation indication message is used to instruct the terminal to generate an initial value of the encryption parameter. And instructing the terminal to initialize the uplink encryption parameter according to the initial value of the encryption parameter.
- the response message receiving module 53 is further configured to receive a response message sent by the terminal that carries an initial value of the encrypted parameter.
- the third initialization sub-module 541 is configured to initialize the uplink encryption parameter according to the initial value of the encryption parameter in the response message.
- the initialization indication message sending sub-module 522 is configured to send an initialization indication message to the terminal when the uplink packet is unrecoverable error or the uplink packet is invalid, and the initialization indication message is used to indicate the initial value of the encryption parameter carried by the terminal according to the initialization indication message. Initialize the upstream encryption parameters.
- the fourth initialization sub-module 542 is configured to initialize the uplink encryption parameter according to the initial value of the generated encryption parameter after receiving the response message sent by the terminal.
- the radio network controller of this embodiment may be the radio network controller in the corresponding method embodiment of FIG. 2 and FIG. 3, and the working content of each module may be described in the corresponding method embodiment of FIG. 2 and FIG. I will not repeat them here.
- the RNC may instruct the terminal to generate an initial value of the encryption parameter and initialize the uplink encryption parameter after receiving the indication message, and carry the initial value of the encryption parameter in the response message and return it to the RNC.
- the RNC may instruct the terminal to initialize the uplink encryption parameter based on the initial value of the encryption parameter sent by the RNC.
- FIG. 5C is a schematic structural diagram of an initial value generation indication message sending submodule and a third initialization submodule in a second embodiment of a radio network controller according to the present invention.
- the initial value generation indication message transmission sub-module 521 includes: a first transmission unit 5211 and a second transmission unit 5212; and a third initialization sub-module 541 includes: a fifth initialization unit 5411 and a sixth initialization unit 5412.
- the error detection module 51 is specifically configured to detect whether an uplink packet that is sent by the terminal in the non-acknowledgment mode and that is in agreement with the terminal has an unrecoverable error or an uplink packet is invalid.
- the first sending unit 5211 is configured to send a first initial value generation indication message to the terminal, where the first initial value generation indication message is used to instruct the terminal to generate an initial value of the encryption parameter, and initialize the radio bearer carrying the contract service according to the initial value of the encryption parameter.
- the fifth initializing unit 5411 is configured to: after receiving the response message sent by the terminal, initialize the uplink encryption parameter of the radio bearer carrying the agreed service according to the initial value of the encryption parameter in the response message.
- the fifth initializing unit 5411 is further configured to initialize a UM RLC entity that carries the wireless bearer of the agreed service.
- the first initial value generation indication message is further used to instruct the terminal to initialize the UM RLC entity of the radio bearer carrying the contract service.
- the error detection module 51 is specifically configured to detect whether an uplink packet of the specified service sent by the terminal in the unacknowledged mode has an unrecoverable error or the uplink packet is invalid.
- the second sending unit 5212 is configured to send the second initial value generation indication information to the terminal, where the second initial value generation indication information is used to instruct the terminal to generate an initial value of the encryption parameter, and generate a radio bearer identifier carried by the indication information according to the third initial value.
- Initializing the radio bearer corresponding to the radio bearer identifier The uplink bearer parameter; the radio bearer identifier corresponding to the radio bearer is a radio bearer carrying the designated service; the sixth initializing unit 5412 is configured to: after receiving the response message sent by the terminal, initialize the radio bearer identifier according to the initial value of the encryption parameter in the response message The uplink encryption parameter of the corresponding radio bearer.
- the sixth initializing unit 5412 is further configured to initialize a UM RLC entity that carries the wireless bearer of the agreed service.
- the second initial value generation indication message is further used to instruct the terminal to initialize the UM RLC entity of the radio bearer carrying the contract service.
- the radio network controller of this embodiment may be the radio network controller in the embodiment of the corresponding method in FIG. 2 and FIG. 3, and the working content of each module may be described in the corresponding method embodiment of FIG. 2 and FIG. 3, and details are not described herein again.
- the initial value of the encryption parameter is generated by the RNC, and the indication message is sent to the terminal through the initial value generation.
- the initial value generation indication message sent by the RNC may carry the RB identifier. It is also possible not to carry the RB logo.
- the terminal After receiving the initial value generation indication message that does not carry the RB identifier, the terminal initializes the uplink encryption parameter corresponding to the RB that carries the agreed service according to the agreement with the RNC, and further initializes the UM RLC entity corresponding to the RB.
- the terminal After receiving the initial value generation indication message carrying the RB identifier, the terminal initializes the uplink encryption parameter of the RB corresponding to the RB identifier according to the RB identifier, and further initializes the UM RLC entity corresponding to the RB.
- FIG. 5D is a schematic structural diagram of an initialization indication message sending sub-module and a fourth initialization sub-module in Embodiment 2 of a radio network controller according to the present invention.
- the initialization indication message transmission sub-module 522 includes: a third transmission unit 5221 and a fourth transmission unit 5222; and a fourth initialization sub-module 542 includes: a seventh initialization unit 5421 and an eighth initialization unit 5422.
- the error detection module 51 is specifically configured to detect whether an uplink packet that is sent by the terminal in the non-acknowledgment mode and that is in agreement with the terminal has an unrecoverable error or an uplink packet is invalid.
- the third sending unit 5221 is configured to send a first initialization indication message to the terminal, where the first initialization indication message is used to instruct the terminal to initialize the uplink encryption parameter of the radio bearer carrying the contract service according to the initial value of the encryption parameter carried in the first initialization indication message.
- the seventh initializing unit 5421 is configured to generate an initial value of the encryption parameter according to the second initial value generating module 55. Initialize the uplink encryption parameters of the radio bearer carrying the agreed service.
- the error detection module 51 is specifically configured to detect whether an uplink packet of the designated service sent by the terminal in the unacknowledged mode has an unrecoverable error or the uplink packet is invalid.
- the fourth sending unit 5222 is configured to send a second initialization indication message to the terminal, where the second initialization indication message is used to instruct the terminal to initialize the uplink encryption of the radio bearer corresponding to the radio bearer identifier according to the initial value of the encryption parameter carried by the second initialization indication message.
- the radio bearer identifier corresponds to the radio bearer carrying the radio bearer of the designated service.
- the eighth initializing unit 5422 is configured to initialize an uplink encryption parameter of the radio bearer corresponding to the radio bearer identifier according to the generated initial value of the encryption parameter.
- the radio network controller of this embodiment may be the radio network controller in the embodiment of the corresponding method in FIG. 2 and FIG. 3, and the working content of each module may be described in the corresponding method embodiment of FIG. 2 and FIG. 3, and details are not described herein again.
- the RNC sends an initial value of the encryption parameter generated by the initialization indication message to the terminal.
- the initialization indication message sent by the RNC can carry the RB identifier. It is also possible not to carry the RB logo.
- the terminal After receiving the initialization indication message that does not carry the RB identifier, the terminal initializes the uplink encryption parameter corresponding to the RB of the 7-character service according to the agreement with the RNC, and further initializes the UM RLC entity corresponding to the RB.
- the terminal After receiving the initialization indication message carrying the RB identifier, the terminal initializes the uplink ciphering parameter of the RB corresponding to the RB identifier according to the RB identifier, and further initializes the UM RLC entity corresponding to the RB.
- the RNC detects the uplink packet transmission situation and notifies the terminal to perform uplink encryption parameter initialization when it detects that the uplink packet has an unrecoverable error or is invalid.
- the terminal whether the upper encryption parameter is out of synchronization, the terminal initiates a small update process when detecting that the uplink packet fails to be continuously transmitted.
- the terminal and the RNC implement synchronization of the uplink encryption parameters.
- FIG. 6 is another uplink encryption parameter in a non-acknowledgment mode according to a fourth embodiment of the present invention. Synchronization method embodiment 1 flow chart. The technical solution of the uplink encryption parameter synchronization method in the non-confirmed mode of the present invention is mainly described from the perspective of the terminal. As shown in FIG. 6, this embodiment includes:
- Step 61 The terminal detects the number of consecutive transmission failures of the uplink packet sent to the RNC in the non-acknowledgment mode.
- the terminal can detect the number of consecutive transmission failures of the uplink packet that is agreed with the radio network controller, and can also detect the uplink packet of the RNC specified service according to the detection indication message sent by the RNC. Therefore, when the terminal detects the uplink packet transmission, the terminal can actively initiate the HARQ entity of the MAC layer to detect the uplink packet transmission, or initiate the HARQ entity to detect the uplink packet transmission under the indication of the RNC. Therefore, before step 61, the method further includes: receiving, by the terminal, a detection indication message sent by the RNC.
- Step 62 The terminal generates an initial value of the encryption parameter when detecting that the number of consecutive uplink packet failures reaches a preset threshold.
- the preset threshold can be sent to the terminal by the RNC or set by the terminal.
- the terminal detects that the number of uplink packet transmission failures reaches the preset threshold, it indicates that the uplink packet is lost too much, which may cause the uplink encryption parameter to be out of synchronization. Therefore, the terminal generates an initial value of the encryption parameter, and implements the terminal through the cell update process. Initialization with the upstream encryption parameters of the RNC.
- Step 63 The terminal sends a cell update request carrying the initial value of the encryption parameter to the RNC.
- the terminal sends a cell update request to the RNC to initialize the uplink encryption parameter through the cell update request procedure. Further, the terminal may also instruct the RNC to initialize the UM RLC entity in the cell update request.
- the terminal If the terminal detects an uplink packet that is a service with the RNC, the terminal sends a first cell update request carrying the initial value of the encryption parameter to the RNC.
- the first cell update request does not carry the RB identifier corresponding to the RB that carries the contract service.
- the RNC After receiving the first cell update request, the RNC initializes the uplink cipher parameters of the RB that carries the contract service, and returns the cell update confirmation information to the terminal.
- the terminal If the terminal detects an uplink packet of a specified service determined by the RNC, the terminal sends an RNC to the RNC. A second cell update request carrying an initial value of the encryption parameter is sent.
- the RNC sends a detection indication message to the terminal in advance, and instructs the terminal to detect the uplink packet of the specified service, where the detection indication message carries the RB identifier corresponding to the RB that carries the specified service. Therefore, after the second update request does not need to carry the RB identity RNC to receive the second cell update request, the uplink cipher parameters corresponding to the RBs carrying the specified service are initialized, and the cell update confirmation information is returned to the terminal.
- Step 64 The RNC initializes the uplink encryption parameter according to the initial value of the encryption parameter in the cell update request.
- Step 65 The terminal receives the cell update confirmation information sent by the RNC.
- Step 66 The terminal initializes an uplink encryption parameter according to an initial value of the encryption parameter.
- the terminal After receiving the cell update confirmation message returned by the RNC, the terminal performs the same initialization operation as the RNC.
- the terminal detects an uplink packet transmission failure condition, and when the terminal detects that the uplink packet transmission fails, the terminal initiates a cell update procedure.
- the synchronization of the uplink encryption parameters between the RNC and the terminal is implemented in the cell update process.
- the uplink encryption parameter synchronization is implemented, the communication link between the terminal and the radio network controller is not interrupted. Therefore, the service between the terminal and the radio network controller is not interrupted, and the uplink encryption parameter synchronization is improved. speed.
- FIG. 7 is a flowchart of Embodiment 2 of an uplink ciphering parameter synchronization method in another non-acknowledgment mode according to the present invention. As shown in FIG. 7, this embodiment includes:
- Step 71 The RNC sends a detection indication message to the terminal.
- the detection indication message is used to indicate that the terminal detects the number of consecutive transmission failures of the uplink packet of the specified service, and the detection indication message carries the RB identifier corresponding to the RB that carries the specified service.
- the designated service indicated by the RNC is a VOIP service.
- Step 72 The terminal detects the number of consecutive failures of the uplink packet of the VOIP service.
- the terminal detects the number of consecutive failures of the uplink packet transmission of the VOIP service sent to the RNC in the UM mode according to the RNC detection indication message.
- the terminal passes the HARQ (Hybrid Automatic Repeat Request) located at the MAC layer.
- the automatic retransmission request is performed by the entity to detect the uplink packet transmission.
- the specific method may be: the RRC layer of the terminal starts the HARQ entity of the MAC layer by using the RRC layer to the MAC layer request primitive, and instructs the HARQ entity to continuously detect the UM RB uplink packet. Whether the transmission failed, and counts the number of uplink packets that failed to be sent continuously.
- the MAC layer When the MAC layer requests the high-level PDU from the MAC layer to the RLC layer (MAC-DATA-Req) primitive, it requests the RLC to deliver the identifier of the RB where each uplink packet is located, and uplinks the UM RB for the seven-assigned service. The number of failed packet transmissions is counted.
- the specific statistic method is: after the HARQ does not receive the ACK of the upstream end of the uplink packet after several times of retransmission or the expiration of the drop timer, the MAC multiplex entity is instructed, and the MAC entity determines whether the uplink packet belongs to the bearer contract service.
- the UM RB of the service to be detected determined by the terminal, if the counter is incremented by 1, the same detection is performed on the subsequent uplink packets. If the HARQ entity receives an ACK of the uplink packet sent on the RB before the value of the counter reaches the predetermined preset threshold, the counter is cleared to 0. If the number of failed uplink transmissions reaches the preset threshold before the value of the counter reaches the preset preset threshold, indicating that the uplink packet is lost too much, the uplink encryption parameter may be out of synchronization.
- Step 73 The terminal generates an initial value of the encryption parameter when the number of consecutive transmission failures of the uplink packet of the VOIP service reaches a preset threshold.
- the terminal MAC layer detects that the number of uplink packet transmission failures of the VOIP service (the value of the counter) reaches the preset threshold indicated by the RRC, the MAC layer to the RRC layer primitive reports the uplink packet transmission failure to the RRC layer. The number reaches the preset threshold.
- the terminal After the RRC layer receives the report that the number of uplink packet transmission failures reported by the MAC layer reaches the preset threshold, the terminal generates an initial value of the encryption parameter. For example, the terminal generates a Start value for initializing the HFN in the encrypted sequence number, and then The RNC initiates a cell update procedure.
- Step 74 The terminal sends a second cell update request carrying the initial value of the encryption parameter and the RB identifier to the RNC.
- Step 75a The RNC initializes the uplink encryption parameter of the RB corresponding to the RB identifier according to the initial value of the encryption parameter.
- the RNC initializes the HFN according to the start value in the cell update request, and optionally initializes the SN to 0. Further, if the second cell update request further indicates that the RNC initializes the UM RLC entity corresponding to the RB of the RB identifier, step 75a is further followed by step 75b: initializing the UM RLC entity corresponding to the RB of the RB identifier.
- Step 76 The RNC sends a cell update confirmation message to the terminal.
- Step 77a The terminal initializes the uplink encryption parameter of the RB corresponding to the RB identifier according to the initial value of the encryption parameter.
- the terminal After receiving the cell update confirmation message, the terminal performs the same initialization operation as the terminal. Specifically, the terminal initializes the HFN based on the start value, optionally initializing the SN to zero. Further, if the second cell update request further indicates that the RNC initializes the UM RLC entity corresponding to the RB of the RB identifier, step 77a is followed by step 77b: the terminal initializes the UM RLC entity corresponding to the RB of the RB identifier.
- the terminal detects the number of failed uplink packet transmissions according to the indication of the RNC.
- the terminal initiates a cell update procedure to the RNC.
- the synchronization of the uplink encryption parameters between the RNC and the terminal is implemented in the cell update process.
- FIG. 8 is a schematic structural diagram of another embodiment of a terminal provided by the present invention. As shown in FIG. 8A, the embodiment includes: a transmission failure detecting module 81, a third initial value generating module 82, a cell update requesting module 83, a cell update confirming receiving module 84, and a third initializing module 85.
- the transmission failure detecting module 81 is configured to detect the number of consecutive transmission failures of the uplink packets sent to the radio network controller in the non-acknowledgment mode.
- the sending failure detecting module 81 is specifically configured to detect the number of uplink packet transmission failures that are sent to the radio network controller in the unacknowledged mode and that are agreed with the terminal.
- the third initial value generating module 82 is configured to generate an initial value of the encryption parameter when detecting that the number of uplink packet transmission failures reaches a preset threshold.
- the cell update request module 83 is configured to send, to the radio network controller, a cell update request that carries an initial value of the encryption parameter.
- the cell update requesting module is specifically configured to send, to the radio network controller, a first cell update request that carries an initial value of the encryption parameter, where the first cell update request is used to instruct the radio network controller to use the initial value of the encrypted parameter that is carried, Initialize the uplink encryption parameters of the radio bearer carrying the agreed service.
- the cell update confirmation receiving module 84 is configured to receive cell update confirmation information sent by the radio network controller.
- the third initialization module 85 is configured to initialize the uplink encryption parameter according to the initial value of the encryption parameter after receiving the cell update confirmation information sent by the radio network controller.
- the third initialization module 85 is specifically configured to initialize an uplink encryption parameter of the radio bearer carrying the contract service according to the initial value of the encryption parameter.
- the third initialization module 85 is further configured to initialize a radio link entity that carries the radio bearer of the agreed service.
- the first cell update request is further used by the terminal to initialize a radio link entity that carries the radio bearer of the agreed service.
- the terminal in this embodiment may be the terminal in the embodiment of the method corresponding to FIG. 6.
- the working content of the foregoing modules may be described in the corresponding method embodiment of FIG. 6, and details are not described herein again.
- the terminal detects an uplink packet transmission failure condition, and when the terminal detects that the uplink packet transmission fails, the terminal initiates a cell update procedure.
- the synchronization of the uplink encryption parameters between the RNC and the terminal is implemented in the cell update process.
- the uplink encryption parameter synchronization is implemented, the communication link between the terminal and the radio network controller is not interrupted. Therefore, the service between the terminal and the radio network controller is not interrupted, and the uplink encryption parameter synchronization is improved. speed.
- FIG. 8B is a schematic structural diagram of another embodiment of a terminal provided by the present invention. As shown in FIG. 8B, the embodiment further includes: a detection indication receiving module 86.
- the detection indication receiving module 86 is configured to receive a detection indication message sent by the radio network controller, where the detection indication message is used to indicate that the terminal detects the number of consecutive transmission failures of the uplink packet of the specified service,
- the detection indication message carries the RB identifier corresponding to the RB that carries the specified service;
- the sending failure detection module 81 is specifically configured to detect, in the unacknowledged mode, the number of consecutive transmission failures of the uplink packets carried by the radio bearer corresponding to the radio bearer sent to the radio network controller;
- the cell update requesting module 83 is specifically configured to send, to the radio network controller, a second cell update request that carries an initial value of the encryption parameter, where the second cell update request is used to instruct the radio network controller to initialize the radio bearer identifier according to the initial value of the encryption parameter. Corresponding to the uplink encryption parameters of the radio bearer.
- the third initialization module 85 is specifically configured to initialize an uplink encryption parameter of the radio bearer corresponding to the radio bearer according to the initial value of the encryption parameter.
- the third initialization module 85 is further configured to initialize a radio link control entity corresponding to the radio bearer of the radio bearer identifier, where the second cell update request is further used to instruct the radio network controller to initialize the radio link corresponding to the radio bearer of the radio bearer identifier. Control entity.
- the terminal in this embodiment may be the terminal in the embodiment of the method corresponding to FIG. 7.
- the working content of the foregoing modules may be described in the corresponding method embodiment of FIG. 7, and details are not described herein again.
- the RNC instructs the terminal to detect the uplink packet transmission of the specified service.
- the detection indication message sent by the RNC carries the RB identifier corresponding to the RB that carries the specified service.
- the terminal After receiving the detection indication message, the terminal detects the number of consecutive transmissions of the uplink packet carrying the specified service.
- FIG. 9A is a schematic structural diagram of Embodiment 1 of another line network controller according to the present invention. As shown in FIG. 9A, the embodiment includes: a cell update request receiving module 91 and a fourth initialization module 92, and a cell update confirming module 93.
- the cell update request receiving module 91 is configured to receive a cell update request that is sent by the terminal and carries an initial value of the encryption parameter, where the cell update request is used to instruct the radio network controller to initialize the uplink encryption parameter according to the initial value of the encryption parameter.
- the cell update request receiving module is specifically configured to receive, by the terminal, a first cell update request that carries an initial value of the encryption parameter, where the first cell update request is used to indicate the wireless network.
- the controller initializes an uplink encryption parameter of the radio bearer carrying the agreed service according to the initial value of the carried encryption parameter.
- the fourth initialization module 92 is configured to initialize an uplink encryption parameter according to an initial value of the encryption parameter in the cell update request.
- the fourth initialization module 92 is specifically configured to initialize an uplink encryption parameter of the radio bearer carrying the contract service according to the initial value of the encryption parameter.
- the cell update confirmation module 93 is configured to send cell update confirmation information to the terminal.
- the fourth initialization module 92 is further configured to initialize a radio link entity that carries the radio bearer of the agreed service.
- the first cell update request is further used by the terminal to initialize a radio link entity of the radio bearer that carries the agreed service.
- the RNC in this embodiment may be the RNC in the corresponding method embodiment of FIG. 6.
- the working content of the foregoing modules may be described in the corresponding method embodiment of FIG. 6, and details are not described herein again.
- the RNC after receiving the cell update request sent by the terminal, the RNC initializes the uplink encryption parameter according to the initialization parameter of the encryption parameter carried in the terminal, and further initializes the UM RLC entity according to the indication of the terminal.
- FIG. 9B is a schematic structural diagram of Embodiment 2 of another line network controller according to the present invention. As shown in FIG. 9B, the embodiment further includes: a detection indication module 94.
- the detection indication module 94 is configured to send a detection indication message to the terminal, where the detection indication message is used to indicate that the terminal detects the number of consecutive transmission failures of the uplink packet of the specified service, and the detection indication message carries the RB identifier corresponding to the RB that carries the specified service;
- the cell update request receiving module 91 is configured to receive, by the terminal, a second cell update request that carries an initial value of the encryption parameter, where the second cell update request is used to instruct the radio network controller to initialize the radio bearer identifier according to the initial value of the encryption parameter.
- the uplink cryptographic parameter of the radio bearer; the fourth initialization module 92 is specifically configured to initialize, according to the initial value of the ciphering parameter, the uplink ciphering parameter corresponding to the radio bearer identifier of the radio bearer.
- the fourth initialization module 92 is further configured to initialize the wireless identifier The radio bearer control entity of the line bearer; the second cell update request is further configured to instruct the radio network controller to initialize the radio link control entity of the radio bearer corresponding to the radio bearer.
- the RNC in this embodiment may be the RNC in the method embodiment corresponding to FIG. 7.
- the working content of the foregoing modules may be described in the corresponding method embodiment of FIG. 7, and details are not described herein again.
- the RNC instructs the terminal to detect the uplink packet transmission of the specified service.
- the terminal detects that the number of consecutive uplink transmission failures reaches a preset threshold
- the terminal initiates a cell update request.
- the RNC After receiving the cell update request sent by the terminal, the RNC initializes the uplink encryption parameter according to the initialization parameter of the encryption parameter carried in the RNC, and further initializes the UM RLC entity according to the indication of the terminal.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mobile Radio Communication Systems (AREA)
Description
非确认模式下的上行加密参数同步方法和设备 本申请要求于 2010 年 12 月 03 日提交中国专利局、 申请号为 201010590695.5、 发明名称为"非确认模式下的上行加密参数同步方法和设 备"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明实施例涉及通信技术, 尤其涉及一种非确认模式下的上行加密 参数同步方法和设备。 背景技术
3GPP系统中, 终端和网络通过鉴权成功建立安全通信后, 终端和网络 侧的 RNC (无线网络控制器)进入加密过程。 终端和网络侧的加密机制用 于保护终端和网络之间所传输的数据不被窃取或攻击。 加密输入参数包括 加密密钥 CK、 加密序列号 COUNT-C、 承载标识 BEARER、 传输方向 DIRECTION和要求的密钥流长度 LENGTH。 如果无线承载使用的是非透 明 RLC ( Radio Link Control, 无线链路控制 )模式(确认模式 AM或非确 认模式 UM ), 加密在 RLC子层进行; 如果无线承载使用的透明 RLC模式 ( TM ), 则加密在 MAC子层(MAC-d实体)进行。
发送方基于上述输入参数产生的加密密钥流对传输的明文进行加密计 算, 产生相应的密文。 在接收方采用相同的加密参数和加密计算方法产生 解密密钥流后, 利用解密密钥流对密文解密。 在非透明 RLC模式的无线承 载中, 上、 下行链路各对应一个加密序列号 COUNT-C。 COUNT-C由 RLC HFN (超帧号 )和 RLC SN (序列号)组成, HFN的高 20位由 START值 进行初始化, 剩余为用 0初始化。 当 RLC SN循环一个周期后 HFN递增加 1。 终端通过信令将 Start值传递给 RNC, 每个终端有一个 Start值列表。 如
果终端和 RNC所采用的加密参数不同步则会导致数据接收错误。目前, UM RLC模式下, 由终端的 PDCP层实现 UM RLC下行数据发送错误检测。 在 PDCP层检测到下行数据包错误后,终端发起小区更新过程,通过小区更新 过程中可实现终端和 RNC之间的加密参数同步。
然而, UM RLC上行数据接收没有相应的检测和恢复机制。 如果 UM RLC上行数据接收连续出现丢包。 会导致上行发送 UM RLC实体和 RNC 的对等接收 UM RLC实体之间的上行加密参数不同步。 目前只能通过 RRC 重建方式同步上行加密参数, 而 RRC重建会导致业务中断, 而且业务恢复 较慢。 发明内容
本发明实施例提供一种非确认模式下的上行加密参数同步方法和设 备, 用以解决非确认模式下采用现有技术同步终端和无线网络控制器间的 上行加密参数时, 导致终端与无线网络控制器之间的通信链路中断, 从而 引起业务中断的缺陷, 实现了在不中断业务的情况下提高了上行加密参数 同步的速度。
一方面, 本发明实施例提供一种非确认模式下的上行加密参数同步方 法, 包括:
检测终端在非确认模式下发送的上行包是否出现不可恢复的错误或所 述上行包是否无效;
检测所述上行包出现不可恢复的错误或所述上行包无效时。 向所述终 端发送指示消息; 所述指示消息用于指示所述终端初始化上行加密参数; 接收所述终端发送的响应消息;
根据加密参数初始值, 初始化上行加密参数。
一方面, 本发明实施例提供一种非确认模式下的上行加密参数同步方 法, 包括:
接收无线网络控制器发送的指示消息; 所述指示消息用于指示所述终 端初始化上行加密参数;
根据所述指示消息和加密参数初始值, 初始化上行加密参数; 向所述无线网络控制器发送响应消息。
一方面, 本发明实施例提供一种终端, 包括:
指示消息接收模块, 用于接收无线网络控制器发送的指示消息; 所述 指示消息用于指示所述终端初始化上行加密参数;
第一初始化模块, 用于根据所述指示消息和加密参数初始值, 初始化 上行加密参数;
响应发送模块, 用于向所述无线网络控制器发送响应消息。
一方面, 本发明实施例提供一种无线网络控制器, 包括:
错误检测模块, 用于检测终端在非确认模式下发送的上行包是否出现 不可恢复的错误或所述上行包是否无效;
指示消息发送模块, 用于检测到所述上行包出现不可恢复的错误或所 述上行包无效时, 向所述终端发送指示消息, 所述指示消息用于指示所述 终端初始化上行加密参数;
响应接收模块, 用于接收所述终端发送的响应消息;
第二初始化模块, 用于根据加密参数初始值, 初始化上行加密参数。 本发明实施例, 无线网络控制器检测到上行包出现不可恢复错误或无 效时, 通过无线网络控制器向终端发送指示消息, 指示终端进行加密参数 初始化。 在无线网络控制器接收到终端的响应消息后, 表明终端已对上行 加密参数进行了初始化, 则无线网络控制器对本地的上行加密参数进行初 始化, 从而达到了终端与 RNC之间上行加密参数的同步。 本发明实施例在 实现上行加密参数同步时, 没有使终端与无线网络控制器之间的通信链路 中断, 因此, 没有中断终端和无线网络控制器之间的业务, 缩短了同步上 行加密参数同步的时间。
另一方面, 本发明实施例还提供另一种非确认模式下的上行加密参数 同步方法, 包括:
检测在非确认模式下向无线网络控制器发送的上行包连续发送失败的 个数;
在检测到所述上行包连续发送失败的个数达到预设阀值时, 生成加密 参数初始值;
向所述无线网络控制器发送携带有所述加密参数初始值的小区更新请 求;
在接收到所述无线网络控制器发送的小区更新确认信息后, 根据所述 加密参数初始值初始化上行加密参数。
另一方面, 本发明实施例还提供另一种终端, 包括:
发送失败检测模块, 用于检测在非确认模式下向无线网络控制器发送 的上行包连续发送失败的个数;
第三初始值生成模块, 用于在检测到所述上行包发送失败的个数达到 预设阀值时, 生成加密参数初始值;
小区更新请求模块, 用于向所述无线网络控制器发送携带有所述加密 参数初始值的小区更新请求;
小区更新确认接收模块, 用于接收所述无线网络控制器发送的小区更 新确认信息;
第三初始化模块, 用于在接收到所述无线网络控制器发送的小区更新 确认信息后, 根据所述加密参数初始值初始化上行加密参数。
另一方面, 本发明实施例提供另一种无线网络控制器, 包括: 小区更新请求接收模块, 用于接收终端发送的携带有加密参数初始值 的小区更新请求; 所述小区更新请求用于指示所述无线网络控制器根据所 述加密参数初始值初始化上行加密参数;
第四初始化模块, 用于根据所述小区更新请求中加密参数初始值, 初
始化上行加密参数;
小区更新确认模块, 用于向所述终端发送小区更新确认信息。
本发明实施例由终端检测上行包发送失败情况, 并在终端检测出上行 包发送失败时, 终端发起小区更新过程。 在小区更新过程中实现 RNC与终 端之间上行加密参数的同步。 本发明实施例在实现上行加密参数同步时, 没有使终端与无线网络控制器之间的通信链路中断, 因此, 没有中断终端 和无线网络控制器之间的业务, 提高了上行加密参数同步的速度。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一筒单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1A 为本发明提供的一种非确认模式下的上行加密参数同步方法实 施例一流程图;
图 1B 为本发明提供的一种非确认模式下的上行加密参数同步方法实 施例一中终端侧的流程图;
图 为本发明提供的一种非确认模式下的上行加密参数同步方法实施 例二流程图;
图 3 为本发明提供的一种非确认模式下的上行加密参数同步方法实施 例三流程图;
图 4A为本发明提供的一种终端实施例一结构示意图;
图 4B为本发明提供的一种终端实施例二结构示意图;
图 4C 为本发明提供的一种终端实施例二中初始值生成指示消息接收 子模块和第一初始化子模块的结构示意图;
图 4D 为本发明提供的一种终端实施例二中初始化指示消息接收子模
块和第二初始化子模块的结构示意图;
图 5 A为本发明提供的一种无线网络控制器实施例一结构示意图; 图 5B为本发明提供的一种无线网络控制器实施例二结构示意图; 图 5C 为本发明提供的一种无线网络控制器实施例二中初始值生成指 示消息发送子模块和第三初始化子模块的结构示意图;
图 5D 为本发明提供的一种无线网络控制器实施例二中初始化指示消 息发送子模块和第四初始化子模块的结构示意图;
图 6为本发明第四实施例提供的另一种非确认模式下的上行加密参数 同步方法实施例一流程图;
图 7 为本发明提供的另一种非确认模式下的上行加密参数同步方法实 施例二流程图;
图 8A为本发明提供的另一种终端实施例一结构示意图;
图 8B为本发明提供的另一种终端实施例二结构示意图;
图 9A为本发明提供的另一种线网络控制器实施例一结构示意图; 图 9B为本发明提供的另一种线网络控制器实施例二结构示意图。 具体实 式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例的技术方案不仅可应用到电路交换域( Circuit Switched , 筒称 CS )语音业务和 VOIP ( Voice over Internet Protocol )业务的上行加密 参数失步的场景, 还可应用到其他承载在 UM模式下的其他应用的上行加 密失步的应用场景。
图 1A 为本发明提供的一种非确认模式下的上行加密参数同步方法实 施例一流程图。 如图 1 A所示, 本实施例包括:
步骤 10: 无线网络控制器检测到终端在非确认模式下发送的上行包是 否出现不可恢复的错误或是否无效。
上行包出现不可恢复的错误或无效, 包含因上行加密参数失步所导致 的上行包解密错误。 如果是由于上行加密参数失步弓 I起上行包出现不恢复 的错误或无效时, 可通过本发明实施例实现上行加密参数同步进而解决上 行包错误或无效的问题。
终端向 RNC发送的上行包有多种,例如有些为 CS语音业务的上行包, 有些为 VOIP业务的上行包, 不同的业务^ ^载于不同的 RB上。 RNC可与 终端约定,对特定业务的上行包进行检测, 以保持承载该业务的 RB的上行 加密参数同步。例如 RNC与终端约定,对 CS语音业务的上行包进行检测。 另外, RNC也可自主确定对哪类业务的上行包进行检测(本发明实施例中, 将 RNC确定的检测业务为称为指定业务) , 例如 RNC确定对 VOIP业务 的上行包进行检测。
步骤 11: 无线网络控制器检测到终端在非确认模式下发送的上行包出 现不可恢复的错误或检测到上行包无效时, 向终端发送指示消息。
指示消息用于指示终端初始化上行加密参数。 在 RNC检测到约定业务 的上行包出现不可恢复错误或无效时, 向终端发送指示消息指示终端对承 载约定业务的 RB对应的上行加密参数进行初始化,而不需要在指示信息中 携带 RB标识。 在终端接收到没有携带 RB标识的指示消息时, 对承载约定 业务的 RB进行上行加密参数初始化。
另外, 由 RNC确定待检测的指定业务时, RNC检测到指定业务的上行 包出现不可恢复错误或无效时,将承载指定业务的 RB标识携带在指示消息 中发送给终端, 以通知终端对哪个 RB 进行上行加密参数初始化。 例如, RNC 确定检测 VOIP 业务的上行包, 向终端发送的指示信息中包括承载
VOIP业务的 RB对应的 RB标识, 终端接收到携带有 RB标识的指示消息 后, 根据 RB标识, 初始化 RB标识对应 RB的上行加密参数。
步骤 12: 无线网络控制器接收终端发送的响应消息。
终端接收到无线网络控制器发送的初始化上行加密参数的指示消息 后, 根据加密参数初始值初始化约定 RB或者 RNC指定 RB所对应的上行 加密参数, 例如初始化约定 RB或者 RNC指定 RB所对应的上行加密序列 号 COUNT-C。 之后, 向无线网络控制器回复响应消息。
步骤 13: 无线网络控制器根据加密参数初始值, 初始化上行加密参数。 无线网络控制器接收到终端回复的响应消息后, 执行与终端同样的初 始化操作,根据加密参数初始值初始化约定的 RB或者在指示消息中指定的 RB所对应的本地上行加密参数, 以与终端的上行加密参数实现同步。
本发明实施例中加密参数初始值, 可为在加密协商阶段由终端生成并 发送给无线网络控制器的加密参数初始值; 也可为终端在 RNC的指示下重 新计算后生成的加密参数初始值; 也可为无线网络控制器在检测到上行包 出现不恢复的错误时生成的加密参数初始值。
在 RNC指示终端生成加密参数时, RNC向终端发送初始化生成指示消 息, 指示终端生成加密参数初始值, 并根据加密参数初始值初始化上行加 密参数。 终端接收到初始值生成指示消息后, 生成加密参数初始值。 在初 始化上行加密参数后, 将加密参数初始值携带在响应消息中发送给 RNC。 RNC根据响应消息中加密参数初始值初始化本地的上行加密参数。
在由 RNC生成加密参数初始值的情况下, RNC向终端发送包括加密参 数初始值的初始化指示消息。 终端接收到初始化指示消息后, 根据其中的 加密参数初始值初始化本地的上行加密参数后,向 RNC返回响应消息。 RNC 接收到响应消息后, 根据生成的加密参数初始值初始化本地的上行加密参 数。
本发明实施例, 无线网络控制器检测到上行包出现不可恢复错误或无
效时, 通过无线网络控制器向终端发送指示消息, 指示终端进行加密参数 初始化。 在无线网络控制器接收到终端的响应消息后, 表明终端已对上行 加密参数进行了初始化, 则无线网络控制器对本地的上行加密参数进行初 始化, 从而达到了终端与 RNC之间上行加密参数的同步。 本发明实施例在 实现上行加密参数同步时, 没有使终端与无线网络控制器之间的通信链路 中断, 因此, 没有中断终端和无线网络控制器之间的业务, 缩短了同步上 行加密参数同步的时间。
图 1B 为本发明提供的一种非确认模式下的上行加密参数同步方法实 施例一中终端侧的流程图。 本实施例主要从终端侧说明本发明上行加密参 数同步方法的技术方案。 如图 1B所示, 本实施例包括:
步骤 1: 接收无线网络控制器发送的指示消息。
指示消息用于指示所述终端初始化上行加密参数。
步骤 2: 根据指示消息和加密参数初始值, 初始化上行加密参数。 终端接收到无线网络控制器发送的初始化上行加密参数的指示消息 后, 根据加密参数初始值初始化约定 RB或者 RNC指定 RB所对应的上行 加密参数, 例如初始化约定 RB或者 RNC指定 RB所对应的上行加密序列 号 COUNT-C。
加密参数初始值, 可为在加密协商 P介段由终端生成并发送给无线网络 控制器的加密参数初始值; 也可为终端在 RNC的指示下重新计算后生成的 加密参数初始值; 也可为无线网络控制器在检测到上行包出现不恢复的错 误时生成的加密参数初始值。
步骤 3: 向无线网络控制器发送响应消息。
本发明实施例, 终端接收到 RNC发送的指示消息后, 进行上行加密参 数初始化操作。 并向 RNC返回响应消息。 在无线网络控制器接收到终端的 响应消息后, 表明终端已对上行加密参数进行了初始化, 则无线网络控制 器对本地的上行加密参数进行初始化, 从而达到了终端与 RNC之间上行加
密参数的同步。
图 为本发明提供的一种非确认模式下的上行加密参数同步方法实施 例二流程图。 在第二实施例中, RNC与终端约定对 CS语音业务的上行包 发送情况进行检测。 并且, 用于初始化上行加密参数的加密参数初始值由 RNC指示终端生成, 并通过终端的响应消息发送给 RNC。 如图 2所示, 本 实施例包括:
步骤 20: RNC检测终端在非确认模式下发送的承载 CS语音业务的上 行包是否出现不可恢复的错误或是否有效。
RNC根据与终端的约定, 在非确认模式下对承载 CS语音业务的上行 包发送情况进行检测。
步骤 21: RNC检测到 7 载 CS语音业务的上行包出现不可恢复的错误 或上行包无效时。 向终端发送第一初始值生成指示消息。
第一初始值生成指示消息, 指示终端生成加密参数初始值, 并根据加 密参数初始值初始化承载 CS语音业务的 RB的上行加密参数。可选地, RNC 还可在向终端发送的第一初始值生成指示消息中指示终端进一步初始化承 载 CS业务的 RB对应的 UM RLC实体,从而初始化与发送上行包相关的其 它参数。
另外,在 RNC根据具体情况确定对指定业务的上行包进行检测时。 RNC 检测到指定业务的上行包出错或无效时,将该承载该指定业务的 RB对应的 RB标识携带在第二初始值生成指示信息中发送给终端。例如, RNC确定对 VOIP业务的上行包进行检测, 在检测到 VOIP业务的出错或无效时, RNC 将承载 VOIP业务的 RB对应的 RB标识携带在第二初始值生成指示信息中 发送给终端。 第二初始值生成指示信息指示终端生成加密参数初始值, 并 根据第二初始值生成指示信息携带的 RB标识初始化该 RB标识对应 RB的 上行加密参数。 可选地, RNC还可在向终端发送的第二初始值生成指示信 息中指示终端进一步初始化该 RB标识对应 RB的 UM RLC实体。
步骤 22a: 终端生成加密参数初始值, 根据加密参数初始值初始化承载 CS语音业务的 RB的上行加密参数。
步骤 23 : 终端向 RNC发送包括加密参数初始值的响应消息。
终端接收到 RNC发送的第一初始值生成指示消息后, 先生成加密参数 初始值, 再根据加密参数初始值初始化承载 CS语音业务的 RB的上行加密 参数。 之后, 向 RNC发送包括加密参数初始值的响应消息。 例如, 上行加 密参数为上行加密序列号 COUNT-C (包括 HFN和 SN ) , 终端生成 start 值后用 start值初始化 HFN, 可选地将 SN初始化为 0。 之后, 将 start值携 带在响应消息中发送给 RNC。 可选地, 如果第一初始值生成指示消息中还 指示终端进一步初始化 RLC实体,如图 2所示在步骤 22a后还包括步骤 22b: 初始化 7 载 CS语音业务的 RB的 UM RLC实体。
另外, 如果终端接收到 RNC发送的携带有 RB标识的第二初始值生成 指示消息, 则终端根据第二初始值生成指示信息携带的 RB 标识初始化该 RB标识对应 RB的上行加密参数。 可选地, 如果第二初始值生成指示消息 中还指示终端进一步初始化 RLC实体, 则终端根据第二初始值生成指示信 息携带的 RB标识初始化该 RB标识对应 RB的上行加密参后数, 进一步初 始化该 RB标识对应 RB的 UM RLC实体。
步骤 24a: RNC根据响应消息中的加密参数初始值, 初始化承载 CS语 音业务的 RB的上行加密参数。
RNC接收到终端返回的响应消息后, 与终端进行同样的初始化操作。 具体地, RNC接收到响应消息后, 根据其中携带的加密参数初始值初始化 本地的上行加密参数。 例如, RNC根据响应消息中 start值, 初始化加密序 列号 COUNT-C中 HFN,可选地再将 COUNT-C中 SN初始化为 0。可选地, 如果第一初始值生成指示消息中还指示终端进一步初始化 RLC实体, 如图 2所示, 在步骤 24a之后还包括步骤 24b: 初始化 载 CS语音业务的 RB 的 RLC实体。
另夕卜,如果 RNC没有与终端约定需要检测的业务, RNC向终端发送的 是第三初始值生成指示信息, 则 RNC根据 RB标识初始化该 RB标识对应 RB的上行加密参数。 可选地, 如果第二初始值生成指示消息中还指示终端 进一步初始化 RLC实体, RNC在初始化该 RB标识对应 RB的上行加密参 数后, 还可进一步初始化该 RB的 UM RLC实体。
本发明实施例, RNC与终端约定对 CS语音业务的上行包进行检测。 RNC检测到 CS语音业务上行包出现不可恢复错误或无效时, 向终端发送 没有 RB标识的第一初始值生成指示消息。终端根据第一初始值生成指示消 息, 先生成加密参数初始值, 再根据新生成的加密参数初始值, 并根据与 RNC的约定,初始化承载 CS语音的 RB对应的本地上行加密参数。之后将 生成的加密参数初始值携带在响应消息中发送给 RNC, RNC根据响应消息 中加密参数初始值, 初始化承载 CS语音业务的 RB对应的本地上行加密参 数,从而终端与 RNC之间在 CS语音业务方面的上行加密参数实现了同步, 可快速恢复 CS语音业务。进一步, 终端与 RNC在初始化上行加密参数后, 还可初始化 RLC实体。 另外, 如果 RNC在指示消息中携带了 RB标识, 则 终端和 RNC先后对该 RB标识对应 RB的上行加密参数初始化, 可选地还 可初始化该 RB的 UM RLC实体。
图 3 为本发明提供的一种非确认模式下的上行加密参数同步方法实施 例三流程图。 在第三实施例中加密参数初始值由 RNC生成并通过初始化指 示消息发送给终端, 终端根据初始化指示消息中加密参数初始值初始化本 地上行加密参数后, 向 RNC返回响应消息。 其中, RNC确定待检测的指定 业务为 VOIP业务。 RNC将承载 VOIP业务的 RB对应的 RB标识, 携带在 初始化指示消息发送给终端。 如图 3所示, 本实施例包括:
步骤 30: RNC检测终端在非确认模式下发送的 VOIP业务的上行包是 否出现不可恢复的错误或是否无效。
步骤 31: RNC检测到 VOIP业务的上行包出现不可恢复的错误或无效
时, 生成加密参数初始值。
步骤 32: RNC向终端发送携带有加密参数初始值和承载 VOIP业务的 RB对应 RB标识的第二初始化指示消息。
RNC检测到 VOTP业务的上行包出现不可恢复的错误时, 先生成加密 参数初始值, 然后, 将生成的加密参数初始值和承载 VOIP业务的 RB对应 RB标识携带在第二初始化指示消息中发送给终端。 第二初始化指示消息指 示终端根据其中携带的 RB标识和加密参数初始值, 对 RB标识对应 RB的 上行加密参数进行初始化。 可选地, 如果第二初始化指示消息指示终端进 一步初始化该 RB标识对应 RB的 UM RLC实体,
如果 RNC与终端约定对承载约定业务的上行包发送情况进行检测。 在 步骤 32中 RNC向终端发送包括加密参数初始值的第一初始化指示消息。 第一初始化指示消息用于指示终端根据第一初始化指示消息携带的加密参 数初始值, 初始化承载约定业务的无线承载的上行加密参数。 可选地, 第 一初始化指示消息还可指示终端进一步初始化承载约定业务的 UM RLC实 体。
步骤 33a:终端根据第二初始化指示消息中加密参数初始值和 RB标识, 初始化该 RB标识对应 RB的上行加密参数。
可选地,如果第二初始化指示消息指示终端进一步初始化该 RB标识对 应 RB的 UM RLC实体, 则在步骤 33a之后还包括: 步骤 33b: 初始化该 RB标识对应 RB的 UM RLC实体。
如果 RNC在步骤 32中向终端发送的是第一初始化指示消息, 则终端 根据第一初始化指示消息中携带的加密参数初始值初始化承载约定业务的 RB对应的上行加密参数。 可选地, 如果 RNC在步骤 32中向终端发送的是 第一初始化指示消息, 则终端根据第一初始化指示消息中携带的加密参数 初始值 7 载约定业务的 RB对应的上行加密参数后,进一步初始化该 RB标 识对应 RB的 UM RLC实体。
步骤 34: 终端向 RNC发送响应消息。
步骤 35a: RNC根据生成的加密参数初始值, 初始化该 RB标识对应 RB的上行力 p密参数。
RNC接收到终端返回的响应消息后, 与终端进行同样的初始化操作。 具体地, RNC接收到终端的响应消息后,根据步骤 31中生成的加密参数初 始值。 初始化步骤 32中携带的 RB标识对应 RB的上行加密参数。 可选地, 如果第二初始化指示消息指示终端进一步初始化该 RB标识对应 RB的 UM
RLC实体, 则在步骤 35a之后还包括步骤 35b: 初始化该 RB标识对应 RB 的 UM RLC实体。
如果 RNC在步骤 32中向终端发送的是第一初始化指示消息, 在步骤
35a中 RNC初始化承载约定业务的 RB对应的上行加密参数。 可选地, 如 果 RNC在步骤 32中向终端发送的是第一初始化指示消息, 在初始化承载 约定业务的 RB对应的上行加密参数之后, RNC还初始化承载约定业务的 RB对应的 UM RLC实体。
本实施例中, 由 RNC生成加密参数初始值后下发给终端, 使终端根据 加密参数初始值初始化上行加密参数。 RNC收到返回的响应消息后, 根据 生成的加密参数初始值初始化本地上行加密参数。 从而, 在不中断链路的 情况下使终端与 RNC之间的上行加密参数实现同步, 可快速恢复业务。 进 一步, 终端还可根据 RNC的指示初始化 RLC实体。
图 4A为本发明提供的一种终端实施例一结构示意图。 如图 4A所示, 本实施例包括: 指示消息接收模块 41、 第一初始化模块 42和响应发送模块 43。
指示消息接收模块 41 , 用于接收无线网络控制器发送的指示消息; 指 示消息用于指示终端初始化上行加密参数。 第一初始化模块 42, 用于根据 指示消息接收模块 41接收到的指示消息和加密参数初始值, 初始化上行加 密参数。 响应发送模块 43, 用于在第一初始化模块 42初始化上行加密参数
后, 向无线网络控制器发送响应消息。
本实施例终端可为图 1对应方法实施例中终端, 上述各模块的工作内 容可参见图 1对应方法实施例中描述, 在此不再赘述。
本发明实施例, 无线网络控制器检测到上行包出现不可恢复错误或无 效时, 向终端发送指示消息, 指示终端进行上行加密参数初始化。 在无线 网络控制器接收到终端的响应消息后, 表明终端已对上行加密参数进行了 初始化, 则无线网络控制器对本地的上行加密参数进行初始化, 从而达到 了终端与 RNC之间上行加密参数的同步。 本发明实施例在实现上行加密参 数同步时, 没有使终端与无线网络控制器之间的通信链路中断, 因此, 没 有中断终端和无线网络控制器之间的业务, 缩短了同步上行加密参数同步 的时间。
图 4B为本发明提供的一种终端实施例二结构示意图。 如图 4B所示, 在图 4A基础上还包括: 第一初始值生成模块 44, 用于生成加密参数初始 值。
指示消息接收模块 41包括初始值生成指示消息接收子模块 411和初始 化指示消息接收子模块 412;第一初始化模块 42包括第一初始化子模块 421 和第二初始化子模块 422。
初始值生成指示消息接收子模块 411 ,用于接收无线网络控制器发送的 初始值生成指示消息, 初始值生成指示消息用于指示终端生成加密参数初 始值, 并指示终端根据加密参数初始值初始化上行加密参数;
第一初始化子模块 421 ,用于根据初始值生成指示消息和初始值生成模 块生成的加密参数初始值, 初始化上行加密参数;
响应发送模块 43, 还用于向无线网络控制器发送包括初始值生成模块 生成的加密参数初始值的响应消息;
初始化指示消息接收子模块 412,用于接收无线网络控制器发送的初始 化指示消息, 初始化指示消息用于指示终端根据初始化指示消息中携带的
加密参数初始值初始化上行加密参数;
第二初始化子模块 422,用于根据初始化指示消息携带的加密参数初始 值, 初始化上行加密参数。
本实施例终端可为图 2和图 3对应方法实施例中终端, 上述各模块的 工作内容可参见图 2和图 3对应实施例中描述, 在此不再赘述。
本实施例中, 终端可在接收到指示消息后生成加密参数初始值并初始 化上行加密参数, 并将加密参数初始值携带在响应消息中返回给 RNC。 另 夕卜, 终端也可根据 RNC发送的加密参数初始值初始化上行加密参数。
图 4C 为本发明提供的一种终端实施例二中初始值生成指示消息接收 子模块和第一初始化子模块的结构示意图。 如图 4C所示, 初始值生成指示 消息接收子模块 411包括: 第一接收单元 4111和第二接收单元 4112。 第一 初始化子模块 421包括第一初始化单元 4211和第二初始化单元 4212。
第一接收单元 4111 , 用于接收无线网络控制器发送的第一初始值生成 指示消息, 第一初始值生成指示消息用于指示终端生成加密参数初始值, 并根据加密参数初始值初始化承载约定业务的无线承载的上行加密参数。
第一初始化单元 4211 , 用于根据第一初始值生成指示消息和加密参数 初始值, 初始化承载约定业务的无线承载的上行加密参数。
第二接收单元 4112, 用于接收无线网络控制器发送的第二初始值生成 指示信息, 第二初始值生成指示信息用于指示终端生成加密参数初始值, 并根据第二初始值生成指示信息携带的无线承载标识初始化无线承载标识 对应的无线承载的上行加密参数; 无线承载标识对应无线承载为承载指定 业务的无线承载。
第二初始化单元 4212, 用于根据加密参数初始值和第二初始值生成指 示信息携带的无线承载标识, 初始化无线承载标识对应的无线承载的上行 力口密参数。
本实施例终端可为图 2和图 3对应方法实施例中终端, 上述各模块的
工作内容可参见图 2和图 3对应方法实施例中描述, 在此不再赘述。
本实施例中, 加密参数初始值由终端生成后, 通过响应消息提供给 RNC。 RNC发送的初始值生成指示消息中可携带 RB标识。也可不携带 RB 标识。终端接收到没有携带 RB标识的初始值生成指示消息后,根据与 RNC 的约定,对承载约定业务的 RB对应的上行加密参数进行初始化, 并可进一 步初始化该 RB对应的 UM RLC实体。 终端接收到携带有 RB标识的初始 值生成指示消息后, 根据该 RB标识, 对该 RB标识对应 RB的上行加密参 数进行初始化, 并可进一步初始化该 RB对应的 UM RLC实体。
图 4D 为本发明提供的一种终端实施例二中初始化指示消息接收子模 块和第二初始化子模块的结构示意图。 如图 4D所示, 初始化指示消息接收 子模块 412包括: 第三接收单元 4121和第四接收单元 4122; 第二初始化子 模块 422包括第三初始化单元 4221和第四初始化单元 4222。
第三接收单元 4121 , 用于接收无线网络控制器发送的第一初始值生成 指示信息, 第一初始值生成指示信息用于指示终端根据携带的加密参数初 始值, 初始化承载约定业务的无线承载的上行加密参数;
第三初始化单元 4221 , 用于根据第一初始值生成指示信息中加密参数 初始值, 初始化承载约定业务的无线承载的上行加密参数。
进一步, 第三初始化单元 4221 , 还用于初始化承载约定业务的无线承 载的无线链路控制实体; 第一初始化指示消息还用于指示终端初始化承载 约定业务的无线承载的无线链路控制实体;
第四接收单元 4122, 用于接收无线网络控制器发送的第二初始化指示 消息, 第二初始化指示消息用于指示终端根据第二初始化指示消息携带的 加密参数初始值和无线承载标识, 初始化无线承载标识对应的无线承载的 上行加密参数; 无线承载标识对应无线承载为承载指定业务的无线承载。
第四初始化单元 4222, 用于根据第二初始值生成指示信息中加密参数 初始值, 初始化无线承载标识对应的无线承载的上行加密参数。
进一步, 第四初始化单元 4222, 还用于初始化无线承载标识对应无线 承载的无线链路控制实体; 第二初始化指示消息还用于指示终端初始化无 线承载标识对应无线承载的无线链路控制实体。
本实施例终端可为图 2和图 3对应方法实施例中终端, 上述各模块的 工作内容可参见图 2和图 3对应方法实施例中描述, 在此不再赘述。
本实施例中, RNC发送的初始化指示消息中可携带 RB标识。 也可不 携带 RB标识。 终端接收到没有携带 RB标识的初始化指示消息后, 根据与 RNC的约定, 对 7 载约定业务的 RB对应的上行加密参数进行初始化, 并 可进一步初始化该 RB对应的 UM RLC实体。 终端接收到携带有 RB标识 的初始化指示消息后, 根据该 RB标识, 对该 RB标识对应 RB的上行加密 参数进行初始化, 并可进一步初始化该 RB对应的 UM RLC实体。
图 5A为本发明提供的一种无线网络控制器实施例一结构示意图。如图 5A所示, 本实施例包括: 错误检测模块 51、 指示消息发送模块 52、 响应 接收模块 53和第二初始化模块 54。
错误检测模块 51 , 用于检测终端在非确认模式下发送的上行包是否出 现不可恢复的错误或是否无效。
指示消息发送模块 52, 用于检测到上行包出现不可恢复的错误或上行 包无效时, 向终端发送指示消息, 指示消息用于指示终端初始化上行加密 参数。
响应接收模块 53 , 用于接收终端发送的响应消息。
第二初始化模块 54, 用于根据加密参数初始值, 初始化上行加密参数。 本实施例无线网络控制器可为图 1对应方法实施例中无线网络控制器, 上述各模块的工作内容可参见图 1对应方法实施例中描述, 在此不再赘述。
本发明实施例, 无线网络控制器检测到上行包出现不可恢复错误或无 效时, 通过无线网络控制器向终端发送指示消息, 指示终端进行加密参数 初始化。 在无线网络控制器接收到终端的响应消息后, 表明终端已对上行
加密参数进行了初始化, 则无线网络控制器对本地的上行加密参数进行初 始化, 从而达到了终端与 RNC之间上行加密参数的同步。 本发明实施例在 实现上行加密参数同步时, 没有中断终端与无线网络控制器之间的通信链 路, 因此, 没有中断终端和无线网络控制器之间的业务, 缩短了同步上行 加密参数同步的时间。
图 5B为本发明提供的一种无线网络控制器实施例二结构示意图。如图 5B所示, 本实施例还包括: 第二初始值生成模块 55 , 用于生成加密参数初 始值。 指示消息发送模块 52包括: 初始值生成指示消息发送子模块 521和 初始化指示消息发送子模块 522; 第二初始化模块 54包括: 第三初始化子 模块 541和第四初始化子模块 542。
初始值生成指示消息发送子模块 521 ,用于检测到上行包出现不可恢复 的错误或上行包无效时, 向终端发送初始值生成指示消息, 初始值生成指 示消息用于指示终端生成加密参数初始值, 并指示终端根据加密参数初始 值初始化上行加密参数。
响应消息接收模块 53 , 还用于接收终端发送的携带有所加密参数初始 值的响应消息。
第三初始化子模块 541 , 用于根据响应消息中的加密参数初始值, 初始 化上行加密参数。
初始化指示消息发送子模块 522,用于检测到上行包出现不可恢复的错 误或上行包无效时, 向终端发送初始化指示消息, 初始化指示消息用于指 示终端根据初始化指示消息中携带的加密参数初始值初始化上行加密参 数。
第四初始化子模块 542, 用于在接收到终端发送的响应消息后,根据生 成的加密参数初始值, 初始化上行加密参数。
本实施例无线网络控制器可为图 2和图 3对应方法实施例中无线网络 控制器, 上述各模块的工作内容可参见图 2和图 3对应方法实施例中描述,
在此不再赘述。
本实施例中, RNC可指示终端在接收到指示消息后生成加密参数初始 值并初始化上行加密参数, 并将加密参数初始值携带在响应消息中返回给 RNC。 另外, RNC可指示终端根据 RNC发送的加密参数初始值初始化上 行加密参数。
图 5C 为本发明提供的一种无线网络控制器实施例二中初始值生成指 示消息发送子模块和第三初始化子模块的结构示意图。 如图 5C所示, 初始 值生成指示消息发送子模块 521包括: 第一发送单元 5211和第二发送单元 5212; 第三初始化子模块 541包括: 第五初始化单元 5411和第六初始化单 元 5412。
其中, 错误检测模块 51 , 具体用于检测终端在非确认模式下发送的、 与终端约定业务的上行包是否出现不可恢复的错误或上行包无效;
第一发送单元 5211 , 用于向终端发送第一初始值生成指示消息, 第一 初始值生成指示消息用于指示终端生成加密参数初始值, 并根据加密参数 初始值初始化承载约定业务的无线承载的上行加密参数;
第五初始化单元 5411 , 用于在接收到终端发送的响应消息后, 根据响 应消息中加密参数初始值, 初始化承载约定业务的无线承载的上行加密参 数.
进一步, 第五初始化单元 5411 , 还用于初始化承载约定业务的无线承 载的 UM RLC实体。 第一初始值生成指示消息还用于指示终端初始化承载 约定业务的无线承载的 UM RLC实体。
其中, 错误检测模块 51 , 具体用于检测终端在非确认模式下发送的、 指定业务的上行包是否出现不可恢复的错误或上行包无效;
第二发送单元 5212, 用于向终端发送第二初始值生成指示信息, 第二 初始值生成指示信息用于指示终端生成加密参数初始值, 并根据第三初始 值生成指示信息携带的无线承载标识初始化无线承载标识对应的无线承载
的上行加密参数; 无线承载标识对应无线承载为承载指定业务的无线承载; 第六初始化单元 5412, 用于在接收到终端发送的响应消息后, 根据响 应消息中加密参数初始值, 初始化无线承载标识对应的无线承载的上行加 密参数。
进一步, 第六初始化单元 5412, 还用于初始化承载约定业务的无线承 载的 UM RLC实体。 第二初始值生成指示消息还用于指示终端初始化承载 约定业务的无线承载的 UM RLC实体。
本实施例无线网络控制器可为图 2和图 3对应方法实施例中无线网络 控制器, 上述各模块的工作内容可参见图 2和图 3对应方法实施例中描述, 在此不再赘述。
本实施例中, 由 RNC生成加密参数初始值, 并通过初始值生成指示消 息发送给终端。 RNC发送的初始值生成指示消息中可携带 RB标识。 也可 不携带 RB标识。 终端接收到没有携带 RB标识的初始值生成指示消息后, 根据与 RNC的约定, 对承载约定业务的 RB对应的上行加密参数进行初始 化, 并可进一步初始化该 RB对应的 UM RLC实体。 终端接收到携带有 RB 标识的初始值生成指示消息后, 根据该 RB标识, 对该 RB标识对应 RB的 上行加密参数进行初始化,并可进一步初始化该 RB对应的 UM RLC实体。
图 5D 为本发明提供的一种无线网络控制器实施例二中初始化指示消 息发送子模块和第四初始化子模块的结构示意图。 如图 5C所示, 初始化指 示消息发送子模块 522包括: 第三发送单元 5221和第四发送单元 5222; 第 四初始化子模块 542包括: 第七初始化单元 5421和第八初始化单元 5422。
其中, 错误检测模块 51 , 具体用于检测终端在非确认模式下发送的、 与终端约定业务的上行包是否出现不可恢复的错误或上行包无效。
第三发送单元 5221 , 用于向终端发送第一初始化指示消息, 第一初始 化指示消息用于指示终端根据第一初始化指示消息携带的加密参数初始 值, 初始化承载约定业务的无线承载的上行加密参数;
第七初始化单元 5421 ,用于根据第二初始值生成模块 55生成的加密参 数初始值。 初始化承载约定业务的无线承载的上行加密参数。
错误检测模块 51 , 具体用于检测终端在非确认模式下发送的、 指定业 务的上行包是否出现不可恢复的错误或上行包无效。
第四发送单元 5222, 用于向终端发送第二初始化指示消息, 第二初始 化指示消息用于指示终端根据第二初始化指示消息携带的加密参数初始 值, 初始化无线承载标识对应的无线承载的上行加密参数; 无线承载标识 对应无线承载为承载指定业务的无线承载。
第八初始化单元 5422, 用于根据生成的加密参数初始值, 初始化无线 承载标识对应的无线承载的上行加密参数。
本实施例无线网络控制器可为图 2和图 3对应方法实施例中无线网络 控制器, 上述各模块的工作内容可参见图 2和图 3对应方法实施例中描述, 在此不再赘述。
本实施例, RNC在初始化指示消息将生成的加密参数初始值发送给终 端。 RNC发送的初始化指示消息中可携带 RB标识。 也可不携带 RB标识。 终端接收到没有携带 RB标识的初始化指示消息后, 根据与 RNC的约定, 对 7 载约定业务的 RB对应的上行加密参数进行初始化,并可进一步初始化 该 RB对应的 UM RLC实体。 终端接收到携带有 RB标识的初始化指示消 息后,根据该 RB标识,对该 RB标识对应 RB的上行加密参数进行初始化, 并可进一步初始化该 RB对应的 UM RLC实体。
上述实施例中均由 RNC检测上行包发送情况并在测到上行包出现不可 恢复错误或无效时, 通知终端进行上行加密参数初始化。 以下实施例与上 加密参数是否失步, 终端检测到上行包连续发送失败时发起小更新过程。 在小区更新过程中, 终端与 RNC实现上行加密参数同步。
图 6为本发明第四实施例提供的另一种非确认模式下的上行加密参数
同步方法实施例一流程图。 以下主要从终端角度说明本发明非确认模式下 的上行加密参数同步方法技术方案。 如图 6所示, 本实施例包括:
步骤 61:终端检测在非确认模式下向 RNC发送的上行包连续发送失败 的个数。
终端可检测与无线网络控制器约定业务的上行包连续发送失败的个 数, 也可根据 RNC发送的检测指示消息, 检测 RNC指定业务的上行包。 因此, 终端检测上行包发送情况时, 可主动启动 MAC层的 HARQ实体检 测上行包发送情况,也可在 RNC的指示下启动 HARQ实体检测上行包发送 情况。 因此, 在步骤 61之前, 还可包括: 终端接收 RNC发送的检测指示 消息。
步骤 62: 终端在检测到上行包连续发送失败的个数达到预设阀值时, 生成加密参数初始值。
预设阀值可由 RNC下发给终端, 也可由终端设定。 终端在检测到上行 包发送失败的个数达到预设阀值时, 表明上行包丢失过多, 有可能造成上 行加密参数失步, 因此, 终端生成加密参数初始值, 并通过小区更新过程 实现终端与 RNC的上行加密参数的初始化。
步骤 63: 终端向 RNC发送携带有加密参数初始值的小区更新请求。 终端向 RNC发送小区更新请求, 以通过小区更新请求过程初始化上行 加密参数。 进一步, 终端在小区更新请求中还可指示 RNC初始化 UM RLC 实体。
如果终端检测的是与 RNC约定业务的上行包, 则终端向 RNC发送携 带有加密参数初始值的第一小区更新请求。 在第一小区更新请求中不携带 承载约定业务的 RB对应的 RB标识, RNC接收到第一小区更新请求后, 对承载约定业务的 RB进行上行加密参数初始化,并向终端返回小区更新确 认信息。
如果终端检测的是由 RNC确定的指定业务的上行包, 则终端向 RNC
发送携带有加密参数初始值的第二小区更新请求。 由于 RNC事先需向终端 发送检测指示消息, 指示终端对指定业务的上行包进行检测, 其中检测指 示消息携带有承载指定业务的 RB对应的 RB标识。 因此, 在第二更新请求 也不需要携带 RB标识 RNC接收到第二小区更新请求后, 对承载指定业务 的 RB对应的上行加密参数进行初始化, 并向终端返回小区更新确认信息。
步骤 64: RNC根据小区更新请求中加密参数初始值初始化上行加密参 数。
步骤 65: 终端接收 RNC发送的小区更新确认信息。
步骤 66: 终端根据加密参数初始值初始化上行加密参数。
终端接收到 RNC返回的小区更新确认信息后, 与 RNC进行同样的初 始化操作。
本实施例由终端检测上行包发送失败情况, 并在终端检测出上行包发 送失败时, 终端发起小区更新过程。 在小区更新过程中实现 RNC与终端之 间上行加密参数的同步。 本发明实施例在实现上行加密参数同步时, 没有 使终端与无线网络控制器之间的通信链路中断, 因此, 没有中断终端和无 线网络控制器之间的业务, 提高了上行加密参数同步的速度。
图 7 为本发明提供的另一种非确认模式下的上行加密参数同步方法实 施例二流程图。 如图 7所示, 本实施例包括:
步骤 71: RNC向终端发送检测指示消息。
检测指示消息用于指示终端检测指定业务的上行包连续发送失败的个 数, 检测指示消息携带有承载指定业务的 RB对应的 RB标识。 本实施例中 RNC指示的指定业务为 VOIP业务。
步骤 72: 终端检测 VOIP业务的上行包连续发送失败的个数。
终端根据 RNC 的检测指示消息, 检测在 UM模式下向 RNC发送的 VOIP业务的上行包连续发送失败的个数。
终端通过位于 MAC层的 HARQ(Hybrid Automatic Repeat Request, 混
合自动重传请求)实体检测上行包发送情况, 具体地方法可为: 终端的 RRC 层通过 RRC层到 MAC层的请求原语, 启动 MAC层的 HARQ实体, 指示 HARQ实体连续检测 UM RB上行包发送是否失败,并统计连续发送失败的 上行包个数。 MAC层通过 MAC层至 RLC层的 ( MAC-DATA-Req )原语 向 RLC层请求高层 PDU时, 同时请求 RLC下发每个上行包所在 RB的标 识,对 7 载约定业务的 UM RB的上行包发送失败个数进行统计。 具体统计 的方法是, 当 HARQ经过几次重传或者丢弃定时器到期后都没有收到该上 行包对端的 ACK后, 指示 MAC复用实体, MAC实体判断该上行包是否 属于承载约定业务(或终端确定的待检测业务) 的 UM RB, 若是计数器加 1 , 对后续上行包做同样的检测。 若在该计数器的值在没有达到规定的预设 阀值前, HARQ实体收到该 RB上发送的上行包的 ACK, 则对计数器清 0。 若在该计数器的值达到规定的预设阀值之前, 上行包发送失败的个数已达 到预设阀值, 表明上行包丢失过多, 有可能引起上行加密参数失步。
步骤 73: 终端在检测到 VOIP业务的上行包连续发送失败的个数达到 预设阀值时, 生成加密参数初始值。
具体地, 终端 MAC层检测到 VOIP业务的上行包发送失败个数(计数 器的值)达到 RRC指示的预设阀值时, 通过 MAC层到 RRC层的原语向 RRC层报告上行包发送失败个数达到预设阀值。 在 RRC层收到 MAC层上 报的上行数据包发送失败个数达到预设阀值的报告后, 终端生成加密参数 初始值, 例如, 终端生成用于初始化加密序列号中 HFN的 Start值, 之后向 RNC发起小区更新过程。
步骤 74: 终端向 RNC发送携带有加密参数初始值和 RB标识的第二小 区更新请求。
第二小区更新请求, 用于指示 RNC根据携带的加密参数初始值, 初始 化该 RB标识对应 RB的 UM RLC实体。 进一步, 第二小区更新请求还可 指示 RNC初始化该 RB标识对应 RB的 UM RLC实体。
步骤 75a: RNC根据加密参数初始值, 对该 RB标识对应 RB的上行加 密参数进行初始化。
具体地, RNC根据小区更新请求中 start值初始化 HFN, 可选将 SN初 始化为 0。 进一步, 如果第二小区更新请求还指示 RNC初始化该 RB标识 对应 RB的 UM RLC实体, 在步骤 75a之后还包括步骤 75b: 初始化该 RB 标识对应 RB的 UM RLC实体。
步骤 76: RNC向终端发送小区更新确认信息。
步骤 77a: 终端根据加密参数初始值, 对该 RB标识对应 RB的上行加 密参数进行初始化。
终端接收到小区更新确认信息后, 执行与终端同样的初始化操作。 具 体地, 终端根据 start值初始化 HFN, 可选将 SN初始化为 0。 进一步, 如 果第二小区更新请求还指示 RNC初始化该 RB标识对应 RB的 UM RLC实 体,在步骤 77a之后还包括步骤 77b:终端初始化该 RB标识对应 RB的 UM RLC实体。
本发明实施例, 终端根据 RNC的指示, 检测上行包发送失败的个数。 终端检测到上行包发送失败的个数达到预设阀值时, 向 RNC发起小区更新 过程。 在小区更新过程中实现了 RNC与终端之间上行加密参数的同步。
图 8A为本发明提供的另一种终端实施例一结构示意图。如图 8A所示, 本实施例包括: 发送失败检测模块 81、 第三初始值生成模块 82、 小区更新 请求模块 83和小区更新确认接收模块 84以及第三初始化模块 85。
发送失败检测模块 81 , 用于检测在非确认模式下向无线网络控制器发 送的上行包连续发送失败的个数。
具体地, 发送失败检测模块 81 , 具体用于检测在非确认模式下向无线 网络控制器发送的、 与终端约定业务的上行包续发送失败的个数。
第三初始值生成模块 82, 用于在检测到上行包发送失败的个数达到预 设阀值时, 生成加密参数初始值。
小区更新请求模块 83 , 用于向无线网络控制器发送携带有加密参数初 始值的小区更新请求。
具体地, 小区更新请求模块, 具体用于向无线网络控制器发送携带有 加密参数初始值的第一小区更新请求, 第一小区更新请求用于指示无线网 络控制器根据携带的加密参数初始值, 初始化承载约定业务的无线承载的 上行加密参数。
小区更新确认接收模块 84, 用于接收无线网络控制器发送的小区更新 确认信息。
第三初始化模块 85 , 用于在接收到无线网络控制器发送的小区更新确 认信息后, 根据加密参数初始值初始化上行加密参数。
具体地, 第三初始化模块 85 , 具体用于根据加密参数初始值, 初始化 承载约定业务的无线承载的上行加密参数。
进一步, 第三初始化模块 85 , 还具体用于初始化承载约定业务的无线 承载的无线链路实体; 第一小区更新请求还用于终端初始化承载约定业务 的无线承载的无线链路实体。
本实施例终端可为图 6对应方法实施例中终端, 上述各模块的工作内 容可参见图 6对应方法实施例中描述, 在此不再赘述。
本实施例由终端检测上行包发送失败情况, 并在终端检测出上行包发 送失败时, 终端发起小区更新过程。 在小区更新过程中实现 RNC与终端之 间上行加密参数的同步。 本发明实施例在实现上行加密参数同步时, 没有 使终端与无线网络控制器之间的通信链路中断, 因此, 没有中断终端和无 线网络控制器之间的业务, 提高了上行加密参数同步的速度。
图 8B为本发明提供的另一种终端实施例二结构示意图。如图 8B所示, 本实施例还包括: 检测指示接收模块 86。
检测指示接收模块 86,用于接收无线网络控制器发送的检测指示消息, 检测指示消息用于指示终端检测指定业务的上行包连续发送失败的个数,
检测指示消息携带有承载指定业务的 RB对应的 RB标识;
发送失败检测模块 81 , 具体用于检测在非确认模式下向无线网络控制 器发送的、 无线承载标识对应无线承载所承载的上行包连续发送失败的个 数;
小区更新请求模块 83, 具体用于向无线网络控制器发送携带有加密参 数初始值的第二小区更新请求, 第二小区更新请求用于指示无线网络控制 器根据加密参数初始值, 初始化无线承载标识对应无线承载的上行加密参 数。
第三初始化模块 85, 具体用于根据加密参数初始值, 具体用于初始化 无线承载标识对应无线承载的上行加密参数。
进一步, 第三初始化模块 85, 具体还用于初始化无线承载标识对应无 线承载的无线链路控制实体; 第二小区更新请求还用于指示无线网络控制 器初始化无线承载标识对应无线承载的无线链路控制实体。
本实施例终端可为图 7对应方法实施例中终端, 上述各模块的工作内 容可参见图 7对应方法实施例中描述, 在此不再赘述。
本实施例, 由 RNC 指示终端检测指定业务的上行包发送情况。 RNC 发送的检测指示消息中携带有承载指定业务的 RB对应的 RB标识。终端接 收到检测指示消息后, 检测承载指定业务的上行包的连续发送个数。
图 9A为本发明提供的另一种线网络控制器实施例一结构示意图。如图 9A所示, 本实施例包括: 小区更新请求接收模块 91和第四初始化模块 92 以及小区更新确认模块 93。
小区更新请求接收模块 91 , 用于接收终端发送的携带有加密参数初始 值的小区更新请求; 小区更新请求用于指示无线网络控制器根据加密参数 初始值初始化上行加密参数。
具体地, 小区更新请求接收模块, 具体用于接收终端发送的携带有加 密参数初始值的第一小区更新请求, 第一小区更新请求用于指示无线网络
控制器根据携带的加密参数初始值, 初始化承载约定业务的无线承载的上 行加密参数。
第四初始化模块 92, 用于根据小区更新请求中加密参数初始值, 初始 化上行加密参数。
具体地, 第四初始化模块 92, 具体用于根据加密参数初始值, 初始化 承载约定业务的无线承载的上行加密参数。
小区更新确认模块 93, 用于向终端发送小区更新确认信息。
进一步, 第四初始化模块 92, 还具体用于初始化承载约定业务的无线 承载的无线链路实体; 第一小区更新请求还用于终端初始化承载约定业务 的无线承载的无线链路实体。
本实施例 RNC可为图 6对应方法实施例中 RNC,上述各模块的工作内 容可参见图 6对应方法实施例中描述, 在此不再赘述。
本实施例, RNC接收到终端发送的小区更新请求后, 根据其中携带的 加密参数初始化值初始化上行加密参数, 进一步还根据终端的指示初始化 UM RLC实体。
图 9B为本发明提供的另一种线网络控制器实施例二结构示意图。如图 9B所示, 本实施例还包括: 检测指示模块 94。
检测指示模块 94, 用于向终端发送检测指示消息, 检测指示消息用于 指示终端检测指定业务的上行包连续发送失败的个数, 检测指示消息携带 有承载指定业务的 RB对应的 RB标识;
小区更新请求接收模块 91 , 具体用于接收终端发送的携带有加密参数 初始值的第二小区更新请求, 第二小区更新请求用于指示无线网络控制器 根据加密参数初始值, 初始化无线承载标识对应无线承载的上行加密参数; 第四初始化模块 92, 具体用于根据加密参数初始值, 初始化无线承载 标识对应无线 7 载的上行加密参数。
进一步, 第四初始化模块 92, 还具体用于初始化无线^载标识对应无
线承载的无线链路控制实体; 第二小区更新请求还用于指示无线网络控制 器初始化无线承载标识对应无线承载的无线链路控制实体。
本实施例 RNC可为图 7对应方法实施例中 RNC,上述各模块的工作内 容可参见图 7对应方法实施例中描述, 在此不再赘述。
本实施例, RNC指示终端检测指定业务的上行包发送情况。 终端检测 到上行包连续发送失败个数达到预设阀值时, 发起小区更新请求。 RNC接 收到终端发送的小区更新请求后, 根据其中携带的加密参数初始化值初始 化上行加密参数, 进一步还根据终端的指示初始化 UM RLC实体。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序 代码的介质。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims
1、 一种非确认模式下的上行加密参数同步方法, 其特征在于, 包括: 检测在非确认模式下发送的上行包出现不可恢复的错误或所述上行包 无效时, 向终端发送指示消息; 所述指示消息用于指示所述终端初始化上 行加密参数;
接收所述终端发送的响应消息;
根据加密参数初始值, 初始化上行加密参数。
2、 根据权利要求 1所述非确认模式下的上行加密参数同步方法, 其特 征在于:
所述向终端发送指示消息包括:
向所述终端发送初始值生成指示消息, 所述初始值生成指示消息用于 指示所述终端生成加密参数初始值, 并指示所述终端根据所述加密参数初 始值初始化上行加密参数;
所述接收所述终端发送的响应消息包括:
接收所述终端发送的包括加密参数初始值的响应消息;
所述根据加密参数初始值, 初始化上行加密参数包括:
根据所述响应消息中的加密参数初始值, 初始化所述上行加密参数。
3、 根据权利要求 1所述非确认模式下的上行加密参数同步方法, 其特 征在于:
在向终端发送指示消息之前还包括:
生成加密参数初始值;
向所述终端发送指示消息包括:
向所述终端发送初始化指示消息, 所述初始化指示消息用于指示所述 终端根据初始化指示消息中携带的所述加密参数初始值初始化上行加密参 数;
根据加密参数初始值, 初始化所述上行加密参数包括: 根据生成的加密参数初始值, 初始化所述上行加密参数。
4、 根据权利要求 2所述非确认模式下的上行加密参数同步方法, 其特 征在于, 还包括: 检测所述终端在非确认模式下发送的、 与所述终端约定 业务的上行包是否出现不可恢复的错误或上行包无效;
所述向所述终端发送初始值生成指示信息包括:
向所述终端发送第一初始值生成指示消息, 所述第一初始值生成指示 消息用于指示所述终端生成加密参数初始值, 并根据所述加密参数初始值 初始化承载所述约定业务的无线承载的上行加密参数;
所述根据所述响应消息中的加密参数初始值, 初始化所述上行加密参 数包括:
根据所述响应消息中的加密参数初始值, 初始化承载所述约定业务的 无线承载的上行加密参数。
5、 根据权利要求 4所述非确认模式下的上行加密参数同步方法, 其特 征在于, 所述第一初始值生成指示消息用于指示所述终端在根据所述加密 参数初始值初始化承载所述约定业务的无线承载的上行加密参数之后, 初 始化承载所述约定业务的无线承载的无线链路控制实体;
在所述根据所述响应消息中的加密参数初始值, 初始化所述上行加密 参数之后, 还包括: 初始化承载所述约定业务的无线承载的无线链路控制 实体。
6、 根据权利要求 2所述非确认模式下的上行加密参数同步方法, 其特 征在于, 还包括: 检测所述终端在非确认模式下发送的、 指定业务的上行 包是否出现不可恢复的错误或上行包无效;
所述向所述终端发送初始值生成指示信息包括:
向所述终端发送第二初始值生成指示信息, 所述第二初始值生成指示 信息用于指示所述终端生成加密参数初始值, 并根据所述第三初始值生成 指示信息携带的无线承载标识初始化所述无线承载标识对应的无线承载的 上行加密参数; 所述无线承载标识对应无线承载为承载所述指定业务的无 线承载;
所述根据所述响应消息中的加密参数初始值, 初始化所述上行加密参 数包括:
根据所述响应消息中的加密参数初始值, 初始化所述无线承载标识对 应的无线承载的上行加密参数。
7、 根据权利要求 6所述非确认模式下的上行加密参数同步方法, 其特 征在于, 所述第二初始值生成指示信息还用于指示所述终端初始化所述无 线承载标识对应的无线承载的无线链路控制实体;
在所述根据所述响应消息中的加密参数初始值, 初始化所述无线承载 标识对应的无线承载的上行加密参数之后, 还包括:
初始化所述无线承载标识对应的无线承载的无线链路控制实体。
8、 根据权利要求 3所述非确认模式下的上行加密参数同步方法, 其特 征在于, 还包括: 检测所述终端在非确认模式下发送的、 与所述终端约定 业务的上行包是否出现不可恢复的错误或上行包无效;
所述向所述终端发送初始化指示消息包括:
向所述终端发送第一初始化指示消息, 所述第一初始化指示消息用于 指示所述终端根据所述第一初始化指示消息携带的所述加密参数初始值, 初始化承载约定业务的无线承载的上行加密参数;
所述根据生成的加密参数初始值, 初始化所述上行加密参数包括: 根据生成的加密参数初始值。 初始化承载所述约定业务的无线承载的 上行加密参数。
9、 根据权利要求 8所述非确认模式下的上行加密参数同步方法, 其特 征在于, 所述第一初始化指示消息还用于指示所述终端初始化承载所述约 定业务的无线承载的无线链路控制实体;
在所述根据生成的加密参数初始值, 初始化承载所述约定业务的无线 承载的上行加密参数之后, 还包括:
初始化承载所述约定业务的无线承载的无线链路控制实体。
10、 根据权利要求 3所述非确认模式下的上行加密参数同步方法, 其 特征在于, 还包括: 检测所述终端在非确认模式下发送的、 指定业务的上 行包是否出现不可恢复的错误或上行包无效;
所述向所述终端发送初始化指示消息包括:
向所述终端发送第二初始化指示消息, 所述第二初始化指示消息用于 指示所述终端根据所述第二初始化指示消息携带的加密参数初始值, 初始 化所述无线承载标识对应的无线承载的上行加密参数; 所述无线承载标识 对应无线承载为承载所述指定业务的无线承载;
所述根据生成的加密参数初始值, 初始化所述上行加密参数包括: 根据生成的加密参数初始值, 初始化所述无线承载标识对应的无线承 载的上行加密参数。
11、 根据权利要求 10所述非确认模式下的上行加密参数同步方法, 其 特征在于, 所述第二初始化指示消息还用于指示所述终端初始化所述无线 承载标识对应无线承载的无线链路控制实体;
在根据生成的加密参数初始值, 初始化所述无线承载标识对应的无线 承载的上行加密参数之后, 还包括:
初始化所述无线承载标识对应无线承载的无线链路控制实体。
12、 一种终端, 其特征在于, 包括:
指示消息接收模块, 用于接收无线网络控制器发送的指示消息; 所述 指示消息用于指示所述终端初始化上行加密参数;
第一初始化模块, 用于根据所述指示消息和加密参数初始值, 初始化 上行加密参数;
响应发送模块, 用于向所述无线网络控制器发送响应消息。
13、 根据权利要求 12所述终端, 其特征在于, 还包括: 第一初始值生 成模块, 用于生成加密参数初始值;
所述指示消息接收模块包括初始值生成指示消息接收子模块和初始化 指示消息接收子模块; 所述第一初始化模块包括第一初始化子模块和第二 初始化子模块;
所述初始值生成指示消息接收子模块, 用于接收所述无线网络控制器 发送的初始值生成指示消息, 所述初始值生成指示消息用于指示所述终端 生成加密参数初始值, 并指示所述终端根据所述加密参数初始值初始化上 行加密参数;
所述第一初始化子模块, 用于根据所述初始值生成指示消息和所述第 一初始值生成模块生成的加密参数初始值, 初始化上行加密参数;
所述响应发送模块, 还用于向所述无线网络控制器发送包括所述第一 初始值生成模块生成的加密参数初始值的响应消息;
所述初始化指示消息接收子模块, 用于接收所述无线网络控制器发送 的初始化指示消息, 所述初始化指示消息用于指示所述终端根据初始化指 示消息中携带的所述加密参数初始值初始化上行加密参数;
所述第二初始化子模块, 用于根据所述初始化指示消息携带的加密参 数初始值, 初始化上行加密参数。
14、 根据权利要求 13所述终端, 其特征在于, 所述初始值生成指示消 息接收子模块包括: 第一接收单元和第二接收单元; 所述第一初始化子模 块包括第一初始化单元和第二初始化单元;
所述第一接收单元, 用于接收所述无线网络控制器发送的第一初始值 生成指示消息, 所述第一初始值生成指示消息用于指示所述终端生成加密 参数初始值, 并根据所述加密参数初始值初始化承载约定业务的无线承载 的上行加密参数;
所述第一初始化单元, 用于根据所述第一初始值生成指示消息和所述 第一初始值生成模块生成的加密参数初始值, 初始化承载约定业务的无线 承载的上行加密参数;
所述第二接收单元, 用于接收所述无线网络控制器发送的第二初始值 生成指示信息, 所述第二初始值生成指示信息用于指示所述终端生成加密 参数初始值, 并根据所述第二初始值生成指示信息携带的无线承载标识初 始化所述无线承载标识对应的无线承载的上行加密参数; 所述无线承载标 识对应无线承载为承载所述指定业务的无线承载;
所述第二初始化单元, 用于根据所述第一初始值生成模块生成的加密 参数初始值和所述第二初始值生成指示信息携带的无线承载标识, 初始化 所述无线承载标识对应的无线承载的上行加密参数。
15、 根据权利要求 14所述终端, 其特征在于:
所述第一初始化单元, 还用于初始化承载所述约定业务的无线承载的 无线链路控制实体; 所述第一初始值生成指示消息还用于指示所述终端初 始化承载所述约定业务的无线承载的无线链路控制实体;
所述第二初始化单元, 还用于初始化所述无线承载标识对应无线承载 的无线链路控制实体; 所述第二初始值生成指示消息还用于指示所述终端 初始化所述无线承载标识对应无线承载的无线链路控制实体。
16、 根据权利要求 13所述终端, 其特征在于, 所述初始化指示消息接 收子模块包括: 第三接收单元和第四接收单元; 第二初始化子模块包括第 三初始化单元和第四初始化单元;
所述第三接收单元, 用于接收所述无线网络控制器发送的第一初始值 生成指示信息, 所述第一初始值生成指示信息用于指示所述终端根据携带 的加密参数初始值, 初始化承载约定业务的无线承载的上行加密参数; 所述第三初始化单元, 用于根据所述第一初始值生成指示信息中加密 参数初始值, 初始化承载约定业务的无线承载的上行加密参数;
所述第三接收单元, 用于接收所述无线网络控制器发送的第二初始化 指示消息, 所述第二初始化指示消息用于指示所述终端根据所述第二初始 化指示消息携带的加密参数初始值和无线承载标识, 初始化所述无线承载 标识对应的无线承载的上行加密参数; 所述无线承载标识对应无线承载为 承载所述指定业务的无线承载;
所述第四初始化单元, 用于根据所述第二初始值生成指示信息中加密 参数初始值, 初始化所述无线承载标识对应的无线承载的上行加密参数。
17、 根据权利要求 16所述终端, 其特征在于;
所述第三初始化单元, 还用于初始化承载所述约定业务的无线承载的 无线链路控制实体; 所述第一初始化指示消息还用于指示所述终端初始化 承载所述约定业务的无线承载的无线链路控制实体;
所述第四初始化单元, 还用于初始化所述无线承载标识对应无线承载 的无线链路控制实体; 所述第二初始化指示消息还用于指示所述终端初始 化所述无线承载标识对应无线承载的无线链路控制实体。
18、 一种无线网络控制器, 其特征在于, 包括:
错误检测模块, 用于检测终端在非确认模式下发送的上行包是否出现 不可恢复的错误或所述上行包是否无效;
指示消息发送模块, 用于检测到所述上行包出现不可恢复的错误或所 述上行包无效时, 向所述终端发送指示消息, 所述指示消息用于指示所述 终端初始化上行加密参数;
响应接收模块, 用于接收所述终端发送的响应消息;
第二初始化模块, 用于根据加密参数初始值, 初始化上行加密参数。
19、 根据权利要求 18所述无线网络控制器, 其特征在于, 还包括: 第 二初始值生成模块, 用于生成加密参数初始值;
所述指示消息发送模块包括: 初始值生成指示消息发送子模块和初始 化指示消息发送子模块; 所述第二初始化模块包括: 第三初始化子模块和 第四初始化子模块;
所述初始值生成指示消息发送子模块, 用于检测到所述上行包出现不 可恢复的错误或上行包无效时, 向所述终端发送初始值生成指示消息, 所 述初始值生成指示消息用于指示所述终端生成加密参数初始值, 并指示所 述终端根据所述加密参数初始值初始化上行加密参数;
所述响应消息接收模块, 还用于接收所述终端发送的携带有加密参数 初始值的响应消息;
所述第三初始化子模块, 用于根据所述响应消息中的加密参数初始值, 初始化所述上行加密参数;
所述初始化指示消息发送子模块, 用于检测到所述上行包出现不可恢 复的错误或上行包无效时, 向所述终端发送初始化指示消息, 所述初始化 指示消息用于指示所述终端根据初始化指示消息中携带的所述加密参数初 始值初始化上行加密参数;
所述第四初始化子模块, 用于在接收到所述终端发送的响应消息后, 根据所述第二初始值生成模块生成的加密参数初始值, 初始化所述上行加 密参数。
20、 根据权利要求 19所述无线网络控制器, 其特征在于, 初始值生成 指示消息发送子模块包括: 第一发送单元和第二发送单元; 所述第三初始 化子模块包括: 第五初始化单元和第六初始化单元;
所述错误检测模块, 具体用于检测所述终端在非确认模式下发送的、 与所述终端约定业务的上行包是否出现不可恢复的错误或上行包无效; 所述第一发送单元, 用于向所述终端发送第一初始值生成指示消息, 所述第一初始值生成指示消息用于指示所述终端生成加密参数初始值, 并 根据所述加密参数初始值初始化承载约定业务的无线承载的上行加密参 数;
所述第五初始化单元, 用于在接收到所述终端发送的响应消息后, 根 据所述响应消息中加密参数初始值, 初始化承载约定业务的无线承载的上 行加密参数; 所述错误检测模块, 具体用于检测所述终端在非确认模式下发送的、 指定业务的上行包是否出现不可恢复的错误或上行包无效;
所述第二发送单元, 用于向所述终端发送第二初始值生成指示信息, 所述第二初始值生成指示信息用于指示所述终端生成加密参数初始值, 并 根据所述第三初始值生成指示信息携带的无线承载标识初始化所述无线承 载标识对应的无线承载的上行加密参数; 所述无线承载标识对应无线承载 为承载所述指定业务的无线承载;
所述第六初始化单元, 用于在接收到所述终端发送的响应消息后, 根 据所述响应消息中加密参数初始值, 初始化所述无线 7 载标识对应的无线 承载的上行加密参数。
21、 根据权利要求 20所述无线网络控制器, 其特征在于:
所述第五初始化单元, 还用于初始化承载所述约定业务的无线承载的 无线链路控制实体; 所述第一初始值生成指示消息还用于指示所述终端在 根据所述加密参数初始值初始化承载所述约定业务的无线承载的上行加密 参数之后, 初始化承载所述约定业务的无线承载的无线链路控制实体; 所述第六初始化单元, 还用于初始化所述无线承载标识对应的无线承 载的无线链路控制实体; 所述第二初始值生成指示信息还用于指示所述终 端初始化所述无线承载标识对应的无线承载的无线链路控制实体。
22、 根据权利要求 19所述无线网络控制器, 其特征在于, 所述初始化 指示消息发送子模块包括: 第三发送单元和第四发送单元; 所述第四初始 化子模块包括: 第七初始化单元和第八初始化单元;
所述错误检测模块, 具体用于检测所述终端在非确认模式下发送的、 与所述终端约定业务的上行包是否出现不可恢复的错误或上行包无效; 所述第三发送单元, 用于向所述终端发送第一初始化指示消息, 所述 第一初始化指示消息用于指示所述终端根据所述第一初始化指示消息携带 的所述加密参数初始值, 初始化承载约定业务的无线承载的上行加密参数; 所述第七初始化单元, 用于根据所述第二初始值生成模块生成的加密 参数初始值。 初始化承载所述约定业务的无线承载的上行加密参数;
所述错误检测模块, 具体用于检测所述终端在非确认模式下发送的、 指定业务的上行包是否出现不可恢复的错误或上行包无效;
所述第四发送单元, 用于向所述终端发送第二初始化指示消息, 所述 第二初始化指示消息用于指示所述终端根据所述第二初始化指示消息携带 的加密参数初始值, 初始化所述无线承载标识对应的无线承载的上行加密 参数; 所述无线承载标识对应无线承载为承载所述指定业务的无线承载; 所述第八初始化单元, 用于根据生成的加密参数初始值, 初始化所述 无线承载标识对应的无线承载的上行加密参数。
23、 根据权利要求 22所述无线网络控制器, 其特征在于:
所述第七初始化单元, 还用于初始化承载所述约定业务的无线承载的 无线链路控制实体; 所述第一初始化指示消息还用于指示所述终端初始化 承载所述约定业务的无线承载的无线链路控制实体;
所述第八初始化单元, 还用于初始化所述无线承载标识对应无线承载 的无线链路控制实体; 所述第二初始化指示消息还用于指示所述终端初始 化所述无线承载标识对应无线承载的无线链路控制实体。
24、 一种非确认模式下的上行加密参数同步方法, 其特征在于, 包括: 检测在非确认模式下向无线网络控制器发送的上行包连续发送失败的 个数;
在检测到所述上行包连续发送失败的个数达到预设阀值时, 生成加密 参数初始值;
向所述无线网络控制器发送携带有所述加密参数初始值的小区更新请 求;
在接收到所述无线网络控制器发送的小区更新确认信息后, 根据所述 加密参数初始值初始化上行加密参数。
25、 根据权利要求 24所述非确认模式下的上行加密参数同步方法, 其 特征在于:
所述检测在非确认模式下向无线网络控制器发送的上行包连续发送失 败的个数包括:
检测在非确认模式下向无线网络控制器发送的、 与所述无线网络控制 器约定业务的上行包续发送失败的个数;
所述向所述无线网络控制器发送携带有所述加密参数初始值的小区更 新请求包括:
向所述无线网络控制器发送携带有加密参数初始值的第一小区更新请 求, 所述第一小区更新请求用于指示所述无线网络控制器根据携带的所述 加密参数初始值, 初始化承载所述约定业务的无线承载的上行加密参数; 所述根据所述加密参数初始值初始化上行加密参数包括:
根据所述加密参数初始值, 初始化承载所述约定业务的无线承载的上 行加密参数。
26、 根据权利要求 25所述非确认模式下的上行加密参数同步方法, 其 特征在于: 所述第一小区更新请求还用于所述终端初始化承载所述约定业 务的无线承载的无线链路实体;
在所述根据所述加密参数初始值, 初始化承载所述约定业务的无线承 载的上行加密参数之后, 还包括: 初始化承载所述约定业务的无线承载的 无线链路实体。
27、 根据权利要求 24所述非确认模式下的上行加密参数同步方法, 其 特征在于, 在所述检测在非确认模式下向无线网络控制器发送的上行包连 续发送失败的个数之前, 还包括:
接收所述无线网络控制器发送的检测指示消息, 所述检测指示消息用 于指示终端检测指定业务的上行包连续发送失败的个数, 所述检测指示消 息携带有承载所述指定业务的无线承载对应的无线承载标识; 所述检测在非确认模式下向无线网络控制器发送的上行包连续发送失 败的个数包括:
检测在非确认模式下向所述无线网络控制器发送的、 所述无线承载标 识对应无线承载所承载的上行包连续发送失败的个数;
所述向所述无线网络控制器发送携带有所述加密参数初始值的小区更 新请求包括:
向所述无线网络控制器发送携带有加密参数初始值的第二小区更新请 求所述第二小区更新请求用于指示所述无线网络控制器根据所述加密参数 初始值, 初始化所述无线承载标识对应无线承载的上行加密参数;
所述根据所述加密参数初始值初始化上行加密参数包括:
根据所述加密参数初始值, 初始化所述无线承载标识对应无线承载的 上行加密参数。
28、 根据权利要求 27所述非确认模式下的上行加密参数同步方法, 其 特征在于, 所述第二小区更新请求还用于指示所述无线网络控制器初始化 所述无线承载标识对应无线承载的无线链路控制实体;
在所述根据所述加密参数初始值, 初始化所述无线承载标识对应无线 载的上行加密参数之后, 还包括: 初始化所述无线^载标识对应无线7 载的无线链路控制实体。
29、 一种终端, 其特征在于, 包括:
发送失败检测模块, 用于检测在非确认模式下向无线网络控制器发送 的上行包连续发送失败的个数;
第三初始值生成模块, 用于在检测到所述上行包发送失败的个数达到 预设阀值时, 生成加密参数初始值;
小区更新请求模块, 用于向所述无线网络控制器发送携带有所述加密 参数初始值的小区更新请求;
小区更新确认接收模块, 用于接收所述无线网络控制器发送的小区更 新确认信息;
第三初始化模块, 用于在接收到所述无线网络控制器发送的小区更新 确认信息后, 根据所述加密参数初始值初始化上行加密参数。
30、 根据权利要求 29所述的终端, 其特征在于, 还包括: 检测指示接 收模块;
所述检测指示接收模块, 用于接收所述无线网络控制器发送的检测指 示消息, 所述检测指示消息用于指示终端检测指定业务的上行包连续发送 失败的个数, 所述检测指示消息携带有承载所述指定业务的 RB对应的 RB 标识;
所述发送失败检测模块, 具体用于检测在非确认模式下向所述无线网 络控制器发送的、 所述无线承载标识对应无线承载所承载的上行包连续发 送失败的个数;
所述小区更新请求模块, 具体用于向所述无线网络控制器发送携带有 加密参数初始值的第二小区更新请求, 所述第二小区更新请求用于指示所 述无线网络控制器根据所述加密参数初始值, 初始化所述无线承载标识对 应无线承载的上行加密参数;
所述第三初始化模块, 具体用于根据所述第三初始值生成模块生成的 加密参数初始值, 初始化所述无线承载标识对应无线承载的上行加密参数。
31、根据权利要求 30所述的终端, 其特征在于, 所述第三初始化模块, 具体还用于初始化所述无线承载标识对应无线承载的无线链路控制实体; 所述第二小区更新请求还用于指示所述无线网络控制器初始化所述无线承 载标识对应无线承载的无线链路控制实体。
32、 根据权利要求 29所述的终端, 其特征在于:
所述发送失败检测模块, 具体用于检测在非确认模式下向无线网络控 制器发送的、 与所述终端约定业务的上行包续发送失败的个数;
所述小区更新请求模块, 具体用于向所述无线网络控制器发送携带有 加密参数初始值的第一小区更新请求, 所述第一小区更新请求用于指示所 述无线网络控制器根据携带的所述加密参数初始值, 初始化承载所述约定 业务的无线承载的上行加密参数;
所述第三初始化模块, 具体用于根据所述加密参数初始值, 初始化承 载所述约定业务的无线承载的上行加密参数。
33、根据权利要求 32所述的终端, 其特征在于: 所述第三初始化模块, 还具体用于初始化承载所述约定业务的无线承载的无线链路实体; 所述第 一小区更新请求还用于所述终端初始化承载所述约定业务的无线承载的无 线链路实体。
34、 一种无线网络控制器, 其特征在于, 包括:
小区更新请求接收模块, 用于接收终端发送的携带有加密参数初始值 的小区更新请求; 所述小区更新请求用于指示所述无线网络控制器根据所 述加密参数初始值初始化上行加密参数;
第四初始化模块, 用于根据所述小区更新请求中加密参数初始值, 初 始化上行加密参数;
小区更新确认模块, 用于向所述终端发送小区更新确认信息。
35、 根据权利要求 34所述无线网络控制器, 其特征在于, 还包括: 检 测指示模块, 用于向所述终端发送检测指示消息, 所述检测指示消息用于 指示终端检测指定业务的上行包连续发送失败的个数, 所述检测指示消息 携带有承载所述指定业务的无线承载对应的无线承载标识;
所述小区更新请求接收模块, 具体用于接收所述终端发送的携带有加 密参数初始值的第二小区更新请求, 所述第二小区更新请求用于指示所述 无线网络控制器根据所述加密参数初始值, 初始化所述无线承载标识对应 无线承载的上行加密参数;
所述第四初始化模块, 具体用于根据所述加密参数初始值, 初始化所 述无线承载标识对应无线承载的上行加密参数。
36、 根据权利要求 35所述无线网络控制器, 其特征在于, 所述第四初 始化模块, 还具体用于初始化所述无线承载标识对应无线承载的无线链路 控制实体; 所述第二小区更新请求还用于指示所述无线网络控制器初始化 所述无线承载标识对应无线承载的无线链路控制实体。
37、 根据权利要求 34所述无线网络控制器, 其特征在于:
所述小区更新请求接收模块, 具体用于接收所述终端发送的携带有加 密参数初始值的第一小区更新请求, 所述第一小区更新请求用于指示所述 无线网络控制器根据携带的所述加密参数初始值, 初始化承载所述约定业 务的无线承载的上行加密参数;
所述第四初始化模块, 具体用于根据所述加密参数初始值, 初始化承 载所述约定业务的无线承载的上行加密参数。
38、 根据权利要求 37所述无线网络控制器, 其特征在于, 所述第四初 始化模块, 还具体用于初始化承载所述约定业务的无线承载的无线链路实 体; 所述第一小区更新请求还用于所述终端初始化承载所述约定业务的无 线承载的无线链路实体。
39、 一种非确认模式下的上行加密参数同步方法, 其特征在于, 包括: 接收无线网络控制器发送的指示消息; 所述指示消息用于指示所述终 端初始化上行加密参数;
根据所述指示消息和加密参数初始值, 初始化上行加密参数; 向所述无线网络控制器发送响应消息。
40、 根据权利要求 39所述的非确认模式下的上行加密参数同步方法, 其特征在于:
所述接收无线网络控制器发送的指示消息包括:
接收所述无线网络控制器发送的初始值生成指示消息, 所述初始值生 成指示消息用于指示所述终端生成加密参数初始值, 并指示所述终端根据 所述加密参数初始值初始化上行加密参数; 所述根据所述指示消息和加密参数初始值, 初始化上行加密参数包括: 生成加密参数初始值;
根据所述初始值生成指示消息和生成的所述加密参数初始值, 初始化 上行加密参数;
所述向所述无线网络控制器发送响应消息包括:
向所述无线网络控制器发送包括所述加密参数初始值的响应消息。
41、 根据权利要求 39所述的非确认模式下的上行加密参数同步方法, 其特征在于:
所述接收无线网络控制器发送的指示消息包括:
接收所述无线网络控制器发送的初始化指示消息, 所述初始化指示消 息用于指示所述终端根据初始化指示消息中携带的所述加密参数初始值初 始化上行加密参数;
所述根据所述指示消息和加密参数初始值, 初始化上行加密参数包括: 根据所述初始化指示消息中的加密参数初始值, 初始化上行加密参数。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11845522.9A EP2648436B1 (en) | 2010-12-03 | 2011-12-05 | Method and device for synchronizing uplink encryption parameters in unacknowledged mode |
US13/908,276 US9900768B2 (en) | 2010-12-03 | 2013-06-03 | Method and device for synchronizing uplink ciphering parameter in unacknowledged mode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010590695.5 | 2010-12-03 | ||
CN201010590695.5A CN102487501B (zh) | 2010-12-03 | 2010-12-03 | 非确认模式下的上行加密参数同步方法和设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/908,276 Continuation US9900768B2 (en) | 2010-12-03 | 2013-06-03 | Method and device for synchronizing uplink ciphering parameter in unacknowledged mode |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012072053A1 true WO2012072053A1 (zh) | 2012-06-07 |
Family
ID=46152946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/083488 WO2012072053A1 (zh) | 2010-12-03 | 2011-12-05 | 非确认模式下的上行加密参数同步方法和设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9900768B2 (zh) |
EP (1) | EP2648436B1 (zh) |
CN (2) | CN105429990B (zh) |
WO (1) | WO2012072053A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103152730B (zh) * | 2013-02-27 | 2015-05-06 | 东南大学 | 一种抗DoS攻击的通用移动通信系统无线接入方法 |
US20180367244A1 (en) * | 2017-06-16 | 2018-12-20 | Mediatek Inc. | Method And Apparatus For Uplink Partial Sub-Frame Transmission In Mobile Communications |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101075865A (zh) * | 2006-05-16 | 2007-11-21 | 华为技术有限公司 | 一种用户面加密的启动方法 |
CN101174943A (zh) * | 2006-11-01 | 2008-05-07 | 华为技术有限公司 | 一种数据安全的同步方法及系统 |
EP2234424A1 (en) * | 2007-12-27 | 2010-09-29 | NEC Corporation | Radio communication system, radio communication device, and encryption method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1689130A1 (en) * | 2005-02-07 | 2006-08-09 | Lg Electronics Inc. | Method for settling an error in a radio link control |
US20080101609A1 (en) * | 2006-10-31 | 2008-05-01 | Innovative Sonic Limited | Method and apparatus for handling protocol error in a wireless communications system |
JP5082768B2 (ja) * | 2007-10-29 | 2012-11-28 | 富士通株式会社 | 移動通信システム、移動通信方法、無線基地局装置、および端末 |
CN101150866A (zh) * | 2007-10-29 | 2008-03-26 | 华为技术有限公司 | 参数同步方法和装置 |
US8494451B2 (en) * | 2009-01-30 | 2013-07-23 | Nokia Corporation | Method, apparatus and computer program product for providing ciphering problem recovery for unacknowledged mode radio bearer |
US9124425B2 (en) * | 2009-06-30 | 2015-09-01 | Nokia Technologies Oy | Systems, methods, and apparatuses for ciphering error detection and recovery |
KR20120081736A (ko) * | 2011-01-12 | 2012-07-20 | 삼성전자주식회사 | 이동 통신시스템에서 알엘씨 엔터티의 재설립 동안의 회복 불능 오류 처리를 위한 방법 및 장치 |
US8582768B2 (en) * | 2011-02-16 | 2013-11-12 | Marvell World Trade Ltd. | Recovery from decryption errors in a sequence of communication packets |
-
2010
- 2010-12-03 CN CN201510870173.3A patent/CN105429990B/zh active Active
- 2010-12-03 CN CN201010590695.5A patent/CN102487501B/zh not_active Expired - Fee Related
-
2011
- 2011-12-05 WO PCT/CN2011/083488 patent/WO2012072053A1/zh active Application Filing
- 2011-12-05 EP EP11845522.9A patent/EP2648436B1/en not_active Not-in-force
-
2013
- 2013-06-03 US US13/908,276 patent/US9900768B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101075865A (zh) * | 2006-05-16 | 2007-11-21 | 华为技术有限公司 | 一种用户面加密的启动方法 |
CN101174943A (zh) * | 2006-11-01 | 2008-05-07 | 华为技术有限公司 | 一种数据安全的同步方法及系统 |
EP2234424A1 (en) * | 2007-12-27 | 2010-09-29 | NEC Corporation | Radio communication system, radio communication device, and encryption method |
Also Published As
Publication number | Publication date |
---|---|
CN102487501A (zh) | 2012-06-06 |
CN105429990A (zh) | 2016-03-23 |
EP2648436B1 (en) | 2018-10-17 |
US20130266143A1 (en) | 2013-10-10 |
EP2648436A4 (en) | 2013-10-09 |
EP2648436A1 (en) | 2013-10-09 |
CN105429990B (zh) | 2019-06-07 |
US9900768B2 (en) | 2018-02-20 |
CN102487501B (zh) | 2015-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8627092B2 (en) | Asymmetric cryptography for wireless systems | |
ES2578260T3 (es) | Procedimiento de reubicación de SRNS en un sistema de comunicación móvil | |
EP1966925B1 (en) | Method and apparatus for data security and automatic repeat request implementation in a wireless communication system | |
TWI332345B (en) | Security considerations for the lte of umts | |
TW200803371A (en) | Ciphering control and synchronization in a wireless communication system | |
CN102571497B (zh) | 一种IPSec隧道故障检测的方法、装置及系统 | |
US8379855B2 (en) | Ciphering in a packet-switched telecommunications system | |
JP5082768B2 (ja) | 移動通信システム、移動通信方法、無線基地局装置、および端末 | |
JP5056944B2 (ja) | 秘匿処理装置、秘匿処理方法、および秘匿処理プログラム | |
JP5131501B2 (ja) | 通信システム | |
CN106797376B (zh) | 移动通信网络中处理分组丢失的方法和装置 | |
JP2009508390A (ja) | セキュアで帯域効率の良い暗号化同期方法 | |
WO2007121669A1 (fr) | Procédé, dispositif et système pour établir une connexion hertzienne | |
WO2012051946A1 (zh) | 数据处理方法、装置和系统 | |
CN101478752B (zh) | 一种密钥更替方法、系统及设备 | |
JP2010028747A (ja) | 秘匿処理を行う送信装置及び受信装置 | |
TW201228417A (en) | Deciphering methods and mobile communication apparatuses thereto | |
WO2017194161A1 (en) | Method and system for loss mitigation during device to device communication mode switching | |
WO2012013052A1 (zh) | Srb3和srb4的完整性保护计数器同步的方法及系统 | |
WO2012072053A1 (zh) | 非确认模式下的上行加密参数同步方法和设备 | |
CN101174943A (zh) | 一种数据安全的同步方法及系统 | |
KR101541079B1 (ko) | 이동통신시스템에서 상향 링크 데이터의 암호화처리 장치 및 방법 | |
WO2020254113A1 (en) | Key distribution for hop by hop security in iab networks | |
KR20080044148A (ko) | 이동통신 시스템에서 암호화된 패킷을 송수신하는 장치 및방법 | |
WO2012009981A1 (zh) | 空中接口密钥的更新方法、核心网节点及无线接入系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11845522 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011845522 Country of ref document: EP |