WO2012070115A1 - Wind power generation device - Google Patents

Wind power generation device Download PDF

Info

Publication number
WO2012070115A1
WO2012070115A1 PCT/JP2010/070878 JP2010070878W WO2012070115A1 WO 2012070115 A1 WO2012070115 A1 WO 2012070115A1 JP 2010070878 W JP2010070878 W JP 2010070878W WO 2012070115 A1 WO2012070115 A1 WO 2012070115A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
wind power
storage tank
power
wind
Prior art date
Application number
PCT/JP2010/070878
Other languages
French (fr)
Japanese (ja)
Inventor
茂 玉木
明彦 安養寺
Original Assignee
横河電子機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電子機器株式会社 filed Critical 横河電子機器株式会社
Priority to PCT/JP2010/070878 priority Critical patent/WO2012070115A1/en
Publication of WO2012070115A1 publication Critical patent/WO2012070115A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/13Combinations of wind motors with apparatus storing energy storing gravitational potential energy
    • F03D9/14Combinations of wind motors with apparatus storing energy storing gravitational potential energy using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a wind turbine generator.
  • a wind turbine generator drives a generator by power generated by rotating a windmill attached to a tip portion of a column by wind power.
  • Such a wind power generator does not require fuel for power generation, so it can reduce the amount of fossil fuel used, that is, reduce carbon dioxide emissions, and it is relatively simple in structure and easy to install. It has some features.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to improve the quality of wind-generated power with a quality-improving means that is more suitable than before.
  • a wind power generator that generates power using wind power
  • a pump that pumps liquid using the power generated by the wind power generator
  • a configuration is adopted in which a storage tank that stores the liquid pumped up by the pump and a hydroelectric generator that generates power using the liquid falling from the storage tank is adopted.
  • a second storage tank for storing the liquid discharged from the hydroelectric generator after use of power generation is provided.
  • a configuration is adopted in which the liquid stored in the storage tank is pumped up.
  • the wind power generator includes a support, a generator fixed to the upper end of the support, and a drive shaft of the generator. And a wind pump fixed to the pump, and a structure in which a pump, a storage tank, a hydroelectric generator, and a second storage tank are accommodated in the support column is adopted.
  • the wind pump which is a natural phenomenon, is used as a power source, and the power of the wind power generator (low quality power) having a relatively poor power quality is used to drive the pump to pump the liquid into the storage tank.
  • the power of the wind power generator low quality power
  • high quality power By using the kinetic energy of the liquid falling from the storage tank, a relatively high quality hydroelectric power (high quality power) is obtained. That is, in this invention, the low quality electric power which the wind power generator generated based on the combination of a pump, a storage tank, and a hydroelectric generator is converted into high quality electric power.
  • the means for improving the quality of electric power comprising such a pump, storage tank and hydroelectric generator does not include at least the rare metal, life or environmental problems in the above-described lithium ion storage battery and NAS battery. It is a suitable quality improvement means.
  • the wind power generator A includes a wind power generator 1, a pumping pump 2, a storage tank 3, and a hydraulic power generator 4.
  • the wind power generator 1 is erected on the water such as the sea, a lake, and a river, and is composed of a support 1a, a power generator 1b, and a windmill 1c.
  • the column 1a is a fixed structure that is erected from a water bottom to a predetermined height above the water.
  • a method of providing the column 1a not only such a fixed structure but also an optimum one may be adopted as appropriate according to the installation location of the sea, lake, river or the like.
  • the wind power generator 1 may be movable by standing a support 1a on the floating structure and towing the floating structure with a ship as necessary.
  • the generator 1b is fixed to the upper end portion of such a column 1a.
  • the windmill 1c is fixed to the drive shaft of the generator 1b, and is, for example, a propeller type having three blades as illustrated.
  • the generator 1b is provided on the support 1a so that the drive shaft is in a horizontal posture, and the windmill 1c that is axially coupled to the generator 1b rotates with a vertical plane as a rotation plane. That is, such a wind power generator 1 receives the force of the wind blowing in the horizontal direction by the windmill 1c, and drives the generator 1b with the power (rotational force) generated in the windmill 1c to generate wind power generation power. It is.
  • the wind power generated by the wind power generator 1 is compared with the power of hydroelectric power generation, thermal power generation, or nuclear power generation in which the power quality is already widely used because the wind, which is a natural phenomenon, is used as a power source. If the quality (power quality) is bad. In other words, wind power generation has relatively large variations in voltage amplitude, frequency, phase, waveform, etc., which are elements of power quality, and in some cases does not satisfy the allowable values officially declared as power quality, It is necessary to compensate the power quality by means of quality improvement.
  • a speed increaser (not shown) is provided between the windmill 1c and the generator 1b. This speed increaser speeds up the rotation of the windmill 1c and transmits it to the generator 1b.
  • the windmill 1c is not limited to a horizontal axis propeller type. It is conceivable that the windmill 1c may take various forms such as a Darius type, a gyromill type, or a Savonius type with a vertical axis depending on the nature of the wind at the place where the wind power generator 1 is installed. What is necessary is just to use the generator 1b corresponding to the form of such a windmill 1c.
  • the number of blades in the propeller-type windmill 1c is not limited to the above three.
  • the wind power generator 1 configured in this manner supplies wind power to the pumping pump 2.
  • the pump 2 pumps the water (seawater or fresh water) from the water using the wind power generated from the wind power generator 1 and supplies it to the storage tank 3. That is, as shown in the figure, the pump 2 is provided in the middle of a pipe where one end is buried in the water and the other end communicates with the storage tank 3. To discharge.
  • a spiral pump or a diffuser pump as the pumping pump 2
  • the storage tank 3 is fixedly installed at a certain height from the water surface, stores the water supplied from the pumping pump 2, and discharges the stored water toward the hydroelectric generator 4.
  • the container Such a storage tank 3 is fixed to a predetermined height position of the column 1a via a fixing member, but may be installed on a structure provided separately from the column 1a. Note that the capacity of the storage tank 3 is determined in consideration of the duration of the function as a power buffer.
  • the hydroelectric generator 4 uses the water falling from the storage tank 3 to generate power by rotating a power generation turbine at a high speed and outputs the electric power to the outside. That is, this hydroelectric generator 4 is provided in the middle part of the pipe that has one end connected to the bottom of the storage tank 3 and the other end opened to the water, and receives the water flowing down in the pipe by the turbine. It is a device that generates generated power.
  • the hydroelectric power output from the hydroelectric generator 4 to the outside has extremely high quality power (high quality power) compared to the wind power generated above, that is, fluctuations in voltage amplitude, frequency, phase, waveform, etc. are extremely high. There are few things.
  • Such a hydroelectric generator 4 constitutes, together with the above-described pumping pump 2 and the storage tank 3, a quality improving means for improving the quality of the wind power generation.
  • the wind power generator 1 drives the power generator 1b by rotating the windmill 1c by wind power.
  • the wind power generator 1 supplies wind power to the pumping pump 2 from the power generator 1b.
  • the pump 2 pumps water from the water using this wind power generation as a power source and supplies it to the storage tank 3.
  • the wind power generation power is low quality power
  • the function required of the pumping pump 2 in the wind power generator A is simply to supply water to the storage tank 3, and the low quality power is used as the power source. There is no problem with doing.
  • the water stored in the storage tank 3 is supplied to the hydroelectric generator 4 to start hydroelectric power generation. That is, the water accumulated in the storage tank 3 gradually falls from the bottom of the storage tank 3 and drives the hydroelectric generator 4 to generate hydroelectric power.
  • this wind power generator A wind power (low quality power) generated by the wind power generator 1 is finally converted into hydro power (high quality power) and output to the outside.
  • the storage tank 3 that stores a predetermined amount of water functions as an electric power buffer. Power generation by the generator 4 is continued. Therefore, according to this wind power generator A, hydroelectric power generation is continued even if the wind power generation is stopped for a certain period of time, so that it is possible to continuously supply hydroelectric power (high quality power) to the outside.
  • the quality improvement means for improving the quality of wind power generation is comprised by the pumping pump 2, the storage tank 3, and the hydroelectric generator 4, the conventional lithium ion storage battery Compared with high quality means using a storage battery such as a NAS battery or the like, the rare metal, life or environmental problems are eliminated or significantly reduced. That is, the pump 2, the storage tank 3 and the hydroelectric generator 4 do not require any rare metal, and are sufficiently longer than the storage battery in terms of life, and in the environment like the storage battery when discarded. Since it does not give a significant load, it is a higher quality means more suitable than a storage battery.
  • the wind power generator B includes a wind power generator 1, a pumping pump 2, a storage tank 3, a hydroelectric generator 4, and a second storage tank 5.
  • the wind power generator 1 is erected on the ground unlike the first embodiment, and includes a support 1a, a power generator 1b, and a windmill 1c.
  • the column 1a is a fixed structure with a predetermined height that is erected on the ground.
  • the generator 1b is fixed to the upper end portion of such a column 1a.
  • the windmill 1c is fixed to the drive shaft of the generator 1b, and is, for example, a propeller type having three blades as illustrated. Similar to the first embodiment, such a wind power generator 1 receives the force of the wind blowing in the horizontal direction by the windmill 1c, and drives the generator 1b by the power (rotational force) generated in the windmill 1c. Generate wind power.
  • the wind power generated by the wind power generator 1 has relatively large fluctuations in voltage amplitude, frequency, phase, waveform, and the like, which are elements of power quality. It is unsatisfactory, and it is necessary to compensate the power quality by some kind of quality improvement means.
  • a speed increaser (not shown) is provided between the windmill 1c and the generator 1b described above.
  • the windmill 1c is not limited to a horizontal axis propeller type. It is conceivable that the windmill 1c may take various forms such as a Darius type, a gyromill type, or a Savonius type with a vertical axis depending on the nature of the wind at the place where the wind power generator 1 is installed. What is necessary is just to use the generator 1b corresponding to the form of such a windmill 1c.
  • the number of blades in the propeller-type windmill 1c is not limited to the above three.
  • the wind power generator 1 configured in this manner supplies wind power to the pumping pump 2.
  • the pump 2 pumps water from the second storage tank 5 using the wind power generated from the wind power generator 1 and supplies it to the storage tank 3. That is, as shown in the figure, the pump 2 is connected to the bottom of the second storage tank 5 and the other end is provided in the middle of the pipe communicating with the storage tank 3. The water in the two storage tanks 5 is sucked up and discharged into the storage tank 3.
  • a spiral pump or a diffuser pump as the pumping pump 2
  • the storage tank 3 is fixedly installed at a certain height above the ground on a structure provided separately from the support column 1a, stores the water supplied from the pumping pump 2, and stores the stored water. Is a container of a predetermined capacity that discharges toward the hydroelectric generator 4. Such a storage tank 3 is fixed at a predetermined height position on the structure, but may be fixed to the column 1a via a fixing member as in the first embodiment. Note that the capacity of the storage tank 3 is determined in consideration of the duration of the function as a power buffer.
  • the hydroelectric generator 4 uses the water falling from the storage tank 3 to rotate the power generation turbine at a high speed to generate electric power, and outputs the electric power to the outside. Discharge towards That is, the hydroelectric generator 4 has one end connected to the bottom of the storage tank 3 and the other end provided in the middle of the pipe communicating with the second storage tank 5. It is a device that receives hydroelectric power generated by a turbine.
  • the hydroelectric power output from the hydroelectric generator 4 to the outside is extremely high quality power (high quality power) compared to the wind power generated above, that is, fluctuations in voltage amplitude, frequency, phase, waveform, etc. are extremely high. There are few things.
  • the second storage tank 5 is fixedly installed on the ground, stores water discharged from the hydroelectric generator 4 after power generation, and sucks the stored water into the pumping pump 2 through a pipe.
  • the capacity of the second storage tank 5 is determined in consideration of the capacity of the storage tank 3.
  • the 2nd storage tank 5 comprises the quality improvement means for improving the quality of wind power generation with the pumping pump 2, the storage tank 3, and the hydroelectric generator 4 mentioned above.
  • the wind power generator 1 drives the power generator 1b by rotating the windmill 1c by wind power.
  • the wind power generator 1 supplies wind power to the pumping pump 2 from the power generator 1b.
  • the pump 2 pumps water from the second storage tank 5 and supplies it to the storage tank 3 using this wind power generation power as a power source.
  • the wind power generation power is low quality power
  • the function required for the pumping pump 2 in this wind power generation apparatus B is simply to supply water to the storage tank 3, and the low quality power is used as the power source. There is no problem with doing.
  • the water stored in the storage tank 3 is supplied to the hydroelectric generator 4 to start hydroelectric power generation. That is, the water accumulated in the storage tank 3 gradually falls from the bottom of the storage tank 3 and drives the hydroelectric generator 4 to generate hydroelectric power.
  • the hydroelectric generator 4 discharges water to the second storage tank 5 after using the power generation.
  • water is circulated to cause the hydroelectric generator 4 to generate power.
  • the high-quality electric power can be supplied, and the pumping pump 2, the storage tank 3, and the hydroelectric generator 4 constituting the quality-improving means are all provided.
  • It does not require rare metals, and is sufficiently longer than storage batteries in terms of life, and even when discarded, it does not give a significant load on the environment like storage batteries. Means can be provided.
  • this wind power generator B circulates the water stored in the second storage tank 5 and causes the hydroelectric generator 4 to generate power, it is not a place where there is abundant water such as a sea, a lake, or a river. Even can be installed.
  • the wind turbine generator C accommodates a pumping pump 2, a storage tank 3, a hydroelectric generator 4, and a second storage tank 5 in a column 1 a of the wind power generator 1. In the point which does, it differs from the wind power generator B of the said 2nd Embodiment, and another structure and operation

Abstract

The purpose of the present invention is to improve the quality of an electric power generated by means of wind power generation by a more suitable means than conventional means. Provided is a wind power generation device comprising: a wind power generator which can generate an electric power utilizing wind power; a lift pump which can draw up a liquid utilizing the electric power generated by the wind power generator; a storage tank which can store the liquid drawn by the lift pump; and a hydroelectric power generator which can generate an electric power utilizing the liquid that falls from the storage tank.

Description

風力発電装置Wind power generator
本発明は、風力発電装置に関する。 The present invention relates to a wind turbine generator.
現在、温室効果ガスの排出量の増加や化石燃料の枯渇などの問題から、自然エネルギーである風力を利用して発電する風力発電装置が注目され、世界各地に普及している。一般的な構造として、風力発電装置は、支柱の先端部に取り付けられた風車が風力によって回転して生じる動力によって発電機を駆動する。このような風力発電装置は、動力発生に燃料が不要なので、化石燃料の使用量を削減、すなわち二酸化炭素の排出量を低減することが可能であり、また構造が比較的簡単なので据付が容易である等の特徴を有している。 Currently, wind power generators that generate electricity using wind power, which is natural energy, are attracting attention due to problems such as an increase in greenhouse gas emissions and the depletion of fossil fuels. As a general structure, a wind turbine generator drives a generator by power generated by rotating a windmill attached to a tip portion of a column by wind power. Such a wind power generator does not require fuel for power generation, so it can reduce the amount of fossil fuel used, that is, reduce carbon dioxide emissions, and it is relatively simple in structure and easy to install. It has some features.
ところで、風力発電装置で発電される電力の品質が火力発電や原子力発電による電力と比較した場合に悪いことが一般に知られている。すなわち、風力発電装置は、自然現象である風を動力源とするものなので、動力変動が発生し易く、この結果として電力品質の要素である電圧振幅、周波数、位相及び波形等の変動が火力発電や原子力発電等の電力よりも大きい。したがって、風力発電装置の実用化においては、このような比較的低い電力品質に対して何らかの対策が必要であり、この対策としてリチウムイオン蓄電池やNAS電池(ナトリウム硫黄電池)等の蓄電池を用いて品質を補償することが行われている。 By the way, it is generally known that the quality of electric power generated by a wind power generator is poor when compared with electric power generated by thermal power generation or nuclear power generation. In other words, wind power generation equipment uses wind, which is a natural phenomenon, as a power source, and therefore power fluctuations are likely to occur. As a result, fluctuations in voltage amplitude, frequency, phase, waveform, etc., which are elements of power quality, are And larger than electricity such as nuclear power. Therefore, in the practical application of wind power generators, it is necessary to take some measures against such relatively low power quality. As a measure against this, the quality of storage batteries such as lithium ion storage batteries and NAS batteries (sodium sulfur batteries) is used. Compensation has been done.
しかしながら、リチウムイオン蓄電池には、海外からの供給に依存しているレアメタル(希少金属)を必要物質とする関係で必要な供給量を確保するという点で不安があり、また寿命が比較的短いのでメンテナンス費用等が嵩むという問題がある。一方、NAS電池には、自然環境下で分解されない非生分解性材料が含まれる関係で、廃棄処分した場合に環境上の問題がある。したがって、風力発電電力に対する従来の高品質化手段は、改善すべき余地の多いものである。 However, lithium-ion batteries are uneasy in terms of securing the necessary supply volume because they require rare metals that depend on supply from overseas, and their life is relatively short. There is a problem that maintenance costs increase. On the other hand, NAS batteries have environmental problems when disposed of because they contain non-biodegradable materials that are not decomposed in the natural environment. Therefore, the conventional means for improving the quality of wind power generation has much room for improvement.
本発明は、上述した事情に鑑みてなされたものであり、風力発電電力を従来よりも好適な高品質化手段で高品質化することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to improve the quality of wind-generated power with a quality-improving means that is more suitable than before.
上記目的を達成するために、本発明では、第1の解決手段として、風力を利用して発電する風力発電機と、風力発電機により発電された電力を利用して液体を汲み上げる揚水ポンプと、揚水ポンプにより汲み上げられた液体を貯留する貯留タンクと、貯留タンクから落下する液体を利用して発電する水力発電機とを具備するという構成を採用する。 In order to achieve the above object, in the present invention, as a first solution, a wind power generator that generates power using wind power, and a pump that pumps liquid using the power generated by the wind power generator, A configuration is adopted in which a storage tank that stores the liquid pumped up by the pump and a hydroelectric generator that generates power using the liquid falling from the storage tank is adopted.
また、本発明では、第2の解決手段として、上記第1の解決手段において、発電利用後に水力発電機から排出された液体を貯留する第2の貯留タンクを具備し、揚水ポンプは、第2の貯留タンクに貯留されている液体を汲み上げるという構成を採用する。 Further, in the present invention, as the second solution means, in the first solution means described above, a second storage tank for storing the liquid discharged from the hydroelectric generator after use of power generation is provided. A configuration is adopted in which the liquid stored in the storage tank is pumped up.
また、本発明では、第3の解決手段として、上記第1または第2の解決手段において、風力発電機は、支柱と、支柱の上端部に固定されている発電機と、発電機の駆動軸に固定されている風車とから構成されており、支柱内に、揚水ポンプ、貯留タンク、水力発電機及び第2の貯留タンクが収容されているという構成を採用する。 In the present invention, as a third solution, in the first or second solution, the wind power generator includes a support, a generator fixed to the upper end of the support, and a drive shaft of the generator. And a wind pump fixed to the pump, and a structure in which a pump, a storage tank, a hydroelectric generator, and a second storage tank are accommodated in the support column is adopted.
本発明によれば、自然現象である風を動力源とするが故に電力品質が比較的悪い風力発電機の電力(低品質電力)を用いることにより揚水ポンプを駆動して貯留タンクに液体を汲み上げ、当該貯留タンクから落下する液体の運動エネルギを利用して比較的高品質な水力発電機の電力(高品質電力)を得る。すなわち、本発明では、揚水ポンプ、貯留タンク及び水力発電機の組合せに基づいて風力発電機が発電した低品質電力を高品質電力に変換する。このような揚水ポンプ、貯留タンク及び水力発電機からなる電力の高品質化手段は、上述したリチウムイオン蓄電池やNAS電池におけるレアメタル、寿命あるいは環境上の問題を少なくとも含むものではないので、従来よりも好適な高品質化手段である。 According to the present invention, the wind pump, which is a natural phenomenon, is used as a power source, and the power of the wind power generator (low quality power) having a relatively poor power quality is used to drive the pump to pump the liquid into the storage tank. By using the kinetic energy of the liquid falling from the storage tank, a relatively high quality hydroelectric power (high quality power) is obtained. That is, in this invention, the low quality electric power which the wind power generator generated based on the combination of a pump, a storage tank, and a hydroelectric generator is converted into high quality electric power. The means for improving the quality of electric power comprising such a pump, storage tank and hydroelectric generator does not include at least the rare metal, life or environmental problems in the above-described lithium ion storage battery and NAS battery. It is a suitable quality improvement means.
本発明の第1実施形態に係る風力発電装置Aの構成図である。It is a lineblock diagram of wind power generator A concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る風力発電装置Bの構成図である。It is a block diagram of the wind power generator B which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る風力発電装置Cの構成図である。It is a block diagram of the wind power generator C which concerns on 3rd Embodiment of this invention.
以下、図面を参照して、本発明の実施形態について説明する。
〔第1実施形態〕
最初に第1実施形態について説明する。第1実施形態に係る風力発電装置Aは、図1に示すように、風力発電機1、揚水ポンプ2、貯留タンク3及び水力発電機4から構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
[First embodiment]
First, the first embodiment will be described. As shown in FIG. 1, the wind power generator A according to the first embodiment includes a wind power generator 1, a pumping pump 2, a storage tank 3, and a hydraulic power generator 4.
風力発電機1は、図1に示すように、海、湖、河川等の水上に立設されており、支柱1aと発電機1bと風車1cとから構成されている。支柱1aは、水底から水上の所定高さに掛けて立設される固定構造物である。なお、支柱1aの設け方としては、このような固定構造とするばかりではなく、海、湖、河川等の設置場所に応じて適宜最適なものを採用すればよい。例えば風力発電機1を海上に設ける場合には、浮体構造物上に支柱1aを立設し、必要に応じて浮体構造物を船舶によって曳航することにより風力発電機1を移動可能としてもよい。 As shown in FIG. 1, the wind power generator 1 is erected on the water such as the sea, a lake, and a river, and is composed of a support 1a, a power generator 1b, and a windmill 1c. The column 1a is a fixed structure that is erected from a water bottom to a predetermined height above the water. In addition, as a method of providing the column 1a, not only such a fixed structure but also an optimum one may be adopted as appropriate according to the installation location of the sea, lake, river or the like. For example, in the case where the wind power generator 1 is provided on the sea, the wind power generator 1 may be movable by standing a support 1a on the floating structure and towing the floating structure with a ship as necessary.
発電機1bは、このような支柱1aの上端部に固定されている。風車1cは、上記発電機1bの駆動軸に固定されており、図示するように例えば3枚のブレードを有するプロペラ型である。発電機1bは駆動軸が水平姿勢となるように支柱1a上に設けられており、このような発電機1bに軸結合する風車1cは、鉛直面を回転面として回転する。すなわち、このような風力発電機1は、水平方向に吹く風の力を風車1cで受け、この風車1cに発生する動力(回転力)により発電機1bを駆動して風力発電電力を発生する装置である。 The generator 1b is fixed to the upper end portion of such a column 1a. The windmill 1c is fixed to the drive shaft of the generator 1b, and is, for example, a propeller type having three blades as illustrated. The generator 1b is provided on the support 1a so that the drive shaft is in a horizontal posture, and the windmill 1c that is axially coupled to the generator 1b rotates with a vertical plane as a rotation plane. That is, such a wind power generator 1 receives the force of the wind blowing in the horizontal direction by the windmill 1c, and drives the generator 1b with the power (rotational force) generated in the windmill 1c to generate wind power generation power. It is.
ここで、風力発電機1で発生する風力発電電力は、自然現象である風を動力源とするが故に、電力品質が既に広く普及している水力発電、火力発電あるいは原子力発電の電力と比較した場合に品質(電力品質)が悪い。すなわち、風力発電電力は、電力品質の要素である電圧振幅、周波数、位相及び波形等の変動が比較的大きく、場合によっては電力品質として公定されている許容値を満足しないものであり、何らかの高品質化手段によって電力品質を補償する必要がある。 Here, the wind power generated by the wind power generator 1 is compared with the power of hydroelectric power generation, thermal power generation, or nuclear power generation in which the power quality is already widely used because the wind, which is a natural phenomenon, is used as a power source. If the quality (power quality) is bad. In other words, wind power generation has relatively large variations in voltage amplitude, frequency, phase, waveform, etc., which are elements of power quality, and in some cases does not satisfy the allowable values officially declared as power quality, It is necessary to compensate the power quality by means of quality improvement.
なお、上述した風車1cと発電機1bとの間には増速機(図示略)が設けられている。この増速機は、風車1cの回転を増速して発電機1bに伝達する。また、風車1cは、水平軸のプロペラ型に限定されない。風車1cの形態は、風力発電機1が設置される場所の風の性質等に応じて、垂直軸のダリウス型、ジャイロミル型あるいはサボニウス型等、各種形態をとることが考えられる。発電機1bは、このような風車1cの形態に対応したものを用いればよい。さらに、プロペラ型の風車1cにおけるブレード枚数は上述した3枚に限定されるものではない。 A speed increaser (not shown) is provided between the windmill 1c and the generator 1b. This speed increaser speeds up the rotation of the windmill 1c and transmits it to the generator 1b. Moreover, the windmill 1c is not limited to a horizontal axis propeller type. It is conceivable that the windmill 1c may take various forms such as a Darius type, a gyromill type, or a Savonius type with a vertical axis depending on the nature of the wind at the place where the wind power generator 1 is installed. What is necessary is just to use the generator 1b corresponding to the form of such a windmill 1c. Furthermore, the number of blades in the propeller-type windmill 1c is not limited to the above three.
このように構成された風力発電機1は、風力発電電力を揚水ポンプ2に供給する。
揚水ポンプ2は、風力発電機1から供給された風力発電電力を利用して水中から水(海水あるいは淡水)を汲み上げて貯留タンク3に供給する。すなわち、揚水ポンプ2は、図示するように一端が水中に埋没すると共に他端が貯留タンク3に連通する配管の途中部位に設けられており、当該配管の一端から水を吸い上げて貯留タンク3内に吐出させる。この揚水ポンプ2としては、渦巻きポンプあるいはディフューザポンプを採用することが考えられるが、これら形態のポンプに限定されない。
The wind power generator 1 configured in this manner supplies wind power to the pumping pump 2.
The pump 2 pumps the water (seawater or fresh water) from the water using the wind power generated from the wind power generator 1 and supplies it to the storage tank 3. That is, as shown in the figure, the pump 2 is provided in the middle of a pipe where one end is buried in the water and the other end communicates with the storage tank 3. To discharge. Although it is conceivable to employ a spiral pump or a diffuser pump as the pumping pump 2, it is not limited to these types of pumps.
貯留タンク3は、図示するように、水面からある程度高い位置に固定設置されており、揚水ポンプ2から供給された水を貯留するとともに、貯留した水を水力発電機4に向けて排出する所定容量の容器である。このような貯留タンク3は、支柱1aの所定高さ位置に固定用部材を介して固定されているが、支柱1aとは別に設けられた構造体上に設置されるものであってもよい。なお、貯留タンク3の容量は、電力バッファとしての機能の持続時間を考慮して決定される。 As shown in the figure, the storage tank 3 is fixedly installed at a certain height from the water surface, stores the water supplied from the pumping pump 2, and discharges the stored water toward the hydroelectric generator 4. The container. Such a storage tank 3 is fixed to a predetermined height position of the column 1a via a fixing member, but may be installed on a structure provided separately from the column 1a. Note that the capacity of the storage tank 3 is determined in consideration of the duration of the function as a power buffer.
水力発電機4は、貯留タンク3から落下する水を利用して発電用のタービンを高速で回転させて発電し、当該電力を外部に出力する。すなわち、この水力発電機4は、一端が貯留タンク3の底部に連結すると共に他端が水上に開放する配管の途中部位に設けられており、当該配管内を流下する水をタービンで受けて水力発電電力を発生する装置である。このような水力発電機4が外部に出力する水力発電電力は、上述した風力発電電力に比べると極めて高品質な電力(高品質電力)、つまり電圧振幅、周波数、位相及び波形等の変動が極めて少ないものである。
なお、このような水力発電機4は、上述した揚水ポンプ2及び貯留タンク3とともに、風力発電電力を高品質化するための高品質化手段を構成する。
The hydroelectric generator 4 uses the water falling from the storage tank 3 to generate power by rotating a power generation turbine at a high speed and outputs the electric power to the outside. That is, this hydroelectric generator 4 is provided in the middle part of the pipe that has one end connected to the bottom of the storage tank 3 and the other end opened to the water, and receives the water flowing down in the pipe by the turbine. It is a device that generates generated power. The hydroelectric power output from the hydroelectric generator 4 to the outside has extremely high quality power (high quality power) compared to the wind power generated above, that is, fluctuations in voltage amplitude, frequency, phase, waveform, etc. are extremely high. There are few things.
Such a hydroelectric generator 4 constitutes, together with the above-described pumping pump 2 and the storage tank 3, a quality improving means for improving the quality of the wind power generation.
次に、上記構成の風力発電装置Aの動作について説明する。
まず、風力発電機1は、風力によって風車1cが回転することにより発電機1bを駆動し、この結果として風力発電電力を発電機1bから揚水ポンプ2に供給する。そして、揚水ポンプ2は、この風力発電電力を動力源として水を水中から汲み上げて貯留タンク3に供給する。ここで、風力発電電力は低品質電力であるが、本風力発電装置Aにおいて揚水ポンプ2に要求される機能は単純に水を貯留タンク3に供給することであり、低品質電力を動力源とすることによる問題は特にない。
Next, the operation of the wind power generator A having the above configuration will be described.
First, the wind power generator 1 drives the power generator 1b by rotating the windmill 1c by wind power. As a result, the wind power generator 1 supplies wind power to the pumping pump 2 from the power generator 1b. Then, the pump 2 pumps water from the water using this wind power generation as a power source and supplies it to the storage tank 3. Here, although the wind power generation power is low quality power, the function required of the pumping pump 2 in the wind power generator A is simply to supply water to the storage tank 3, and the low quality power is used as the power source. There is no problem with doing.
風力発電装置Aの稼動初期においては、貯留タンク3にある程度の水量の水が溜まった段階で、貯留タンク3に貯留された水が水力発電機4に供給されて水力発電電力が開始される。すなわち、貯留タンク3に溜まった水は、貯留タンク3の底部から徐々に落下して水力発電機4を駆動して水力発電電力を発生させる。 In the initial operation of the wind turbine generator A, when a certain amount of water has accumulated in the storage tank 3, the water stored in the storage tank 3 is supplied to the hydroelectric generator 4 to start hydroelectric power generation. That is, the water accumulated in the storage tank 3 gradually falls from the bottom of the storage tank 3 and drives the hydroelectric generator 4 to generate hydroelectric power.
このような本風力発電装置Aによれば、風力発電機1で発電された風力発電電力(低品質電力)が水力発電電力(高品質電力)に最終的に変換されて外部に出力される。また、風力発電装置Aの稼動開始後において、一時的に風が止んで風力発電機1が発電を停止しても、所定量の水を蓄えた貯留タンク3が電力バッファとして機能するので、水力発電機4による発電は継続される。したがって、本風力発電装置Aによれば、風力発電が一定期間停止しても水力発電が継続されるので、水力発電電力(高品質電力)を継続して外部に供給することが可能である。 According to this wind power generator A, wind power (low quality power) generated by the wind power generator 1 is finally converted into hydro power (high quality power) and output to the outside. In addition, after the wind power generator A starts operating, even if the wind temporarily stops and the wind power generator 1 stops generating power, the storage tank 3 that stores a predetermined amount of water functions as an electric power buffer. Power generation by the generator 4 is continued. Therefore, according to this wind power generator A, hydroelectric power generation is continued even if the wind power generation is stopped for a certain period of time, so that it is possible to continuously supply hydroelectric power (high quality power) to the outside.
また、本風力発電装置Aによれば、風力発電電力を高品質化するための高品質化手段が揚水ポンプ2、貯留タンク3及び水力発電機4によって構成されているので、従来のリチウムイオン蓄電池やNAS電池等の蓄電池を用いた高品質化手段に比べて、レアメタル、寿命あるいは環境上の問題が解消あるいは著しく軽減される。すなわち、揚水ポンプ2、貯留タンク3及び水力発電機4は何れも、レアメタルを必要とするものではなく、また寿命の点でも蓄電池よりは十分に長く、さらに廃棄した場合に蓄電池のように環境に著しい負荷を与えるものではないので、蓄電池よりも好適な高品質化手段である。 Moreover, according to this wind power generator A, since the quality improvement means for improving the quality of wind power generation is comprised by the pumping pump 2, the storage tank 3, and the hydroelectric generator 4, the conventional lithium ion storage battery Compared with high quality means using a storage battery such as a NAS battery or the like, the rare metal, life or environmental problems are eliminated or significantly reduced. That is, the pump 2, the storage tank 3 and the hydroelectric generator 4 do not require any rare metal, and are sufficiently longer than the storage battery in terms of life, and in the environment like the storage battery when discarded. Since it does not give a significant load, it is a higher quality means more suitable than a storage battery.
〔第2実施形態〕
次に、第2実施形態について説明する。第2実施形態に係る風力発電装置Bは、第2の貯留タンク5を備えた点において上記第1実施形態の風力発電装置Aと相違する。したがって、風力発電装置Bにおいて第1実施形態の風力発電装置Aと同一の機能構成要素には同一符号を付す。
風力発電装置Bは、図2に示すように、風力発電機1、揚水ポンプ2、貯留タンク3、水力発電機4及び第2の貯留タンク5から構成されている。
[Second Embodiment]
Next, a second embodiment will be described. The wind power generator B according to the second embodiment is different from the wind power generator A of the first embodiment in that the second storage tank 5 is provided. Therefore, in the wind power generator B, the same reference numerals are given to the same functional components as those of the wind power generator A of the first embodiment.
As shown in FIG. 2, the wind power generator B includes a wind power generator 1, a pumping pump 2, a storage tank 3, a hydroelectric generator 4, and a second storage tank 5.
風力発電機1は、図2に示すように、第1実施形態とは異なって地上に立設されており、支柱1aと発電機1bと風車1cとから構成されている。支柱1aは、地上に立設される所定高さの固定構造物である。発電機1bは、このような支柱1aの上端部に固定されている。風車1cは、上記発電機1bの駆動軸に固定されており、図示するように例えば3枚のブレードを有するプロペラ型である。このような風力発電機1は、上記第1実施形態と同様に、水平方向に吹く風の力を風車1cで受け、この風車1cに発生する動力(回転力)により発電機1bを駆動して風力発電電力を発生する。 As shown in FIG. 2, the wind power generator 1 is erected on the ground unlike the first embodiment, and includes a support 1a, a power generator 1b, and a windmill 1c. The column 1a is a fixed structure with a predetermined height that is erected on the ground. The generator 1b is fixed to the upper end portion of such a column 1a. The windmill 1c is fixed to the drive shaft of the generator 1b, and is, for example, a propeller type having three blades as illustrated. Similar to the first embodiment, such a wind power generator 1 receives the force of the wind blowing in the horizontal direction by the windmill 1c, and drives the generator 1b by the power (rotational force) generated in the windmill 1c. Generate wind power.
ここで、風力発電機1で発生する風力発電電力は、電力品質の要素である電圧振幅、周波数、位相及び波形等の変動が比較的大きく、場合によっては電力品質として公定されている許容値を満足しないものであり、何らかの高品質化手段によって電力品質を補償する必要がある。 Here, the wind power generated by the wind power generator 1 has relatively large fluctuations in voltage amplitude, frequency, phase, waveform, and the like, which are elements of power quality. It is unsatisfactory, and it is necessary to compensate the power quality by some kind of quality improvement means.
なお、第1実施形態と同様に、上述した風車1cと発電機1bとの間には増速機(図示略)が設けられている。また、風車1cは、水平軸のプロペラ型に限定されない。風車1cの形態は、風力発電機1が設置される場所の風の性質等に応じて、垂直軸のダリウス型、ジャイロミル型あるいはサボニウス型等、各種形態をとることが考えられる。発電機1bは、このような風車1cの形態に対応したものを用いればよい。さらに、プロペラ型の風車1cにおけるブレード枚数は上述した3枚に限定されるものではない。 As in the first embodiment, a speed increaser (not shown) is provided between the windmill 1c and the generator 1b described above. Moreover, the windmill 1c is not limited to a horizontal axis propeller type. It is conceivable that the windmill 1c may take various forms such as a Darius type, a gyromill type, or a Savonius type with a vertical axis depending on the nature of the wind at the place where the wind power generator 1 is installed. What is necessary is just to use the generator 1b corresponding to the form of such a windmill 1c. Furthermore, the number of blades in the propeller-type windmill 1c is not limited to the above three.
このように構成された風力発電機1は、風力発電電力を揚水ポンプ2に供給する。
揚水ポンプ2は、風力発電機1から供給された風力発電電力を利用して第2の貯留タンク5から水を汲み上げて貯留タンク3に供給する。すなわち、揚水ポンプ2は、図示するように一端が第2の貯留タンク5の底部に連結すると共に他端が貯留タンク3に連通する配管の途中部位に設けられており、当該配管の一端から第2の貯留タンク5内の水を吸い上げて貯留タンク3内に吐出させる。この揚水ポンプ2としては、渦巻きポンプあるいはディフューザポンプを採用することが考えられるが、これら形態のポンプに限定されない。
The wind power generator 1 configured in this manner supplies wind power to the pumping pump 2.
The pump 2 pumps water from the second storage tank 5 using the wind power generated from the wind power generator 1 and supplies it to the storage tank 3. That is, as shown in the figure, the pump 2 is connected to the bottom of the second storage tank 5 and the other end is provided in the middle of the pipe communicating with the storage tank 3. The water in the two storage tanks 5 is sucked up and discharged into the storage tank 3. Although it is conceivable to employ a spiral pump or a diffuser pump as the pumping pump 2, it is not limited to these types of pumps.
貯留タンク3は、図示するように、支柱1aとは別に設けられた構造体上の地上からある程度高い位置に固定設置されており、揚水ポンプ2から供給された水を貯留するとともに、貯留した水を水力発電機4に向けて排出する所定容量の容器である。このような貯留タンク3は、構造体上の所定高さ位置に固定されているが、第1実施形態のように支柱1aに固定用部材を介して固定されるものであってもよい。なお、貯留タンク3の容量は、電力バッファとしての機能の持続時間を考慮して決定される。 As shown in the figure, the storage tank 3 is fixedly installed at a certain height above the ground on a structure provided separately from the support column 1a, stores the water supplied from the pumping pump 2, and stores the stored water. Is a container of a predetermined capacity that discharges toward the hydroelectric generator 4. Such a storage tank 3 is fixed at a predetermined height position on the structure, but may be fixed to the column 1a via a fixing member as in the first embodiment. Note that the capacity of the storage tank 3 is determined in consideration of the duration of the function as a power buffer.
水力発電機4は、貯留タンク3から落下する水を利用して発電用のタービンを高速で回転させて発電し、当該電力を外部に出力するとともに、発電利用後に水を第2の貯留タンク5に向けて排出する。すなわち、この水力発電機4は、一端が貯留タンク3の底部に連結すると共に他端が第2の貯留タンク5に連通する配管の途中部位に設けられており、当該配管内を流下する水をタービンで受けて水力発電電力を発生する装置である。このような水力発電機4が外部に出力する水力発電電力は、上述した風力発電電力に比べると極めて高品質な電力(高品質電力)、つまり電圧振幅、周波数、位相及び波形等の変動が極めて少ないものである。 The hydroelectric generator 4 uses the water falling from the storage tank 3 to rotate the power generation turbine at a high speed to generate electric power, and outputs the electric power to the outside. Discharge towards That is, the hydroelectric generator 4 has one end connected to the bottom of the storage tank 3 and the other end provided in the middle of the pipe communicating with the second storage tank 5. It is a device that receives hydroelectric power generated by a turbine. The hydroelectric power output from the hydroelectric generator 4 to the outside is extremely high quality power (high quality power) compared to the wind power generated above, that is, fluctuations in voltage amplitude, frequency, phase, waveform, etc. are extremely high. There are few things.
第2の貯留タンク5は、図示するように、地上に固定設置されており、発電利用後に水力発電機4から排出された水を貯留するとともに、貯留した水が配管を介し揚水ポンプ2に吸引される所定容量の容器である。このような第2の貯留タンク5の容量は、貯留タンク3の容量を考慮して決定される。なお、第2の貯留タンク5は、上述した揚水ポンプ2、貯留タンク3及び水力発電機4とともに、風力発電電力を高品質化するための高品質化手段を構成する。 As shown in the figure, the second storage tank 5 is fixedly installed on the ground, stores water discharged from the hydroelectric generator 4 after power generation, and sucks the stored water into the pumping pump 2 through a pipe. A container having a predetermined capacity. The capacity of the second storage tank 5 is determined in consideration of the capacity of the storage tank 3. In addition, the 2nd storage tank 5 comprises the quality improvement means for improving the quality of wind power generation with the pumping pump 2, the storage tank 3, and the hydroelectric generator 4 mentioned above.
次に、上記構成の風力発電装置Bの動作について説明する。
まず、風力発電機1は、風力によって風車1cが回転することにより発電機1bを駆動し、この結果として風力発電電力を発電機1bから揚水ポンプ2に供給する。そして、揚水ポンプ2は、この風力発電電力を動力源として水を第2の貯留タンク5から汲み上げて貯留タンク3に供給する。ここで、風力発電電力は低品質電力であるが、本風力発電装置Bにおいて揚水ポンプ2に要求される機能は単純に水を貯留タンク3に供給することであり、低品質電力を動力源とすることによる問題は特にない。
Next, the operation of the wind turbine generator B configured as described above will be described.
First, the wind power generator 1 drives the power generator 1b by rotating the windmill 1c by wind power. As a result, the wind power generator 1 supplies wind power to the pumping pump 2 from the power generator 1b. Then, the pump 2 pumps water from the second storage tank 5 and supplies it to the storage tank 3 using this wind power generation power as a power source. Here, although the wind power generation power is low quality power, the function required for the pumping pump 2 in this wind power generation apparatus B is simply to supply water to the storage tank 3, and the low quality power is used as the power source. There is no problem with doing.
風力発電装置Bの稼動初期においては、貯留タンク3にある程度の水量の水が溜まった段階で、貯留タンク3に貯留された水が水力発電機4に供給されて水力発電電力が開始される。すなわち、貯留タンク3に溜まった水は、貯留タンク3の底部から徐々に落下して水力発電機4を駆動して水力発電電力を発生させる。水力発電機4は、発電利用後、水を第2の貯留タンク5に排出する。このように風力発電装置Bでは、水を循環させて水力発電機4に発電させる。 In the initial operation of the wind turbine generator B, when a certain amount of water has accumulated in the storage tank 3, the water stored in the storage tank 3 is supplied to the hydroelectric generator 4 to start hydroelectric power generation. That is, the water accumulated in the storage tank 3 gradually falls from the bottom of the storage tank 3 and drives the hydroelectric generator 4 to generate hydroelectric power. The hydroelectric generator 4 discharges water to the second storage tank 5 after using the power generation. Thus, in the wind power generator B, water is circulated to cause the hydroelectric generator 4 to generate power.
このような本風力発電装置Bによれば、第1実施形態と同様に、高品質電力を供給できるとともに、高品質化手段を構成する揚水ポンプ2、貯留タンク3及び水力発電機4は何れも、レアメタルを必要とするものではなく、また寿命の点でも蓄電池よりは十分に長く、さらに廃棄した場合に蓄電池のように環境に著しい負荷を与えるものではないので、蓄電池よりも好適な高品質化手段を提供できる。また、本風力発電装置Bは、第2の貯留タンク5に貯留する水を循環させて水力発電機4に発電させるので、海、湖、河川等のように水が豊富に存在する場所でなくても設置することができる。 According to the wind power generator B as described above, as in the first embodiment, the high-quality electric power can be supplied, and the pumping pump 2, the storage tank 3, and the hydroelectric generator 4 constituting the quality-improving means are all provided. , It does not require rare metals, and is sufficiently longer than storage batteries in terms of life, and even when discarded, it does not give a significant load on the environment like storage batteries. Means can be provided. Moreover, since this wind power generator B circulates the water stored in the second storage tank 5 and causes the hydroelectric generator 4 to generate power, it is not a place where there is abundant water such as a sea, a lake, or a river. Even can be installed.
〔第3実施形態〕
さらに、第3実施形態について説明する。第3実施形態に係る風力発電装置Cは、図3に示すように、風力発電機1の支柱1a内に、揚水ポンプ2、貯留タンク3、水力発電機4及び第2の貯留タンク5を収容する点において上記第2実施形態の風力発電装置Bと相違し、それ以外の構成及び動作は同一である。
このような風力発電装置Cによれば、上述した第2実施形態の効果に加えて、揚水ポンプ2、貯留タンク3、水力発電機4及び第2の貯留タンク5を設置するスペースが不要になるので、省スペース化を実現することができる。
[Third Embodiment]
Furthermore, a third embodiment will be described. As shown in FIG. 3, the wind turbine generator C according to the third embodiment accommodates a pumping pump 2, a storage tank 3, a hydroelectric generator 4, and a second storage tank 5 in a column 1 a of the wind power generator 1. In the point which does, it differs from the wind power generator B of the said 2nd Embodiment, and another structure and operation | movement are the same.
According to such a wind turbine generator C, in addition to the effects of the second embodiment described above, a space for installing the pumping pump 2, the storage tank 3, the hydroelectric generator 4, and the second storage tank 5 becomes unnecessary. Therefore, space saving can be realized.
 A,B,C 風力発電装置
 1     風力発電機
 2     揚水ポンプ
 3     貯留タンク
 4     水力発電機
 5     第2の貯留タンク
A, B, C Wind turbine generator 1 Wind generator 2 Pumping pump 3 Storage tank 4 Hydroelectric generator 5 Second storage tank

Claims (3)

  1. 風力を利用して発電する風力発電機と、
    前記風力発電機により発電された電力を利用して液体を汲み上げる揚水ポンプと、
    前記揚水ポンプにより汲み上げられた前記液体を貯留する貯留タンクと、
    前記貯留タンクから落下する前記液体を利用して発電する水力発電機とを具備することを特徴とする風力発電装置。
    A wind power generator that uses wind power,
    A pump for pumping liquid using the electric power generated by the wind power generator;
    A storage tank for storing the liquid pumped up by the pump;
    A wind turbine generator comprising: a hydroelectric generator that generates electric power using the liquid falling from the storage tank.
  2. 発電利用後に前記水力発電機から排出された前記液体を貯留する第2の貯留タンクを具備し、
    前記揚水ポンプは、前記第2の貯留タンクに貯留されている前記液体を汲み上げることを特徴とする請求項1に記載の風力発電装置。
    Comprising a second storage tank for storing the liquid discharged from the hydroelectric generator after power generation,
    The wind pump according to claim 1, wherein the pump is configured to pump up the liquid stored in the second storage tank.
  3. 前記風力発電機は、支柱と、前記支柱の上端部に固定されている発電機と、前記発電機の駆動軸に固定されている風車とから構成されており、
    前記支柱内に、前記揚水ポンプ、前記貯留タンク、前記水力発電機及び前記第2の貯留タンクが収容されていることを特徴とする請求項2に記載の風力発電装置。
    The wind power generator is composed of a support, a generator fixed to the upper end of the support, and a windmill fixed to a drive shaft of the generator,
    The wind power generator according to claim 2, wherein the pump, the storage tank, the hydroelectric generator, and the second storage tank are accommodated in the support column.
PCT/JP2010/070878 2010-11-24 2010-11-24 Wind power generation device WO2012070115A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070878 WO2012070115A1 (en) 2010-11-24 2010-11-24 Wind power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070878 WO2012070115A1 (en) 2010-11-24 2010-11-24 Wind power generation device

Publications (1)

Publication Number Publication Date
WO2012070115A1 true WO2012070115A1 (en) 2012-05-31

Family

ID=46145492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070878 WO2012070115A1 (en) 2010-11-24 2010-11-24 Wind power generation device

Country Status (1)

Country Link
WO (1) WO2012070115A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985299A (en) * 2018-09-14 2020-04-10 广州雅图新能源科技有限公司 Vertical axis wind power and water power superposition power generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478425A (en) * 1977-12-05 1979-06-22 Mitsubishi Heavy Ind Ltd Power generating system
JPS57188783A (en) * 1981-05-15 1982-11-19 Shigeyoshi Jinnai Wind-force accumulating and storing power generator
JP2004019626A (en) * 2002-06-20 2004-01-22 Matsushita Electric Ind Co Ltd Wind power generator
JP2008520861A (en) * 2004-11-23 2008-06-19 ヴェスタス,ウィンド,システムズ エー/エス Wind turbine, wind turbine assembly and handling method, and use thereof
JP2009531579A (en) * 2006-03-25 2009-09-03 クリッパー・ウィンドパワー・テクノロジー・インコーポレーテッド Thermal management system for wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478425A (en) * 1977-12-05 1979-06-22 Mitsubishi Heavy Ind Ltd Power generating system
JPS57188783A (en) * 1981-05-15 1982-11-19 Shigeyoshi Jinnai Wind-force accumulating and storing power generator
JP2004019626A (en) * 2002-06-20 2004-01-22 Matsushita Electric Ind Co Ltd Wind power generator
JP2008520861A (en) * 2004-11-23 2008-06-19 ヴェスタス,ウィンド,システムズ エー/エス Wind turbine, wind turbine assembly and handling method, and use thereof
JP2009531579A (en) * 2006-03-25 2009-09-03 クリッパー・ウィンドパワー・テクノロジー・インコーポレーテッド Thermal management system for wind turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985299A (en) * 2018-09-14 2020-04-10 广州雅图新能源科技有限公司 Vertical axis wind power and water power superposition power generator

Similar Documents

Publication Publication Date Title
US8492918B1 (en) Hybrid water pressure energy accumulating tower(s) connected to a wind turbine or power plants
US8030790B2 (en) Hybrid water pressure energy accumulating wind turbine and method
US7893556B1 (en) Vertical axis wind turbine with direct drive generator
CN204627867U (en) A kind of marine power generation device
CN108843504A (en) A kind of offshore wind power system of combination compressed-air energy storage and water-storage
WO2009111861A1 (en) Submerged generation and storage system (subgenstor)
US20150233353A1 (en) Vertical axis wind turbine
KR20200129235A (en) Hydrogen generation system using seawater and renewable energy
JP2017075597A (en) Storage container storing type flywheel integral formation vertical shaft wind turbine power generator
JP3169982U (en) Power ship
GB2546251A (en) Offshore wind turbine
WO2012070115A1 (en) Wind power generation device
CN106930899A (en) The electric power system and method for supplying power to of the yaw motor in a kind of blower fan
CN103388555A (en) Wind power generation device used for ship
KR20100010406A (en) Ship having apparatus which generates power and electricity using the force of water and wind
CN205605360U (en) Oxygenation electricity generation windmill of vertical axle
CN102251928A (en) Wind force ocean current dual-effect power generation device
JP3201957U (en) Vertical axis wind turbine generator with integrated containment flywheel
CN206742943U (en) A kind of new energy compensating generator
CN109944744B (en) Offshore magnetic suspension vertical axis wind power sea water desalination system
KR20100122253A (en) The power generation device and it's method which a wind and current was used
US20030167760A1 (en) Self-powered-hydro-electric-power generator
CN205669458U (en) A kind of electric power system of the yaw motor in blower fan
CN101813067A (en) Tunable wind driven generator upright tube
CN103388561B (en) A kind of wind power generation plant for boats and ships

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP