WO2012070513A1 - Multi-display system - Google Patents

Multi-display system Download PDF

Info

Publication number
WO2012070513A1
WO2012070513A1 PCT/JP2011/076753 JP2011076753W WO2012070513A1 WO 2012070513 A1 WO2012070513 A1 WO 2012070513A1 JP 2011076753 W JP2011076753 W JP 2011076753W WO 2012070513 A1 WO2012070513 A1 WO 2012070513A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optical member
crystal panel
display system
display
Prior art date
Application number
PCT/JP2011/076753
Other languages
French (fr)
Japanese (ja)
Inventor
林 啓二
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012070513A1 publication Critical patent/WO2012070513A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13336Combining plural substrates to produce large-area displays, e.g. tiled displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133328Segmented frames
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/54Arrangements for reducing warping-twist

Definitions

  • the present invention relates to a multi-display system.
  • the present invention relates to a multi-display system (a liquid crystal display device for multi-display) capable of realizing a narrow frame corresponding to a large screen.
  • a liquid crystal display device may be used as a display device constituting the multi-display system.
  • FIGS. 16A and 16B are diagrams for explaining the multi-display system 2000.
  • FIG. FIG. 16A shows one liquid crystal display device 1100.
  • the liquid crystal display device 1100 illustrated in FIG. 16A includes a display unit 110a that displays an image 150a and a frame unit 120a that is positioned on the outer edge of the display unit 110a.
  • FIG. 16B shows a multi-display system 2000 in which one image 150b is displayed by a plurality of display units 110b.
  • the four display units 110b can be arranged two by two in the vertical and horizontal directions, and the image 150b can be displayed on a multi-display screen that has double the vertical and horizontal widths.
  • a frame portion 120 b is provided on the outer edge of each display unit 110 b included in the multi-display system 2000. Since the frame portion 120b in the multi-display system 2000 hinders the image 150b displayed on the multi-display system screen, the frame portion 120b is preferably as narrow as possible.
  • the frame portion be narrow.
  • a holding mechanism for holding the optical sheet / diffusion plate is provided in the frame area at the boundary between the individual display units. If the holding mechanism is too narrow, the optical sheet / diffusion plate is There are cases where it cannot be held. That is, there is a possibility that the member of the holding mechanism is pressed and damaged by the thermal expansion of the optical sheet / diffusion plate at a high temperature. Further, at a low temperature, the optical sheet / diffusion plate may fall off the holding mechanism due to thermal contraction of the optical sheet / diffusion plate.
  • the frame portion of the multi-display system 2000 is narrow, it is preferable that the frame portion is narrow.
  • the frame portion is narrow.
  • the present invention has been made in view of such a point, and a main object thereof is to narrow each display unit at a joint portion when a multi-display is formed.
  • a multi-display system is a multi-display system that displays an image by a plurality of liquid crystal panels, and includes a plurality of liquid crystal panels and a light source that irradiates light to each of the plurality of liquid crystal panels. And a holding member for holding the liquid crystal panel is provided in a non-display area located between the plurality of liquid crystal panels. The light source of each of the plurality of liquid crystal panels On this side, an optical member is adhered and disposed.
  • the holding member holds the liquid crystal panel and the optical member by sandwiching the liquid crystal panel and the optical member.
  • the holding member includes a first support part that supports the surface of the liquid crystal panel, and a second support part that supports the optical member disposed on the back surface of the liquid crystal panel.
  • the first support part and the second support part sandwich the liquid crystal panel and the optical member.
  • the liquid crystal panel has a rectangular shape, and the optical member is formed to be smaller than the liquid crystal panel, and the liquid crystal panel is formed on all four sides in the rectangular shape of the liquid crystal panel. An area where the optical member is not provided is provided, and the liquid crystal panel and the optical member are held by the holding member sandwiching the liquid crystal panel in the area where the optical member is not provided.
  • the holding member includes a first support part that supports the surface of the liquid crystal panel, and a second support part that supports the optical member disposed on the back surface of the liquid crystal panel.
  • the first support part and the second support part sandwich the liquid crystal panel.
  • the second support portion is disposed on a peripheral portion of the backlight chassis.
  • liquid crystal panel and the optical member are bonded via a layered adhesive substance.
  • the optical member includes at least a diffusion material.
  • the diffusing material is dispersed in a resin medium, and the diffusing material is a particle having a refractive index higher than that of the medium.
  • the diffusing material is applied to a surface on a side opposite to a surface that is in close contact with the panel of the optical material.
  • the optical member includes a diffusion layer in which the diffusion material is dispersed in a resin medium, and a transparent resin film, and one surface of the diffusion layer is formed of the transparent resin film. Bonded or laminated on one side.
  • the transparent resin film includes a plurality of concave or convex structures on the surface facing the surface in contact with the diffusion layer.
  • the light source is a backlight light source including an LED element.
  • the width of the non-display area is 10 mm or less.
  • a support pin that supports the optical member is disposed in the backlight chassis, and an impact absorbing member is provided at a tip of the support pin.
  • the optical member is a sheet-like member containing bubbles.
  • the optical member is bonded to the liquid crystal panel via the layered adhesive substance, and the layered adhesive substance contains bubbles.
  • the holding member is provided in the non-display area located between the plurality of liquid crystal panels, and the optical member is disposed on the light source side of each of the plurality of liquid crystal panels. Since the optical member is disposed in close contact with the liquid crystal panel, the optical member can be supported by the liquid crystal panel. Therefore, even when the optical member (for example, the diffusion plate) is thermally expanded / contracted, it is possible to prevent the holding member from being deformed or the optical member from coming off, and as a result, a multi-frame suitable for narrowing the frame. A display system can be realized.
  • the optical member for example, the diffusion plate
  • FIG. 1 is a perspective view schematically showing a configuration of a multi-display system 100 according to an embodiment of the present invention.
  • 4 is an enlarged cross-sectional view of a region 50 including a non-display region 55.
  • FIG. (A) is sectional drawing which shows the structure of the comparative example 1000.
  • FIG. (B) is sectional drawing which shows the structure of the multi-display system 100 of embodiment of this invention.
  • FIGS. 9A to 9C are cross-sectional views illustrating thermal contraction / expansion of the optical member 115 in the comparative example 1000.
  • FIG. (A) to (c) are cross-sectional views illustrating thermal contraction / expansion of the optical member 15 in the configuration of the embodiment of the present invention.
  • FIG. 2 is a top view of the liquid crystal panel 10 in the multi-display system 100.
  • FIG. FIG. 7 is a cross-sectional view of the multi-display system 100 taken along line VII-VII in FIG. 3 is an exploded perspective view of a first support part 31.
  • FIG. 4 is a perspective view of a second support part 32.
  • FIG. (A) And (b) is sectional drawing of the liquid crystal panel 10 and the optical member 15 in the multi-display system 100 of embodiment of this invention.
  • (A) is sectional drawing which shows the structure of the support pin 60 which concerns on embodiment of this invention.
  • FIG. 6B is a top view showing the contact member 62 of the support pin 60.
  • FIG. 4B is a bottom view of the optical member 15. It is sectional drawing which shows the modification of the optical member 15 in embodiment of this invention. It is sectional drawing which shows the modification of the optical member 15 in embodiment of this invention. It is sectional drawing which shows the modification of the multi display system 100 in embodiment of this invention.
  • (A) And (b) is a figure for demonstrating the one liquid crystal display device 1100 and the multi-display system 2000, respectively.
  • FIG. 1 is a perspective view schematically showing a configuration of a multi-display system 100 according to an embodiment of the present invention.
  • the multi-display system 100 of the present embodiment is an image display device that displays an image using a plurality of liquid crystal panels 10. There is a non-display area between the adjacent liquid crystal panels 10.
  • FIG. 2 is an enlarged cross-sectional view of the region 50 including the non-display region 55.
  • the multi-display system 100 includes a plurality of liquid crystal panels 10 and a light source 20 that irradiates light to each of the plurality of liquid crystal panels 10.
  • the light source 20 is accommodated in the backlight chassis 25.
  • a holding member 30 that holds the liquid crystal panel 10 is provided in the non-display area 55 located between the plurality of liquid crystal panels 10.
  • An optical member (for example, a diffusing plate) 15 is adhered and disposed on the light source 20 side (back surface 10b side) of each liquid crystal panel 10 of the present embodiment.
  • the holding member 30 holds the liquid crystal panel 10 and the optical member 15 by sandwiching the liquid crystal panel 10 and the optical member 15.
  • the holding member 30 of the present embodiment is a member that holds the outer edge portion of each liquid crystal panel 10.
  • the holding member 30 includes a first support portion (for example, a metal bezel) 31 that supports the front surface 10 a of the liquid crystal panel 10 and a second support portion that supports the optical member 15 disposed on the back surface 10 b of the liquid crystal panel 10.
  • a plastic chassis is included.
  • the first support part 31 and the second support part 32 sandwich the liquid crystal panel 10 and the optical member 15.
  • the optical member 15 in close contact with the back surface 10b of the liquid crystal panel 10 is a sheet-like optical member, and in the configuration of the present embodiment, includes at least a layer containing a diffusing material.
  • the diffusion material may be, for example, high refractive index particles dispersed inside the resin material constituting the optical member 15.
  • the diffusion material may be a diffusion layer applied to the surface of the optical material 15 that faces the surface that is in close contact with the liquid crystal panel 10.
  • the optical member 15 may be a combination of a diffusion plate and an optical sheet (for example, a lens sheet or a prism sheet).
  • the diffusion plate in the present embodiment is not only the one used in a typical liquid crystal display device (a one in which a diffusion material is dispersed in a resin plate of 1 to several mm), but also a resin film having a thickness of 50 to 500 ⁇ m. In which bead-like particles are coated on the surface (typically referred to as a “diffusion sheet”).
  • a resin film having a thickness of 50 to 500 ⁇ m In which bead-like particles are coated on the surface (typically referred to as a “diffusion sheet”).
  • the diffusion plate and the optical sheet are combined, the two members are integrated by laminating or bonded with an adhesive substance, so that individual members are rubbed or scratched by dust entering between the members. Can be prevented.
  • the liquid crystal panel 10 constituting the multi-display system 100 has a size of, for example, 20 inches to 110 inches (typically 32 inches to 60 inches).
  • the multi-display system 100 includes twelve liquid crystal panels 10 that are 4 ⁇ 3 in length and width.
  • the liquid crystal panel 10 is not limited to this number or arrangement example.
  • two liquid crystal panels 10 may be arranged horizontally (long sides are in the horizontal direction) or two vertically arranged (long sides are in the vertical direction).
  • the liquid crystal panels 10 can be arranged in, for example, 4 ⁇ 2 ⁇ 2, 9 ⁇ 3 ⁇ 3, 16 ⁇ 4 ⁇ 4, and 25 ⁇ 5 ⁇ 5.
  • the liquid crystal panels 10 may be arranged vertically and arranged in 3 ⁇ 1 ⁇ 3, 1 ⁇ 9 ⁇ 9, 2 ⁇ 6 ⁇ 12, and 2 ⁇ 9 ⁇ 18.
  • the liquid crystal panel 10 of this embodiment generally has a rectangular shape as a whole, and is composed of a pair of translucent substrates (glass substrates).
  • the pair of substrates are arranged to face each other, and a liquid crystal layer (not shown) is provided between them.
  • the liquid crystal layer is made of a liquid crystal material whose optical characteristics change with application of an electric field between the two substrates.
  • a sealing agent (not shown) is provided on the outer edge portions of both substrates to seal the liquid crystal layer.
  • polarizing plates are attached to the outer surfaces of both substrates.
  • the back side is an array substrate (TFT substrate)
  • the front side is a color filter substrate (CF substrate).
  • the light source (backlight) 20 of the present embodiment is a backlight light source including an LED element.
  • the light source 20 of this embodiment is a direct type LED backlight.
  • an edge light type LED backlight having a light guide plate can be used.
  • a backlight light source (direct type or edge light type) including a cold cathode tube (CCFL) can be used as the light source 20.
  • CCFL cold cathode tube
  • the multi-display system 100 of this embodiment includes a backlight chassis 25 that houses the light source 20.
  • the backlight chassis 25 of the present embodiment is made of a metal material (for example, aluminum, iron, etc.) and covers the back surface of the single liquid crystal panel 10.
  • a connecting member 22 that connects the adjacent backlight chassis 25 is provided on the back surface of the backlight chassis 25.
  • the connecting member 22 is, for example, a metal plate-like member (reinforcing plate), and is connected to the backlight chassis 25 by fastening members (for example, screws and bolts) (see arrow 24). Secure to each other.
  • the shielding plate 35 is disposed in the non-display area 55 of the present embodiment. Specifically, the shielding plate 35 is disposed on the upper surface of the first support portion 31 in the holding member 30.
  • the shielding plate 35 is made of, for example, a resin material or a metal material, and is disposed so as to extend along the boundary portion of the liquid crystal panel 10 as shown in FIG.
  • the length of the non-display area 55 (or the width of the shielding plate 35) of the present embodiment is, for example, 10 mm or less, typically 7.1 mm or 6.5 mm, or less (for example, 3 mm or less). The following).
  • the multi-display system 100 of the present embodiment has a system frame width of 10 mm or less (the width dimension of the non-display area 55). In other words, each of the liquid crystal panels 10 has a narrow frame configuration. is doing.
  • the width dimension of the non-display area 55 is small, the number of joints in the multi-display configuration is reduced, and a large-screen display with more expressive power can be configured.
  • the upper surface of the first support portion 31 may be the surface of the non-display area 55 without arranging the shielding plate 35.
  • the illustrated holding member 30 has the following structure.
  • Both the first support part 31 and the second support part 32 include a horizontal part extending in parallel with the liquid crystal panel 10 and a vertical part extending perpendicularly to the horizontal part.
  • a shielding plate 35 is placed on the surface of the horizontal portion of the first support portion 31.
  • the horizontal portion of the first support portion 31 and the horizontal portion of the second support portion 32 sandwich the liquid crystal panel 10 and the optical member (for example, a diffusion plate) 15. More specifically, the horizontal portion of the first support portion 31 presses the upper surface of the liquid crystal panel 10 from above, while the horizontal portion of the second support portion 32 presses the lower surface of the optical member 15 from below. 10 and the optical member 15 are held.
  • the second support portion 32 is placed on a part (26) of the backlight chassis 25. Specifically, a portion on which the holding member 30 is placed is provided on the peripheral portion 26 of the backlight chassis 25, and the second support portion 32 is disposed on the peripheral portion 26 of the backlight chassis 25. Has been. A wiring 40 for driving the liquid crystal panel 10 extends from the liquid crystal panel 10.
  • a flexible cable (FPC) 40 is attached to the upper side of the array substrate (TFT substrate) constituting the liquid crystal panel 10, and a voltage corresponding to the transmittance of each pixel is applied to the other end of the FPC 40 for screen scanning.
  • a circuit board (for example, a control board) 42 for supplying in synchronization with the timing is arranged.
  • the control board 42 is disposed between the first support part 31 and the second support part 32. More specifically, the control board 42 is disposed between the vertical part of the first support part 31 and the vertical part of the second support part 32.
  • the control board 42 is connected to an image control unit (not shown) that converts an image signal and provides a signal corresponding to the transmittance of each pixel to the control board.
  • the image control unit can display an image on each liquid crystal panel 10 and can display an image on the entire multi-display system 100.
  • FIG. 3A shows a structure that is a comparative example 1000 of the multi-display system of the present embodiment.
  • FIG. 3B shows the structure of the multi-display system 100 of this embodiment.
  • the structure shown in FIG. 3B is the same as the structure shown in FIG. FIGS. 3A and 3B also show the cross-sectional structure around the non-display areas 155 and 55.
  • the first support part 131 and the second support part 132 of the holding member 130 hold the liquid crystal panel 110 by sandwiching the liquid crystal panel 110.
  • An optical member (for example, a diffusion plate) 115 is held by the second support portion 132 and the peripheral edge portion 126 of the backlight chassis 125.
  • the circuit board (control board) 142 of the cable (FPC) 140 extending from the liquid crystal panel 110 is disposed between the first support part 131 and the second support part 132.
  • a shielding plate 135 is disposed on the upper surface of the first support part 131.
  • the optical member 115 needs to be placed on the peripheral edge 126 of the backlight chassis 125 in order to support or position the optical member (for example, the diffusion plate) 115. .
  • the optical member 115 is thermally expanded / contracted, so that it is necessary to take a relatively large number of portions on which the optical member 115 is placed on the peripheral edge 126.
  • the optical member 115 stops functioning. Therefore, the portion where the optical member 115 is placed on the peripheral portion 126 is taken with a margin. There is a need.
  • the optical member 15 is disposed in close contact with the liquid crystal panel 10, so that the optical member 15 is supported by the liquid crystal panel 10. . More specifically, in the configuration of the present embodiment, since the optical member 15 is fixed to the liquid crystal panel 10, the support or positioning of the optical member 15 is performed using the first support portion 31 and the second support portion 32 (or the peripheral portion). 26). Therefore, compared with the structure of the comparative example 1000 shown in FIG. 3A, the part where the optical member 15 is placed on the peripheral edge portion 26 can be made smaller.
  • the non-display area 55 of the present embodiment shown in FIG. 3B can be made smaller than the non-display area 155 in the comparative example 1000 shown in FIG. That is, with the configuration of the present embodiment, a narrower frame structure can be realized. Further, since the non-display area 55 can be reduced, the display area 52 of the present embodiment shown in FIG. 3B is made larger than the display area 152 of the comparative example 1000 having the same dimensions. Can do.
  • the optical member 15 is fixedly supported by the liquid crystal panel 10, it is relatively easy to make the outer shape of the optical member 15 smaller than the outer shape of the liquid crystal panel 10. It can be carried out.
  • the outer shape of the optical member 115 is based on the outer shape of the liquid crystal panel 110 as compared with the structure of the present embodiment. There are restrictions on making it smaller.
  • the optical member 15 is fixed to the liquid crystal panel 10, the liquid crystal panel 10 and the optical member 15 are substantially integrated. Therefore, even if the optical member 15 may be detached from the second support portion 32, as long as the liquid crystal panel 10 is supported by the peripheral edge portion 26, the first support portion 31, the second support portion 32, and the like, Since the optical member 15 is in close contact with the liquid crystal panel 10, it can be avoided that the optical member 15 does not function.
  • the optical member 15 in the liquid crystal panel 10 in the present embodiment the following can be performed.
  • the diffusion plate 15 is bonded to the polarizing plate attached to the back surfaces of the pair of transparent substrates with an adhesive (or an adhesive).
  • an adhesive sheet or a fixing sheet
  • an intermediate thermal expansion coefficient is set so that the adhesive sheet (or adhesive) can relieve the difference between the thermal expansion coefficients of the two. It is preferable to comprise from the material which has. Note that not only the diffusion plate 15 but also other sheet-like optical members (for example, optical sheets such as lens sheets and prism sheets) are brought into close contact with the liquid crystal panel 10, a substantially similar method can be used. .
  • FIG. 4A is a cross-sectional view substantially similar to the structure 1000 shown in FIG.
  • the non-display area 155a shown in FIG. 4A is a non-display area 55 having the same width as the configuration of the present embodiment shown in FIG. 3B, that is, as shown in FIG. The width of the non-display area 155 is narrower.
  • FIG. 4B is a cross-sectional view showing a state where the optical member 115 is thermally contracted.
  • FIG. 4C is a cross-sectional view showing a state where the optical member 115 is thermally expanded.
  • the frame when the width of the non-display area 155a is narrowed, the frame can be narrowed similarly to the structure shown in FIG. The part on the top becomes narrow.
  • the multi-display system (100 or 1000) displays an image as a digital advertisement / signboard in a room where the temperature is well controlled, and often displays an image at a temperature similar to that of the outside air (for example, in an airport) Display, outdoor display).
  • FIG. 5A is a cross-sectional view similar to the structure 100 shown in FIG.
  • FIG. 5B is a cross-sectional view showing a state where the optical member 15 is thermally contracted.
  • FIG.5 (c) is sectional drawing which shows a mode that the optical member 15 expanded thermally.
  • the optical member 15 is not supported by the surface of the peripheral edge portion 26 but is supported in close contact with the liquid crystal panel 10. Therefore, when the optical member 15 is thermally contracted by the low temperature operation (see the arrow 15a), it is possible to avoid the optical member 15 being detached from the peripheral edge portion 26 and falling. Further, even if the optical member 15 is detached from the second support portion 32 and the peripheral edge portion 26, the liquid crystal panel 10 is supported on the second support portion 32, so that the optical member 15 is in close contact with the liquid crystal panel 10. Will be supported. Therefore, the restriction due to the thermal contraction of the optical member 15 can be relaxed, and the temperature use range can be substantially expanded.
  • the optical member 15 is prevented from pressing the second support portion (holding member) 32. can do. That is, in the structure of the present embodiment, since the upper surface of the second support portion 32 supports the bottom surface of the optical member 15, even if the optical member 15 expands (arrow 15b), the second support portion 32 is deformed. Can be avoided. More specifically, even if the optical member 15 expands, the optical member 15 deforms the second support portion 32 in order to extend between the horizontal portion of the first support portion 31 and the horizontal portion of the second support portion 32. There is nothing to do. Therefore, restrictions due to thermal expansion of the optical member 15 can be relaxed, and the temperature use range can be substantially expanded.
  • the holding member 30 is provided in the non-display area 55 located between the plurality of liquid crystal panels 10, and an optical member is provided on the light source 20 side (back surface 10 b side) of each liquid crystal panel 10. 15 is closely arranged.
  • the holding member 30 holds the liquid crystal panel 10 and the optical member 15 by sandwiching the liquid crystal panel 10 and the optical member 15. Since the optical member 15 is disposed in close contact with the liquid crystal panel 10, the optical member 15 can be supported by the liquid crystal panel 10. Therefore, even when the optical member 15 is thermally expanded / contracted, it is possible to prevent the holding member 30 from being deformed and the optical member 15 from being detached.
  • the multi-display system 100 suitable for narrowing the frame can be realized.
  • the width of the peripheral edge 126 of the backlight chassis 125 is, for example, 60 inches of liquid crystal. In the panel, it is necessary to provide at least 3.7 mm in the longitudinal direction.
  • the width of the peripheral edge portion 26 of the backlight chassis 25 can be made less than 3.7 mm in the longitudinal direction in a 60-inch liquid crystal panel, for example.
  • the diffusion coefficient (PS (polystyrene)) which is an example of the optical member 15 has a linear expansion coefficient of 6.8 ⁇ 10 ⁇ 5 , and the linear expansion coefficient of the glass constituting the liquid crystal panel is 3.3 ⁇ 10 ⁇ 5. It is. Moreover, the linear expansion coefficient of the steel material which comprises a backlight chassis is 1.2 * 10 ⁇ -5> . The difference from the backlight chassis (steel material) is 5.6 ⁇ 10 ⁇ 5 for the diffusion plate (PS) and 2.1 ⁇ 10 ⁇ 5 for the glass.
  • the position change (one side) of the diffusion plate (PS) is 3.7 mm
  • the glass position change (one side) is 1.3 mm.
  • a displacement of 3.7 mm is caused on one side when it expands in the center symmetry. Therefore, in the case of the comparative example 1000, it is necessary to provide a non-display area 155 of at least 7.4 mm at the joint of the liquid crystal panel 110 units.
  • the influence of the thermal expansion of the diffusion plate 15 can be avoided and the influence of the thermal expansion of the liquid crystal panel 10 can be taken into account, so the position change on one side is 1.3 mm. Therefore, the non-display area 55 of about 3 mm may be provided at the joint of the liquid crystal panel 10 units. As a result, the multi-display system 100 suitable for narrowing the frame can be realized.
  • FIG. 6 is a top view schematically showing the configuration of the liquid crystal panel 10 and the first support portion (for example, bezel) 31.
  • FIG. 7 is a cross-sectional view taken along line VII in FIG.
  • FIG. 8 is an exploded perspective view of the first support portion 31.
  • FIG. 9 is a perspective view of the second support portion (for example, chassis) 32.
  • a first support portion (bezel) 31 is disposed on the outer edge portion of one liquid crystal panel 10 in the multi-display system 100. As shown in FIG. 7, the liquid crystal panel 10 and the optical member 15 are held by the first support portion 31 and the second support portion (chassis) 32. The 1st support part 31 and the 2nd support part 32 are mutually fixed by the fastening member (screw or screw) 37 shown in FIG.
  • the liquid crystal panel 10 is connected to circuit boards 42a and 42b via a cable (for example, FPC) 40.
  • the circuit board 42a is a source board
  • the circuit board 42b is a control board.
  • a gate substrate can be provided as the circuit substrate.
  • the light source 20 is accommodated in the backlight chassis 25, and the second support portion 32 can be placed on the peripheral edge portion 26 of the backlight chassis 25.
  • the first support portion (bezel) 31 shown in FIG. 8 is configured by connecting metal members 31a having four independent sides. Each metal member 31a is fixed by passing a fastening member (screw) through the screw holes 38a, 38b, thereby constructing the first support portion 31.
  • the second support portion 32 shown in FIG. 9 is an integrally molded plastic chassis. The second support portion 32 is formed with an opening portion 32 a for transmitting light from the light source 20. Note that the structures shown in FIGS. 6 to 9 are examples, and the multi-display system 100 of the present embodiment may be constructed by other structures.
  • FIGS. 10A and 10B are cross-sectional views of the liquid crystal panel 10 and the sheet-like optical member 15 in the multi-display system 100 of the present embodiment.
  • the liquid crystal panel 10 is composed of a pair of translucent substrates 11 and 12.
  • the front substrate 11 is a color filter substrate (CF substrate)
  • the back substrate 12 is an array substrate (TFT substrate).
  • Polarizing plates 13 are attached to the outer surfaces of both the substrates 11 and 12, respectively.
  • An optical member (for example, a polarizing plate) 15 is closely attached to the polarizing plate 13 located below.
  • the light source 20 that irradiates the liquid crystal panel 10 is housed in the backlight chassis 25.
  • the light source 20 is, for example, an LED element.
  • the backlight chassis 25 can accommodate a substrate on which LED elements are arranged.
  • support pins 60 are provided at predetermined intervals in order to prevent the sheet-like optical member 15 from bending downward.
  • the support pin 60 can secure an appropriate distance between the optical member 15 and the light source 20, and can suppress excessive deflection due to vibration during transportation.
  • the liquid crystal panel 110 and the optical member 115 are separated from each other, so that the tip of the support pin 60 is in contact with the optical member 115 and the liquid crystal panel 110 is shocked. Did not give.
  • the liquid crystal panel 110 and the optical member 115 are separated from each other, even if an impact at the tip of the support pin 60 is applied to the optical member 115, the impact can be avoided by bending the optical member 115 upward. it can.
  • the optical member 15 when the liquid crystal panel 10 and the optical member 15 are bent downward, the optical member 15 is in close contact with the liquid crystal panel 10, so that support is provided.
  • the tip of the pin 60 comes into contact with the optical member 15, there is a possibility of giving an impact to the liquid crystal panel 10 together with the optical member 15.
  • the optical member 15 may be chipped or holed, and the surface of the liquid crystal panel 10 may be scratched.
  • the support pin 60 is made of at least the tip from a material having elasticity.
  • FIGS. 11A and 11B an impact absorbing member (61, 62) can be provided at the tip of the support pin 60.
  • FIG. 11A is a schematic cross-sectional view of the tip of the support pin 60
  • FIG. 11B is a schematic top view of the support pin 60 shown in FIG. 11A.
  • a shock absorbing buffer member 61 is connected to the tip of the support pin 60, and a contact member 62 is provided at the tip of the buffer member 61.
  • the contact member 62 has an annular structure, but other configurations (for example, a disk shape, a polygonal ring shape, etc.) may be adopted.
  • the shock absorbing member 61 is not limited to the one shown in FIG. 11A as long as it can absorb the impact caused by the tip of the support pin 60, but may have another configuration (for example, a spring-like structure). I do not care.
  • FIG. 12A is a cross-sectional view showing a modified example of the liquid crystal panel 10 and the sheet-like optical member 15 of the present embodiment.
  • FIG. 12B is a cross-sectional view (or an enlarged cross-sectional view) of the optical member 15 shown in FIG.
  • the illustrated optical member 15 is a sheet-like member containing bubbles 17, and is configured so that the elasticity is improved by the bubbles 17 included in the optical member 15.
  • the optical member 15 in this example is a diffusing plate having scattering properties due to the bubbles 17.
  • the bubble-containing optical member 15 is a member in which bubbles 17 are present inside a sheet-like member mainly composed of polycarbonate.
  • FIG. 13 is a cross-sectional view showing an example of the optical member 15 in the embodiment of the present invention.
  • the optical member 15 shown in FIG. 13 includes a diffusion layer (for example, an acrylic foam layer, film thickness of 200 ⁇ m) 18 having bubbles 17 and a transparent resin film (for example, a transparent polystyrene layer, film thickness of 700 ⁇ m) 16a.
  • a diffusion layer for example, an acrylic foam layer, film thickness of 200 ⁇ m
  • a transparent resin film for example, a transparent polystyrene layer, film thickness of 700 ⁇ m
  • a layered adhesive substance for example, acrylic adhesive layer, film thickness 50 ⁇ m
  • the optical member 15 including 18 is bonded to the liquid crystal panel 10.
  • a layered adhesive substance for example, acrylic adhesive layer, film thickness 50 ⁇ m
  • a transparent resin layer for example, a transparent polystyrene layer
  • a plurality of concave or convex structures 16b are formed on the lower surface of the transparent resin layer 16a.
  • a quadrangular pyramidal protrusion-shaped structure 16b is formed by transfer during production. The structure 16b can improve the diffusibility or scattering of light passing through the optical member 15.
  • an optical member 15 may be configured.
  • the optical member 15 shown in FIG. 14 includes a diffusion layer (for example, a polyester foam layer) 18 having bubbles 17 and a bead layer 19 made of beads 19a.
  • An adhesive layer (for example, an acrylic adhesive material layer) 14 is formed on the upper surface of the diffusion layer (foamed layer) 18 by application.
  • the optical member 15 including the diffusion layer 18 is bonded to the liquid crystal panel 10 via the adhesive layer 14.
  • a bead layer 19 is formed on the lower surface of the diffusion layer (foaming layer) 18 by applying beads 19a.
  • the bead layer 19 can improve the diffusibility or scattering of light passing through the optical member 15.
  • the liquid crystal panel 10 and the optical member 15 are sandwiched between the first support portion 31 and the second support portion 32.
  • the optical member 15 bonded to the liquid crystal panel 10 can be held together with the liquid crystal panel 10 when the liquid crystal panel 10 is sandwiched and fixed.
  • the outer shape of the optical member 15 is formed to be smaller than the outer shape of the liquid crystal panel 10.
  • positioned is provided in all four sides in the rectangular shape of the liquid crystal panel 10.
  • the holding member 30 (31, 32) pinches
  • the first support portion 31 presses the polarizing plate 13 of the liquid crystal panel 10
  • An optical member 15 is bonded and fixed to the glass substrate 12 via an adhesive layer 14. According to this configuration, since the holding member 30 (31, 32) is configured to selectively sandwich the liquid crystal panel 10 without sandwiching the optical member 15, a thinner multi-display system 100 can be constructed.
  • a polarizing plate is handled as a component of a liquid crystal panel.
  • the polarizing plate and the optical film are integrated into a liquid crystal.
  • a method of attaching to a panel is also possible. In this configuration, it is possible to make the base film on the incident side thinner or to eliminate the base film as compared with a polarizing plate used as a component in a normal liquid crystal panel.
  • a multi-display system with a narrow frame can be provided.

Abstract

A multi-display system suitable for a narrow frame is provided. The multi-display system (100), which displays images by means of a plurality of liquid crystal panels (10), is provided with a plurality of liquid crystal panels (10), and light sources (20) that radiate light on the liquid crystal panels (10). The light sources (20) are housed in backlight chassis (25). Holding members (30 (31, 32)), which hold the liquid crystal panels (10), are disposed in a non-display area (55) positioned between the plurality of liquid crystal panels, and optical members (15) are bonded to the liquid crystal panels (10) on the side of the light sources (20).

Description

マルチディスプレイシステムMulti display system
 本発明は、マルチディスプレイシステムに関する。特に、大画面に対応し、狭額縁化を実現できるマルチディスプレイシステム(マルチディスプレイ用液晶表示装置)に関する。 The present invention relates to a multi-display system. In particular, the present invention relates to a multi-display system (a liquid crystal display device for multi-display) capable of realizing a narrow frame corresponding to a large screen.
 なお、本出願は2010年11月26日に出願された日本国特許出願2010-263183号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 Note that this application claims priority based on Japanese Patent Application No. 2010-263183 filed on November 26, 2010, the entire contents of which are incorporated herein by reference. .
 複数の表示装置の画面を近接配置して、これらの画面によって1つの大きな画面(マルチディスプレイ画面)を形成するマルチディスプレイシステムが提案されている(例えば、特許文献1)。そして、このマルチディスプレイシステムを構成する表示装置として、液晶表示装置が用いられることがある。 There has been proposed a multi-display system in which screens of a plurality of display devices are arranged close to each other and one large screen (multi-display screen) is formed by these screens (for example, Patent Document 1). A liquid crystal display device may be used as a display device constituting the multi-display system.
 図16(a)及び(b)は、マルチディスプレイシステム2000を説明するための図である。図16(a)は、1つの液晶表示装置1100を表している。図16(a)に示した液晶表示装置1100は、画像150aを表示する表示部110aと、表示部110aの外縁に位置する額縁部120aとを含んでいる。そして、図16(b)は、複数の表示部110bによって1つの画像150bを表すマルチディスプレイシステム2000を表している。 FIGS. 16A and 16B are diagrams for explaining the multi-display system 2000. FIG. FIG. 16A shows one liquid crystal display device 1100. The liquid crystal display device 1100 illustrated in FIG. 16A includes a display unit 110a that displays an image 150a and a frame unit 120a that is positioned on the outer edge of the display unit 110a. FIG. 16B shows a multi-display system 2000 in which one image 150b is displayed by a plurality of display units 110b.
 図16(b)に示したマルチディスプレイシステム2000では、4つの表示部110bを縦横2つずつ配置して、縦幅及び横幅ともに2倍のマルチディスプレイ画面で画像150bを表示することができる。マルチディスプレイシステム2000に含まれる各表示部110bの外縁には額縁部120bが設けられている。マルチディスプレイシステム2000における額縁部120bは、マルチディスプレイシステム画面で表示される画像150bの妨げになるので、できるだけ狭い方が好ましい。 In the multi-display system 2000 shown in FIG. 16B, the four display units 110b can be arranged two by two in the vertical and horizontal directions, and the image 150b can be displayed on a multi-display screen that has double the vertical and horizontal widths. A frame portion 120 b is provided on the outer edge of each display unit 110 b included in the multi-display system 2000. Since the frame portion 120b in the multi-display system 2000 hinders the image 150b displayed on the multi-display system screen, the frame portion 120b is preferably as narrow as possible.
特開2009-216809号公報JP 2009-216809 A
 上述したように、複数の液晶表示装置を近接配置し、それらを連動して表示するマルチディスプレイシステム2000では、額縁部は狭ければ狭い方が好ましい。しかしながら、個々の表示部の境目にある額縁部の領域においては、光学シート・拡散板を保持する保持機構が設けられており、その保持機構の幅を狭くし過ぎると、光学シート・拡散板を保持することができない場合がでてくる。すなわち、高温時には光学シート・拡散板の熱膨張によって、保持機構の部材を圧迫し破損させたりする可能性がある。また、低温時には光学シート・拡散板の熱収縮によって、光学シート・拡散板が保持機構から脱落してしまう可能性がある。 As described above, in the multi-display system 2000 in which a plurality of liquid crystal display devices are arranged close to each other and displayed in conjunction with each other, it is preferable that the frame portion be narrow. However, a holding mechanism for holding the optical sheet / diffusion plate is provided in the frame area at the boundary between the individual display units. If the holding mechanism is too narrow, the optical sheet / diffusion plate is There are cases where it cannot be held. That is, there is a possibility that the member of the holding mechanism is pressed and damaged by the thermal expansion of the optical sheet / diffusion plate at a high temperature. Further, at a low temperature, the optical sheet / diffusion plate may fall off the holding mechanism due to thermal contraction of the optical sheet / diffusion plate.
 それゆえ、マルチディスプレイシステム2000の額縁部は狭ければ狭い方が好ましいが、実際には、額縁部を狭くするには制約がある。また、マルチディスプレイシステム2000の額縁部を狭くするために、光学シート・拡散板における熱膨張および熱収縮の変位量を制御することが考えられるが、今度は、マルチディスプレイシステム2000の使用可能な温度範囲が制約されてしまうという欠点が生じる。 Therefore, if the frame portion of the multi-display system 2000 is narrow, it is preferable that the frame portion is narrow. However, in practice, there are restrictions on narrowing the frame portion. In order to narrow the frame portion of the multi-display system 2000, it is conceivable to control the amount of thermal expansion and contraction in the optical sheet / diffusion plate. The disadvantage is that the range is constrained.
 本発明はかかる点に鑑みてなされたものであり、その主な目的は、マルチディスプレイ化した際に継目部分で各表示部を狭額縁化することにある。 The present invention has been made in view of such a point, and a main object thereof is to narrow each display unit at a joint portion when a multi-display is formed.
 本発明に係るマルチディスプレイシステムは、複数の液晶パネルによって画像を表示するマルチディスプレイシステムであり、複数の液晶パネルと、前記複数の液晶パネルのそれぞれに光を照射する光源とを備え、前記光源は、バックライトシャーシに収納されており、前記複数の液晶パネルの間に位置する非表示領域には、前記液晶パネルを保持する保持部材が設けられており、前記複数の液晶パネルのそれぞれの前記光源の側には、光学部材が接着して配置されている。 A multi-display system according to the present invention is a multi-display system that displays an image by a plurality of liquid crystal panels, and includes a plurality of liquid crystal panels and a light source that irradiates light to each of the plurality of liquid crystal panels. And a holding member for holding the liquid crystal panel is provided in a non-display area located between the plurality of liquid crystal panels. The light source of each of the plurality of liquid crystal panels On this side, an optical member is adhered and disposed.
 ある好適な実施形態において、前記保持部材は、前記液晶パネルおよび前記光学部材を挟むことによって、前記液晶パネルおよび前記光学部材を保持している。 In a preferred embodiment, the holding member holds the liquid crystal panel and the optical member by sandwiching the liquid crystal panel and the optical member.
 ある好適な実施形態において、前記保持部材は、前記液晶パネルの表面を支持する第1支持部と、前記液晶パネルの裏面に配置された前記光学部材を支持する第2支持部とを含んでおり、前記第1支持部および前記第2支持部が、前記液晶パネルおよび前記光学部材を挟んでいる。 In a preferred embodiment, the holding member includes a first support part that supports the surface of the liquid crystal panel, and a second support part that supports the optical member disposed on the back surface of the liquid crystal panel. The first support part and the second support part sandwich the liquid crystal panel and the optical member.
 ある好適な実施形態において、前記液晶パネルは、矩形形状を有しており、前記光学部材は、前記液晶パネルよりも小さく成形されており、前記液晶パネルの矩形形状における全ての4辺に、前記光学部材が配置されていない領域が設けられ、しかも、前記光学部材が配置されていない領域において、前記保持部材が前記液晶パネルを挟むことによって、前記液晶パネルおよび前記光学部材を保持している。 In a preferred embodiment, the liquid crystal panel has a rectangular shape, and the optical member is formed to be smaller than the liquid crystal panel, and the liquid crystal panel is formed on all four sides in the rectangular shape of the liquid crystal panel. An area where the optical member is not provided is provided, and the liquid crystal panel and the optical member are held by the holding member sandwiching the liquid crystal panel in the area where the optical member is not provided.
 ある好適な実施形態において、前記保持部材は、前記液晶パネルの表面を支持する第1支持部と、前記液晶パネルの裏面に配置された前記光学部材を支持する第2支持部とを含んでおり、前記第1支持部および前記第2支持部が、前記液晶パネルを挟んでいる。 In a preferred embodiment, the holding member includes a first support part that supports the surface of the liquid crystal panel, and a second support part that supports the optical member disposed on the back surface of the liquid crystal panel. The first support part and the second support part sandwich the liquid crystal panel.
 ある好適な実施形態において、前記第2支持部は、前記バックライトシャーシの周縁部の上に配置されている。 In a preferred embodiment, the second support portion is disposed on a peripheral portion of the backlight chassis.
 ある好適な実施形態において、前記液晶パネルと前記光学部材とは、層状の粘着物質を介して接着されている。 In a preferred embodiment, the liquid crystal panel and the optical member are bonded via a layered adhesive substance.
 ある好適な実施形態において、前記光学部材は、少なくとも拡散材料を含んでいる。 In a preferred embodiment, the optical member includes at least a diffusion material.
 ある好適な実施形態において、前記拡散材料は、樹脂の媒質中に分散されており、前記拡散材料は、前記媒質の屈折率よりも高い屈折率を有する粒子である。 In a preferred embodiment, the diffusing material is dispersed in a resin medium, and the diffusing material is a particle having a refractive index higher than that of the medium.
 ある好適な実施形態において、前記拡散材料は、前記光学材料のパネルと密着する面に対向する側の面に塗布されている。 In a preferred embodiment, the diffusing material is applied to a surface on a side opposite to a surface that is in close contact with the panel of the optical material.
 ある好適な実施形態において、前記光学部材は、前記拡散材料を樹脂の媒質中に分散されてなる拡散層と、透明樹脂フィルムとを備え、前記拡散層の一方の面は、前記透明樹脂フィルムの一方の面で接着またはラミネートしている。 In a preferred embodiment, the optical member includes a diffusion layer in which the diffusion material is dispersed in a resin medium, and a transparent resin film, and one surface of the diffusion layer is formed of the transparent resin film. Bonded or laminated on one side.
 ある好適な実施形態において、前記透明樹脂フィルムは、前記拡散層と接する面と対向する側の面に、凹状または凸状の構造体を複数備える。 In a preferred embodiment, the transparent resin film includes a plurality of concave or convex structures on the surface facing the surface in contact with the diffusion layer.
 ある好適な実施形態において、前記光源は、LED素子を含むバックライト光源である。 In a preferred embodiment, the light source is a backlight light source including an LED element.
 ある好適な実施形態において、前記非表示領域の幅は、10mm以下である。 In a preferred embodiment, the width of the non-display area is 10 mm or less.
 ある好適な実施形態において、前記バックライトシャーシには、前記光学部材を支える支持ピンが配置されており、前記支持ピンの先端には、衝撃吸収部材が設けられている。 In a preferred embodiment, a support pin that supports the optical member is disposed in the backlight chassis, and an impact absorbing member is provided at a tip of the support pin.
 ある好適な実施形態において、前記光学部材は、気泡を含有するシート状部材である。 In a preferred embodiment, the optical member is a sheet-like member containing bubbles.
 ある好適な実施形態において、前記光学部材は、前記層状の粘着物質を介して前記液晶パネルに接着されており、前記層状の粘着物質には、気泡が含有されている。 In a preferred embodiment, the optical member is bonded to the liquid crystal panel via the layered adhesive substance, and the layered adhesive substance contains bubbles.
 本発明によれば、複数の液晶パネルの間に位置する非表示領域には保持部材が設けられ、複数の液晶パネルのそれぞれの光源の側には光学部材が接着して配置されている。光学部材は液晶パネルに密着して配置されているので、液晶パネルによって光学部材を支持することができる。したがって、光学部材(例えば、拡散板)が熱膨張・収縮した場合でも、保持部材を変形させたり、光学部材が外れたりすることを抑制することができ、その結果、狭額縁化に適したマルチディスプレイシステムを実現することができる。 According to the present invention, the holding member is provided in the non-display area located between the plurality of liquid crystal panels, and the optical member is disposed on the light source side of each of the plurality of liquid crystal panels. Since the optical member is disposed in close contact with the liquid crystal panel, the optical member can be supported by the liquid crystal panel. Therefore, even when the optical member (for example, the diffusion plate) is thermally expanded / contracted, it is possible to prevent the holding member from being deformed or the optical member from coming off, and as a result, a multi-frame suitable for narrowing the frame. A display system can be realized.
本発明の実施形態に係るマルチディスプレイシステム100の構成を模式的に示す斜視図である。1 is a perspective view schematically showing a configuration of a multi-display system 100 according to an embodiment of the present invention. 非表示領域55を含む領域50の拡大断面図である。4 is an enlarged cross-sectional view of a region 50 including a non-display region 55. FIG. (a)は、比較例1000の構造を示す断面図である。(b)は、本発明の実施形態のマルチディスプレイシステム100の構造を示す断面図である。(A) is sectional drawing which shows the structure of the comparative example 1000. FIG. (B) is sectional drawing which shows the structure of the multi-display system 100 of embodiment of this invention. (a)から(c)は、比較例1000における光学部材115の熱収縮・膨張について説明する断面図である。FIGS. 9A to 9C are cross-sectional views illustrating thermal contraction / expansion of the optical member 115 in the comparative example 1000. FIG. (a)から(c)は、本発明の実施形態の構成における光学部材15の熱収縮・膨張について説明する断面図である。(A) to (c) are cross-sectional views illustrating thermal contraction / expansion of the optical member 15 in the configuration of the embodiment of the present invention. マルチディスプレイシステム100における液晶パネル10の上面図である。2 is a top view of the liquid crystal panel 10 in the multi-display system 100. FIG. 図6における線VII-VIIに沿ったマルチディスプレイシステム100の断面図である。FIG. 7 is a cross-sectional view of the multi-display system 100 taken along line VII-VII in FIG. 第1支持部31の分解斜視図である。3 is an exploded perspective view of a first support part 31. FIG. 第2支持部32の斜視図である。4 is a perspective view of a second support part 32. FIG. (a)及び(b)は、本発明の実施形態のマルチディスプレイシステム100における液晶パネル10および光学部材15の断面図である。(A) And (b) is sectional drawing of the liquid crystal panel 10 and the optical member 15 in the multi-display system 100 of embodiment of this invention. (a)は、本発明の実施形態に係る支持ピン60の構成を示す断面図である。(b)は、支持ピン60の接触部材62を示す上面図である。(A) is sectional drawing which shows the structure of the support pin 60 which concerns on embodiment of this invention. FIG. 6B is a top view showing the contact member 62 of the support pin 60. (a)は、本発明の実施形態の液晶パネル10およびシート状の光学部材15の改変例を示す断面図である。(b)は、光学部材15の底面図である。(A) is sectional drawing which shows the modification of the liquid crystal panel 10 and the sheet-like optical member 15 of embodiment of this invention. FIG. 4B is a bottom view of the optical member 15. 本発明の実施形態における光学部材15の改変例を示す断面図である。It is sectional drawing which shows the modification of the optical member 15 in embodiment of this invention. 本発明の実施形態における光学部材15の改変例を示す断面図である。It is sectional drawing which shows the modification of the optical member 15 in embodiment of this invention. 本発明の実施形態におけるマルチディスプレイシステム100の改変例を示す断面図である。It is sectional drawing which shows the modification of the multi display system 100 in embodiment of this invention. (a)及び(b)は、それぞれ、1つの液晶表示装置1100、および、マルチディスプレイシステム2000を説明するための図である。(A) And (b) is a figure for demonstrating the one liquid crystal display device 1100 and the multi-display system 2000, respectively.
 以下、図面を参照しながら、本発明の実施形態を説明する。以下の図面においては、説明の簡潔化のために、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of brevity. In addition, this invention is not limited to the following embodiment.
 図1は、本発明の実施形態に係るマルチディスプレイシステム100の構成を模式的に示す斜視図である。本実施形態のマルチディスプレイシステム100は、複数の液晶パネル10によって画像を表示する画像表示装置である。隣接する液晶パネル10の間には、非表示領域が存在している。 FIG. 1 is a perspective view schematically showing a configuration of a multi-display system 100 according to an embodiment of the present invention. The multi-display system 100 of the present embodiment is an image display device that displays an image using a plurality of liquid crystal panels 10. There is a non-display area between the adjacent liquid crystal panels 10.
 図2は、非表示領域55を含む領域50の拡大断面図である。図2に示すように、本実施形態のマルチディスプレイシステム100には、複数の液晶パネル10と、複数の液晶パネル10のそれぞれに光を照射する光源20とが設けられている。光源20は、バックライトシャーシ25に収納されている。複数の液晶パネル10の間に位置する非表示領域55には、液晶パネル10を保持する保持部材30が設けられている。 FIG. 2 is an enlarged cross-sectional view of the region 50 including the non-display region 55. As shown in FIG. 2, the multi-display system 100 according to the present embodiment includes a plurality of liquid crystal panels 10 and a light source 20 that irradiates light to each of the plurality of liquid crystal panels 10. The light source 20 is accommodated in the backlight chassis 25. A holding member 30 that holds the liquid crystal panel 10 is provided in the non-display area 55 located between the plurality of liquid crystal panels 10.
 本実施形態の各液晶パネル10の光源20の側(裏面10b側)には、光学部材(例えば、拡散板)15が接着して配置されている。そして、本実施形態の構成では、保持部材30は、液晶パネル10および光学部材15を挟むことによって、液晶パネル10および光学部材15を保持している。 An optical member (for example, a diffusing plate) 15 is adhered and disposed on the light source 20 side (back surface 10b side) of each liquid crystal panel 10 of the present embodiment. In the configuration of the present embodiment, the holding member 30 holds the liquid crystal panel 10 and the optical member 15 by sandwiching the liquid crystal panel 10 and the optical member 15.
 本実施形態の保持部材30は、各液晶パネル10の外縁部を保持する部材である。保持部材30は、液晶パネル10の表面10aを支持する第1支持部(例えば、金属製のベゼル)31と、液晶パネル10の裏面10bに配置された光学部材15を支持する第2支持部(例えば、プラスチック製シャーシ)32とを含んでいる。第1支持部31および第2支持部32が、液晶パネル10および光学部材15を挟んでいる。液晶パネル10の裏面10bに密着された光学部材15は、シート状の光学部材であり、本実施形態の構成では、少なくとも拡散材料を含んだ層を備えている。拡散材料は、例えば、光学部材15を構成する樹脂材料の内部に分散した高屈折率の粒子でもよい。あるいは、拡散材料は、光学材料15のうち液晶パネル10と密着する面に対向する側の面に塗布した拡散層であってもよい。なお、光学部材15は、拡散板と、光学シート(例えば、レンズシート、プリズムシート)との組み合わせであってもよい。 The holding member 30 of the present embodiment is a member that holds the outer edge portion of each liquid crystal panel 10. The holding member 30 includes a first support portion (for example, a metal bezel) 31 that supports the front surface 10 a of the liquid crystal panel 10 and a second support portion that supports the optical member 15 disposed on the back surface 10 b of the liquid crystal panel 10. For example, a plastic chassis) 32 is included. The first support part 31 and the second support part 32 sandwich the liquid crystal panel 10 and the optical member 15. The optical member 15 in close contact with the back surface 10b of the liquid crystal panel 10 is a sheet-like optical member, and in the configuration of the present embodiment, includes at least a layer containing a diffusing material. The diffusion material may be, for example, high refractive index particles dispersed inside the resin material constituting the optical member 15. Alternatively, the diffusion material may be a diffusion layer applied to the surface of the optical material 15 that faces the surface that is in close contact with the liquid crystal panel 10. The optical member 15 may be a combination of a diffusion plate and an optical sheet (for example, a lens sheet or a prism sheet).
 また、本実施形態における拡散板は、典型的な液晶表示装置で用いられているもの(1~数mmの樹脂板に拡散材を分散したもの)だけではなく、厚さ50~500μmの樹脂フィルムの表面にビーズ状粒子を塗布したもの(典型的には「拡散シート」と呼ばれるもの)も含む。さらには、拡散板と光学シートとを組み合わせる際には、両者をラミネート加工で一体化したり、粘着物質で接着することで、個々の部材が摩擦したり部材間にゴミが侵入することで傷付くことを防止できる。 In addition, the diffusion plate in the present embodiment is not only the one used in a typical liquid crystal display device (a one in which a diffusion material is dispersed in a resin plate of 1 to several mm), but also a resin film having a thickness of 50 to 500 μm. In which bead-like particles are coated on the surface (typically referred to as a “diffusion sheet”). Furthermore, when the diffusion plate and the optical sheet are combined, the two members are integrated by laminating or bonded with an adhesive substance, so that individual members are rubbed or scratched by dust entering between the members. Can be prevented.
 マルチディスプレイシステム100を構成する液晶パネル10は、例えば、20インチから110インチ(典型的には、32インチから60インチ)のサイズを有している。図1に示した構成では、マルチディスプレイシステム100は、縦横が4×3の12枚の液晶パネル10を備えている。ただし、液晶パネル10は、この枚数または配置例に限定されない。例えば、液晶パネル10は、横置き配置(長辺が水平方向)で2枚でも、縦置き配置(長辺が鉛直方向)で2枚でも構わない。あるいは、液晶パネル10は、例えば、2×2の4枚、3×3の9枚、4×4の16枚、5×5の25枚で配列させることができる。また、液晶パネル10を縦置きにして、1×3の3枚、1×9の9枚、2×6の12枚、2×9の18枚で配列させてもよい。 The liquid crystal panel 10 constituting the multi-display system 100 has a size of, for example, 20 inches to 110 inches (typically 32 inches to 60 inches). In the configuration shown in FIG. 1, the multi-display system 100 includes twelve liquid crystal panels 10 that are 4 × 3 in length and width. However, the liquid crystal panel 10 is not limited to this number or arrangement example. For example, two liquid crystal panels 10 may be arranged horizontally (long sides are in the horizontal direction) or two vertically arranged (long sides are in the vertical direction). Alternatively, the liquid crystal panels 10 can be arranged in, for example, 4 × 2 × 2, 9 × 3 × 3, 16 × 4 × 4, and 25 × 5 × 5. Alternatively, the liquid crystal panels 10 may be arranged vertically and arranged in 3 × 1 × 3, 1 × 9 × 9, 2 × 6 × 12, and 2 × 9 × 18.
 本実施形態の液晶パネル10は、概して、全体として矩形の形状を有しており、一対の透光性基板(ガラス基板)から構成されている。一対の基板は、互いに対向して配置され、その間には液晶層(不図示)が設けられている。液晶層は、両基板の間の電界印加に伴って光学特定が変化する液晶材料からなる。なお、両基板の外縁部には、シール剤(不図示)が設けられて、液晶層を封止している。また、両基板の外面には、それぞれ、偏光板が貼り付けられている。本実施形態では、一対の基板のうち、裏側がアレイ基板(TFT基板)であり、一方、表側がカラーフィルタ基板(CF基板)である。 The liquid crystal panel 10 of this embodiment generally has a rectangular shape as a whole, and is composed of a pair of translucent substrates (glass substrates). The pair of substrates are arranged to face each other, and a liquid crystal layer (not shown) is provided between them. The liquid crystal layer is made of a liquid crystal material whose optical characteristics change with application of an electric field between the two substrates. A sealing agent (not shown) is provided on the outer edge portions of both substrates to seal the liquid crystal layer. In addition, polarizing plates are attached to the outer surfaces of both substrates. In the present embodiment, of the pair of substrates, the back side is an array substrate (TFT substrate), and the front side is a color filter substrate (CF substrate).
 本実施形態の光源(バックライト)20は、LED素子を含むバックライト光源である。本実施形態の光源20は、直下型のLEDバックライトである。また、光源20として、導光板を有するエッジライト型のLEDバックライトを用いることもできる。あるいは、光源20として、冷陰極管(CCFL)を含むバックライト光源(直下型またはエッジライト型)を用いることも可能である。なお、光源20が直下型のLEDバックライトの場合、CCFL方式のバックライトと比較して輝度均一性を向上させることができるという利点がある。 The light source (backlight) 20 of the present embodiment is a backlight light source including an LED element. The light source 20 of this embodiment is a direct type LED backlight. As the light source 20, an edge light type LED backlight having a light guide plate can be used. Alternatively, a backlight light source (direct type or edge light type) including a cold cathode tube (CCFL) can be used as the light source 20. In addition, when the light source 20 is a direct type LED backlight, there exists an advantage that a brightness | luminance uniformity can be improved compared with the backlight of a CCFL system.
 本実施形態のマルチディスプレイシステム100は、光源20を収納するバックライトシャーシ25を備えている。本実施形態のバックライトシャーシ25は、金属材料(例えば、アルミニウム、鉄など)から構成されており、一枚の液晶パネル10の裏面を覆っている。バックライトシャーシ25の裏面には、隣接するバックライトシャーシ25を連結する連結部材22が設けられている。連結部材22は、例えば、金属製の板状部材(補強板)であり、締結部材(例えば、ネジ、ボルト)によってバックライトシャーシ25に接続され(矢印24参照)、隣接するバックライトシャーシ25を互いに固定する。 The multi-display system 100 of this embodiment includes a backlight chassis 25 that houses the light source 20. The backlight chassis 25 of the present embodiment is made of a metal material (for example, aluminum, iron, etc.) and covers the back surface of the single liquid crystal panel 10. A connecting member 22 that connects the adjacent backlight chassis 25 is provided on the back surface of the backlight chassis 25. The connecting member 22 is, for example, a metal plate-like member (reinforcing plate), and is connected to the backlight chassis 25 by fastening members (for example, screws and bolts) (see arrow 24). Secure to each other.
 本実施形態の非表示領域55には、遮蔽板35が配置されている。具体的には、保持部材30における第1支持部31の上面に、遮蔽板35が配置されている。遮蔽板35は、例えば、樹脂材料または金属材料から構成されており、図1に示すように、液晶パネル10の境界部に沿って延びるように配置されている。本実施形態の非表示領域55の長さ(または、遮蔽板35の幅)は、例えば10mm以下であり、典型的には、7.1mmまたは6.5mm、あるいはそれ未満(例えば、3mm又はそれ以下)である。すなわち、本実施形態のマルチディスプレイシステム100は、10mm以下のシステム・フレーム幅(非表示領域55の幅寸法)を有しており、言い換えると、液晶パネル10のそれぞれは、狭額縁の構成を有している。本実施形態のマルチディスプレイシステム100では、非表示領域55の幅寸法が小さいので、マルチディスプレイ構成時におけるつなぎ目が少なくなり、より表現力のある大画面ディスプレイを構成することが可能である。なお、遮蔽板35を配置せずに、第1支持部31の上面が、非表示領域55の表面になるようにしても構わない。 The shielding plate 35 is disposed in the non-display area 55 of the present embodiment. Specifically, the shielding plate 35 is disposed on the upper surface of the first support portion 31 in the holding member 30. The shielding plate 35 is made of, for example, a resin material or a metal material, and is disposed so as to extend along the boundary portion of the liquid crystal panel 10 as shown in FIG. The length of the non-display area 55 (or the width of the shielding plate 35) of the present embodiment is, for example, 10 mm or less, typically 7.1 mm or 6.5 mm, or less (for example, 3 mm or less). The following). That is, the multi-display system 100 of the present embodiment has a system frame width of 10 mm or less (the width dimension of the non-display area 55). In other words, each of the liquid crystal panels 10 has a narrow frame configuration. is doing. In the multi-display system 100 of the present embodiment, since the width dimension of the non-display area 55 is small, the number of joints in the multi-display configuration is reduced, and a large-screen display with more expressive power can be configured. Note that the upper surface of the first support portion 31 may be the surface of the non-display area 55 without arranging the shielding plate 35.
 図示した保持部材30は、次のような構造を有している。第1支持部31および第2支持部32ともに、液晶パネル10と平行に延びる水平部位と、その水平部位に対して垂直に延びる垂直部位とを含んでいる。第1支持部31の水平部位の表面に、遮蔽板35が載置されている。また、第1支持部31の水平部位と、第2支持部32の水平部位とが、液晶パネル10及び光学部材(例えば拡散板)15を挟んでいる。より具体的には、第1支持部31の水平部位が液晶パネル10の上面を上から押さえ、一方、第2支持部32の水平部位が光学部材15の下面を下から押さえることによって、液晶パネル10及び光学部材15を保持している。 The illustrated holding member 30 has the following structure. Both the first support part 31 and the second support part 32 include a horizontal part extending in parallel with the liquid crystal panel 10 and a vertical part extending perpendicularly to the horizontal part. A shielding plate 35 is placed on the surface of the horizontal portion of the first support portion 31. Further, the horizontal portion of the first support portion 31 and the horizontal portion of the second support portion 32 sandwich the liquid crystal panel 10 and the optical member (for example, a diffusion plate) 15. More specifically, the horizontal portion of the first support portion 31 presses the upper surface of the liquid crystal panel 10 from above, while the horizontal portion of the second support portion 32 presses the lower surface of the optical member 15 from below. 10 and the optical member 15 are held.
 また、第2支持部32は、バックライトシャーシ25の一部(26)に載置されている。具体的には、バックライトシャーシ25の周縁部26には、保持部材30を載置する部位が設けられており、前記第2支持部32は、バックライトシャーシ25の周縁部26の上に配置されている。また、液晶パネル10からは、液晶パネル10を駆動するための配線40が延びている。 Further, the second support portion 32 is placed on a part (26) of the backlight chassis 25. Specifically, a portion on which the holding member 30 is placed is provided on the peripheral portion 26 of the backlight chassis 25, and the second support portion 32 is disposed on the peripheral portion 26 of the backlight chassis 25. Has been. A wiring 40 for driving the liquid crystal panel 10 extends from the liquid crystal panel 10.
 ここでは、液晶パネル10を構成するアレイ基板(TFT基板)上辺には、フレキシブルケーブル(FPC)40が取り付けてあり、FPC40の他端には各画素の透過率に応じた電圧を、画面走査のタイミングに同期させて供給するための回路基板(例えば、コントロール基板)42が配置されている。図示した例では、コントロール基板42は、第1支持部31および第2支持部32の間に配置されている。より具体的には、コントロール基板42は、第1支持部31の垂直部位と、第2支持部32の垂直部位との間に挟まれて配置されている。コントロール基板42は、画像信号を変換して各画素の透過率に応じた信号をコントロール基板に提供する画像制御部(不図示)に接続されることになる。この画像制御部は、各液晶パネル10に画像を表示させることが可能であるとともに、マルチディスプレイシステム100全体に画像を表示させることが可能である。 Here, a flexible cable (FPC) 40 is attached to the upper side of the array substrate (TFT substrate) constituting the liquid crystal panel 10, and a voltage corresponding to the transmittance of each pixel is applied to the other end of the FPC 40 for screen scanning. A circuit board (for example, a control board) 42 for supplying in synchronization with the timing is arranged. In the illustrated example, the control board 42 is disposed between the first support part 31 and the second support part 32. More specifically, the control board 42 is disposed between the vertical part of the first support part 31 and the vertical part of the second support part 32. The control board 42 is connected to an image control unit (not shown) that converts an image signal and provides a signal corresponding to the transmittance of each pixel to the control board. The image control unit can display an image on each liquid crystal panel 10 and can display an image on the entire multi-display system 100.
 図3(a)は、本実施形態のマルチディスプレイシステムの比較例1000となる構造を示している。また、図3(b)には、本実施形態のマルチディスプレイシステム100の構造を示している。図3(b)に示した構造は、図2に示した構造と同様のものである。図3(a)及び(b)とも、非表示領域155、55の周辺における断面構造を示している。 FIG. 3A shows a structure that is a comparative example 1000 of the multi-display system of the present embodiment. FIG. 3B shows the structure of the multi-display system 100 of this embodiment. The structure shown in FIG. 3B is the same as the structure shown in FIG. FIGS. 3A and 3B also show the cross-sectional structure around the non-display areas 155 and 55.
 図3(a)に示した比較例1000では、保持部材130の第1支持部131および第2支持部132が液晶パネル110を挟むことによって、液晶パネル110を保持している。そして、第2支持部132と、バックライトシャーシ125の周縁部126とで、光学部材(例えば拡散板)115を保持している。なお、液晶パネル110から延びたケーブル(FPC)140の回路基板(コントロール基板)142は、第1支持部131および第2支持部132の間に配置されている。また、第1支持部131の上面には、遮蔽板135が配置されている。 3A, the first support part 131 and the second support part 132 of the holding member 130 hold the liquid crystal panel 110 by sandwiching the liquid crystal panel 110. In the comparative example 1000 shown in FIG. An optical member (for example, a diffusion plate) 115 is held by the second support portion 132 and the peripheral edge portion 126 of the backlight chassis 125. The circuit board (control board) 142 of the cable (FPC) 140 extending from the liquid crystal panel 110 is disposed between the first support part 131 and the second support part 132. A shielding plate 135 is disposed on the upper surface of the first support part 131.
 図3(a)に示した比較例1000の構造では、光学部材(例えば、拡散板)115の支持または位置決めのために、光学部材115は、バックライトシャーシ125の周縁部126に載せる必要がある。比較例1000の動作時において、光学部材115は熱膨張・収縮するので、光学部材115を周縁部126の上に載せる部位は、比較的多くとる必要がある。特に、光学部材115が熱収縮して周縁部126の上から外れてしまうと、光学部材115が機能しなくなってしまうので、光学部材115が周縁部126の上に載る部位は余裕をみて多くとる必要がある。 In the structure of the comparative example 1000 illustrated in FIG. 3A, the optical member 115 needs to be placed on the peripheral edge 126 of the backlight chassis 125 in order to support or position the optical member (for example, the diffusion plate) 115. . During the operation of the comparative example 1000, the optical member 115 is thermally expanded / contracted, so that it is necessary to take a relatively large number of portions on which the optical member 115 is placed on the peripheral edge 126. In particular, if the optical member 115 is thermally contracted and is removed from the peripheral portion 126, the optical member 115 stops functioning. Therefore, the portion where the optical member 115 is placed on the peripheral portion 126 is taken with a margin. There is a need.
 一方、図3(b)に示した本実施形態の構造では、光学部材15が液晶パネル10に密着して配置されているので、光学部材15は、液晶パネル10に支持されていることになる。さらに説明すると、本実施形態の構成では、光学部材15は液晶パネル10に固着されているので、光学部材15の支持または位置決めを、第1支持部31および第2支持部32(または、周縁部26)によって行わなくてもよい。それゆえに、図3(a)に示した比較例1000の構造と比較して、光学部材15を周縁部26の上に載せる部位を小さくすることができる。 On the other hand, in the structure of the present embodiment shown in FIG. 3B, the optical member 15 is disposed in close contact with the liquid crystal panel 10, so that the optical member 15 is supported by the liquid crystal panel 10. . More specifically, in the configuration of the present embodiment, since the optical member 15 is fixed to the liquid crystal panel 10, the support or positioning of the optical member 15 is performed using the first support portion 31 and the second support portion 32 (or the peripheral portion). 26). Therefore, compared with the structure of the comparative example 1000 shown in FIG. 3A, the part where the optical member 15 is placed on the peripheral edge portion 26 can be made smaller.
 したがって、図3(b)に示した本実施形態の非表示領域55は、図3(a)に示した比較例1000における非表示領域155よりも小さくすることができる。すなわち、本実施形態の構成では、より狭額縁の構造を実現することができる。また、非表示領域55を小さくすることができることにより、図3(b)に示した本実施形態の表示領域52は、同様の寸法を有する場合の比較例1000の表示領域152よりも大きくすることができる。 Therefore, the non-display area 55 of the present embodiment shown in FIG. 3B can be made smaller than the non-display area 155 in the comparative example 1000 shown in FIG. That is, with the configuration of the present embodiment, a narrower frame structure can be realized. Further, since the non-display area 55 can be reduced, the display area 52 of the present embodiment shown in FIG. 3B is made larger than the display area 152 of the comparative example 1000 having the same dimensions. Can do.
 さらには、本実施形態の構造によれば、光学部材15は液晶パネル10に固着されて支持されているので、光学部材15の外形を液晶パネル10の外形よりも小さくすることを比較的容易に行うことができる。一方、比較例1000の構造によれば、光学部材115を周縁部126に載せる必要があるので、本実施形態の構造と比較して、光学部材115の外形を液晶パネル110の外形を基準にして小さくすることに制約がある。 Furthermore, according to the structure of the present embodiment, since the optical member 15 is fixedly supported by the liquid crystal panel 10, it is relatively easy to make the outer shape of the optical member 15 smaller than the outer shape of the liquid crystal panel 10. It can be carried out. On the other hand, according to the structure of the comparative example 1000, since the optical member 115 needs to be placed on the peripheral edge 126, the outer shape of the optical member 115 is based on the outer shape of the liquid crystal panel 110 as compared with the structure of the present embodiment. There are restrictions on making it smaller.
 また、本実施形態の構造では、光学部材15は液晶パネル10に固着されているので、液晶パネル10と光学部材15とが実質的に一体の構成になっている。したがって、仮に、光学部材15が第2支持部32から外れるおそれがあったとしても、液晶パネル10が、周縁部26、第1支持部31、第2支持部32などによって支持されている限り、光学部材15は、液晶パネル10に密着しているので、光学部材15が機能しなくなってしまうことを回避することができる。 In the structure of this embodiment, since the optical member 15 is fixed to the liquid crystal panel 10, the liquid crystal panel 10 and the optical member 15 are substantially integrated. Therefore, even if the optical member 15 may be detached from the second support portion 32, as long as the liquid crystal panel 10 is supported by the peripheral edge portion 26, the first support portion 31, the second support portion 32, and the like, Since the optical member 15 is in close contact with the liquid crystal panel 10, it can be avoided that the optical member 15 does not function.
 本実施形態における液晶パネル10に光学部材15を作製するには、次のようにすることができる。例えば、液晶パネル10の裏面に拡散材料(拡散要素)を付与した積層構造体を作製する場合、一対の透明基板の裏面に貼り付けられた偏光板に、拡散板15を接着剤(または粘着材)によって貼り付けることによって作製することができる。また、液晶パネル10と拡散板15との間に、接着シート(または固着シート)を介在させることによって、液晶パネル10と拡散板15とが一体化された積層構造体を作製することができる。なお、液晶パネル10と拡散板15との熱膨張係数が異なる場合には、接着シート(または、接着剤)がその両者の熱膨張係数の差を緩和できるような、中間的な熱膨張係数を有する材質から構成することが好ましい。なお、拡散板15に限らず、他のシート状の光学部材(例えば、レンズシート、プリズムシートのような光学シート)を液晶パネル10に密着させる場合も、実質的に同様の手法を用いることできる。 In order to produce the optical member 15 in the liquid crystal panel 10 in the present embodiment, the following can be performed. For example, when a laminated structure in which a diffusion material (diffusion element) is applied to the back surface of the liquid crystal panel 10 is manufactured, the diffusion plate 15 is bonded to the polarizing plate attached to the back surfaces of the pair of transparent substrates with an adhesive (or an adhesive). ). Further, by interposing an adhesive sheet (or a fixing sheet) between the liquid crystal panel 10 and the diffusion plate 15, a laminated structure in which the liquid crystal panel 10 and the diffusion plate 15 are integrated can be manufactured. When the thermal expansion coefficients of the liquid crystal panel 10 and the diffusion plate 15 are different, an intermediate thermal expansion coefficient is set so that the adhesive sheet (or adhesive) can relieve the difference between the thermal expansion coefficients of the two. It is preferable to comprise from the material which has. Note that not only the diffusion plate 15 but also other sheet-like optical members (for example, optical sheets such as lens sheets and prism sheets) are brought into close contact with the liquid crystal panel 10, a substantially similar method can be used. .
 次に、図4(a)から(c)を参照しながら、さらに、比較例1000における光学部材115(例えば、拡散板)の熱膨張・収縮の問題について説明する。 Next, the problem of thermal expansion / contraction of the optical member 115 (for example, a diffusion plate) in the comparative example 1000 will be further described with reference to FIGS. 4 (a) to 4 (c).
 図4(a)は、図3(a)に示した構造1000とほぼ同様の断面図である。ただし、図4(a)に示した非表示領域155aは、図3(b)に示した本実施形態の構成と同じ幅の非表示領域55にしてあり、すなわち、図3(a)に示した非表示領域155の幅よりも狭くしている。図4(b)は、光学部材115が熱収縮した様子を示す断面図である。一方、図4(c)は、光学部材115が熱膨張した様子を示す断面図である。 FIG. 4A is a cross-sectional view substantially similar to the structure 1000 shown in FIG. However, the non-display area 155a shown in FIG. 4A is a non-display area 55 having the same width as the configuration of the present embodiment shown in FIG. 3B, that is, as shown in FIG. The width of the non-display area 155 is narrower. FIG. 4B is a cross-sectional view showing a state where the optical member 115 is thermally contracted. On the other hand, FIG. 4C is a cross-sectional view showing a state where the optical member 115 is thermally expanded.
 図4(a)に示すように、非表示領域155aの幅を狭くすると、図3(b)に示した構造と同様に狭額縁化を実行することができるが、光学部材115が周縁部126の上に載る部位が狭くなってしまう。 As shown in FIG. 4A, when the width of the non-display area 155a is narrowed, the frame can be narrowed similarly to the structure shown in FIG. The part on the top becomes narrow.
 すると、図4(b)に示すように、低温動作によって光学部材115が熱収縮してしまう場合(矢印115a参照)、光学部材115が周縁部126から外れてしまう可能性が高くなる(矢印116参照)。マルチディスプレイシステム(100又は1000)は、電子広告・電子看板として、温度調整が行き届いた室内で画像を表示する他、外気と同様の条件の温度で画像を表示することも多い(例えば、空港のディスプレイ、屋外のディスプレイ)。ここで、光学部材115が熱収縮にて外れてしまうような温度では使用が不可となるか、非表示領域155aの幅を大きくする必要がある。 Then, as shown in FIG. 4B, when the optical member 115 is thermally contracted by the low temperature operation (see the arrow 115a), there is a high possibility that the optical member 115 is detached from the peripheral edge 126 (arrow 116). reference). The multi-display system (100 or 1000) displays an image as a digital advertisement / signboard in a room where the temperature is well controlled, and often displays an image at a temperature similar to that of the outside air (for example, in an airport) Display, outdoor display). Here, it is necessary to make the optical member 115 unusable at a temperature at which the optical member 115 is removed due to heat shrinkage or to increase the width of the non-display area 155a.
 一方、図4(c)に示すように、高温動作によって光学部材115が熱膨張してしまう場合(矢印115b参照)、光学部材115が第2支持部(保持部材)132を押し付けて、第2支持部132を変形させてしまう可能性が出てくる(矢印117参照)。光学部材115が第2支持部132を変形させてしまうと、構造上の問題が発生するおそれがあるので、光学部材115が熱膨張にて第2支持部132を変形させてしまうような温度では使用が不可となるか、非表示領域155aの幅を大きくする必要がある。 On the other hand, as shown in FIG. 4C, when the optical member 115 thermally expands due to the high temperature operation (see arrow 115b), the optical member 115 presses the second support portion (holding member) 132, and the second There is a possibility that the support part 132 is deformed (see arrow 117). If the optical member 115 deforms the second support part 132, a structural problem may occur. At a temperature at which the optical member 115 deforms the second support part 132 due to thermal expansion. It is necessary to make it unusable or to increase the width of the non-display area 155a.
 次に、図5(a)から(c)を参照しながら、さらに、本実施形態のマルチディスプレイシステム100における光学部材15(例えば、拡散板)の熱膨張・収縮の問題について説明する。 Next, the problem of thermal expansion / contraction of the optical member 15 (for example, a diffusion plate) in the multi-display system 100 of the present embodiment will be described with reference to FIGS.
 図5(a)は、図3(b)に示した構造100と同様の断面図である。図5(b)は、光学部材15が熱収縮した様子を示す断面図である。一方、図5(c)は、光学部材15が熱膨張した様子を示す断面図である。 FIG. 5A is a cross-sectional view similar to the structure 100 shown in FIG. FIG. 5B is a cross-sectional view showing a state where the optical member 15 is thermally contracted. On the other hand, FIG.5 (c) is sectional drawing which shows a mode that the optical member 15 expanded thermally.
 図5(b)に示すように、光学部材15は、周縁部26の表面によって支持されているのではなく、液晶パネル10に密着されて支持されている。したがって、低温動作によって光学部材15が熱収縮してしまう場合(矢印15a参照)、光学部材15が周縁部26から外れて落ちてしまうことを回避することができる。さらに、光学部材15が、第2支持部32および周縁部26から外れたとしても、液晶パネル10は第2支持部32の上で支持されるので、光学部材15は、液晶パネル10に密着されて支持されることになる。それゆえに、光学部材15の熱収縮による制約を緩和することができ、温度使用範囲を実質的に広げることができる。 As shown in FIG. 5B, the optical member 15 is not supported by the surface of the peripheral edge portion 26 but is supported in close contact with the liquid crystal panel 10. Therefore, when the optical member 15 is thermally contracted by the low temperature operation (see the arrow 15a), it is possible to avoid the optical member 15 being detached from the peripheral edge portion 26 and falling. Further, even if the optical member 15 is detached from the second support portion 32 and the peripheral edge portion 26, the liquid crystal panel 10 is supported on the second support portion 32, so that the optical member 15 is in close contact with the liquid crystal panel 10. Will be supported. Therefore, the restriction due to the thermal contraction of the optical member 15 can be relaxed, and the temperature use range can be substantially expanded.
 一方、図5(c)に示すように、高温動作によって光学部材15が熱膨張してしまう場合(矢印15b参照)でも、光学部材15が第2支持部(保持部材)32を押し付けることを回避することができる。すなわち、本実施形態の構造では、第2支持部32の上面が、光学部材15の底面を支えているので、光学部材15が膨張しても(矢印15b)、第2支持部32が変形してしまうことを避けることができる。さらに説明すると、光学部材15が膨張しても、光学部材15は、第1支持部31の水平部位と第2支持部32の水平部位との間を伸びるために、第2支持部32を変形させるようなことはない。したがって、光学部材15の熱膨張による制約を緩和することができ、温度使用範囲を実質的に広げることができる。 On the other hand, as shown in FIG. 5C, even when the optical member 15 is thermally expanded due to a high-temperature operation (see arrow 15b), the optical member 15 is prevented from pressing the second support portion (holding member) 32. can do. That is, in the structure of the present embodiment, since the upper surface of the second support portion 32 supports the bottom surface of the optical member 15, even if the optical member 15 expands (arrow 15b), the second support portion 32 is deformed. Can be avoided. More specifically, even if the optical member 15 expands, the optical member 15 deforms the second support portion 32 in order to extend between the horizontal portion of the first support portion 31 and the horizontal portion of the second support portion 32. There is nothing to do. Therefore, restrictions due to thermal expansion of the optical member 15 can be relaxed, and the temperature use range can be substantially expanded.
 本実施形態のマルチディスプレイシステム100では、複数の液晶パネル10の間に位置する非表示領域55に保持部材30が設けられ、各液晶パネル10の光源20の側(裏面10b側)には光学部材15が密着して配置されている。保持部材30は、液晶パネル10および光学部材15を挟むことによって、液晶パネル10および光学部材15を保持している。光学部材15は液晶パネル10に密着して配置されているので、液晶パネル10によって光学部材15を支持することができる。それゆえに、光学部材15が熱膨張・収縮した場合でも、保持部材30を変形させたり、光学部材15が外れたりすることを抑制することができる。その結果、本実施形態の構成によれば、狭額縁化に適したマルチディスプレイシステム100を実現することができる。 In the multi-display system 100 of the present embodiment, the holding member 30 is provided in the non-display area 55 located between the plurality of liquid crystal panels 10, and an optical member is provided on the light source 20 side (back surface 10 b side) of each liquid crystal panel 10. 15 is closely arranged. The holding member 30 holds the liquid crystal panel 10 and the optical member 15 by sandwiching the liquid crystal panel 10 and the optical member 15. Since the optical member 15 is disposed in close contact with the liquid crystal panel 10, the optical member 15 can be supported by the liquid crystal panel 10. Therefore, even when the optical member 15 is thermally expanded / contracted, it is possible to prevent the holding member 30 from being deformed and the optical member 15 from being detached. As a result, according to the configuration of the present embodiment, the multi-display system 100 suitable for narrowing the frame can be realized.
 図4(a)に示した比較例1000の構成においては、光学部材115の熱収縮・膨張の影響を回避するためには、バックライトシャーシ125の周縁部126の幅は、例えば60インチの液晶パネルにて、長手方向で3.7mm以上設けることが必要となる。一方、本実施形態の構成によれば、バックライトシャーシ25の周縁部26の幅を、例えば60インチの液晶パネルにて、長手方向で3.7mm未満にすることが可能である。 In the configuration of the comparative example 1000 shown in FIG. 4A, in order to avoid the influence of the thermal contraction / expansion of the optical member 115, the width of the peripheral edge 126 of the backlight chassis 125 is, for example, 60 inches of liquid crystal. In the panel, it is necessary to provide at least 3.7 mm in the longitudinal direction. On the other hand, according to the configuration of the present embodiment, the width of the peripheral edge portion 26 of the backlight chassis 25 can be made less than 3.7 mm in the longitudinal direction in a 60-inch liquid crystal panel, for example.
 次に、マルチディスプレイシステム100の内部温度が-20℃(モジュールを動作させない低温保存温度)から80℃(モジュールが動作する上限温度)との間に発生する液晶パネル10、光学部材15の位置変化の量について説明する。 Next, the position change of the liquid crystal panel 10 and the optical member 15 that occurs when the internal temperature of the multi-display system 100 is between −20 ° C. (low temperature storage temperature at which the module does not operate) and 80 ° C. (the upper limit temperature at which the module operates). The amount will be described.
 光学部材15の一例である拡散板(PS(ポリスチレン))の線膨張係数は、6.8×10-5であり、液晶パネルを構成するガラスの線膨張係数は、3.3×10-5である。また、バックライトシャーシを構成する鋼材の線膨張係数は、1.2×10-5である。バックライトシャーシ(鋼材)との差分は、拡散板(PS)が5.6×10-5で、ガラスが2.1×10-5である。 The diffusion coefficient (PS (polystyrene)) which is an example of the optical member 15 has a linear expansion coefficient of 6.8 × 10 −5 , and the linear expansion coefficient of the glass constituting the liquid crystal panel is 3.3 × 10 −5. It is. Moreover, the linear expansion coefficient of the steel material which comprises a backlight chassis is 1.2 * 10 <-5> . The difference from the backlight chassis (steel material) is 5.6 × 10 −5 for the diffusion plate (PS) and 2.1 × 10 −5 for the glass.
 このような条件において、60インチの液晶パネル10のユニットでは、拡散板(PS)の位置変化(片側)は3.7mmの値になり、ガラスの位置変化(片側)は1.3mmの値になる。したがって、拡散板115の位置変化が影響を及ぼす比較例1000の場合、中心対称で膨張したときに片側で3.7mmの変位を起こす。したがって、比較例1000の場合には、液晶パネル110のユニットの継ぎ目に最低でも7.4mmの非表示領域155を設ける必要がある。一方、本実施形態の構成では、拡散板15の熱膨張の影響を回避して、液晶パネル10の熱膨張の影響を考慮すればよいので、片側での位置変化は1.3mmである。したがって、液晶パネル10のユニットの継ぎ目には、3mm程度の非表示領域55を設ければよい。その結果、狭額縁化に適したマルチディスプレイシステム100を実現することができる。 Under such conditions, in the 60-inch liquid crystal panel 10 unit, the position change (one side) of the diffusion plate (PS) is 3.7 mm, and the glass position change (one side) is 1.3 mm. Become. Therefore, in the case of the comparative example 1000 in which the change in the position of the diffusion plate 115 is affected, a displacement of 3.7 mm is caused on one side when it expands in the center symmetry. Therefore, in the case of the comparative example 1000, it is necessary to provide a non-display area 155 of at least 7.4 mm at the joint of the liquid crystal panel 110 units. On the other hand, in the configuration of this embodiment, the influence of the thermal expansion of the diffusion plate 15 can be avoided and the influence of the thermal expansion of the liquid crystal panel 10 can be taken into account, so the position change on one side is 1.3 mm. Therefore, the non-display area 55 of about 3 mm may be provided at the joint of the liquid crystal panel 10 units. As a result, the multi-display system 100 suitable for narrowing the frame can be realized.
 次に、図6から図9を参照しながら、本実施形態のマルチディスプレイシステム100の構造をさらに説明する。図6は、液晶パネル10および第1支持部(例えば、ベゼル)31の構成を模式的に示す上面図である。図7は、図6における線VIIに沿った断面図である。また、図8は、第1支持部31の分解斜視図である。図9は、第2支持部(例えば、シャーシ)32の斜視図である。 Next, the structure of the multi-display system 100 of this embodiment will be further described with reference to FIGS. FIG. 6 is a top view schematically showing the configuration of the liquid crystal panel 10 and the first support portion (for example, bezel) 31. FIG. 7 is a cross-sectional view taken along line VII in FIG. FIG. 8 is an exploded perspective view of the first support portion 31. FIG. 9 is a perspective view of the second support portion (for example, chassis) 32.
 図6に示すように、マルチディスプレイシステム100における一つの液晶パネル10の外縁部には、第1支持部(ベゼル)31が配置されている。図7に示すように、第1支持部31と第2支持部(シャーシ)32とによって、液晶パネル10および光学部材15とを保持している。第1支持部31と第2支持部32とは、図6に示した締結部材(ネジまたはビス)37によって互いに固定される。 As shown in FIG. 6, a first support portion (bezel) 31 is disposed on the outer edge portion of one liquid crystal panel 10 in the multi-display system 100. As shown in FIG. 7, the liquid crystal panel 10 and the optical member 15 are held by the first support portion 31 and the second support portion (chassis) 32. The 1st support part 31 and the 2nd support part 32 are mutually fixed by the fastening member (screw or screw) 37 shown in FIG.
 図7に示した構成においては、液晶パネル10は、ケーブル(例えば、FPC)40を介して回路基板42a、42bに接続されている。図示した例において、回路基板42aは、ソース基板であり、回路基板42bは、コントロール基板である。なお、回路基板として、ゲート基板を設けることも可能である。光源20は、バックライトシャーシ25に収納されており、そして、バックライトシャーシ25の周縁部26に第2支持部32を載置することができる。 In the configuration shown in FIG. 7, the liquid crystal panel 10 is connected to circuit boards 42a and 42b via a cable (for example, FPC) 40. In the illustrated example, the circuit board 42a is a source board, and the circuit board 42b is a control board. Note that a gate substrate can be provided as the circuit substrate. The light source 20 is accommodated in the backlight chassis 25, and the second support portion 32 can be placed on the peripheral edge portion 26 of the backlight chassis 25.
 図8に示した第1支持部(ベゼル)31は、四辺がそれぞれ独立した金属部材31aを連結することによって構成されている。各金属部材31aは、ねじ穴38a、38bに締結部材(ネジ)を通すことによって固定されて、第1支持部31を構築する。図9に示した第2支持部32は、一体成型されたプラスチックシャーシである。第2支持部32には、光源20からの光を透過させるための開口部32aが形成されている。なお、図6から図9に示した構造は例示であり、それ以外の構造によって、本実施形態のマルチディスプレイシステム100を構築しても構わない。 The first support portion (bezel) 31 shown in FIG. 8 is configured by connecting metal members 31a having four independent sides. Each metal member 31a is fixed by passing a fastening member (screw) through the screw holes 38a, 38b, thereby constructing the first support portion 31. The second support portion 32 shown in FIG. 9 is an integrally molded plastic chassis. The second support portion 32 is formed with an opening portion 32 a for transmitting light from the light source 20. Note that the structures shown in FIGS. 6 to 9 are examples, and the multi-display system 100 of the present embodiment may be constructed by other structures.
 次に、図10から図12を参照にしながら、本実施形態のマルチディスプレイシステム100の改変例について説明する。図10(a)及び(b)は、本実施形態のマルチディスプレイシステム100における液晶パネル10およびシート状の光学部材15の断面図を表している。 Next, a modified example of the multi-display system 100 according to the present embodiment will be described with reference to FIGS. 10A and 10B are cross-sectional views of the liquid crystal panel 10 and the sheet-like optical member 15 in the multi-display system 100 of the present embodiment.
 図10(a)に示すように、液晶パネル10は、一対の透光性基板11、12から構成されている。この例では、表側の基板11がカラーフィルタ基板(CF基板)であり、裏側の基板12がアレイ基板(TFT基板)である。両基板11、12の外面には、それぞれ、偏光板13が貼り付けられている。そして、下方に位置する偏光板13には、光学部材(例えば偏光板)15が密着して設けられている。 As shown in FIG. 10A, the liquid crystal panel 10 is composed of a pair of translucent substrates 11 and 12. In this example, the front substrate 11 is a color filter substrate (CF substrate), and the back substrate 12 is an array substrate (TFT substrate). Polarizing plates 13 are attached to the outer surfaces of both the substrates 11 and 12, respectively. An optical member (for example, a polarizing plate) 15 is closely attached to the polarizing plate 13 located below.
 液晶パネル10を照射する光源20は、バックライトシャーシ25に収納されている。光源20は、例えば、LED素子である。バックライトシャーシ25は、LED素子が配列された基板を収納することができる。バックライトシャーシ25は、シート状の光学部材15が下方に曲がるのを抑制するために、支持ピン60が所定間隔で設けられている。支持ピン60によって、光学部材15と光源20との適切な距離を確保することができるとともに、輸送時の振動などによる過度のたわみを抑制することが可能となる。 The light source 20 that irradiates the liquid crystal panel 10 is housed in the backlight chassis 25. The light source 20 is, for example, an LED element. The backlight chassis 25 can accommodate a substrate on which LED elements are arranged. In the backlight chassis 25, support pins 60 are provided at predetermined intervals in order to prevent the sheet-like optical member 15 from bending downward. The support pin 60 can secure an appropriate distance between the optical member 15 and the light source 20, and can suppress excessive deflection due to vibration during transportation.
 図3(a)に示した比較例1000の構造の場合、液晶パネル110と光学部材115とは離れているので、支持ピン60の先端は光学部材115に接触し、液晶パネル110には衝撃を与えなかった。また、液晶パネル110と光学部材115とが離れていることにより、光学部材115に支持ピン60の先端の衝撃が加わったとしても、光学部材115が上方に撓むことによって衝撃を回避することができる。 In the case of the structure of the comparative example 1000 shown in FIG. 3A, the liquid crystal panel 110 and the optical member 115 are separated from each other, so that the tip of the support pin 60 is in contact with the optical member 115 and the liquid crystal panel 110 is shocked. Did not give. In addition, since the liquid crystal panel 110 and the optical member 115 are separated from each other, even if an impact at the tip of the support pin 60 is applied to the optical member 115, the impact can be avoided by bending the optical member 115 upward. it can.
 一方、本実施形態の構造の場合、図10(b)に示すように、液晶パネル10および光学部材15が下方に撓んだ場合、光学部材15は液晶パネル10に密着しているので、支持ピン60の先端が光学部材15に接触すると、光学部材15とともに液晶パネル10にも衝撃を与える可能性がある。このような場合、光学部材15に欠け・穴が発生する可能性があるとともに、液晶パネル10の表面にキズが生じる可能性がある。 On the other hand, in the case of the structure of the present embodiment, as shown in FIG. 10B, when the liquid crystal panel 10 and the optical member 15 are bent downward, the optical member 15 is in close contact with the liquid crystal panel 10, so that support is provided. When the tip of the pin 60 comes into contact with the optical member 15, there is a possibility of giving an impact to the liquid crystal panel 10 together with the optical member 15. In such a case, the optical member 15 may be chipped or holed, and the surface of the liquid crystal panel 10 may be scratched.
 したがって、図10(a)に示した構成において、支持ピン60は、少なくとも先端を、弾力性を有する材料から構成することが望ましい。あるいは、支持ピン60の先端を丸めることにより、尖った先端と比較して表面積を増やすように改変することも好ましい。 Therefore, in the configuration shown in FIG. 10A, it is desirable that the support pin 60 is made of at least the tip from a material having elasticity. Alternatively, it is also preferable to modify the support pin 60 so as to increase the surface area by rounding the tip of the support pin 60 compared to the pointed tip.
 さらには、図11(a)及び(b)に示すように、支持ピン60の先端に衝撃吸収部材(61、62)を設けることも可能である。図11(a)は、支持ピン60の先端の断面模式図であり、図11(b)は、図11(a)に示した支持ピン60の上面模式図である。 Furthermore, as shown in FIGS. 11A and 11B, an impact absorbing member (61, 62) can be provided at the tip of the support pin 60. FIG. 11A is a schematic cross-sectional view of the tip of the support pin 60, and FIG. 11B is a schematic top view of the support pin 60 shown in FIG. 11A.
 図11(a)に示すように、支持ピン60の先端には、衝撃吸収用の緩衝部材61が接続されており、緩衝部材61の先端には接触部材62が設けられている。接触部材62は、図11(b)に示すように、円環状の構造を有しているが、他の構成(例えば、円板状、多角形の環状など)を採用しても構わない。また、支持ピン60の先端による衝撃を吸収することができるのであれば、緩衝部材61も図11(a)に示したものに限らず、他の構成(例えば、バネ状構造)であっても構わない。 As shown in FIG. 11 (a), a shock absorbing buffer member 61 is connected to the tip of the support pin 60, and a contact member 62 is provided at the tip of the buffer member 61. As shown in FIG. 11B, the contact member 62 has an annular structure, but other configurations (for example, a disk shape, a polygonal ring shape, etc.) may be adopted. Further, the shock absorbing member 61 is not limited to the one shown in FIG. 11A as long as it can absorb the impact caused by the tip of the support pin 60, but may have another configuration (for example, a spring-like structure). I do not care.
 さらに、光学部材15の弾力性を向上させるようにしても構わない。図12(a)は、本実施形態の液晶パネル10およびシート状の光学部材15の改変例を示す断面図である。図12(b)は、図12(a)に示した光学部材15の断面図(または断面拡大図)である。 Furthermore, the elasticity of the optical member 15 may be improved. FIG. 12A is a cross-sectional view showing a modified example of the liquid crystal panel 10 and the sheet-like optical member 15 of the present embodiment. FIG. 12B is a cross-sectional view (or an enlarged cross-sectional view) of the optical member 15 shown in FIG.
 図12(b)に示すように、図示した光学部材15は、気泡17を含有するシート状部材であり、光学部材15に含まれる気泡17によって弾力性が向上するように構成されている。この例の光学部材15は、気泡17によって散乱性を持った拡散板である。例えば、気泡入りの光学部材15は、ポリカーボネートを主体とするシート状部材の内部に気泡17を存在させたものである。 As shown in FIG. 12B, the illustrated optical member 15 is a sheet-like member containing bubbles 17, and is configured so that the elasticity is improved by the bubbles 17 included in the optical member 15. The optical member 15 in this example is a diffusing plate having scattering properties due to the bubbles 17. For example, the bubble-containing optical member 15 is a member in which bubbles 17 are present inside a sheet-like member mainly composed of polycarbonate.
 図13は、本発明の実施形態における光学部材15の一例を示す断面図である。図13に示した光学部材15は、気泡17を有する拡散層(例えば、アクリルフォーム層、膜厚200μm)18と、透明樹脂フィルム(例えば、透明ポリスチレン層、膜厚700μm)16aとを備えている。気泡17を有する拡散層18の上面には、層状の粘着物質(例えば、アクリル粘着剤層、膜厚50μm)14aが設けられており、その粘着物質(粘着剤層)14aを介して、拡散層18を含む光学部材15は、液晶パネル10に接着されることになる。 FIG. 13 is a cross-sectional view showing an example of the optical member 15 in the embodiment of the present invention. The optical member 15 shown in FIG. 13 includes a diffusion layer (for example, an acrylic foam layer, film thickness of 200 μm) 18 having bubbles 17 and a transparent resin film (for example, a transparent polystyrene layer, film thickness of 700 μm) 16a. . On the upper surface of the diffusion layer 18 having the bubbles 17, a layered adhesive substance (for example, acrylic adhesive layer, film thickness 50 μm) 14a is provided, and the diffusion layer is interposed via the adhesive substance (adhesive layer) 14a. The optical member 15 including 18 is bonded to the liquid crystal panel 10.
 透光性樹脂材料(フォーム層)18の下面には、層状の粘着物質(例えば、アクリル粘着剤層、膜厚50μm)14bが設けられている。透光性樹脂材料(フォーム層)18には、粘着物質(粘着剤層)14bを介して、透明樹脂層(例えば、透明ポリスチレン層)16aが形成されている。透明樹脂層16aの下面には、複数の凹状または凸状の構造体16bが形成されている。この例では、透明ポリスチレンからなる透明樹脂層16aの表面(下面)には、作製時の転写によって四角錐の突起形状の構造体16bが形成される。この構造体16bによって、光学部材15を通過する光の拡散性または散乱性を向上させることができる。 On the lower surface of the translucent resin material (foam layer) 18, a layered adhesive substance (for example, acrylic adhesive layer, film thickness 50 μm) 14 b is provided. A transparent resin layer (for example, a transparent polystyrene layer) 16a is formed on the translucent resin material (foam layer) 18 via an adhesive substance (adhesive layer) 14b. A plurality of concave or convex structures 16b are formed on the lower surface of the transparent resin layer 16a. In this example, on the surface (lower surface) of the transparent resin layer 16a made of transparent polystyrene, a quadrangular pyramidal protrusion-shaped structure 16b is formed by transfer during production. The structure 16b can improve the diffusibility or scattering of light passing through the optical member 15.
 また、図14に示すように、光学部材15を構成してもよい。図14に示した光学部材15は、気泡17を有する拡散層(例えば、ポリエステル発泡層)18と、ビーズ19aからなるビーズ層19とを備えている。拡散層(発泡層)18の上面には、粘着層(例えば、アクリル粘着材層)14が塗布されることによって形成されている。粘着層14を介して、拡散層18を含む光学部材15は、液晶パネル10に接着されることになる。拡散層(発泡層)18の下面には、ビーズ19aが塗布されることによってビーズ層19が形成されている。このビーズ層19によって、光学部材15を通過する光の拡散性または散乱性を向上させることができる。 Further, as shown in FIG. 14, an optical member 15 may be configured. The optical member 15 shown in FIG. 14 includes a diffusion layer (for example, a polyester foam layer) 18 having bubbles 17 and a bead layer 19 made of beads 19a. An adhesive layer (for example, an acrylic adhesive material layer) 14 is formed on the upper surface of the diffusion layer (foamed layer) 18 by application. The optical member 15 including the diffusion layer 18 is bonded to the liquid crystal panel 10 via the adhesive layer 14. A bead layer 19 is formed on the lower surface of the diffusion layer (foaming layer) 18 by applying beads 19a. The bead layer 19 can improve the diffusibility or scattering of light passing through the optical member 15.
 さらに、上述の実施形態においては、第1支持部31および第2支持部32によって、液晶パネル10及び光学部材15を挟むように構成していたが、図15に示すように、液晶パネル10を挟むようにしてもよい。さらに説明すると、光学部材15は液晶パネル10に接着されているので、液晶パネル10を挟んで固定すれば、液晶パネル10とともに、液晶パネル10に接着された光学部材15も保持することができる。 Further, in the above-described embodiment, the liquid crystal panel 10 and the optical member 15 are sandwiched between the first support portion 31 and the second support portion 32. However, as shown in FIG. You may make it pinch | interpose. More specifically, since the optical member 15 is bonded to the liquid crystal panel 10, the optical member 15 bonded to the liquid crystal panel 10 can be held together with the liquid crystal panel 10 when the liquid crystal panel 10 is sandwiched and fixed.
 図15に示した構成の場合、光学部材15の外形は、液晶パネル10の外形よりも小さく成形されている。そして、液晶パネル10の矩形形状における全ての4辺に、光学部材15が配置されていない領域19が設けられている。そして、その光学部材が配置されていない領域19において、保持部材30(31、32)が液晶パネル10を挟むことによって、液晶パネル10と、それに接着した光学部材15とを保持している。図15に示した例では、第1支持部31は、液晶パネル10の偏光板13を押さえ、一方、第2支持部32は、液晶パネル10のガラス基板(アレイ基板)12を押さえている。このガラス基板12に、接着層14を介して光学部材15が接着されて固定されている。この構成によれば、保持部材30(31、32)は光学部材15を挟まずに、液晶パネル10を選択的に挟む構成にしているので、より薄いマルチディスプレイシステム100を構築することができる。 15, the outer shape of the optical member 15 is formed to be smaller than the outer shape of the liquid crystal panel 10. And the area | region 19 in which the optical member 15 is not arrange | positioned is provided in all four sides in the rectangular shape of the liquid crystal panel 10. FIG. And in the area | region 19 in which the optical member is not arrange | positioned, the holding member 30 (31, 32) pinches | interposes the liquid crystal panel 10, and is holding the liquid crystal panel 10 and the optical member 15 adhere | attached on it. In the example shown in FIG. 15, the first support portion 31 presses the polarizing plate 13 of the liquid crystal panel 10, while the second support portion 32 presses the glass substrate (array substrate) 12 of the liquid crystal panel 10. An optical member 15 is bonded and fixed to the glass substrate 12 via an adhesive layer 14. According to this configuration, since the holding member 30 (31, 32) is configured to selectively sandwich the liquid crystal panel 10 without sandwiching the optical member 15, a thinner multi-display system 100 can be constructed.
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、光学フィルムを構成する方法として、偏光板を液晶パネルの構成部品として取り扱ったが、本発明の実施形態の構成を実現することにおいて、偏光板と光学フィルムとを一体化した上で、液晶パネルに貼り合わせる方法も可能である。当該構成においては、通常の液晶パネルに部品として使用される偏光板に比べて、入射側の基材フィルムを薄いものとしたり、同基材フィルムを無くした構成にすることも可能である。 As mentioned above, although this invention has been demonstrated by suitable embodiment, such description is not a limitation matter and, of course, various modifications are possible. For example, as a method of configuring an optical film, a polarizing plate is handled as a component of a liquid crystal panel. However, in realizing the configuration of the embodiment of the present invention, the polarizing plate and the optical film are integrated into a liquid crystal. A method of attaching to a panel is also possible. In this configuration, it is possible to make the base film on the incident side thinner or to eliminate the base film as compared with a polarizing plate used as a component in a normal liquid crystal panel.
 本発明によれば、狭額縁化したマルチディスプレイシステムを提供することができる。 According to the present invention, a multi-display system with a narrow frame can be provided.
 10 液晶パネル
 11 CF基板
 12 アレイ基板
 13 偏光板
 14 粘着剤層
 15 光学部材(拡散板)
 16a 透明樹脂層
 16b 突起形状の構造体
 17 気泡
 18 拡散層(発泡層)
 19 ビーズ層
 20 光源
 22 連結部材
 25 バックライトシャーシ
 26 周縁部
 30 保持部材(ベゼル)
 31 第1支持部
 32 第2支持部
 35 遮蔽板
 40 ケーブル(FPC)
 42 回路基板(コントロール基板)
 52 表示領域
 55 非表示領域
 60 支持ピン
 61 緩衝部材
 62 接触部材
100 マルチディスプレイシステム
2000 マルチディスプレイシステム
10 Liquid crystal panel 11 CF substrate 12 Array substrate 13 Polarizing plate 14 Adhesive layer 15 Optical member (diffuser plate)
16a Transparent resin layer 16b Projection-shaped structure 17 Air bubble 18 Diffusion layer (foaming layer)
19 Bead layer 20 Light source 22 Connecting member 25 Backlight chassis 26 Peripheral part 30 Holding member (bezel)
31 1st support part 32 2nd support part 35 Shielding plate 40 Cable (FPC)
42 Circuit board (control board)
52 display area 55 non-display area 60 support pin 61 buffer member 62 contact member 100 multi-display system 2000 multi-display system

Claims (17)

  1.  複数の液晶パネルによって画像を表示するマルチディスプレイシステムであって、
     複数の液晶パネルと、
     前記複数の液晶パネルのそれぞれに光を照射する光源と
     を備え、
     前記光源は、バックライトシャーシに収納されており、
     前記複数の液晶パネルの間に位置する非表示領域には、前記液晶パネルを保持する保持部材が設けられており、
     前記複数の液晶パネルのそれぞれの前記光源の側には、光学部材が接着して配置されていることを特徴とするマルチディスプレイシステム。
    A multi-display system for displaying images by a plurality of liquid crystal panels,
    Multiple LCD panels,
    A light source for irradiating light to each of the plurality of liquid crystal panels;
    The light source is housed in a backlight chassis,
    A non-display area located between the plurality of liquid crystal panels is provided with a holding member for holding the liquid crystal panel,
    An optical member is adhered and arranged on each light source side of each of the plurality of liquid crystal panels.
  2.  前記保持部材は、前記液晶パネルおよび前記光学部材を挟むことによって、前記液晶パネルおよび前記光学部材を保持していることを特徴とする、請求項1に記載のマルチディスプレイシステム。 The multi-display system according to claim 1, wherein the holding member holds the liquid crystal panel and the optical member by sandwiching the liquid crystal panel and the optical member.
  3.  前記保持部材は、前記液晶パネルの表面を支持する第1支持部と、前記液晶パネルの裏面に配置された前記光学部材を支持する第2支持部とを含んでおり、
     前記第1支持部および前記第2支持部が、前記液晶パネルおよび前記光学部材を挟んでいることを特徴とする、請求項2に記載のマルチディスプレイシステム。
    The holding member includes a first support portion that supports the surface of the liquid crystal panel, and a second support portion that supports the optical member disposed on the back surface of the liquid crystal panel.
    The multi-display system according to claim 2, wherein the first support part and the second support part sandwich the liquid crystal panel and the optical member.
  4.  前記液晶パネルは、矩形形状を有しており、
     前記光学部材は、前記液晶パネルよりも小さく成形されており、
     前記液晶パネルの矩形形状における全ての4辺に、前記光学部材が配置されていない領域が設けられ、しかも、
     前記光学部材が配置されていない領域において、前記保持部材が前記液晶パネルを挟むことによって、前記液晶パネルおよび前記光学部材を保持していることを特徴とする、請求項1に記載のマルチディスプレイシステム。
    The liquid crystal panel has a rectangular shape,
    The optical member is formed smaller than the liquid crystal panel,
    On all four sides in the rectangular shape of the liquid crystal panel is provided a region where the optical member is not disposed,
    The multi-display system according to claim 1, wherein the holding member holds the liquid crystal panel and the optical member by sandwiching the liquid crystal panel in a region where the optical member is not disposed. .
  5.  前記保持部材は、前記液晶パネルの表面を支持する第1支持部と、前記液晶パネルの裏面に配置された前記光学部材を支持する第2支持部とを含んでおり、
     前記第1支持部および前記第2支持部が、前記液晶パネルを挟んでいることを特徴とする、請求項1から4の何れか一つに記載のマルチディスプレイシステム。
    The holding member includes a first support portion that supports the surface of the liquid crystal panel, and a second support portion that supports the optical member disposed on the back surface of the liquid crystal panel.
    5. The multi-display system according to claim 1, wherein the first support part and the second support part sandwich the liquid crystal panel. 6.
  6.  前記第2支持部は、前記バックライトシャーシの周縁部の上に配置されていることを特徴とする、請求項1から5に記載のマルチディスプレイシステム。 The multi-display system according to any one of claims 1 to 5, wherein the second support part is disposed on a peripheral part of the backlight chassis.
  7.  前記液晶パネルと前記光学部材とは、層状の粘着物質を介して接着されていることを特徴とする、請求項1から6の何れか一つに記載のマルチディスプレイシステム。 The multi-display system according to any one of claims 1 to 6, wherein the liquid crystal panel and the optical member are bonded via a layered adhesive substance.
  8.  前記光学部材は、少なくとも拡散材料を含んでいる、請求項1から7の何れか一つに記載のマルチディスプレイシステム。 The multi-display system according to any one of claims 1 to 7, wherein the optical member includes at least a diffusion material.
  9.  前記拡散材料は、樹脂の媒質中に分散されており、
     前記拡散材料は、前記媒質の屈折率よりも高い屈折率を有する粒子であることを特徴とする、請求項8に記載のマルチディスプレイシステム。
    The diffusion material is dispersed in a resin medium;
    The multi-display system according to claim 8, wherein the diffusion material is a particle having a refractive index higher than that of the medium.
  10.  前記拡散材料は、前記光学材料のパネルと密着する面に対向する側の面に塗布されていることを特徴とする、請求項8に記載のマルチディスプレイシステム。 The multi-display system according to claim 8, wherein the diffusing material is applied to a surface on a side opposite to a surface in close contact with the panel of the optical material.
  11.  前記光学部材は、前記拡散材料を樹脂の媒質中に分散されてなる拡散層と、透明樹脂フィルムとを備え、
     前記拡散層の一方の面は、前記透明樹脂フィルムの一方の面に接着、または、ラミネート加工されて一体化されていることを特徴とする、請求項8に記載のマルチディスプレイシステム。
    The optical member includes a diffusion layer formed by dispersing the diffusion material in a resin medium, and a transparent resin film.
    9. The multi-display system according to claim 8, wherein one surface of the diffusion layer is integrated by being bonded or laminated to one surface of the transparent resin film.
  12.  前記透明樹脂フィルムは、前記拡散層と接する面と対向する側の面に、凹状または凸状の構造体を複数備えることを特徴とする、請求項11に記載のマルチディスプレイシステム。 The multi-display system according to claim 11, wherein the transparent resin film includes a plurality of concave or convex structures on a surface opposite to a surface in contact with the diffusion layer.
  13.  前記光源は、LED素子を含むバックライト光源である、請求項1から12の何れか一つに記載のマルチディスプレイシステム。 The multi-display system according to any one of claims 1 to 12, wherein the light source is a backlight light source including an LED element.
  14.  前記非表示領域の幅は、10mm以下であることを特徴とする、請求項1から13の何れか一つに記載のマルチディスプレイシステム。 The multi-display system according to any one of claims 1 to 13, wherein a width of the non-display area is 10 mm or less.
  15.  前記バックライトシャーシには、前記光学部材を支える支持ピンが配置されており、
     前記支持ピンの先端には、衝撃吸収部材が設けられていることを特徴とする、請求項1から14の何れか一つに記載のマルチディスプレイシステム。
    A support pin that supports the optical member is disposed in the backlight chassis,
    The multi-display system according to claim 1, wherein a shock absorbing member is provided at a tip of the support pin.
  16.  前記光学部材は、気泡を含有するシート状部材であることを特徴とする、請求項1から15の何れか一つに記載のマルチディスプレイシステム。 The multi-display system according to any one of claims 1 to 15, wherein the optical member is a sheet-like member containing bubbles.
  17.  前記光学部材は、前記層状の粘着物質を介して前記液晶パネルに接着されており、前記層状の粘着物質には、気泡が含有されていることを特徴とする、請求項7に記載のマルチディスプレイシステム。 The multi-display according to claim 7, wherein the optical member is bonded to the liquid crystal panel via the layered adhesive substance, and the layered adhesive substance contains bubbles. system.
PCT/JP2011/076753 2010-11-26 2011-11-21 Multi-display system WO2012070513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-263183 2010-11-26
JP2010263183 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070513A1 true WO2012070513A1 (en) 2012-05-31

Family

ID=46145855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076753 WO2012070513A1 (en) 2010-11-26 2011-11-21 Multi-display system

Country Status (1)

Country Link
WO (1) WO2012070513A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170082267A1 (en) * 2015-09-17 2017-03-23 Google Inc. Frameless screen for tileable display panel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192081A (en) * 1987-02-04 1988-08-09 東芝ライテック株式会社 Liquid crystal display device
JPH02264292A (en) * 1989-04-05 1990-10-29 Matsushita Electric Ind Co Ltd Large-sized liquid crystal display device
JPH0688959A (en) * 1992-09-08 1994-03-29 Rohm Co Ltd Liquid crystal display device
JPH06289371A (en) * 1992-03-02 1994-10-18 Matsushita Electric Ind Co Ltd Liquid crystal display panel and display device
JP2002131723A (en) * 2000-10-26 2002-05-09 Fujitsu Kiden Ltd Liquid crystal display
JP2005201938A (en) * 2004-01-13 2005-07-28 Mitsubishi Rayon Co Ltd Liquid crystal display
JP2008053176A (en) * 2006-08-28 2008-03-06 Sharp Corp Backlight device and liquid crystal display
WO2009047933A1 (en) * 2007-10-09 2009-04-16 Sharp Kabushiki Kaisha Light control layer of backlight, backlight, liquid crystal display, and method of manufacturing light control layer of backlight
JP2009229713A (en) * 2008-03-21 2009-10-08 Furukawa Electric Co Ltd:The Bubble-containing light diffusion sheet and back light device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192081A (en) * 1987-02-04 1988-08-09 東芝ライテック株式会社 Liquid crystal display device
JPH02264292A (en) * 1989-04-05 1990-10-29 Matsushita Electric Ind Co Ltd Large-sized liquid crystal display device
JPH06289371A (en) * 1992-03-02 1994-10-18 Matsushita Electric Ind Co Ltd Liquid crystal display panel and display device
JPH0688959A (en) * 1992-09-08 1994-03-29 Rohm Co Ltd Liquid crystal display device
JP2002131723A (en) * 2000-10-26 2002-05-09 Fujitsu Kiden Ltd Liquid crystal display
JP2005201938A (en) * 2004-01-13 2005-07-28 Mitsubishi Rayon Co Ltd Liquid crystal display
JP2008053176A (en) * 2006-08-28 2008-03-06 Sharp Corp Backlight device and liquid crystal display
WO2009047933A1 (en) * 2007-10-09 2009-04-16 Sharp Kabushiki Kaisha Light control layer of backlight, backlight, liquid crystal display, and method of manufacturing light control layer of backlight
JP2009229713A (en) * 2008-03-21 2009-10-08 Furukawa Electric Co Ltd:The Bubble-containing light diffusion sheet and back light device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170082267A1 (en) * 2015-09-17 2017-03-23 Google Inc. Frameless screen for tileable display panel

Similar Documents

Publication Publication Date Title
JP6267936B2 (en) Curved display device
US9442316B2 (en) Display device comprising a light-transmitting cover having a lens portion
JP5679604B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
US7924364B2 (en) Liquid crystal display module and assembling method thereof
JP5353606B2 (en) Protection plate integrated display device
JP5775128B2 (en) Liquid crystal display
TWI492202B (en) Display device and joint display
JP6616448B2 (en) Display device
WO2014054519A1 (en) Illumination device, display device, and television receiving device
US8491169B2 (en) Frame, light source device, display device, and television receiver
JP2007272107A (en) Display device
US20120139964A1 (en) Display panel module and multi-panel display apparatus including the same
WO2020008818A1 (en) Image display device
KR102469764B1 (en) Backlight unit, display device and method of manufacturing the display device
KR20120057388A (en) Backlight unit and liquid crystal display device and method having the same
WO2012070513A1 (en) Multi-display system
KR102490168B1 (en) Display Device
KR101737799B1 (en) Light shielding tape and backlight unit using the same and liquid crystal display device having thereof
KR20160080857A (en) Back light unit and liquid crystal display device having the same
CN102209868A (en) Optical sheet laminated body, backlight device, display device and television receiver
WO2012141084A1 (en) Illumination device, display device, and television receiving device
KR102372343B1 (en) Display Device
KR20150039034A (en) Liquid crystal display device and method for fabricating the same
WO2019080319A1 (en) Touch module, liquid crystal display and terminal device
KR20170037809A (en) Frame-Type Optical Member with Optical Fiber and Multi-Panel Display Device with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP