WO2012070724A1 - Alpha-n-arabinofuranosidase derived from rhodanobacter ginsenosidimutans and uses thereof - Google Patents

Alpha-n-arabinofuranosidase derived from rhodanobacter ginsenosidimutans and uses thereof Download PDF

Info

Publication number
WO2012070724A1
WO2012070724A1 PCT/KR2011/001410 KR2011001410W WO2012070724A1 WO 2012070724 A1 WO2012070724 A1 WO 2012070724A1 KR 2011001410 W KR2011001410 W KR 2011001410W WO 2012070724 A1 WO2012070724 A1 WO 2012070724A1
Authority
WO
WIPO (PCT)
Prior art keywords
arabinofuranosidase
ginsenoside
ginsenosides
nucleic acid
type
Prior art date
Application number
PCT/KR2011/001410
Other languages
French (fr)
Korean (ko)
Inventor
김성건
안동선
이성택
임완택
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2012070724A1 publication Critical patent/WO2012070724A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01055Alpha-N-arabinofuranosidase (3.2.1.55)

Definitions

  • the present invention relates to alpha-N-arabinofuranosidase and its use derived from Rhodanobacter ginsenosidimutans .
  • Ginseng has been used as a medicine for promoting health and longevity in Asia, including Korea, China, and Japan. It is also used for therapeutic purposes at the plant level in the United States, and for herbal treatment in Europe, especially Germany.
  • Saponin means a substance consisting of several cyclic compounds in the glycosides widely present in the plant system, and triterpene saponin, a saponin component included as a main bioactive component in ginseng or red ginseng, is used in other plants. Since ginseng saponins are different from other saponins, they are called ginsenosides in the sense of Ginseng glycosides to distinguish them from other plant-based saponins.
  • ginsenosides have been purified, characterized, and classified (Christensen, L. P. 2008. Ginsenosides. Chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55: 1-99).
  • the basic structure of ginsenosides comprises one to three residues, ie, glycofyranosyl, arabinofyranosyl, arabinofuranosyl, xylopyranosyl, or rhamnopyranosyl groups, attached at specific positions to the main backbone. It consists of a tetracyclic triterpene dammarane or pentacyclic oleanane skeleton.
  • Damaren type ginsenosides are mainly classified according to their intrinsic aglyconic residues: protopanaxanadiol (PPD), protopanasatriol (PPT), and ocotillol.
  • Ginsenoside composition is diversified into various ginseng species.
  • Korean ginseng Panax ginseng
  • US ginseng Panax notoginseng
  • Ginsenosides Choi, KT 2008. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol. Sin. 29: 1109-1118.
  • the composition of ginsenosides also varies in other parts of the ginseng body such as roots, leaves, and berries (Wang, CZ, JA Wu, E. McEntee, and CS Yuan. 2006. Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography.J. Agric.Food Chem. 54: 2261-2266).
  • ginsenosides increases with the degree of deglycosylation, enhancing their hydrophobicity and cell wall permeability (Shibata, S. 2001. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. Korean Med.Sci. 16 Suppl: S28-37).
  • Ginsenoside Rc is one of the major PPD-type ginsenosides and accounts for 7-22% of all ginsenosides in white ginseng (Hu, C., and DD Kitts. 2001. Free radical scavenging capacity as related to antioxidant activity and ginsenoside composition of Asian and North American Ginseng extracts.J. Am. Oil Chem. Soc. 78: 249-255). Four sugar residues are attached to the Dmarene aglycone, the main skeleton of Rc.
  • Ginsenoside Rc has a high molecular weight and low permeability in passing through cell membranes, so deglycosylation is required to exhibit high pharmacological activity. To date, no genetic information and detailed biochemical properties have been disclosed for arabinofuranosidase that hydrolyzes arabinofuranosyl residues from ginsenoside Rc.
  • Rb1 or Rc is represented by Compound (C Thermostable ⁇ -glucosidase (Noh, KH, JW Son, HJ Kim, conversion to) -K [20- O- ( ⁇ -D-glycopyranosyl) -20 ( S ) -protopanaxadiol system] and DK Oh. 2009. Ginsenoside compound K production from ginseng root extract by a thermostable ⁇ -glycosidase from Sulfolobus solfataricus . Biosci. Biotechnol. Biochem.
  • Prototype wave incident ⁇ - galactosidase yidayi let go from the Sulfolobus acidocaldarius switching to claim olgye ⁇ (Noh, KH, and DK Oh 2009. Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable ⁇ -glycosidase from Sulfolobus acidocaldarius.Biol . Pharm. Bull. 32: 1830-1835).
  • Rb1 is Gypenoside XVII ⁇ 3- O- ⁇ -D-glycopyranosyl-20- O- [ ⁇ -D-glycopyranosyl- (1-6) - ⁇ -D-glycopyranosyl] -20 ( S )- Protopanaxidaiol system ⁇ , followed by Gypenoside LXXV ⁇ 20- O- [ ⁇ -D-glycopyranosyl- (1-6) - ⁇ -D-glycopyranosyl] -20 ( S ) -protopanaxadie Enzymes of GH family 3 that catalyze the continuous conversion to all systems and finally to CK have recently been reported by the inventors (An, D.-S., C.-H.
  • the recombinant enzyme has an exo-acting arabinofuranosidase activity that acts on the end of the polysaccharide, and found that it acts only on the arabinofuranoside residues of ginsenoside Rc or the like, and completed the present invention. It was.
  • a first aspect of the present invention provides ⁇ -N-arabinofuranosidase from Rhodanobacter ginsenosidimutans .
  • a second aspect of the present invention provides a nucleic acid encoding ⁇ - N -arabinofuranosidase according to the present invention and a recombinant vector comprising the same.
  • the third aspect of the present invention provides a transformant transformed with the nucleic acid or the recombinant vector according to the present invention.
  • a fourth aspect of the invention comprises the steps of (a) culturing a transformant according to the invention (b) producing ⁇ - N -arabinofuranosidase from the cultured transformant and (c) the It provides arabinose Pew pyrano let the production process of-the production of ⁇ - N - arabinose Pew pyrano Let ⁇ - N comprises the number of times a.
  • the fifth aspect of the present invention is ⁇ - N according to the present invention arabinose Pew pyrano let claim, ⁇ - N, prepared according to the invention arabinose Pew pyrano let claim, transformant or the transformant according to the present invention
  • a method of preparing a deglycosylated second ginsenoside from a first ginsenoside is provided, including using a culture of a sieve.
  • the sixth aspect of the present invention is ⁇ - N according to the present invention arabinose Pew pyrano let claim, ⁇ - N, prepared according to the invention arabinose Pew pyrano let claim, transformant or the transformant according to the present invention
  • a kit for converting a ginsenoside of PPD or PPT type to deglycosylated rare ginsenoside comprising a culture of a sieve as an active ingredient.
  • Alpha-N-arabinofuranosidase according to the present invention exhibits excellent activity of converting ginsenosides to deglycosylated rare ginsenosides.
  • a transformant transformed with a nucleic acid encoding the alpha-N-arabinofuranosidase or a recombinant vector comprising the same it can be mass-produced and variously used industrially.
  • FIG. 3 shows the results of HPLC analysis of the hydrolyzate of recombinant Araf3054.
  • pNPAf pNP- ⁇ -L-arabinofuranoside
  • buffers 50 mM each
  • KCl-HCl pH 2
  • glycine-HCl pH 3
  • Nat acetate pH 4 and 5
  • Sodium Phosphate pH 6 and 7
  • Tris-HCl pH 8 and 9
  • glycine-sodium hydroxide pH 10
  • Determination of the optimal temperature of the enzyme was analyzed in 50 mM sodium phosphate buffer at temperatures ranging from 4 to 90 ° C. Thermostability analysis was performed by incubating enzyme samples in 50 mM sodium phosphate buffer at various temperatures for 30 minutes. After cooling the sample on ice for 10 minutes, the remaining activity was determined.
  • FIG. 6 shows the pathway (C) for bioconversion of ginsenoside Rc to Rd (A), C-Mc1 to F2 (B) and C-Mc to C-K by recombinant AbfA.
  • 7 is a TLC analysis showing the substrate specificity for various arabino oligosaccharides of AbfA.
  • 1, 10 are standard arabinose
  • 2, 4, 6, 8 are arabinobiose, arabinotriose, arabinotetraose, and arabinopentaose before the reaction
  • 3, 5, 7, 9 are the results after the reaction with AbfA of the substance, respectively.
  • the enzyme concentration was 0.01 mg / ml and reacted for 12 hours.
  • FIG. 8 is a double reciprocal graph showing the Km and Vmax of AbfA proteins for the substrates p-nitrophenyl- ⁇ -L-arabinofuranoside (A) and ginsenoside Rc (B) according to the present invention.
  • Rhodanobacter We first purified and characterized ⁇ - N -arabinofuranosidase from Rhodanobacter.
  • the novel enzymes obtained from Rhodanobacter ginsenosididimutans KCTC22231 T according to the present invention are ⁇ -1,6 arabinofuranosyl residues of ginsenosides or ⁇ of oligosaccharides or polysaccharides containing arabinose.
  • ⁇ - N -arabinofuranosidase having selective hydrolytic ability to -1,5 arabinofuranosyl residues, more preferably having the following properties:
  • a) has a selective hydrolysis capacity for ⁇ -1,6 arabinofuranosyl residues located at the 20th carbon of the protopanaxadiol (PPD) type ginsenoside.
  • the 'externally-acting enzyme' refers to one having the activity of hydrolyzing glycoside bonds from the ends of the polysaccharides.
  • ⁇ - N -arabinofuranosidase obtained from Rhodanobacter ginsenosididimutans KCTC22231 T according to the present invention is registered under GenBank accession number HQ026482.
  • the registered ⁇ - N -arabinofuranosidase of the present invention consists of 518 amino acids, and the nucleic acid encoding the protein is 1557 bp in length.
  • the amino acid sequence which comprises (alpha) -N -arabinofuranosidase derived from Rodanobacter ginsenocidimutans KCTC22231 T is the sequence shown by SEQ ID NO: 1.
  • ⁇ - N -arabinofuranosidase according to the present invention is an amino acid sequence having at least 70% similarity to the sequence described in SEQ ID NO: 1 as well as the sequence, preferably at least 80% similarity, more preferably 90% Amino acid sequences exhibiting the above similarities, even more preferably at least 95% similarity, most preferably at least 98% similarity, include proteins having substantially the activity of alpha-N-arabinofuranosidase.
  • sequence having such similarity is an amino acid sequence having a biological activity substantially the same as or corresponding to that of alpha-N-arabinofuranosidase
  • a protein variant having an amino acid sequence in which some sequences are deleted, modified, substituted or added It is obvious that it is included in the scope of the present invention.
  • the nucleic acid encoding ⁇ - N -arabinofuranosidase according to the present invention may be a nucleic acid encoding the amino acid sequence set forth in SEQ ID NO: 1, preferably the nucleic acid set forth in SEQ ID NO: 2, as well as the sequence A sequence having at least 70% similarity with the sequence, preferably at least 80% similarity, more preferably at least 90% similarity, even more preferably at least 95% similarity, most preferably at least 98% similarity
  • the protein encoded by the nucleic acid includes a nucleic acid having the activity of alpha-N-arabinofuranosidase.
  • the nucleic acid of the present invention has been named by the inventors araf3054 (hereinafter, interchangeably with 'ARAF3054' and 'AbfA').
  • the term 'similarity' of the present invention is intended to represent a degree of similarity with the amino acid sequence of the wild type protein or the nucleotide sequence encoding the same, and the same sequence as the amino acid sequence or nucleotide sequence of the present invention or more Branches include sequences.
  • This similarity can be compared with the naked eye or using a comparison program that is easy to purchase.
  • Commercially available computer programs can calculate the similarity between two or more sequences as a percentage, and the similarity can be calculated for adjacent sequences.
  • proteins of the present invention include wild-type amino acid sequence variants and nucleotide sequence variants, wherein the 'variant' refers to the deletion or insertion, non-conservation or preservation of one or more amino acid residues or nucleotide sequences relative to a native amino acid sequence or nucleotide sequence.
  • protein substitution or combination thereof it is meant a protein having a different sequence or a nucleic acid having a different sequence.
  • the term 'vector' refers to a nucleic acid construct that is an expression vector capable of expressing a protein of interest in a suitable host cell and that includes essential regulatory elements operably linked to express the nucleic acid insert.
  • the present invention can produce a recombinant vector comprising a nucleic acid encoding alpha-N-arabinofuranosidase.
  • a nucleic acid encoding ⁇ - N -arabinofuranosidase or a recombinant vector comprising the nucleic acid is transformed or transfected into a host cell, thereby producing ⁇ - of the present invention.
  • N -arabinofuranosidase can be obtained.
  • an ORF open reading frame capable of encoding alpha-N-arabinofuranosidase is identified and inserted into the pCC1FOS expression vector. By doing so, the recombinant vector pET-MBP-TEV-Araf3054 was prepared (FIG. 9).
  • the recombinant vector of the present invention can be obtained by linking (inserting) the nucleic acid of the present invention into an appropriate vector.
  • the vector into which the nucleic acid of the present invention is to be inserted is not particularly limited as long as it can be replicated in the host.
  • plasmid DNA, phage DNA and the like can be used.
  • Specific examples of plasmid DNA include commercial plasmids such as pCDNA3.1 + (Invitrogen).
  • plasmids used in the present invention include Escherichia coli derived plasmids (pYG601BR322, pBR325, pUC118 and pUC119), Bacillus subtilis -derived plasmids (pUB110 and pTP5) and yeast-derived plasmids (YEp13, YEp24 and YCp50). There is).
  • phage DNA include ⁇ -phage (Charon4A, Charon21A, EMBL3, EMBL4, ⁇ gt10, ⁇ gt11 and ⁇ ZAP).
  • a recombinant vector pET-MBP-TEV-Araf3054 was prepared by inserting into a pCC1FOS expression vector.
  • a fusion plasmid (eg, pJG4-5) to which a nucleic acid expression activating protein (eg, B42) is linked may be used, and the fusion plasmid may be GST, GFP, His- tag, Myc-tag and the like, but the fusion plasmid of the present invention is not limited by the above examples.
  • a maltose binding protein (MBP) tag was used to easily purify and recover the expressed alpha-N-arabinofuranosidase.
  • a method of cutting the purified DNA with a suitable restriction enzyme and inserting it into a restriction site or a cloning site of the appropriate vector DNA can be used.
  • the araf3054 gene was inserted between the cleaved BamHI and HindIII indicated by arrows.
  • the nucleic acid of the present invention is preferably operably linked to a vector.
  • the vector of the present invention includes a cis element such as an enhancer, a splicing signal, a poly A addition signal, and a selection marker. ), A ribosome binding sequence (ribosome binding sequence, SD sequence) and the like can be further included.
  • a selection marker chloramphenicol resistance nucleic acid, ampicillin resistance nucleic acid, dihydrofolate reductase, neomycin resistance nucleic acid, and the like may be used, but the additional components that are operably linked by the above examples are limited. no.
  • the term 'transformation' means that DNA is introduced into a host so that the DNA can be reproduced as a factor of a chromosome or by completion of chromosome integration. It means a phenomenon causing change.
  • any transformation method may be used, and may be easily performed according to conventional methods in the art.
  • the Hanahan method, the electroporation method, the calcium phosphate precipitation method, the plasma fusion method, the silicon carbide which have improved efficiency by using a CaCl 2 precipitation method and a reducing material called DMSO (dimethyl sulfoxide) in the CaCl 2 method Agitation with fibers, agrobacterial mediated transformation, transformation with PEG, dextran sulfate, lipofectamine and dry / inhibition mediated transformation.
  • DMSO dimethyl sulfoxide
  • the method for transforming a nucleic acid encoding an alpha-N-arabinofuranosidase of the present invention or a vector comprising the same is not limited to the above examples, and a transformation or transfection method commonly used in the art is It can be used without limitation.
  • the transformant of the present invention can be obtained by introducing a nucleic acid encoding alpha-N-arabinofuranosidase, which is a target nucleic acid, or a recombinant vector comprising the same into a host.
  • the host is not particularly limited as long as the host is allowed to express the nucleic acid of the present invention.
  • Specific examples of hosts that can be used in the present invention include Bacillus genus Pseudomonas putida , such as Escherichia bacterium Bacillus subtilis , such as E. coli.
  • Yeast animal cells and insect cells such as Pseudomonas genus Saccharomyces cerevisiae , Schizosaccharomyces pombe .
  • E. coli strains that can be used in the present invention are CL41 (DE3), BL21 (DE3) and HB101
  • specific examples of Bacillus subtilis strains are WB700 and LKS87
  • E. coli cells A transformant transformed with a vector containing alpha-N-arabinofuranosidase was prepared using BL21 (DE3) as a host cell.
  • the recombinant vector of the present invention is capable of autonomous replication in the host and consists of a promoter, a ribosomal binding sequence, a nucleic acid of the present invention, and a transcription termination sequence. have.
  • the promoter of the present invention can be used as long as it allows expression of the nucleic acid of the present invention in a host such as E. coli.
  • E. coli or phage-derived promoters such as the trp promoter, lac promoter, PL promoter or PR promoter or E. coli infection phage-derived promoters such as the T7 promoter can be used.
  • Artificially modified promoters can also be used, such as the tac promoter.
  • the plasmid vector may further comprise other sequences as necessary.
  • the sequence which may be further included may be a tag sequence for protein purification, such as glutathione S-transferase (Pharmacia, USA), MBP (maltose binding protein, USA), FLAG (IBI, USA) and hexahistidine ( hexahistidine; Quiagen, USA) and the like, and most preferably MBP, but the examples do not limit the type of sequence required for purification of the target protein.
  • purification is facilitated by using an MBP tag.
  • a fusion protein expressed by a vector containing the fusion sequence it can be purified by affinity chromatography.
  • glutathione-S-transferase which is a substrate of the enzyme
  • MBP amylose column
  • Host cells transformed by the above method to express the alpha-N-arabinofuranosidase of the present invention can be cultured by conventional methods used in the art.
  • the transformant expressing the alpha-N-arabinofuranosidase may be cultured in various media, and may be fed-batch culture and continuous culture.
  • the method for culturing the transformant of the present invention is not limited.
  • the carbon source that may be included in the medium for the growth of the host cell may be appropriately selected according to the judgment of those skilled in the art according to the type of transformant produced, and appropriate culture conditions may be adopted to control the timing and amount of culture. Can be.
  • the transformant which is successfully transformed with the target protein produces alpha-N-arabinofuranosidase, which is produced according to the composition of the vector and the characteristics of the host cell.
  • the alpha-N-arabinofuranosidase may be secreted into the cytoplasm of the host cell, into the periplasmic space or extracellularly.
  • the protein of interest may also be expressed in soluble or insoluble form.
  • Proteins expressed in or outside the host cell can be purified in a conventional manner.
  • purification methods include salting out (eg, ammonium sulfate precipitation, sodium phosphate precipitation, etc.), solvent precipitation (eg, protein fraction precipitation with acetone, ethanol, etc.), dialysis, gel filtration, ion exchange, reverse phase column chromatography. Techniques such as chromatography and ultrafiltration may be applied alone or in combination to purify the proteins of the invention.
  • Ginsenosides can be produced.
  • the present invention is characterized in that the ⁇ - N -arabinofuranosidase of the invention, the transformant of the invention or the transformation Sieve culture can be used.
  • the first ginsenoid used as a starting material in the present invention may be a ginsenoside of PPD type or PPT type, may use a separated and purified form of ginsenoside, or may be included in powder or extract of ginseng or red ginseng. You can also use ginsenosides. That is, the method of the present invention may be carried out using a powder or extract of ginseng or red ginseng including ginsenosides as a starting material.
  • various known ginsengs can be used, and Korean ginseng ( Panax ginseng ), Gyegi ( P. quiquefolius ), Jeonchisam ( P. notoginseng ), bamboo ginseng ( P. japonicus ), and three leaf ginseng ( P. trifolium ), Himalayan ginseng ( P. pseudoginseng ) and Vietnamese ginseng ( P. vietnamensis) , but are not limited thereto.
  • Non-limiting examples of PPD (protopanaxadiol) type ginsenosides include the following compounds.
  • PPT Protopanaxatriol
  • ginsenosides include the following compounds.
  • the ⁇ - N -arabinofuranosidase of the present invention may selectively hydrolyze all ginsenosides having non-reduced ⁇ -1,6 arabinofuranosyl residues, and preferably all known in the art
  • Non-reduced ⁇ -1,6 arabinofuranosyl residues of ginsenosides of PPD type or PPT type can be selectively hydrolyzed, for example, Rc, C-Mc1, And non-reduced ⁇ -1 of Rc, C-Mc1, and C-Mc because C-Mc has a non-reduced ⁇ -1,6 arabinofuranosyl residue at C20 (meaning the 20th carbon)
  • The, 6 arabinofuranosyl moiety can be selectively hydrolyzed by the ⁇ - N -arabinofuranosidase of the present invention.
  • ⁇ - N -arabinofuranosidase of the present invention can convert protopanaxadiol (PPD) type or PPT type ginsenosides into relatively deglycosylated rare ginsenosides, which are PPD type or PPT type ginsenosides.
  • PPD protopanaxadiol
  • PPT type ginsenosides relatively deglycosylated rare ginsenosides
  • This conversion is achieved through bioconversion and can be achieved by selective hydrolysis of non-reduced ⁇ -1,6 arabinofuranosyl residues of ginsenosides of PPD type or PPT type, either continuously or discontinuously. Can be.
  • examples of bioconversion by the protein of the present invention include all methods of converting ginsenoside Rc to Rd, converting ginsenoside C-Mc1 to F2, and converting ginsenoside C-Mc to CK. .
  • Example 4 of the present invention when the composition comprising ⁇ - N -arabinofuranosidase of the present invention was administered to ginsenoside Rc, it was deglycosylated with ginsenoside Rd.
  • the ⁇ - N -arabinofuranosidase of the present invention was treated with ginsenoside C-Mc1 as a starting material, it was confirmed that deglycosylation was performed with ginsenoside F2.
  • the ⁇ - N -arabinofuranosidase of the present invention was treated with ginsenoside C-Mc as a starting material, it was confirmed that deglycosylation was performed with ginsenoside CK.
  • Deglycosylation of such PPD or PPT type ginsenosides is due to the selective hydrolysis capacity of the non-reduced ⁇ -1,6 arabinofuranosyl residues of the ⁇ - N -arabinofuranosidase of the present invention, Deglycosylated rare ginsenosides produced through such hydrolysis are easily absorbed by the body. In addition, this bioconversion facilitates the conversion of PPD or PPT type ginsenosides, such as ginsenoside Rc, to CK or Rh2, which is its most deglycosylated form.
  • ⁇ - N -arabinofuranosidase of the present invention is non-reducing of protopanaxadiol (PPD) type ginsenosides or PPT (Protopanaxatriol) type ginsenosides at various temperature and pH conditions as long as activity and stability can be maintained.
  • PPD protopanaxadiol
  • PPT Protopanaxatriol
  • the enzyme properties of the present invention was analyzed araf3054 was excellent in the stability and activity of the enzyme at pH 6-10, the highest activity in sodium phosphate buffer pH 7.5 of 37 ° C (FIG. 4A). It was also stable at temperatures below 37 ° C. and lost 100% of activity after incubation at 45 ° C. for 40 minutes. The activity was maintained at about 60% at a temperature of 4-35 ° C. regardless of the elevation of the temperature (FIG. 4B). Therefore, in order for the ⁇ - N -arabinofuranosidase according to the present invention to enzymatically, it is preferable to adjust the pH to 6 to 10 and the temperature to 4 to 37 ° C.
  • the ⁇ - N -arabinofuranosidase of the present invention may be used with one or more metals and chemical agents selected from the group consisting of MgCl 2 , EDTA, NaCl, KCl, DTT and beta-mercaptoethanol, but is not limited thereto. It doesn't work.
  • the substrate is preferably used pNP- ⁇ -L-arabinofuranoside (pNP- ⁇ -L-arabinofuranoside).
  • the ⁇ - N -arabinofuranosidase according to the present invention together with other enzyme (s) at the same time or in a certain order, Can be used.
  • other enzymes include ⁇ -glucosidase, ⁇ -galactosidase, glycosidase, ⁇ -L-arabinofyranosidase, ⁇ -L-arabinofuranosidase, ⁇ -xyl Rosidase, ⁇ -L-rhamnosidase and the like.
  • the second ginsenosides prepared by ⁇ - N -arabinofuranosidase alone or in combination with other enzymes may be different, and such second ginsenosides may be one or two or more second ginsenosides. Can be.
  • ⁇ - N -arabinofuranosidase may be provided in the same container or in a different container from other enzyme (s).
  • Ginsenosides Rb1, Rb2, Rc, Rd, F2 and C-K were purchased from Dalian Green Bio Ltd (Dalian, China). Ginsenosides C-Mc1 and C-Mc were prepared for this experiment. 5-Bromo-4-chloro-3-indolyl ⁇ -D-glucopyranoside (X-Glc), pNP- ⁇ -L-arabinofuranoside (pNPAf) and L-arabinose were obtained from Sigma. .
  • Flour arabinoxylan, red-branched arabinane (RDA), arabinobiose, arabintriose, arabinotetraose and arabinofentaose were purchased from Megazyme (Wicklow, Ireland). All other chemicals were at least analytical reagent grades and their respective sources are specified in the respective method sections.
  • the strain Gsoil3054 was identified in the soil of Pocheon, Korea. To clone the arabinofuranosidase gene that hydrolyzes ginsenosides from Gsoil3054, the phosphide library structure, the selection of phosphide clones showing enzymatic activity, the full-sequence of the phosphide vector, and finally the polymerase Cloning of the target gene using chain reaction (PCR) was performed sequentially, as previously reported (An, D.-S., C.-H. Cui, H.-G. Lee, L. Wang , SC Kim, S.-T. Lee, F. Jin, H. Yu, Y.-W. Chin, H.-K.
  • PCR chain reaction
  • Phosmid clones with putative ⁇ -glucosidase gene were visually screened through selection of blue colonies on LB plates containing 12.5 ⁇ g / ml chloramphenicol and 27 ⁇ g / ml X-Glc. Finally, one clone comprising the ⁇ -glucosidase gene and ⁇ -N-arabinofuranosidase was analyzed by thin membrane chromatography (TLC) analysis of active hydrolysis of ginsenoside Rc. Selection was made after the activity of hydrolyzing the side was demonstrated.
  • TLC thin membrane chromatography
  • the total sequence of selected phosphide clones was determined commercially by Macrogen (Seoul, Korea). In summary, after crushing the phosmid DNA into 2-5kbp fragments, it was isolated by agarose gel electrophoresis, and the shotgun library was constructed by ligation of blunt end repair DNA with plasmid vector pCB31. The vector was introduced into E.
  • DNA fragments encoding MBP and Tobacco Etch Virus (TEV) protease cleavage sites were identified by primers mbpF (5'-ATA CAT ATG AAA ATC GAA GAA GGT AAA CTG-3 ') and mbp-tevR (5'- E. coli K-12 strain MG1655 (Blattner, FR, G. Plunkett, 3rd, CA Bloch, NT) using CTC GAA TTC CGA CTG 045GAA GTA GAG ATT CTC TGA AAT CCT TCC CTC GAT CCC GAG GTT G-3 ' Perna, V. Burland, M. Riley, J.
  • mbpF 5'-ATA CAT ATG AAA ATC GAA GAA GGT AAA CTG-3 '
  • mbp-tevR 5'- E. coli K-12 strain MG1655 (Blattner, FR, G. Plunkett, 3rd, CA Bloch,
  • the amplified fragment was digested with Nde I and EcoR I and then inserted into the Nde I / EcoR I position of pET21a to produce pET21a-MBP (TEV).
  • the AbfA gene was amplified by PCR using the following primers (italic in Eco RI and Hin dIII restriction positions): abfAF, 5'- CG G AAT TC C GTT GTA AAT TGA TTG CC-3 '; And abfAR, 5'- CCC G AA GCT T TC ACG ACC CCA CAG CCA GG-3 '.
  • the amplified fragment was digested with EcoR I and Hin dIII, and then inserted into pET21a-MBP (TEV) at the same position to generate pET21a-MBP - AbfA.
  • pET21a-MBP - AbfA was introduced into E. coli BL21-Codon Plus (DE3) -RIL (Agilent technologies, Santa Clara, Calif.) and cells containing plasmids were treated with 100 ⁇ g / ml ampicillin at 37 ° C and 50 ⁇ g / ml Cultures were grown on LB medium containing fluoramphenicol at 600 nm until the OD reached 0.6, at which point protein expression was induced by addition of 0.1 mM IPTG.
  • MBP labeled fusion proteins were purified by affinity chromatography followed by DEAE-cellulose DE-52 chromatography (Whatman) on amylose resin columns (New England BioLabs). MBP epitopes were removed by incubation with TEV protease, and then recombinant AbfA was purified by DEAE-cellulose DE-52 chromatography. Homogeneity of the protein was assessed by 10% SDS-PAGE and Coomassie blue staining. Purified protein was dialyzed with 50 mM sodium phosphate at pH 7.5 and concentrated to 1 mg / ml using Amicon Ultra-15 filter (Millipore, Calif.). Proteins were stored at -80 ° C until use.
  • Enzyme and kinetic analyzes were performed using protein purified from 50 mM sodium phosphate at pH 7.5. The molecular mass of the recombinant protein was determined by size exclusion chromatography using Superose 6 10/300 GL column (GE Healthcare) followed by SDS-PAGE. Protein samples from Bio-Rad (catalog no. 151-1901) were used as reference samples.
  • Specific activity of the purified AbfA was measured using pNPAf as a replacement substrate in 50 mM sodium phosphate buffer at pH 7.5, 37 ° C. The reaction was terminated by addition of Na 2 CO 3 to a final concentration of 0.5 M, and the release of p -nitrophenol was immediately measured using a microplate at 405 nm (Bio-Rad Model 680, Hercules, Calif.). One unit of activity was defined as the amount of protein needed to produce 1 ⁇ mol of p -nitrophenol per minute. Specific activity was expressed as units per milligram of protein. Protein concentration was measured using BCA protein assay (Pierce, Rockford, IL), based on bovine serum albumin (Sigma). All analyzes were performed three times.
  • the influence of temperature on enzymatic activity was tested by incubating the enzyme at 50 mM sodium phosphate buffer containing 2.0 mM pNPAf at various temperatures ranging from 4 to 90 ° C. at optimal pH for 5 minutes.
  • the thermal stability of the enzyme was examined by incubating the enzyme in 50 mM sodium phosphate buffer for 30 minutes at various temperatures. After cooling the sample on ice for 10 minutes, activity was determined using pNPAf as substrate.
  • AbfA activity is 1 or 10 mM (final concentration) MnCl 2 , CaCl 2 , CoCl 2 , MgCl 2 , EDTA, NaCl, KCl, CuCl 2 , SDS, ZnCl 2, Dithiothreitol (DTT) for 30 minutes at 37 ° C. ), And ⁇ -mercaptoethanol. Residual activity was determined using pNPAf as the substrate and expressed as relative percentage with 100% of activity obtained when the compound was absent.
  • the substrate specificity of the enzyme was tested using the following chromogenic o -nitrophenyl (ONP) and p -nitrophenyl (PNP) -glycosides: PNP- ⁇ -D-glucopyranoside, PNP- ⁇ -D Galactopyranoside, PNP- ⁇ -D-fucopyranoside, PNP-N-acetyl- ⁇ -D-glucoamide, PNP- ⁇ -L-arabinofyranoside, PNP- ⁇ -D-only Nopyranoside, PNP- ⁇ -D-xylpyranoside, PNP- ⁇ -D-glucopyranoside, PNP- ⁇ -L-arabinofuranoside, PNP- ⁇ -L-arabinofyranoside , PNP- ⁇ -L-rhamnopyranoside, PNP- ⁇ -D-mannopyranoside, and PNP- ⁇ -D-xylpyranoside, and ONP- ⁇ -D-glucopyranoside
  • the reaction solution contains 0.1 ml of AbfA solution (1 U) in 2% (wt / vol) wheat flour arabinoxylan, RDA, arabinobiose, arabintriose, arabinotetraose. Or by adding 0.5 ml of arabinopentose.
  • the reaction mixture was incubated at 37 ° C. Samples were taken out at regular times and heated with boiling water for 5 minutes to stop the reaction. Products from wheat flour arabinoxylan, RDA, arabinobiose, arabintriose, arabinotetraose and arabinopentaos were analyzed by TLC.
  • Recombinant BgpA exhibits substrate specificity for the PPD type of ginsenosides having one or two glucose residues at the C3 or C20 position, followed by external glucose at C3, then internal glucose at C3, and finally external glucose at C20. Prefer hydrolysis of.
  • Ginsenoside Rc is terminally non-reducing ⁇ - at the outer position of C20 L Since having arabinofuranosyl residues, BgpA hydrolyzes only external and internal residues attached to the C3 position of Rc to produce C-Mc1 and C-Mc, respectively (FIG. 2).
  • 500 ml reaction mixture containing 1 mg / ml of Rc and 0.1 mg / ml of enzyme was incubated at 37 ° C. until all Rc were converted to metabolite 1, This was confirmed by TLC.
  • TLC was performed using a 60F 254 silica gel plate (Merck, Germany) using CHCl 3 -CH 3 OH-H 2 O (70: 30: 5, vol / vol, lower phase) as solvent. Spots on TLC plates were developed with 10% (vol / vol) H 2 SO 4 and then heated at 110 ° C. for 5 minutes.
  • Ginsenoside HPLC analysis is carried out with an HPLC system (Younglin Co. Ltd, Korea) equipped with four quaternary pumps, an automatic injector, a single wavelength UV detector (model 730D), Peak identification and integration were performed using Younglin's AutoChro 3000 software.
  • Gsoil3054 strains of bacteria that hydrolyze ginsenosides have been identified from soils of ginseng fields in Pocheon, Korea.
  • Strain Gsoil3054 can simultaneously convert PPD type ginsenosides Rb1, Rb2 and Rc to Rd, which characterizes Gsoil3054 from other identified ginsenoside metabolizing bacteria.
  • Gsoil3054 has been identified as Rhodanobacter ginsenosidimutans through a polymorphic characterization process to clarify its classification site (An, DS, HG Lee, ST Lee, and WT Im. 2009. Rhodanobacter ginsenosidimutans sp. Nov. , Isolated from soil of a ginseng field in South Korea.Int. J. Syst.Evol.Microbiol. 59: 691-694).
  • the Gsoil3054 strain can hydrolyze Rb1, Rb2 and Rc, three types of glucoside-hydrolase activity, ⁇ -D-glucosidase, ⁇ -L-arabinofyranosidase and / or ⁇ - It may have L-arabinofuranosidase activity.
  • a phosmid library In order to identify and clone individual genes for enzymes that hydrolyze ginsenosides from Gsoil3054, we generated a phosmid library and obtained the full sequence of the phosphide vector. The average insertion size of the phosphide clones was about 40 kb and the proportion of clones containing the inserts was about 91%.
  • Phosmid clones producing ⁇ -D-glucosidase were screened by monitoring the gradation of X-Glc, creating a green area around colonies growing on agar media. Following this initial screening protocol, we have reduced the range of number of clones selected according to ⁇ -L-arabinofyranosidase or ⁇ -L-arabinofuranosidase activity. 25 of the 1400 clones in the phosmid library were associated with blue colonies on LB agar plates containing 12.5 ⁇ g / ml chloramphenicol and 27 ⁇ g / ml X-Glc.
  • One of these phosphide clones was positive for ⁇ -D-glucosidase, ⁇ -L-arabinopyranosidase and ⁇ -L-arabinofuranosidase activity, and ginsenoside Rc, C-Mc1 And C-Mc could be converted to Rd.
  • the clones above were selected for overall sequencing.
  • the insertion of positive clones was a 34 kb genomic fragment. Analysis of the nucleotide sequence revealed that it contained 34 putative ORFs. The recombinant enzyme of the first ORF can transform Rb1 and Rb2 into Rd. A second ORF was used for this study.
  • Presumption ⁇ -N-arabinofuranosidase gene abfA Amplified by PCR, and under the control of the IPTG-induced T7 promoter E. coli
  • MBP gene fusion MBP gene fusion
  • BL21-CodonPlus DE3 -RIL
  • TSV IPTG-induced T7 promoter
  • MBP-AbfA fusion protein was purified by amylose resin column followed by DEAE-cellulose DE-52 chromatography and digested with TEV proteolytic enzymes to remove MBP residues. Recombinant AbfA was purified by continuous chromatography on DEAE-cellulose column. This procedure resulted in 18.4 times purity of AbfA and 57% recovery from the crude extract (Table 1). The molecular mass of native ⁇ -N-arabinofuranosidase was 247,000 Da, as determined by size exclusion chromatography, and 58,000 Da by SDS-PAGE (FIG. 1). The results of SDS-PAGE were consistent with the estimated size based on the converted polypeptide sequence (56,222 Da).
  • ⁇ -N-arabinofuranosidase is physiologically active as a tetrameric protein (Canakci, S., AO Belduz, BC Saha, A. Yasar, FA Ayaz, and N. Yayli. 2007 Purification and characterization of a highly thermostable ⁇ -L-Arabinofuranosidase from Geobacillus caldoxylolyticus TK4.Applied Microbiology and Biotechnology 75: 813-820).
  • AbfA showed activity over a wide pH range (pH 5.0-10.0).
  • the optimal pH was pH 7.5 in sodium phosphate buffer (FIG. 4A).
  • the enzyme maintained at least 96% of its best activity at pH 6.0-10.0.
  • the enzyme showed residual activity at pH 5.0 and no activity at pH 4.0.
  • the best temperature for AbfA activity was 37 ° C.
  • the enzyme was stable at temperatures lower than 37 ° C., but after culturing for 30 minutes at 45 ° C., nearly 100% of its activity was lost (FIG. 4B).
  • K m and V max were 0.53 ⁇ 0.07 mM and 27.1 ⁇ 1.7 ⁇ mol min -1 mg, respectively. of protein -1 and 0.30 ⁇ 0.07 mM and 49.6 ⁇ 4.1 ⁇ mol min -1 mg of protein -1 for ginsenoside Rc, respectively.
  • C-Mc1 and C-Mc hydrolyzes ginsenosides that specifically and continuously hydrolyze the terminal glycofyranosyl groups from recombinant BgpA, C3 of aglycone.
  • Glucosidase was used to prepare C-Mc1 and C-Mc (An, D.-S., C.-H. Cui, H.-G. Lee, L. Wang, SC Kim, S.-T Lee, F. Jin, H. Yu, Y.-W. Chin, H.-K. Lee, W.-T. Im, and S.-G. Kim. 2010.
  • C-Mc1 and C-Mc were used as substrates with Rc for recombinant AbfA.
  • Hydrolysis products of ginsenosides Rc, C-Mc1 and C-Mc were identified at regular intervals by TLC and HPLC analysis. As shown in FIGS. 3 and 5, the enzyme hydrolyzed the arabinofuranosyl residues from all three ginsenosides.
  • the metabolites from Rc, C-Mc1 and C-Mc are Rd, F2 and CK (An, D.-S., C.-H. Cui, H.-G. Lee, L. Wang, SC Kim, S.-T. Lee, F. Jin, H. Yu , Y.-W. Chin, H.-K. Lee, W.-T. Im, and S.-G. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov.
  • the terminally non-reducing ⁇ -L-arabinofuranosyl residues of these compounds are termed ⁇ -1,6-linkages with internal glucose at the C20 position.
  • Rc, C-Mc1 and C-Mc would be excellent substrates to investigate the substrate specificity of ⁇ -arabinofuranosidase.
  • metabolites of these ginsenosides can be easily detected by TLC and HPLC. This means that the enzyme has very high specificity for the arabinofuranosyl group and, unlike previously reported enzymes, acts only as an external-type enzyme.
  • GH 51 arabinofuranosidase (Flipphi, M. J. A., J. Visser, P. Van der Veen, and L. H. De Graaff. 1994. Arabinase gene expression in Aspergillus niger Indications for coordinated regulation. Microbiology 140: 2673-2682) removes both ⁇ -1,2 and ⁇ -1,3 arabinofuranosyl residues, and some enzymes in this family are ⁇ -1,4-internal to carboxyl cellulose and xylan Exhibits glucanase activity (Eckert, K., and E. Schneider. 2003.
  • thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur. J. Biochem. 270: 3593-3602).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to an alpha-N-arabinofuranosidase derived from Rhodanobacter ginsenosidimutans and uses thereof, wherein the protein has an activity of converting PPD(protopanaxadiol)- or PPT(protopanaxatriol)-type ginsenosides into deglycosylated rare ginsenosides capable of in vivo absorption by selectively hydrolyzing the á-1,6 arabinofuranosyl residues of ginsenosides.

Description

로다노박터 진세노시디뮤탄스 유래의 알파-N-아라비노퓨라노시다제 및 이의 용도Alpha-N-Arabinofuranosidase from Rhodanobacter ginsenocidimutans and uses thereof
본 발명은 로다노박터 진세노시디뮤탄스(Rhodanobacter ginsenosidimutans) 유래의 알파-N-아라비노퓨라노시다제 및 이의 용도에 관한 것이다. The present invention relates to alpha-N-arabinofuranosidase and its use derived from Rhodanobacter ginsenosidimutans .
인삼은 한국, 중국 및 일본을 포함한 아시아에서 건강과 장수를 촉진하기 위한 의약품으로서 사용되어 왔으며, 또한 미국에서는 식물 수준에서의 치료 용도로 사용되고, 유럽, 특히 독일에서는 한방 치료를 목적으로 사용된다. Ginseng has been used as a medicine for promoting health and longevity in Asia, including Korea, China, and Japan. It is also used for therapeutic purposes at the plant level in the United States, and for herbal treatment in Europe, especially Germany.
사포닌은 식물계에 널리 존재하는 배당체에서 당이 아닌 부분이 여러 고리 화합물로 이루어진 물질을 의미하며, 인삼 또는 홍삼에 주요 생리활성 성분으로 포함된 사포닌 성분인, 트리테르펜사포닌(triterpene saponin)은 타 식물에서 발견되는 사포닌과는 화학 구조가 상이하므로 이러한 인삼 사포닌을 타 식물계 사포닌과 구별하기 위해서 인삼(Ginseng) 배당체(Glycoside)란 의미로 진세노사이드라고 부른다. Saponin means a substance consisting of several cyclic compounds in the glycosides widely present in the plant system, and triterpene saponin, a saponin component included as a main bioactive component in ginseng or red ginseng, is used in other plants. Since ginseng saponins are different from other saponins, they are called ginsenosides in the sense of Ginseng glycosides to distinguish them from other plant-based saponins.
현재까지, 180개가 넘는 진세노사이드가 정제, 특성화 및 분류되었다(Christensen, L. P. 2008. Ginsenosides. Chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55:1-99). 진세노사이드의 기본 구조는 주 골격에 특이적 위치로 부착된, 하나 내지 세 개의 잔기, 즉 글리코피라노실, 아라비노피라노실, 아라비노퓨라노실, 자일로피라노실, 또는 람노피라노실 그룹을 가진 테트라사이클릭 트리테르펜 다마렌(dammarane) 또는 펜타사이클릭 올레아난(oleanane) 골격으로 구성된다. 다마렌 타입 진세노사이드는 주로 그들 고유의 아글리콘 잔기에 따라서 분류된다: 프로토파낙사이다이올계 (PPD), 프로토파나사트라이올계(PPT), 및 오코티롤(ocotillol). To date, over 180 ginsenosides have been purified, characterized, and classified (Christensen, L. P. 2008. Ginsenosides. Chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55: 1-99). The basic structure of ginsenosides comprises one to three residues, ie, glycofyranosyl, arabinofyranosyl, arabinofuranosyl, xylopyranosyl, or rhamnopyranosyl groups, attached at specific positions to the main backbone. It consists of a tetracyclic triterpene dammarane or pentacyclic oleanane skeleton. Damaren type ginsenosides are mainly classified according to their intrinsic aglyconic residues: protopanaxanadiol (PPD), protopanasatriol (PPT), and ocotillol.
진세노사이드 조성은 여러 가지 인삼 종으로 다양화된다. 예를 들어, 한국 인삼 (Panax ginseng)은 22개의 PPD 타입 진세노사이드와 14 개의 PPT 타입 진세노사이드를 포함하는 반면, 미국 인삼 (Panax notoginseng)은 13개의 PPD 타입 진세노사이드와 5개의 PPT 타입 진세노사이드를 포함한다(Choi, K. T. 2008. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin. 29:1109-1118). 특정한 종의 Panax 속에서, 진세노사이드의 조성은 뿌리, 잎, 및 열매와 같은 인삼 체의 다른 부분에서 또한 다양하게 나타난다(Wang, C. Z., J. A. Wu, E. McEntee, and C. S. Yuan. 2006. Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography. J. Agric. Food Chem. 54:2261-2266).Ginsenoside composition is diversified into various ginseng species. For example, Korean ginseng ( Panax ginseng ) contains 22 PPD type ginsenosides and 14 PPT type ginsenosides, while US ginseng ( Panax notoginseng ) contains 13 PPD type ginsenosides and 5 PPT types. Ginsenosides (Choi, KT 2008. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol. Sin. 29: 1109-1118). In certain species of Panax , the composition of ginsenosides also varies in other parts of the ginseng body such as roots, leaves, and berries (Wang, CZ, JA Wu, E. McEntee, and CS Yuan. 2006. Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography.J. Agric.Food Chem. 54: 2261-2266).
일반적으로, 진세노사이드의 유효성은 그의 소수성과 세포 벽 투과율을 강화시키는, 탈글라이코실화 정도와 함께 증가한다(Shibata, S. 2001. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J. Korean Med. Sci. 16 Suppl:S28-37). 그러나, 탈글라이코실화된 진세노사이드는 인삼 추출물에 미량인 반면, Rb1 {3-O-[β-D-글리코피라노실-(1-2)-β-D-글리코피라노실]-20-O-[β-D-글리코피라노실-(1-6)-β-D-글리코피라노실]-20(S)-프로토파낙사이다이올계}, Rb2 {3-O-[β-D-글리코피라노실-(1-2)-β-D-글리코피라노실]-20-O-[α-L-아라비노피라노실-(1-6)-β-D-글리코피라노실]-20(S)-프로토파낙사이다이올계}, Rb3 {3-O-[β-D-글리코피라노실-(1-2)-β-D-글리코피라노실]-20-O-[β-D-자일로피라노실-(1-6)-β-D-글리코피라노실]-20(S)-프로토파낙사이다이올계}, Rc {3-O-[β-D-글리코피라노실-(1-2)-β-D-글리코피라노실]-20-O-[α-L-아라비노퓨라노실-(1-6)-β-D-글리코피라노실]-20(S)-프로토파낙사이다이올계}, 및 Rd {3-O-[β-D-글리코피라노실-(1-2)-β-D-글리코피라노실]-20-O-β-D-글리코피라노실-20(S)-프로토파낙사이다이올계}와 같은 PPD 부류의 더 큰 진세노사이드는 인삼 추출물 전체 진세노사이드의 3분의 2 이상을 구성한다. In general, the effectiveness of ginsenosides increases with the degree of deglycosylation, enhancing their hydrophobicity and cell wall permeability (Shibata, S. 2001. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. Korean Med.Sci. 16 Suppl: S28-37). However, deglycosylated ginsenosides are traces in ginseng extracts, whereas Rb1 {3- O- [β-D-glycopyrronosyl- (1-2) -β-D-glycopyranosyl] -20- O -[β-D-glycopyranosyl- (1-6) -β-D-glycopyranosyl] -20 ( S ) -protopanaxadianiole}, Rb2 {3- O- [β-D-glycopyra Nosyl- (1-2) -β-D-glycopyranosyl] -20- O- [α-L-arabinopyranosyl- (1-6) -β-D-glycopyranosyl] -20 ( S ) -Protopanaxadiol-based}, Rb3 {3- O- [β-D-glycopyranosyl- (1-2) -β-D-glycopyranosyl] -20- O- [β-D-xylpyra Nosyl- (1-6) -β-D-glycopyranosyl] -20 ( S ) -protopanaxadiandiol}, Rc {3- O- [β-D-glycopyranosyl- (1-2)- β-D-glycopyranosyl] -20- O- [α-L-arabinofuranosyl- (1-6) -β-D-glycopyranosyl] -20 ( S ) -protopanaxadiol type} , And Rd {3- O- [β-D-glycopyranosyl- (1-2) -β-D-glycopyranosyl] -20- O- β-D-glycopyranosyl-20 ( S ) -proto And panaxanaid system Larger ginsenosides of the same PPD class constitute more than two thirds of the ginsenosides in the ginseng extract.
진세노사이드 Rc는 메이저 PPD 타입의 진세노사이드 중의 하나로 백삼에서 전체 진세노사이드의 7-22%를 차지한다(Hu, C., and D. D. Kitts. 2001. Free radical scavenging capacity as related to antioxidant activity and ginsenoside composition of Asian and North American Ginseng extracts. J. Am. Oil Chem. Soc. 78:249-255). 4개의 당 잔기가 Rc의 주 골격인 다마렌 아글리콘에 결합되어 있다 α-L-아라비노퓨라노실-(1-6)-β-D-글루코피라노스는 C20(20번째 위치의 탄소)에 결합되고, β-D-글리코피라노실-(1-2)-β-D-글루코피라노스는 다마렌 아글리콘의 C3(3번째 위치의 탄소)에 결합된다. 진세노사이드 Rc은 분자량이 크고 세포막을 통과하는데 있어서 낮은 투과성을 가지므로, 높은 약리활성을 나타내기 위해서는 탈글라이코실화가 요구된다. 현재까지, 진세노사이드 Rc로부터 아라비노퓨라노실 잔기를 가수분해하는 아라비노퓨라노시다제에 대해서는 유전정보와 자세한 생화학적 특성이 밝혀진바 없다. Rc의 아라비노퓨라노즈 잔기를 가수분해하여 Rd를 생산 가능한 α-L-아라비노퓨라노시다제가 장내세균으로부터 분리되어 보고되었으나, 그 서열 정보는 완전히 밝혀지지 않았다 (Shin, H. Y., S. Y. Park, J. H. Sung, and D. H. Kim. 2003. Purification and characterization of a-L-arabinopyranosidase and a-L-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl. Environ. Microbiol. 69:7116-7123). Ginsenoside Rc is one of the major PPD-type ginsenosides and accounts for 7-22% of all ginsenosides in white ginseng (Hu, C., and DD Kitts. 2001. Free radical scavenging capacity as related to antioxidant activity and ginsenoside composition of Asian and North American Ginseng extracts.J. Am. Oil Chem. Soc. 78: 249-255). Four sugar residues are attached to the Dmarene aglycone, the main skeleton of Rc. Α-L-arabinofuranosyl- (1-6) -β-D-glucopyranose is C20 (carbon at position 20) Β-D-glycopyranosyl- (1-2) -β-D-glucopyranose is bonded to C3 (carbon at third position) of the damarene aglycone. Ginsenoside Rc has a high molecular weight and low permeability in passing through cell membranes, so deglycosylation is required to exhibit high pharmacological activity. To date, no genetic information and detailed biochemical properties have been disclosed for arabinofuranosidase that hydrolyzes arabinofuranosyl residues from ginsenoside Rc. Although α-L-arabinofuranosidase capable of hydrolyzing the arabinofuranose residues of Rc to produce Rd has been reported from intestinal bacteria, its sequence information is not fully understood (Shin, HY, SY Park, JH). Sung, and DH Kim. 2003. Purification and characterization of aL-arabinopyranosidase and aL-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc.Appl.Environ.Microbiol. 69: 7116-7123).
희귀 진세노사이드의 의학적인 적용과 분자적 수준의 생물학적인 특성에 대한 연구를 촉진하기 위해서, 탈글라이코실화된 진세노사이드를 생산하는 방법이 요구된다. 스티밍(가열)(Wang, C. Z., B. Zhang, W. X. Song, A. Wang, M. Ni, X. Luo, H. H. Aung, J. T. Xie, R. Tong, T. C. He, and C. S. Yuan. 2006. Steamed American ginseng berry: ginsenoside analyses and anticancer activities. J. Agric. Food Chem. 54:9936-9942)과 산 처리(Bae, E. A., M. J. Han, E. J. Kim, and D. H. Kim. 2004. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch. Pharm. Res. 27:61-67)와 같은 물리화학적 과정이 진세노사이드의 주 구성성분을 탈글라이코실화된 진세노사이드로 전환하기 위해서 개발되었다. 그러나 가장 바람직한 방법은 목적한 생산물에 대하여 사전 계획에 따라 알려진 활성을 가진 효소를 순차적으로 반응시키거나 알려진 활성을 가진 효소를 두 가지 이상의 조합으로 사용하는 생물전환법인데, 이는 생물전환이 부산물의 생성과 같은 문제점들을 피하고 공지의, 정의된 산물을 생성하기 때문이다(Park, C. S., M. H. Yoo, K. H. Noh, and D. K. Oh. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87:9-19). 최근, 곰팡이류와 박테리아로부터 큰 분자량의 진세노사이드를 희귀한 저분자량의 진세노사이드로 전환할 수 있는 야생형의 효소를 동정하고, 이를 산업적으로 활용하기 위해 이에 대한 특성을 규명하는 연구에 일부 진전이 있었다. 그러나 이러한 연구들은 두 가지 제약에 직면했다: 1) 효소에 대한 서열정보의 부족으로 인하여 진세노사이드 생물전환 효소의 생화학적 특성의 발견에 관해서는 진전이 거의 없었다 및 2) 야생형 미생물을 배양하고 야생형 효소를 정제하는 방법은 경제적 타당성이 결여되는 것으로 판단된다.In order to facilitate the medical application of rare ginsenosides and the study of biological properties at the molecular level, a method of producing deglycosylated ginsenosides is needed. Steaming (heating) (Wang, CZ, B. Zhang, WX Song, A. Wang, M. Ni, X. Luo, HH Aung, JT Xie, R. Tong, TC He, and CS Yuan. 2006. Steamed American ginseng berry: ginsenoside analyses and anticancer activities.J. Agric.Food Chem. 54: 9936-9942) and acid treatment (Bae, EA, MJ Han, EJ Kim, and DH Kim. 2004. Transformation of ginseng saponins to ginsenoside Rh2 by Physicochemical processes such as acids and human intestinal bacteria and biological activities of their transformants.Arch. Pharm.Res. 27: 61-67) were developed to convert the major components of ginsenosides into deglycosylated ginsenosides. It became. However, the most preferred method is a bioconversion method in which the enzymes with known activities are sequentially reacted with a desired plan or a combination of two or more enzymes with known activities, according to a preliminary plan. Avoiding such problems and producing known, defined products (Park, CS, MH Yoo, KH Noh, and DK Oh. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases.Appl.Microbiol Biotechnol. 87: 9-19). Recently, some progress has been made to identify wild-type enzymes that can convert large molecular weight ginsenosides into rare low molecular weight ginsenosides from molds and bacteria, and to characterize them for industrial use. there was. However, these studies faced two limitations: 1) little progress was made regarding the discovery of the biochemical properties of ginsenoside bioconverting enzymes due to the lack of sequence information on enzymes, and 2) culturing wild-type microorganisms and wild-type. The method of purifying enzymes seems to lack economic feasibility.
최근에, 미생물로부터 진세노사이드 생물전환활성을 나타내는 3종의 효소의 서열정보가 밝혀져서 글리코시드 가수분해효소(Glygoside Hydrolase) 패밀리에 속하는 효소로 동정되었다: (1) Rb1 또는 Rc를 화합물 (C)-K [20-O-(β-D-글리코피라노실)-20(S)-프로토파낙사이다이올계] 로 전환하는 열안정성 β-글루코시다제(Noh, K. H., J. W. Son, H. J. Kim, and D. K. Oh. 2009. Ginsenoside compound K production from ginseng root extract by a thermostable β-glycosidase from Sulfolobus solfataricus. Biosci. Biotechnol. Biochem. 73:316-321) ; (2) Rb1를 Rd로 전환하는 토양 메타게놈으로부터의 β-글루코시다제(Noh, K. H., J. W. Son, H. J. Kim, and D. K. Oh. 2009. Ginsenoside compound K production from ginseng root extract by a thermostable beta-glycosidase from Sulfolobus solfataricus. Biosci. Biotechnol. Biochem. 73:316-321); 및 (3) Rb1를 C-K로, Rb2를 C-K로, 및 Rc를 C-Mc{20-O-[α-L-아라비노퓨라노실-(1-6)-β-D-글리코피라노실]-20(S)-프로토파낙사이다이올계}로 전환하는 Sulfolobus acidocaldarius로부터의 β-갈락토시다제 (Noh, K.H., and D. K. Oh. 2009. Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable β-glycosidase from Sulfolobus acidocaldarius. Biol. Pharm. Bull. 32:1830-1835). Rb1를 Gypenoside XVII {3-O-β-D-글리코피라노실-20-O-[β-D-글리코피라노실-(1-6)-β-D-글리코피라노실]-20(S)-프로토파낙사이다이올계}로, 그 후Gypenoside LXXV {20-O-[β-D-글리코피라노실-(1-6)-β-D-글리코피라노실]-20(S)-프로토파낙사이다이올계}로 그리고 최종적으로 C-K로 연속적으로 전환하는 것을 촉매하는 GH 패밀리 3의 효소가 최근에 본 발명자들에 의해서 보고되었다(An, D.-S., C.-H. Cui, H.-G. Lee, L. Wang, S. C. Kim, S.-T. Lee, F. Jin, H. Yu, Y.-W. Chin, H.-K. Lee, W.-T. Im, and S.-G. Kim. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. β-glucosidase that transforms ginsenoside Rb1 into the rare gypenoside XVII and gypenoside LXXV Appl. Environ. Microbiol. 76:5827-5836). Recently, sequence information of three enzymes showing ginsenoside bioconversion activity from microorganisms has been revealed and identified as enzymes belonging to the glycoside hydrolase family: (1) Rb1 or Rc is represented by Compound (C Thermostable β-glucosidase (Noh, KH, JW Son, HJ Kim, conversion to) -K [20- O- (β-D-glycopyranosyl) -20 ( S ) -protopanaxadiol system] and DK Oh. 2009. Ginsenoside compound K production from ginseng root extract by a thermostable β-glycosidase from Sulfolobus solfataricus . Biosci. Biotechnol. Biochem. 73: 316-321); (2) β-glucosidase from soil metagenome converting Rb1 to Rd (Noh, KH, JW Son, HJ Kim, and DK Oh. 2009. Ginsenoside compound K production from ginseng root extract by a thermostable beta-glycosidase from Sulfolobus solfataricus.Biosci.Biotechnol.Biochem . 73: 316-321); And (3) Rb1 to CK, Rb2 to CK, and Rc to C-Mc {20- O- [α-L-arabinofuranosyl- (1-6) -β-D-glycopyranosyl] -20 (S) -. Prototype wave incident β- galactosidase yidayi let go from the Sulfolobus acidocaldarius switching to claim olgye} (Noh, KH, and DK Oh 2009. Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable β-glycosidase from Sulfolobus acidocaldarius.Biol . Pharm. Bull. 32: 1830-1835). Rb1 is Gypenoside XVII {3- O- β-D-glycopyranosyl-20- O- [β-D-glycopyranosyl- (1-6) -β-D-glycopyranosyl] -20 ( S )- Protopanaxidaiol system}, followed by Gypenoside LXXV {20- O- [β-D-glycopyranosyl- (1-6) -β-D-glycopyranosyl] -20 ( S ) -protopanaxadie Enzymes of GH family 3 that catalyze the continuous conversion to all systems and finally to CK have recently been reported by the inventors (An, D.-S., C.-H. Cui, H.-G). Lee, L. Wang, SC Kim, S.-T. Lee, F. Jin, H. Yu, Y.-W. Chin, H.-K. Lee, W.-T. Im, and S.- G. Kim. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp.nov.β -glucosidase that transforms ginsenoside Rb1 into the rare gypenoside XVII and gypenoside LXXV Appl.Environ.Microbiol. 76: 5827-5836).
그러나 Rc를 C-Mc로 전환하는 활성을 갖는 β-갈락토시다제 (Noh, K. H., and D. K. Oh. 2009. Biol. Pharm. Bull. 32:1830-1835), 및 Rc를 C-Mc로, 그 후 C-K로 전환하는 Sulfolobus solfataricus로부터의 β-글루코시다제(Noh, K. H., J. W. Son, H. J. Kim, and D. K. Oh. 2009. 73:316-321)는 주로 아글리콘의 C3 상의 포도당 잔기를 가수분해하는 것으로 나타나며, 아라비노퓨라노시다제와 다른 특성을 가진다. However, β-galactosidase (Noh, KH, and DK Oh. 2009. Biol. Pharm. Bull. 32: 1830-1835), having the activity of converting Rc to C-Mc, and Rc to C-Mc, Β-glucosidase from Sulfolobus solfataricus (Noh, KH, JW Son, HJ Kim, and DK Oh. 2009. 73: 316-321), which then converts to CK, mainly hydrolyzes the glucose residues on C3 of aglycone. It has been shown to have different properties from arabinofuranosidase.
본 발명자들은 인삼밭에서 분리되어 동정된, 토양균 로다노박터 진세노시디뮤탄스 균주 Gsoil3054로부터 신규한 GH 패밀리 51 아라비노퓨라노시다제를 클로닝하고 특성화하였다. 그 결과, 재조합 효소는 대장균에서 과발현되어 진세노사이드 Rc에 대하여 생물전환 활성을 보였고, 아글리콘의 20번째 탄소 위치의 아라비노퓨라노시드 잔기의 가수분해를 통해 Rc를 Rd로 전환시킨다는 것을 발견하였다. 아울러, 재조합 효소는 다당체의 말단에 작용하는 엑소-액팅 아라비노퓨라노시다제 활성을 가지며, 진세노사이드 Rc 또는 이의 유사물질의 아라비노퓨라노시드 잔기에만 작용함을 발견하고, 본 발명을 완성하였다. We cloned and characterized a novel GH family 51 arabinofuranosidase from the soil bacterium Rhodanobacter ginsenocidimutans strain Gsoil3054, isolated and identified in ginseng fields. As a result, the recombinant enzyme was overexpressed in Escherichia coli and showed bioconversion activity against ginsenoside Rc, and was found to convert Rc to Rd through hydrolysis of the arabinofuranoside residue at the 20th carbon position of aglycone. . In addition, the recombinant enzyme has an exo-acting arabinofuranosidase activity that acts on the end of the polysaccharide, and found that it acts only on the arabinofuranoside residues of ginsenoside Rc or the like, and completed the present invention. It was.
본 발명의 제1양태는 로다노박터 진세노시디뮤탄스(Rhodanobacter ginsenosidimutans) 유래의 α-N-아라비노퓨라노시다제를 제공한다.A first aspect of the present invention provides α-N-arabinofuranosidase from Rhodanobacter ginsenosidimutans .
본 발명의 제2양태는 상기 본 발명에 따른 α-N-아라비노퓨라노시다제를 코딩하는 핵산 및 이를 포함하는 재조합 벡터를 제공한다.A second aspect of the present invention provides a nucleic acid encoding α- N -arabinofuranosidase according to the present invention and a recombinant vector comprising the same.
본 발명의 제3양태는 본 발명에 따른 핵산 또는 재조합벡터로 형질전환된 형질전환체를 제공한다.The third aspect of the present invention provides a transformant transformed with the nucleic acid or the recombinant vector according to the present invention.
본 발명의 제4양태는 (a) 본 발명에 따른 형질전환체를 배양하는 단계 (b) 상기 배양된 형질전환체로부터 α-N-아라비노퓨라노시다제를 생산하는 단계 및 (c) 상기 생산된 α-N-아라비노퓨라노시다제를 회수하는 단계를 포함하는 α-N-아라비노퓨라노시다제의 제조방법을 제공한다.A fourth aspect of the invention comprises the steps of (a) culturing a transformant according to the invention (b) producing α- N -arabinofuranosidase from the cultured transformant and (c) the It provides arabinose Pew pyrano let the production process of-the production of α- N - arabinose Pew pyrano Let α- N comprises the number of times a.
본 발명의 제5양태는 본 발명에 따른 α-N-아라비노퓨라노시다제, 본 발명에 따라 제조된 α-N-아라비노퓨라노시다제, 본 발명에 따른 형질전환체 또는 상기 형질전환체의 배양물을 이용하는 단계를 포함하여 제1 진세노사이드로부터탈글라이코실화된 제2진세노사이드를 제조하는 방법을 제공한다.The fifth aspect of the present invention is α- N according to the present invention arabinose Pew pyrano let claim, α- N, prepared according to the invention arabinose Pew pyrano let claim, transformant or the transformant according to the present invention A method of preparing a deglycosylated second ginsenoside from a first ginsenoside is provided, including using a culture of a sieve.
본 발명의 제6양태는 본 발명에 따른 α-N-아라비노퓨라노시다제, 본 발명에 따라 제조된 α-N-아라비노퓨라노시다제, 본 발명에 따른 형질전환체 또는 상기 형질전환체의 배양물을 유효성분으로 포함하는, PPD 또는 PPT 타입의 진세노사이드로부터 탈글라이코실화된 희귀 진세노사이드로의 전환용 키트를 제공한다.The sixth aspect of the present invention is α- N according to the present invention arabinose Pew pyrano let claim, α- N, prepared according to the invention arabinose Pew pyrano let claim, transformant or the transformant according to the present invention Provided is a kit for converting a ginsenoside of PPD or PPT type to deglycosylated rare ginsenoside, comprising a culture of a sieve as an active ingredient.
본 발명에 따른 알파-N-아라비노퓨라노시다제는 진세노사이드를 탈글라이코실화된 희귀 진세노사이드로 전환시키는 우수한 활성을 나타낸다. 또한, 상기 알파-N-아라비노퓨라노시다제를 코딩하는 핵산 또는 이를 포함하는 재조합 벡터로 형질전환된 형질전환체를 배양함으로써 대량생산이 가능하여 산업적으로 다양하게 사용할 수 있다.Alpha-N-arabinofuranosidase according to the present invention exhibits excellent activity of converting ginsenosides to deglycosylated rare ginsenosides. In addition, by culturing a transformant transformed with a nucleic acid encoding the alpha-N-arabinofuranosidase or a recombinant vector comprising the same, it can be mass-produced and variously used industrially.
도 1은 재조합 AbfA의 정제 결과를 나타낸 것이다. 단백질은 10% SDS-PAGE를 이용해 분리한 후 쿠마시 블루 염색을 통해서 시각화하였다. 레인 1, IPTG로 12시간 동안 유도한 후의 불수용성 분획 레인 2, 12시간 동안 유도한 후의 수용성 분획 레인 3, 아밀로오스 크로마토그래피 후에 정제된 단백질 레인 4, DEAE-셀룰로스 크로마토그래피 후에 정제된 단백질 레인 5, DEAE-셀룰로스 크로마토그래피 및 TEV 처리 후에 정제된 단백질. M: 분자적인 질량 마커.1 shows the results of purification of recombinant AbfA. Proteins were separated using 10% SDS-PAGE and visualized through Coomassie blue staining. Lane 1, insoluble fraction after induction for 12 hours with IPTG lane 2, water soluble fraction after induction for 12 hours lane 3, purified protein lane 4 after amylose chromatography, purified protein lane 5 after DEAE-cellulose chromatography, Protein purified after DEAE-cellulose chromatography and TEV treatment. M: molecular mass marker.
도 2는 진세노사이드 기질Rc (A), C-Mc1 (B) 및 C-Mc (C)를 사용한 AbfA 가수분해 산물의 TLC 분석 결과를 나타낸 것이다. STD, 진세노사이드 표준 C, 효소 부재 P, AbfA와 반응함. 모든 반응은 0.5mgl/ml의 기질을 포함하였고 37℃, 24시간 동안 수행하였다.2 shows the results of TLC analysis of AbfA hydrolysis products using ginsenoside substrates Rc (A), C-Mc1 (B) and C-Mc (C). Reacts with STD, Ginsenoside Standard C, Enzyme-free P, AbfA. All reactions included 0.5 mgl / ml of substrate and were performed at 37 ° C. for 24 hours.
도 3은 재조합 Araf3054의 가수분해 산물을 HPLC로 분석한 결과를 나타낸 것이다. A. 기준 B. 기질 Rc; C. Rc 대사산물 (Rd); D.기질 C-Mc1; E. C-Mc1 대사산물 (F2); F. 기질 C-Mc; G. C-Mc 대사산물 (C-K). 모든 가수분해 작용은 0.01 mg/ml의 효소 농도에서 12시간 동안 수행되었다. 3 shows the results of HPLC analysis of the hydrolyzate of recombinant Araf3054. A. Standard B. Substrate Rc; C. Rc metabolites (Rd); D. Substrate C-Mc1; E. C-Mc1 metabolite (F2); F. Substrates C-Mc; G. C-Mc Metabolites (C-K). All hydrolysis was performed for 12 hours at enzyme concentration of 0.01 mg / ml.
도 4는 재조합 Araf3054의 안정성 및 활성에 대한pH (A)와 온도 (B)의 영향을 나타낸 것이다. 4 shows the effect of pH (A) and temperature (B) on the stability and activity of recombinant Araf3054.
pH에 대해, 2.0 mM pNP-α-L-arabinofuranoside (pNPAf)를 포함하는 효소 용액을 잔여 활성이 결정된 후에, 4°C에서 24시간 동안 pH 2 내지 10의 다양한 pH의 완충액에서 배양하였다. 다음의 완충액 (각 50 mM)을 시험하였다: KCl-HCl (pH 2), glycine-HCl (pH 3), 아세트산 나트(pH 4 및 5), 인산 나트륨(pH 6 및 7), Tris-HCl (pH 8 및 9) 및 글라이신-수산화나트륨(pH 10). pH 영향에 대한 완충액 조성의 영향력은 McIlvaine 완충액 pH 6, 7, 7.5, 8 또는 9를 사용하여 또한 결정하였다. For pH, enzyme solutions comprising 2.0 mM pNP-α-L-arabinofuranoside (pNPAf) were incubated in buffers at various pHs of pH 2 to 10 for 24 hours at 4 ° C. after residual activity was determined. The following buffers (50 mM each) were tested: KCl-HCl (pH 2), glycine-HCl (pH 3), Nat acetate (pH 4 and 5), Sodium Phosphate (pH 6 and 7), Tris-HCl ( pH 8 and 9) and glycine-sodium hydroxide (pH 10). The influence of buffer composition on pH influence was also determined using McIvavaine buffer pH 6, 7, 7.5, 8 or 9.
효소의 최적온도 결정은 4 내지 90°C 범위의 온도의 50 mM 인산 나트륨 완충액에서 분석하였다. 열안정성 분석은 여러 가지 온도에서 30분 동안 50 mM 인산 나트륨 완충액 내의 효소 표본을 배양함으로써 수행하였다. 10분 동안 얼음에서 시료를 식힌 후에, 잔존 활성을 결정하였다. Determination of the optimal temperature of the enzyme was analyzed in 50 mM sodium phosphate buffer at temperatures ranging from 4 to 90 ° C. Thermostability analysis was performed by incubating enzyme samples in 50 mM sodium phosphate buffer at various temperatures for 30 minutes. After cooling the sample on ice for 10 minutes, the remaining activity was determined.
도 5는 0.1 mg/ml의 효소 농도에서 BgpA(recombinant β-glucosidase)에 의한 진세노사이드 Rc의 생전환 모습을 시간 경과에 따라 나타낸 것이다. 대사산물은 TLC에 의해 분석하였다. 선: 기준 0 ~ 24 h, 작용시간5 shows the bioconversion of ginsenoside Rc by BgpA (recombinant β-glucosidase) at an enzyme concentration of 0.1 mg / ml over time. Metabolites were analyzed by TLC. Line: reference 0 ~ 24 h, operating time
도 6은 재조합 AbfA에 의한 진세노사이드 Rc를 Rd로 (A), C-Mc1를 F2로 (B) 그리고 C-Mc를 C-K로 생전환하는 경로 (C)를 나타낸 것이다. FIG. 6 shows the pathway (C) for bioconversion of ginsenoside Rc to Rd (A), C-Mc1 to F2 (B) and C-Mc to C-K by recombinant AbfA.
도 7은 AbfA의 다양한 arabino oligosaccharide에 대한 기질 특이성을 나타낸 TLC 분석결과다. 1, 10은 표준물인 arabinose이고, 2, 4, 6, 8은 반응 전의 arabinobiose, arabinotriose, arabinotetraose, 및arabinopentaose 이며, 3, 5, 7, 9는 각각 물질의 AbfA와 반응 후 결과이다. 효소농도는 0.01mg/ml 이며 12 시간 동안 반응하였다. 7 is a TLC analysis showing the substrate specificity for various arabino oligosaccharides of AbfA. 1, 10 are standard arabinose, 2, 4, 6, 8 are arabinobiose, arabinotriose, arabinotetraose, and arabinopentaose before the reaction, and 3, 5, 7, 9 are the results after the reaction with AbfA of the substance, respectively. The enzyme concentration was 0.01 mg / ml and reacted for 12 hours.
도 8은 본 발명에 따른 기질 p-nitrophenyl-α-L-arabinofuranoside (A) and ginsenoside Rc (B)에 대한 AbfA 단백질의 Km과 Vmax를 나타내는 이중역수그래프(double reciprocal graph)이다.8 is a double reciprocal graph showing the Km and Vmax of AbfA proteins for the substrates p-nitrophenyl-α-L-arabinofuranoside (A) and ginsenoside Rc (B) according to the present invention.
도 9는 재조합 벡터인 pET-MBP-TEV-Araf3054을 나타낸 것이다. 9 shows the recombinant vector pET-MBP-TEV-Araf3054.
이하 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명자들은 처음으로 로다노박터로부터 α-N-아라비노퓨라노시다제를 정제 및 특성화하였다.We first purified and characterized α- N -arabinofuranosidase from Rhodanobacter.
구체적으로 본 발명에 따라 로다노박터 진세노시디뮤탄스 KCTC22231T로부터 수득된 신규 효소는, 진세노사이드의 α-1,6 아라비노퓨라노실 잔기 또는 아라비노스를 포함하는 올리고당류 또는 다당류의 α-1,5 아라비노퓨라노실 잔기에 대한 선택적 가수분해능을 가지는 α-N-아라비노퓨라노시다제로서, 보다 바람직하게 하기와 같은 특성을 가진다: Specifically, the novel enzymes obtained from Rhodanobacter ginsenosididimutans KCTC22231 T according to the present invention are α-1,6 arabinofuranosyl residues of ginsenosides or α of oligosaccharides or polysaccharides containing arabinose. Α- N -arabinofuranosidase having selective hydrolytic ability to -1,5 arabinofuranosyl residues, more preferably having the following properties:
a) PPD(protopanaxadiol) 타입 진세노사이드의 20번째 탄소에 위치한 α-1,6 아라비노퓨라노실 잔기에 대한 선택적 가수분해능을 가진다.a) has a selective hydrolysis capacity for α-1,6 arabinofuranosyl residues located at the 20th carbon of the protopanaxadiol (PPD) type ginsenoside.
b) 상기 선택적 가수분해능을 통해, PPD 타입의 진세노사이드를 탈글라이코실화된 희귀 진세노사이드로 전환시킬 수 있는 전환 활성을 가진다. b) through the selective hydrolysis, it has a conversion activity capable of converting ginsenosides of the PPD type to deglycosylated rare ginsenosides.
c) 외부-작용 (exo-acting)효소이다. c) exo-acting enzymes.
상기 '외부-작용 효소'란 다당류의 말단으로부터 글리코시드 결합을 가수분해하는 활성을 갖는 것을 말한다.The 'externally-acting enzyme' refers to one having the activity of hydrolyzing glycoside bonds from the ends of the polysaccharides.
본 발명에 따라 로다노박터 진세노시디뮤탄스 KCTC22231T로부터 수득된 α-N-아라비노퓨라노시다제는 GenBank 등록번호(accession number) HQ026482로 등록되어 있다. 등록된 본 발명의 α-N-아라비노퓨라노시다제는 518개의 아미노산으로 구성되고, 상기 단백질을 코딩하는 핵산의 길이는 1557bp 이다. Α- N -arabinofuranosidase obtained from Rhodanobacter ginsenosididimutans KCTC22231 T according to the present invention is registered under GenBank accession number HQ026482. The registered α- N -arabinofuranosidase of the present invention consists of 518 amino acids, and the nucleic acid encoding the protein is 1557 bp in length.
로다노박터 진세노시디뮤탄스 KCTC22231T(=KACC 12822T =DSM 21013T =LMG 24457T) 미생물은, 대한민국 포천 지역에 있는 인삼밭에서 분리하고 한국생명공학연구원에 2008년 1월 25일자에 기탁하였다. Rodanobacter ginsenocidi mutans KCTC22231 T (= KACC 12822 T = DSM 21013 T = LMG 24457 T ) Microorganisms are isolated from ginseng fields in Pocheon, Korea and deposited on January 25, 2008 with the Korea Research Institute of Bioscience and Biotechnology. It was.
로다노박터 진세노시디뮤탄스 KCTC22231T 유래의 α-N-아라비노퓨라노시다제를 구성하는 아미노산 서열은 서열번호 1로 기재된 서열이다. 본 발명에 따른 α-N-아라비노퓨라노시다제는 상기 서열번호 1로 기재된 서열뿐만 아니라 상기 서열과 70% 이상의 유사성을 가지는 아미노산 서열, 바람직하게는 80% 이상의 유사성, 더욱 바람직하게는 90% 이상의 유사성, 보다 더욱 바람직하게는 95% 이상의 유사성, 가장 바람직하게는 98% 이상의 유사성을 나타내는 아미노산 서열로서 실질적으로 알파-N-아라비노퓨라노시다제의 활성을 갖는 단백질을 포함한다. 또한, 이러한 유사성을 갖는 서열로서 실질적으로 알파-N-아라비노퓨라노시다제와 동일하거나 상응하는 생물학적 활성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질 변이체도 본 발명의 범위 내에 포함됨은 자명하다.The amino acid sequence which comprises (alpha) -N -arabinofuranosidase derived from Rodanobacter ginsenocidimutans KCTC22231 T is the sequence shown by SEQ ID NO: 1. Α- N -arabinofuranosidase according to the present invention is an amino acid sequence having at least 70% similarity to the sequence described in SEQ ID NO: 1 as well as the sequence, preferably at least 80% similarity, more preferably 90% Amino acid sequences exhibiting the above similarities, even more preferably at least 95% similarity, most preferably at least 98% similarity, include proteins having substantially the activity of alpha-N-arabinofuranosidase. Further, if the sequence having such similarity is an amino acid sequence having a biological activity substantially the same as or corresponding to that of alpha-N-arabinofuranosidase, a protein variant having an amino acid sequence in which some sequences are deleted, modified, substituted or added It is obvious that it is included in the scope of the present invention.
본 발명에 따른 α-N-아라비노퓨라노시다제를 코딩하는 핵산은 서열번호 1에 기재된 아미노산 서열을 코딩하는 핵산일 수 있으며, 바람직하게는 서열번호 2로 기재된 핵산이며, 상기 서열뿐만 아니라 상기 서열과 70% 이상의 유사성을 가지는 서열, 바람직하게는 80% 이상의 유사성, 더욱 바람직하게는 90% 이상의 유사성, 보다 더욱 바람직하게는 95% 이상의 유사성, 가장 바람직하게는 98% 이상의 유사성을 나타내는 서열로서 실질적으로 핵산이 코딩한 단백질이 알파-N-아라비노퓨라노시다제의 활성을 갖는 핵산을 포함한다. The nucleic acid encoding α- N -arabinofuranosidase according to the present invention may be a nucleic acid encoding the amino acid sequence set forth in SEQ ID NO: 1, preferably the nucleic acid set forth in SEQ ID NO: 2, as well as the sequence A sequence having at least 70% similarity with the sequence, preferably at least 80% similarity, more preferably at least 90% similarity, even more preferably at least 95% similarity, most preferably at least 98% similarity The protein encoded by the nucleic acid includes a nucleic acid having the activity of alpha-N-arabinofuranosidase.
본 발명의 일 구현예에 따르면, 본 발명의 핵산은 본 발명자들에 의해 araf3054(이하, 'ARAF3054' 및 'AbfA'와 혼용)로 명명되었다. According to one embodiment of the present invention, the nucleic acid of the present invention has been named by the inventors araf3054 (hereinafter, interchangeably with 'ARAF3054' and 'AbfA').
본 발명의 용어 '유사성'이란 야생형(wild type) 단백질의 아미노산 서열 또는 이를 코딩하는 염기 서열과의 유사한 정도를 나타내기 위한 것으로서, 본 발명의 아미노산 서열 또는 염기 서열과 상기와 같은 퍼센트 이상의 동일한 서열을 가지는 서열을 포함한다. 이러한 유사성의 비교는 육안으로나 구입이 용이한 비교 프로그램을 이용하여 수행할 수 있다. 시판되는 컴퓨터 프로그램은 2개 이상의 서열 간의 유사성을 백분율(%)로 계산할 수 있으며, 유사성(%)은 인접한 서열에 대해 계산될 수 있다.The term 'similarity' of the present invention is intended to represent a degree of similarity with the amino acid sequence of the wild type protein or the nucleotide sequence encoding the same, and the same sequence as the amino acid sequence or nucleotide sequence of the present invention or more Branches include sequences. This similarity can be compared with the naked eye or using a comparison program that is easy to purchase. Commercially available computer programs can calculate the similarity between two or more sequences as a percentage, and the similarity can be calculated for adjacent sequences.
본 기술 분야의 당업자라면 이러한 인위적인 변형에 의해 일정 수준 이상의 유사성이 유지되는 동시에 본 발명에서 목적하는 단백질의 활성을 보유하는 한 균등한 단백질임을 쉽게 이해할 수 있을 것이다. 따라서 본 발명의 단백질은 야생형의 아미노산 서열 변이체 및 염기 서열 변이체를 포함하는데, '변이체'란 천연 아미노산 서열 또는 염기 서열에 대해 하나 또는 그 이상의 아미노산 잔기 또는 염기 서열이 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합에 의하여 상이한 서열을 갖는 단백질 또는 상이한 서열을 갖는 핵산을 의미한다.Those skilled in the art will readily understand that such artificial modifications are equivalent proteins so long as they retain a certain level of similarity and retain the activity of the protein of interest in the present invention. Thus, the proteins of the present invention include wild-type amino acid sequence variants and nucleotide sequence variants, wherein the 'variant' refers to the deletion or insertion, non-conservation or preservation of one or more amino acid residues or nucleotide sequences relative to a native amino acid sequence or nucleotide sequence. By protein substitution or combination thereof, it is meant a protein having a different sequence or a nucleic acid having a different sequence.
본 발명에서 용어, '벡터'란 적당한 숙주 세포에서 목적 단백질을 발현할 수 있는 발현 벡터로서, 핵산 삽입물이 발현되도록 작동 가능하게 연결된 필수적인 조절 요소를 포함하는 핵산 작제물을 말한다. 본 발명은 알파-N-아라비노퓨라노시다제를 코딩하는 핵산을 포함하는 재조합 벡터를 제조할 수 있다.As used herein, the term 'vector' refers to a nucleic acid construct that is an expression vector capable of expressing a protein of interest in a suitable host cell and that includes essential regulatory elements operably linked to express the nucleic acid insert. The present invention can produce a recombinant vector comprising a nucleic acid encoding alpha-N-arabinofuranosidase.
한편, 본 발명에따라 α-N-아라비노퓨라노시다제를 코딩하는 핵산 또는 상기 핵산을 포함하는 재조합 벡터는 숙주 세포에형질전환 (transformation) 또는 형질감염 (transfection) 시킴으로써, 본 발명의 α-N-아라비노퓨라노시다제를 수득할 수 있다. 본 발명의 구체적인 실시예에서는 포스미드 라이브러리(fosmid library)를 통하여 스크리닝하는 한편, 알파-N-아라비노퓨라노시다제를 코딩할 수 있는 ORF(open reading frame)를 동정하여 이를pCC1FOS 발현 벡터에 삽입함으로써 재조합 벡터 pET-MBP-TEV-Araf3054를 제조하였다(도 9). Meanwhile, according to the present invention, a nucleic acid encoding α- N -arabinofuranosidase or a recombinant vector comprising the nucleic acid is transformed or transfected into a host cell, thereby producing α- of the present invention. N -arabinofuranosidase can be obtained. In a specific embodiment of the present invention, while screening through a fosmid library, an ORF (open reading frame) capable of encoding alpha-N-arabinofuranosidase is identified and inserted into the pCC1FOS expression vector. By doing so, the recombinant vector pET-MBP-TEV-Araf3054 was prepared (FIG. 9).
본 발명의 재조합 벡터는 본 발명의 핵산을 적당한 벡터에 연결 (삽입)하여 획득할 수 있다. 본 발명의 핵산이 삽입될 벡터는 그것이 숙주 안에서 복제될 수 있는 한 특별히 제한되지는 않는다. 예를 들어, 플라스미드 DNA, 파아지 DNA 등이 사용될 수 있다. 플라스미드 DNA의 구체적인 예로는 pCDNA3.1+ (Invitrogen) 같은 상업적인 플라스미드를 포함한다. 본 발명에 사용된 플라스미드의 다른 예로는 대장균 유래 플라스미드 (pYG601BR322, pBR325, pUC118 및 pUC119), 바실러스 서브틸리스 (Bacillus subtilis)-유래 플라스미드 (pUB110 및 pTP5) 및 효모-유래 플라스미드(YEp13, YEp24 및 YCp50)가 있다. 파아지 DNA의 구체적인 예로는 λ-파아지 (Charon4A, Charon21A, EMBL3, EMBL4, λgt10, λgt11 및 λZAP)가 있다. 또한, 리트로바이러스 (retrovirus), 아데노바이러스 (adenovirus) 또는 백시니아 바이러스 (vaccinia virus)와 같은 동물 바이러스, 배큘로바이러스 (baculovirus)와 같은 곤충 바이러스가 또한 사용될 수 있다. 본 발명의 구체적인 실시예에서는 pCC1FOS 발현 벡터에 삽입하여 재조합 벡터 pET-MBP-TEV-Araf3054를 제조하였다.The recombinant vector of the present invention can be obtained by linking (inserting) the nucleic acid of the present invention into an appropriate vector. The vector into which the nucleic acid of the present invention is to be inserted is not particularly limited as long as it can be replicated in the host. For example, plasmid DNA, phage DNA and the like can be used. Specific examples of plasmid DNA include commercial plasmids such as pCDNA3.1 + (Invitrogen). Other examples of plasmids used in the present invention include Escherichia coli derived plasmids (pYG601BR322, pBR325, pUC118 and pUC119), Bacillus subtilis -derived plasmids (pUB110 and pTP5) and yeast-derived plasmids (YEp13, YEp24 and YCp50). There is). Specific examples of phage DNA include λ-phage (Charon4A, Charon21A, EMBL3, EMBL4, λgt10, λgt11 and λZAP). In addition, animal viruses such as retroviruses, adenoviruses or vaccinia viruses, insect viruses such as baculoviruses can also be used. In a specific embodiment of the present invention, a recombinant vector pET-MBP-TEV-Araf3054 was prepared by inserting into a pCC1FOS expression vector.
아울러 본 발명의 벡터로서, 핵산 발현 활성화 단백질 (예를 들어, B42같은)이 연결된 융합 플라스미드(fusion plasmid, 예를 들어, pJG4-5)가 사용될 수 있으며, 이러한 융합 플라스미드에는 GST, GFP, His-tag, Myc-tag 등이 있으나, 상기 예들에 의해 본 발명의 융합 플라스미드가 한정되는 것은 아니다. 본 발명의 구체적인 실시예에서는 발현된 알파-N-아라비노퓨라노시다제를 용이하게 정제 및 회수하기 위하여 MBP(maltose binding protein) 태그를 사용하였다.In addition, as a vector of the present invention, a fusion plasmid (eg, pJG4-5) to which a nucleic acid expression activating protein (eg, B42) is linked may be used, and the fusion plasmid may be GST, GFP, His- tag, Myc-tag and the like, but the fusion plasmid of the present invention is not limited by the above examples. In a specific embodiment of the present invention, a maltose binding protein (MBP) tag was used to easily purify and recover the expressed alpha-N-arabinofuranosidase.
본 발명의 핵산을 벡터로 삽입하기 위해, 정제된 DNA를 적당한 제한효소로 절단하여 적당한 벡터 DNA의 제한 부위 또는 클로닝 부위에 삽입하는 방법이 사용될 수 있다. 본 발명의 구체적인 실시예에 따르면, araf3054 유전자는 화살표로 표시된 BamHI과 HindIII으로 절단된 사이에 삽입되었다. In order to insert the nucleic acid of the present invention into a vector, a method of cutting the purified DNA with a suitable restriction enzyme and inserting it into a restriction site or a cloning site of the appropriate vector DNA can be used. According to a specific embodiment of the present invention, the araf3054 gene was inserted between the cleaved BamHI and HindIII indicated by arrows.
본 발명의 핵산은 벡터에 작동 가능하게 연결되는 것이 바람직하다. 본 발명의 벡터는 프로모터 및 본 발명의 핵산 외에 인핸서 (enhancer)와 같은 시스 요소(cis element), 스플라이싱 시그널 (splicing signal), 폴리 A 추가 시그널 (poly A addition signal), 선택 마커(selection marker), 라이보좀 결합 서열 (ribosome binding sequence, SD sequence) 등을 추가로 포함할 수 있다. 선택 마커의 예로, 클로람페니콜 저항 핵산, 암피실린 저항 핵산, 디하이드로폴레이트 환원효소(dihydrofolate reductase), 네오마이신 저항 핵산 등이 사용될 수 있으나, 상기 예들에 의해 작동 가능하도록 연결되는 추가적 구성요소가 제한되는 것은 아니다.The nucleic acid of the present invention is preferably operably linked to a vector. In addition to the promoter and the nucleic acid of the present invention, the vector of the present invention includes a cis element such as an enhancer, a splicing signal, a poly A addition signal, and a selection marker. ), A ribosome binding sequence (ribosome binding sequence, SD sequence) and the like can be further included. As an example of a selection marker, chloramphenicol resistance nucleic acid, ampicillin resistance nucleic acid, dihydrofolate reductase, neomycin resistance nucleic acid, and the like may be used, but the additional components that are operably linked by the above examples are limited. no.
본 발명에서 사용되는 용어, '형질전환 (transformation)'이란 DNA를 숙주로 도입하여 DNA가 염색체의 인자로서 또는 염색체 통합 완성에 의해 복제 가능하게 되는 것으로 외부의 DNA를 세포 내로 도입하여 인위적으로 유전적인 변화를 일으키는 현상을 의미한다. As used herein, the term 'transformation' means that DNA is introduced into a host so that the DNA can be reproduced as a factor of a chromosome or by completion of chromosome integration. It means a phenomenon causing change.
본 발명의 형질전환 방법은 임의의 형질전환 방법이 사용될 수 있으며, 당업계의 통상적인 방법에 따라 용이하게 수행할 수 있다. 일반적으로 형질전환 방법에는 CaCl2 침전법, CaCl2 방법에 DMSO(dimethyl sulfoxide)라는 환원물질을 사용함으로써 효율을 높인 Hanahan 방법, 전기천공법 (electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로박테리아 매개된 형질전환법, PEG를 이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등이 있다. As the transformation method of the present invention, any transformation method may be used, and may be easily performed according to conventional methods in the art. In general, the Hanahan method, the electroporation method, the calcium phosphate precipitation method, the plasma fusion method, the silicon carbide, which have improved efficiency by using a CaCl 2 precipitation method and a reducing material called DMSO (dimethyl sulfoxide) in the CaCl 2 method Agitation with fibers, agrobacterial mediated transformation, transformation with PEG, dextran sulfate, lipofectamine and dry / inhibition mediated transformation.
본 발명의 알파-N-아라비노퓨라노시다제를 코딩하는 핵산 또는 이를 포함하는 벡터를 형질전환시키기 위한 방법은 상기 예들에 국한되지 않으며, 당업계에서 통상적으로 사용되는 형질전환 또는 형질감염 방법이 제한 없이 사용될 수 있다. The method for transforming a nucleic acid encoding an alpha-N-arabinofuranosidase of the present invention or a vector comprising the same is not limited to the above examples, and a transformation or transfection method commonly used in the art is It can be used without limitation.
목적 핵산인 알파-N-아라비노퓨라노시다제를 코딩하는 핵산 또는 이를 포함하는 재조합 벡터를 숙주로 도입함으로써 본 발명의 형질전환체(transformant)를 획득할 수 있다. The transformant of the present invention can be obtained by introducing a nucleic acid encoding alpha-N-arabinofuranosidase, which is a target nucleic acid, or a recombinant vector comprising the same into a host.
숙주는 본 발명의 핵산을 발현하도록 하는 한 특별히 제한되지는 않는다. 본 발명에 사용될 수 있는 숙주의 특정한 예로는 대장균 (E. coli)과 같은 에스케리키아 (Escherichia)속 세균 바실러스 서브틸리스 (Bacillus subtilis)같은 바실러스 (Bacillus)속 세균 슈도모나스 푸티다 (Pseudomonas putida)같은 슈도모나스 (Pseudomonas)속 세균 사카로마이세스 세레비지애 (Saccharomyces cerevisiae), 스키조사카로마이세스 폼베 (Schizosaccharomyces pombe)같은 효모 동물세포 및 곤충 세포가 있다. The host is not particularly limited as long as the host is allowed to express the nucleic acid of the present invention. Specific examples of hosts that can be used in the present invention include Bacillus genus Pseudomonas putida , such as Escherichia bacterium Bacillus subtilis , such as E. coli. Yeast animal cells and insect cells such as Pseudomonas genus Saccharomyces cerevisiae , Schizosaccharomyces pombe .
본 발명에 사용될 수 있는 대장균 균주의 구체적인 예로는 CL41(DE3), BL21(DE3) 및 HB101이 있으며, 바실러스 서브틸리스 균주의 구체적인 예로는 WB700 및 LKS87이 있으며, 본 발명의 구체적인 실시예에서는 대장균 세포 BL21(DE3)을 숙주 세포로 하여 알파-N-아라비노퓨라노시다제를 포함하는 벡터로 형질전환된 형질전환체를 제조하였다. Specific examples of E. coli strains that can be used in the present invention are CL41 (DE3), BL21 (DE3) and HB101, specific examples of Bacillus subtilis strains are WB700 and LKS87, in a specific embodiment of the present invention E. coli cells A transformant transformed with a vector containing alpha-N-arabinofuranosidase was prepared using BL21 (DE3) as a host cell.
대장균과 같은 세균이 숙주로서 사용될 때, 본 발명의 재조합 벡터는 숙주 내에서 자율적인 복제를 할 수 있고, 프로모터, 라이보좀 결합서열, 본 발명의 핵산 및 전사 종료 서열 (transcription termination sequence)로 구성되어 있다. When a bacterium such as E. coli is used as a host, the recombinant vector of the present invention is capable of autonomous replication in the host and consists of a promoter, a ribosomal binding sequence, a nucleic acid of the present invention, and a transcription termination sequence. have.
본 발명의 프로모터는, 본 발명의 핵산을 대장균과 같은 숙주에서 발현하도록 하는 한 어떠한 프로모터도 사용될 수 있다. 예를 들어, trp 프로모터, lac 프로모터, PL 프로모터 또는 PR 프로모터 같은 대장균 또는 파아지-유래 프로모터 T7 프로모터 같은 대장균 감염 파아지-유래 프로모터가 사용될 수 있다. 또한 tac 프로모터 같은 인공적으로 변형된 프로모터도 사용될 수 있다.The promoter of the present invention can be used as long as it allows expression of the nucleic acid of the present invention in a host such as E. coli. For example, E. coli or phage-derived promoters such as the trp promoter, lac promoter, PL promoter or PR promoter or E. coli infection phage-derived promoters such as the T7 promoter can be used. Artificially modified promoters can also be used, such as the tac promoter.
본 발명에서 회수되는 목적 단백질의 정제를 용이하게 하기 위하여, 플라스미드 벡터는 필요에 따라 다른 서열을 추가로 포함할 수 있다. 상기 추가로 포함될수 있는 서열은 단백질 정제용 태그 서열일 수 있으며, 예컨대, 글루타티온 S-트랜스퍼라제 (Pharmacia, USA), MBP(말토스 결합 단백질, USA), FLAG (IBI, USA) 및 헥사히스티딘(hexahistidine; Quiagen, USA) 등이 있고, 가장 바람직하게는 MBP 일 수 있으나, 상기 예들에 의하여 목적 단백질의 정제를 위하여 필요한 서열의 종류가 제한되는 것은 아니다. 본 발명의 구체적인 실시예에서는 MBP 태그를 사용하여 정제를 용이하게 하였다. In order to facilitate purification of the protein of interest recovered in the present invention, the plasmid vector may further comprise other sequences as necessary. The sequence which may be further included may be a tag sequence for protein purification, such as glutathione S-transferase (Pharmacia, USA), MBP (maltose binding protein, USA), FLAG (IBI, USA) and hexahistidine ( hexahistidine; Quiagen, USA) and the like, and most preferably MBP, but the examples do not limit the type of sequence required for purification of the target protein. In a specific embodiment of the present invention, purification is facilitated by using an MBP tag.
또한, 상기 융합 서열이 포함되어 있는 벡터에 의해 발현된 융합 단백질의 경우, 친화성 크로마토그래피에 의해 정제될 수 있다. 예컨대, 글루타티온-S-트랜스퍼라제가 융합된 경우에는 이 효소의 기질인 글루타티온을 이용할 수 있고, MBP가 이용된 경우에는 아밀로오즈 컬럼을 이용하여 원하는 목적 단백질을 용이하게 회수할 수 있다.In addition, in the case of a fusion protein expressed by a vector containing the fusion sequence, it can be purified by affinity chromatography. For example, when glutathione-S-transferase is fused, glutathione, which is a substrate of the enzyme, can be used, and when MBP is used, a desired target protein can be easily recovered by using an amylose column.
본 발명의 알파-N-아라비노퓨라노시다제를 발현시키기 위해 상기의 방법으로 형질전환된 숙주 세포는 당업계에서 사용되는 통상적인 방법으로 배양할 수 있다. 예를 들면, 상기 알파-N-아라비노퓨라노시다제를 발현하는 형질전환체는 다양한 배지에서 배양할 수 있으며, 페드-배치(fed-batch) 배양 및 연속 배양 등을 수행할 수 있으나, 상기 예에 의해 본 발명의 형질전환체의 배양방법이 제한되는 것은 아니다. 또한, 숙주 세포의 생장을 위하여 배지 중에 포함될 수 있는 탄소원은 제조된 형질전환체의 종류에 따라 당업자의 판단에 의해 적절하게 선택될 수 있고, 배양 시기 및 양을 조절하기 위해 적당한 배양 조건을 채택할 수 있다.Host cells transformed by the above method to express the alpha-N-arabinofuranosidase of the present invention can be cultured by conventional methods used in the art. For example, the transformant expressing the alpha-N-arabinofuranosidase may be cultured in various media, and may be fed-batch culture and continuous culture. By way of example, the method for culturing the transformant of the present invention is not limited. In addition, the carbon source that may be included in the medium for the growth of the host cell may be appropriately selected according to the judgment of those skilled in the art according to the type of transformant produced, and appropriate culture conditions may be adopted to control the timing and amount of culture. Can be.
적절한 숙주 세포를 선택하여 배지 조건을 조성하여 주면 목적 단백질이 성공적으로 형질전환된 형질전환체는 알파-N-아라비노퓨라노시다제를 생산하게 되며, 벡터의 구성 및 숙주 세포의 특징에 따라 생산된 알파-N-아라비노퓨라노시다제는 숙주 세포의 세포질 내, 페리플라즈믹 스페이스(periplasmic space) 또는 세포 외로 분비될 수 있다. 또한 목적 단백질은 가용성 형태 또는 불용성 형태로 발현될 수 있다. By selecting the appropriate host cell and formulating the medium conditions, the transformant which is successfully transformed with the target protein produces alpha-N-arabinofuranosidase, which is produced according to the composition of the vector and the characteristics of the host cell. The alpha-N-arabinofuranosidase may be secreted into the cytoplasm of the host cell, into the periplasmic space or extracellularly. The protein of interest may also be expressed in soluble or insoluble form.
숙주 세포 내 또는 외에서 발현된 단백질은 통상의 방식으로 정제될 수 있다. 정제 방법의 예로는 염석(예를 들어 황산암모늄 침전, 인산 나트륨 침전 등), 용매 침전(예를 들어, 아세톤, 에탄올 등을 이용한 단백질 분획 침전 등), 투석, 겔 여과, 이온 교환, 역상 컬럼 크로마토그래피와 같은 크로마토그래피 및 한외여과 등의 기법을 단독 또는 조합으로 적용하여 본 발명의 단백질을 정제할 수 있다.Proteins expressed in or outside the host cell can be purified in a conventional manner. Examples of purification methods include salting out (eg, ammonium sulfate precipitation, sodium phosphate precipitation, etc.), solvent precipitation (eg, protein fraction precipitation with acetone, ethanol, etc.), dialysis, gel filtration, ion exchange, reverse phase column chromatography. Techniques such as chromatography and ultrafiltration may be applied alone or in combination to purify the proteins of the invention.
상기의 방법으로 분리된 알파-N-아라비노퓨라노시다제를 이용하여 진세노사이드가 존재하는 인 비트로(in-vitro) 또는 인 비보(in vivo) 시스템에서 용이 흡수가 가능한, 탈글리코실화된 진세노사이드를 생산할 수 있다. Deglycosylated, easily absorbed in an in-vitro or in vivo system with ginsenosides using alpha-N-arabinofuranosidase isolated by the above method Ginsenosides can be produced.
제1 진세노사이드로부터 탈글라이코실화된 제2진세노사이드 제조시, 적어도하나의 단계에서 본 발명은 본 발명의 α-N-아라비노퓨라노시다제, 본 발명의 형질전환체 또는 상기 형질전환체의 배양물을 이용할 수 있다.In the preparation of a deglycosylated second ginsenoside from the first ginsenoside, in at least one step the present invention is characterized in that the α- N -arabinofuranosidase of the invention, the transformant of the invention or the transformation Sieve culture can be used.
본 발명에서 출발물질로 이용되는 제1진세노이드는 PPD 타입 또는 PPT 타입의 진세노사이드일 수 있으며, 분리 및 정제된 형태의 진세노사이드를 이용할 수도 있고, 또는 인삼 또는 홍삼의 분말 또는 추출물에 포함되어 있는 진세노사이드를 이용할 수도 있다. 즉, 진세노사이드를 포함하는 인삼 또는 홍삼의 분말 또는 추출물을 직접 출발물질로 이용하여 본 발명의 방법을 실시할 수도 있다. 본 발명에서 이용되는 인삼으로는, 공지된 다양한 인삼을 사용할 수 있으며, 고려삼(Panax ginseng), 회기삼(P. quiquefolius), 전칠삼(P. notoginseng), 죽절삼(P. japonicus), 삼엽삼(P. trifolium), 히말라야삼(P. pseudoginseng) 및 베트남삼(P. vietnamensis)을 포함하나, 이에 한정되지 않는다.The first ginsenoid used as a starting material in the present invention may be a ginsenoside of PPD type or PPT type, may use a separated and purified form of ginsenoside, or may be included in powder or extract of ginseng or red ginseng. You can also use ginsenosides. That is, the method of the present invention may be carried out using a powder or extract of ginseng or red ginseng including ginsenosides as a starting material. As the ginseng used in the present invention, various known ginsengs can be used, and Korean ginseng ( Panax ginseng ), Gyegi ( P. quiquefolius ), Jeonchisam ( P. notoginseng ), Bamboo ginseng ( P. japonicus ), and three leaf ginseng ( P. trifolium ), Himalayan ginseng ( P. pseudoginseng ) and Vietnamese ginseng ( P. vietnamensis) , but are not limited thereto.
PPD(protopanaxadiol) 타입 진세노사이드의 비제한적인 예로 하기의 화합물을 들 수 있다.Non-limiting examples of PPD (protopanaxadiol) type ginsenosides include the following compounds.
[규칙 제26조에 의한 보정 03.05.2011] 
Figure WO-DOC-FIGURE-67
[Revision under Rule 26 03.05.2011]
Figure WO-DOC-FIGURE-67
[규칙 제26조에 의한 보정 03.05.2011] 
Figure WO-DOC-FIGURE-68
[Revision under Rule 26 03.05.2011]
Figure WO-DOC-FIGURE-68
또한, PPT(Protopanaxatriol) 타입 진세노사이드의 비제한적인 예로 하기의 화합물을 들 수 있다.In addition, non-limiting examples of PPT (Protopanaxatriol) type ginsenosides include the following compounds.
[규칙 제26조에 의한 보정 03.05.2011] 
Figure WO-DOC-FIGURE-70
[Revision under Rule 26 03.05.2011]
Figure WO-DOC-FIGURE-70
[규칙 제26조에 의한 보정 03.05.2011] 
Figure WO-DOC-FIGURE-71
[Revision under Rule 26 03.05.2011]
Figure WO-DOC-FIGURE-71
본 발명의 α-N-아라비노퓨라노시다제는 비환원된 α-1,6 아라비노퓨라노실 잔기를 가지는 진세노사이드라면 모두 선택적으로 가수분해할 수 있고, 바람직하게 당업계에 알려진 모든 PPD 타입 또는 PPT 타입의 진세노사이드의 비환원된 α-1,6 아라비노퓨라노실 잔기를 선택적으로 가수분해할 수 있으며, 예를 들어, PPD 타입의 진세노사이드 중 Rc, C-Mc1, 및 C-Mc가 C20(20번째 탄소를 의미함)에서 비환원된 α-1,6 아라비노퓨라노실 잔기를 가지므로 상기Rc, C-Mc1, 및 C-Mc의 비환원된 α-1,6 아라비노퓨라노실 잔기는 본 발명의 α-N-아라비노퓨라노시다제에 의해 선택적으로 가수분해할 수 있다. The α- N -arabinofuranosidase of the present invention may selectively hydrolyze all ginsenosides having non-reduced α-1,6 arabinofuranosyl residues, and preferably all known in the art Non-reduced α-1,6 arabinofuranosyl residues of ginsenosides of PPD type or PPT type can be selectively hydrolyzed, for example, Rc, C-Mc1, And non-reduced α-1 of Rc, C-Mc1, and C-Mc because C-Mc has a non-reduced α-1,6 arabinofuranosyl residue at C20 (meaning the 20th carbon) The, 6 arabinofuranosyl moiety can be selectively hydrolyzed by the α- N -arabinofuranosidase of the present invention.
본 발명의 α-N-아라비노퓨라노시다제는 PPD(protopanaxadiol) 타입 또는 PPT 타입 진세노사이드를 상대적으로 탈글라이코실화된 희귀 진세노사이드로 전환시킬 수 있는데, 이는 PPD 타입 또는 PPT 타입 진세노사이드의 비환원된 α-1,6 아라비노퓨라노실 잔기를 선택적으로 가수분해하고, 보다 바람직하게는 PPD 타입 또는 PPT 타입 진세노사이드의 20번째 탄소에 위치한 비환원된 α-1,6 아라비노퓨라노실 잔기를 선택적으로 가수분해함으로써 수행될 수 있다. Α- N -arabinofuranosidase of the present invention can convert protopanaxadiol (PPD) type or PPT type ginsenosides into relatively deglycosylated rare ginsenosides, which are PPD type or PPT type ginsenosides. Selectively hydrolyzes the non-reduced α-1,6 arabinofuranosyl residues of the side, more preferably the non-reduced α-1,6 ara located at the 20th carbon of the PPD type or PPT type ginsenoside It can be carried out by selectively hydrolyzing nonfuranosyl residues.
이러한 전환은 생전환(bioconversion)을 통해 이루어지며, 연속 또는 비연속적으로 PPD 타입 또는 PPT 타입의 진세노사이드의 비환원된 α-1,6 아라비노퓨라노실 잔기를 선택적으로 가수분해함으로써 달성될 수 있다. This conversion is achieved through bioconversion and can be achieved by selective hydrolysis of non-reduced α-1,6 arabinofuranosyl residues of ginsenosides of PPD type or PPT type, either continuously or discontinuously. Can be.
바람직하게, 본 발명의 단백질에 의한 생전환의 예로는 진세노사이드 Rc를 Rd로 전환, 진세노사이드 C-Mc1를 F2로 전환, 진세노사이드 C-Mc를 C-K로 전환하는 방법이 모두 포함된다. Preferably, examples of bioconversion by the protein of the present invention include all methods of converting ginsenoside Rc to Rd, converting ginsenoside C-Mc1 to F2, and converting ginsenoside C-Mc to CK. .
보다 상세하게, 본 발명의 구체적인 실시예 4에서는 본 발명의 α-N-아라비노퓨라노시다제를 포함하는 조성물을 진세노사이드 Rc에 투여하는 경우, 진세노사이드 Rd로 탈글리코실화하였다. 또한, 진세노사이드 C-Mc1를 출발물질로 하여 본 발명의 α-N-아라비노퓨라노시다제를 처리하는 경우, 진세노사이드 F2로 탈글리코실화하는 것을 확인하였다. 또한, 진세노사이드 C-Mc를 출발물질로 하여 본 발명의 α-N-아라비노퓨라노시다제를 처리하는 경우, 진세노사이드 C-K로 탈글리코실화하는 것을 확인하였다. More specifically, in Example 4 of the present invention, when the composition comprising α- N -arabinofuranosidase of the present invention was administered to ginsenoside Rc, it was deglycosylated with ginsenoside Rd. In addition, when the α- N -arabinofuranosidase of the present invention was treated with ginsenoside C-Mc1 as a starting material, it was confirmed that deglycosylation was performed with ginsenoside F2. In addition, when the α- N -arabinofuranosidase of the present invention was treated with ginsenoside C-Mc as a starting material, it was confirmed that deglycosylation was performed with ginsenoside CK.
이러한 PPD 또는 PPT 타입 진세노사이드의 탈글리코실화는 본 발명의 α-N-아라비노퓨라노시다제의 비환원된 α-1,6 아라비노퓨라노실 잔기에 대한 선택적 가수분해능에 의한 것이며, 상기와 같은 가수분해를 통해 생성된 탈글라이코실화된 희귀 진세노사이드는 체내 흡수가 용이하다. 아울러, 이러한 생전환은 PPD 타입 또는 PPT 타입 진세노사이드, 예를 들어 진세노사이드 Rc가 그의 가장 탈글라이코실화된 형태인, C-K 또는 Rh2로 전환되는 것을 촉진한다. Deglycosylation of such PPD or PPT type ginsenosides is due to the selective hydrolysis capacity of the non-reduced α-1,6 arabinofuranosyl residues of the α- N -arabinofuranosidase of the present invention, Deglycosylated rare ginsenosides produced through such hydrolysis are easily absorbed by the body. In addition, this bioconversion facilitates the conversion of PPD or PPT type ginsenosides, such as ginsenoside Rc, to CK or Rh2, which is its most deglycosylated form.
본 발명의 α-N-아라비노퓨라노시다제는 활성 및 안정성이 유지될 수 있는 한 다양한 온도 및 pH 조건에서, PPD(protopanaxadiol) 타입 진세노사이드 또는 PPT(Protopanaxatriol) 타입 진세노사이드의 비환원된 α-1,6 아라비노퓨라노실 잔기의 선택적 가수분해 및 PPD(protopanaxadiol) 타입 또는 PPT(Protopanaxatriol) 타입 진세노사이드를 체내 흡수가 용이한 형태의 희귀 진세노사이드로의 전환에 사용될 수 있다. Α- N -arabinofuranosidase of the present invention is non-reducing of protopanaxadiol (PPD) type ginsenosides or PPT (Protopanaxatriol) type ginsenosides at various temperature and pH conditions as long as activity and stability can be maintained. Selective hydrolysis of α-1,6 arabinofuranosyl residues and conversion of protopanaxadiol (PPD) type or protopanaxatriol (PPT) type ginsenosides into rare ginsenosides in an easily absorbable form .
본 발명의 구체적인 실시예에 따르면, 본 발명의 효소 특성을 분석하였는바 araf3054는 pH 6-10에서 효소의 안정성 및 활성이 탁월하였으며, 37°C의 인산나트륨 버퍼 pH 7.5에서 가장 높은 활성을 나타내었다(도 4A). 또한, 37℃이하의 온도에서 안정하였고, 45°C에서 40분 동안 배양 후 활성이 100% 상실되었다. 활성은 온도 4-35 ℃온도에서는 온도의 고저와 무관하게 약 60% 정도가 유지되었다(도 4B). 따라서, 본 발명에 따른 α-N-아라비노퓨라노시다제가 효소작용하기 위해, pH는 6 ~ 10로, 온도는 4~37 ℃ 조절하는 것이 바람직하다. According to a specific embodiment of the present invention, the enzyme properties of the present invention was analyzed araf3054 was excellent in the stability and activity of the enzyme at pH 6-10, the highest activity in sodium phosphate buffer pH 7.5 of 37 ° C (FIG. 4A). It was also stable at temperatures below 37 ° C. and lost 100% of activity after incubation at 45 ° C. for 40 minutes. The activity was maintained at about 60% at a temperature of 4-35 ° C. regardless of the elevation of the temperature (FIG. 4B). Therefore, in order for the α- N -arabinofuranosidase according to the present invention to enzymatically, it is preferable to adjust the pH to 6 to 10 and the temperature to 4 to 37 ° C.
아울러, 본 발명의 α-N-아라비노퓨라노시다제는 MgCl2, EDTA, NaCl, KCl, DTT 및 베타-머캅토에탄올로 이루어진 군에서 선택된 하나 이상의 금속 및 화학 제재를 함께 사용할 수 있으나 이에 제한되지 않는다. 아울러, 기질은 pNP-α-L-아라비노퓨라노사이드(pNP-α-L-arabinofuranoside)를 사용하는 것이 바람직하다. In addition, the α- N -arabinofuranosidase of the present invention may be used with one or more metals and chemical agents selected from the group consisting of MgCl 2 , EDTA, NaCl, KCl, DTT and beta-mercaptoethanol, but is not limited thereto. It doesn't work. In addition, the substrate is preferably used pNP-α-L-arabinofuranoside (pNP-α-L-arabinofuranoside).
한편, 제1 진세노사이드로부터 탈글라이코실화된 제2 진세노사이드를 제조시,본 발명에 따른 α-N-아라비노퓨라노시다제를, 동시에 또는 일정한 순서에 따라 다른 효소(들)와 함께 사용할 수 있다. 다른 효소들의 비제한적인 예로는 β-글루코시다제, β-갈락토시다제, 글리코시다제, α-L-아라비노피라노시다제, α-L-아라비노퓨라노시다제, β-자일로시다아제, 및α-L-람노시다제 등이 있다. α-N-아라비노퓨라노시다제 단독 또는 다른 효소와의 조합에 의해 제조되는 제2 진세노사이드들은 상이할 수 있으며, 이러한 제2진세노사이드는 1종또는 2종 이상의 제2진세노사이드일 수 있다.On the other hand, in preparing a deglycosylated second ginsenoside from the first ginsenoside, the α- N -arabinofuranosidase according to the present invention, together with other enzyme (s) at the same time or in a certain order, Can be used. Non-limiting examples of other enzymes include β-glucosidase, β-galactosidase, glycosidase, α-L-arabinofyranosidase, α-L-arabinofuranosidase, β-xyl Rosidase, α-L-rhamnosidase and the like. The second ginsenosides prepared by α- N -arabinofuranosidase alone or in combination with other enzymes may be different, and such second ginsenosides may be one or two or more second ginsenosides. Can be.
본 발명에 따른 α-N-아라비노퓨라노시다제는 다른 효소(들)와 동일 용기 또는 상이한 용기에 담아 제공될 수 있다.Α- N -arabinofuranosidase according to the present invention may be provided in the same container or in a different container from other enzyme (s).
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 실시하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are only for carrying out the present invention by way of example, but the scope of the present invention is not limited to these examples.
실시예 1. 화학물질Example 1 Chemicals
진세노사이드 Rb1, Rb2, Rc, Rd, F2 및 C-K는 Dalian Green Bio Ltd (Dalian, China)로부터 구입하였다. 진세노사이드 C-Mc1와 C-Mc는 본 실험을 위하여 제작되었다. 5-브로모-4-클로로-3-인돌릴 β-D-글루코피라노시드(X-Glc), pNP-α-L-아라비노퓨라노시드(pNPAf) 및 L-아라비노스는 Sigma로부터 구했다. 밀가루 아라비노자일란, 붉은 탈가지된 아라비난(RDA), 아라비노바이오스, 아라비노트리오스, 아라비노테트라오스 및 아라비노펜타오스는Megazyme (Wicklow, Ireland)로부터 구입하였다. 모든 다른 화학물질들은 적어도 분석 시약 등급이었으며 출처는 각각 방법 섹션에서 각각 명시된다. Ginsenosides Rb1, Rb2, Rc, Rd, F2 and C-K were purchased from Dalian Green Bio Ltd (Dalian, China). Ginsenosides C-Mc1 and C-Mc were prepared for this experiment. 5-Bromo-4-chloro-3-indolyl β-D-glucopyranoside (X-Glc), pNP-α-L-arabinofuranoside (pNPAf) and L-arabinose were obtained from Sigma. . Flour arabinoxylan, red-branched arabinane (RDA), arabinobiose, arabintriose, arabinotetraose and arabinofentaose were purchased from Megazyme (Wicklow, Ireland). All other chemicals were at least analytical reagent grades and their respective sources are specified in the respective method sections.
실시예 2. 포스미드 라이브러리 스크리닝 및 구조화Example 2. Phosmid Library Screening and Structure
균주 Gsoil3054는 한국의 포천 지역의 토양에서 동정하였다. Gsoil3054로부터 진세노사이드를 가수분해하는 아라비노퓨라노시다제 유전자를 클로닝하기 위해서, 포스미드 라이브러리 구조, 효소적 활성을 나타내는 포스미드 클론의 선별, 포스미드 벡터의 전체-서열, 그리고 최종적으로 중합효소연쇄반응(PCR)을 사용한 표적 유전자의 클로닝을, 이전에 보고된 바와 같이, 순차적으로 수행하였다( An, D.-S., C.-H. Cui, H.-G. Lee, L. Wang, S. C. Kim, S.-T. Lee, F. Jin, H. Yu, Y.-W. Chin, H.-K. Lee, W.-T.Im, and S.-G. Kim. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutanssp. nov. b-glucosidase that transforms ginsenoside Rb1 into the rare gypenoside XVII and gypenoside LXXV Appl. Environ. Microbiol. 76:5827-5836). Gsoil3054 게놈 DNA는 페놀-클로로포름 추출에 의해서 분리하였고, CopyControl 포스미드 라이브러리 생성 키트(Epicentre, WI)를 제조자의 프로토콜에 따라서 포스미드 라이브러리를 생성하는데 사용하였다. 추정의 β-글루코시다제 유전자를 포함한 포스미드 클론은 12.5 μg/ml 클로람페니콜과 27 μg/ml X-Glc를 포함하는 LB 플레이트 상에서 푸른색 콜로니의 선별을 통해서 시각적으로 스크리닝하였다. 최종적으로, β-글루코시다제 유전자와 α-N-아라비노퓨라노시다제를 포함하는 하나의 클론이, 진세노사이드 Rc를 가수분해하는 활성의 얇은 막 크로마토그래피(TLC) 분석에 의해서 진세노사이드를 가수분해하는 활성이 입증된 후에 선별되었다.The strain Gsoil3054 was identified in the soil of Pocheon, Korea. To clone the arabinofuranosidase gene that hydrolyzes ginsenosides from Gsoil3054, the phosphide library structure, the selection of phosphide clones showing enzymatic activity, the full-sequence of the phosphide vector, and finally the polymerase Cloning of the target gene using chain reaction (PCR) was performed sequentially, as previously reported (An, D.-S., C.-H. Cui, H.-G. Lee, L. Wang , SC Kim, S.-T. Lee, F. Jin, H. Yu, Y.-W. Chin, H.-K. Lee, W.-T. Im, and S.-G. Kim. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp.nov.b -glucosidase that transforms ginsenoside Rb1 into the rare gypenoside XVII and gypenoside LXXV Appl.Environ.Microbiol. 76: 5827-5836). Gsoil3054 genomic DNA was isolated by phenol-chloroform extraction and CopyControl phosphide library generation kit (Epicentre, WI) was used to generate phosphide libraries according to the manufacturer's protocol. Phosmid clones with putative β-glucosidase gene were visually screened through selection of blue colonies on LB plates containing 12.5 μg / ml chloramphenicol and 27 μg / ml X-Glc. Finally, one clone comprising the β-glucosidase gene and α-N-arabinofuranosidase was analyzed by thin membrane chromatography (TLC) analysis of active hydrolysis of ginsenoside Rc. Selection was made after the activity of hydrolyzing the side was demonstrated.
실시예 3. 포스미드 서열Example 3. Phosmid Sequences
선별된 포스미드 클론의 전체 서열은 마크로젠(Seoul, Korea)에 의해서 상업적으로 결정하였다. 요약하면, 포스미드 DNA를 2-5kbp 단편으로 부순 후에, 아가로스 겔 전기영동에 의해서 분리하였고, 숏건 라이브러리(shotgun library)를 플라스미드 벡터 pCB31로 블런트 말단의 복구 DNA를 결찰함으로써 구성하였다. 상기 벡터를 E. coli로 도입하였고 암피실린(100μg/ml), 5-브로모-4-클로로-3-인돌릴-β-D-갈락토시피라노시드(80μg/ml) 및 이소프로필-β-D-티오갈락토피라노시드(IPTG, 0.3 mM)를 보충해 준 LB 아가 플레이트 상의 흰색 콜로니를 선별하였다. ABI3730 DNA 서열화 시스템(Applied Biosystems)을 사용하여 평균 길이 700 bp를 가진 전체 398 reads를 7개의 콘틱으로 집합하였다. 6개의 갭은 34 kb의 전체 서열을 얻기 위해 미리-고안된 프라이머 이동(walking)으로 결정하여 서열분석을 완료하였다.The total sequence of selected phosphide clones was determined commercially by Macrogen (Seoul, Korea). In summary, after crushing the phosmid DNA into 2-5kbp fragments, it was isolated by agarose gel electrophoresis, and the shotgun library was constructed by ligation of blunt end repair DNA with plasmid vector pCB31. The vector was introduced into E. coli and was ampicillin (100 μg / ml), 5-bromo-4-chloro-3-indolyl-β-D-galactosypyranoside (80 μg / ml) and isopropyl-β- White colonies on LB agar plates supplemented with D-thiogalactopyranoside (IPTG, 0.3 mM) were selected. A total of 398 reads with an average length of 700 bp were aggregated into 7 contigs using the ABI3730 DNA Sequencing System (Applied Biosystems). Six gaps were determined by pre-designed primer walking to obtain 34 kb total sequence to complete sequencing.
실시예 4. 재조합 AbfA의 분자적인 클로닝, 발현 및 정제Example 4. Molecular Cloning, Expression and Purification of Recombinant AbfA
집합된 DNA 서열은 추정의 오픈 리딩 프레임(ORFs)을 확인하기 위해 벡터 NTI (version 10.1)를 사용하여 분석하였다. 이러한 ORF는 GH 패밀리 51에 속하는 α-N-아라비노퓨라노시다제 유전자(abfA)에 대한 추정의 오픈 리딩 프레임을 확인하기 위해, BLASTP (http://blast.ncbi.nlm.nih.gov/Blast.cgi)를 이용한 유사성 조사를 하였다. E. coli에서 가용성의 α-N-아라비노퓨라노시다제를 발현하기 위해서, 말토오스 결합 단백질(MBP)을 AbfA의 N 말단으로 융합하였다. 요약하면, MBP와Tobacco Etch Virus (TEV) 단백질 분해효소 절단 위치를 코딩하는 DNA 단편을 프라이머 mbpF (5'-ATA CAT ATG AAA ATC GAA GAA GGT AAA CTG -3')와mbp-tevR (5'-CTC GAA TTC CGA CTG 045GAA GTA GAG ATT CTC TGA AAT CCT TCC CTC GAT CCC GAG GTT G-3')를 사용하여 E. coli K-12 균주 MG1655(Blattner, F. R., G. Plunkett, 3rd, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453-62)의 게놈 DNA로부터 PCR을 통해 증폭하였다 (Esposito, D., and D. K. Chatterjee. 2006. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol. 17:353-358). 증폭된 단편을 NdeI와 EcoRI로 분해한 후 pET21a-MBP (TEV)을 생성하기 위해 pET21a의 NdeI/EcoRI 위치로 삽입하였다. AbfA 유전자는 다음의 프라이머(이탤릭체는 EcoRI와 HindIII 제한 위치)를 사용하여 PCR에 의해서 증폭하였다: abfAF, 5'- CGG AAT TCC GTT GTA AAT TGA TTG CC-3'; 및 abfAR, 5'- CCC GAA GCT TTC ACG ACC CCA CAG CCA GG-3'. 증폭된 단편은 EcoRI와 HindIII를 가지고 분해한 후, pET21a-MBP-AbfA를 생성하기 위해서 같은 위치에서 pET21a-MBP (TEV)로 삽입하였다. pET21a-MBP-AbfA를 E. coli BL21-Codon Plus (DE3)-RIL (Agilent technologies, Santa Clara, CA)로 도입하고, 플라스미드를 품은 세포를 37°C의 100 μg/ml 암피실린과 50 μg/ml 플로람페니콜을 포함한 LB 배지 상에서 배양액이 600 nm에서 O.D가 0.6에 도달할 때까지 자라게 했는데, 이 시점에서 단백질 발현은 0.1 mM IPTG를 첨가하여 유도하였다. 배양액을 18°C에서 8시간 동안 추가적으로 배양하고, 4°C에서 20분 동안 5,000 × g에서 원심분리를 하여 수득하였다. 세포 팔렛은 20 mM Tris-Cl, 1 mM EDTA, 1 mM 디티오트레이톨 (DTT), 1 mM 페닐메탄에설포닐 플루오라이드 및 1% 트리톤 X-100 (pH 7.4)로 구성된 용액에서 재현탁시키고, 세포는 울트라소니케이션(Vibra-cell, Sonics & Materials, CT)을 통해서 파열시켰다. 손상되지 않은 세포와 파편은 4°C에서 40분간 24,000 × g에서 원심분리에 의해서 제거하여 정제되지 않은 세포 추출물을 수득하였다. MBP가 표지된 융합 단백질은 아밀로오스 수지 컬럼(New England BioLabs) 상에서 친화 크로마토그래피에 이은 DEAE-셀룰로스 DE-52 크로마토그래피(Whatman)에 의해서 정제하였다. MBP 에피토프는 TEV 단백질분해효소와 함께 배양함으로써 제거하였고, 그 후 재조합 AbfA는 DEAE-셀룰로스 DE-52 크로마토그래피에 의해서 정제하였다. 단백질의 동종성은 10% SDS-PAGE와 쿠마시 블루 염색으로 평가하였다. 정제된 단백질은 pH 7.5에서 50 mM 인산나트륨로 투석시킨 후 Amicon Ultra-15 filter (Millipore, CA)를 사용하여 1 mg/ml로 농축하였다 단백질은 사용할 때까지 -80°C에서 저장하였다. 효소 분석과 운동상 분석은 pH 7.5에서 50mM 인산 나트륨에서 정제된 단백질을 사용하여 수행하였다. 재조합 단백질의 분자적 질량은 Superose 6 10/300 GL 컬럼(GE Healthcare), 뒤이은 SDS-PAGE을 사용한 크기 배제 크로마토그래피로 결정하였다. Bio-Rad (catalog no. 151-1901)로부터의 단백질 표본은 참조 표본으로서 사용하였다.Collected DNA sequences were analyzed using vector NTI (version 10.1) to identify putative open reading frames (ORFs). These ORFs were identified by BLASTP (http://blast.ncbi.nlm.nih.gov) to identify an open reading frame of the putative for the α- N -arabinofuranosidase gene ( abf A) belonging to GH family 51. /Blast.cgi) to investigate similarity. To express soluble α- N -arabinofuranosidase in E. coli , maltose binding protein (MBP) was fused to the N terminus of AbfA. In summary, DNA fragments encoding MBP and Tobacco Etch Virus (TEV) protease cleavage sites were identified by primers mbpF (5'-ATA CAT ATG AAA ATC GAA GAA GGT AAA CTG-3 ') and mbp-tevR (5'- E. coli K-12 strain MG1655 (Blattner, FR, G. Plunkett, 3rd, CA Bloch, NT) using CTC GAA TTC CGA CTG 045GAA GTA GAG ATT CTC TGA AAT CCT TCC CTC GAT CCC GAG GTT G-3 ' Perna, V. Burland, M. Riley, J. Collado-Vides, JD Glasner, CK Rode, GF Mayhew, J. Gregor, NW Davis, HA Kirkpatrick, MA Goeden, DJ Rose, B. Mau, and Y. Shao. 1997.The complete genome sequence of Escherichia coli K-12.Science 277: 1453-62 was amplified by PCR (Esposito, D., and DK Chatterjee. 2006. Enhancement of soluble protein expression through the use of fusion tags.Curr. Opin.Biotechnol. 17: 353-358). The amplified fragment was digested with Nde I and EcoR I and then inserted into the Nde I / EcoR I position of pET21a to produce pET21a-MBP (TEV). The AbfA gene was amplified by PCR using the following primers (italic in Eco RI and Hin dIII restriction positions): abfAF, 5'- CG G AAT TC C GTT GTA AAT TGA TTG CC-3 '; And abfAR, 5'- CCC G AA GCT T TC ACG ACC CCA CAG CCA GG-3 '. The amplified fragment was digested with EcoR I and Hin dIII, and then inserted into pET21a-MBP (TEV) at the same position to generate pET21a-MBP - AbfA. pET21a-MBP - AbfA was introduced into E. coli BL21-Codon Plus (DE3) -RIL (Agilent technologies, Santa Clara, Calif.) and cells containing plasmids were treated with 100 μg / ml ampicillin at 37 ° C and 50 μg / ml Cultures were grown on LB medium containing fluoramphenicol at 600 nm until the OD reached 0.6, at which point protein expression was induced by addition of 0.1 mM IPTG. Cultures were further incubated at 18 ° C. for 8 hours and centrifuged at 5,000 × g for 20 minutes at 4 ° C. The cell pallet was resuspended in a solution consisting of 20 mM Tris-Cl, 1 mM EDTA, 1 mM dithiothreitol (DTT), 1 mM phenylmethanesulfonyl fluoride and 1% Triton X-100 (pH 7.4). Cells were ruptured through ultrasonography (Vibra-cell, Sonics & Materials, CT). Intact cells and debris were removed by centrifugation at 24,000 × g for 40 minutes at 4 ° C. to obtain a crude cell extract. MBP labeled fusion proteins were purified by affinity chromatography followed by DEAE-cellulose DE-52 chromatography (Whatman) on amylose resin columns (New England BioLabs). MBP epitopes were removed by incubation with TEV protease, and then recombinant AbfA was purified by DEAE-cellulose DE-52 chromatography. Homogeneity of the protein was assessed by 10% SDS-PAGE and Coomassie blue staining. Purified protein was dialyzed with 50 mM sodium phosphate at pH 7.5 and concentrated to 1 mg / ml using Amicon Ultra-15 filter (Millipore, Calif.). Proteins were stored at -80 ° C until use. Enzyme and kinetic analyzes were performed using protein purified from 50 mM sodium phosphate at pH 7.5. The molecular mass of the recombinant protein was determined by size exclusion chromatography using Superose 6 10/300 GL column (GE Healthcare) followed by SDS-PAGE. Protein samples from Bio-Rad (catalog no. 151-1901) were used as reference samples.
실시예 5. 진세노사이드의 효소적 가수분해Example 5 Enzymatic Hydrolysis of Ginsenosides
AbfA의 특이성 및 선택성의 결정을 위해, 기질로서 Rb1, Rb2, Rc, Rd, C-Mc1 및C-Mc를 사용하였고 재조합 단백질을 정제하였다. 50 mM 인산 나트륨 완충액(pH 7.5) 내에서 농도 0.01 mg/ml의 효소 용액을 37°C에서 농도 0.1% (wt/vol)의 동일 부피인 Rc, C-Mc1 또는 C-Mc 용액과 함께 배양하였다. 시료는 일정한 시간에 규칙적으로 제거하였다. 동일 부피의 물-포화된 n-부탄올을 반응을 정지시키기 위해 첨가해주고 n-부탄올 분획에 존재하는 반응물은 건조한 상태가 되도록 기화시켰다. 잔여물은 CH3OH에서 녹이고, TLC와 고성능 액체 크로마토그래피(HPLC)를 사용해 분석하였다. For determination of specificity and selectivity of AbfA, Rb1, Rb2, Rc, Rd, C-Mc1 and C-Mc were used as substrates and the recombinant protein was purified. Enzyme solutions of 0.01 mg / ml concentration in 50 mM sodium phosphate buffer (pH 7.5) were incubated with Rc, C-Mc1 or C-Mc solution in the same volume of 0.1% (wt / vol) at 37 ° C. . Samples were removed regularly at regular times. An equal volume of water-saturated n -butanol was added to stop the reaction and the reactants present in the n -butanol fraction were evaporated to dryness. The residue was taken up in CH 3 OH and analyzed using TLC and high performance liquid chromatography (HPLC).
실시예 6. 효소 특성화Example 6 Enzyme Characterization
정제된 AbfA의 특이적 활성은 pH 7.5, 37°C의 50 mM 인산 나트륨 완충액 내에서 대체 기질로서 pNPAf을 사용하여 측정하였다. Na2CO3을 추가하여 반응을 종결시켜 최종 농도가 0.5M가 되도록 하고, 405 nm (Bio-Rad Model 680, Hercules, CA)에서 마이크로플레이트를 사용하여 p-니트로페놀의 방출을 즉시 측정하였다. 활성 유닛(One unit of activity)을 분당 p-니트로페놀의 1 μmol을 생성하기 위해 필요한 단백질의 양으로서 정의하였다. 특이적 활성은 단백질 밀리그램 당 유닛으로서 표현하였다. 단백질 농도는 소혈청알부민(Sigma)을 표준으로 하는 BCA 단백질 분석(Pierce, Rockford, IL)을 사용하여 측정하였다. 모든 분석은 세 번 수행하였다. Specific activity of the purified AbfA was measured using pNPAf as a replacement substrate in 50 mM sodium phosphate buffer at pH 7.5, 37 ° C. The reaction was terminated by addition of Na 2 CO 3 to a final concentration of 0.5 M, and the release of p -nitrophenol was immediately measured using a microplate at 405 nm (Bio-Rad Model 680, Hercules, Calif.). One unit of activity was defined as the amount of protein needed to produce 1 μmol of p -nitrophenol per minute. Specific activity was expressed as units per milligram of protein. Protein concentration was measured using BCA protein assay (Pierce, Rockford, IL), based on bovine serum albumin (Sigma). All analyzes were performed three times.
6-1. pH 변화에 따른 효과 측정6-1. Measure the effect of pH changes
효소적인 활성에 대한 pH의 효과는 다음의 완충액(각 50 mM)에서 기질로서 2.0 mM pNPAf 를 사용하여 측정하였다: KCl-HCl (pH 2), 글라이신-HCl (pH 3), 아세트산 나트륨(pH 4 and 5), 인산 나트륨(pH 6.0 and 7.0), Tris-HCl (pH 8.0, and 9.0) 및 글라이신-수산화나트륨(pH 10). 완충액 조성이 효소적인 활성에 영향을 미치는지를 결정하기 위하여, 본 발명자들은 6.0 내지 8.0 범위의 다양한 pH의 McIlvaine 완충액 (100 mM 시트르산, 200 mM 인산 이나트륨)에서 효소 활성을 또한 측정하였다(Margolles, A., and C. G. De los Reyes-Gavila'n. 2003. Purification and functional characterization of a novel α-L-arabinofuranosidase from Bifidobacterium longum B667. Appl. Environ. Microbiol. 69:5096-5103). 재조합 AbfA의 pH 안정성은 4°C에서 24시간 동안 각 완충액(기질로서 50 mM 나트륨 완충액에서 2.0 mM pNPAf을 포함하는)에서 배양 후의 효소적인 활성인 측정함으로써 결정하였다. 결과는 최적 pH에서 수득된 활성의 퍼센트로서 표현하였다. The effect of pH on enzymatic activity was determined using 2.0 mM pNPAf as substrate in the following buffers (50 mM each): KCl-HCl (pH 2), glycine-HCl (pH 3), sodium acetate (pH 4). and 5), sodium phosphate (pH 6.0 and 7.0), Tris-HCl (pH 8.0, and 9.0) and glycine-sodium hydroxide (pH 10). To determine whether the buffer composition affects enzymatic activity, we also measured enzyme activity in McIlvaine buffer (100 mM citric acid, 200 mM disodium phosphate) at various pHs in the range 6.0-8.0 (Margolles, A). ., and CG De los Reyes-Gavila'n. 2003. Purification and functional characterization of a novel α-L-arabinofuranosidase from Bifidobacterium longum B667.Appl.Environ.Microbiol. 69: 5096-5103). The pH stability of recombinant AbfA was determined by measuring the enzymatic activity after incubation in each buffer (containing 2.0 mM pNPAf in 50 mM sodium buffer as substrate) for 24 hours at 4 ° C. The results are expressed as percent of activity obtained at optimal pH.
6-2. 온도 변화에 따른 효과 측정6-2. Measure the effect of temperature changes
효소적인 활성에 대한 온도의 영향은 2.0 mM pNPAf를 포함하는 50 mM 인산 나트륨 완충액에서 5분 동안 최적 pH에서 4 내지 90°C 범위의 다양한 온도에서 효소를 배양함으로써 시험하였다. 효소의 열안정성은 여러 가지 온도에서 30분 동안 50 mM 인산 나트륨 완충액에서 효소를 배양함으로써 검사하였다. 10분간 얼음에서 시료를 식힌 후, 활성은 기질로서 pNPAf를 사용하여 결정하였다.The influence of temperature on enzymatic activity was tested by incubating the enzyme at 50 mM sodium phosphate buffer containing 2.0 mM pNPAf at various temperatures ranging from 4 to 90 ° C. at optimal pH for 5 minutes. The thermal stability of the enzyme was examined by incubating the enzyme in 50 mM sodium phosphate buffer for 30 minutes at various temperatures. After cooling the sample on ice for 10 minutes, activity was determined using pNPAf as substrate.
6-3. 금 및 화학 물질의 효과 측정6-3. Measure the effects of gold and chemicals
AbfA 활성에 대한 금속 및 다른 화학물질의 영향도 또한 결정하였다. AbfA 활성은 37°C에서 30분 동안 1 또는 10 mM (최종 농도) MnCl2, CaCl2, CoCl2, MgCl2, EDTA, NaCl, KCl, CuCl2, SDS, ZnCl2, 디티오트레이톨 (DTT), 및 β-머캅토에탄올의 존재 하에서 시험하였다. 잔존 활성은 기질로서 pNPAf를 사용하여 결정하였고 화합물이 결여된 경우에 수득된 활성을 100%로 하여 상대적인 퍼센트로서 표현하였다. The influence of metals and other chemicals on AbfA activity was also determined. AbfA activity is 1 or 10 mM (final concentration) MnCl 2 , CaCl 2 , CoCl 2 , MgCl 2 , EDTA, NaCl, KCl, CuCl 2 , SDS, ZnCl 2, Dithiothreitol (DTT) for 30 minutes at 37 ° C. ), And β-mercaptoethanol. Residual activity was determined using pNPAf as the substrate and expressed as relative percentage with 100% of activity obtained when the compound was absent.
6-4. 기 특이성 측정6-4. Group specificity measurement
효소의 기질 특이성은 다음의 크로모제닉 o-니트로페닐(ONP) 및 p-니트로페닐(PNP)-글리코시드를 사용하여 시험하였다: PNP-β-D-글루코피라노시드, PNP-β-D-갈락토피라노시드, PNP-β-D-퓨코피라노시드, PNP-N-아세틸-β-D-글루코스아마이드, PNP-β-L-아라비노피라노시드, PNP-β-D-만노피라노시드, PNP-β-D-자일로피라노시드, PNP-α-D-글루코피라노시드, PNP-α-L-아라비노퓨라노시드, PNP-α-L-아라비노피라노시드, PNP-α-L-람노피라노시드, PNP-α-D-만노피라노시드, 및 PNP-α-D-자일로피라노시드, 및 ONP-β-D-글루코피라노시드, ONP-β-D-갈락토피라노시드, ONP-β-D-퓨코피라노시드 및 ONP-α-D-갈락토피라노시드 (Sigma). 글리코시다제 활성은 37°C에서 5분 동안 하나의 활성 유닛이 분당 1 μmol의 ONP 또는 PNP를 방출하는 것으로 정의된, 2.0 mM 크로모제닉 기질을 사용해서 검사하였다.The substrate specificity of the enzyme was tested using the following chromogenic o -nitrophenyl (ONP) and p -nitrophenyl (PNP) -glycosides: PNP-β-D-glucopyranoside, PNP-β-D Galactopyranoside, PNP-β-D-fucopyranoside, PNP-N-acetyl-β-D-glucoamide, PNP-β-L-arabinofyranoside, PNP-β-D-only Nopyranoside, PNP-β-D-xylpyranoside, PNP-α-D-glucopyranoside, PNP-α-L-arabinofuranoside, PNP-α-L-arabinofyranoside , PNP-α-L-rhamnopyranoside, PNP-α-D-mannopyranoside, and PNP-α-D-xylpyranoside, and ONP-β-D-glucopyranoside, ONP- β-D-galactopyranoside, ONP-β-D-fucopyranoside and ONP-α-D-galactopyranoside (Sigma). Glycosidase activity was tested using a 2.0 mM chromogenic substrate, defined as one active unit releasing 1 μmol of ONP or PNP per minute at 37 ° C. for 5 minutes.
다른 아라비노시드-포함의 기질에 대해서, 반응 용액은 0.1 ml의 AbfA 용액 (1 U)을 2% (wt/vol) 밀가루 아라비노자일란, RDA, 아라비노바이오스, 아라비노트리오스, 아라비노테트라오스 또는 아라비노펜타오스 0.5 ml로 첨가하여 준비하였다. 반응 혼합물은 37°C에서 배양하였다. 시료는 규칙적인 시간에 꺼내서 반응을 중단시키기 위해 끓는 물로 5분간 가열해 주었다. 밀가루 아라비노자일란, RDA, 아라비노바이오스, 아라비노트리오스, 아라비노테트라오스 및 아라비노펜타오스로부터의 산물은 TLC에 의해서 분석하였다. 크로마토그래피는 실리카 겔 60 F254 TLC 플레이트 (Merck)에서 상승법으로서 수행하였다. 용매 시스템은 에틸 아세테이트, 아세트산 및 물(2:1:1)로 구성하였다. 플레이트 상의 당은 120°C에서 10분 동안 가열하여 검출한 후 에탄올에서 5% (vol/vol) 황산과 같이 전개하였다( Wong, D. W. S., V. J. Chan, and S. B. Batt. 2008. Cloning and characterization of a novel exo-α-1,5-L-arabinanase gene and the enzyme. Appl. Microbiol. Biotechnol. 79:941-949). For other arabinoside-containing substrates, the reaction solution contains 0.1 ml of AbfA solution (1 U) in 2% (wt / vol) wheat flour arabinoxylan, RDA, arabinobiose, arabintriose, arabinotetraose. Or by adding 0.5 ml of arabinopentose. The reaction mixture was incubated at 37 ° C. Samples were taken out at regular times and heated with boiling water for 5 minutes to stop the reaction. Products from wheat flour arabinoxylan, RDA, arabinobiose, arabintriose, arabinotetraose and arabinopentaos were analyzed by TLC. Chromatography was performed as a synergistic method on silica gel 60 F 254 TLC plates (Merck). The solvent system consisted of ethyl acetate, acetic acid and water (2: 1: 1). The sugar on the plate was detected by heating at 120 ° C. for 10 minutes and then developed with 5% (vol / vol) sulfuric acid in ethanol (Wong, DWS, VJ Chan, and SB Batt. 2008. Cloning and characterization of a novel exo-α-1,5-L-arabinanase gene and the enzyme.Appl.Microbiol.Biotechnol. 79: 941-949).
동역학 연구는 기질로서 pNPAf (0.05 mM to 5 mM)와 진세노사이드 Rc (0.1mM to 2 mM)를 사용하여 새롭게 정제한 효소를 가지고 수행하였다. 전자에 대해서는, 37°C에서 20분 동안 405 nm에서 p-니트로페놀의 흡광도를 모니터하였다 후자에 대해서는, 진세노사이드 Rc의 가수분해된 산물을 가수분해의 초기 단계에서 HPLC 분석으로서 결정하였다. 수득된 데이터는 Cleland에 의해 보고된 Enzyme Kinetics Program을 사용하여 Km 및 Vmax 을 결정하는데 사용하였다(Cleland, W. W. 1979. Statistical analysis of enzyme kinetic data. Methods Enzymol. 63:103-138).Kinetic studies were performed with freshly purified enzyme using pNPAf (0.05 mM to 5 mM) and ginsenoside Rc (0.1 mM to 2 mM) as substrates. For the former, the absorbance of p -nitrophenol was monitored at 405 nm for 20 minutes at 37 ° C. For the latter, the hydrolyzed product of ginsenoside Rc was determined as HPLC analysis at the initial stage of hydrolysis. The data obtained were used to determine K m and V max using the Enzyme Kinetics Program reported by Cleland (Cleland, WW 1979. Statistical analysis of enzyme kinetic data. Methods Enzymol. 63: 103-138).
실시예 7. 진세노사이드 C-Mc1 및 C-Mc의 준비와 동정 Example 7 Preparation and Identification of Ginsenosides C-Mc1 and C-Mc
진세노사이드 C-Mc1 및 C-Mc는 Terrabcter sp. Gsoil3082로부터의 재조합 β-글루코시다제, BgpA를 사용하여 진세노사이드 Rc의 생전환에 의해서 수득하였다( An, D.-S., C.-H. Cui, H.-G. Lee, L. Wang, S. C. Kim, S.-T. Lee, F. Jin, H. Yu, Y.-W. Chin, H.-K. Lee, W.-T. Im, and S.-G. Kim. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. b-glucosidase that transforms ginsenoside Rb1 into the rare gypenoside XVII and gypenoside LXXV Appl. Environ. Microbiol. 76:5827-5836). 재조합 BgpA는 C3나 C20 위치에 하나 또는 두 개의 글루코스 잔기를 가지는 진세노사이드의 PPD 타입에 대해서 기질 특이성을 나타내고, C3 위치의 외부 글루코스, 다음으로 C3 위치의 내부 글루코스, 마지막으로 C20 위치의 외부 글루코스의 가수분해를 선호한다. 진세노사이드 Rc는 C20의 외부 위치에 말단이 비환원 α-L-아라비노퓨라노실 잔기를 가지기 때문에, BgpA는 C-Mc1 및 C-Mc를 각각 생성하기 위해서 Rc의 C3 위치에 부착된 외부 및 내부 잔기만을 가수분해한다 (도 2). BgpA 및 Rc의 반응 산물을 준비하기 위해서, 1 mg/ml의 Rc 및 0.1 mg/ml의 효소를 포함하는 500 ml 반응 혼합물을 37°C에서 모든 Rc가 대사산물 1으로 전환될 때까지 배양하여, 이를 TLC를 통해서 확인하였다. 이 반응 산물로부터, 0.36 g의 대사산물 1을 수득하여, 그 중 0.2 g를 0.15 g의 대사산물 2를 생성하도록 다른 라운드의 촉매작용(1.0 mg/ml의 효소를 사용하는)으로 넣어주었다. 이 두 번째 반응 혼합물은 물-포화의 n-부탄올로 두 번 추출하고 in vacuo에서 증발시켰다. 핵자기공명(NMR) 분석을 위해 대사산물을 추가로 정제하기 위해서, 각각의 대사산물 1 및 2 100 mg을 UV/RI 검출기와 역상 컬럼(ODS, 500× 20 mm ID, 15 μm)을 갖춘 리사이클링 분취 HPLC 시스템 (LC-9201, Japan Analytical Instrument, Japan)을 사용하여 정제하였다. CH3CN의 isocratic 용매 시스템과 탈이온화된 H2O (7:3)를 사용하였고 검출 파장은 203 nm로 설정하였다. 이러한 방법을 사용하는 동안, 42 mg의 대사산물 1과 33 mg의 대사산물 2를 수득하여 NMR과 질량 분광 (MS) 분석을 위해 넣어주었다. Ginsenosides C-Mc1 and C-McTerrabctersp. Obtained by bioconversion of ginsenoside Rc using recombinant β-glucosidase from Gsoil3082, BgpA (An, D.-S., C.-H. Cui, H.-G. Lee, L.). Wang, SC Kim, S.-T. Lee, F. Jin, H. Yu, Y.-W. Chin, H.-K. Lee, W.-T. Im, and S.-G. Kim. 2010. Identification and characterization of a novelTerrabacter ginsenosidimutans sp. nov. b-glucosidase that transforms ginsenoside Rb1 into the rare gypenoside XVII and gypenoside LXXV Appl. Environ. Microbiol. 76: 5827-5836). Recombinant BgpA exhibits substrate specificity for the PPD type of ginsenosides having one or two glucose residues at the C3 or C20 position, followed by external glucose at C3, then internal glucose at C3, and finally external glucose at C20. Prefer hydrolysis of. Ginsenoside Rc is terminally non-reducing α- at the outer position of C20LSince having arabinofuranosyl residues, BgpA hydrolyzes only external and internal residues attached to the C3 position of Rc to produce C-Mc1 and C-Mc, respectively (FIG. 2). To prepare reaction products of BgpA and Rc, 500 ml reaction mixture containing 1 mg / ml of Rc and 0.1 mg / ml of enzyme was incubated at 37 ° C. until all Rc were converted to metabolite 1, This was confirmed by TLC. From this reaction product, 0.36 g of metabolite 1 was obtained, 0.2 g of which was subjected to another round of catalysis (using 1.0 mg / ml of enzyme) to produce 0.15 g of metabolite 2. This second reaction mixture is extracted twice with water-saturated n-butanol andin vacuoEvaporated at For further purification of metabolites for nuclear magnetic resonance (NMR) analysis, 100 mg of each metabolite 1 and 2 were recycled with a UV / RI detector and a reversed phase column (ODS, 500 × 20 mm ID, 15 μm). Purification was performed using a preparative HPLC system (LC-9201, Japan Analytical Instrument, Japan). CH3CN's isocratic solvent system and deionized H2O (7: 3) was used and the detection wavelength was set to 203 nm. While using this method, 42 mg of metabolite 1 and 33 mg of metabolite 2 were obtained and placed for NMR and mass spectrometry (MS) analysis.
NMR 스펙트럼 데이터는 피리딘에서 Varian Unity 500 NMR 분광계 상에서 기록하였다. High resolution electrospray ionization mass spectra (HR-ESIMS)는 Waters Q-Tof Premier 질량 분광계 상에서 측정하였다.NMR spectral data were recorded on a Varian Unity 500 NMR spectrometer in pyridine. High resolution electrospray ionization mass spectra (HR-ESIMS) were measured on a Waters Q-Tof Premier mass spectrometer.
실시예 8. Thin-Layer Chromatography (TLC)를 이용한 진세노사이드 분석Example 8 Ginsenoside Analysis Using Thin-Layer Chromatography (TLC)
TLC는 용매로서 CHCl3-CH3OH-H2O (70:30:5, vol/vol, lower phase)를 사용하여 60F254 실리카 겔 플레이트(Merck, Germany)를 사용하여 수행하였다. TLC 플레이트 상의 스팟은 10% (vol/vol) H2SO4를 가지고 전개시킨 다음, 110ºC에서 5분 동안 가열하여 검출하였다. TLC was performed using a 60F 254 silica gel plate (Merck, Germany) using CHCl 3 -CH 3 OH-H 2 O (70: 30: 5, vol / vol, lower phase) as solvent. Spots on TLC plates were developed with 10% (vol / vol) H 2 SO 4 and then heated at 110 ° C. for 5 minutes.
실시예 9. High-Performance Liquid Chromatography (HPLC) 분석Example 9 High-Performance Liquid Chromatography (HPLC) Analysis
진세노사이드의 HPLC 분석은 4개 용매 펌프(quaternary pump), 자동 주입기(automatic injector), 단일 파장 UV 검출기(single wavelength UV detector) (model 730D)로 갖춰진 HPLC 시스템 (Younglin Co. Ltd, Korea), 피크 확인과 통합에 대해서는 Younglin's AutoChro 3000 소프트웨어를 이용해서 수행하였다. Ginsenoside HPLC analysis is carried out with an HPLC system (Younglin Co. Ltd, Korea) equipped with four quaternary pumps, an automatic injector, a single wavelength UV detector (model 730D), Peak identification and integration were performed using Younglin's AutoChro 3000 software.
분리는 보호 컬럼(Agilent XDB C18, 5 μm, 12.5 mm x 4.6 mm inner diameter)을 포함한 ZORBAX Eclipse XDB-C18 컬럼 (5 μm, 250 x 4.6 mm inner diameter) (Agilent, USA)을 사용하여 수행하였다. 25% 용매 A (acetonitrile)와 75% 용매 B (water)를 가지고 구배 용리(Gradient elution)를 시작한 후, 다음과 같이 진행하였다: A 25 내지 32% (vol/vol), 0-10분 A 32 내지 55% (vol/vol), 10-15분 A 55 내지 60% (vol/vol), 15-20분 A 60 내지 100% (vol/vol), 20-25분 A 100% (vol/vol), 25-27분 A 100 내지25% (vol/vol), 27-30분 A 25% (vol/vol), 30-40분. 유속은 1.0 ml/min으로 유지하였고 검출은 흡광도 203 nm에서 모니터하여 수행하였다. 주입 부피는 25 μl 였다. Separation is performed using a ZORBAX Eclipse XDB-C 18 column (5 μm, 250 x 4.6 mm inner diameter) (Agilent, USA) with guard column (Agilent XDB C 18 , 5 μm, 12.5 mm x 4.6 mm inner diameter) It was. After starting gradient elution with 25% solvent A (acetonitrile) and 75% solvent B (water), proceed as follows: A 25-32% (vol / vol), 0-10 min A 32 To 55% (vol / vol), 10-15 minutes A 55 to 60% (vol / vol), 15-20 minutes A 60 to 100% (vol / vol), 20-25 minutes A 100% (vol / vol ), 25-27 min A 100-25% (vol / vol), 27-30 min A 25% (vol / vol), 30-40 min. The flow rate was maintained at 1.0 ml / min and detection was carried out by monitoring at absorbance 203 nm. Injection volume was 25 μl.
결과 result
실시예 1. Example 1. abfAabfA 의 클로닝Cloning of
이전에, 진세노사이드를 가수분해하는 박테리아(Gsoil3054로 명명된)의 균주를 한국, 포천의 인삼밭의 토양으로부터 동정하였다. 균주Gsoil3054는 PPD 타입 진세노사이드 Rb1, Rb2 및Rc를 Rd로 동시에 전환할 수 있는데, 이 특성은 Gsoil3054가 다른 동정된 진세노사이드 대사 박테리아와 구별되는 점이다. Gsoil3054는 그의 분류 위치를 명백하게 하기 위한 다형 특성화 과정을 통해 Rhodanobacter ginsenosidimutans로 규명되었다 (An, D. S., H. G. Lee, S. T. Lee, and W. T. Im. 2009. Rhodanobacter ginsenosidimutanssp. nov., isolated from soil of a ginseng field in South Korea. Int. J. Syst. Evol. Microbiol. 59:691-694). Previously, strains of bacteria (named Gsoil3054) that hydrolyze ginsenosides have been identified from soils of ginseng fields in Pocheon, Korea. Strain Gsoil3054 can simultaneously convert PPD type ginsenosides Rb1, Rb2 and Rc to Rd, which characterizes Gsoil3054 from other identified ginsenoside metabolizing bacteria. Gsoil3054 has been identified as Rhodanobacter ginsenosidimutans through a polymorphic characterization process to clarify its classification site (An, DS, HG Lee, ST Lee, and WT Im. 2009. Rhodanobacter ginsenosidimutans sp. Nov. , Isolated from soil of a ginseng field in South Korea.Int. J. Syst.Evol.Microbiol. 59: 691-694).
Gsoil3054 균주가 Rb1, Rb2 및 Rc를 가수분해 할 수 있으므로, 세 가지 종류의 글루코시드-가수분해효소 활성인 β-D-글루코시다제, α-L-아라비노피라노시다제 및/또는 α-L-아라비노퓨라노시다제 활성을 가질 수 있다. Gsoil3054로부터 진세노사이드를 가수분해하는 효소에 대하여 각각의 유전자를 동정하고 클로닝하기 위해서, 본 발명자들은 포스미드 라이브러리를 만들어내고, 포스미드 벡터의 전체 서열을 수득하였다. 포스미드 클론의 평균 삽입 사이즈는 약 40 kb였으며, 삽입물을 포함한 클론들의 비율은 약 91%였다. β-D-글루코시다제를 생성하는 포스미드 클론은 아가 배지 상에서 자라나는 콜로니 주변으로 푸른 지역을 생성하는, X-Glc의 발색 분해(degradation)를 모니터함으로써 스크리닝하였다. 이러한 초기의 스크리닝 프로토콜에 이어서, 본 발명자들은 α-L-아라비노피라노시다제 또는 α-L-아라비노퓨라노시다제 활성에 따라서 선택된 클론들의 수의 범위를 줄여나갔다. 포스미드 라이브러리에서 1400 클론 중 25개는 12.5 μg/ml의 클로람페니콜 및 27 μg/ml 의 X-Glc를 포함하는 LB 아가 플레이트 상에 푸른색의 콜로니들과 연관이 있었다. 이러한 포스미드 클론 중 하나는 β-D-글루코시다제, α-L-아라비노피라노시다제 및 α-L-아라비노퓨라노시다제 활성에 대해서 양성이었고, 진세노사이드 Rc, C-Mc1 및 C-Mc를 Rd로 전환할 수 있었다. 상기의 클론은 전체 서열화를 위해 선택되었다. Since the Gsoil3054 strain can hydrolyze Rb1, Rb2 and Rc, three types of glucoside-hydrolase activity, β-D-glucosidase, α-L-arabinofyranosidase and / or α- It may have L-arabinofuranosidase activity. In order to identify and clone individual genes for enzymes that hydrolyze ginsenosides from Gsoil3054, we generated a phosmid library and obtained the full sequence of the phosphide vector. The average insertion size of the phosphide clones was about 40 kb and the proportion of clones containing the inserts was about 91%. Phosmid clones producing β-D-glucosidase were screened by monitoring the gradation of X-Glc, creating a green area around colonies growing on agar media. Following this initial screening protocol, we have reduced the range of number of clones selected according to α-L-arabinofyranosidase or α-L-arabinofuranosidase activity. 25 of the 1400 clones in the phosmid library were associated with blue colonies on LB agar plates containing 12.5 μg / ml chloramphenicol and 27 μg / ml X-Glc. One of these phosphide clones was positive for β-D-glucosidase, α-L-arabinopyranosidase and α-L-arabinofuranosidase activity, and ginsenoside Rc, C-Mc1 And C-Mc could be converted to Rd. The clones above were selected for overall sequencing.
양성의 클론의 삽입은 34kb 게놈 단편이었다. 뉴클레오티드 서열을 분석함으로써 그것이 34개의 추정의 ORFs를 포함하는 것을 밝혔다. 첫 번째 ORF의 재조합 효소는 Rb1 및 Rb2를 Rd로 변형시킬 수 있다 두 번째 ORF를 본 연구를 위해서 사용하였다. The insertion of positive clones was a 34 kb genomic fragment. Analysis of the nucleotide sequence revealed that it contained 34 putative ORFs. The recombinant enzyme of the first ORF can transform Rb1 and Rb2 into Rd. A second ORF was used for this study.
실시예 2. 재조합 AbfA의 발현 및 정제Example 2. Expression and Purification of Recombinant AbfA
추정의 α-N-아라비노퓨라노시다제 유전자인 abfA를 PCR을 통해 증폭한 후, IPTG-유도적 T7 프로모터의 통제 아래 E. coli BL21-CodonPlus (DE3)-RIL에서 발현될 수 있는 MBP 유전자 융합(MBP-AbfA)을 만들어내기 위해서, pET21a-MBP(TEV)로 서브클로닝시켰다. 융합 단백질의 산출량을 최대화하기 위해서, 본 발명자들은 여러 가지 유도 상태에서 시험하였다. 18°C에서 8시간 동안 0.1 mM IPTG를 이용한 유도는 가장 높은 수치의 가용성의 활성 융합 단백질을 생성하였다. MBP-AbfA 융합 단백질은 아밀로스 수지 컬럼, 뒤이어 DEAE-셀룰로스 DE-52 크로마토그래피에 의해서 정제하고, MBP 잔기를 제거하기 위해서 TEV 단백질 분해 효소를 가지고 분해하였다. 재조합 AbfA는 DEAE-셀룰로스 컬럼 상에서 연속적인 크로마토그래피에 의해서 정제하였다. 이러한 절차는 AbfA의 18.4배 순도와 조추출액으로부터의 57%의 회수율로 귀결되었다(표 1). 천연의 α-N-아라비노퓨라노시다제의 분자적인 질량은 크기 배제 크로마토그래피(size exclusion chromatography)에 의해 결정된 것과 같이, 247,000 Da였으며 SDS-PAGE에 의해서는 58,000Da였다(도 1). SDS-PAGE의 결과는 전환된 폴리펩티드 서열에 기반을 두고 추정한 크기와 일치하였다 (56,222 Da). 이러한 결과는 α-N-아라비노퓨라노시다제가 4량체 단백질로서 생리학적으로 활성이라는 것을 시사한다(Canakci, S., A. O. Belduz, B. C. Saha, A. Yasar, F. A. Ayaz, and N. Yayli. 2007. Purification and characterization of a highly thermostable α-L-Arabinofuranosidase from Geobacillus caldoxylolyticus TK4. Applied Microbiology and Biotechnology 75:813-820).Presumption α-N-arabinofuranosidase geneabfAAmplified by PCR, and under the control of the IPTG-induced T7 promoterE. coli To produce MBP gene fusion (MBP-AbfA) that can be expressed in BL21-CodonPlus (DE3) -RIL, it was subcloned into pET21a-MBP (TEV). In order to maximize the yield of fusion proteins, we tested in various induction states. Induction with 0.1 mM IPTG for 8 hours at 18 ° C. produced the highest levels of soluble active fusion protein. MBP-AbfA fusion protein was purified by amylose resin column followed by DEAE-cellulose DE-52 chromatography and digested with TEV proteolytic enzymes to remove MBP residues. Recombinant AbfA was purified by continuous chromatography on DEAE-cellulose column. This procedure resulted in 18.4 times purity of AbfA and 57% recovery from the crude extract (Table 1). The molecular mass of native α-N-arabinofuranosidase was 247,000 Da, as determined by size exclusion chromatography, and 58,000 Da by SDS-PAGE (FIG. 1). The results of SDS-PAGE were consistent with the estimated size based on the converted polypeptide sequence (56,222 Da). These results suggest that α-N-arabinofuranosidase is physiologically active as a tetrameric protein (Canakci, S., AO Belduz, BC Saha, A. Yasar, FA Ayaz, and N. Yayli. 2007 Purification and characterization of a highly thermostable α-L-Arabinofuranosidase from Geobacillus caldoxylolyticus TK4.Applied Microbiology and Biotechnology 75: 813-820).
표 1
Figure PCTKR2011001410-appb-T000001
Table 1
Figure PCTKR2011001410-appb-T000001
실시예 3. 효소 특성화Example 3. Enzyme Characterization
3-1. pH 변화에 따른 효과3-1. Effect of pH Change
AbfA는 넓은 pH 범위 (pH 5.0 내지 10.0)를 넘어서는 활성을 보였다. 최적의 pH는 인산 나트륨 완충액 내에서 pH 7.5였다(도 4A). 효소는 pH 6.0 내지 10.0에서 그의 최상의 활성을 96% 이상 유지하였다 효소는 pH 5.0에서 잔여 활성을 나타냈고, pH 4.0에서는 활성이 나타나지 않았다. AbfA showed activity over a wide pH range (pH 5.0-10.0). The optimal pH was pH 7.5 in sodium phosphate buffer (FIG. 4A). The enzyme maintained at least 96% of its best activity at pH 6.0-10.0. The enzyme showed residual activity at pH 5.0 and no activity at pH 4.0.
3-2. 온도 변화에 따른 효과3-2. Effect of temperature change
AbfA 활성에 대한 최상의 온도는 37°C였다. 효소는 37°C 보다 낮은 온도에서 안정하였으나, 45°C에서 30분 동안 배양 한 후에는 그 활성의 거의 100%를 손실하였다(도 4B). The best temperature for AbfA activity was 37 ° C. The enzyme was stable at temperatures lower than 37 ° C., but after culturing for 30 minutes at 45 ° C., nearly 100% of its activity was lost (FIG. 4B).
3-3. 금속 및 화학 물질의 효과3-3. Effect of metals and chemicals
금속 이온인 EDTA, β-머캅토에탄올의 효과와 AbfA 활성에 대한 SDS 또한 조사하였다(표 2). 효소는 활성화되는데 Mg2+를 필요로 하지 않았고 1mM의 Mn2+, Zn2+ 또는 Cu2+와 10 mM의 Co2+ 또는 Ca2+에 의해서 유의미하게 억제되었다. AbfA 활성은 공지의 티올 그룹 억제제인, DTT 또는 β-머캅토에탄올에 의해서 영향을 받지 않았다. 이러한 결과는 설프하이드릴 그룹이 효소의 촉매작용적 중심에 연관되지 않을 수 있으나, 활성 단백질의 삼차원 구조를 유지하는데 상당히 필수적일 것이라는 것을 시사한다. 킬레이트 약물인 EDTA은 AbfA 활성을 억제하지 않았는데, 이는 효소적인 활성에 대해서 2가의 양이온이 필요하지 않음을 지시한다. 효소적인 활성은 10 mM의 SDS 존재 하에서 눈에 띄게 억제되었다. The effects of metal ions EDTA, β-mercaptoethanol and SDS on AbfA activity were also investigated (Table 2). The enzyme did not require Mg 2+ to be activated and was significantly inhibited by 1 mM Mn 2+ , Zn 2+ or Cu 2+ and 10 mM Co 2+ or Ca 2+ . AbfA activity was not affected by DTT or β-mercaptoethanol, which are known thiol group inhibitors. These results suggest that sulfhydryl groups may not be involved in the catalytic center of the enzyme, but will be quite essential for maintaining the three-dimensional structure of the active protein. The chelating drug EDTA did not inhibit AbfA activity, indicating that divalent cations are not required for enzymatic activity . Enzymatic activity was markedly inhibited in the presence of 10 mM SDS.
표 2
Figure PCTKR2011001410-appb-T000002
TABLE 2
Figure PCTKR2011001410-appb-T000002
3-4. 기질 특이성3-4. Substrate specificity
α-N-아라비노퓨라노시다제의 반응상수를 이중역수그래프(double reciprocal graph)로부터 계산하였을때 pNPAf 가수분해에 대하여 Km 및 Vmax 는 각각 0.53 ± 0.07 mM 및 27.1 ±1.7 μmolmin-1mg of protein-1였으며, 진세노사이드 Rc에 대해서는 각각 0.30 ±0.07 mM 및 49.6 ± 4.1 μmolmin-1mg of protein-1였다.When the reaction constant of α-N-arabinofuranosidase was calculated from a double reciprocal graph, for pNPAf hydrolysis, K m and V max were 0.53 ± 0.07 mM and 27.1 ± 1.7 μmol min -1 mg, respectively. of protein -1 and 0.30 ± 0.07 mM and 49.6 ± 4.1 μmol min -1 mg of protein -1 for ginsenoside Rc, respectively.
실시예 4. 진세노사이드의 생전환Example 4 Bioconversion of Ginsenosides
AbfA는 임의의 글루코스나 아라비노피라노스를 생성하기 위해 Rb1 및 Rb2와 반응하지 않았다. 보고된 진세노사이드 중에서, 단지 Rc, C-Mc1 및 C-Mc가 C20 위치에 말단의 비환원 α-L-아라비노퓨라노실 잔기를 가지고 있었다. 진세노사이드 Rc와 대조적으로, C-Mc1 및 C-Mc는 미가공의 인삼에 존재하지 않거나 미량으로 존재하며, C3 위치의 글리코피라노실 잔기의 가수분해를 통해 Rc로부터 생성될 수 있다. 본 발명자들은 C-Mc1 및 C-Mc를 상업적으로 얻을 수 없었기 때문에, 재조합 BgpA, 아글리콘의 C3로부터 말단의 글리코피라노실 그룹을 특이적이며 연속적으로 가수분해하는 진세노사이드를 가수분해하는 β-글루코시다제를 사용하여 C-Mc1 및 C-Mc를 제작하였다(An, D.-S., C.-H. Cui, H.-G. Lee, L. Wang, S. C. Kim, S.-T. Lee, F. Jin, H. Yu, Y.-W. Chin, H.-K. Lee, W.-T. Im, and S.-G. Kim. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutanssp. nov. b-glucosidase that transforms ginsenoside Rb1 into the rare gypenoside XVII and gypenoside LXXV Appl. Environ. Microbiol. 76:5827-5836). Rc 상에 말단의 비환원 α-L-아라비노퓨라노실 잔기가 BgpA의 기질이 아니기 때문에, 효소는 오로지 Rc의 C3 위치의 외부와 내부의 글루코스 잔기 만을 각각C-Mc1 (대사산물 1) 및 C-Mc (대사산물 2)로 가수분해할 수 있었는데 (도 2), 이들의 화학적 구조는 NMR 및 MS 데이터 분석을 통해서 확인하였다. NMR 및 MS 분석에 의해서 그들의 화학적 구조를 확인한 후에, C-Mc1 및 C-Mc는 재조합 AbfA에 대하여 Rc와 함께 기질로서 사용되었다. 진세노사이드 Rc, C-Mc1 및 C-Mc의 가수분해 산물은 TLC 및 HPLC 분석에 의해 규칙적인 간격으로 확인하였다. 도 3 및 도 5에 나타낸 바와 같이, 효소는 세 가지 모두의 진세노사이드로부터의 아라비노퓨라노실 잔기를 가수분해하였다. 표준의 진세노사이드들의 Rf 수치(TLC에 의해서 결정된)와 대사산물 보존 시간(HPLC 분석에 의해 결정된)을 비교한 것을 기반으로, Rc, C-Mc1 및 C-Mc로부터의 대사산물은 각각Rd, F2 및 C-K로 확인되었다(An, D.-S., C.-H. Cui, H.-G. Lee, L. Wang, S. C. Kim, S.-T. Lee, F. Jin, H. Yu, Y.-W. Chin, H.-K. Lee, W.-T. Im, and S.-G. Kim. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. b-glucosidase that transforms ginsenoside Rb1 into the rare gypenoside XVII and gypenoside LXXV Appl. Environ. Microbiol. 76:5827-5836, Ko, S. R., Y. Suzuki, K. Suzuki, K. J. Choi, and B. G. Cho. 2007. Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method. Chem. Pharm. Bull. 55:1522-1527). AbfA did not react with Rb1 and Rb2 to produce any glucose or arabinopyranose. Of the reported ginsenosides, only Rc, C-Mc1 and C-Mc had terminally non-reducing α-L-arabinofuranosyl residues at the C20 position. In contrast to ginsenosides Rc, C-Mc1 and C-Mc are either absent or present in trace amounts in raw ginseng and can be generated from Rc via hydrolysis of the glycofyranosyl residue at the C3 position. Since the inventors were unable to obtain C-Mc1 and C-Mc commercially, β- which hydrolyzes ginsenosides that specifically and continuously hydrolyze the terminal glycofyranosyl groups from recombinant BgpA, C3 of aglycone. Glucosidase was used to prepare C-Mc1 and C-Mc (An, D.-S., C.-H. Cui, H.-G. Lee, L. Wang, SC Kim, S.-T Lee, F. Jin, H. Yu, Y.-W. Chin, H.-K. Lee, W.-T. Im, and S.-G. Kim. 2010. Identification and characterization of a novelTerrabacter ginsenosidimutanssp. nov. b-glucosidase that transforms ginsenoside Rb1 into the rare gypenoside XVII and gypenoside LXXV Appl. Environ. Microbiol. 76: 5827-5836). Since the terminal, non-reducing α-L-arabinofuranosyl residue on Rc is not a substrate of BgpA, the enzyme only contains glucose residues outside and inside the C3 position of Rc, respectively, C-Mc1 (metabolite 1) and Hydrolysis to C-Mc (metabolic 2) was possible (FIG. 2), and their chemical structures were confirmed by NMR and MS data analysis. After confirming their chemical structures by NMR and MS analysis, C-Mc1 and C-Mc were used as substrates with Rc for recombinant AbfA. Hydrolysis products of ginsenosides Rc, C-Mc1 and C-Mc were identified at regular intervals by TLC and HPLC analysis. As shown in FIGS. 3 and 5, the enzyme hydrolyzed the arabinofuranosyl residues from all three ginsenosides. Based on the comparison of the Rf values (determined by TLC) and metabolite retention time (determined by HPLC analysis) of the standard ginsenosides, the metabolites from Rc, C-Mc1 and C-Mc are Rd, F2 and CK (An, D.-S., C.-H. Cui, H.-G. Lee, L. Wang, SC Kim, S.-T. Lee, F. Jin, H. Yu , Y.-W. Chin, H.-K. Lee, W.-T. Im, and S.-G. 2010. Identification and characterization of a novelTerrabacter ginsenosidimutans sp. nov. b-glucosidase that transforms ginsenoside Rb1 into the rare gypenoside XVII and gypenoside LXXV Appl. Environ. Microbiol. 76: 5827-5836, Ko, S. R., Y. Suzuki, K. Suzuki, K. J. Choi, and B. G. Cho. 2007. Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method. Chem. Pharm. Bull. 55: 1522-1527).
실시예 5. C-Mc1와C-Mc의 구조적 동정Example 5 Structural Identification of C-Mc1 and C-Mc
대사산물 1에 상응하는 양성자화된 분자적 이온 피크는 대사산물 1의 ESI MS 스텍트럼에서 m/z 917 (C47H81O17)로 관찰하였다. 대사산물 1의 1H NMR 분광 데이터는(표 3) 4.92 (1H, d, J = 7.8 Hz) 및5.12 (1H, d, J = 7.8 Hz)에서 β-글루코스에 속하는, 두 개의 아노머적 양성자 신호를 보였고, 5.63 (1H, d, J = 1.6 Hz)에서 α-아라비노퓨라노스에 속하는, 하나의 아노머적 양성자 신호를 보였다. 아노머적 양성자의 존재는 하나의 글루코스 유닛이 시작 물질인 진세노사이드 Rc로부터 제거되었음을 지시하였다. 대사산물 1의 13C NMR 화학적 변화는 문헌에서 Mb에 대한 신호와 밀접하게 연관이 있음을 보였다(Bae, E. A., M. K. Choo, E. K. Park, S. Y. Park, H. Y. Shin, and D. H. Kim. 2002. Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity. Biological and Pharmaceutical Bulletin 25:743-747). 따라서 이 화합물은 C-Mc1로서 확인되었다. 대사산물 2의 1H 및 13C NMR 데이터는 글루코스 유닛에 대한 신호가 부재하고 88.0부터 78.0까지의 13C 화학적 변화가 이동하는 것을 제외하면, C-Mc1의 데이터와 아주 유사했다. 이러한 차이점들은 C-Mc1의 C3 위치에서 글루코스가 가수분해되고 자유 하이드록실 그룹이 대사산물 2의 구조 내에 존재한다는 것을 시사한다. 이것은 ESI MS에 의한 m/z 755 (C41H71O12)에서 양성자화된 분자적 이온 피크의 검출과 문헌에서 보고된 수치와의 비교를 통해서 확인되었다. 따라서, 대사산물 2의 구조는 C-Mc로서 확인되었다.Protonated molecular ion peaks corresponding to metabolite 1 were observed at m / z 917 (C 47 H 81 O 17 ) in the ESI MS spectrum of metabolite 1. 1 H NMR spectral data of Metabolite 1 (Table 3) show two anomeric proton signals, belonging to β-glucose at 4.92 (1H, d, J = 7.8 Hz) and 5.12 (1H, d, J = 7.8 Hz) It showed one anomeric proton signal, belonging to α-arabinofuranos at 5.63 (1H, d, J = 1.6 Hz). The presence of anomeric protons indicated that one glucose unit was removed from the starting material ginsenoside Rc. 13 C NMR chemical changes of metabolite 1 have been shown to be closely associated with signals for Mb in the literature (Bae, EA, MK Choo, EK Park, SY Park, HY Shin, and DH Kim. 2002. Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity.Biological and Pharmaceutical Bulletin 25: 743-747). Thus this compound was identified as C-Mc1. The 1 H and 13 C NMR data of Metabolite 2 were very similar to the data of C-Mc1 except for the absence of a signal for glucose units and the shift of 13 C chemical changes from 88.0 to 78.0. These differences suggest that glucose is hydrolyzed at the C3 position of C-Mc1 and that free hydroxyl groups are present in the structure of metabolite 2. This was confirmed by detection of protonated molecular ion peaks at m / z 755 (C 41 H 71 O 12 ) by ESI MS and comparison with the values reported in the literature. Thus, the structure of metabolite 2 was identified as C-Mc.
표 3
Figure PCTKR2011001410-appb-T000003
TABLE 3
Figure PCTKR2011001410-appb-T000003
실시예 6. AbfA의 기질 특이성Example 6. Substrate Specificity of AbfA
AbfA의 기질 특이성은 α와 β 구성을 가진 2.0 mM PNP- 및 ONP-글리코시드를 사용하여 시험하였다. AbfA는 오로지 pNPAf에 대해서만 활성이었다 PNP-β-D-글루코피라노시드, PNP-β-D-갈락토피라노시드, PNP-β-D-퓨코피라노시드, PNP-N-acetyl-β-D-글루코스아마이드, PNP-β-L-아라비노피라노시드, PNP-β-D-만노피라노시드, PNP-β-D-자일로피라노시드, PNP-α-D-글루코피라노시드, PNP-α-L-아라비노피라노시드, PNP-α-L-람노피라노시드, PNP-α-D-만노피라노시드, 및 PNP-α-D-자일로피라노시드, 및 ONP-β-D-글루코피라노시드, ONP-β-D-갈락토피라노시드, ONP-β-D-퓨코피라노시드 및 ONP-α-D-갈락토피라노시드를 포함하는 다른 기질은 가수분해되지 않았다. 아라비노를 포함하는 중합체의 분해 양상은 AbfA가 오로지 비환원 말단 아라비노퓨라노실 잔기 상에서만 활성이 되는 것을 밝혔다. AbfA의 작용(외부- 대 내부-작용) 방식을 식별하기 위하여, 아라비노스를 포함하는 올리고 또는 다당류의 가수분해를 시험하였다. 효소는 RDA에 대해서 어떠한 활성도 보이지 않았는데, 이는 내부적 아라비노스 가수분해효소(endoarabinanase)활성을 가지지 않음을 지시한다. AbfA는 α-1,5-연결의 아라비노바이오스, 아라비노트리오스, 아라비노테트라오스, 및 아라비노펜타오스에 관해서 활성을 보였다. 모든 경우에, 오로지 아라비노스만이 최종 산물로서 검출되었고 다른 잔여물들은 TLC에 의해 검출되지 않았다(도 7). α-1,2 및 α-1,3 아라비노퓨라노실 잔기를 포함하는 밀가루 아라비노자일란에 대해서는 어떠한 활성도 검출되지 않았다. 이러한 결과는 AbfA가 비환원적 말단 α-1,5-연결의 L-아라비노퓨라노스 잔기를 가수분해하나, 비환원적 말단 α-1,2 또는 α-1,3-연결의 아라비노퓨라노실 잔기를 가수분해 하지 않는 외부-작용 효소임을 지시한다. 또한, AbfA는 진세노사이드 Rc, C-Mc1 및 C-Mc의 C20 위치에서 각각 진세노사이드 Rd, F2, 및 C-K를 생성하도록, 말단의 비환원적 α-L-아라비노퓨라노실 잔기를 가수분해할 수 있을 것이다. Rc, C-Mc1 및 C-Mc의 독자적인 아글리콘 구조와 더불어, 이러한 화합물의 말단적 비환원의 α-L-아라비노퓨라노실 잔기가 C20 위치에서 내부 글루코스와 α-1,6-연결이라는 사실은 Rc, C-Mc1 및 C-Mc가 α-아라비노퓨라노시다제의 기질 특이성을 조사하는데 훌륭한 기질일 것임을 시사한다. 게다가, 이러한 진세노사이드의 대사산물은 TLC 및 HPLC에 의해서 손쉽게 검출될 수 있다. 이것은 효소가 아라비노퓨라노실 그룹에 대해서 매우 높은 특이성을 가지며, 이전에 보고된 효소들과 달리, 오로지 외부-타입 효소로서 작용한다는 것을 의미한다. 예를 들어, GH 51 아라비노퓨라노시다제는 아라비난과 자일란(Flipphi, M. J. A., J. Visser, P. Van der Veen, and L. H. De Graaff. 1994. Arabinase gene expression in Aspergillus niger: Indications for coordinated regulation. Microbiology 140:2673-2682)으로부터 α-1,2 및 α-1,3 아라비노퓨라노실 잔기 둘다를 제거하며, 이 패밀리의 일부 효소는 카르복실 셀룰로스 및 자일란에 대해서 β-1,4-내부글루카나제 활성을 나타낸다(Eckert, K., and E. Schneider. 2003. A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur. J. Biochem. 270:3593-3602). Substrate specificity of AbfA was tested using 2.0 mM PNP- and ONP-glycosides with α and β configurations. AbfA was only active against pNPAf PNP-β-D-glucopyranoside, PNP-β-D-galactopyranoside, PNP-β-D-fucopyranoside, PNP-N-acetyl-β- D-glucoseamide, PNP-β-L-arabinopyranoside, PNP-β-D-mannopyranoside, PNP-β-D-xylopyranoside, PNP-α-D-glucopyranoside , PNP-α-L-arabinopyranoside, PNP-α-L-rhamnopyranoside, PNP-α-D-mannopyranoside, and PNP-α-D-xylpyranoside, and ONP Other substrates including -β-D-glucopyranoside, ONP-β-D-galactopyranoside, ONP-β-D-fucopyranoside and ONP-α-D-galactopyranoside Not hydrolyzed. Degradation aspects of the polymer comprising arabino revealed that AbfA was only active on the non-reducing terminal arabinofuranosyl moiety. To identify the mode of action (outer-to-inner) of AbfA, hydrolysis of oligos or polysaccharides comprising arabinose was tested. The enzyme did not show any activity against RDA, indicating that it did not have internal arabinose hydrolase (endoarabinanase) activity. AbfA has been shown to be active against α-1,5-linked arabinobiose, arabintriose, arabinotetraose, and arabinofentaose. In all cases, only arabinose was detected as the final product and other residues were not detected by TLC (FIG. 7). No activity was detected for wheat flour arabinoxylan comprising α-1,2 and α-1,3 arabinofuranosyl residues. These results indicate that AbfA hydrolyzes non-reducing terminal α-1,5-linked L-arabinofuranos residues, while non-reducing terminal α-1,2 or α-1,3-linked arabinofuranosyl It indicates that the residue is an external-acting enzyme that does not hydrolyze the residue. AbfA also hydrolyzes terminally non-reducing α-L-arabinofuranosyl residues to produce ginsenosides Rd, F2, and CK at the C20 positions of ginsenosides Rc, C-Mc1 and C-Mc, respectively. It can be disassembled. In addition to the unique aglycone structures of Rc, C-Mc1 and C-Mc, the terminally non-reducing α-L-arabinofuranosyl residues of these compounds are termed α-1,6-linkages with internal glucose at the C20 position. The fact suggests that Rc, C-Mc1 and C-Mc would be excellent substrates to investigate the substrate specificity of α-arabinofuranosidase. In addition, metabolites of these ginsenosides can be easily detected by TLC and HPLC. This means that the enzyme has very high specificity for the arabinofuranosyl group and, unlike previously reported enzymes, acts only as an external-type enzyme. For example, GH 51 arabinofuranosidase (Flipphi, M. J. A., J. Visser, P. Van der Veen, and L. H. De Graaff. 1994. Arabinase gene expression inAspergillus nigerIndications for coordinated regulation. Microbiology 140: 2673-2682) removes both α-1,2 and α-1,3 arabinofuranosyl residues, and some enzymes in this family are β-1,4-internal to carboxyl cellulose and xylan Exhibits glucanase activity (Eckert, K., and E. Schneider. 2003. A thermoacidophilic endoglucanase (CelB) fromAlicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur. J. Biochem. 270: 3593-3602).
결론적으로, 본 발명자들은 진세노사이드 Rc, C-Mc1 및 C-Mc로부터 α-1,6 아라비노퓨라노실 잔기를 제거하여 각각 미량의 진세노사이드 Rd, F2 및 C-K를 생성하는 GH 패밀리 51 α-N-아라비노퓨라노시다제를 클로닝하고 특성화하였다. 효소는 또한 아라비노바이오스, 아라비노트리오스, 아라비노테트라오스, 및 아라비노펜타오스로부터 α-1,5 아라비노퓨라노실 잔기를 가수분해한다. 이것은 진세노사이드의 생전환을 통하여 진세노사이드 C-Mc1 및 C-Mc를 F2 및 C-K로 전환하는 효소를 클로닝하는 것에 관한 최초의 보고이다. In conclusion, we remove the α-1,6 arabinofuranosyl residues from ginsenosides Rc, C-Mc1 and C-Mc to produce trace amounts of ginsenosides Rd, F2 and CK, respectively. α-N-arabinofuranosidase was cloned and characterized. The enzyme also hydrolyzes α-1,5 arabinofuranosyl residues from arabinobiose, arabintriose, arabinotetraose, and arabinofentaose. This is the first report on cloning enzymes that convert ginsenosides C-Mc1 and C-Mc to F2 and C-K through the bioconversion of ginsenosides.
[규칙 제26조에 의한 보정 03.05.2011] 
Figure WO-DOC-FIGURE-164
[Revision under Rule 26 03.05.2011]
Figure WO-DOC-FIGURE-164

Claims (21)

  1. 로다노박터 진세노시디뮤탄스(Rhodanobacter ginsenosidimutans) 유래의 α-N-아라비노퓨라노시다제. Α-N-arabinofuranosidase derived from Rhodanobacter ginsenosidimutans .
  2. 제1항에 있어서, 로다노박터 진세노시디뮤탄스(Rhodanobacter ginsenosidimutans) 는 KCTC22231T 인 α-N-아라비노퓨라노시다제.The α-N-arabinofuranosidase of claim 1, wherein Rhodanobacter ginsenosidimutans is KCTC22231T.
  3. 제1항에 있어서, 서열번호 1로 구성된 아미노산 서열을 갖는 것을 특징으로 하는 α-N-아라비노퓨라노시다제.The α-N-arabinofuranosidase according to claim 1, which has an amino acid sequence consisting of SEQ ID NO: 1.
  4. 제1항에 있어서, PPD(protopanaxadiol) 타입 진세노사이드의 20번째 탄소에 위치한 α-1,6 아라비노퓨라노실 잔기에 대한 선택적 가수분해능을 가지는 것을 특징으로 하는 α-N-아라비노퓨라노시다제. The α- N -arabinofurano according to claim 1, wherein the α- N -arabinofurano has a selective hydrolysis of α-1,6 arabinofuranosyl residues located at the 20th carbon of the protopanaxadiol (PPD) type ginsenoside. Sidaze.
  5. 제1항 내지 제4항 중 어느 한 항의 α-N-아라비노퓨라노시다제를 코딩하는 핵산.A nucleic acid encoding the α- N -arabinofuranosidase of any one of claims 1 to 4.
  6. 제5항에 있어서, 상기 핵산은 서열번호 2에 기재된 염기 서열을 갖는 핵산.The nucleic acid according to claim 5, wherein the nucleic acid has the nucleotide sequence set forth in SEQ ID NO: 2. 7.
  7. 제5항의 핵산을 포함하는 재조합 벡터.A recombinant vector comprising the nucleic acid of claim 5.
  8. 제7항에 있어서, 상기 벡터는 pET-MBP-TEV-Araf3054로 도 9에 기재된 개열지도를 갖는 재조합 벡터.8. The recombinant vector of claim 7, wherein said vector has a cleavage map as described in FIG. 9 as pET-MBP-TEV-Araf3054.
  9. 제5항의 핵산 또는 상기 핵산을 포함하는 재조합 벡터로 형질전환된 형질전환체.A transformant transformed with the nucleic acid of claim 5 or a recombinant vector comprising the nucleic acid.
  10. 제9항에 있어서, 상기 형질전환체는 대장균(E.coli)인 형질전환체.The transformant of claim 9, wherein the transformant is E. coli.
  11. (a) 제9항의 형질전환체를 배양하는 단계(a) culturing the transformant of claim 9
    (b) 상기 배양된 형질전환체로부터 α-N-아라비노퓨라노시다제를 생산하는 단계 및(b) producing α- N -arabinofuranosidase from the cultured transformant, and
    (c) 상기 생산된 α-N-아라비노퓨라노시다제를 회수하는 단계(c) recovering the produced α- N -arabinofuranosidase
    를 포함하는 α-N-아라비노퓨라노시다제의 제조방법.Method for producing α- N -arabinofuranosidase comprising a.
  12. 제1항 내지 제4항 중 어느 한 항의 α-N-아라비노퓨라노시다제, 제11항에 의해 제조된 α-N-아라비노퓨라노시다제, 제9항의 형질전환체 또는 상기 형질전환체의 배양물을 이용하는 단계를 포함하여 제1 진세노사이드로부터 탈글라이코실화된 제2 진세노사이드를 제조하는 방법.The α- N one claim any of items 1 to 4, wherein - arabinose Pew pyrano let claim, the claim α- N produced by the 11-arabino Pew pyrano let claim, claim 9 transformants or the transformants A method for preparing a deglycosylated second ginsenoside from a first ginsenoside, comprising using a culture of a sieve.
  13. 제12항에 있어서, 제1진세노사이드는 PPD(protopanaxadiol) 타입 또는 PPT(protopanaxatriol) 타입 진세노사이드인 것을 특징으로 하는 방법.The method of claim 12, wherein the first ginsenoside is protopanaxadiol (PPD) type or protopanaxatriol (PPT) type ginsenoside.
  14. 제12항에 있어서, α-N-아라비노퓨라노시다제에 의해 PPD(protopanaxadiol) 타입 또는 PPT(protopanaxatriol) 타입 진세노사이드의 20번째 탄소에 위치한 비환원된 α-1,6 아라비노퓨라노실 잔기가 가수분해되는 단계를 포함하는 것을 특징으로 하는 방법.13. The non-reduced α-1,6 arabinofurano according to claim 12, wherein the non-reduced α-1,6 arabinofurano is located at the 20th carbon of protopanaxadiol (PPD) type or protopanaxatriol (PPT) type ginsenoside by α- N -arabinofuranosidase. And wherein the real residues are hydrolyzed.
  15. 제12항에 있어서, α-N-아라비노퓨라노시다제에 의해 진세노사이드 Rc로부터 진세노사이드 Rd로의 전환, C-MC1로부터 진세노사이드 F2로의 전환, 및 진세노사이드 C-MC로부터 C-K로의 전환으로 이루어진 군에서 선택된 하나 이상의 전환 단계를 포함하는 것을 특징으로 하는 방법. 13. The process of claim 12, wherein the conversion of ginsenoside Rc to ginsenoside Rd, conversion of C-MC1 to ginsenoside F2, and ginsenoside C-MC to CK by α- N -arabinofuranosidase And at least one conversion step selected from the group consisting of conversion to.
  16. 제12항에 있어서, pH를 6 ~ 10로, 온도를 4~37 ℃ 조절하여 α-N-아라비노퓨라노시다제가 효소작용할 수 있게 하는 것을 특징으로 하는 방법. The method of claim 12, wherein the pH is adjusted to 6 to 10 and the temperature is adjusted to 4 to 37 DEG C to allow the α- N -arabinofuranosidase to be enzymatically active.
  17. 제12항에 있어서, α-N-아라비노퓨라노시다제의 기질인 진세노사이드는 pNP-α-L-아라비노퓨라노사이드(pNP-α-L-arabinofuranoside)인 것을 특징으로 하는 방법. 13. The method of claim 12, α- N - arabinose Pew pyrano let the method of the substrate, wherein the ginsenoside is pNP-α-L- arabino Pew pyrano a side (pNP-α-L-arabinofuranoside ).
  18. 제12항에 있어서, α-N-아라비노퓨라노시다제의 효소작용은 MgCl2, EDTA, NaCl, KCl, DTT 및 베타-머캅토에탄올로 이루어진 군에서 선택된 하나 이상의 물질과 함께 수행되는 것을 특징으로 하는 방법. The method according to claim 12, wherein the enzymatic action of α- N -arabinofuranosidase is performed with at least one substance selected from the group consisting of MgCl 2 , EDTA, NaCl, KCl, DTT and beta-mercaptoethanol. How to.
  19. 제12항에 있어서, β-글루코시다제, β-갈락토시다제, 글리코시다제, α-L-아라비노피라노시다제, α-L-아라비노퓨라노시다제, β-자일로시다아제, 및 α-L-람노시다제로 구성된 군에서 하나 이상 선택된 효소를 더 이용하는 것을 특징으로 하는 방법. 13. β-glucosidase, β-galactosidase, glycosidase, α-L-arabinofyranosidase, α-L-arabinofuranosidase, β-xylosida And at least one enzyme selected from the group consisting of an azeta and an α-L-lamnosidase.
  20. 제1항 내지 제4항 중 어느 한 항의 α-N-아라비노퓨라노시다제, 제11항에 의해 제조된 α-N-아라비노퓨라노시다제, 제9항의 형질전환체 또는 상기 형질전환체의 배양물을 유효성분으로 포함하는, PPD(protopanaxadiol) 타입 또는 PPT(protopanaxatriol) 타입 진세노사이드로부터 탈글라이코실화된 희귀 진세노사이드로의 전환용 키트.The α- N one claim any of items 1 to 4, wherein - arabinose Pew pyrano let claim, the claim α- N produced by the 11-arabino Pew pyrano let claim, claim 9 transformants or the transformants Kit for conversion from protopanaxadiol (PPD) type or protopanaxatriol (PPT) type ginsenoside to deglycosylated rare ginsenoside, comprising a culture of a sieve as an active ingredient.
  21. 제20항에 있어서, 동일 또는 다른 용기에 β-글루코시다제, β-갈락토시다제, 글리코시다제, α-L-아라비노피라노시다제, α-L-아라비노퓨라노시다제, β-자일로시다아제, 및 α-L-람노시다제로 구성된 군에서 하나 이상 선택된 효소를 더 포함하는 것을 특징으로 하는 키트. The method of claim 20, wherein the same or different container, β-glucosidase, β-galactosidase, glycosidase, α-L-arabinofyranosidase, α-L-arabinofuranosidase, The kit further comprises at least one enzyme selected from the group consisting of β-xylosidase, and α-L-rhamnosidase.
PCT/KR2011/001410 2010-11-24 2011-02-28 Alpha-n-arabinofuranosidase derived from rhodanobacter ginsenosidimutans and uses thereof WO2012070724A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100117515 2010-11-24
KR10-2010-0117515 2010-11-24
KR20100123092 2010-12-03
KR10-2010-0123092 2010-12-03

Publications (1)

Publication Number Publication Date
WO2012070724A1 true WO2012070724A1 (en) 2012-05-31

Family

ID=46146048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001410 WO2012070724A1 (en) 2010-11-24 2011-02-28 Alpha-n-arabinofuranosidase derived from rhodanobacter ginsenosidimutans and uses thereof

Country Status (1)

Country Link
WO (1) WO2012070724A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925376A (en) * 2012-11-13 2013-02-13 天津工业生物技术研究所 Recombinant microorganism for preparing dharma diene and protopanoxadiol and construction method thereof
CN103642888A (en) * 2013-12-25 2014-03-19 吉林大学 Method for synthesizing protopanoxadiol from saccharomyces cerevisiae
CN105695552A (en) * 2016-04-08 2016-06-22 南京林业大学 Method using enzymatic method to prepare rare ginsenoside Rh1
CN108138211A (en) * 2015-10-22 2018-06-08 株式会社爱茉莉太平洋 The method for selectively preparing Ginsenoside F2, Mc compounds and O compounds from the saponin of ginseng using enzyme process
CN109234347A (en) * 2018-09-30 2019-01-18 长春中医药大学 A method of conversion protopanaxatriol type saponin(e generates C25-OH derivative

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AN, D. S. ET AL.: "Rhodanobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field in South Korea", INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY., vol. 59, April 2009 (2009-04-01), pages 691 - 694 *
DATABASE GENBANK 1 September 2010 (2010-09-01), "alpha-arabinofuranosidase, partial [Rhodanobacterginsenosidimutans]", Database accession no. ADM26764 *
SHIN, H. Y. ET AL.: "Purification and characterization of alpha-L-arabinopyranosidase and alpha-L-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc", APPLIED AND ENVIRONMENTAL MICROBIOLOGY., vol. 69, no. 12, December 2003 (2003-12-01), pages 7116 - 7123, XP002677197, DOI: doi:10.1128/AEM.69.12.7116-7123.2003 *
YU, J. ET AL.: "Purification and characterization of new special ginsenosidase hydrolyzing multi-glycisides ofprotopanaxadiol ginsenosides, ginsenosidase type I", CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 55, no. 2, February 2007 (2007-02-01), pages 231 - 235 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925376A (en) * 2012-11-13 2013-02-13 天津工业生物技术研究所 Recombinant microorganism for preparing dharma diene and protopanoxadiol and construction method thereof
CN103642888A (en) * 2013-12-25 2014-03-19 吉林大学 Method for synthesizing protopanoxadiol from saccharomyces cerevisiae
CN108138211A (en) * 2015-10-22 2018-06-08 株式会社爱茉莉太平洋 The method for selectively preparing Ginsenoside F2, Mc compounds and O compounds from the saponin of ginseng using enzyme process
CN108138211B (en) * 2015-10-22 2021-08-10 株式会社爱茉莉太平洋 Method for selectively preparing ginsenoside F2, Mc compound and O compound from ginsenoside of ginseng by enzyme method
CN105695552A (en) * 2016-04-08 2016-06-22 南京林业大学 Method using enzymatic method to prepare rare ginsenoside Rh1
CN109234347A (en) * 2018-09-30 2019-01-18 长春中医药大学 A method of conversion protopanaxatriol type saponin(e generates C25-OH derivative
CN109234347B (en) * 2018-09-30 2022-03-01 长春中医药大学 Method for converting protopanaxatriol saponin to obtain C25-OH derivative

Similar Documents

Publication Publication Date Title
WO2011049418A2 (en) Novel ginsenoside glycosidase derived from the genus terrabacter, and use thereof
WO2011034406A2 (en) Rhodanobacter ginsenosidimutans kctc22231t-derived ginsenoside glycosidase, and use thereof
WO2014051214A1 (en) Novel udp-glycosyltransferase derived from ginseng and use thereof
Wang et al. Bioconversion of ginsenosides Rb1, Rb2, Rc and Rd by novel β-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization
WO2014051215A1 (en) Novel udp-glycosyltransferase derived from ginseng and use thereof
An et al. Characterization of a novel ginsenoside-hydrolyzing α-l-arabinofuranosidase, AbfA, from Rhodanobacter ginsenosidimutans Gsoil 3054 T
KR20180005716A (en) Group of glycosyltransferases and use thereof
WO2012070724A1 (en) Alpha-n-arabinofuranosidase derived from rhodanobacter ginsenosidimutans and uses thereof
KR101433661B1 (en) Production of ginsenoside F2 using novel ginsenoside glycosidase
Xu et al. A novel β-glucuronidase from Talaromyces pinophilus Li-93 precisely hydrolyzes glycyrrhizin into glycyrrhetinic acid 3-O-mono-β-d-glucuronide
Su et al. Enzymatic transformation of ginsenoside Rg3 to Rh2 using newly isolated Fusarium proliferatum ECU2042
Wang et al. Selective production of rubusoside from stevioside by using the sophorose activity of β-glucosidase from Streptomyces sp. GXT6
KR101079293B1 (en) Method of rare ginsenosides production using thermostable beta-glycosidase
WO2012148249A2 (en) Lactic acid bacteria-derived glycoside hydrolase and uses thereof
Zhao et al. A novel ginsenoside Rb1-hydrolyzing β-D-glucosidase from Cladosporium fulvum
Gao et al. A highly selective ginsenoside Rb1-hydrolyzing β-D-glucosidase from Cladosporium fulvum
Wang et al. A novel ginsenosidase from an Aspergillus strain hydrolyzing 6-O-multi-glycosides of protopanaxatriol-type ginsenosides, named ginsenosidase type IV
KR101328785B1 (en) Novel β-Glucosidase Protein and Use Thereof
KR101771577B1 (en) Alpha-N-arabinofuranosidase From Rhodanobacter ginsenosidimutans And Use Thereof
KR101253471B1 (en) Method for preparing beta-glycosidase protein and converting ginsenoside
KR101345942B1 (en) Novel β-Glycosidase Protein and Use Thereof
KR101781259B1 (en) A method for production of gypenoside LXXV using ginsenoside glycosidase
KR101411919B1 (en) A novel beta-glucosidase from Penicillium aculeatum and use of the same
WO2023121427A1 (en) Glycosyltransferase variant, and method of preparing steviol glycosides using same
KR101749680B1 (en) A novel soil microorganism, a novel oxidoreductase seperated from the said soil microorganism, a gene encoding the said oxidoreductase and a methods for producing effective ginsenosides using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843790

Country of ref document: EP

Kind code of ref document: A1