WO2012070535A1 - Electron transport material, and organic electroluminescent element using same - Google Patents

Electron transport material, and organic electroluminescent element using same Download PDF

Info

Publication number
WO2012070535A1
WO2012070535A1 PCT/JP2011/076815 JP2011076815W WO2012070535A1 WO 2012070535 A1 WO2012070535 A1 WO 2012070535A1 JP 2011076815 W JP2011076815 W JP 2011076815W WO 2012070535 A1 WO2012070535 A1 WO 2012070535A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
alkyl
cycloalkyl
compound
organic
Prior art date
Application number
PCT/JP2011/076815
Other languages
French (fr)
Japanese (ja)
Inventor
馬場 大輔
洋平 小野
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to JP2012545745A priority Critical patent/JP5907069B2/en
Publication of WO2012070535A1 publication Critical patent/WO2012070535A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom

Definitions

  • the present invention relates to a novel electron transport material having a pyridyl group, an organic electroluminescence device using the electron transport material (hereinafter, sometimes abbreviated as an organic EL device or simply a device), and the like.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-123983 discloses that an organic EL device can be driven at a low voltage by using a 2,2′-bipyridyl compound, which is a phenanthroline derivative or an analog thereof, as an electron transport material. It is stated that it can be done.
  • Non-patent document 1 Non-patent document 1 (Proceedings of the 10 th International Workshop on Inorganic and Organic Electroluminescence), Patent Document 2 (JP 2002-158093 JP ) And Patent Document 3 (International Publication No. 2007/86552 pamphlet).
  • the compound described in Non-Patent Document 1 has a low Tg and is not practical.
  • the compounds described in Patent Documents 2 and 3 can drive an organic EL device at a relatively low voltage, longer life is desired for practical use.
  • the present invention has been made in view of the problems of such conventional techniques. It is an object of the present invention to provide an electron transport material that contributes to extending the lifetime of an organic EL element. Furthermore, this invention makes it a subject to provide the organic EL element using this electron transport material.
  • a compound represented by the following formula (1) Py is pyridyl, and any hydrogen of the pyridyl is substituted with alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms.
  • 1-naphthyl optionally substituted with phenyl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, or alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons
  • R is hydrogen, alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms, and any hydrogen in the aryl is alkyl having 1 to 6 carbon atoms or 3 to 3 carbon atoms.
  • Optionally substituted with 6 cycloalkyl; and At least one hydrogen in the compound represented by the formula (1) may be replaced with deuterium.
  • 1-naphthyl optionally substituted with phenyl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, or alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons
  • R is hydrogen, alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms, and any hydrogen in the aryl is alkyl having 1 to 6 carbon atoms or 3 to 3 carbon atoms.
  • At least one hydrogen in the compound represented by the formula (1-1) or (1-2) may be replaced with deuterium.
  • a pair of electrodes composed of an anode and a cathode, a light emitting layer disposed between the pair of electrodes, an electron transport material according to the item [8], disposed between the cathode and the light emitting layer.
  • An organic electroluminescent device having an electron transport layer and / or an electron injection layer containing
  • At least one of the electron transport layer and the electron injection layer further contains at least one selected from the group consisting of a quinolinol-based metal complex, a bipyridine derivative, a phenanthroline derivative, and a borane derivative, [9]
  • At least one of the electron transport layer and the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth. Containing at least one selected from the group consisting of metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes The organic electroluminescent device as described in the item [10].
  • the compound of the present invention is stable even when a voltage is applied in a thin film state and has a feature of high charge transport capability.
  • the compound of the present invention is suitable as a charge transport material in an organic EL device.
  • an organic EL device having a long lifetime can be obtained.
  • a high-performance display device such as full-color display can be created.
  • arbitrary used in the definition of a compound may mean “can be freely selected not only by position but also by number”.
  • the expression “any hydrogen of phenyl may be substituted with alkyl having 1 to 6 carbon atoms” is not limited to “a single hydrogen may be substituted with alkyl”, It may also mean “same alkyl, or each may be replaced by a different alkyl”.
  • the symbols Me, Et, i-Pr, and t-Bu used in the structural formulas, chemical reaction formulas and the like in this specification represent methyl, ethyl, isopropyl, and tertiary butyl, respectively.
  • pyridyl represented by following formula (1).
  • Py is pyridyl.
  • Pyridyl is specifically 2-pyridyl, 3-pyridyl or 4-pyridyl. Any hydrogen in the pyridyl may be replaced by alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, phenyl, 1-naphthyl, or 2-naphthyl.
  • phenyl, 1-naphthyl and 2-naphthyl may be further substituted with alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms.
  • R is hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons or aryl having 6 to 14 carbons. Any hydrogen in the aryl may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  • at least one hydrogen in the compound represented by the formula (1) may be replaced with deuterium.
  • the position of phenyl to which pyridyl is linked may be arbitrary, but the 4-position and 3-position are preferred. That is, a preferred embodiment of the compound of formula (1) can be represented by the following formula (1-1) or (1-2).
  • the definitions of R and Py in the formulas (1-1) and (1-2) are the same as described above.
  • alkyl having 1 to 6 carbon atoms to be substituted with pyridyl in formula (1) are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, 2,2- Dimethylpropyl, n-hexyl, and isohexyl.
  • preferred alkyls are methyl, ethyl, isopropyl, and t-butyl, with methyl and t-butyl being more preferred.
  • cycloalkyl having 3 to 6 carbon atoms examples are cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Of these, cycloalkyl is preferably cyclohexyl in view of availability of raw materials and ease of synthesis.
  • the above examples are the same for phenyl, 1-naphthyl and 2-naphthyl substituents substituted on pyridyl, and the aryl substituents when R is aryl having 6 to 14 carbon atoms.
  • the position and number of the pyridyl substituents are not particularly limited.
  • methyl may be substituted at any position of pyridyl, and the number of substitutions can be selected from 1 to the maximum 4 that can be substituted.
  • the number of substitution is preferably 1 to 2, more preferably 1.
  • the position of R substituted with 1-naphthyl may be arbitrary, but the 4-position and 5-position are preferred in consideration of the availability of raw materials, The 4th position is more preferable.
  • alkyl having 1 to 6 carbon atoms and the cycloalkyl having 3 to 6 carbon atoms in R include the groups exemplified as the substituent for the pyridyl.
  • Preferred alkyl are methyl, ethyl, isopropyl, and t-butyl, with methyl and t-butyl being more preferred.
  • Preferred cycloalkyl is cyclohexyl in consideration of availability of raw materials and ease of synthesis.
  • Specific examples of aryl having 6 to 14 carbon atoms in R are phenyl, biphenylyl, naphthyl, and phenanthryl. When these groups have a substituent, the maximum value of the number of substituents is a chemically possible number. However, considering the availability of raw materials and the ease of synthesis, 1 to 3 is preferable.
  • Preferred R is the following monovalent group.
  • Specific examples of the compound represented by the formula (1-1) are represented by the following formulas (1-1-1) to (1-1-475). Of these, preferred compounds are those represented by the formulas (1-1-1) to (1-1-57), (1-1-58), (1-1-77), (1-1-96), (1 1-115), (1-1-134), (1-1-153), (1-1-172), (1-1-191), (1-1-210), and (1- More preferred compounds are formulas (1-1-1) to (1-1-3), (1-1-58), (1-1-77), (1-1-96). ), (1-1-115), (1-1-134), (1-1-153), (1-1-172), (1-1-191), (1-1-210), And (1-1-229).
  • Specific examples of the compound represented by the formula (1-2) are represented by the following formulas (1-2-1) to (1-2-475). Of these, preferred compounds are those represented by the formulas (1-2-1) to (1-2-57), (1-2-58), (1-2-77), (1-2-96), (1 -2-115), (1-2-134), (1-2-153), (1-2-172), (1-2-191), (1-2-210), and (1- More preferable compounds are the formulas (1-2-1) to (1-2-3), (1-2-58), (1-2-77), (1-296). ), (1-2-115), (1-2-134), (1-2-153), (1-2-172), (1-2-191), (1-2-210), And (1-2-229).
  • reaction 1 1-bromonaphthalene is lithiated using an organolithium reagent, or converted into a Grignard reagent using magnesium or an organomagnesium reagent, and reacted with trimethyl borate, triethyl borate, triisopropyl borate, or the like.
  • 1-naphthaleneboronic acid ester can be synthesized.
  • 1-naphthaleneboronic acid can be synthesized by hydrolyzing the boronic ester in reaction 2.
  • 9- (Naphthalen-1-yl) anthracene can be synthesized by coupling 1-naphthaleneboronic acid and 9-bromoanthracene in Reaction 3 in the presence of a palladium catalyst.
  • reaction 4 9-bromoanthracene is lithiated using an organolithium reagent, or converted into a Grignard reagent using magnesium or an organomagnesium reagent, and reacted with trimethyl borate, triethyl borate, triisopropyl borate, or the like.
  • 1-naphthaleneboronic acid ester can be synthesized.
  • 9-anthraceneboronic acid can be synthesized by hydrolyzing the boronic ester in Reaction 5.
  • 9- (Naphthalen-1-yl) anthracene can also be synthesized by coupling 9-anthraceneboronic acid and 1-bromonaphthalene in the presence of a palladium catalyst in Reaction 6.
  • the coupling of the naphthalene ring and the anthracene ring is not limited to the Suzuki coupling reaction shown in Reaction 3 and Reaction 6, but can also be performed by the Negishi coupling reaction or the like, and these conventional methods can be appropriately used depending on the situation.
  • 9- (naphthalen-1-yl) anthracene may be a commercially available product.
  • 9-bromo-10- (naphthalen-1-yl) anthracene is lithiated using an organolithium reagent, or converted into a Grignard reagent using magnesium or an organomagnesium reagent, and trimethyl borate or triethyl borate.
  • (10- (naphthalen-1-yl) anthracen-9-yl) boronic acid ester can be synthesized by reacting with triisopropyl borate or the like.
  • (10- (naphthalen-1-yl) anthracen-9-yl) boronic acid can be synthesized by hydrolyzing the boronic ester in reaction 9.
  • reaction 10 a zinc chloride complex is synthesized from 4-iodopyridine, and in reaction 11, 4- (4-bromophenyl) pyridine is synthesized by reacting the pyridine zinc chloride complex with p-bromoiodobenzene.
  • ZnCl 2 ⁇ TMEDA in the above reaction formula is a tetramethylethylenediamine complex of zinc chloride.
  • R in RLi or RMgX represents straight-chain or branched alkyl, preferably straight-chain or branched alkyl having 1 to 4 carbon atoms.
  • X is a halogen, and chlorine, bromine and iodine are preferably used.
  • the compound (1-1-1) of the present invention can be synthesized by coupling the anthraceneboronic acid and pyridylphenyl bromide in the reaction 12 in the presence of a palladium catalyst.
  • the step of coupling phenylbromopyridine with p-bromoiodobenzene or m-bromoiodobenzene is not limited to the above Negishi coupling reaction, and the Suzuki cup used in Reaction 11 depends on the types of available raw materials and reagents. A ring reaction can also be used.
  • the example of the Suzuki coupling reaction shown in Reaction 12 was taken as a method for coupling the anthracene part and the pyridylphenyl bromide part, which are the final steps of the synthesis.
  • a ring reaction may be used.
  • the synthesis of the compound of the present invention is not limited to the method in which the reaction of coupling the anthracene part and the phenylene part is the final step.
  • a pyridylphenyl bromide substituted with an alkyl group or a cycloalkyl group for linking with anthracene can be synthesized as shown in the following reactions 15 to 16.
  • pyridylphenyl bromides substituted with various alkyl groups or cycloalkyl groups can be synthesized.
  • Pyridylphenyl bromide substituted with a phenyl group can be synthesized as shown in the following reactions 17-18. Moreover, pyridylphenyl bromide substituted with various aryl groups can be synthesized by appropriately changing the raw materials.
  • the palladium catalyst used in the Suzuki coupling reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , palladium (II) acetate: Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (Dba) 3 ⁇ CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II): Pd (dppf) Cl
  • a phosphine compound may be added to these palladium compounds in some cases.
  • the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1′-bis (di-t-butylphos Fino) ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino) -1,1′-binaphthy
  • the base used in the reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, phosphoric acid
  • Examples include tripotassium or potassium fluoride.
  • solvent used in the reaction examples include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1,4- Examples include dioxane, methanol, ethanol, cyclopentyl methyl ether, and isopropyl alcohol. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
  • the palladium catalyst used in the Negishi coupling reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , palladium (II) acetate: Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (Dba) 3 ⁇ CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , bis (tri-t-butylphosphino) palladium (0), or [1,1′-bis (diphenylphosphine) Fino) ferrocene] dichlor
  • solvent used in the reaction examples include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, cyclopentyl methyl ether or 1,4-dioxane.
  • solvents can be appropriately selected and may be used alone or as a mixed solvent.
  • the compound of the present invention When the compound of the present invention is used for an electron injection layer or an electron transport layer in an organic EL device, it is stable when an electric field is applied. These represent that the compound of the present invention is excellent as an electron injecting material or an electron transporting material for an electroluminescent device.
  • the electron injection layer mentioned here is a layer for receiving electrons from the cathode to the organic layer
  • the electron transport layer is a layer for transporting the injected electrons to the light emitting layer.
  • the electron transport layer can also serve as the electron injection layer.
  • the material used for each layer is referred to as an electron injection material and an electron transport material.
  • 2nd invention of this application is an organic EL element containing the compound represented by Formula (1) of this invention in an electron injection layer or an electron carrying layer.
  • the organic EL element of the present invention has a low driving voltage and high durability during driving.
  • the structure of the organic EL device of the present invention has various modes, it is basically a multilayer structure in which at least a hole transport layer, a light emitting layer, and an electron transport layer are sandwiched between an anode and a cathode.
  • Examples of the specific configuration of the device are (1) anode / hole transport layer / light emitting layer / electron transport layer / cathode, (2) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer. / Cathode, (3) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, etc.
  • the compound of the present invention Since the compound of the present invention has high electron injecting property and electron transporting property, it can be used for an electron injecting layer or an electron transporting layer alone or in combination with other materials.
  • the organic EL device of the present invention emits blue, green, red and white light by combining a hole injection layer, a hole transport layer, a light emitting layer, etc. using other materials with the electron transport material of the present invention. It can also be obtained.
  • the light-emitting material or light-emitting dopant that can be used in the organic EL device of the present invention is daylight fluorescence as described in the Polymer Society of Japan, Polymer Functional Materials Series “Optical Functional Materials”, Joint Publication (1991), P236. Materials, fluorescent brighteners, laser dyes, organic scintillators, various fluorescent analysis reagents and other luminescent materials, supervised by Koji Koji, “Organic EL materials and displays” published by CMMC (2001) P155-156 And a light emitting material of a triplet material as described in P170 to 172.
  • the compounds that can be used as the light emitting material or the light emitting dopant are polycyclic aromatic compounds, heteroaromatic compounds, organometallic complexes, dyes, polymer light emitting materials, styryl derivatives, aromatic amine derivatives, coumarin derivatives, borane derivatives, oxazines. Derivatives, compounds having a spiro ring, oxadiazole derivatives, fluorene derivatives and the like.
  • Examples of the polycyclic aromatic compound are anthracene derivatives, phenanthrene derivatives, naphthacene derivatives, pyrene derivatives, chrysene derivatives, perylene derivatives, coronene derivatives, rubrene derivatives, and the like.
  • heteroaromatic compounds are oxadiazole derivatives having a dialkylamino group or diarylamino group, pyrazoloquinoline derivatives, pyridine derivatives, pyran derivatives, phenanthroline derivatives, silole derivatives, thiophene derivatives having a triphenylamino group, quinacridone derivatives Etc.
  • organometallic complexes examples include zinc, aluminum, beryllium, europium, terbium, dysprosium, iridium, platinum, osmium, gold, etc., quinolinol derivatives, benzoxazole derivatives, benzothiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, A complex with a benzimidazole derivative, a pyrrole derivative, a pyridine derivative, a phenanthroline derivative, or the like.
  • dyes are xanthene derivatives, polymethine derivatives, porphyrin derivatives, coumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, oxobenzanthracene derivatives, carbostyril derivatives, perylene derivatives, benzoxazole derivatives, benzothiazole derivatives, benzimidazoles And pigments such as derivatives.
  • the polymer light-emitting material are polyparaphenyl vinylene derivatives, polythiophene derivatives, polyvinyl carbazole derivatives, polysilane derivatives, polyfluorene derivatives, polyparaphenylene derivatives, and the like.
  • styryl derivatives are amine-containing styryl derivatives, styrylarylene derivatives, and the like.
  • electron transport materials used in the organic EL device of the present invention are arbitrarily selected from compounds that can be used as electron transport compounds in photoconductive materials and compounds that can be used in the electron transport layer and electron injection layer of organic EL devices. Can be used.
  • electron transport materials include quinolinol metal complexes, 2,2′-bipyridyl derivatives, phenanthroline derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives, thiophene derivatives, triazole derivatives, thiadiazole derivatives, oxine derivatives.
  • a compound conventionally used as a charge transport material for holes or a hole injection of an organic EL device is used in a photoconductive material.
  • Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof are carbazole derivatives, triarylamine derivatives, phthalocyanine derivatives and the like.
  • Each layer constituting the organic EL element of the present invention can be formed by forming a material to constitute each layer into a thin film by a method such as a vapor deposition method, a spin coat method, or a cast method.
  • the film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm.
  • a vapor deposition method as a method of thinning the light emitting material from the viewpoint that a homogeneous film can be easily obtained and pinholes are hardly generated.
  • the vapor deposition conditions differ depending on the type of the light emitting material of the present invention.
  • Deposition conditions generally include boat heating temperature 50 to 400 ° C., vacuum degree 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature ⁇ 150 to + 300 ° C., film thickness 5 nm to 5 ⁇ m. It is preferable to set appropriately within the range.
  • the organic EL device of the present invention is preferably supported by a substrate in any of the structures described above.
  • the substrate only needs to have mechanical strength, thermal stability, and transparency, and glass, a transparent plastic film, and the like can be used.
  • the anode material metals, alloys, electrically conductive compounds and mixtures thereof having a work function larger than 4 eV can be used. Specific examples thereof include metals such as Au, CuI, indium tin oxide (hereinafter abbreviated as ITO), SnO 2 , ZnO, and the like.
  • Cathode materials can use metals, alloys, electrically conductive compounds, and mixtures thereof with work functions of less than 4 eV. Specific examples thereof are aluminum, calcium, magnesium, lithium, magnesium alloy, aluminum alloy and the like. Specific examples of the alloy include aluminum / lithium fluoride, aluminum / lithium, magnesium / silver, and magnesium / indium. In order to efficiently extract light emitted from the organic EL element, it is desirable that at least one of the electrodes has a light transmittance of 10% or more.
  • the sheet resistance as the electrode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the properties of the electrode material, it is usually set in the range of 10 nm to 1 ⁇ m, preferably 10 to 400 nm.
  • Such an electrode can be produced by forming a thin film by a method such as vapor deposition or sputtering using the electrode material described above.
  • an organic material comprising the above-mentioned anode / hole injection layer / hole transport layer / light emitting layer / electron transport material of the present invention / cathode is used.
  • a method for creating an EL element will be described.
  • a thin film of an anode material is formed on a suitable substrate by vapor deposition to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
  • a light emitting layer thin film is formed thereon.
  • the electron transport material of this invention is vacuum-deposited, a thin film is formed, and it is set as an electron carrying layer.
  • the target organic EL element is obtained by forming the thin film which consists of a substance for cathodes by a vapor deposition method, and making it a cathode.
  • the production order can be reversed, and the cathode, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order.
  • the anode When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode and both). The organic EL element also emits light when an alternating voltage is applied.
  • the alternating current waveform to be applied may be arbitrary.
  • reaction solution was cooled to room temperature and then washed with pure water.
  • reaction solution was cooled to room temperature and separated by adding water and toluene.
  • the organic layer is concentrated, dissolved in toluene, purified by activated carbon column chromatography (developing solution: toluene), and 3- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane).
  • -2-yl) phenyl) pyridine (15.0 g) was obtained.
  • reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • the solvent was distilled off under reduced pressure, and the resulting solid was purified by alumina column chromatography (developing solution: toluene).
  • the solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 3.71 g of 2- (4- (10-naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine.
  • reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • the organic layer was passed through a silica gel short column (developing solution: toluene), and then the eluate was concentrated.
  • the precipitated solid was collected by adding heptane, and 4,4,5,5-tetramethyl-2- (4- 7.0 g of (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) -1,3,2-dioxaborolane was obtained.
  • the mixture was stirred at reflux temperature for 9 hours.
  • the reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • the eluate was passed through an activated carbon short column to remove colored components.
  • the solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 1.21 g of 2-methyl-5- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine. It was.
  • the mixture was stirred at reflux temperature for 9 hours.
  • the reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • the eluate was passed through an activated carbon short column to remove colored components.
  • the solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 1.20 g of 2-methyl-4- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine. It was.
  • the mixture was stirred at reflux temperature for 18 hours under a nitrogen atmosphere.
  • the reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • the eluate was passed through an activated carbon short column to remove colored components.
  • the solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 1.02 g of 3-methyl-4- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine. It was.
  • reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • the solvent was distilled off under reduced pressure, and the resulting solid was purified by alumina column chromatography (developing solution: toluene).
  • the solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 4- (3- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine (1.54 g).
  • Example 1 The organic EL elements according to Example 1 and Comparative Example 1 were manufactured, and the driving start voltage (V) in the constant current driving test and the time (hr) for maintaining the luminance of 90% or more of the initial luminance were measured.
  • V driving start voltage
  • hr time for maintaining the luminance of 90% or more of the initial luminance
  • Table 1 below shows the material configuration of each layer in the electroluminescent elements according to the manufactured Example 1 and Comparative Examples 1 and 2.
  • HI represents N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine
  • NPD is N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl
  • compound (A) is 9-phenyl-10- (4-phenylnaphthalene-1- Yl) anthracene
  • compound (B) is N 5 , N 5 , N 9 , N 9 -7,7-hexaphenyl-7H-benzo [C] fluorene-5,9-diamine
  • compound (C) is 9 , 10-bis (4- (pyridin-2-yl) naphthalen-1-yl) anthracene.
  • the chemical structure is shown below together with lithium 8-quinolinolato (Li
  • a 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing NPD, and compound (A) are placed therein.
  • Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound (B), molybdenum vapor deposition boat containing compound (1-1-1), molybdenum vapor deposition boat containing Liq, silver A molybdenum vapor deposition boat and a molybdenum vapor deposition boat containing magnesium were installed.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 25 nm to form a hole transport layer. Next, the vapor deposition boat containing the compound (A) and the vapor deposition boat containing the compound (B) were heated at the same time and vapor-deposited to a film thickness of 25 nm to form a light emitting layer.
  • the deposition rate was adjusted so that the weight ratio of the compound (A) to the compound (B) was about 95: 5.
  • the evaporation boat containing the compound (1-1-1) was heated and evaporated to a film thickness of 25 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.003 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • the deposition boat containing silver and the deposition boat containing magnesium are heated at the same time, and the deposition rate is set to 0.01 to 10 nm / second so that the ratio of the number of atoms of silver and magnesium is about 1: 9.
  • the cathode was formed by vapor-depositing so as to have a film thickness of 100 nm, and an organic EL device was obtained.
  • Example 1 An organic EL device was obtained in the same manner as in Example 1 except that the compound (1-1-1) was changed to the compound (C).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the drive test start voltage was 3.73 V, and the time for maintaining a luminance of 90% or more of the initial luminance was 1 hour.
  • Table 3 shows the material configuration of each layer in the organic EL elements according to Examples 2 to 12 and Comparative Examples 2 and 3 thus manufactured.
  • HI represents N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine
  • HT is N-([1,1′-biphenyl] -4-yl) -9,9-dimethyl-N- (4- (9-phenyl-9H-carbazol-3-yl) phenyl) -9H-fluoren-2-amine
  • compound (D) is 9- (4- (naphthalen-1-yl) phenyl) -10-phenylanthracene
  • compound (E) is 4,4 ′-((7,7- Diphenyl-7H-benzo [c] fluorene-5,9-diyl) bis (phenylamino)) dibenzonitrile
  • compound (F) is 4 ′-(4- (10- (naphthalen-2-yl)
  • a 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HT, and compound (D) are placed therein.
  • Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound (E), molybdenum vapor deposition boat containing compound (1-1-1), molybdenum vapor deposition boat containing Liq, magnesium A molybdenum boat and a tungsten evaporation boat containing silver were installed.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, the vapor deposition boat containing HI was heated to deposit to a film thickness of 40 nm to form a hole injection layer, and then HT entered. The vapor deposition boat was heated and vapor-deposited so that it might become a film thickness of 30 nm, and the positive hole transport layer was formed. Next, the vapor deposition boat containing the compound (E) and the vapor deposition boat containing the compound (F) were heated at the same time and vapor-deposited to a film thickness of 35 nm to form a light emitting layer.
  • the deposition rate was adjusted so that the weight ratio of the compound (D) to the compound (E) was about 95: 5.
  • the vapor deposition boat containing the compound (1-1-1) and the vapor deposition boat containing Liq were heated at the same time so as to have a film thickness of 25 nm to form an electron transport layer.
  • the deposition rate was adjusted so that the weight ratio of the compound (1-1-1) and Liq was about 1: 1.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • the boat containing magnesium and the boat containing silver are heated at the same time, and the deposition rate is adjusted between 0.1 to 10 nm / second so that the atomic ratio of silver to magnesium is 1:10.
  • a cathode was formed by vapor deposition so as to have a film thickness of 100 nm to obtain an organic EL element.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was replaced with the compound (1-1-2).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the drive test start voltage was 3.79 V, and the time for maintaining a luminance of 90% or more of the initial luminance was 60 hours.
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-1) was changed to the compound (1-1-134).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 3.86 V, and the time for maintaining 90% or more of the initial luminance was 177 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was replaced with the compound (1-1-153).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 3.87 V, and the time for maintaining 90% or more of the initial luminance was 101 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was changed to the compound (1-1-172).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 3.79 V, and the time for maintaining 90% or more of the initial luminance was 87 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was replaced with the compound (1-1-191).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 3.57 V, and the time for maintaining 90% or more of the initial luminance was 203 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was changed to the compound (1-1-210).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 3.58 V, and the time for maintaining 90% or more of the initial luminance was 172 hours.
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-1) was changed to the compound (1-1-229).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the drive test start voltage was 3.67 V, and the time for maintaining 90% or more of the initial brightness was 80 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was changed to the compound (1-2-1).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 4.20 V, and the time for maintaining 90% or more of the initial luminance was 57 hours.
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-1) was replaced with the compound (1-2-153).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 3.85 V, and the time for maintaining a luminance of 90% or more of the initial luminance was 62 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was replaced with the compound (1-2-172).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 3.65 V, and the time for maintaining a luminance of 90% or more of the initial luminance was 104 hours.
  • Example 2 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-1) was changed to the compound (F).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 5.35 V, and the time for maintaining 90% or more of the initial luminance was 2 hours.
  • Example 3 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-1) was changed to the compound (G).
  • a constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 4.20 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 30 hours.
  • an organic electroluminescent element that improves the lifetime of the light emitting element and has an excellent balance with the driving voltage, a display device including the organic electroluminescent element, and a lighting device including the organic electroluminescent element. it can.

Abstract

The compound represented by formula (1) is characterized in being stable in a thin film state even when voltage is applied, and in having a high charge- transporting capability. This compound is suitable for a charge transport material for an organic EL element, and by using this electron transport material in the electron transport layer and/or electron injection layer of an organic EL element, an organic EL element having a long life can be obtained. In formula (1), Py is pyridyl, any hydrogen of this pyridyl can be substituted by an alkyl, cycloalkyl, phenyl, 1-naphthyl, or 2-naphthyl, and the phenyl, 1-naphthyl, or 2-naphthyl can be further substituted by an alkyl or cycloalkyl; R is hydrogen, an alkyl, a cycloalkyl, or an aryl, and any hydrogen of this aryl can be substituted by an alkyl or cycloalkyl.

Description

電子輸送材料およびこれを用いた有機電界発光素子Electron transport material and organic electroluminescent device using the same
本発明は、ピリジル基を有する新規な電子輸送材料、この電子輸送材料を用いた有機電界発光素子(以下、有機EL素子または単に素子と略記することがある。)等に関する。 The present invention relates to a novel electron transport material having a pyridyl group, an organic electroluminescence device using the electron transport material (hereinafter, sometimes abbreviated as an organic EL device or simply a device), and the like.
近年、次世代のフルカラーフラットパネルディスプレイとして有機EL素子が注目され、活発な研究がなされている。有機EL素子の実用化を促進するには、素子の駆動電圧の低減、長寿命化が不可欠な要素であり、これらを達成するために新しい電子輸送材料の開発がなされてきた。特に、青色素子の駆動電圧低下、長寿命化は必須である。特許文献1(特開2003-123983号公報)には、フェナントロリン誘導体またはその類似体である2,2’-ビピリジル化合物を電子輸送材料に使用することで有機EL素子を低電圧で駆動させることができると記載されている。しかしながらこの文献の実施例に報告されている素子の特性(駆動電圧、発光効率など)は比較例を基準にした相対値のみであり、実用的な値と判断できる実測値は記載されていない。他に、2,2’-ビピリジル化合物を電子輸送材料に使用した例が、非特許文献1(Proceedings of the 10th International Workshop on Inorganic and Organic Electroluminescence)、特許文献2(特開2002-158093号公報)および特許文献3(国際公開2007/86552パンフレット)に開示されている。非特許文献1に記載されている化合物はTgが低く、実用的ではなかった。特許文献2および3に記載の化合物は比較的低電圧で有機EL素子を駆動させることができるが、実用化に向けてはより長寿命化が望まれている。 In recent years, organic EL elements have attracted attention as next-generation full-color flat panel displays, and active research has been conducted. In order to promote the practical use of organic EL elements, it is indispensable to reduce the drive voltage and extend the life of the elements, and new electron transport materials have been developed to achieve these. In particular, it is essential to lower the driving voltage and extend the life of the blue element. Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-123983) discloses that an organic EL device can be driven at a low voltage by using a 2,2′-bipyridyl compound, which is a phenanthroline derivative or an analog thereof, as an electron transport material. It is stated that it can be done. However, the element characteristics (driving voltage, light emission efficiency, etc.) reported in the examples of this document are only relative values based on comparative examples, and no actual measurement values that can be judged as practical values are described. Alternatively, example of using 2,2'-bipyridyl compound to the electron transport material, non-patent document 1 (Proceedings of the 10 th International Workshop on Inorganic and Organic Electroluminescence), Patent Document 2 (JP 2002-158093 JP ) And Patent Document 3 (International Publication No. 2007/86552 pamphlet). The compound described in Non-Patent Document 1 has a low Tg and is not practical. Although the compounds described in Patent Documents 2 and 3 can drive an organic EL device at a relatively low voltage, longer life is desired for practical use.
特開2003-123983号公報JP 2003-123983 A 特開2002-158093号公報JP 2002-158093 A 国際公開2007/86552パンフレットInternational Publication 2007/86552 Pamphlet
本発明は、このような従来技術が有する課題に鑑みてなされたものである。本発明は、有機EL素子の長寿命化等に寄与する電子輸送材料を提供することを課題とする。さらに本発明は、この電子輸送材料を用いた有機EL素子を提供することを課題とする。 The present invention has been made in view of the problems of such conventional techniques. It is an object of the present invention to provide an electron transport material that contributes to extending the lifetime of an organic EL element. Furthermore, this invention makes it a subject to provide the organic EL element using this electron transport material.
本発明者らは鋭意検討した結果、9-(1-ナフチル)-10-フェニルアントラセンのフェニルにピリジルを有した化合物を有機EL素子の電子輸送層に用いることにより、長寿命で駆動できる有機EL素子が得られることを見出し、この知見に基づいて本発明を完成した。
上記の課題は以下に示す各項によって解決される。
As a result of intensive studies, the present inventors have found that an organic EL that can be driven with a long lifetime by using a compound of 9- (1-naphthyl) -10-phenylanthracene having a pyridyl in the electron transport layer of an organic EL device. It was found that an element was obtained, and the present invention was completed based on this finding.
Said subject is solved by each item shown below.
[1] 下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000006
式(1)において、
Pyはピリジルであり、このピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよいフェニル、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい1-ナフチル、または炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい2-ナフチルで置き換えられていてもよく;
Rは水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールであり、このアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;また、
式(1)で表される化合物における少なくとも1つの水素が重水素で置き換えられていてもよい。
[1] A compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
In equation (1),
Py is pyridyl, and any hydrogen of the pyridyl is substituted with alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms. 1-naphthyl optionally substituted with phenyl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, or alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons Optionally substituted with 2-naphthyl;
R is hydrogen, alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms, and any hydrogen in the aryl is alkyl having 1 to 6 carbon atoms or 3 to 3 carbon atoms. Optionally substituted with 6 cycloalkyl; and
At least one hydrogen in the compound represented by the formula (1) may be replaced with deuterium.
[2] 下記式(1-1)または(1-2)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000007
式(1-1)および(1-2)において、
Pyはピリジルであり、このピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよいフェニル、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい1-ナフチル、または炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい2-ナフチルで置き換えられていてもよく;
Rは水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールであり、このアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;また、
式(1-1)または(1-2)で表される化合物における少なくとも1つの水素が重水素で置き換えられていてもよい。
[2] The compound according to item [1], represented by the following formula (1-1) or (1-2):
Figure JPOXMLDOC01-appb-C000007
In formulas (1-1) and (1-2),
Py is pyridyl, and any hydrogen of the pyridyl is substituted with alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms. 1-naphthyl optionally substituted with phenyl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, or alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons Optionally substituted with 2-naphthyl;
R is hydrogen, alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms, and any hydrogen in the aryl is alkyl having 1 to 6 carbon atoms or 3 to 3 carbon atoms. Optionally substituted with 6 cycloalkyl;
At least one hydrogen in the compound represented by the formula (1-1) or (1-2) may be replaced with deuterium.
[3] Pyが2-ピリジルである、前記[1]項または[2]項に記載の化合物。 [3] The compound according to [1] or [2], wherein Py is 2-pyridyl.
[4] Pyが3-ピリジルである、前記[1]項または[2]項に記載の化合物。 [4] The compound according to [1] or [2], wherein Py is 3-pyridyl.
[5] Pyが4-ピリジルである、前記[1]項または[2]項に記載の化合物。 [5] The compound according to [1] or [2], wherein Py is 4-pyridyl.
[6] Pyが下記の1価の基の群から選ばれる1つである、前記[1]項または[2]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000008
[6] The compound according to [1] or [2], wherein Py is one selected from the group of monovalent groups below.
Figure JPOXMLDOC01-appb-C000008
[7] 下記式(1-1-1)、(1-1-2)、(1-1-3)、(1-1-134)、(1-1-153)、(1-1-172)、(1-1-191)、(1-1-210)、(1-1-229)、(1-2-1)、(1-2-153)、および(1-2-172)で表される化合物の群から選ばれる1つである、前記[1]項または[2]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000009

Figure JPOXMLDOC01-appb-C000010
[7] The following formulas (1-1-1), (1-1-2), (1-1-3), (1-1-134), (1-1-153), (1-1- 172), (1-1-191), (1-1-210), (1-1-229), (1-2-1), (1-2-153), and (1-2-172) ) The compound according to item [1] or [2], which is one selected from the group of compounds represented by:
Figure JPOXMLDOC01-appb-C000009

Figure JPOXMLDOC01-appb-C000010
[8] 前記[1]~[7]項のいずれか1項に記載の化合物を含有する電子輸送材料。 [8] An electron transport material containing the compound according to any one of the items [1] to [7].
[9] 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、前記[8]項に記載の電子輸送材料を含有する電子輸送層および/または電子注入層とを有する有機電界発光素子。 [9] A pair of electrodes composed of an anode and a cathode, a light emitting layer disposed between the pair of electrodes, an electron transport material according to the item [8], disposed between the cathode and the light emitting layer. An organic electroluminescent device having an electron transport layer and / or an electron injection layer containing
[10] 前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体およびボラン誘導体からなる群から選択される少なくとも1つを含有する、前記[9]項に記載の有機電界発光素子。 [10] At least one of the electron transport layer and the electron injection layer further contains at least one selected from the group consisting of a quinolinol-based metal complex, a bipyridine derivative, a phenanthroline derivative, and a borane derivative, [9] The organic electroluminescent element according to item.
[11] 電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、前記[10]項に記載の有機電界発光素子。 [11] At least one of the electron transport layer and the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth. Containing at least one selected from the group consisting of metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes The organic electroluminescent device as described in the item [10].
本発明の化合物は薄膜状態で電圧を印加しても安定であり、また、電荷の輸送能力が高いという特徴を持つ。本発明の化合物は有機EL素子における電荷輸送材料として適している。本発明の化合物を有機EL素子の電子輸送層および/または電子注入層に用いることで、長い寿命を有する有機EL素子を得ることができる。本発明の有機EL素子を用いることにより、フルカラー表示等の高性能のディスプレイ装置を作成できる。 The compound of the present invention is stable even when a voltage is applied in a thin film state and has a feature of high charge transport capability. The compound of the present invention is suitable as a charge transport material in an organic EL device. By using the compound of the present invention for an electron transport layer and / or an electron injection layer of an organic EL device, an organic EL device having a long lifetime can be obtained. By using the organic EL element of the present invention, a high-performance display device such as full-color display can be created.
以下、本発明をさらに詳細に説明する。なお、本明細書においては、例えば「式(1-1-1)で表される化合物」のことを「化合物(1-1-1)」と称することがある。その他の式記号、式番号についても同様に扱われる。 Hereinafter, the present invention will be described in more detail. In the present specification, for example, a “compound represented by formula (1-1-1)” may be referred to as “compound (1-1-1)”. Other formula symbols and formula numbers are handled in the same manner.
化合物の定義において用いる用語「任意の」は「位置だけでなく数においても自由に選択できること」を意味する場合がある。例えば、「フェニルの任意の水素は炭素数1~6のアルキルで置き換えられていてもよい」という表現は、「1つの水素がアルキルで置き換えられてもよい」のみならず、「複数の水素が同一のアルキル、または各々異なるアルキルで置き換えられていてもよい」ことをも意味する。
本明細書の構造式、化学反応式等で用いられる記号Me、Et、i-Pr、およびt-Buは、それぞれメチル、エチル、イソプロピルおよびターシャリーブチルを表す。
The term “arbitrary” used in the definition of a compound may mean “can be freely selected not only by position but also by number”. For example, the expression “any hydrogen of phenyl may be substituted with alkyl having 1 to 6 carbon atoms” is not limited to “a single hydrogen may be substituted with alkyl”, It may also mean “same alkyl, or each may be replaced by a different alkyl”.
The symbols Me, Et, i-Pr, and t-Bu used in the structural formulas, chemical reaction formulas and the like in this specification represent methyl, ethyl, isopropyl, and tertiary butyl, respectively.
<化合物の説明>
本願の第1の発明は下記の式(1)で表される、ピリジルを有する化合物である。
Figure JPOXMLDOC01-appb-C000011
式(1)において、Pyはピリジルである。ピリジルは、具体的には2-ピリジル、3-ピリジルまたは4-ピリジルである。このピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、フェニル、1-ナフチル、または2-ナフチルで置き換えられていてもよい。そして、フェニル、1-ナフチルおよび2-ナフチルはさらに炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい。Rは水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールである。このアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。また、式(1)で表される化合物における少なくとも1つの水素が重水素で置き換えられていてもよい。
<Description of compound>
1st invention of this application is a compound which has a pyridyl represented by following formula (1).
Figure JPOXMLDOC01-appb-C000011
In the formula (1), Py is pyridyl. Pyridyl is specifically 2-pyridyl, 3-pyridyl or 4-pyridyl. Any hydrogen in the pyridyl may be replaced by alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, phenyl, 1-naphthyl, or 2-naphthyl. Further, phenyl, 1-naphthyl and 2-naphthyl may be further substituted with alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms. R is hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons or aryl having 6 to 14 carbons. Any hydrogen in the aryl may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. In addition, at least one hydrogen in the compound represented by the formula (1) may be replaced with deuterium.
式(1)において、ピリジルが連結するフェニルの位置は任意でよいが、4位および3位が好ましい。すなわち、式(1)の化合物の好ましい態様は、下記の式(1-1)または(1-2)で表すことができる。
Figure JPOXMLDOC01-appb-C000012
式(1-1)および(1-2)におけるRおよびPyの定義は前記と同じである。
In the formula (1), the position of phenyl to which pyridyl is linked may be arbitrary, but the 4-position and 3-position are preferred. That is, a preferred embodiment of the compound of formula (1) can be represented by the following formula (1-1) or (1-2).
Figure JPOXMLDOC01-appb-C000012
The definitions of R and Py in the formulas (1-1) and (1-2) are the same as described above.
式(1)中のピリジルに置換する炭素数1~6のアルキルの例はメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、n-ペンチル、イソペンチル、2,2-ジメチルプロピル、n-ヘキシル、およびイソヘキシルである。この中で好ましいアルキルはメチル、エチル、イソプロピル、およびt-ブチルであり、メチルおよびt-ブチルがより好ましい。炭素数3~6のシクロアルキルの例はシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルである。この中で好ましいシクロアルキルは原料の入手、合成の容易さを考慮するとシクロヘキシルである。上記の例示は、ピリジルに置換するフェニル、1-ナフチル、2-ナフチルの置換基、およびRが炭素数6~14のアリールである場合の該アリールの置換基についても同様である。 Examples of alkyl having 1 to 6 carbon atoms to be substituted with pyridyl in formula (1) are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, 2,2- Dimethylpropyl, n-hexyl, and isohexyl. Of these, preferred alkyls are methyl, ethyl, isopropyl, and t-butyl, with methyl and t-butyl being more preferred. Examples of cycloalkyl having 3 to 6 carbon atoms are cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Of these, cycloalkyl is preferably cyclohexyl in view of availability of raw materials and ease of synthesis. The above examples are the same for phenyl, 1-naphthyl and 2-naphthyl substituents substituted on pyridyl, and the aryl substituents when R is aryl having 6 to 14 carbon atoms.
ピリジルの置換基の位置および個数については特に限定されることはない。特にメチルについてはピリジルのどの位置に置換していてもよく、置換する数も1個から置換可能な最大の4個まで選ぶことができる。エチルよりも長いアルキル、シクロアルキル、フェニル、1-ナフチル、および2-ナフチルについては、原料の入手し易さや合成の容易さを考慮すると、ピリジルのNの隣の炭素に置換することが好ましく、そして、置換する数も1~2個が好ましく、1個がより好ましい。 The position and number of the pyridyl substituents are not particularly limited. In particular, methyl may be substituted at any position of pyridyl, and the number of substitutions can be selected from 1 to the maximum 4 that can be substituted. For alkyl, cycloalkyl, phenyl, 1-naphthyl, and 2-naphthyl longer than ethyl, it is preferable to substitute the carbon adjacent to N of pyridyl in consideration of the availability of raw materials and the ease of synthesis. The number of substitution is preferably 1 to 2, more preferably 1.
式(1)、(1-1)および(1-2)中の1-ナフチルに置換するRの位置は任意でよいが、原料の入手し易さを考慮すると4位および5位が好ましく、4位がより好ましい。 In the formulas (1), (1-1) and (1-2), the position of R substituted with 1-naphthyl may be arbitrary, but the 4-position and 5-position are preferred in consideration of the availability of raw materials, The 4th position is more preferable.
Rにおける炭素数1~6のアルキルおよび炭素数3~6のシクロアルキルの例は、前記ピリジルの置換基で例示した基が挙げられる。好ましいアルキルはメチル、エチル、イソプロピル、およびt-ブチルであり、メチルおよびt-ブチルがより好ましい。好ましいシクロアルキルは原料の入手、合成の容易さを考慮するとシクロヘキシルである。Rにおける炭素数6~14のアリールは具体的にはフェニル、ビフェニリル、ナフチル、フェナントリルである。これらの基が置換基を有する場合の置換基の数の最大値は化学的に可能な数であるが、原料の入手、合成の容易さを考慮すると1~3個が好ましい。好ましいRは下記の1価の基である。
Figure JPOXMLDOC01-appb-C000013
Examples of the alkyl having 1 to 6 carbon atoms and the cycloalkyl having 3 to 6 carbon atoms in R include the groups exemplified as the substituent for the pyridyl. Preferred alkyl are methyl, ethyl, isopropyl, and t-butyl, with methyl and t-butyl being more preferred. Preferred cycloalkyl is cyclohexyl in consideration of availability of raw materials and ease of synthesis. Specific examples of aryl having 6 to 14 carbon atoms in R are phenyl, biphenylyl, naphthyl, and phenanthryl. When these groups have a substituent, the maximum value of the number of substituents is a chemically possible number. However, considering the availability of raw materials and the ease of synthesis, 1 to 3 is preferable. Preferred R is the following monovalent group.
Figure JPOXMLDOC01-appb-C000013
上記の基の中では下記に示す基がより好ましい。
Figure JPOXMLDOC01-appb-C000014
Of the above groups, the following groups are more preferred.
Figure JPOXMLDOC01-appb-C000014
<化合物の具体例>
本発明の化合物の具体例は以下に列記する式によって示されるが、本発明はこれらの具体的な構造の開示によって限定されることはない。
<Specific examples of compounds>
Specific examples of the compounds of the present invention are shown by the formulas listed below, but the present invention is not limited by the disclosure of these specific structures.
<式(1-1)で表される化合物の具体例>
式(1-1)で表される化合物の具体例は下記の式(1-1-1)~(1-1-475)で示される。これらの中で好ましい化合物は式(1-1-1)~(1-1-57)、(1-1-58)、(1-1-77)、(1-1-96)、(1-1-115)、(1-1-134)、(1-1-153)、(1-1-172)、(1-1-191)、(1-1-210)、および(1-1-229)であり、より好ましい化合物は式(1-1-1)~(1-1-3)、(1-1-58)、(1-1-77)、(1-1-96)、(1-1-115)、(1-1-134)、(1-1-153)、(1-1-172)、(1-1-191)、(1-1-210)、および(1-1-229)である。
<Specific Example of Compound Represented by Formula (1-1)>
Specific examples of the compound represented by the formula (1-1) are represented by the following formulas (1-1-1) to (1-1-475). Of these, preferred compounds are those represented by the formulas (1-1-1) to (1-1-57), (1-1-58), (1-1-77), (1-1-96), (1 1-115), (1-1-134), (1-1-153), (1-1-172), (1-1-191), (1-1-210), and (1- More preferred compounds are formulas (1-1-1) to (1-1-3), (1-1-58), (1-1-77), (1-1-96). ), (1-1-115), (1-1-134), (1-1-153), (1-1-172), (1-1-191), (1-1-210), And (1-1-229).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
<式(1-2)で表される化合物の具体例>
式(1-2)で表される化合物の具体例は下記の式(1-2-1)~(1-2-475)で示される。これらの中で好ましい化合物は式(1-2-1)~(1-2-57)、(1-2-58)、(1-2-77)、(1-2-96)、(1-2-115)、(1-2-134)、(1-2-153)、(1-2-172)、(1-2-191)、(1-2-210)、および(1-2-229)であり、より好ましい化合物は式(1-2-1)~(1-2-3)、(1-2-58)、(1-2-77)、(1-2-96)、(1-2-115)、(1-2-134)、(1-2-153)、(1-2-172)、(1-2-191)、(1-2-210)、および(1-2-229)である。
<Specific Example of Compound Represented by Formula (1-2)>
Specific examples of the compound represented by the formula (1-2) are represented by the following formulas (1-2-1) to (1-2-475). Of these, preferred compounds are those represented by the formulas (1-2-1) to (1-2-57), (1-2-58), (1-2-77), (1-2-96), (1 -2-115), (1-2-134), (1-2-153), (1-2-172), (1-2-191), (1-2-210), and (1- More preferable compounds are the formulas (1-2-1) to (1-2-3), (1-2-58), (1-2-77), (1-296). ), (1-2-115), (1-2-134), (1-2-153), (1-2-172), (1-2-191), (1-2-210), And (1-2-229).
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
<化合物の合成法>
以下に本発明の化合物の合成法について説明する。本発明の化合物は、汎用される既知の合成法を適宜組み合わせて利用することにより合成することができる。化合物(1-1-1)を例に本発明の化合物の合成法を説明する。
<Method of synthesizing compounds>
The synthesis method of the compound of the present invention will be described below. The compound of the present invention can be synthesized by appropriately combining known synthesis methods that are widely used. The method for synthesizing the compound of the present invention will be described using the compound (1-1-1) as an example.
まず、9-(ナフタレン-1-イル)アントラセンの合成法を説明する。
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
反応1で1-ブロモナフタレンを、有機リチウム試薬を用いてリチオ化するか、マグネシウムや有機マグネシウム試薬を用いてグリニャール試薬とし、ホウ酸トリメチル、ホウ酸トリエチルまたはホウ酸トリイソプロピルなどと反応させることにより、1-ナフタレンボロン酸エステルを合成することができる。次いで、反応2で該ボロン酸エステルを加水分解することにより、1-ナフタレンボロン酸を合成することができる。
First, a method for synthesizing 9- (naphthalen-1-yl) anthracene will be described.
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
In reaction 1, 1-bromonaphthalene is lithiated using an organolithium reagent, or converted into a Grignard reagent using magnesium or an organomagnesium reagent, and reacted with trimethyl borate, triethyl borate, triisopropyl borate, or the like. 1-naphthaleneboronic acid ester can be synthesized. Next, 1-naphthaleneboronic acid can be synthesized by hydrolyzing the boronic ester in reaction 2.
Figure JPOXMLDOC01-appb-C000132
反応3で1-ナフタレンボロン酸と9-ブロモアントラセンをパラジウム触媒の存在下カップリングすることにより、9-(ナフタレン-1-イル)アントラセンを合成することができる。
Figure JPOXMLDOC01-appb-C000132
9- (Naphthalen-1-yl) anthracene can be synthesized by coupling 1-naphthaleneboronic acid and 9-bromoanthracene in Reaction 3 in the presence of a palladium catalyst.
また、ナフタレンをボロン酸にしてカップリング反応に供する上記の工程とは逆に、アントラセンをボロン酸にしてカップリング反応させる方法も用いることができる。
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
反応4で9-ブロモアントラセンを、有機リチウム試薬を用いてリチオ化するか、マグネシウムや有機マグネシウム試薬を用いてグリニャール試薬とし、ホウ酸トリメチル、ホウ酸トリエチルまたはホウ酸トリイソプロピルなどと反応させることにより、1-ナフタレンボロン酸エステルを合成することができる。次いで、反応5で該ボロン酸エステルを加水分解することにより、9-アントラセンボロン酸を合成することができる。
Further, conversely to the above-described step in which naphthalene is converted to boronic acid and subjected to the coupling reaction, a method in which anthracene is converted to boronic acid for the coupling reaction can also be used.
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
In reaction 4, 9-bromoanthracene is lithiated using an organolithium reagent, or converted into a Grignard reagent using magnesium or an organomagnesium reagent, and reacted with trimethyl borate, triethyl borate, triisopropyl borate, or the like. 1-naphthaleneboronic acid ester can be synthesized. Subsequently, 9-anthraceneboronic acid can be synthesized by hydrolyzing the boronic ester in Reaction 5.
Figure JPOXMLDOC01-appb-C000135
反応6で9-アントラセンボロン酸と1-ブロモナフタレンをパラジウム触媒の存在下カップリングすることでも、9-(ナフタレン-1-イル)アントラセンを合成することができる。ナフタレン環とアントラセン環をカップリングするには反応3、反応6に示した鈴木カップリング反応に限らず、根岸カップリング反応などによっても可能であり、状況に応じてこれらの常法が適宜使用できる。また、9-(ナフタレン-1-イル)アントラセンは市販品を用いることもできる。
Figure JPOXMLDOC01-appb-C000135
9- (Naphthalen-1-yl) anthracene can also be synthesized by coupling 9-anthraceneboronic acid and 1-bromonaphthalene in the presence of a palladium catalyst in Reaction 6. The coupling of the naphthalene ring and the anthracene ring is not limited to the Suzuki coupling reaction shown in Reaction 3 and Reaction 6, but can also be performed by the Negishi coupling reaction or the like, and these conventional methods can be appropriately used depending on the situation. . Further, 9- (naphthalen-1-yl) anthracene may be a commercially available product.
続いて、9-(ナフタレン-1-イル)アントラセンの10位をボロン酸にする工程を説明する。
Figure JPOXMLDOC01-appb-C000136
反応7でN-ブロモスクシンイミドを用いて9-(ナフタレン-1-イル)アントラセンの10位を臭素化する。ここでもN-ブロモスクシンイミド以外の常用される臭素化剤を使用することができる。
Next, the process of converting the 10-position of 9- (naphthalen-1-yl) anthracene to boronic acid will be described.
Figure JPOXMLDOC01-appb-C000136
In Reaction 7, the 10-position of 9- (naphthalen-1-yl) anthracene is brominated using N-bromosuccinimide. Here too, a commonly used brominating agent other than N-bromosuccinimide can be used.
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
反応8で、9-ブロモ-10-(ナフタレン-1-イル)アントラセンを、有機リチウム試薬を用いてリチオ化するか、マグネシウムや有機マグネシウム試薬を用いてグリニャール試薬とし、ホウ酸トリメチル、ホウ酸トリエチルまたはホウ酸トリイソプロピルなどと反応させることにより、(10-(ナフタレン-1-イル)アントラセン-9-イル)ボロン酸エステルを合成することができる。さらに、反応9で該ボロン酸エステルを加水分解することにより、(10-(ナフタレン-1-イル)アントラセン-9-イル)ボロン酸を合成することができる。
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
In Reaction 8, 9-bromo-10- (naphthalen-1-yl) anthracene is lithiated using an organolithium reagent, or converted into a Grignard reagent using magnesium or an organomagnesium reagent, and trimethyl borate or triethyl borate. Alternatively, (10- (naphthalen-1-yl) anthracen-9-yl) boronic acid ester can be synthesized by reacting with triisopropyl borate or the like. Furthermore, (10- (naphthalen-1-yl) anthracen-9-yl) boronic acid can be synthesized by hydrolyzing the boronic ester in reaction 9.
次に、アントラセンに連結するピリジルフェニルブロミドの合成法を説明する。
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
反応10で4-ヨードピリジンから塩化亜鉛錯体を合成し、次に反応11で該ピリジンの塩化亜鉛錯体とp-ブロモヨードベンゼンを反応させることにより、4-(4-ブロモフェニル)ピリジンを合成することができる。なお、上記反応式中の「ZnCl・TMEDA」は塩化亜鉛のテトラメチルエチレンジアミン錯体である。また、RLiまたはRMgXにおけるRは直鎖または分岐のアルキルを表すが、好ましくは炭素数1~4の直鎖または炭素数3~4の分岐アルキルである。Xはハロゲンであり、塩素、臭素およびヨウ素が好ましく用いられる。
Next, a method for synthesizing pyridylphenyl bromide linked to anthracene will be described.
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
In reaction 10, a zinc chloride complex is synthesized from 4-iodopyridine, and in reaction 11, 4- (4-bromophenyl) pyridine is synthesized by reacting the pyridine zinc chloride complex with p-bromoiodobenzene. be able to. “ZnCl 2 · TMEDA” in the above reaction formula is a tetramethylethylenediamine complex of zinc chloride. R in RLi or RMgX represents straight-chain or branched alkyl, preferably straight-chain or branched alkyl having 1 to 4 carbon atoms. X is a halogen, and chlorine, bromine and iodine are preferably used.
最後にアントラセンボロン酸とピリジルフェニルブロミドのカップリング反応を説明する。
Figure JPOXMLDOC01-appb-C000141
反応12で先のアントラセンボロン酸とピリジルフェニルブロミドをパラジウム触媒の存在下カップリングすることにより、本発明の化合物(1-1-1)を合成することができる。
Finally, the coupling reaction between anthraceneboronic acid and pyridylphenyl bromide will be described.
Figure JPOXMLDOC01-appb-C000141
The compound (1-1-1) of the present invention can be synthesized by coupling the anthraceneboronic acid and pyridylphenyl bromide in the reaction 12 in the presence of a palladium catalyst.
上記の反応において用いる材料を適宜変更することによって、本発明の他の化合物を合成することができる。例えば、反応1や反応6で1-ブロモナフタレンの代わりに1-ブロモ-4-メチルナフタレンのようなアルキル置換したブロモベンゼンを用いることによって、アルキル置換したナフチルを有する化合物を合成することができる。 Other compounds of the present invention can be synthesized by appropriately changing the materials used in the above reaction. For example, by using alkyl-substituted bromobenzene such as 1-bromo-4-methylnaphthalene instead of 1-bromonaphthalene in Reaction 1 or Reaction 6, a compound having an alkyl-substituted naphthyl can be synthesized.
反応10で用いた4-ヨードピリジンの代わりに2-ヨードピリジンまたは3-ヨードピリジンを用いることによって、フェニルに2-ピリジルまたは3-ピリジルが置換した化合物を合成することができる。また、ヨードピリジンの代わりにブロモピリジンを用いることもできる。反応11で用いたp-ブロモヨードベンゼンの代わりにm-ブロモヨードベンゼンを用いることで、フェニルの3位にピリジルが結合した化合物を合成することができる。 By using 2-iodopyridine or 3-iodopyridine instead of 4-iodopyridine used in Reaction 10, a compound in which 2-pyridyl or 3-pyridyl is substituted on phenyl can be synthesized. Also, bromopyridine can be used in place of iodopyridine. By using m-bromoiodobenzene instead of p-bromoiodobenzene used in Reaction 11, a compound in which pyridyl is bonded to the 3-position of phenyl can be synthesized.
フェニルブロモピリジンをp-ブロモヨードベンゼンまたはm-ブロモヨードベンゼンとカップリングする工程では、上記の根岸カップリング反応に限らず、入手できる原料、試薬の種類に応じて、反応11で用いた鈴木カップリング反応を用いることもできる。 The step of coupling phenylbromopyridine with p-bromoiodobenzene or m-bromoiodobenzene is not limited to the above Negishi coupling reaction, and the Suzuki cup used in Reaction 11 depends on the types of available raw materials and reagents. A ring reaction can also be used.
Figure JPOXMLDOC01-appb-C000142
反応8~9では9-(ナフタレン-1-イル)アントラセンの10位をボロン酸にしてカップリング反応に供したが、反応8の生成物であるボロン酸エステルをそのままカップリング反応に用いてもよい。また、上記の反応13のように、9-ブロモ-10-(ナフタレン-1-イル)アントラセンを、有機リチウム試薬を用いてリチオ化するか、マグネシウムや有機マグネシウム試薬を用いてグリニャール試薬とし、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロランと反応させることにより、(10-(ナフタレン-1-イル)アントラセン-9-イル)ボロン酸エステルを合成することができる。
Figure JPOXMLDOC01-appb-C000142
In Reactions 8 to 9, the 10-position of 9- (naphthalen-1-yl) anthracene was subjected to a coupling reaction with boronic acid. However, the boronic acid ester which is the product of Reaction 8 could be used as it was for the coupling reaction. Good. Further, as in Reaction 13 above, 9-bromo-10- (naphthalen-1-yl) anthracene is lithiated using an organolithium reagent, or converted into a Grignard reagent using magnesium or an organomagnesium reagent. Synthesis of (10- (naphthalen-1-yl) anthracen-9-yl) boronic acid ester by reaction with isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane be able to.
Figure JPOXMLDOC01-appb-C000143
また、反応14に示すように、9-ブロモ-10-(ナフタレン-1-イル)アントラセンとビス(ピナコラート)ジボロンまたは4,4,5,5-テトラメチル-1,3,2-ジオキサボロランとを、パラジウム触媒と塩基を用いてカップリング反応させることによっても、同様の(10-(ナフタレン-1-イル)アントラセン-9-イル)ボロン酸エステルを合成することができる。このようにして得られた(10-(ナフタレン-1-イル)アントラセン-9-イル)ボロン酸エステルも反応12のカップリング反応に好適に用いることができる。
Figure JPOXMLDOC01-appb-C000143
Also, as shown in Reaction 14, 9-bromo-10- (naphthalen-1-yl) anthracene and bis (pinacolato) diboron or 4,4,5,5-tetramethyl-1,3,2-dioxaborolane The same (10- (naphthalen-1-yl) anthracen-9-yl) boronic acid ester can also be synthesized by a coupling reaction using a palladium catalyst and a base. The (10- (naphthalen-1-yl) anthracen-9-yl) boronic acid ester thus obtained can also be suitably used for the coupling reaction of Reaction 12.
合成の最終工程であるアントラセンのパートとピリジルフェニルブロミドのパートをカップリングする方法として、反応12に示した鈴木カップリング反応の例を取り上げたが、入手できる原料、試薬の種類に応じて根岸カップリング反応を用いてもよい。さらには、本発明の化合物の合成は、アントラセンのパートとフェニレンのパートをカップリングする反応を最終工程にする方法に限られることはない。 The example of the Suzuki coupling reaction shown in Reaction 12 was taken as a method for coupling the anthracene part and the pyridylphenyl bromide part, which are the final steps of the synthesis. A ring reaction may be used. Furthermore, the synthesis of the compound of the present invention is not limited to the method in which the reaction of coupling the anthracene part and the phenylene part is the final step.
アントラセンと連結するための、アルキル基またはシクロアルキル基で置換されたピリジルフェニルブロミドは下記反応15~16に示したように合成することができる。原料を適宜変更することで、種々のアルキル基またはシクロアルキル基で置換されたピリジルフェニルブロミドを合成することができる。
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
A pyridylphenyl bromide substituted with an alkyl group or a cycloalkyl group for linking with anthracene can be synthesized as shown in the following reactions 15 to 16. By appropriately changing the raw materials, pyridylphenyl bromides substituted with various alkyl groups or cycloalkyl groups can be synthesized.
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
フェニル基で置換されたピリジルフェニルブロミドは下記反応17~18に示したように合成することができる。また原料を適宜変更することで、種々のアリール基で置換されたピリジルフェニルブロミドを合成することができる。
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Pyridylphenyl bromide substituted with a phenyl group can be synthesized as shown in the following reactions 17-18. Moreover, pyridylphenyl bromide substituted with various aryl groups can be synthesized by appropriately changing the raw materials.
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
<反応で用いる試薬>
鈴木カップリング反応で用いられるパラジウム触媒の具体例としては、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド:PdCl(PPh、酢酸パラジウム(II):Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II):Pd(dppf)Cl、PdCl[P(t-Bu)-(p-NMe-Ph)]などがあげられる。
<Reagent used in reaction>
Specific examples of the palladium catalyst used in the Suzuki coupling reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , palladium (II) acetate: Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (Dba) 3 · CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II): Pd (dppf) Cl 2, PdCl 2 [P (t -Bu) 2 - (p-NMe 2 Ph)] 2, and the like.
また、反応を促進させるため、場合によりこれらのパラジウム化合物にホスフィン化合物を加えてもよい。そのホスフィン化合物の具体例としては、トリ(t-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1-(N,N-ジメチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(N,N-ジブチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(メトキシメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1,1’-ビス(ジt-ブチルホスフィノ)フェロセン、2,2’-ビス(ジt-ブチルホスフィノ)-1,1’-ビナフチル、2-メトキシ-2’-(ジt-ブチルホスフィノ)-1,1’-ビナフチル、または2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニルがあげられる。 In order to accelerate the reaction, a phosphine compound may be added to these palladium compounds in some cases. Specific examples of the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1′-bis (di-t-butylphos Fino) ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino) -1,1′-binaphthyl, or 2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl.
反応で用いられる塩基の具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt-ブトキシド、酢酸ナトリウム、リン酸三カリウム、またはフッ化カリウムがあげられる。 Specific examples of the base used in the reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, phosphoric acid Examples include tripotassium or potassium fluoride.
また、反応で用いられる溶媒の具体例としては、ベンゼン、トルエン、キシレン、1,2,4-トリメチルベンゼン、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン、メタノール、エタノール、シクロペンチルメチルエーテルまたはイソプロピルアルコールがあげられる。これらの溶媒は適宜選択でき、単独で用いてもよく、混合溶媒として用いてもよい。 Specific examples of the solvent used in the reaction include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1,4- Examples include dioxane, methanol, ethanol, cyclopentyl methyl ether, and isopropyl alcohol. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
根岸カップリング反応で用いられるパラジウム触媒の具体例としては、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド:PdCl(PPh、酢酸パラジウム(II):Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)、ビス(トリt-ブチルホスフィノ)パラジウム(0)、または[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II):Pd(dppf)Clがあげられる。 Specific examples of the palladium catalyst used in the Negishi coupling reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , palladium (II) acetate: Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (Dba) 3 · CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , bis (tri-t-butylphosphino) palladium (0), or [1,1′-bis (diphenylphosphine) Fino) ferrocene] dichloropalladium (II): Pd (dppf) Cl 2 is given.
また、反応で用いられる溶媒の具体例としては、ベンゼン、トルエン、キシレン、1,2,4-トリメチルベンゼン、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、シクロペンチルメチルエーテルまたは1,4-ジオキサンがあげられる。これらの溶媒は適宜選択でき、単独で用いてもよく、混合溶媒として用いてもよい。 Specific examples of the solvent used in the reaction include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, cyclopentyl methyl ether or 1,4-dioxane. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
本発明の化合物を、有機EL素子における、電子注入層または電子輸送層に用いた場合、電界印加時において安定である。これらは、本発明の化合物が、電界発光型素子の電子注入材料、または電子輸送材料として優れていることを表す。ここで言う電子注入層とは陰極から有機層へ電子を受け取る層であり、電子輸送層とは注入された電子を発光層へ輸送するための層である。また、電子輸送層が電子注入層を兼ねることも可能である。それぞれの層に用いる材料を、電子注入材料および電子輸送材料という。 When the compound of the present invention is used for an electron injection layer or an electron transport layer in an organic EL device, it is stable when an electric field is applied. These represent that the compound of the present invention is excellent as an electron injecting material or an electron transporting material for an electroluminescent device. The electron injection layer mentioned here is a layer for receiving electrons from the cathode to the organic layer, and the electron transport layer is a layer for transporting the injected electrons to the light emitting layer. The electron transport layer can also serve as the electron injection layer. The material used for each layer is referred to as an electron injection material and an electron transport material.
<有機EL素子の説明>
本願の第2の発明は、電子注入層、または電子輸送層に、本発明の式(1)で表される化合物を含有する有機EL素子である。本発明の有機EL素子は、駆動電圧が低く、駆動時の耐久性が高い。
<Description of organic EL element>
2nd invention of this application is an organic EL element containing the compound represented by Formula (1) of this invention in an electron injection layer or an electron carrying layer. The organic EL element of the present invention has a low driving voltage and high durability during driving.
本発明の有機EL素子の構造は各種の態様があるが、基本的には陽極と陰極との間に少なくとも正孔輸送層、発光層、電子輸送層を挟持した多層構造である。素子の具体的な構成の例は、(1)陽極/正孔輸送層/発光層/電子輸送層/陰極、(2)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極、(3)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極、等である。 Although the structure of the organic EL device of the present invention has various modes, it is basically a multilayer structure in which at least a hole transport layer, a light emitting layer, and an electron transport layer are sandwiched between an anode and a cathode. Examples of the specific configuration of the device are (1) anode / hole transport layer / light emitting layer / electron transport layer / cathode, (2) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer. / Cathode, (3) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, etc.
本発明の化合物は、高い電子注入性および電子輸送性を持っているので、単体又は他の材料と併用して電子注入層、または電子輸送層に使用できる。本発明の有機EL素子は、本発明の電子輸送材料に他の材料を用いた正孔注入層、正孔輸送層、発光層、などを組み合わせることで、青色、緑色、赤色や白色の発光を得ることもできる。 Since the compound of the present invention has high electron injecting property and electron transporting property, it can be used for an electron injecting layer or an electron transporting layer alone or in combination with other materials. The organic EL device of the present invention emits blue, green, red and white light by combining a hole injection layer, a hole transport layer, a light emitting layer, etc. using other materials with the electron transport material of the present invention. It can also be obtained.
本発明の有機EL素子に使用できる発光材料または発光性ドーパントは、高分子学会編、高分子機能材料シリーズ“光機能材料”、共同出版(1991)、P236に記載されているような昼光蛍光材料、蛍光増白剤、レーザー色素、有機シンチレータ、各種の蛍光分析試薬等の発光材料、城戸淳二監修、“有機EL材料とディスプレイ”シーエムシー社出版(2001)P155~156に記載されているようなドーパント材料、P170~172に記載されているような3重項材料の発光材料等である。 The light-emitting material or light-emitting dopant that can be used in the organic EL device of the present invention is daylight fluorescence as described in the Polymer Society of Japan, Polymer Functional Materials Series “Optical Functional Materials”, Joint Publication (1991), P236. Materials, fluorescent brighteners, laser dyes, organic scintillators, various fluorescent analysis reagents and other luminescent materials, supervised by Koji Koji, “Organic EL materials and displays” published by CMMC (2001) P155-156 And a light emitting material of a triplet material as described in P170 to 172.
発光材料または発光性ドーパントとして使用できる化合物は、多環芳香族化合物、ヘテロ芳香族化合物、有機金属錯体、色素、高分子系発光材料、スチリル誘導体、芳香族アミン誘導体、クマリン誘導体、ボラン誘導体、オキサジン誘導体、スピロ環を有する化合物、オキサジアゾール誘導体、フルオレン誘導体等である。多環芳香族化合物の例は、アントラセン誘導体、フェナントレン誘導体、ナフタセン誘導体、ピレン誘導体、クリセン誘導体、ペリレン誘導体、コロネン誘導体、ルブレン誘導体等である。ヘテロ芳香族化合物の例は、ジアルキルアミノ基またはジアリールアミノ基を有するオキサジアゾール誘導体、ピラゾロキノリン誘導体、ピリジン誘導体、ピラン誘導体、フェナントロリン誘導体、シロール誘導体、トリフェニルアミノ基を有するチオフェン誘導体、キナクリドン誘導体等である。有機金属錯体の例は、亜鉛、アルミニウム、ベリリウム、ユーロピウム、テルビウム、ジスプロシウム、イリジウム、白金、オスミウム、金、等と、キノリノール誘導体、ベンゾキサゾ-ル誘導体、ベンゾチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体、ピロール誘導体、ピリジン誘導体、フェナントロリン誘導体等との錯体である。色素の例は、キサンテン誘導体、ポリメチン誘導体、ポルフィリン誘導体、クマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、オキソベンズアントラセン誘導体、カルボスチリル誘導体、ペリレン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体等の色素が挙げられる。高分子系発光材料の例は、ポリパラフェニルビニレン誘導体、ポリチオフェン誘導体、ポリビニルカルバゾ-ル誘導体、ポリシラン誘導体、ポリフルオレン誘導体、ポリパラフェニレン誘導体等である。スチリル誘導体の例は、アミン含有スチリル誘導体、スチリルアリーレン誘導体等である。 The compounds that can be used as the light emitting material or the light emitting dopant are polycyclic aromatic compounds, heteroaromatic compounds, organometallic complexes, dyes, polymer light emitting materials, styryl derivatives, aromatic amine derivatives, coumarin derivatives, borane derivatives, oxazines. Derivatives, compounds having a spiro ring, oxadiazole derivatives, fluorene derivatives and the like. Examples of the polycyclic aromatic compound are anthracene derivatives, phenanthrene derivatives, naphthacene derivatives, pyrene derivatives, chrysene derivatives, perylene derivatives, coronene derivatives, rubrene derivatives, and the like. Examples of heteroaromatic compounds are oxadiazole derivatives having a dialkylamino group or diarylamino group, pyrazoloquinoline derivatives, pyridine derivatives, pyran derivatives, phenanthroline derivatives, silole derivatives, thiophene derivatives having a triphenylamino group, quinacridone derivatives Etc. Examples of organometallic complexes are zinc, aluminum, beryllium, europium, terbium, dysprosium, iridium, platinum, osmium, gold, etc., quinolinol derivatives, benzoxazole derivatives, benzothiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, A complex with a benzimidazole derivative, a pyrrole derivative, a pyridine derivative, a phenanthroline derivative, or the like. Examples of dyes are xanthene derivatives, polymethine derivatives, porphyrin derivatives, coumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, oxobenzanthracene derivatives, carbostyril derivatives, perylene derivatives, benzoxazole derivatives, benzothiazole derivatives, benzimidazoles And pigments such as derivatives. Examples of the polymer light-emitting material are polyparaphenyl vinylene derivatives, polythiophene derivatives, polyvinyl carbazole derivatives, polysilane derivatives, polyfluorene derivatives, polyparaphenylene derivatives, and the like. Examples of styryl derivatives are amine-containing styryl derivatives, styrylarylene derivatives, and the like.
本発明の有機EL素子に使用される他の電子輸送材料は、光導電材料において電子伝達化合物として使用できる化合物、有機EL素子の電子輸送層および電子注入層に使用できる化合物の中から任意に選択して用いることができる。 Other electron transport materials used in the organic EL device of the present invention are arbitrarily selected from compounds that can be used as electron transport compounds in photoconductive materials and compounds that can be used in the electron transport layer and electron injection layer of organic EL devices. Can be used.
このような電子輸送材料の具体例は、キノリノール系金属錯体、2,2’-ビピリジル誘導体、フェナントロリン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体、チオフェン誘導体、トリアゾール誘導体、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パ-フルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体、イミダゾピリジン誘導体、ボラン誘導体等である。 Specific examples of such electron transport materials include quinolinol metal complexes, 2,2′-bipyridyl derivatives, phenanthroline derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives, thiophene derivatives, triazole derivatives, thiadiazole derivatives, oxine derivatives. Metal complexes, quinoxaline derivatives, polymers of quinoxaline derivatives, benzazole compounds, gallium complexes, pyrazole derivatives, perfluorinated phenylene derivatives, triazine derivatives, pyrazine derivatives, benzoquinoline derivatives, imidazopyridine derivatives, borane derivatives, and the like.
本発明の有機EL素子に使用される正孔注入材料および正孔輸送材料については、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物や、有機EL素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾ-ル誘導体、トリアリールアミン誘導体、フタロシアニン誘導体等である。 Regarding the hole injection material and the hole transport material used in the organic EL device of the present invention, in a photoconductive material, a compound conventionally used as a charge transport material for holes or a hole injection of an organic EL device is used. Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof are carbazole derivatives, triarylamine derivatives, phthalocyanine derivatives and the like.
本発明の有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、スピンコート法またはキャスト法等の方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。なお、発光材料を薄膜化する方法は、均質な膜が得やすく、かつピンホールが生成しにくい等の点から蒸着法を採用するのが好ましい。蒸着法を用いて薄膜化する場合、その蒸着条件は、本発明の発光材料の種類により異なる。蒸着条件は一般的に、ボート加熱温度50~400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚5nm~5μmの範囲で適宜設定することが好ましい。 Each layer constituting the organic EL element of the present invention can be formed by forming a material to constitute each layer into a thin film by a method such as a vapor deposition method, a spin coat method, or a cast method. The film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. Note that it is preferable to adopt a vapor deposition method as a method of thinning the light emitting material from the viewpoint that a homogeneous film can be easily obtained and pinholes are hardly generated. When thinning using the vapor deposition method, the vapor deposition conditions differ depending on the type of the light emitting material of the present invention. Deposition conditions generally include boat heating temperature 50 to 400 ° C., vacuum degree 10 −6 to 10 −3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature −150 to + 300 ° C., film thickness 5 nm to 5 μm. It is preferable to set appropriately within the range.
本発明の有機EL素子は、前記のいずれの構造であっても、基板に支持されていることが好ましい。基板は機械的強度、熱安定性および透明性を有するものであればよく、ガラス、透明プラスチックフィルム等を用いることができる。陽極物質は4eVより大きな仕事関数を有する金属、合金、電気伝導性化合物およびこれらの混合物を用いることができる。その具体例は、Au等の金属、CuI、インジウムチンオキシド(以下、ITOと略記する)、SnO、ZnO等である。 The organic EL device of the present invention is preferably supported by a substrate in any of the structures described above. The substrate only needs to have mechanical strength, thermal stability, and transparency, and glass, a transparent plastic film, and the like can be used. As the anode material, metals, alloys, electrically conductive compounds and mixtures thereof having a work function larger than 4 eV can be used. Specific examples thereof include metals such as Au, CuI, indium tin oxide (hereinafter abbreviated as ITO), SnO 2 , ZnO, and the like.
陰極物質は4eVより小さな仕事関数の金属、合金、電気伝導性化合物、およびこれらの混合物を使用できる。その具体例は、アルミニウム、カルシウム、マグネシウム、リチウム、マグネシウム合金、アルミニウム合金等である。合金の具体例は、アルミニウム/弗化リチウム、アルミニウム/リチウム、マグネシウム/銀、マグネシウム/インジウム等である。有機EL素子の発光を効率よく取り出すために、電極の少なくとも一方は光透過率を10%以上にすることが望ましい。電極としてのシート抵抗は数百Ω/□以下にすることが好ましい。なお、膜厚は電極材料の性質にもよるが、通常10nm~1μm、好ましくは10~400nmの範囲に設定される。このような電極は、上述の電極物質を使用して、蒸着やスパッタリング等の方法で薄膜を形成させることにより作製することができる。 Cathode materials can use metals, alloys, electrically conductive compounds, and mixtures thereof with work functions of less than 4 eV. Specific examples thereof are aluminum, calcium, magnesium, lithium, magnesium alloy, aluminum alloy and the like. Specific examples of the alloy include aluminum / lithium fluoride, aluminum / lithium, magnesium / silver, and magnesium / indium. In order to efficiently extract light emitted from the organic EL element, it is desirable that at least one of the electrodes has a light transmittance of 10% or more. The sheet resistance as the electrode is preferably several hundred Ω / □ or less. Although the film thickness depends on the properties of the electrode material, it is usually set in the range of 10 nm to 1 μm, preferably 10 to 400 nm. Such an electrode can be produced by forming a thin film by a method such as vapor deposition or sputtering using the electrode material described above.
次に、本発明の発光材料を用いて有機EL素子を作成する方法の一例として、前述の陽極/正孔注入層/正孔輸送層/発光層/本発明の電子輸送材料/陰極からなる有機EL素子の作成法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法により形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上に発光層の薄膜を形成させる。この発光層の上に本発明の電子輸送材料を真空蒸着し、薄膜を形成させ、電子輸送層とする。さらに陰極用物質からなる薄膜を蒸着法により形成させて陰極とすることにより、目的の有機EL素子が得られる。なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。 Next, as an example of a method for producing an organic EL device using the light emitting material of the present invention, an organic material comprising the above-mentioned anode / hole injection layer / hole transport layer / light emitting layer / electron transport material of the present invention / cathode is used. A method for creating an EL element will be described. A thin film of an anode material is formed on a suitable substrate by vapor deposition to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode. A light emitting layer thin film is formed thereon. On this light emitting layer, the electron transport material of this invention is vacuum-deposited, a thin film is formed, and it is set as an electron carrying layer. Furthermore, the target organic EL element is obtained by forming the thin film which consists of a substance for cathodes by a vapor deposition method, and making it a cathode. In the production of the organic EL element described above, the production order can be reversed, and the cathode, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order.
このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明又は半透明の電極側(陽極又は陰極、および両方)より発光が観測できる。また、この有機EL素子は、交流電圧を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode and both). The organic EL element also emits light when an alternating voltage is applied. The alternating current waveform to be applied may be arbitrary.
以下に、本発明を実施例に基づいて更に詳しく説明する。まず、実施例で用いた化合物の合成例について、以下に説明する。 Hereinafter, the present invention will be described in more detail based on examples. First, synthesis examples of the compounds used in the examples are described below.
[合成例1]化合物(1-1-1)の合成
<4-(4-ブロモフェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000148
4-ヨードピリジン149gとTHF689mLを三ツ口フラスコに入れ、内容物の温度を1℃に保ちながら、2.0M-塩化イソプロピルマグネシウムTHF溶液400mLを滴下した。滴下終了後15分攪拌し、塩化亜鉛・テトラメチルエチレンジアミン錯体202gを加えて、室温で25分攪拌した。次いでp-ブロモヨードベンゼン226gとテトラキス(トリフェニルホスフィン)パラジウム(0)0.34gを加えて、3時間加熱還流した。反応液を室温まで冷却し、エチレンジアミン4酢酸・4ナトリウム塩水溶液(730g/1.7L)を加えて、有機層を分液した。有機層を乾燥した後乾燥剤を濾別し、溶媒を減圧留去して粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン~トルエン/酢酸エチル=9/1(容量比))で精製し、4-(4-ブロモフェニル)ピリジン102gを得た。
[Synthesis Example 1] Synthesis of Compound (1-1-1) <Synthesis of 4- (4-bromophenyl) pyridine>
Figure JPOXMLDOC01-appb-C000148
149 g of 4-iodopyridine and 689 mL of THF were placed in a three-necked flask, and 400 mL of 2.0 M-isopropylmagnesium chloride THF solution was added dropwise while maintaining the temperature of the contents at 1 ° C. After completion of dropping, the mixture was stirred for 15 minutes, 202 g of zinc chloride / tetramethylethylenediamine complex was added, and the mixture was stirred at room temperature for 25 minutes. Next, 226 g of p-bromoiodobenzene and 0.34 g of tetrakis (triphenylphosphine) palladium (0) were added, and the mixture was heated to reflux for 3 hours. The reaction solution was cooled to room temperature, ethylenediaminetetraacetic acid / tetrasodium salt aqueous solution (730 g / 1.7 L) was added, and the organic layer was separated. After drying the organic layer, the desiccant was filtered off, and the solvent was distilled off under reduced pressure to obtain a crude product. This crude product was purified by silica gel column chromatography (developing solvent: toluene to toluene / ethyl acetate = 9/1 (volume ratio)) to obtain 102 g of 4- (4-bromophenyl) pyridine.
<4-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン:化合物(1-1-1)の合成>
Figure JPOXMLDOC01-appb-C000149
市販品である(10-(ナフタレン-1-イル)アントラセン-9-イル)ボロン酸5.22g、4-(4-ブロモフェニル)ピリジン4.12g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.52g、リン酸三カリウム6.38g、シュードクメン25mL、t-ブチルアルコール5mL、水1mLをフラスコに入れ、窒素雰囲気下、還流温度で16時間攪拌した。反応液を室温まで冷却した後、純水で洗浄した。溶媒を減圧留去して、シリカゲルクロマトグラフィー(展開溶媒:トルエン~トルエン/酢酸エチル=9/1(容量比))で精製し、4-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン3.90gを得た。
H-NMR(CDCl): δ=8.8~8.7(dd、2H)、 8.1(d、1H)、 8.0(d、1H)、 7.9(m、2H)、 7.8(d、2H)、 7.7(m、4H)、 7.7~7.6(m、1H)、 7.6(dd、1H)、 7.5(m、3H)、 7.4~7.3(m、2H)、 7.3~7.2(m、3H)、 7.2(m、1H).
<4- (4- (10- (Naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine: Synthesis of Compound (1-1-1)>
Figure JPOXMLDOC01-appb-C000149
Commercially available (10- (naphthalen-1-yl) anthracen-9-yl) boronic acid 5.22 g, 4- (4-bromophenyl) pyridine 4.12 g, tetrakis (triphenylphosphine) palladium (0) 0 .52 g, tripotassium phosphate 6.38 g, pseudocumene 25 mL, t-butyl alcohol 5 mL, and water 1 mL were placed in a flask and stirred at reflux temperature for 16 hours under a nitrogen atmosphere. The reaction solution was cooled to room temperature and then washed with pure water. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (developing solvent: toluene to toluene / ethyl acetate = 9/1 (volume ratio)) to give 4- (4- (10- (naphthalen-1-yl) anthracene). There were obtained 3.90 g of -9-yl) phenyl) pyridine.
1 H-NMR (CDCl 3 ): δ = 8.8 to 8.7 (dd, 2H), 8.1 (d, 1H), 8.0 (d, 1H), 7.9 (m, 2H) , 7.8 (d, 2H), 7.7 (m, 4H), 7.7 to 7.6 (m, 1H), 7.6 (dd, 1H), 7.5 (m, 3H), 7.4 to 7.3 (m, 2H), 7.3 to 7.2 (m, 3H), 7.2 (m, 1H).
[合成例2]化合物(1-1-2)の合成
<3-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000150
3-(4-ブロモフェニル)ピリジン14.0g、ビスピナコラートジボロン18.3g、[1,1-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)・ジクロロメタン錯体1.5g、酢酸カリウム11.8g、シクロペンチルメチルエーテル(CPME)100mLをフラスコに入れて窒素雰囲気下、還流温度で4時間攪拌した。反応液を室温まで冷却し水、トルエンを加えて分液した。有機層を濃縮し、トルエンに溶解して活性炭カラムクロマトグラフィー(展開液:トルエン)で精製を行い、3-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジン(15.0g)を得た。
Synthesis Example 2 Synthesis of Compound (1-1-2) Synthesis of 3- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl) pyridine >
Figure JPOXMLDOC01-appb-C000150
3- (4-Bromophenyl) pyridine 14.0 g, bispinacolatodiboron 18.3 g, [1,1-bis (diphenylphosphino) ferrocene] dichloropalladium (II) .dichloromethane complex 1.5 g, potassium acetate 11 .8 g and cyclopentyl methyl ether (CPME) 100 mL were placed in a flask and stirred at reflux temperature for 4 hours under a nitrogen atmosphere. The reaction solution was cooled to room temperature and separated by adding water and toluene. The organic layer is concentrated, dissolved in toluene, purified by activated carbon column chromatography (developing solution: toluene), and 3- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane). -2-yl) phenyl) pyridine (15.0 g) was obtained.
<3-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン:化合物(1-1-2)の合成>
Figure JPOXMLDOC01-appb-C000151
市販の9-ブロモ-10-(ナフタレン-1-イル)アントラセン1.96g、3-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジン1.69g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.35g、リン酸カリウム2.12g、シュードクメン20mL、t-ブチルアルコール5mL、および水1mLをフラスコに入れ、窒素雰囲気下、還流温度で16時間攪拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=9/1(容量比))で精製した。次いで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶出液の溶媒を減圧留去し、トルエンから再結晶して、3-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン1.48gを得た。
H-NMR(CDCl): δ=9.1(d、1H)、 8.7(dd、1H)、 8.1(m、2H)、 8.0(d、1H)、 7.9~7.8(m、2H)、 7.8(d、2H)、 7.7(m、2H)、 7.7~7.6(m、1H)、 7.6(m、1H)、 7.5~7.4(m、4H)、 7.4~7.3(m、2H)、 7.3~7.2(m、3H)、 7.2(m、1H).
<3- (4- (10- (Naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine: Synthesis of Compound (1-1-2)>
Figure JPOXMLDOC01-appb-C000151
1.96 g of commercially available 9-bromo-10- (naphthalen-1-yl) anthracene, 3- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl ) 1.69 g of pyridine, 0.35 g of tetrakis (triphenylphosphine) palladium (0), 2.12 g of potassium phosphate, 20 mL of pseudocumene, 5 mL of t-butyl alcohol, and 1 mL of water are placed in a flask and refluxed under a nitrogen atmosphere. Stir at temperature for 16 hours. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The solvent was distilled off under reduced pressure, and the resulting solid was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate = 9/1 (volume ratio)). Subsequently, the obtained eluate was passed through an activated carbon short column to remove colored components. The solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 1.48 g of 3- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine.
1 H-NMR (CDCl 3 ): δ = 9.1 (d, 1H), 8.7 (dd, 1H), 8.1 (m, 2H), 8.0 (d, 1H), 7.9 7.8 (m, 2H), 7.8 (d, 2H), 7.7 (m, 2H), 7.7 to 7.6 (m, 1H), 7.6 (m, 1H), 7.5 to 7.4 (m, 4H), 7.4 to 7.3 (m, 2H), 7.3 to 7.2 (m, 3H), 7.2 (m, 1H).
[合成例3]化合物(1-1-3)の合成
<2-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000152
市販の(10-(ナフタレン-1-イル)アントラセン-9-イル)ボロン酸4.18g、市販の2-(4-ブロモフェニル)ピリジン3.37g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.42g、リン酸カリウム5.04g、シュードクメン30mL、イソプロピルアルコール3mL、および水3mLをフラスコに入れ、窒素雰囲気下、還流温度で5時間攪拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去し、得られた固体をアルミナカラムクロマトグラフィー(展開液:トルエン)で精製した。溶出液の溶媒を減圧留去し、トルエンから再結晶して、2-(4-(10-ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン3.71gを得た。
H-NMR(CDCl): δ=8.8(m、1H)、 8.3(m、2H)、 8.1(d、1H)、 8.0(d、1H)、 7.9(m、1H)、 7.9~7.8(m、3H)、 7.7~7.6(m、3H)、 7.6(m、1H)、 7.5~7.4(m、3H)、 7.3(m、3H)、 7.2(m、4H).
Synthesis Example 3 Synthesis of Compound (1-1-3) <Synthesis of 2- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine>
Figure JPOXMLDOC01-appb-C000152
4.18 g of commercially available (10- (naphthalen-1-yl) anthracen-9-yl) boronic acid, 3.37 g of commercially available 2- (4-bromophenyl) pyridine, tetrakis (triphenylphosphine) palladium (0) 0 .42 g, potassium phosphate 5.04 g, pseudocumene 30 mL, isopropyl alcohol 3 mL, and water 3 mL were placed in a flask and stirred at reflux temperature for 5 hours under a nitrogen atmosphere. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The solvent was distilled off under reduced pressure, and the resulting solid was purified by alumina column chromatography (developing solution: toluene). The solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 3.71 g of 2- (4- (10-naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine.
1 H-NMR (CDCl 3 ): δ = 8.8 (m, 1H), 8.3 (m, 2H), 8.1 (d, 1H), 8.0 (d, 1H), 7.9 (M, 1H), 7.9 to 7.8 (m, 3H), 7.7 to 7.6 (m, 3H), 7.6 (m, 1H), 7.5 to 7.4 (m 3H), 7.3 (m, 3H), 7.2 (m, 4H).
[合成例4]化合物(1-1-134)の合成
<9-(4-メトキシフェニル)-10-(ナフタレン-1-イル)アントラセンの合成>
Figure JPOXMLDOC01-appb-C000153
市販の9-ブロモ-10-(ナフタレン-1-イル)アントラセン46.0g、(4-メトキシフェニル)ボロン酸20.1g、テトラキス(トリフェニルホスフィン)パラジウム(0)1.39g、リン酸カリウム50.9g、シュードクメン300mL、t-ブチルアルコール60mL、および水12mLをフラスコに入れ、窒素雰囲気下、還流温度で8時間攪拌し、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)1.39gを追加して9時間攪拌した。反応液を室温まで冷却し、水を加えて析出した固形物を採取した。乾燥後、この粗生成物をトルエンに溶解してシリカゲルショートカラム(展開液:トルエン)を通し、溶出液の溶媒を留去して、9-(4-メトキシフェニル)-10-(ナフタレン-1-イル)アントラセン46.5gを得た。
[Synthesis Example 4] Synthesis of Compound (1-1-134) <Synthesis of 9- (4-methoxyphenyl) -10- (naphthalen-1-yl) anthracene>
Figure JPOXMLDOC01-appb-C000153
Commercially available 9-bromo-10- (naphthalen-1-yl) anthracene 46.0 g, (4-methoxyphenyl) boronic acid 20.1 g, tetrakis (triphenylphosphine) palladium (0) 1.39 g, potassium phosphate 50 .9 g, pseudocumene 300 mL, t-butyl alcohol 60 mL, and water 12 mL were placed in a flask and stirred at reflux temperature for 8 hours under a nitrogen atmosphere. Further, 1.39 g of tetrakis (triphenylphosphine) palladium (0) was added. And stirred for 9 hours. The reaction solution was cooled to room temperature, and water was added to collect the precipitated solid. After drying, this crude product was dissolved in toluene, passed through a silica gel short column (developing solution: toluene), the solvent of the eluate was distilled off, and 9- (4-methoxyphenyl) -10- (naphthalene-1 -Yl) 46.5 g of anthracene were obtained.
<4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェノールの合成>
Figure JPOXMLDOC01-appb-C000154
9-(4-メトキシフェニル)-10-(ナフタレン-1-イル)アントラセン45.2g、ピリジン塩酸塩63.8g、N-メチルピロリドン50mLをフラスコに入れ、窒素雰囲気下、還流温度で5時間攪拌した。反応液を室温まで冷却し、水を加えて析出した固体を採取した。この粗生成物を熱水、次いでメタノールで洗浄した後、乾燥して、4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェノール42.0gを得た。
<Synthesis of 4- (10- (naphthalen-1-yl) anthracen-9-yl) phenol>
Figure JPOXMLDOC01-appb-C000154
45.2 g of 9- (4-methoxyphenyl) -10- (naphthalen-1-yl) anthracene, 63.8 g of pyridine hydrochloride, and 50 mL of N-methylpyrrolidone are placed in a flask and stirred at reflux temperature for 5 hours under a nitrogen atmosphere. did. The reaction solution was cooled to room temperature, and water was added to collect the precipitated solid. The crude product was washed with hot water and then with methanol and then dried to obtain 42.0 g of 4- (10- (naphthalen-1-yl) anthracen-9-yl) phenol.
<4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル トリフルオロメタンスルホナートの合成>
Figure JPOXMLDOC01-appb-C000155
4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェノール8.5g、乾燥ピリジン50mLをフラスコに入れ、窒素雰囲気下、0℃に冷却した後、攪拌しながら無水トリフルオロメタンスルホン酸7.28gをゆっくり加え、室温に昇温してさらに1.5時間攪拌した。反応液に水を加えて析出した固体をろ別し、加熱したイソプロピルアルコールで洗浄した。得られた粗生成物をクロロホルムに溶解し、ろ過して不溶物を除いた後、イソプロピルアルコールを加えて生じた沈殿を採取し、4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニルトリフルオロメタンスルホナート10.4gを得た。
<Synthesis of 4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl trifluoromethanesulfonate>
Figure JPOXMLDOC01-appb-C000155
8.5 g of 4- (10- (naphthalen-1-yl) anthracen-9-yl) phenol and 50 mL of dry pyridine were placed in a flask, cooled to 0 ° C. in a nitrogen atmosphere, and then trifluoromethanesulfonic anhydride with stirring. 7.28 g was slowly added, the temperature was raised to room temperature, and the mixture was further stirred for 1.5 hours. Water was added to the reaction solution, and the precipitated solid was filtered off and washed with heated isopropyl alcohol. The obtained crude product was dissolved in chloroform and filtered to remove insoluble matters. Then, isopropyl alcohol was added and the resulting precipitate was collected to give 4- (10- (naphthalen-1-yl) anthracene-9- Yl) 10.4 g of phenyltrifluoromethanesulfonate was obtained.
<4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロランの合成>
Figure JPOXMLDOC01-appb-C000156
4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニルトリフルオロメタンスルホナート7.94g、ビスピナコラートジボロン4.57g、[1,1-ビス(ジフェニルホスフィノ)フェロセン]パラジウムジクロリド・ジクロロメタン錯体0.37g、酢酸カリウム2.67g、およびシクロペンチルメチルエーテル(CPME)100mLをフラスコに入れ、窒素雰囲気下、還流温度で4時間攪拌した。反応液を室温まで冷却し、水、トルエンを加えて分液した。有機層をシリカゲルショートカラム(展開液:トルエン)に通した後、溶出液を濃縮し、ヘプタンを加えて析出した固体を採取し、4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン7.0gを得た。
<Synthesis of 4,4,5,5-tetramethyl-2- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) -1,3,2-dioxaborolane>
Figure JPOXMLDOC01-appb-C000156
4- (10- (Naphthalen-1-yl) anthracen-9-yl) phenyltrifluoromethanesulfonate 7.94 g, 4.57 g bispinacolatodiboron, [1,1-bis (diphenylphosphino) ferrocene] palladium A dichloride / dichloromethane complex (0.37 g), potassium acetate (2.67 g), and cyclopentyl methyl ether (CPME) (100 mL) were placed in a flask, and the mixture was stirred at a reflux temperature for 4 hours under a nitrogen atmosphere. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The organic layer was passed through a silica gel short column (developing solution: toluene), and then the eluate was concentrated. The precipitated solid was collected by adding heptane, and 4,4,5,5-tetramethyl-2- (4- 7.0 g of (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) -1,3,2-dioxaborolane was obtained.
<2-メチル-3-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン:化合物(1-1-134)の合成>
Figure JPOXMLDOC01-appb-C000157
4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン2.02g、3-ブロモ-2-メチルピリジン0.83g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸カリウム1.70g、シュードクメン20mL、t-ブチルアルコール5mL、および水1mLをフラスコに入れ、窒素雰囲気下、還流温度で5時間攪拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5(容量比))で精製した。溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶出液の溶媒を減圧留去し、トルエンから再結晶して、2-メチル-3-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン1.41gを得た。
H-NMR(CDCl): δ=8.6(dd、1H)、 8.1(d、1H)、 8.0(d、1H)、 7.8(d、2H)、 7.8~7.7(m、2H)、 7.7(m、1H)、 7.6(m、4H)、 7.5(m、3H)、 7.4~7.3(m、2H)、 7.3~7.2(m、5H)、 2.7(s、3H).
<2-Methyl-3- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine: Synthesis of Compound (1-1-134)>
Figure JPOXMLDOC01-appb-C000157
4,4,5,5-tetramethyl-2- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) -1,3,2-dioxaborolane 2.02 g, 3-bromo- A flask was charged with 0.83 g of 2-methylpyridine, 0.14 g of tetrakis (triphenylphosphine) palladium (0), 1.70 g of potassium phosphate, 20 mL of pseudocumene, 5 mL of t-butyl alcohol, and 1 mL of water under a nitrogen atmosphere. And stirred at reflux temperature for 5 hours. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The solvent was distilled off under reduced pressure, and the resulting solid was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate = 95/5 (volume ratio)). The eluate was passed through an activated carbon short column to remove colored components. The solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 1.41 g of 2-methyl-3- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine. It was.
1 H-NMR (CDCl 3 ): δ = 8.6 (dd, 1H), 8.1 (d, 1H), 8.0 (d, 1H), 7.8 (d, 2H), 7.8 To 7.7 (m, 2H), 7.7 (m, 1H), 7.6 (m, 4H), 7.5 (m, 3H), 7.4 to 7.3 (m, 2H), 7.3 to 7.2 (m, 5H), 2.7 (s, 3H).
[合成例5]化合物(1-1-153)の合成
<4-メチル-3-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000158
4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン2.02g、3-ブロモ-4-メチルピリジン0.83g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸カリウム1.70g、シュードクメン20mL、t-ブチルアルコール5mL、および水1mLをフラスコに入れ、窒素雰囲気下、還流温度で7時間攪拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5(容量比))で精製した。溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶出液の溶媒を減圧留去し、トルエンから再結晶して、4-メチル-3-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン0.58gを得た。
H-NMR(CDCl): δ=8.7(m、1H)、 8.5(m、1H)、 8.1(d、1H)、 8.0(d、1H)、 7.8(m、2H)、 7.7~7.6(m、6H)、 7.5(m、3H)、 7.4~7.3(m、2H)、 7.3~7.2(m、5H)、 2.5(s、3H).
Synthesis Example 5 Synthesis of Compound (1-1-153) <Synthesis of 4-methyl-3- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine>
Figure JPOXMLDOC01-appb-C000158
4,4,5,5-tetramethyl-2- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) -1,3,2-dioxaborolane 2.02 g, 3-bromo- A flask was charged with 0.83 g of 4-methylpyridine, 0.14 g of tetrakis (triphenylphosphine) palladium (0), 1.70 g of potassium phosphate, 20 mL of pseudocumene, 5 mL of t-butyl alcohol, and 1 mL of water under a nitrogen atmosphere. And stirred at reflux temperature for 7 hours. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The solvent was distilled off under reduced pressure, and the resulting solid was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate = 95/5 (volume ratio)). The eluate was passed through an activated carbon short column to remove colored components. The solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 0.58 g of 4-methyl-3- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine. It was.
1 H-NMR (CDCl 3 ): δ = 8.7 (m, 1H), 8.5 (m, 1H), 8.1 (d, 1H), 8.0 (d, 1H), 7.8 (M, 2H), 7.7 to 7.6 (m, 6H), 7.5 (m, 3H), 7.4 to 7.3 (m, 2H), 7.3 to 7.2 (m 5H), 2.5 (s, 3H).
[合成例6]化合物(1-1-172)の合成
<3-メチル-5-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000159
4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン2.02g、3-ブロモ-5-メチルピリジン0.83g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸カリウム1.70g、シュードクメン20mL、t-ブチルアルコール5mL、および水1mLをフラスコに入れ、窒素雰囲気下、還流温度で7.5時間攪拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5(容量比))で精製した。溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶出液の溶媒を減圧留去し、トルエンから再結晶して、3-メチル-5-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン1.33gを得た。
H-NMR(CDCl): δ=8.7(d、1H)、 8.5(s、1H)、 8.1(d、1H)、 8.0(d、1H)、 7.9~7.8(m、3H)、 7.8(d、2H)、 7.7(m、2H)、 7.6(m、1H)、 7.6(m、1H)、 7.5(m、3H)、 7.4~7.3(m、2H)、 7.3~7.2(m、4H)、 2.5(s、3H).
Synthesis Example 6 Synthesis of Compound (1-1-172) <Synthesis of 3-methyl-5- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine>
Figure JPOXMLDOC01-appb-C000159
4,4,5,5-tetramethyl-2- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) -1,3,2-dioxaborolane 2.02 g, 3-bromo- A flask was charged with 0.83 g of 5-methylpyridine, 0.14 g of tetrakis (triphenylphosphine) palladium (0), 1.70 g of potassium phosphate, 20 mL of pseudocumene, 5 mL of t-butyl alcohol, and 1 mL of water under a nitrogen atmosphere. And stirred at reflux temperature for 7.5 hours. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The solvent was distilled off under reduced pressure, and the resulting solid was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate = 95/5 (volume ratio)). The eluate was passed through an activated carbon short column to remove colored components. The solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 1.33 g of 3-methyl-5- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine. It was.
1 H-NMR (CDCl 3 ): δ = 8.7 (d, 1H), 8.5 (s, 1H), 8.1 (d, 1H), 8.0 (d, 1H), 7.9 ˜7.8 (m, 3H), 7.8 (d, 2H), 7.7 (m, 2H), 7.6 (m, 1H), 7.6 (m, 1H), 7.5 ( m, 3H), 7.4 to 7.3 (m, 2H), 7.3 to 7.2 (m, 4H), 2.5 (s, 3H).
[合成例7]化合物(1-1-191)の合成
<2-メチル-5-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000160
4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン2.02g、3-ブロモ-6-メチルピリジン0.83g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸カリウム1.70g、シュードクメン20mL、t-ブチルアルコール5mL、および水1mLをフラスコに入れ、窒素雰囲気下、還流温度で9時間攪拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5(容量比))で精製した。溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶出液の溶媒を減圧留去し、トルエンから再結晶して、2-メチル-5-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン1.21gを得た。
H-NMR(CDCl): δ=8.9(d、1H)、 8.1(d、1H)、 8.0(d、1H)、 8.0(dd、1H)、 7.9~7.8(m、2H)、 7.8(d、2H)、 7.7(m、2H)、 7.6(m、1H)、 7.6(m、1H)、 7.5(m、3H)、 7.4~7.3(m、3H)、 7.3~7.2(m、4H)、 2.7(s、3H).
Synthesis Example 7 Synthesis of Compound (1-1-191) <Synthesis of 2-methyl-5- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine>
Figure JPOXMLDOC01-appb-C000160
4,4,5,5-tetramethyl-2- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) -1,3,2-dioxaborolane 2.02 g, 3-bromo- A flask was charged with 0.83 g of 6-methylpyridine, 0.14 g of tetrakis (triphenylphosphine) palladium (0), 1.70 g of potassium phosphate, 20 mL of pseudocumene, 5 mL of t-butyl alcohol, and 1 mL of water under a nitrogen atmosphere. The mixture was stirred at reflux temperature for 9 hours. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The solvent was distilled off under reduced pressure, and the resulting solid was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate = 95/5 (volume ratio)). The eluate was passed through an activated carbon short column to remove colored components. The solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 1.21 g of 2-methyl-5- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine. It was.
1 H-NMR (CDCl 3 ): δ = 8.9 (d, 1H), 8.1 (d, 1H), 8.0 (d, 1H), 8.0 (dd, 1H), 7.9 ˜7.8 (m, 2H), 7.8 (d, 2H), 7.7 (m, 2H), 7.6 (m, 1H), 7.6 (m, 1H), 7.5 ( m, 3H), 7.4 to 7.3 (m, 3H), 7.3 to 7.2 (m, 4H), 2.7 (s, 3H).
[合成例8]化合物(1-1-210)の合成
<2-メチル-4-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000161
4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン2.02g、4-ブロモ-2-メチルピリジン0.83g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸カリウム1.70g、シュードクメン20mL、t-ブチルアルコール5mL、および水1mLをフラスコに入れ、窒素雰囲気下、還流温度で9時間攪拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5(容量比))で精製した。溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶出液の溶媒を減圧留去し、トルエンから再結晶して、2-メチル-4-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン1.20gを得た。
H-NMR(CDCl) δ=8.6(d、1H)、 8.1(d、1H)、 8.0(d、1H)、 7.9(m、2H)、 7.8(d、2H)、 7.7(m、2H)、 7.7~7.6(m、1H)、 7.6(m、2H)、 7.5(m、4H)、 7.4~7.3(m、2H)、 7.3~7.2(m、4H)、 2.7(s、3H).
Synthesis Example 8 Synthesis of Compound (1-1210) <Synthesis of 2-methyl-4- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine>
Figure JPOXMLDOC01-appb-C000161
4,4,5,5-tetramethyl-2- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) -1,3,2-dioxaborolane 2.02 g, 4-bromo- A flask was charged with 0.83 g of 2-methylpyridine, 0.14 g of tetrakis (triphenylphosphine) palladium (0), 1.70 g of potassium phosphate, 20 mL of pseudocumene, 5 mL of t-butyl alcohol, and 1 mL of water under a nitrogen atmosphere. The mixture was stirred at reflux temperature for 9 hours. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The solvent was distilled off under reduced pressure, and the resulting solid was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate = 95/5 (volume ratio)). The eluate was passed through an activated carbon short column to remove colored components. The solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 1.20 g of 2-methyl-4- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine. It was.
1 H-NMR (CDCl 3 ) δ = 8.6 (d, 1H), 8.1 (d, 1H), 8.0 (d, 1H), 7.9 (m, 2H), 7.8 ( d, 2H), 7.7 (m, 2H), 7.7 to 7.6 (m, 1H), 7.6 (m, 2H), 7.5 (m, 4H), 7.4 to 7 .3 (m, 2H), 7.3 to 7.2 (m, 4H), 2.7 (s, 3H).
[合成例9]化合物(1-1-229)の合成
<3-メチル-4-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000162
4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン2.02g、4-ブロモ-3-メチルピリジン・塩酸塩1.00g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸カリウム1.70g、シュードクメン20mL、t-ブチルアルコール5mL、および水1mLをフラスコに入れ、窒素雰囲気下、還流温度で18時間攪拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5(容量比))で精製した。溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶出液の溶媒を減圧留去し、トルエンから再結晶して、3-メチル-4-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン1.02gを得た。
H-NMR(CDCl): δ=8.6(s、1H)、 8.6(d、1H)、 8.1(d、1H)、 8.0(d、1H)、 7.8(d、2H)、 7.7(m、1H)、 7.7(m、1H)、 7.6(m、4H)、 7.5(m、3H)、 7.4(m、3H)、 7.4~7.2(m、4H)、 2.5(s、3H).
[Synthesis Example 9] Synthesis of Compound (1-1-229) <Synthesis of 3-methyl-4- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine>
Figure JPOXMLDOC01-appb-C000162
4,4,5,5-tetramethyl-2- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) -1,3,2-dioxaborolane 2.02 g, 4-bromo- Add 1.00 g of 3-methylpyridine hydrochloride, 0.14 g of tetrakis (triphenylphosphine) palladium (0), 1.70 g of potassium phosphate, 20 mL of pseudocumene, 5 mL of t-butyl alcohol, and 1 mL of water to a flask. The mixture was stirred at reflux temperature for 18 hours under a nitrogen atmosphere. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The solvent was distilled off under reduced pressure, and the resulting solid was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate = 95/5 (volume ratio)). The eluate was passed through an activated carbon short column to remove colored components. The solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 1.02 g of 3-methyl-4- (4- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine. It was.
1 H-NMR (CDCl 3 ): δ = 8.6 (s, 1H), 8.6 (d, 1H), 8.1 (d, 1H), 8.0 (d, 1H), 7.8 (D, 2H), 7.7 (m, 1H), 7.7 (m, 1H), 7.6 (m, 4H), 7.5 (m, 3H), 7.4 (m, 3H) 7.4-7.2 (m, 4H), 2.5 (s, 3H).
[合成例10]化合物(1-2-1)の合成
<4-(3-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000163
市販の(10-(ナフタレン-1-イル)アントラセン-9-イル)ボロン酸2.78g、4-(3-ブロモフェニル)ピリジン2.25g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.28g、リン酸カリウム3.39g、シュードクメン20mL、イソプロピルアルコール4mL、および水1mLをフラスコに入れ、窒素雰囲気下、還流温度で10時間攪拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去し、得られた固体をアルミナカラムクロマトグラフィー(展開液:トルエン)で精製した。溶出液の溶媒を減圧留去し、トルエンから再結晶して、4-(3-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン(1.54g)を得た。
H-NMR(CDCl): δ=8.7(dt、2H)、 8.1(d、1H)、8.0(d、1H)、 7.9~7.6(m、10H)、 7.5(m、3H)、 7.4~7.3(m、2H)、 7.3~7.2(m、4H).
Synthesis Example 10 Synthesis of Compound (1-2-1) <Synthesis of 4- (3- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine>
Figure JPOXMLDOC01-appb-C000163
2.78 g of commercially available (10- (naphthalen-1-yl) anthracen-9-yl) boronic acid, 2.25 g of 4- (3-bromophenyl) pyridine, 0.28 g of tetrakis (triphenylphosphine) palladium (0) 3.39 g of potassium phosphate, 20 mL of pseudocumene, 4 mL of isopropyl alcohol, and 1 mL of water were placed in a flask and stirred at reflux temperature for 10 hours under a nitrogen atmosphere. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The solvent was distilled off under reduced pressure, and the resulting solid was purified by alumina column chromatography (developing solution: toluene). The solvent of the eluate was distilled off under reduced pressure and recrystallized from toluene to obtain 4- (3- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine (1.54 g).
1 H-NMR (CDCl 3 ): δ = 8.7 (dt, 2H), 8.1 (d, 1H), 8.0 (d, 1H), 7.9 to 7.6 (m, 10H) 7.5 (m, 3H), 7.4 to 7.3 (m, 2H), 7.3 to 7.2 (m, 4H).
[合成例11]化合物(1-2-153)の合成
<4-メチル-3-(3-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000164
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン2.02g、3-ブロモ-4-メチルピリジン0.83g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸カリウム1.70g、シュードクメン20mL、t-ブチルアルコール5mL、および水1mLをフラスコに入れ、窒素雰囲気下、還流温度で6時間攪拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5(容量比))で精製した。溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶出液を減圧濃縮し、ヘプタンを加えて再沈殿させることにより、4-メチル-3-(3-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン1.06gを得た。
H-NMR(CDCl): δ=8.6(d、1H)、 8.5(dd、1H)、 8.1(d、1H)、 8.0(dd、1H)、 7.8(d、2H)、 7.8~7.7(m、2H)、 7.6~7.4(m、7H)、 7.4~7.3(m、2H)、 7.2~7.1(m、5H)、 2.4(d、3H).
Synthesis Example 11 Synthesis of Compound (1-2-153) <Synthesis of 4-methyl-3- (3- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine>
Figure JPOXMLDOC01-appb-C000164
4,4,5,5-tetramethyl-2- (3- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) -1,3,2-dioxaborolane 2.02 g, 3-bromo- A flask was charged with 0.83 g of 4-methylpyridine, 0.14 g of tetrakis (triphenylphosphine) palladium (0), 1.70 g of potassium phosphate, 20 mL of pseudocumene, 5 mL of t-butyl alcohol, and 1 mL of water under a nitrogen atmosphere. And stirred at reflux temperature for 6 hours. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The solvent was distilled off under reduced pressure, and the resulting solid was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate = 95/5 (volume ratio)). The eluate was passed through an activated carbon short column to remove colored components. The eluate was concentrated under reduced pressure and reprecipitated by adding heptane to obtain 1.06 g of 4-methyl-3- (3- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine. It was.
1 H-NMR (CDCl 3 ): δ = 8.6 (d, 1H), 8.5 (dd, 1H), 8.1 (d, 1H), 8.0 (dd, 1H), 7.8 (D, 2H), 7.8 to 7.7 (m, 2H), 7.6 to 7.4 (m, 7H), 7.4 to 7.3 (m, 2H), 7.2 to 7 .1 (m, 5H), 2.4 (d, 3H).
[合成例12]化合物(1-2-172)の合成
<3-メチル-5-(3-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジンの合成>
Figure JPOXMLDOC01-appb-C000165
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン2.02g、3-ブロモ-4-メチルピリジン0.83g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.14g、リン酸カリウム1.70g、シュードクメン20mL、t-ブチルアルコール5mL、および水1mLをフラスコに入れ、窒素雰囲気下、還流温度で6時間攪拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5(容量比))で精製した。溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶出液を減圧濃縮し、ヘプタンを加えて再沈殿させることにより、3-メチル-5-(3-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)ピリジン1.01gを得た。
H-NMR(CDCl): δ=8.8(d、1H)、 8.5~8.4(m、1H)、 8.1(d、1H)、 8.0(d、1H)、 7.8~7.7(m、7H)、 7.6(m、2H)、 7.5(m、3H)、 7.3(t、2H)、 7.3~7.2(m、4H)、 2.4(d、3H).
Synthesis Example 12 Synthesis of Compound (1-2-172) <Synthesis of 3-methyl-5- (3- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine>
Figure JPOXMLDOC01-appb-C000165
4,4,5,5-tetramethyl-2- (3- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) -1,3,2-dioxaborolane 2.02 g, 3-bromo- A flask was charged with 0.83 g of 4-methylpyridine, 0.14 g of tetrakis (triphenylphosphine) palladium (0), 1.70 g of potassium phosphate, 20 mL of pseudocumene, 5 mL of t-butyl alcohol, and 1 mL of water under a nitrogen atmosphere. And stirred at reflux temperature for 6 hours. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. The solvent was distilled off under reduced pressure, and the resulting solid was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate = 95/5 (volume ratio)). The eluate was passed through an activated carbon short column to remove colored components. The eluate was concentrated under reduced pressure and reprecipitated by adding heptane to obtain 1.01 g of 3-methyl-5- (3- (10- (naphthalen-1-yl) anthracen-9-yl) phenyl) pyridine. It was.
1 H-NMR (CDCl 3 ): δ = 8.8 (d, 1H), 8.5 to 8.4 (m, 1H), 8.1 (d, 1H), 8.0 (d, 1H) 7.8-7.7 (m, 7H), 7.6 (m, 2H), 7.5 (m, 3H), 7.3 (t, 2H), 7.3-7.2 (m 4H), 2.4 (d, 3H).
原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、本発明の他の誘導体化合物を合成することができる。 By appropriately changing the raw material compound, other derivative compounds of the present invention can be synthesized by a method according to the synthesis example described above.
以下、本発明をさらに詳細に説明するために、本発明の化合物を用いた有機EL素子の実施例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, in order to describe the present invention in more detail, examples of the organic EL device using the compound of the present invention are shown, but the present invention is not limited thereto.
実施例1および比較例1に係る有機EL素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期輝度の90%以上の輝度を保持する時間(hr)の測定を行った。以下、実施例および比較例について詳細に説明する。 The organic EL elements according to Example 1 and Comparative Example 1 were manufactured, and the driving start voltage (V) in the constant current driving test and the time (hr) for maintaining the luminance of 90% or more of the initial luminance were measured. . Hereinafter, examples and comparative examples will be described in detail.
作製した実施例1および比較例1、2に係る電界発光素子における、各層の材料構成を下記表1に示す。
Figure JPOXMLDOC01-appb-T000166
Table 1 below shows the material configuration of each layer in the electroluminescent elements according to the manufactured Example 1 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000166
表1において、「HI」はN,N’-ジフェニル-N,N’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1、1’-ビフェニル]-4、4’-ジアミン、「NPD」はN,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、化合物(A)は9-フェニル-10-(4-フェニルナフタレン-1-イル)アントラセン、化合物(B)はN,N,N,N-7,7-ヘキサフェニル-7H-ベンゾ〔C〕フルオレン-5,9-ジアミンであり、化合物(C)は9,10-ビス(4-(ピリジン-2-イル)ナフタレン-1-イル)アントラセンである。陰極の形成に用いたリチウム 8-キノリノラート(Liq)と共に化学構造を以下に示す。 In Table 1, “HI” represents N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine, “NPD” is N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl, and compound (A) is 9-phenyl-10- (4-phenylnaphthalene-1- Yl) anthracene, compound (B) is N 5 , N 5 , N 9 , N 9 -7,7-hexaphenyl-7H-benzo [C] fluorene-5,9-diamine, and compound (C) is 9 , 10-bis (4- (pyridin-2-yl) naphthalen-1-yl) anthracene. The chemical structure is shown below together with lithium 8-quinolinolato (Liq) used for forming the cathode.
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000167
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(真空機工(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(A)を入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、化合物(1-1-1)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、銀を入れたモリブデン製蒸着用ボート、およびマグネシウムを入れたモリブデン製蒸着用ボートを装着した。 A 26 mm × 28 mm × 0.7 mm glass substrate (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing NPD, and compound (A) are placed therein. Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound (B), molybdenum vapor deposition boat containing compound (1-1-1), molybdenum vapor deposition boat containing Liq, silver A molybdenum vapor deposition boat and a molybdenum vapor deposition boat containing magnesium were installed.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、次いで、NPDが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。次に、化合物(A)が入った蒸着用ボートと化合物(B)の入った蒸着用ボートを同時に加熱して、膜厚25nmになるように蒸着して発光層を形成した。このとき化合物(A)と化合物(B)の重量比がおよそ95対5になるように蒸着速度を調節した。次に化合物(1-1-1)の入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber was depressurized to 5 × 10 −4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 25 nm to form a hole transport layer. Next, the vapor deposition boat containing the compound (A) and the vapor deposition boat containing the compound (B) were heated at the same time and vapor-deposited to a film thickness of 25 nm to form a light emitting layer. At this time, the deposition rate was adjusted so that the weight ratio of the compound (A) to the compound (B) was about 95: 5. Next, the evaporation boat containing the compound (1-1-1) was heated and evaporated to a film thickness of 25 nm to form an electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、Liq入りの蒸着用ボートを加熱して膜厚1nmになるように0.003~0.1nm/秒の蒸着速度で蒸着した。次いで、銀が入った蒸着用ボートとマグネシウムの入った蒸着用ボートを同時に加熱し、銀とマグネシウムの原子数の比がおよそ1対9になるように蒸着速度を0.01~10nm/秒の間で調節して、膜厚100nmになるように蒸着することにより陰極を形成し、有機EL素子を得た。 Thereafter, the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.003 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, the deposition boat containing silver and the deposition boat containing magnesium are heated at the same time, and the deposition rate is set to 0.01 to 10 nm / second so that the ratio of the number of atoms of silver and magnesium is about 1: 9. The cathode was formed by vapor-depositing so as to have a film thickness of 100 nm, and an organic EL device was obtained.
ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、直流電圧を印加すると、波長約455nmの青色発光を得た。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.23Vで、初期輝度の90%以上の輝度を保持する時間は71時間だった。 When a direct current voltage was applied using the ITO electrode as the anode and the Liq / magnesium-silver alloy electrode as the cathode, blue light emission with a wavelength of about 455 nm was obtained. In addition, a constant current driving test was performed at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 4.23 V, and the time for maintaining a luminance of 90% or more of the initial luminance was 71 hours.
<比較例1>
化合物(1-1-1)を化合物(C)に替えた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.73Vで、初期輝度の90%以上の輝度を保持する時間は1時間だった。
<Comparative Example 1>
An organic EL device was obtained in the same manner as in Example 1 except that the compound (1-1-1) was changed to the compound (C). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The drive test start voltage was 3.73 V, and the time for maintaining a luminance of 90% or more of the initial luminance was 1 hour.
以上の結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000168
The above results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000168
さらに、実施例2~12および比較例2、3に係る有機EL素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期値の90%以上の輝度を保持する時間(hr)の測定を行った。以下、実施例および比較例について詳細に説明する。 Furthermore, the organic EL elements according to Examples 2 to 12 and Comparative Examples 2 and 3 were manufactured, and the driving start voltage (V) in the constant current driving test and the time for holding the luminance of 90% or more of the initial value (hr), respectively. ) Was measured. Hereinafter, examples and comparative examples will be described in detail.
作製した実施例2~12および比較例2、3に係る有機EL素子における、各層の材料構成を下記表3に示す。
Figure JPOXMLDOC01-appb-T000169
Table 3 below shows the material configuration of each layer in the organic EL elements according to Examples 2 to 12 and Comparative Examples 2 and 3 thus manufactured.
Figure JPOXMLDOC01-appb-T000169
表3において、「HI」はN,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1、1’-ビフェニル]-4、4’-ジアミン、HTはN-([1,1’-ビフェニル]-4-イル)-9,9-ジメチル-N-(4-(9-フェニル-9H-カルバゾール-3-イル)フェニル)-9H-フルオレン-2-アミン、化合物(D)は9-(4-(ナフタレン-1-イル)フェニル)-10-フェニルアントラセン、化合物(E)は4,4’-((7,7-ジフェニル-7H-ベンゾ[c]フルオレン-5,9-ジイル)ビス(フェニルアミノ))ジベンゾニトリル、化合物(F)は4’-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,2’:6’,2”-テルピリジン、化合物(G)は5-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-2,4’-ビピリジンである。 In Table 3, “HI” represents N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine, HT is N-([1,1′-biphenyl] -4-yl) -9,9-dimethyl-N- (4- (9-phenyl-9H-carbazol-3-yl) phenyl) -9H-fluoren-2-amine, compound (D) is 9- (4- (naphthalen-1-yl) phenyl) -10-phenylanthracene, compound (E) is 4,4 ′-((7,7- Diphenyl-7H-benzo [c] fluorene-5,9-diyl) bis (phenylamino)) dibenzonitrile, compound (F) is 4 ′-(4- (10- (naphthalen-2-yl) anthracene-9- Yl) phenyl) -2,2 ': 6', 2 "-tel Lysine, compound (G) is a 5- (4- (10- (naphthalene-1-yl) anthracene-9-yl) phenyl) 2,4'-bipyridine.
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000170
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、化合物(D)を入れたモリブデン製蒸着用ボート、化合物(E)を入れたモリブデン製蒸着用ボート、化合物(1-1-1)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデンボートおよび銀を入れたタングステン製蒸着用ボートを装着した。 A 26 mm × 28 mm × 0.7 mm glass substrate (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HT, and compound (D) are placed therein. Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound (E), molybdenum vapor deposition boat containing compound (1-1-1), molybdenum vapor deposition boat containing Liq, magnesium A molybdenum boat and a tungsten evaporation boat containing silver were installed.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、化合物(E)が入った蒸着用ボートと化合物(F)の入った蒸着用ボートを同時に加熱して、膜厚35nmになるように蒸着して発光層を形成した。このとき化合物(D)と化合物(E)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-1-1)の入った蒸着用ボートとLiqの入った蒸着用ボートを同時に加熱して膜厚25nmになるように蒸着して電子輸送層を形成した。化合物(1-1-1)とLiqの重量比がおよそ1:1になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber was depressurized to 5 × 10 −4 Pa, first, the vapor deposition boat containing HI was heated to deposit to a film thickness of 40 nm to form a hole injection layer, and then HT entered. The vapor deposition boat was heated and vapor-deposited so that it might become a film thickness of 30 nm, and the positive hole transport layer was formed. Next, the vapor deposition boat containing the compound (E) and the vapor deposition boat containing the compound (F) were heated at the same time and vapor-deposited to a film thickness of 35 nm to form a light emitting layer. At this time, the deposition rate was adjusted so that the weight ratio of the compound (D) to the compound (E) was about 95: 5. Next, the vapor deposition boat containing the compound (1-1-1) and the vapor deposition boat containing Liq were heated at the same time so as to have a film thickness of 25 nm to form an electron transport layer. The deposition rate was adjusted so that the weight ratio of the compound (1-1-1) and Liq was about 1: 1. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱し、銀とマグネシウムの原子数比が1対10となるように蒸着速度が0.1~10nm/秒の間で調整して、膜厚100nmになるように蒸着することにより陰極を形成し、有機EL素子を得た。 Thereafter, the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, the boat containing magnesium and the boat containing silver are heated at the same time, and the deposition rate is adjusted between 0.1 to 10 nm / second so that the atomic ratio of silver to magnesium is 1:10. A cathode was formed by vapor deposition so as to have a film thickness of 100 nm to obtain an organic EL element.
ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、直流電圧を印加すると、波長約450nmの青色発光を得た。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.89Vで、初期輝度の90%以上の輝度を保持する時間は61時間だった。 When a direct current voltage was applied using the ITO electrode as the anode and the Liq / magnesium-silver alloy electrode as the cathode, blue light emission with a wavelength of about 450 nm was obtained. In addition, a constant current driving test was performed at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 3.89 V, and the time for maintaining 90% or more of the initial luminance was 61 hours.
化合物(1-1-1)を化合物(1-1-2)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.79Vで、初期輝度の90%以上の輝度を保持する時間は60時間だった。 An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was replaced with the compound (1-1-2). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The drive test start voltage was 3.79 V, and the time for maintaining a luminance of 90% or more of the initial luminance was 60 hours.
化合物(1-1-1)を化合物(1-1-134)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.86Vで、初期輝度の90%以上の輝度を保持する時間は177時間だった。 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-1) was changed to the compound (1-1-134). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 3.86 V, and the time for maintaining 90% or more of the initial luminance was 177 hours.
化合物(1-1-1)を化合物(1-1-153)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.87Vで、初期輝度の90%以上の輝度を保持する時間は101時間だった。 An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was replaced with the compound (1-1-153). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 3.87 V, and the time for maintaining 90% or more of the initial luminance was 101 hours.
化合物(1-1-1)を化合物(1-1-172)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.79Vで、初期輝度の90%以上の輝度を保持する時間は87時間だった。 An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was changed to the compound (1-1-172). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 3.79 V, and the time for maintaining 90% or more of the initial luminance was 87 hours.
化合物(1-1-1)を化合物(1-1-191)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.57Vで、初期輝度の90%以上の輝度を保持する時間は203時間だった。 An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was replaced with the compound (1-1-191). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 3.57 V, and the time for maintaining 90% or more of the initial luminance was 203 hours.
化合物(1-1-1)を化合物(1-1-210)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.58Vで、初期輝度の90%以上の輝度を保持する時間は172時間だった。 An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was changed to the compound (1-1-210). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 3.58 V, and the time for maintaining 90% or more of the initial luminance was 172 hours.
化合物(1-1-1)を化合物(1-1-229)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.67Vで、初期輝度の90%以上の輝度を保持する時間は80時間だった。 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-1) was changed to the compound (1-1-229). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The drive test start voltage was 3.67 V, and the time for maintaining 90% or more of the initial brightness was 80 hours.
化合物(1-1-1)を化合物(1-2-1)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.20Vで、初期輝度の90%以上の輝度を保持する時間は57時間だった。 An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was changed to the compound (1-2-1). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 4.20 V, and the time for maintaining 90% or more of the initial luminance was 57 hours.
化合物(1-1-1)を化合物(1-2-153)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.85Vで、初期輝度の90%以上の輝度を保持する時間は62時間だった。 An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-1) was replaced with the compound (1-2-153). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 3.85 V, and the time for maintaining a luminance of 90% or more of the initial luminance was 62 hours.
化合物(1-1-1)を化合物(1-2-172)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.65Vで、初期輝度の90%以上の輝度を保持する時間は104時間だった。 An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-1) was replaced with the compound (1-2-172). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 3.65 V, and the time for maintaining a luminance of 90% or more of the initial luminance was 104 hours.
<比較例2>
化合物(1-1-1)を化合物(F)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.35Vで、初期輝度の90%以上の輝度を保持する時間は2時間だった。
<Comparative Example 2>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-1) was changed to the compound (F). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 5.35 V, and the time for maintaining 90% or more of the initial luminance was 2 hours.
<比較例3>
化合物(1-1-1)を化合物(G)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム-銀合金電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.20Vで、初期輝度の90%以上の輝度を保持する時間は30時間だった。
<Comparative Example 3>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-1) was changed to the compound (G). A constant current driving test was performed with an ITO electrode as an anode and a Liq / magnesium-silver alloy electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 4.20 V, and the time for maintaining the luminance of 90% or more of the initial luminance was 30 hours.
以上の結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000171
The above results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000171
本発明の好ましい態様によれば、特に発光素子の寿命を向上させ、駆動電圧とのバランスも優れた有機電界発光素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。 According to a preferred aspect of the present invention, it is possible to provide an organic electroluminescent element that improves the lifetime of the light emitting element and has an excellent balance with the driving voltage, a display device including the organic electroluminescent element, and a lighting device including the organic electroluminescent element. it can.

Claims (11)

  1. 下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    式(1)において、
    Pyはピリジルであり、このピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよいフェニル、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい1-ナフチル、または炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい2-ナフチルで置き換えられていてもよく;
    Rは水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールであり、このアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;また、
    式(1)で表される化合物における少なくとも1つの水素が重水素で置き換えられていてもよい。
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In equation (1),
    Py is pyridyl, and any hydrogen of the pyridyl is substituted with alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms. 1-naphthyl optionally substituted with phenyl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, or alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons Optionally substituted with 2-naphthyl;
    R is hydrogen, alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms, and any hydrogen in the aryl is alkyl having 1 to 6 carbon atoms or 3 to 3 carbon atoms. Optionally substituted with 6 cycloalkyl; and
    At least one hydrogen in the compound represented by the formula (1) may be replaced with deuterium.
  2. 下記式(1-1)または(1-2)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    式(1-1)および(1-2)において、
    Pyはピリジルであり、このピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよいフェニル、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい1-ナフチル、または炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい2-ナフチルで置き換えられていてもよく;
    Rは水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールであり、このアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;また、
    式(1-1)または(1-2)で表される化合物における少なくとも1つの水素が重水素で置き換えられていてもよい。
    The compound according to claim 1, which is represented by the following formula (1-1) or (1-2).
    Figure JPOXMLDOC01-appb-C000002
    In formulas (1-1) and (1-2),
    Py is pyridyl, and any hydrogen of the pyridyl is substituted with alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms. 1-naphthyl optionally substituted with phenyl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, or alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons Optionally substituted with 2-naphthyl;
    R is hydrogen, alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms, and any hydrogen in the aryl is alkyl having 1 to 6 carbon atoms or 3 to 3 carbon atoms. Optionally substituted with 6 cycloalkyl; and
    At least one hydrogen in the compound represented by the formula (1-1) or (1-2) may be replaced with deuterium.
  3. Pyが2-ピリジルである、請求項1または2に記載の化合物。 The compound according to claim 1 or 2, wherein Py is 2-pyridyl.
  4. Pyが3-ピリジルである、請求項1または2に記載の化合物。 The compound according to claim 1 or 2, wherein Py is 3-pyridyl.
  5. Pyが4-ピリジルである、請求項1または2に記載の化合物。 The compound according to claim 1 or 2, wherein Py is 4-pyridyl.
  6. Pyが下記の1価の基の群から選ばれる1つである、請求項1または2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    The compound according to claim 1 or 2, wherein Py is one selected from the group of monovalent groups below.
    Figure JPOXMLDOC01-appb-C000003
  7. 下記式(1-1-1)、(1-1-2)、(1-1-3)、(1-1-134)、(1-1-153)、(1-1-172)、(1-1-191)、(1-1-210)、(1-1-229)、(1-2-1)、(1-2-153)、および(1-2-172)で表される化合物の群から選ばれる1つである、請求項1または2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005
    The following formulas (1-1-1), (1-1-2), (1-1-3), (1-1-134), (1-1-153), (1-1-172), (1-1-191), (1-1-210), (1-1-229), (1-2-1), (1-2-153), and (1-2-172) The compound according to claim 1 or 2, which is one selected from the group of compounds to be prepared.
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005
  8. 請求項1~7のいずれか1項に記載の化合物を含有する電子輸送材料。 An electron transport material comprising the compound according to any one of claims 1 to 7.
  9. 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、請求項8に記載の電子輸送材料を含有する電子輸送層および/または電子注入層とを有する有機電界発光素子。 The electron transport containing the electron transport material of Claim 8 arrange | positioned between a pair of electrode which consists of an anode and a cathode, the light emitting layer arrange | positioned between this pair of electrodes, and the said cathode and this light emitting layer. An organic electroluminescent device having a layer and / or an electron injection layer.
  10. 前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体およびボラン誘導体からなる群から選択される少なくとも1つを含有する、請求項9に記載の有機電界発光素子。 The organic material according to claim 9, wherein at least one of the electron transport layer and the electron injection layer further contains at least one selected from the group consisting of a quinolinol-based metal complex, a bipyridine derivative, a phenanthroline derivative, and a borane derivative. Electroluminescent device.
  11. 電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項10に記載の有機電界発光素子。 At least one of the electron transport layer and the electron injection layer is further made of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth metal. The material contains at least one selected from the group consisting of halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes. 10. The organic electroluminescent element according to 10.
PCT/JP2011/076815 2010-11-25 2011-11-21 Electron transport material, and organic electroluminescent element using same WO2012070535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012545745A JP5907069B2 (en) 2010-11-25 2011-11-21 Electron transport material and organic electroluminescent device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010262477 2010-11-25
JP2010-262477 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012070535A1 true WO2012070535A1 (en) 2012-05-31

Family

ID=46145877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076815 WO2012070535A1 (en) 2010-11-25 2011-11-21 Electron transport material, and organic electroluminescent element using same

Country Status (3)

Country Link
JP (1) JP5907069B2 (en)
TW (1) TWI475091B (en)
WO (1) WO2012070535A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227251A (en) * 2012-04-25 2013-11-07 Jnc Corp Electron transport material and organic electroluminescent element using the same
JP2014005274A (en) * 2012-06-01 2014-01-16 Semiconductor Energy Lab Co Ltd Organic material, light-emitting element, light-emitting device, electronic appliance, and lighting device
KR20140082437A (en) * 2012-12-24 2014-07-02 에스에프씨 주식회사 Antracene derivatives having heteroaryl substituted phenyl group and organic light-emitting diode including the same
KR101492531B1 (en) * 2013-01-25 2015-02-12 에스에프씨 주식회사 Organic light-emitting diode including aryl substituted antracene derivatives
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063159A1 (en) * 2003-01-10 2004-07-29 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
JP2006045503A (en) * 2004-07-09 2006-02-16 Chisso Corp Luminescent material and organic electroluminescent element using the same
WO2006067931A1 (en) * 2004-12-22 2006-06-29 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescent element using the same
JP2007238500A (en) * 2006-03-08 2007-09-20 Mitsui Chemicals Inc Anthracene compound and organic electroluminescent element containing the compound
JP2009173642A (en) * 2007-12-27 2009-08-06 Chisso Corp Anthracene derivative compound comprising pyridylphenyl group, and organic electroluminescent device
JP2009256352A (en) * 2008-04-15 2009-11-05 Samsung Mobile Display Co Ltd Bipyridine-based compound and organic light-emitting element having organic membrane containing it
WO2009139579A2 (en) * 2008-05-14 2009-11-19 주식회사 두산 Preparation of asymmetric anthracene derivatives and organic electroluminescent device using same
WO2010137678A1 (en) * 2009-05-29 2010-12-02 チッソ株式会社 Electron transporting material and organic electroluminescent device using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891673B (en) * 2009-11-13 2013-03-20 昆山维信诺显示技术有限公司 Organic material and application thereof in organic electroluminescence devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063159A1 (en) * 2003-01-10 2004-07-29 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
JP2006045503A (en) * 2004-07-09 2006-02-16 Chisso Corp Luminescent material and organic electroluminescent element using the same
WO2006067931A1 (en) * 2004-12-22 2006-06-29 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescent element using the same
JP2007238500A (en) * 2006-03-08 2007-09-20 Mitsui Chemicals Inc Anthracene compound and organic electroluminescent element containing the compound
JP2009173642A (en) * 2007-12-27 2009-08-06 Chisso Corp Anthracene derivative compound comprising pyridylphenyl group, and organic electroluminescent device
JP2009256352A (en) * 2008-04-15 2009-11-05 Samsung Mobile Display Co Ltd Bipyridine-based compound and organic light-emitting element having organic membrane containing it
WO2009139579A2 (en) * 2008-05-14 2009-11-19 주식회사 두산 Preparation of asymmetric anthracene derivatives and organic electroluminescent device using same
WO2010137678A1 (en) * 2009-05-29 2010-12-02 チッソ株式会社 Electron transporting material and organic electroluminescent device using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227251A (en) * 2012-04-25 2013-11-07 Jnc Corp Electron transport material and organic electroluminescent element using the same
JP2014005274A (en) * 2012-06-01 2014-01-16 Semiconductor Energy Lab Co Ltd Organic material, light-emitting element, light-emitting device, electronic appliance, and lighting device
KR20140082437A (en) * 2012-12-24 2014-07-02 에스에프씨 주식회사 Antracene derivatives having heteroaryl substituted phenyl group and organic light-emitting diode including the same
KR102162247B1 (en) 2012-12-24 2020-10-06 에스에프씨주식회사 Antracene derivatives having heteroaryl substituted phenyl group and organic light-emitting diode including the same
KR101492531B1 (en) * 2013-01-25 2015-02-12 에스에프씨 주식회사 Organic light-emitting diode including aryl substituted antracene derivatives
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same

Also Published As

Publication number Publication date
TW201229203A (en) 2012-07-16
JP5907069B2 (en) 2016-04-20
TWI475091B (en) 2015-03-01
JPWO2012070535A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5807637B2 (en) Electron transport material and organic electroluminescent device using the same
JP5533863B2 (en) Electron transport material and organic electroluminescent device using the same
JP5076901B2 (en) Electron transport material and organic electroluminescent device using the same
JP5353233B2 (en) Anthracene derivative compound having pyridylphenyl group and organic electroluminescence device
JP5262192B2 (en) Electron transport material and organic electroluminescent device using the same
JP5737294B2 (en) Electron transport material and organic electroluminescent device using the same
JP5509606B2 (en) Anthracene derivative compound having pyridyl group and organic electroluminescence device
JP5907069B2 (en) Electron transport material and organic electroluminescent device using the same
JPWO2011105373A1 (en) Substituted pyridyl compounds and organic electroluminescent devices
JP2008214306A (en) Electron transport material and organic electroluminescent element using the same
JP5799772B2 (en) Electron transport material and organic electroluminescent device using the same
JP5176366B2 (en) Novel bipyridine derivative and organic electroluminescent device containing the same
JP2012094823A (en) Pyridylphenyl-substituted anthracene compound and organic electroluminescent element
JP5783173B2 (en) Carbazole compounds having substituents containing electron-accepting nitrogen-containing heteroaryl and organic electroluminescent devices
JP6402904B2 (en) Electron transport material and organic electroluminescent device using the same
JP2008156266A (en) Electron transporting material and organic electroluminescent device produced by using the same
JP2013227251A (en) Electron transport material and organic electroluminescent element using the same
JP6428762B2 (en) Electron transport material and organic electroluminescent device using the same
JP6136311B2 (en) Electron transport material and organic electroluminescent device using the same
JP6070047B2 (en) Electron transport material and organic electroluminescent device using the same
JP5549270B2 (en) Anthracene derivative and organic electroluminescence device using the same
JP2007291088A (en) Electron transport material and organic electroluminescence element using the same
JP2016074623A (en) Compound having alkyl-substituted azole, electron transport material including the compound and organic electroluminescent element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843839

Country of ref document: EP

Kind code of ref document: A1