WO2012069434A1 - Verfahren zur herstellung n-heterozyklischer optisch aktiver alkohole - Google Patents

Verfahren zur herstellung n-heterozyklischer optisch aktiver alkohole Download PDF

Info

Publication number
WO2012069434A1
WO2012069434A1 PCT/EP2011/070607 EP2011070607W WO2012069434A1 WO 2012069434 A1 WO2012069434 A1 WO 2012069434A1 EP 2011070607 W EP2011070607 W EP 2011070607W WO 2012069434 A1 WO2012069434 A1 WO 2012069434A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
sequence
alkyl
sequences
azoarcus
Prior art date
Application number
PCT/EP2011/070607
Other languages
English (en)
French (fr)
Inventor
Nina Schneider
Melanie Bonnekessel
Michael Breuer
Jürgen Däuwel
Klaus Ditrich
Ulrich Karl
Tobias STÄB
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP11784705.3A priority Critical patent/EP2643467A1/de
Publication of WO2012069434A1 publication Critical patent/WO2012069434A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/20Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms
    • C07D211/22Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic

Definitions

  • the present invention relates to a process for the preparation of N-heterocyclic optically active alcohols by dehydrogenases.
  • dehydrogenases as biocatalysts
  • the function of dehydrogenases as biocatalysts is well known [Chemico-Biological Interactions (2003) 143: 247, Journal of Biological Chemistry (2002) 277: 25677].
  • the technical application of this class of enzymes for the preparation of fine chemicals is documented [Tetrahedron (2004) 60: 633, Trends Biotechnol (1999) 17: 487].
  • the known dehydrogenase differ in their activity and specificity. A distinction is made between them in terms of their stereoselectivity in so-called 'Prelog' and 'anti' Prelog enzymes ⁇ Pure and Applied Chemistry, (1964), 9: 119).
  • the present invention relates to a process for the preparation of optically active alcohols of the formula I.
  • R are alkyl groups, which in turn may be mono- or polysubstituted, by alkyl, halogen, SH.SR 3 , OH, OR 3 , NO 2 , CN, CO, COOR 3 , NR 3 R 4 or NR 3 R 3 R 5+ X " , where R 3 , R 4 and R 5 independently of one another are H or a lower alkyl or lower alkoxy radical and X " is a counterion
  • R 2 represents N-containing heteroaryl groups, which in turn may be mono- or polysubstituted, by alkyl, halogen, SH.SR 3 , OH, OR 3 , NO 2 , CN, CO, COOR 3 , NR 3 R 4 or NR 3 R 3 R 5+ X " , wherein R 3 , R 4 and R 5 independently represent H or a lower alkyl or lower alkoxy radical and X " represents a counterion by reduction of the corresponding ketone, wherein the reduction with a dehydrogenase with the polypeptide sequence SEQ ID NO: 2 or NO: 4, or with a Polypeptide sequence in which up to 25% of the amino acid residues to SEQ ID NO: 2 or NO: 4 by deletion; Insertion, substitution or a combination thereof are changed.
  • a particularly good embodiment of the invention consists in a method for producing optically active alcohols of formula I, wherein R 1, C1-C5-alkyl, and R 2 is pyridinyl, in particular 4-pyridinyl, where the radicals R1 and / or R2 optionally substituted by halogen monosubstituted.
  • the process according to the invention gives optically active alcohols having (S) -configuration.
  • This process is also suitable for the preparation of optically active alcohols which contain N-containing non-aromatic heterocycles by subsequently hydrogenating the N-containing heteroaryl radical following the process described above.
  • Another object of the invention is a process for the preparation of optically active alcohols of formula III,
  • R represents alkyl groups, which in turn may be monosubstituted or polysubstituted, by alkyl, halogen, SH.SR 3 , OH, OR 3 , NO 2 , CN, CO, COOR 3 , NR 3 R 4 or NR 3 R 3 R 5+ X " , where R 3 , R 4 and R 5 independently of one another are H or a lower alkyl or lower alkoxy radical and X " is a counterion.
  • [R 2 ] H represents saturated N-containing heterocycles, which in turn may be monosubstituted or polysubstituted, by alkyl, halogen, SH.SR 3 , OH, OR 3 , NO 2 , CN, CO, COOR 3 , NR 3 R 4 or NR 3 R 3 R 5 + X " , where R 3 , R 4 and R 5 independently of one another are H or a lower alkyl or lower alkoxy radical and X " is a counterion.
  • the hydrogenation under step (b) can be carried out with all methods known to the person skilled in the art for the hydrogenation of aromatics.
  • Hydrogenation catalysts are preferably used here Use containing the elements Ru, Co, Rh, Ni, Pd or Pt (see Yang, P., eds., The Chemistry of Nanostructured Materials, World Scientific Publishing: Singapore, (2003); 357.)
  • the isolation and work-up of the resulting reaction product can be carried out by all common methods such as distillation, chromatography and crystallization. Usually, a distillation step, preferably a molecular distillation, is followed.
  • the product can normally be obtained in high chemical purity, for example by crystallization.
  • Alkyl stands for straight-chain or branched alkyl radicals 1 to 10, preferably 2-8, in particular 3-6 C-atoms, in particular methyl, ethyl, i- or n-propyl, n-, i-, sec- or tert Butyl, n-pentyl or 2-methyl-butyl, n-hexyl, 2-methyl-pentyl, 3-methyl-pently, 2-ethyl-butyl, 2-ethyl-hexyl.
  • Halogen is fluorine, chlorine, bromine or iodine, in particular fluorine or chlorine.
  • “Lower alkyl” denotes straight-chain or branched alkyl radicals of 1 to 6 C atoms, such as methyl, ethyl, isopropyl or n-propyl, n-, i-, sec- or tert-butyl, n-pentyl or 2-methyl- Butyl, n-hexyl, 2-methyl-pentyl, 3-methyl-pentane, 2-ethyl-butyl.
  • N-containing heteroaryl denotes a mononuclear or polynuclear, preferably mono- or binuclear, optionally substituted heteroaromatic radical which carries at least one nitrogen atom as constituent of the aromatic system, in particular for a pyridinyl bound via an arbitrary ring position
  • the N-containing heteroaryl preferably contains 5 and 6 rings
  • the N-containing heteroaryl may, in addition to the obligatory presence of one N atom, also carry further heteroatoms selected from among N, O and S.
  • These N-containing heteroaryls Ryl radicals may optionally carry 1, 2 or 3 identical or different substituents, for example halogen, lower alkyl, lower alkoxy as defined above or trifluoromethyl.
  • the linkage of the N-containing heteroaryl radical with the other radicals of the compound of the formula I can be effected via any ring position of the N-containing heteroaryl radical.
  • the linking is preferably carried out as 4-pyridinyl.
  • dehydrogenases are, above all, NAD- or NADP-dependent dehydrogenases (EC 1.1.1.x), in particular alcohol dehydrogenases (EC1.1.1.1 or EC1.1.1.2), which facilitate the selective reduction of the ketone to P effect / / og'-alcohol.
  • the dehydrogenase is preferably obtained from a microorganism, more preferably from a bacterium, a fungus, in particular a yeast, each deposited in strain collections or obtainable from isolates of natural source, such as soil samples, biomass samples and the like, or by de novo gene synthesis.
  • the dehydrogenase may be used in purified or partially purified form or in the form of the original microorganism or a recombinant host organism which expresses the dehydrogenase.
  • Methods for recovering and purifying dehydrogenases from microorganisms are well known to those skilled in the art, e.g. from K. Nakamura & T. Matsuda, "Reduction of Ketones” in K. Drauz and H. Waldmann, Enzyme Catalysis in Organic Synthesis 2002, Vol.III, 991-1032, Wley-VCH, Weinheim.
  • "Recombinant methods of production of dehydrogenases are also known, for example from W. Hummel, K. Abokitse, K. Drauz, C. Rollmann and H. Gröger, Adv. Synth. Catal. 2003, 345, No. 1 + 2, pp. 153-159.
  • Suitable bacteria are, for example, those of the orders of the Burkholderiales, Hydrophophilales, Methylophilales, Neisseriales, Nitrosomonadales, Procabacteriales or Rhodocyclales.
  • dehydrogenases from the family of the family Rhodocyclaceae. Particular preference is given to dehydrogenases from the genera Azoarcus Azonexus, Azospira, Azovibrio, Dechloromonas, Ferribacterium, Petrobacter, Propionivibrio, Quadricoccus, Rhodocyclus, Sterolibacterium, Thauera and Zoogloea.
  • dehydrogenases from species of the genera Azoarcus.
  • the reduction with the dehydrogenase in the presence of a suitable cofactor is usually NADH and / or NADPH.
  • a suitable cofactor also referred to as cosubstrate.
  • the cofactor used for the reduction of the ketone is usually NADH and / or NADPH.
  • dehydrogenases can be used as cellular systems which inherently contain cofactor, or alternative redox mediators are added (A. Schmidt, F. Hollmann and B. Buehler "Oxidation of Alcohols" in K. Drauz and H. Waldmann, Enzyme Catalysis in Organic Synthesis 2002, Vol. III, 991-1032, Wley-VCH, Weinheim).
  • the reduction with the dehydrogenase is usually carried out in the presence of a suitable reducing agent which regenerates the oxidized cofactor in the course of the reduction.
  • suitable reducing agents are sugars, in particular the hexoses, such as glucose, mannose, fructose, and / or oxidizable alcohols, in particular ethanol, propanol, butanol, pentanol or isopropanol, and also formate, phosphite or molecular hydrogen.
  • a second dehydrogenase e.g.
  • Glucose dehydrogenase when using glucose as a reducing agent phosphite dehydrogenase when using phosphite as a reducing agent or formate dehydrogenase in the use of formate as a reducing agent, are added. This can be used as a free or immobilized enzyme or in the form of free or immobilized cells. Their production can be both separately and through
  • the dehydrogenases used according to the invention can be used freely or immobilized.
  • An immobilized enzyme is an enzyme which is fixed to an inert carrier. Suitable support materials and the enzymes immobilized thereon are known from EP-A-1 149849, EP-A-1 069 183 and DE-OS 100193773 and from the references cited therein. The disclosure of these documents is hereby incorporated by reference in its entirety.
  • Suitable support materials include, for example, clays, clay minerals such as kaolinite, diatomaceous earth, perlite, silica, alumina, sodium carbonate, calcium carbonate, cellulose powders, anion exchange materials, synthetic polymers such as polystyrene, acrylic resins, phenolformaldehyde resins, polyurethanes and polyolefins such as polyethylene and polypropylene.
  • the support materials are used to prepare the supported Enzymes are usually used in a finely divided, particulate form, with porous forms being preferred.
  • the particle size of the carrier material is usually not more than 5 mm, in particular not more than 2 mm (grading curve).
  • Carrier materials are, for example, calcium alginate, and carrageenan.
  • Enzymes as well as cells can also be cross-linked directly with glutaraldehyde (cross-linking to CLEAs). Corresponding and further immobilization methods are described, for example, in J. Lalonde and A. Margolin "Immobilization of Enzymes" in K. Drauz and H. Waldmann, Enzyme Catalysis in Organic Synthesis 2002, Vol. III, 991-1032, Wley-VCH, Weinheim.
  • the reaction can be carried out in aqueous or non-aqueous reaction media or in 2-phase systems or (micro) emulsions.
  • the aqueous reaction media are preferably buffered solutions which generally have a pH of from 4 to 8, preferably from 5 to 8.
  • the aqueous solvent may contain, in addition to water, at least one alcohol, e.g. Contain ethanol or isopropanol or dimethyl sulfoxide.
  • Non-aqueous reaction media are understood as meaning reaction media which contain less than 1% by weight, preferably less than 0.5% by weight, of water, based on the total weight of the reaction medium.
  • the reaction is carried out in an organic solvent.
  • Suitable solvents are, for example, aliphatic hydrocarbons, preferably having 5 to 8 carbon atoms, such as pentane, cyclopentane, hexane, cyclohexane, heptane, octane or cyclooctane, halogenated aliphatic hydrocarbons, preferably having one or two carbon atoms, such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane or tetrachloroethane , aromatic hydrocarbons, such as benzene, toluene, the xylenes, chlorobenzene or dichlorobenzene, aliphatic acyclic and cyclic ethers or
  • the reduction with the dehydrogenase is carried out in an aqueous-organic, in particular aqueous reaction medium.
  • the ketone to be reduced is preferably used in a concentration of 0, 1 g / l to 500 g / l, more preferably from 1 g / l to 200 g / l in the enzymatic reduction and can be followed continuously or discontinuously.
  • the enzymatic reduction is generally carried out at a reaction temperature below the deactivation temperature of the dehydrogenase used, and preferably at least -10 ° C. More preferably, it is in the range of 0 to 100 ° C, in particular from 15 to 60 ° C and especially from 20 to 40 ° C, for example at about 30 ° C.
  • the ketone with the dehydrogenase, the solvent and optionally the coenzymes optionally present a second dehydrogenase for the regeneration of the coenzyme and / or other reducing agents and mix the mixture, z. B. by stirring or shaking.
  • a second dehydrogenase for the regeneration of the coenzyme and / or other reducing agents and mix the mixture, z. B. by stirring or shaking.
  • the mixture can be circulated through the reactor until the desired conversion is achieved.
  • the keto group of the ketone is reduced to an OH group, wherein essentially one of the two enantiomers of the alcohol is formed.
  • the reduction will lead to a conversion of at least 70%, particularly preferably at least 85% and in particular of at least 95%, based on the ketone contained in the mixture.
  • the sequential reduction of the ketone can be followed by conventional methods such as gas chromatography or high pressure liquid chromatography.
  • a first subject of the invention relates to functional phenylethanol dehydrogenase mutants derived from the phenylethanol dehydrogenase EbN1 from Azoarcus sp. with an amino acid sequence according to SEQ ID NO: 2.
  • Particularly preferred dehydrogenases used in the process according to the invention are alcohol dehydrogenases having the following properties:
  • Alcohol dehydrogenase from Azoarcus having an amino acid sequence according to SEQ ID NO: 2 and alcohol dehydrogenases with amino acid sequences in which up to 25%, preferably up to 15%, more preferably up to 10, in particular up to 5% of the amino acid residues compared to SEQ ID NO : 2 by deletion; Insertion, substitution or a combination thereof are changed.
  • the invention relates to functional alcohol dehydrogenase mutants derived from the alcohol dehydrogenase EbN1 from Azoarcus sp. having an amino acid sequence as shown in SEQ ID NO: 2, wherein the mutant comprises at least one mutation in at least one sequence region selected from
  • Sequence area 142 to 153 also referred to as Loop 2
  • Sequence region 190 to 21 1 also referred to as helix alpha FG1
  • the invention relates to functional alcohol dehydrogenase mutants which additionally comprise at least one further mutation in a further sequence region, chosen from
  • Sequence region 138 to 141 hydrophilic region binding pocket, also referred to as Loop 2
  • the invention relates to functional alcohol dehydrogenase mutants derived from the alcohol dehydrogenase EbN1 from Azoarcus sp. with an amino acid sequence according to SEQ ID NO: 2, wherein the mutant is selected from among the mutants listed in Table 1. Particular mention should be made of mutants, where at least one of the following residues is mutated:
  • mutants according to the invention are selected from mutants containing at least one of the following mutations:
  • Y151X A A, R, N, E, Q, G, H, I, L, M, T or V;
  • “Functional equivalents” or analogues of the specifically disclosed enzymes are, in the context of the present invention, different polypeptides which furthermore have the desired biological activity, such as substrate specificity "Functional equivalents” enzymes which reduce from the ketone to the corresponding "anti-Prelog” alcohol and which contain at least 20%, preferably 50%, more preferably 75%, most preferably 90% of the activity of an enzyme comprising one of Seq ID
  • functional equivalents are preferably stable between pH 4 to 10 and advantageously have a pH optimum between pH 5 and 8 and a temperature optimum in the range from 20 ° C to 80 ° C.
  • “functional equivalents” are in particular also understood to mean mutants which have a different amino acid than the one specifically mentioned in at least one sequence position of the abovementioned amino acid sequences but nevertheless possess one of the abovementioned biological activities.
  • “Functional equivalents” thus include those by one or more Amino acid additions, substitutions, deletions and / or inversions available mutants, said changes can occur in any sequence position, as long as they lead to a mutant with the property profile according to the invention.
  • Functional equivalence is especially given when the Reactivity pattern between mutant and unchanged polypeptide match qualitatively, ie, for example, the same substrates are reacted at different speeds.
  • Val lle; Leu "Functional equivalents” in the above sense are also “precursors" of the described polypeptides and “functional derivatives” and “salts” of the polypeptides.
  • Precursors are natural or synthetic precursors of the polypeptides with or without the desired biological activity.
  • Salts are understood as meaning both salts of carboxyl groups and acid addition salts of amino groups of the protein molecules of the invention
  • Salts of carboxyl groups can be prepared in a manner known per se and include inorganic salts such as, for example, sodium, calcium, ammonium, iron and zinc salts, and salts with organic bases such as amines such as triethanolamine, arginine, lysine, piperidine and the like, acid addition salts such as salts with mineral acids such as hydrochloric acid or sulfuric acid and salts with organic acids such as acetic acid and oxalic acid
  • “Functional derivatives" of polypeptides according to the invention can also be prepared at functional amino acid side groups or at their N- or C-terminal end using known techniques.
  • Such derivatives include, for example, aliphatic esters of carboxylic acid groups, amides of carboxylic acid groups, obtainable by reaction with ammonia or with a primary or secondary amine; N-acyl derivatives of free amino groups, provided by reaction with acyl groups; or O-acyl derivatives of free hydroxy groups prepared by reaction with acyl groups.
  • “functional equivalents” include proteins of the abovementioned type in deglycosylated or glycosylated form as well as modified forms obtainable by altering the glycosylation pattern.
  • “functional equivalents” also include polypeptides that are accessible from other organisms, as well as naturally occurring variants. For example, it is possible to determine regions of homologous sequence regions by sequence comparison and to determine equivalent enzymes on the basis of the specific requirements of the invention.
  • “Functional equivalents” also include fragments, preferably single domains or sequence motifs, of the polypeptides of the invention which, for example, have the desired biological function.
  • Fusion equivalents are also fusion proteins which have one of the above-mentioned polypeptide sequences or functional equivalents derived therefrom and at least one further functionally distinct heterologous sequence in functional N- or C-terminal linkage (ie without substantial substantial functional impairment of the fusion protein moieties)
  • heterologous sequences are, for example, signal peptides or enzymes.
  • homologs to the specifically disclosed proteins which have at least 75%, in particular at least 85%, such as 90%, 95%, 97% or 99%, homology to one of the specifically disclosed amino acid sequences, calculated according to Acyl, Sci. (USA) 85 (8), 1988, 2444-2448
  • a percent homology of a homologous polypeptide of the invention specifically means percent identity of the amino acid residues relative to the total length of one of the herein specifically described amino acid sequences.
  • Homologs of the proteins or polypeptides according to the invention can be produced by mutagenesis, for example by point mutation or truncation of the protein.
  • Homologs of the proteins of the invention can be identified by screening combinatorial libraries of mutants such as truncation mutants.
  • a variegated library of protein variants can be generated by combinatorial mutagenesis at the nucleic acid level, such as by enzymatic ligation of a mixture of synthetic Oligonucleotides.
  • methods can be used to prepare libraries of potential homologs from a degenerate oligonucleotide sequence.
  • degenerate gene sequence can be carried out in a DNA synthesizer, and the synthetic gene can then be ligated into a suitable expression vector.
  • the use of a degenerate gene set allows for the provision of all sequences in a mixture that encode the desired set of potential protein sequences.
  • Methods for the synthesis of degenerate oligonucleotides are known to the person skilled in the art (eg Narang, SA (1983) Tetrahedron 39: 3; Itakura et al. (1984) Annu. Rev. Biochem 53: 323; Itakura et al., (1984) Science 198: 1056; Ike et al. (1983) Nucleic Acids Res. 1 1: 477).
  • REM Recursive ensemble mutagenesis
  • the invention relates to the use of nucleic acid sequences (single-stranded and double-stranded DNA and RNA sequences, such as cDNA and mRNA) which code for an enzyme with dehydrogenase activity according to the invention.
  • nucleic acid sequences which are e.g. for amino acid sequences according to Seq ID 2 or SEQ ID 4 or characteristic partial sequences thereof, or nucleic acid sequences according to Seq ID 1 or SEQ ID 3 or characteristic partial sequences thereof.
  • nucleic acid sequences mentioned herein can be prepared in a manner known per se by chemical synthesis from the nucleotide units, for example by fragment condensation of individual overlapping, complementary nucleic acid units of the double helix.
  • the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner by the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • the attachment of synthetic oligonucleotides and filling of gaps with the aid of the Klenow fragment of the DNA polymerase and ligation reactions and general cloning methods are described in Sambrook et al. (1989), Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.
  • the invention also relates to nucleic acid sequences (single- and double-stranded DNA and RNA sequences, such as cDNA and mRNA) coding for one of the above polypeptides and their functional equivalents, which are e.g. are accessible using artificial Nukleototidanaloga.
  • the invention relates both to isolated nucleic acid molecules which code for polypeptides or proteins or biologically active portions thereof according to the invention, as well as nucleic acid fragments which are e.g. for use as hybridization probes or primers for the identification or amplification of coding nucleic acids of the invention.
  • nucleic acid molecules of the invention may also contain untranslated sequences from the 3 'and / or 5' end of the coding gene region
  • the invention further comprises the nucleic acid molecules complementary to the specifically described nucleotide sequences or a portion thereof.
  • the nucleotide sequences of the invention enable the generation of probes and primers useful for the identification and / or cloning of homologous sequences in other cell types and organisms.
  • probes or primers usually comprise a nucleotide sequence region which is under "stringent" conditions (see below) at least about 12, preferably at least about 25, such as about 40, 50 or 75 consecutive nucleotides of a sense strand of a nucleic acid sequence of the invention or a corresponding nucleic acid sequence Antisense strands hybridizes.
  • nucleic acid molecule is separated from other nucleic acid molecules present in the natural source of the nucleic acid and, moreover, may be substantially free of other cellular material or culture medium when produced by recombinant techniques, or free from chemical precursors or other chemicals if it is synthesized chemically.
  • a nucleic acid molecule according to the invention can be isolated by means of standard molecular biological techniques and the sequence information provided according to the invention.
  • cDNA can be isolated from a suitable cDNA library by using one of the specifically disclosed complete sequences, or a portion thereof, as a hybridization probe and standard hybridization techniques (such as described in Sambrook, J., Fritsch, EF and Maniatis, T.
  • nucleic acid molecule comprising one of the disclosed sequences or a portion thereof can be isolated by polymerase chain reaction, using the oligonucleotide primers prepared on the basis of this sequence.
  • the thus amplified nucleic acid can be cloned into a suitable vector and characterized by DNA sequence analysis.
  • the oligonucleotides according to the invention can also be prepared by standard synthesis methods, for example with an automatic DNA synthesizer.
  • the nucleic acid sequences according to the invention can be identified and isolated in principle from all organisms.
  • the nucleic acid sequences according to the invention or the homologues thereof can be isolated from fungi, yeasts, archees or bacteria.
  • bacteria are called gram-negative and gram-positive bacteria.
  • the nucleic acids of Gram-negative bacteria according to the invention are preferably advantageously from a-proteobacteria, ⁇ -proteobacteria or ⁇ -proteobacteria, more preferably from bacteria of the orders Burkholderiales, Hydrogenophilales, Methylophilales, Neisseriales, Nitro-somonadales, Procabacteriales or Rhodocyclales ..
  • bacteria of the family Rhodocyclaceae Particularly preferred from the genus Azoarcus.
  • Azoarcus sp. EbN Azoarcus sp. FL05
  • Azoarcus sp. HA Azoarcus sp. HxN1
  • Azoarcus sp. mXyN Azoarcus sp.
  • PbN Azoarcus sp. PH002
  • Azoarcus sp. T Azoarcus sp. ToN 1.
  • Nucleic acid sequences according to the invention can be isolated from other organisms, for example via genomic or cDNA libraries, by conventional hybridization methods or the PCR technique, for example. These DNA sequences hybridize under standard conditions with the sequences according to the invention. For hybridization, it is advantageous to obtain short oligonucleotides of the conserved regions, for example from the active center, which are determined by comparisons with a dehydrogenase according to the invention in a manner known to the person skilled in the art can, used. However, it is also possible to use longer fragments of the nucleic acids according to the invention or the complete sequences for the hybridization.
  • nucleic acid hybrids are about 10 ° C lower than those of DNA: RNA hybrids of the same length.
  • the hybridization conditions for DNA are 0.1X SSC and temperatures between about 20 ° C to 45 ° C, preferably between about 30 ° C to 45 ° C.
  • the hybridization conditions are advantageously 0.10X SSC and temperatures between about 30 ° C to 55 ° C, preferably between about 45 ° C to 55 ° C.
  • temperatures for the hybridization are exemplary calculated melting temperature values for a nucleic acid with a length of about 100 nucleotides and a G + C content of 50% in the absence of formamide.
  • the experimental conditions for DNA hybridization are described in relevant textbooks of genetics, such as Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989, and can be determined by formulas known to those skilled in the art, for example, depending on the length of the nucleic acids that calculate type of hybrid or G + C content. Further information on hybridization can be found in the following textbooks by the person skilled in the art: Ausubel et al.
  • the invention also relates to derivatives of the specifically disclosed or derivable nucleic acid sequences.
  • nucleic acid sequences according to the invention can be derived from Seq ID 1 or Seq ID 3 and differ therefrom by addition, substitution, insertion or deletion of individual or several nucleotides, but furthermore code for polypeptides having the desired property profile.
  • nucleic acid sequences which comprise so-called silent mutations or, corresponding to the codon usage, a special source or vector Host organism, compared to a specific sequence mentioned are changed, as well as naturally occurring variants, such as splice variants or allelic variants thereof.
  • Articles are also available through conservative nucleotide substitutions (i.e., the amino acid in question is replaced by an amino acid of like charge, size, polarity, and / or solubility).
  • the invention also relates to the molecules derived by sequence polymorphisms from the specifically disclosed nucleic acids. These genetic polymorphisms may exist between individuals within a population due to natural variation. These natural variations usually cause a variance of 1 to 5% in the nucleotide sequence of a gene.
  • Examples of derivatives of a nucleic acid sequence according to the invention are allelic variants which have at least 40% homology at the derived amino acid level, preferably at least 60% homology, very particularly preferably at least 80, 85, 90, 93, 95 or 98% homology over the entire sequence range (for homology at the amino acid level, see the above discussion of the polypeptides). About partial regions of the sequences, the homologies may be advantageous higher.
  • derivatives are also to be understood as meaning homologs of the nucleic acid sequences according to the invention, for example fungal or bacterial homologs, truncated sequences, single-stranded DNA or RNA of the coding and noncoding DNA sequence.
  • promoters upstream of the indicated nucleotide sequences may be altered by one or more nucleotide exchanges, insertions, inversions and / or deletions, but without impairing the functionality or efficacy of the promoters.
  • the promoters can be increased in their effectiveness by changing their sequence or completely replaced by more effective promoters of alien organisms.
  • Derivatives are also to be understood as variants whose nucleotide sequence ranges from -1 to -1000 bases upstream of the start codon or 0 to 1000 bases downstream the stop codon were changed so that the gene expression and / or protein expression is changed, preferably increased.
  • the invention also encompasses nucleic acid sequences which hybridize with the abovementioned coding sequences under "stringent conditions.”
  • These polynucleotides can be found in the screening of genomic or cDNA libraries and, if appropriate, multiply therefrom with suitable primers by means of PCR and subsequently isolated, for example, with suitable probes
  • polynucleotides according to the invention can also be chemically synthesized, a property which is understood to be the ability of a poly- or oligonucleotide to bind under stringent conditions to a nearly complementary sequence, while under these conditions unspecific binding between non-complementary partners is avoided the sequences should be complementary to 70-100%, preferably 90-100%, The property of complementary sequences to be able to specifically bind to one another, for example, in the northern or S use outhern blot technique or in the primer binding in PCR or RT-PCR.
  • oligonucleotides are used from a length of 30 base pairs.
  • stringent conditions is meant, for example, in the Northern blot technique, the use of a 50 - 70 ° C, preferably 60 - 65 ° C warm wash, for example, 0.1x SSC buffer with 0.1% SDS (20x SSC: 3M NaCl , 0.3 M Na citrate, pH 7.0) for the elution of unspecifically hybridized cDNA probes or oligonucleotides.
  • SSC buffer with 0.1% SDS 20x SSC: 3M NaCl , 0.3 M Na citrate, pH 7.0
  • only highly complementary nucleic acids remain bound to each other.
  • the setting of stringent conditions is known to the person skilled in the art and is described, for example, in US Pat. in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. described.
  • the invention also relates to expression constructs comprising, under the genetic control of regulatory nucleic acid sequences, a nucleic acid sequence coding for a polypeptide according to the invention; and vectors comprising at least one of these expression constructs.
  • Such constructs according to the invention preferably comprise a promoter 5'-upstream of the respective coding sequence and a terminator sequence 3'-downstream and optionally further customary regulatory elements, in each case operatively linked to the coding sequence.
  • Operaational linkage is understood to mean the sequential arrangement of promoter, coding sequence, terminator and optionally further regulatory elements in such a way, that each of the regulatory elements can fulfill its function in the expression of the coding sequence as intended.
  • operably linked sequences are targeting sequences as well as enhancers, polyadenylation signals and the like.
  • Other regulatory elements include selectable markers, amplification signals, origins of replication, and the like. Suitable regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
  • a nucleic acid construct according to the invention is in particular to be understood as meaning those in which the gene for a dehydrogenase according to the invention differs with one or more regulatory signals for the control, e.g. Increased, the gene expression was operatively or functionally linked.
  • the natural regulation of these sequences may still be present before the actual structural genes and possibly have been genetically altered so that the natural regulation is switched off and the expression of the genes has been increased.
  • the nucleic acid construct can also be simpler, ie no additional regulatory signals have been inserted before the coding sequence and the natural promoter with its regulation has not been removed. Instead, the natural regulatory sequence is mutated so that regulation stops and gene expression is increased.
  • a preferred nucleic acid construct advantageously also contains one or more of the already mentioned “enhancer” sequences, functionally linked to the promoter, which allow increased expression of the nucleic acid sequence. Additional advantageous sequences can also be inserted at the 3 'end of the DNA sequences, such as further regulatory elements or terminators.
  • the nucleic acids of the invention may be contained in one or more copies in the construct.
  • the construct may also contain further markers, such as antibiotic resistance or auxotrophic complementing genes, optionally for selection on the construct.
  • Advantageous regulatory sequences for the process according to the invention are, for example, in promoters such as cos-, tac-, trp-, tet-, trp-tet-, Ipp-, lac-, Ipp-lac-, laclq " T7-, T5-, T3- , gal, trc, ara, rhaP (rhaP B AD) SP6, lambda P R - or contained in the lambda P L promoter, which are advantageously used in gram-negative bacteria in the yeast or fungal promoters ADC1, MFalpha, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH.
  • promoters of pyruvate decarboxylase and methanol oxidase are also included. See, for example, Hansenula advantageous. It is also possible to use artificial promoters for regulation.
  • the nucleic acid construct, for expression in a host organism is advantageously inserted into a vector, such as a plasmid or a phage, which allows for optimal expression of the genes in the host.
  • a vector such as a plasmid or a phage
  • vectors include all other vectors known to those skilled in the art, eg viruses such as SV40, CMV, baculovirus and adenovirus, transposons, IS elements, phasmids, cosmids, and linear or circular DNA. These vectors can be autonomously replicated in the host organism or replicated chromosomally. These vectors represent a further embodiment of the invention. Suitable plasmids are described, for example, in E.
  • plasmids mentioned represent a small selection of the possible plasmids. Further plasmids are well known to the person skilled in the art and can be found, for example, in the book Cloning Vectors (Eds. Pouwels PH et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018 ).
  • nucleic acid construct for expression of the further genes contained additionally 3'- and / or 5'-terminal regulatory sequences for increasing expression, which are selected depending on the selected host organism and gene or genes for optimal expression.
  • genes and protein expression are intended to allow the targeted expression of genes and protein expression. Depending on the host organism, this may mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • the regulatory sequences or factors can thereby preferably influence the gene expression of the introduced genes positively and thereby increase.
  • enhancement of the regulatory elements can advantageously be done at the transcriptional level by using strong transcription signals such as promoters and / or enhancers.
  • an enhancement of the translation is possible by, for example, the stability of the mRNA is improved.
  • the vector containing the nucleic acid construct according to the invention or the nucleic acid according to the invention can also advantageously be introduced in the form of a linear DNA into the microorganisms and integrated into the genome of the host organism via heterologous or homologous recombination.
  • This linear DNA can consist of a linearized vector such as a plasmid or only of the nucleic acid construct or of the nucleic acid according to the invention.
  • An expression cassette according to the invention is produced by fusion of a suitable promoter with a suitable coding nucleotide sequence and a terminator or polyadenylation signal.
  • common recombination and cloning techniques are used, as described, for example, in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and T.J. Silhavy, M.L. Berman and L.W. Enquist, Experiments with Gene Fusion, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987).
  • the recombinant nucleic acid construct or gene construct is advantageously inserted into a host-specific vector for expression in a suitable veterinary organism, which enables optimal expression of the genes in the word.
  • Vectors are well known to those skilled in the art and can be found, for example, in "Cloning Vectors" (Pouwels P.H. et al., Eds. Elsevier, Amsterdam-New York-Oxford, 1985).
  • recombinant microorganisms can be produced, which are transformed, for example, with at least one vector according to the invention and can be used to produce the polypeptides according to the invention.
  • the recombinant constructs according to the invention described above are introduced into a suitable Wrtssystem and expressed.
  • familiar cloning and transfection methods known to those skilled in the art, such as, for example, co-precipitation, protoplast fusion, electroporation, retroviral transfection and the like, are used in order to express the stated nucleic acids in the respective expression system. Suitable systems are described, for example, in Current Protocols in Mo- lecular biology, F.
  • a vector which contains at least a portion of a gene or a coding sequence according to the invention, wherein optionally at least one amino acid deletion, addition or substitution has been introduced in order to modify the sequence according to the invention, eg functionally to disrupt it
  • the introduced sequence may also be a homologue from a related microorganism or derived from a mammalian, yeast or insect source
  • the vector used for homologous recombination may be designed to mutate the endogenous gene upon homologous recombination or otherwise modified, but the functional protein is still coded (eg the upstream regulatory region can be altered in such a way that this alters the expression of the endogenous protein.)
  • the altered segment of the gene according to the invention is in the homologous recombination vector
  • suitable vectors for homologous recombination is described, for example, in Thomas, KR and Capecchi, MR (1987) Cell 51: 503.
  • prokaryotic or eukaryotic organisms are suitable as recombinant host organisms for the nucleic acid according to the invention or the nucleic acid construct.
  • microorganisms such as bacteria, fungi or yeast are used as host organisms.
  • Gram-positive or gram-negative bacteria preferably bacteria of the families Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Streptomycetaceae or Nocardiaceae, particularly preferably bacteria of the genera Escherichia, Pseudomonas, Streptomyces, Nocardia, Burkholderia, Salmonella, Agrobacterium or Rhodococcus are advantageously used , Very particularly preferred is the genus and species Escherichia coli. Further advantageous bacteria are also found in the group of ⁇ -proteobacteria, ⁇ -proteobacteria or ⁇ -proteobacteria.
  • the Wrtsorganismus or Wrtsorganismen according to the invention preferably contain at least one of the nucleic acid sequences described in this invention, nucleic acid constructs or vectors which code for an enzyme with inventive dehydrogenase activity.
  • the organisms used in the method according to the invention are grown or grown, depending on the host organism, in a manner known to those skilled in the art.
  • Microorganisms are usually produced in a liquid medium, which is a carbon source mostly in the form of sugars, a nitrogen source usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as iron, manganese, magnesium salts and optionally containing vitamins, at temperatures between 0 ° C and 100 ° C, preferably between 10 ° C to 60 ° C. attracted under oxygen fumigation.
  • the pH of the nutrient fluid can be kept at a fixed value, that is regulated during the cultivation or not.
  • the cultivation can be done batchwise, semi-batchwise or continuously. Nutrients can be presented at the beginning of the fermentation or fed in semi-continuously or continuously.
  • the ketone can be given directly for cultivation or advantageously after cultivation.
  • the enzymes may be isolated from the organisms by the method described in the Examples or used as crude extract for the reaction.
  • the invention furthermore relates to processes for the recombinant production of polypeptides according to the invention or functional, biologically active fragments thereof, which comprises cultivating a polypeptide-producing microorganism, optionally inducing the expression of the polypeptides and isolating them from the culture.
  • the polypeptides can thus also be produced on an industrial scale, if desired.
  • the recombinant microorganism can be cultured and fermented by known methods. Bacteria can be propagated, for example, in TB or LB medium and at a temperature of 20 to 40 ° C and a pH of 6 to 9. Specifically, suitable cultivation conditions are described, for example, in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).
  • the cells are then disrupted if the polypeptides are not secreted into the culture medium and the product recovered from the lysate by known protein isolation techniques.
  • the cells may optionally be treated by high frequency ultrasound, high pressure, e.g. in a French pressure cell, by osmolysis, by the action of detergents, lyti- see enzymes or organic solvents, by homogenizers or by combining several of the listed methods are digested.
  • Purification of the polypeptides can be accomplished by known chromatographic techniques such as molecular sieve chromatography (gel filtration) such as Q-Sepharose chromatography, ion exchange chromatography and hydrophobic chromatography, as well as other conventional techniques such as ultrafiltration, crystallization, salting out, dialysis and native gel electrophoresis. Suitable methods are described, for example, in Cooper, F.G., Biochemische Harvey Methoden, Verlag Walter de Gruyter, Berlin, New York or in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin.
  • vector systems or oligonucleotides for the isolation of the recombinant protein, which extend the cDNA by certain nucleotide sequences and thus code for altered polypeptides or fusion proteins which serve, for example, for a simpler purification.
  • suitable modifications include, for example, what are termed anchor tags, such as the modification known as hexa-histidine anchors, or epitopes that can be recognized as antigens of antibodies (described, for example, in Harlow, E. and Lane, D., et al. 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor (NY) Press).
  • anchors can be used to attach the proteins to a solid support such as a poly mermatrix, which may for example be filled in a chromatography column, or may be used on a microtiter plate or on another carrier.
  • these anchors can also be used to detect the proteins.
  • conventional markers such as fluorescent dyes, enzyme markers which form a detectable reaction product after reaction with a substrate, or radioactive markers, alone or in combination with the anchors, can be used to identify the proteins for the derivation of the proteins.
  • the dehydrogenases can be used in the process according to the invention as a free or immobilized enzyme or as a catalyst still present in the recombinant production organism.
  • the inventive method is advantageously carried out at a temperature between 0 ° C to 95 ° C, preferably between 10 ° C to 85 ° C, more preferably between 15 ° C to 75 ° C.
  • the pH in the process according to the invention is advantageously maintained between pH 4 and 12, preferably between pH 4.5 and 9, particularly preferably between pH 5 and 8.
  • Enantiomerically pure or chiral products in the process according to the invention are enantiomers which show an enantiomeric enrichment.
  • enantiomeric purities of at least 70% ee preferably from min. 80% ee, more preferably from min. 90% ee, most preferably min. 98% ee achieved.
  • Growing cells containing the nucleic acids, nucleic acid constructs or vectors according to the invention can be used for the method according to the invention.
  • dormant or open cells can be used.
  • open cells are meant, for example, cells that have been rendered permeable through treatment with, for example, solvents, or cells that have been disrupted by enzyme treatment, mechanical treatment (eg French Press or ultrasound), or any other method.
  • the crude extracts thus obtained are advantageously suitable for the process according to the invention.
  • purified or purified enzymes can be used for the process.
  • immobilized microorganisms or enzymes that can be used advantageously in the reaction.
  • the process according to the invention can be operated batchwise, semi-batchwise or continuously.
  • the method can advantageously be carried out in bioreactors, as described, for example, in Biotechnology, Volume 3, 2nd Edition, Rehm et al. Ed., (1993), in particular Chapter II.
  • the sequence of the dehydrogenase gene EbN2 from Azoarcus sp. EbN1 is stored in databases (SEQ ID NO: 1, [Genbank ID 56475432, Region: 2797788..2798528]). From the nucleic acid sequence of the gene oligonucleotides were derived with which by known methods, the gene from genomic DNA of Azoarcus sp. EbN1 was amplified. The sequence obtained corresponds to the published sequence.
  • the PCR product (about 751 bp) was digested with the restriction endonucleases Nde and ßhamHI and cloned in appropriately digested pDHE19.2 vector (DE19848129).
  • the ligation mixtures were transformed into E. coli XL1 Blue (Stratagene).
  • the resulting plasmid pDHE-PDH-L was transformed into strain E. coli TG10 pAgro4 pHSG575 (TG10: a RhaA " derivative of E.
  • E. coli TG1 (Stratagene); pAgro4: Takeshita, S.; Sato, M; Toba, M Masahashi, W; Hashimoto-Gotoh, T (1987) Gene 61, 63-74; pHSG575: T. Tomoyasu et al (2001) Mol. Microbiol. 40 (2), 397-413) .
  • the recombined E. coli are designated LU 13151.
  • Example 2 Cloning of the alcohol dehydrogenase ChnA from Azoarcus sp. EbN1.
  • the sequence of the dehydrogenase gene ChnA from Azoarcus sp. EbN1 is stored in databases ([Genbank ID 56475432, Region: (complement) 192247..192993]). From the nucleic acid sequence of the gene oligonucleotides were derived with which by known methods, the gene from genomic DNA of Azoarcus sp. EbN 1 was amplified. The sequence obtained corresponds to the published sequence.
  • the PCR product (about 743bp) was digested with the restriction endonucleases Nde ⁇ and BglW and cloned into a Nde ⁇ and ßmHI restricted pDHE19.2 vector (DE19848129).
  • the ligation mixtures were transformed into E. coli XL1 Blue (Stratagene).
  • the resulting plasmid pDHE-PDH-L was transformed into strain E. coli TG 10 pAgro4 pHSG575 (TG10: a RhaA " derivative of E. coli TG 1 (Stratagene); pAgro4: Takeshita, S.; Sato, M; Toba, M; Masahashi, W; Hashimoto-Gotoh, T (1987) Gene 61, 63-74; pHSG575: T. Tomoyasu et al (2001) Mol. Microbiol. 40 (2), 397-413).
  • LU 13151 or LU 13283 were incubated in 20mL LB-Amp / Spec / Cm (100 ⁇ g / l ampicillin; 100 ⁇ g / l surfactinomycin; 20 g / l chloramphenicol), 0.1 mM IPTG, 0.5 g / L rhamnose in 100 ml Erlenmeyerkol - Ben (harassment) 18 h at 37 ° C attracted (alternatively, you can also first make a preculture with the same antibiotics, but without IPTG and rhamnose.This is incubated for 5 h at 37 ° C and then inoculated with 1% in the main culture ), centrifuged at 5000 * g / 10 min, washed once with 10 mM TRIS * HCl, pH 7.0 and resuspended in 2 mL of the same buffer.
  • the consumption of reduced cosubstrates during the reduction of ketones can be monitored at 340 nm.
  • 1 unit (1 U) corresponds to the amount of enzyme which reduces 1 ⁇ of ketone in 1 min.
  • a batch procedure instead of a dosage for the pyridin-4-yl-ethanone was tested since it simplifies the handling in the pilot plant. Furthermore, it was tested as a solvent instead of 2-butanol / 'so-propanol. In another experiment, the amount of / 'so-propanol was reduced from 40% to 20%, in order to shorten the subsequent distillation time.
  • the Reduktionsausträge are first filtered through Celite ®, respectively.
  • a first extraction is then carried out with twice the amount (w / w) of ethyl acetate optionally at room temperature or at 50 ° C to obtain a faster phase separation.
  • a Mulm Mrs between aqueous and organic phase This can be separated with the organic (a) or with the aqueous phase (b).
  • a further filtration is required.
  • 78% of the desired product are obtained as a light-sand solid.
  • Further extraction of the aqueous phase with 150% (w / w) ethyl acetate and work up according to (a) gives a further 10%, d. H. a total of 88% yield of (S) -1-pyridin-4-yl-ethanol in the 4L laboratory scale (ee> 99%, formerly purity> 98%).
  • a common nuclear hydrogenation catalyst was tested for the intended reaction. It was a supported metal catalyst consisting of 5% Ru on Al 2 0 3 . These contacts are intended for the fixed bed and were therefore ground for a batch procedure.

Abstract

Verfahren zur Herstellung von N-heterozyklischen optisch aktiven Alkoholen der Formel (I), worin R1 für Alkylgruppen stehen, die wiederum ein- oder mehrfach substituiert sein können, durch Alkyl, Halogen, SH.SR3,OH, OR3, NO2, CN, CO, COOR3, NR3R4 oder NR3R3R5+X-, wobei R3, R4 und R5 unabhängig voneinander für H oder einen Niedrigalkyl- oder Niedrigalkoxy-Rest stehen und X- für ein Gegenion steht, R2 für N-haltige Heteroarylgruppen stehen, die wiederum ein- oder mehrfach substituiert sein können, durch Alkyl, Halogen, SH.SR3,OH, OR3, NO2, CN, CO, COOR3, NR3R4 oder NR3R3R5+X-, wobei R3, R4 und R5 unabhängig voneinander für H oder einen Niedrigalkyl- oder Niedrigalkoxy-Rest stehen und X- für ein Gegenion steht durch Reduktion des entsprechenden Ketons, wobei die Reduktion mit einer Dehydrogenase mit der Polypeptidsequenz SEQ ID NO:2 oder NO:4, oder mit einer Polypeptidsequenz, bei der bis zu 25% der Aminosäurereste gegenüber SEQ ID NO:2 oder NO:4 durch Deletion; Insertion, Substitution oder einer Kombination davon verändert sind, durchgeführt wird.

Description

Verfahren zur Herstellung N-heterozyklischer optisch aktiver Alkohole
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von N-heterozyklischen optisch aktiven Alkoholen durch Dehydrogenasen.
Stand der Technik
Die Funktion von Dehydrogenasen als Biokatalysatoren ist allgemein bekannt [Chemico- Biological Interactions (2003) 143:247, Journal of Biological Chemistry (2002) 277:25677]. Insbesondere die technische Anwendung dieser Enzymklasse zur Herstellung von Feinchemika- lien ist dokumentiert [Tetrahedron (2004) 60:633, Trends Biotechnol (1999) 17:487]. Je nach Substrat unterscheiden sich die bekannten Dehydrogenase in ihrer Aktivität und Spezifität. Man unterscheidet sie bezüglich ihrer Stereoselektivität in sogenannte 'Prelog'- und 'anti'-Prelog- Enzyme {Pure and Applied Chemistry, (1964), 9: 119).
So sind zur Herstellung von optisch aktiven Phenylethanolderivaten vornehmlich solche Bioka- talysatoren beschrieben, die 'Prelog-Selektiviät aufweisen, Enzyme, die die gegensinnige Enan- tioselektivität aufweisen, sind seltener, wenn auch nicht unbekannt [Trends Biotechnol (1999) 17:487, J.Org.Chem. (1992) 57: 1532]
Beschreibung der Erfindung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von optisch aktiven Alkoholen der Formel I
Figure imgf000003_0001
Formel I worin
R für Alkylgruppen stehen, die wiederum ein- oder mehrfach substituiert sein können, durch Alkyl, Halogen, SH.SR3 ,OH, OR3, N02, CN, CO, COOR3, NR3R4 oder NR3R3R5+X", wobei R3, R4 und R5 unabhängig voneinander für H oder einen Niedrigalkyl- oder Niedrigalkoxy-Rest stehen und X" für ein Gegenion steht
R2 für N-haltige Heteroarylgruppen stehen, die wiederum ein- oder mehrfach substituiert sein können, durch Alkyl, Halogen, SH.SR3 ,OH, OR3, N02, CN, CO, COOR3, NR3R4 oder NR3R3R5+X", wobei R3, R4 und R5 unabhängig voneinander für H oder einen Niedrigalkyl- oder Niedrigalkoxy-Rest stehen und X" für ein Gegenion steht durch Reduktion des entsprechenden Ketons, wobei die Reduktion mit einer Dehydrogenase mit der Polypeptidsequenz SEQ I D NO:2 oder NO:4, oder mit einer Polypeptidsequenz, bei der bis zu 25% der Aminosäurereste gegenüber SEQ I D NO:2 oder NO:4 durch Deletion; Insertion, Substitution oder einer Kombination davon verändert sind, durchgeführt wird. Eine besonders gute Ausführungsform der Erfindung besteht in einem Verfahren zur Herstellung von optisch aktiven Alkoholen der Formel I, worin R1 , für C1-C5-Alkyl und R2 für Pyridinyl, insbesondere 4-Pyridinylrest steht, wobei die Reste R1 und/oder R2 ggf. durch Halogen einfach substituiert sind. Das erfindungsgemäße Verfahren ergibt optisch aktive Alkohole mit (S)-Konfiguration.
Dieses Verfahren eignet sich auch zur Herstellung von optisch aktiven Alkoholen, die N-haltige nicht-aromatische Heterozyklen enthalten, indem man anschließend an das oben dargestellte Verfahren den N-haltigen Heteroarylrest hydriert.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von optisch aktiven Alkoholen der Formel III,
Figure imgf000004_0001
Formel III indem man in einem ersten Schritt (a) das Verfahren gemäß Anspruch 1 durchführt und in einem zweiten Schritt (b) den in (a) erhaltenen optisch aktiven Alkohol der Formel I durch Hydrierung in III überführt.
In Formel III steht R für Alkylgruppen, die wiederum ein- oder mehrfach substituiert sein können, durch Alkyl, Halogen, SH.SR3 ,OH, OR3, N02, CN, CO, COOR3, NR3R4 oder NR3R3R5+X", wobei R3, R4 und R5 unabhängig voneinander für H oder einen Niedrigalkyl- oder Niedrigalkoxy-Rest stehen und X" für ein Gegenion steht.
[R2]H steht für gesättigte N-haltige Heterozyklen, die wiederum ein- oder mehrfach substituiert sein können, durch Alkyl, Halogen, SH.SR3 ,OH, OR3, N02, CN, CO, COOR3, NR3R4 oder NR3R3R5+X", wobei R3, R4 und R5 unabhängig voneinander für H oder einen Niedri- galkyl- oder Niedrigalkoxy-Rest stehen und X" für ein Gegenion steht.
Die Hydrierung unter Schritt (b) kann mit allen dem Fachmann für die Hydrierung von Aromaten bekannten Methoden durchgeführt werden. Bevorzugt kommen hier Hydrierkatalysatoren zum Einsatz, die die Elemente Ru, Co, Rh, Ni, Pd oder Pt enthalten (s. Yang, P., Hrsg., The Che- mistry of Nanostructured Materials, World Scientific Publishing: Singapur, (2003); S. 329-357.)
Die Isolierung und Aufarbeitung des erhaltenen Reaktionsproduktes kann mit allen geläufigen Methoden wie Destillation, Chromatographie und Kristallisation erfolgen. Üblicherweise schließt man einen Destillationsschritt, bevorzugt eine Molekulardestillation, an. Das Produkt kann normalerweise in hoher chemischer Reinheit beispielsweise durch Kristallisation erhalten werden.
Sollte die mit den o.g. Verfahren erhaltene optische Reinheit der Alkohole für bestimmte Einsatzwecke nicht ausreichend sein, empfiehlt sich eine weitere Aufreinigung, beispielsweise durch fraktionierte Kristallisation bzw. Diastereomerenbildung und Trennung.
Ein besonders bevorzugtes Verfahren ist für Verbindungen der Formel I I I mit [R2]H = 4- Piperidinyl die Salzbildung dieses Alkohols mit einer optisch aktiven Säure, insbesondere mit (R)-Mandelsäure und die Kristallisation dieses Salzes. Anschliessend lässt sich aus den Salzen der optisch aktiven Säure der Alkohol durch Basenbehandlung wieder freisetzen.
Allgemeine Begriffe und Definitionen Werden keine andere Angaben gemacht, so gelten folgende allgemeine Bedeutungen:
„Alkyl" steht für steht für geradkettige oder verzweigte Alkylreste 1 bis 10, bevorzugt 2-8, insbesondere 3-6 C-Atomen, insbesonderee Methyl, Ethyl, i- oder n-Propyl, n-, i-, sec- oder tert- Butyl, n-Pentyl oder 2-Methyl-Butyl, n-Hexyl, 2-Methyl-pentyl, 3-Methyl-pently, 2-Ethyl-butyl, 2- Ethyl-hexyl.
„Halogen" steht für Fluor, Chlor, Brom oder Jod, insbesondere Fluor oder Chlor.
„Niedrigalkyl" steht für geradkettige oder verzweigte Alkylreste 1 bis 6 C-Atomen, wie Methyl, Ethyl, i- oder n-Propyl, n-, i-, sec- oder tert.-Butyl, n-Pentyl oder 2-Methyl-Butyl, n-Hexyl, 2- Methyl-pentyl, 3-Methyl-pently, 2-Ethyl-butyl.
„N-haltige Heteroaryl" steht für einen ein- oder mehrkernigen, vorzugsweise ein- oder zweikernigen, gegebenenfalls substituierten heteroaromatischen Rest, der mindestens ein Stickstoff- atom als Bestandteil des aromatischen Systems trägt, insbesondere für ein über eine beliebige Ringposition gebundenes Pyridinyl. Die Ringgröße des N-haltigen Heteroaryl beträgt bevorzugt 5 und 6 Ringe. Das N-haltige Heteroaryl kann neben dem zwingend anwesenden einen N-Atom auch noch weitere Heteroatome ausgewählt aus N, O und S tragen. Diese N-haltigen Heteroa- rylreste können gegebenenfalls 1 , 2 oder 3 gleiche oder verschiedene Substituenten tragen, beispielsweise Halogen, Niedrigalkyl, Niedrigalkoxy gemäß obiger Definition oder Trifluor- methyl. Die Verknüpfung des N-haltigen Heteroarylrestes mit den anderen Resten Verbindung gemäß Formel I kann über jede Ringposition des N-haltigen Heteroarylrestes erfolgen. Im Fall von Pyridinyl als N-haltigem Heteroaryl erfolgt die Verknüpfung bevorzugt als 4-Pyridinyl.
„Enantioselektivität" im Rahmen der vorliegenden Erfindung bedeutet, dass der Enantiomere- nüberschuss ee (in %) eines der beiden möglichen Enantiomere, wenigstens 50 %, vorzugsweise wenigstens 80 %, insbesondere wenigstens 90 % und speziell wenigstens 95 % beträgt. Der ee-Wert berechnet sich nach: ee (%) = Enantiomer A - Enantiomer B / (Enantiomer A + Enantiomer B) x 100
Biochemische Ausführungsformen
Besonders geeignete Dehydrogenasen (EC 1.1. X.X) sind vor allem NAD- bzw. NADP- abhängige Dehydrogenasen (E.C. 1.1.1.x) insbesondere Alkoholdehydrogenasen (E.C.1.1.1.1 oder E.C.1.1.1.2), welche die selektive Reduktion des Ketons zum P/ /og'-Alkohol bewirken. Die Dehydrogenase wird bevorzugt aus einem Mikroorganismus, besonders bevorzugt aus einem Bakterium, einem Pilz, insbesondere einer Hefe, jeweils hinterlegt in Stammsammlungen oder erhältlich aus Isolaten natürlicher Quelle, wie Bodenproben, Biomasseproben und dergleichen oder durch de novo-Gensynthese gewonnen.
Die Dehydrogenase kann in gereinigter oder teilweise gereinigter Form oder in Form des ursprünglichen Mikroorganismus oder eines rekombinanten Wirtsorganismus, der die Dehydrogenase exprimiert, verwendet werden. Verfahren zur Gewinnung und Aufreinigung von Dehydrogenasen aus Mikroorganismen sind dem Fachmann hinreichend bekannt, z.B. aus K. Nakamu- ra & T. Matsuda,„Reduction of Ketones" in K. Drauz und H. Waldmann, Enzyme Catalysis in Organic Synthesis 2002, Vol. III, 991-1032, Wley-VCH, Weinheim. Rekombinante Verfahren zur Erzeugung von Dehydrogenasen sind ebenfalls bekannt, beispielsweise aus W. Hummel, K. Abokitse, K. Drauz, C. Rollmann und H. Gröger, Adv. Synth. Catal. 2003, 345, Nr. 1 + 2, S. 153- 159.
Geeignete Bakterien sind beispielsweise solche der Ordnungen der Burkholderiales, Hydroge- nophilales, Methylophilales, Neisseriales, Nitrosomonadales, Procabacteriales oder Rhodocyc- lales.
Besonders bevorzugt werden Dehydrogenasen aus der Familie der Familie der Rhodocycla- ceae. Insbesondere bevorzugt werden Dehydrogenasen aus den Gattungen Azoarcus Azonexus, Azospira, Azovibrio, Dechloromonas, Ferribacterium, Petrobacter, Propionivibrio, Quadricoccus, Rhodocyclus, Sterolibacterium, Thauera und Zoogloea.
Besonders bevorzugt werden Dehydrogenasen aus Arten der Gattungen Azoarcus.
Üblicherweise erfolgt die Reduktion mit der Dehydrogenase in Gegenwart eines geeigneten Kofaktors (auch als Kosubstrat bezeichnet). Als Kofaktors für die Reduktion des Ketons dient üblicherweise NADH und/oder NADPH. Daneben können Dehydrogenasen als zelluläre Systeme eingesetzt werden, die inherent Kofaktor enthalten, oder alternative Redoxmediatoren zugesetzt werden (A. Schmidt, F. Hollmann und B. Bühler„Oxidation of Alcohols" in K. Drauz und H. Waldmann, Enzyme Catalysis in Organic Synthesis 2002, Vol. III, 991-1032, Wley-VCH, Weinheim).
Üblicherweise erfolgt die Reduktion mit der Dehydrogenase außerdem in Gegenwart eines geeigneten Reduktionsmittels, welches den im Verlauf der Reduktion oxidierten Kofaktor regeneriert. Beispiele für geeignete Reduktionsmittels sind Zucker, insbesondere die Hexosen, wie Glukose, Mannose, Fructose, und/oder oxidierbare Alkohole, insbesondere Ethanol, Propanol, Butanol, Pentanol oder Isopropanol, sowie Formiat, Phosphit oder molekularer Wasserstoff. Zur Oxidation des Reduktionsmittels und damit verbunden zur Regeneration des Koenzyms kann eine zweite Dehydrogenase, wie z.B. Glukosedehydrogenase bei Verwendung von Glukose als Reduktionsmittel, Phosphitdehydrogenase bei Verwendung von Phosphit als Reduktionsmittel oder Formiat-Dehydrogenase bei der Verwendung von Formiat als Reduktionsmittel, zugesetzt werden. Diese kann als freies oder immobilisiertes Enzym oder in Form von freien oder immobilisierten Zellen eingesetzt werden. Ihre Herstellung kann sowohl separat als auch durch
Koexpression in einem (rekombinanten) Dehydrogenase-Stamm erfolgen.
Die erfindungsgemäß verwendeten Dehydrogenasen können frei oder immobilisiert eingesetzt werden. Unter einem immobilisierten Enzym versteht man ein Enzym, das an einen inerten Träger fixiert ist. Geeignete Trägermaterialien sowie die darauf immobilisierten Enzyme sind aus der EP-A-1 149849, EP-A-1 069 183 und der DE-OS 100193773 sowie aus den darin zitierten Literaturstellen bekannt. Auf die Offenbarung dieser Schriften wird diesbezüglich in vollem Umfang Bezug genommen. Zu den geeigneten Trägermaterialien gehören beispielsweise Tone, Tonmineralien, wie Kaolinit, Diatomeenerde, Perlit, Siliciumdioxid, Aluminiumoxid, Natriumcar- bonat, Calciumcarbonat, Cellulosepulver, Anionenaustauschermaterialien, synthetische Polymere, wie Polystyrol, Acrylharze, Phenolformaldehydharze, Polyurethane und Polyolefine, wie Polyethylen und Polypropylen. Die Trägermaterialien werden zur Herstellung der geträgerten Enzyme üblicherweise in einer feinteiligen, partikelförmigen Form eingesetzt, wobei poröse Formen bevorzugt sind. Die Partikelgröße des Trägermaterials beträgt üblicherweise nicht mehr als 5 mm, insbesondere nicht mehr als 2 mm (Sieblinie). Analog kann bei Einsatz der Dehydrogenase als Ganzzell-Katalysator eine freie oder immobiliserte Form gewählt werden. Trägerma- terialien sind z.B. Ca-Alginat, und Carrageenan. Enzyme wie auch Zellen können auch direkt mit Glutaraldehyd vernetzt werden (Cross-Iinking zu CLEAs). Entsprechende und weitere Immobilisierungsverfahren sind beispielsweise in J. Lalonde und A. Margolin„Immobilization of Enzymes" in K. Drauz und H. Waldmann, Enzyme Catalysis in Organic Synthesis 2002, Vol. III, 991-1032, Wley-VCH, Weinheim beschrieben.
Die Umsetzung kann in wässrigen oder nichtwässrigen Reaktionsmedien oder in 2- Phasensystemen oder (Mikro-)Emulsionen erfolgen. Bei den wässrigen Reaktionsmedien handelt es sich vorzugsweise um gepufferte Lösungen, die in der Regel einen pH-Wert von 4 bis 8, vorzugsweise von 5 bis 8, aufweisen. Das wässrige Lösungsmittel kann neben Wasser außer- dem wenigstens einen Alkohol, z.B. Ethanol oder Isopropanol oder Dimethylsulfoxid enthalten.
Unter nicht-wässrigen Reaktionsmedien werden Reaktionsmedien verstanden, die weniger als 1 Gew.-%, vorzugsweise weniger als 0,5 Gew.-% Wasser, bezogen auf das Gesamtgewicht des Reaktionsmediums, enthalten. Vorzugsweise wird die Umsetzung in einem organischen Lösungsmittel durchgeführt. Geeignete Lösungsmittel sind beispielsweise aliphatische Kohlenwasserstoffe, vorzugsweise mit 5 bis 8 Kohlenstoffatomen, wie Pentan, Cyclopentan, Hexan, Cyclohexan, Heptan, Octan oder Cyclooctan, halogenierte aliphatische Kohlenwasserstoffe, vorzugsweise mit einem oder zwei Kohlenstoffatomen, wie Dichlormethan, Chloroform, Tetrachlorkohlenstoff, Dichlorethan oder Tetrachlorethan, aromatische Kohlenwasserstoffe, wie Ben- zol, Toluol, die Xylole, Chlorbenzol oder Dichlorbenzol, aliphatische acyclische und cyclische Ether oder Alkohole, vorzugsweise mit 4 bis 8 Kohlenstoffatomen, wie Diethylether, Methyl-tert- butylether, Ethyl-tert-butylether, Dipropylether, Diisopropylether, Dibutylether, Tetrahydrofuran oder Ester wie Ethylacetat oder n-Butylacetat oder Ketone wie Methylisobutylketon oder Dioxan oder Gemische davon.
Beispielsweise wird die Reduktion mit der Dehydrogenase in einem wässrig-organischen, insbesondere wässrigen Reaktionsmedium durchgeführt.
Das zu reduzierende Keton wird vorzugsweise in einer Konzentration von 0, 1 g/l bis 500 g/l, besonders bevorzugt von 1 g/l bis 200 g/l in die enzymatische Reduktion eingesetzt und kann kontinuierlich oder diskontinuierlich nachgeführt werden. Die enzymatische Reduktion erfolgt in der Regel bei einer Reaktionstemperatur unterhalb der Desaktivierungstemperatur der eingesetzten Dehydrogenase und vorzugsweise bei wenigstens -10 °C. Besonders bevorzugt liegt sie im Bereich von 0 bis 100°C, insbesondere von 15 bis 60°C und speziell von 20 bis 40 °C, z.B. bei etwa 30 °C.
Zur Durchführung kann man beispielsweise das Keton mit der Dehydrogenase, dem Lösungsmittel und gegebenenfalls den Koenzymen, gegebenenfalls einer zweiten Dehydrogenase zur Regenerierung des Koenzyms und/oder weiteren Reduktionsmitteln vorlegen und das Gemisch durchmischen, z. B. durch Rühren oder Schütteln. Es ist aber auch möglich, die Dehydrogena- se(n) in einem Reaktor, beispielsweise in einer Säule, zu immobilisieren, und durch den Reaktor eine das Keton und gegebenenfalls Koenzyme und/oder Kosubstrate enthaltende Mischung zu leiten. Hierzu kann man die Mischung im Kreislauf durch den Reaktor leiten bis der gewünschte Umsatz erreicht ist. Dabei wird die Ketogruppe des Ketons zu einer OH-Gruppe reduziert, wobei im Wesentlichen eines der beiden Enantiomere des Alkohols entsteht. In der Re- gel wird man die Reduktion bis zu einem Umsatz von wenigstens 70 %, besonders bevorzugt von wenigstens 85 % und insbesondere von wenigstens 95%, bezogen auf das in der Mischung enthaltene Keton führen. Das Fortschreiten der Reaktion, d. h. die sequentielle Reduktion des Ketons, kann dabei durch übliche Methoden wie Gaschromatographie oder Hochdruckflüssigkeitschromatographie verfolgt werden.
Ein erster Gegenstand der Erfindung betrifft funktionale Phenylethanol Dehydrogenase- Mutanten, abgeleitet von der Phenylethanol Dehydrogenase EbN1 aus Azoarcus sp. mit einer Aminosäuresequenz gemäß SEQ ID NO: 2.
Besonders bevorzugt werden als Dehydrogenasen im erfindungsgemäßen Verfahren Alkohol- Dehydrogenasen mit folgenden Eigenschaften eingesetzt:
Alkoholdehydrogenase aus Azoarcus mit einer Aminosäuresequenz, gemäß SEQ ID NO:2 sowie Alkoholdehydrogenasen mit Aminosäuresequenzen, bei denen bis zu 25% , bevorzugt bis zu 15%, besonders bevorzugt bis zu 10, insbesondere bis zu 5% der Aminosäurereste gegen- über SEQ ID NO:2 durch Deletion; Insertion, Substitution oder einer Kombina-tion davon verändert sind.
Insbesondere betrifft die Erfindung funktionale Alkoholdehydrogenase-Mutanten, abgeleitet von der Alkoholdeehydrogenase EbN1 aus Azoarcus sp. mit einer Aminosäuresequenz gemäß SEQ I D NO: 2, wobei die Mutante wenigsten eine Mutation in wenigstens einem Sequenzbereich, ausgewählt unter
(1) Sequenzbereich 142 bis 153 (auch bezeichnet als Loop 2) und (2) Sequenzbereich 190 bis 21 1 (auch bezeichnet als Helix alpha FG1) aufweisen. Insbesondere betrifft die Erfindung funktionale Alkoholdehydrogenase-Mutanten, welche zusätzlich wenigstens eine weitere Mutation in einem weiteren Sequenzbereich, ausgewählt unter
(3) Sequenzbereich 93 bis 96 (auch bezeichnet als Loop 1)
(4) Sequenzbereich 241 bis 249 (C-Terminus)
(5) Sequenzbereich 138 bis 141 (hydrophiler Bereich Bindungstasche, auch bezeichnet als Loop 2) und
(6) Cys61 und / oder Cys 83 aufweisen.
Weiterhin betrifft die Erfindung funktionale Alkoholdehydrogenase-Mutanten, abgeleitet von der Alkoholdehydrogenase EbN1 aus Azoarcus sp. mit einer Aminosäuresequenz gemäß SEQ I D NO: 2, wobei die Mutante ausgewählt ist unter den in Tabelle 1 aufgelisteten Mutanten. Insbesondere sind zu nennen Mutante, wobei wenigstens einer der folgenden Reste mutiert ist:
T192, L197, M200, F201 , L204, M246, L139, T140, T142, L146, 1148, Y151 , C61 , C83, L186, wobei die jeweilige Aminosäure durch eine beliebige andere natürliche Aminosäure ersetzt ist Insbesondere sind erfindungsgemäße Mutanten ausgewählt unter Mutanten enthaltend wenigstens eine der folgenden Mutationen:
Y151XA, wobei XA = A, R, N, E, Q, G, H, I, L, M, T oder V ist;
T192XB, wobei XB = A, E, G, I, P, S, W, V oder L ist;
Weitere Abwandlungen erfindungsgemäßer Dehydrogenasen:
Erfindungsgemäß mit umfasst sind ebenfalls„funktionale Äquivalente" der konkret offenbarten Enzyme mit Dehydrogenase-Aktivität und die Verwendung dieser in den erfindungsgemäßen Verfahren.
„Funktionale Äquivalente" oder Analoga der konkret offenbarten Enzyme sind im Rahmen der vorliegenden Erfindung davon verschiedene Polypeptide, welche weiterhin die gewünschte biologische Aktivität, wie z.B. Substratspezifität, besitzen. So versteht man beispielsweise unter „funktionalen Äquivalenten" Enzyme, die vom Keton zum entsprechenden 'anti-Prelog'-Alkohol reduzieren und die mindestens 20 %, bevorzugt 50 %, besonders bevorzugt 75 %, ganz besonders bevorzugt 90 % der Aktivität eines Enzyms, umfassend eine der unter Seq ID 2 bzw. Seq ID 4 aufgeführten Aminosäuresequenzen, aufweist. Funktionale Äquivalente sind außerdem vorzugsweise zwischen pH 4 bis 10 stabil und besitzen vorteilhaft ein pH-Optimum zwischen pH 5 und 8 sowie ein Temperaturoptimum im Bereich von 20°C bis 80°C.
Unter„funktionalen Äquivalenten" versteht man erfindungsgemäß insbesondere auch Mutanten, welche in wenigstens einer Sequenzposition der oben genannten Aminosäuresequenzen eine andere als die konkret genannte Aminosäure aufweisen aber trotzdem eine der oben genannten biologischen Aktivitäten besitzen.„Funktionale Äquivalente" umfassen somit die durch eine oder mehrere Aminosäure-Additionen, -Substitutionen, -Deletionen und/oder -Inversionen erhältlichen Mutanten, wobei die genannten Veränderungen in jeglicher Sequenzposition auftreten können, solange sie zu einer Mutante mit dem erfindungsgemäßen Eigenschaftsprofil füh- ren. Funktionale Äquivalenz ist insbesondere auch dann gegeben, wenn die Reaktivitätsmuster zwischen Mutante und unverändertem Polypeptid qualitativ übereinstimmen, d.h. beispielsweise gleiche Substrate mit unterschiedlicher Geschwindigkeit umgesetzt werden.
Weitere Beispiele für geeignete Aminosäuresubstitutionen sind folgender Tabelle zu entneh-
Ursprünglicher Rest Beispiele der Substitution
Ala Ser
Arg Lys
Asn Gin; His
Asp Glu
Cys Ser
Gin Asn
Glu Asp
Gly Pro
His Asn ; Gin
lle Leu; Val
Leu lle; Val
Lys Arg ; Gin ; Glu
Met Leu ; lle
Phe Met ; Leu ; Tyr
Ser Thr
Thr Ser
Trp Tyr
Tyr Trp ; Phe
Val lle; Leu „Funktionale Äquivalente" im obigen Sinne sind auch„Präkursoren" der beschriebenen Polypeptide sowie„funktionale Derivate" und„Salze" der Polypeptide.
„Präkursoren" sind dabei natürliche oder synthetische Vorstufen der Polypeptide mit oder ohne der gewünschten biologischen Aktivität.
Unter dem Ausdruck„Salze" versteht man sowohl Salze von Carboxylgruppen als auch Säureadditionssalze von Aminogruppen der erfindungsgemäßen Proteinmoleküle. Salze von Carboxylgruppen können in an sich bekannter Weise hergestellt werden und umfassen anorganische Salze, wie zum Beispiel Natrium-, Calcium-, Ammonium-, Eisen- und Zinksalze, sowie Salze mit organischen Basen, wie zum Beispiel Aminen, wie Triethanolamin, Arginin, Lysin, Piperidin und dergleichen. Säureadditionssalze, wie zum Beispiel Salze mit Mineralsäuren, wie Salzsäure oder Schwefelsäure und Salze mit organischen Säuren, wie Essigsäure und Oxalsäure sind ebenfalls Gegenstand der Erfindung. „Funktionale Derivate" erfindungsgemäßer Polypeptide können an funktionellen Aminosäure- Seitengruppen oder an deren N- oder C-terminalen Ende mit Hilfe bekannter Techniken ebenfalls hergestellt werden. Derartige Derivate umfassen beispielsweise aliphatische Ester von Carbonsäuregruppen, Amide von Carbonsäuregruppen, erhältlich durch Umsetzung mit Ammoniak oder mit einem primären oder sekundären Amin; N-Acylderivate freier Aminogruppen, her- gestellt durch Umsetzung mit Acylgruppen; oder O-Acylderivate freier Hydroxygruppen, hergestellt durch Umsetzung mit Acylgruppen.
Im Falle einer möglichen Proteinglykosylierung umfassen erfindungsgemäße„funktionale Äqui- valente" Proteine des oben bezeichneten Typs in deglykosylierter bzw. glykosylierter Form sowie durch Veränderung des Glykosylierungsmusters erhältliche abgewandelte Formen.
"Funktionale Äquivalente" umfassen natürlich auch Polypeptide welche aus anderen Organismen zugänglich sind, sowie natürlich vorkommende Varianten. Beispielsweise lassen sich durch Sequenzvergleich Bereiche homologer Sequenzregionen festlegen und in Anlehnung an die konkreten Vorgaben der Erfindung äquivalente Enzyme ermitteln.
„Funktionale Äquivalente" umfassen ebenfalls Fragmente, vorzugsweise einzelne Domänen oder Sequenzmotive, der erfindungsgemäßen Polypeptide, welche z.B. die gewünschte biologi- sehe Funktion aufweisen.
„Funktionale Äquivalente" sind außerdem Fusionsproteine, welche eine der oben genannten Polypeptidsequenzen oder davon abgeleitete funktionale Äquivalente und wenigstens eine weitere, davon funktionell verschiedene, heterologe Sequenz in funktioneller N- oder C-terminaler Verknüpfung (d.h. ohne gegenseitigen wesentliche funktionelle Beeinträchtigung der Fusionsproteinteile) aufweisen. Nichtlimitierende Beispiele für derartige heterologe Sequenzen sind z.B. Signalpeptide oder Enzyme.
Erfindungsgemäß mit umfasste„funktionale Äquivalente" sind Homologe zu den konkret offenbarten Proteinen. Diese besitzen wenigstens 75% ins besondere wenigsten 85 %, wie z.B. 90%, 95%, 97% oder 99%, Homologie zu einer der konkret offenbarten Aminosäuresequenzen, berechnet nach dem Algorithmus von Pearson und Lipman, Proc. Natl. Acad, Sei. (USA) 85(8), 1988, 2444-2448. Eine prozentuale Homologie eines erfindungsgemäßen homologen Polypeptids bedeutet insbesondere prozentuale Identität der Aminosäurereste bezogen auf die Gesamtlänge einer der hierin konkret beschriebenen Aminosäuresequenzen.
Homologe der erfindungsgemäßen Proteine oder Polypeptide können durch Mutagenese erzeugt werden, z.B. durch Punktmutation oder Verkürzung des Proteins. Homologe des erfindungsgemäßen Proteine können durch Screening kombinatorischer Banken von Mutanten, wie z.B. Verkürzungsmutanten, identifiziert werden. Beispielsweise kann eine variegierte Bank von Protein-Varianten durch kombinatorische Mutagenese auf Nukleinsäure- ebene erzeugt werden, wie z.B. durch enzymatisches Ligieren eines Gemisches synthetischer Oligonukleotide. Es gibt eine Vielzahl von Verfahren, die zur Herstellung von Banken potentieller Homologer aus einer degenerierten Oligonukleotidsequenz verwendet werden können. Die chemische Synthese einer degenerierten Gensequenz kann in einem DNA-Syntheseautomaten durchgeführt werden, und das synthetische Gen kann dann in einen geeigneten Expressions- vektor ligiert werden. Die Verwendung eines degenerierten Gensatzes ermöglicht die Bereitstellung sämtlicher Sequenzen in einem Gemisch, die den gewünschten Satz an potentiellen Proteinsequenzen kodieren. Verfahren zur Synthese degenerierter Oligonukleotide sind dem Fachmann bekannt (z.B. Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Bio- chem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al. (1983) Nucleic Acids Res. 1 1 :477).
Im Stand der Technik sind mehrere Techniken zum Screening von Genprodukten kombinatorischer Banken, die durch Punktmutationen oder Verkürzung hergestellt worden sind, und zum Screening von cDNA-Banken auf Genprodukte mit einer ausgewählten Eigenschaft bekannt. Diese Techniken lassen sich an das schnelle Screening der Genbanken anpassen, die durch kombinatorische Mutagenese erfindungsgemäßer Homologer erzeugt worden sind. Die am häufigsten verwendeten Techniken zum Screening großer Genbanken, die einer Analyse mit hohem Durchsatz unterliegen, umfassen das Klonieren der Genbank in replizierbare Expressionsvektoren, Transformieren der geeigneten Zellen mit der resultierenden Vektorenbank und Exprimieren der kombinatorischen Gene unter Bedingungen, unter denen der Nachweis der gewünschten Aktivität die Isolation des Vektors, der das Gen kodiert, dessen Produkt nachgewiesen wurde, erleichtert. Recursive-Ensemble-Mutagenese (REM), eine Technik, die die Häufigkeit funktioneller Mutanten in den Banken vergrößert, kann in Kombination mit den Screeningtests verwendet werden, um Homologe zu identifizieren (Arkin und Yourvan (1992) PNAS 89:781 1-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331).
Weitere Ausgestaltung erfindungsgemäßer kodierender Nukleinsäuresequenzen
Gegenstand der Erfindung sind Verwendung von Nukleinsäuresequenzen (einzel- und dop- pelsträngige DNA- und RNA-Sequenzen, wie z.B. cDNA und mRNA), die für ein Enzym mit erfindungsgemäßer Dehydrogenase-Aktivität kodieren. Bevorzugt sind Nukleinsäuresequenzen, welche z.B. für Aminosäuresequenzen gemäß Seq ID 2 bzw. Seq ID 4 oder charakteristische Teilsequenzen davon kodieren, oder Nukleinsäuresequenzen gemäß Seq ID 1 bzw. Seq ID 3 oder charakteristische Teilsequenzen davon umfassen.
Alle hierin erwähnten Nukleinsäuresequenzen sind in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen, wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seiten 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mit Hilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonie- rungsverfahren werden in Sambrook et al. (1989), Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.
Gegenstand der Erfindung sind auch Nukleinsäuresequenzen (einzel- und doppelsträngige DNA- und RNA-Sequenzen, wie z.B. cDNA und mRNA), kodierend für eines der obigen Poly- peptide und deren funktionalen Äquivalenten, welche z.B. unter Verwendung künstlicher Nukle- otidanaloga zugänglich sind.
Die Erfindung betrifft sowohl isolierte Nukleinsäuremoleküle, welche für erfindungsgemäße Polypeptide bzw. Proteine oder biologisch aktive Abschnitte davon kodieren, als auch Nukleinsäu- refragmente, die z.B. zur Verwendung als Hybridisierungssonden oder Primer zur Identifizierung oder Amplifikation von erfindungsgemäßer kodierenden Nukleinsäuren verwendet werden können.
Die erfindungsgemäßen Nukleinsäuremoleküle können zudem untranslatierte Sequenzen vom 3'- und/oder 5'-Ende des kodierenden Genbereichs enthalten
Die Erfindung umfasst weiterhin die zu den konkret beschriebenen Nukleotidsequenzen komplementären Nukleinsäuremoleküle oder einen Abschnitt davon. Die erfindungsgemäßen Nukleotidsequenzen ermöglichen die Erzeugung von Sonden und Primern, die zur Identifizierung und/oder Klonierung von homologer Sequenzen in anderen Zelltypen und Organismen verwendbar sind. Solche Sonden bzw. Primer umfassen gewöhnlich einen Nukleotidsequenzbereich, der unter„stringenten" Bedingungen (siehe unten) an mindestens etwa 12, vorzugsweise mindestens etwa 25, wie z.B. etwa 40, 50 oder 75 aufeinanderfolgende Nukleotide eines Sense-Stranges einer erfindungsgemäßen Nukleinsäuresequenz oder eines entsprechenden Antisense-Stranges hybridisiert.
Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure zugegen sind und kann überdies im wesentlichen frei von anderem zellulären Material oder Kulturmedium sein, wenn es durch rekombinante Techniken hergestellt wird, oder frei von chemischen Vorstufen oder anderen Chemikalien sein, wenn es chemisch synthetisiert wird. Ein erfindungsgemäßes Nukleinsäuremolekül kann mittels molekularbiologischer Standard- Techniken und der erfindungsgemäß bereitgestellten Sequenzinformation isoliert werden. Beispielsweise kann cDNA aus einer geeigneten cDNA-Bank isoliert werden, indem eine der konkret offenbarten vollständigen Sequenzen oder ein Abschnitt davon als Hybridisierungssonde und Standard-Hybridisierungstechniken (wie z.B. beschrieben in Sambrook, J., Fritsch, E.F. und Maniatis, T. Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine der offenbarten Sequenzen oder ein Abschnitt davon, durch Polymerasekettenreaktion isolieren, wobei die Oligonukleotidprimer, die auf der Basis dieser Sequenz erstellt wurden, verwendet werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und durch DNA-Sequenzanalyse Charakterisiert werden. Die erfindungsgemäßen Oligonukleotide können ferner durch Standard- Syntheseverfahren, z.B. mit einem automatischen DNA-Synthesegerät, hergestellt werden.
Die erfindungsgemäßen Nukleinsäuresequenzen lassen sich prinzipiell aus allen Organismen identifizieren und isolieren. Vorteilhaft lassen sich die erfindungsgemäßen Nukleinsäuresequenzen oder die Homologen davon, aus Pilzen, Hefen, Archeen oder Bakterien isolieren. Als Bakterien seien gram-negative und gram-positive Bakterien genannt. Bevorzugt werden die erfindungsgemäßen Nukleinsäuren aus gram-negativen Bakterien vorteilhaft aus a- Proteobakterien, ß-Proteobakterien oder γ-Proteobakterien, besonders bevorzugt aus Bakterien der Ordnungen der Burkholderiales, Hydrogenophilales, Methylophilales, Neisseriales, Nitro- somonadales, Procabacteriales oder Rhodocyclales.. Ganz besonders bevorzugt aus Bakterien der Familie der Rhodocyclaceae. Insbesondere bevorzugt aus den Gattung Azoarcus. Insbesondere bevorzugt aus Arten Azoarcus anaerobius, Azoarcus buckelii, Azoarcus communis, Azoarcus evansii, Azoarcus indigens, Azoarcus toluclasticus, Azoarcus tolulyticus, Azoarcus toluvorans, Azoarcus sp., Azoarcus sp. 22Lin, Azoarcus sp. BH72, Azoarcus sp. CC-1 1 , Azoarcus sp. CIB, Azoarcus sp. CR23, Azoarcus sp. EB1 , Azoarcus sp. EbN1 , Azoarcus sp. FL05, Azoarcus sp. HA, Azoarcus sp. HxN1 , Azoarcus sp. mXyN1 , Azoarcus sp. PbN1 , Azoarcus sp. PH002, Azoarcus sp. T und Azoarcus sp. ToN 1.
Besonders bevorzugt verwendet man Dehydrogenasen aus Azoarcus sp EbN1.
Erfindungsgemäße Nukleinsäuresequenzen lassen sich beispielsweise mit üblichen Hybridisie- rungsverfahren oder der PCR-Technik aus anderen Organismen, z.B. über genomische oder cDNA-Banken, isolieren. Diese DNA-Sequenzen hybridisieren unter Standardbedingungen mit den erfindungsgemäßen Sequenzen. Zur Hybridisierung werden vorteilhaft kurze Oligonukleotide der konservierten Bereiche beispielsweise aus dem aktiven Zentrum, die über Vergleiche mit einer erfindungsgemäßen Dehydrogenase in dem Fachmann bekannter Weise ermittelt werden können, verwendet. Es können aber auch längere Fragmente der erfindungsgemäßen Nukleinsäuren oder die vollständigen Sequenzen für die Hybridisierung verwendet werden. Je nach der verwendeten Nukleinsäure (Oligonukleotid, längeres Fragment oder vollständige Sequenz) oder je nachdem welche Nukleinsäureart DNA oder RNA für die Hybridisierung verwendet werden, variieren diese Standardbedingungen. So liegen beispielsweise die Schmelztemperaturen für DNA: DNA-Hybride ca 10 °C niedriger als die von DNA:RNA-Hybriden gleicher Länge.
Unter Standardbedingungen sind beispielsweise je nach Nukleinsäure Temperaturen zwischen 42 und 58 °C in einer wässrigen Pufferlösung mit einer Konzentration zwischen 0,1 bis 5 x SSC (1 X SSC = 0, 15 M NaCI, 15 mM Natriumeitrat, pH 7,2) oder zusätzlich in Gegenwart von 50% Formamid wie beispielsweise 42 °C in 5 x SSC, 50% Formamid zu verstehen. Vorteilhafterweise liegen die Hybridisierungsbedingungen für DNA: DNA-Hybride bei 0, 1 x SSC und Temperaturen zwischen etwa 20 °C bis 45 °C, bevorzugt zwischen etwa 30 °C bis 45 °C. Für DNA:RNA- Hybride liegen die Hybridisierungsbedingungen vorteilhaft bei 0, 1 x SSC und Temperaturen zwischen etwa 30 °C bis 55 °C, bevorzugt zwischen etwa 45 °C bis 55 °C. Diese angegebenen Temperaturen für die Hybridisierung sind beispielhaft kalkulierte Schmelztemperaturwerte für eine Nukleinsäure mit einer Länge von ca. 100 Nukleotiden und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid. Die experimentellen Bedingungen für die DNA-Hybridisierung sind in einschlägigen Lehrbüchern der Genetik, wie beispielsweise Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989, beschrieben und lassen sich nach dem Fachmann bekannten Formeln beispielsweise abhängig von der Länge der Nukleinsäuren, der Art der Hybride oder dem G + C-Gehalt berechnen. Weitere Informationen zur Hybridisierung kann der Fachmann folgenden Lehrbüchern entnehmen: Ausubel et al. (eds), 1985, Current Proto- cols in Molecular Biology, John Wley & Sons, New York; Harnes and Higgins (eds), 1985, Nu- cleic Acids Hybridization: A Practical Approach, IRL Press at Oxford University Press, Oxford; Brown (ed), 1991 , Essential Molecular Biology: A Practical Approach, IRL Press at Oxford University Press, Oxford.
Gegenstand der Erfindung sind auch Derivate der konkret offenbarten oder ableitbaren Nuk- leinsäuresequenzen.
So können weitere erfindungsgemäße Nukleinsäuresequenzen von Seq ID 1 bzw. Seq ID 3 abgeleitet sein und sich davon durch Addition, Substitution, Insertion oder Deletion einzelner oder mehrerer Nukleotide unterscheiden, aber weiterhin für Polypeptide mit dem gewünschten Eigenschaftsprofil kodieren.
Erfindungsgemäß umfasst sind auch solche Nukleinsäuresequenzen, die sogenannte stumme Mutationen umfassen oder entsprechend der Codon-Nutzung eins speziellen Ursprungs- oder Wirtsorganismus, im Vergleich zu einer konkret genannten Sequenz verändert sind, ebenso wie natürlich vorkommende Varianten, wie z.B. Spleißvarianten oder Allelvarianten, davon.
Gegenstand sind ebenso durch konservative Nukleotidsubstitutionen (d.h. die betreffende Ami- nosäure wird durch eine Aminosäure gleicher Ladung, Größe, Polarität und/oder Löslichkeit ersetzt) erhältliche Sequenzen.
Gegenstand der Erfindung sind auch die durch Sequenzpolymorphismen von den konkret offenbarten Nukleinsäuren abgeleiteten Moleküle. Diese genetischen Polymorphismen können zwischen Individuen innerhalb einer Population aufgrund der natürlichen Variation existieren. Diese natürlichen Variationen bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleo- tidsequenz eines Gens.
Unter Derivaten einer erfindungsgemäßen Nukleinsäuresequenz sind beispielsweise Allelvari- anten zu verstehen, die mindestens 40 % Homologie auf der abgeleiteten Aminosäureebene, bevorzugt mindestens 60 % Homologie, ganz besonders bevorzugt mindestens 80, 85, 90, 93, 95 oder 98 % Homologie über den gesamten Sequenzbereich aufweisen (bezüglich Homologie auf Aminosäureebene sei auf obige Ausführungen zu den Polypeptiden verwiesen auf). Über Teilbereiche der Sequenzen können die Homologien vorteilhaft höher liegen.
Weiterhin sind unter Derivaten auch Homologe der erfindungsgemäßen Nukleinsäuresequenzen beispielsweise pilzliche oder bakterielle Homologe, verkürzte Sequenzen, Einzelstrang- DNA oder RNA der kodierenden und nichtkodierenden DNA-Sequenz, zu verstehen. So besitzen z.B. auf DNA-Ebene eine Homologie von mindestens 40 %, bevorzugt von mindestens 60 %, besonders bevorzugt von mindestens 70 %, ganz besonders bevorzugt von mindestens 80 % über den gesamten angegebenen DNA-Bereich.
Außerdem sind unter Derivaten beispielsweise Fusionen mit Promotoren zu verstehen. Die Promotoren, die den angegebenen Nukleotidsequenzen vorgeschalten sind, können durch ein oder mehrere Nukleotidaustausche, Insertionen, Inversionen und/oder Deletionen verändert sein, ohne dass aber die Funktionalität bzw. Wirksamkeit der Promotoren beeinträchtigt sind. Des Weiteren können die Promotoren durch Veränderung ihrer Sequenz in ihrer Wirksamkeit erhöht oder komplett durch wirksamere Promotoren auch artfremder Organismen ausgetauscht werden.
Unter Derivaten sind auch Varianten zu verstehen, deren Nukleotidsequenz im Bereich von -1 bis -1000 Basen stromaufwärts vor dem Startkodon oder 0 bis 1000 Basen stromabwärts nach dem Stoppkodon so verändert wurden, dass die Genexpression und/oder die Proteinexpression verändert, bevorzugt erhöht wird.
Weiterhin umfasst die Erfindung auch Nukleinsäuresequenzen, welchen mit oben genannten kodierenden Sequenzen unter„stringenten Bedingungen" hybridisieren. Diese Polynukleotide lassen sich bei der Durchmusterung von genomischen oder cDNA-Banken auffinden und gegebenenfalls daraus mit geeigneten Primern mittels PCR vermehren und anschließend beispielsweise mit geeigneten Sonden isolieren. Darüber hinaus können erfindungsgemäße Polynukleotide auch auf chemischem Wege synthetisiert werden. Unter dieser Eigenschaft versteht man die Fähigkeit eines Poly- oder Oligonukleotids unter stringenten Bedingungen an eine nahezu komplementäre Sequenz zu binden, während unter diesen Bedingungen unspezifische Bindungen zwischen nicht-komplementären Partnern unterbleiben. Dazu sollten die Sequenzen zu 70- 100%, vorzugsweise zu 90-100%, komplementär sein. Die Eigenschaft komplementärer Sequenzen, spezifisch aneinander binden zu können, macht man sich beispielsweise in der Nor- thern- oder Southern-Blot-Technik oder bei der Primerbindung in PCR oder RT-PCR zunutze. Üblicherweise werden dazu Oligonukleotide ab einer Länge von 30 Basenpaaren eingesetzt. Unter stringenten Bedingungen versteht man beispielsweise in der Northern-Blot-Technik die Verwendung einer 50 - 70°C, vorzugsweise 60 - 65°C warmen Waschlösung, beispielsweise 0,1x SSC-Puffer mit 0, 1 % SDS (20x SSC: 3M NaCI, 0,3M Na-Citrat, pH 7,0) zur Elution unspe- zifisch hybridisierter cDNA-Sonden oder Oligonukleotide. Dabei bleiben, wie oben erwähnt, nur in hohem Maße komplementäre Nukleinsäuren aneinander gebunden. Die Einstellung stringen- ter Bedingungen ist dem Fachmann bekannt und ist z.B. in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben. Ausgestaltungen erfindungsgemäßer Konstrukte
Gegenstand der Erfindung sind außerdem Expressionskonstrukte, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für ein erfindungsgemäßes Polypeptid kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Ex- pressionskonstrukte.
Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz.
Unter einer„operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz, Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann. Beispiele für operativ verknüpfbare Sequenzen sind Targeting-Sequenzen sowie Enhancer, Polyadenylierungssignale und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikationsursprünge und dergleichen. Geeignete regulatorische Sequenzen sind z.B. beschrieben in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
Unter einem erfindungsgemäßen Nukleinsäurekonstrukt sind insbesondere solche zu verstehen, bei weichen das Gen für eine erfindungsgemäße Dehydrogenase mit einem oder mehre- ren Regulationssignalen zur Steuerung, z.B. Erhöhung, der Genexpression operativ oder funktionell verknüpft wurden.
Zusätzlich zu diesen Regulationssequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verän- dert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Das Nukleinsäurekonstrukt kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die kodierende Sequenz insertiert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wird die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression ge- steigert wird.
Ein bevorzugtes Nukleinsäurekonstrukt enthält vorteilhafterweise auch eine oder mehrere der schon erwähnten "Enhancer" Sequenzen, funktionell verknüpft mit dem Promotor, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA- Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren. Die erfindungsgemäßen Nukleinsäuren können in einer oder mehreren Kopien im Konstrukt enthalten sein. Im Konstrukt können noch weitere Marker, wie Antibiotikaresistenzen oder Auxotrophien komplementierende Gene, gegebenenfalls zur Selektion auf das Konstrukt enthalten sein.
Vorteilhafte Regulationssequenzen für das erfindungsgemäße Verfahren sind beispielsweise in Promotoren wie cos-, tac-, trp-, tet-, trp-tet-, Ipp-, lac-, Ipp-lac-, laclq" T7-, T5-, T3-, gal-, trc-, ara- , rhaP (rhaPBAD)SP6-, lambda-PR- oder im lambda-PL-Promotor enthalten, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden. Weitere vorteilhafte Regulationssequenzen sind beispielsweise in den gram-positiven Promotoren amy und SP02, in den Hefe- oder Pilzpromotoren ADC1 , MFalpha , AC, P-60, CYC1 , GAPDH, TEF, rp28, ADH enthalten. In diesem Zusammenhang sind auch die Promotoren der Pyruvatdecarboxylase und der Methanoloxida- se, beispielsweiseaus Hansenula vorteilhaft. Es können auch künstliche Promotoren für die Regulation verwendet werden.
Das Nukleinsäurekonstrukt wird zur Expression in einem Wirtsorganismus vorteilhafterweise in einen Vektor, wie beispielsweise einem Plasmid oder einem Phagen inseriert, der eine optimale Expression der Gene im Wirt ermöglicht. Unter Vektoren sind außer Plasmiden und Phagen auch alle anderen dem Fachmann bekannten Vektoren, also z.B. Viren, wie SV40, CMV, Bacu- lovirus und Adenovirus, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden. Diese Vektoren stellen eine weitere Ausgestaltung der Erfindung dar. Geeignete Plasmide sind beispielsweise in E. coli pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1 , pKK223-3, pDHE19.2, pHS2, pPLc236, pMBL24, pl_G200, pUR290, plN-lll113-B1 , Igt1 1 oder pBdCI, in Streptomyces plJ 101 , plJ364, plJ702 oder plJ361 , in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667, in Pilzen pALS1 , plL2 oder pBB116, in Hefen 2alphaM, pAG-1 , YEp6, YEp13 oder pEMBLYe23 oder in Pflanzen pLGV23, pGHIac+, pBIN19, pAK2004 oder pDH51. Die genannten Plasmide stellen eine kleine Auswahl der möglichen Plasmide dar. Weitere Plasmide sind dem Fachmann wohl bekannt und können beispielsweise aus dem Buch Cloning Vectors (Eds. Pouwels P. H. et al. Elsevier, Amsterdam-New York-Oxford, 1985 , ISBN 0 444 904018) entnommen werden.
Vorteilhafterweise enthält das Nukleinsäurekonstrukt zur Expression der weiteren enthaltenen Gene zusätzlich noch 3'- und/oder 5'-terminale regulatorische Sequenzen zur Steigerung der Expression, die je nach ausgewähltem Wirtorganismus und Gen oder Gene für eine optimale Expression ausgewählt werden.
Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.
Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. In einer weiteren Ausgestaltungsform des Vektors kann der das erfindungsgemäße Nukleinsäu- rekonstrukt oder die erfindungsgemäße Nukleinsäure enthaltende Vektor auch vorteilhafterweise in Form einer linearen DNA in die Mikroorganismen eingeführt werden und über heterologe oder homologe Rekombination in das Genom des Wirtsorganismus integriert werden. Diese lineare DNA kann aus einem linearisierten Vektor wie einem Plasmid oder nur aus dem Nuk- leinsäurekonstrukt oder der erfindungsgemäßen Nukleinsäure bestehen.
Für eine optimale Expression heterologer Gene in Organismen ist es vorteilhaft die Nukleinsäuresequenzen entsprechend des im Organismus verwendeten spezifischen "codon usage" zu verändern. Der "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene des betreffenden Organismus leicht ermitteln.
Die Herstellung einer erfindungsgemäßen Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten kodierenden Nukleotidsequenz sowie einem Termina- tor- oder Polyadenylierungssignal. Dazu verwendet man gängige Rekombinations- und Klonie- rungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.
Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wrtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wrt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pouwels P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen werden.
Erfindungsgemäß brauchbare Wirtsorganismen
Mit Hilfe der erfindungsgemäßen Vektoren oder Konstrukte sind rekombinante Mikroorganismen herstellbar, welche beispielsweise mit wenigstens einem erfindungsgemäßen Vektor transformiert sind und zur Produktion der erfindungsgemäßen Polypeptide eingesetzt werden können. Vorteilhafterweise werden die oben beschriebenen erfindungsgemäßen rekombinanten Konstrukte in ein geeignetes Wrtssystem eingebracht und exprimiert. Dabei werden vorzugs- weise dem Fachmann bekannte geläufige Klonierungs- und Transfektionsmethoden, wie beispielsweise Co-Präzipitation, Protoplastenfusion, Elektroporation, retrovirale Transfektion und dergleichen, verwendet, um die genannten Nukleinsäuren im jeweiligen Expressionssystem zur Expression zu bringen. Geeignete Systeme werden beispielsweise in Current Protocols in Mo- lecular Biology, F. Ausubel et al., Hrsg., Wiley Interscience, New York 1997, oder Sambrook et al. Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989 beschrieben. Erfindungsgemäß sind auch homolog rekombinierte Mikroorganismen herstellbar. Dazu wird ein Vektor hergestellt, der zumindest einen Abschnitt eines erfindungsgemäßen Gens oder einer kodierenden Sequenz enthält, worin gegebenenfalls wenigstens eine Aminosäure-Deletion, - Addition oder -Substitution eingebracht worden ist, um die erfindungsgemäße Sequenz zu verändern, z.B. funktionell zu disrumpieren ("Knockouf-Vektor). Die eingebrachte Sequenz kann z.B. auch ein Homologes aus einem verwandten Mikroorganismus sein oder aus einer Säugetier-, Hefe- oder Insektenquelle abgeleitet sein. Der zur homologen Rekombination verwendete Vektor kann alternativ derart ausgestaltet sein, daß das endogene Gen bei homologer Rekombination mutiert oder anderweitig verändert ist, jedoch noch das funktionelle Protein kodiert (z.B. kann der stromaufwärts gelegene regulatorische Bereich derart verändert sein, dass da- durch die Expression des endogenen Proteins verändert wird). Der veränderte Abschnitt des erfindungsgemäßen Gens ist im homologen Rekombinationsvektor. Die Konstruktion geeigneter Vektoren zur homologen Rekombination ist z.B. beschrieben in Thomas, K.R. und Capecchi, M.R. (1987) Cell 51 :503. Als rekombinante Wirtsorganismen für die erfindungsgemäße Nukleinsäure oder dem Nuklein- säurekonstrukt kommen prinzipiell alle prokaryontischen oder eukaryontischen Organismen in Frage. Vorteilhafterweise werden als Wirtsorganismen Mikroorganismen wie Bakterien, Pilze oder Hefen verwendet. Vorteilhaft werden gram-positive oder gram-negative Bakterien, bevorzugt Bakterien der Familien Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Strepto- mycetaceae oder Nocardiaceae, besonders bevorzugt Bakterien der Gattungen Escherichia, Pseudomonas, Streptomyces, Nocardia, Burkholderia, Salmonella, Agrobacterium oder Rhodo- coccus verwendet. Ganz besonders bevorzugt ist die Gattung und Art Escherichia coli. Weitere vorteilhafte Bakterien sind darüber hinaus in der Gruppe der α-Proteobakterien, ß- Proteobakterien oder γ-Proteobakterien zu finden.
Der Wrtsorganismus oder die Wrtsorganismen gemäß der Erfindung enthalten dabei vorzugsweise mindestens eine der in dieser Erfindung beschriebenen Nukleinsäuresequenzen, Nuk- leinsäurekonstrukte oder Vektoren, die für ein Enzym mit erfindungsgemäßer Dehydrogena- seaktivität kodieren.
Die im erfindungsgemäßen Verfahren verwendeten Organismen werden je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoff quelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0 °C und 100 °C, bevorzugt zwischen 10 °C bis 60 °C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann„batch "-weise,„semi batch"-weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nachgefüttert werden. Das Keton kann direkt zur Anzucht gegeben werden oder vorteilhaft nach Anzucht. Die Enzyme können nach dem in den Beispielen beschriebenen Verfahren aus den Organismen isoliert werden oder als Rohextrakt für die Reaktion verwendet werden.
Rekombinante Herstellung erfindungsgemäßer Polypeptide
Gegenstand der Erfindung sind weiterhin Verfahren zur rekombinanten Herstellung erfindungsgemäße Polypeptide oder funktioneller, biologisch aktiver Fragmente davon, wobei man einen Polypeptide-produzierenden Mikroorganismus kultiviert, gegebenenfalls die Expression der Polypeptide induziert und diese aus der Kultur isoliert. Die Polypeptide können so auch in großtechnischem Maßstab produziert werden, falls dies erwünscht ist.
Der rekombinante Mikroorganismus kann nach bekannten Verfahren kultiviert und fermentiert werden. Bakterien können beispielsweise in TB- oder LB-Medium und bei einer Temperatur von 20 bis 40°C und einem pH-Wert von 6 bis 9 vermehrt werden. Im Einzelnen werden geeignete Kultivierungsbedingungen beispielsweise in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecu- lar Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) beschrieben.
Die Zellen werden dann, falls die Polypeptide nicht in das Kulturmedium sezerniert werden, aufgeschlossen und das Produkt nach bekannten Proteinisolierungsverfahren aus dem Lysat gewonnen. Die Zellen können wahlweise durch hochfrequenten Ultraschall, durch hohen Druck, wie z.B. in einer French-Druckzelle, durch Osmolyse, durch Einwirkung von Detergenzien, lyti- sehen Enzymen oder organischen Lösungsmitteln, durch Homogenisatoren oder durch Kombination mehrerer der aufgeführten Verfahren aufgeschlossen werden.
Eine Aufreinigung der Polypeptide kann mit bekannten, chromatographischen Verfahren erzielt werden, wie Molekularsieb-Chromatographie (Gelfiltration), wie Q-Sepharose-Chromatographie, lonenaustausch-Chromatographie und hydrophobe Chromatographie, sowie mit anderen üblichen Verfahren wie Ultrafiltration, Kristallisation, Aussalzen, Dialyse und nativer Gelelektrophorese. Geeignete Verfahren werden beispielsweise in Cooper, F. G., Biochemische Arbeitsmethoden, Verlag Walter de Gruyter, Berlin, New York oder in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin beschrieben.
Vorteilhaft kann es sein, zur Isolierung des rekombinanten Proteins Vektorsysteme oder Oligo- nukleotide zu verwenden, die die cDNA um bestimmte Nukleotidsequenzen verlängern und damit für veränderte Polypeptide oder Fusionsproteine kodieren, die z.B. einer einfacheren Reinigung dienen. Derartige geeignete Modifikationen sind beispielsweise als Anker fungierende sogenannte "Tags", wie z.B. die als Hexa-Histidin-Anker bekannte Modifikation oder Epitope, die als Antigene von Antikörpern erkannt werden können (beschrieben zum Beispiel in Harlow, E. and Lane, D., 1988, Antibodies: A Laboratory Manual. Cold Spring Harbor (N.Y.) Press). Diese Anker können zur Anheftung der Proteine an einen festen Träger, wie z.B. einer Poly- mermatrix, dienen, die beispielsweise in einer Chromatographiesäule eingefüllt sein kann, oder an einer Mikrotiterplatte oder an einem sonstigen Träger verwendet werden kann.
Gleichzeitig können diese Anker auch zur Erkennung der Proteine verwendet werden. Zur Er- kennung der Proteine können außerdem übliche Marker, wie Fluoreszenzfarbstoffe, Enzym- marker, die nach Reaktion mit einem Substrat ein detektierbares Reaktionsprodukt bilden, oder radioaktive Marker, allein oder in Kombination mit den Ankern zur Derivatisierung der Proteine verwendet werden. Weitere Ausgestaltungen zur Durchführung des erfindungsgemäßen enzymatischen Reduktionsverfahrens
Die Dehydrogenasen können im erfindungsgemäßen Verfahren als freies oder immobilisiertes Enzym oder als noch im rekombinanten Produktionsorganismus enthaltenen Katalysator ver- wendet werden.
Das erfindungsgemäße Verfahren wird vorteilhaft bei einer Temperatur zwischen 0 °C bis 95 °C, bevorzugt zwischen 10 °C bis 85 °C, besonders bevorzugt zwischen 15 °C bis 75 °C durchgeführt.
Der pH-Wert im erfindungsgemäßen Verfahren wird vorteilhaft zwischen pH 4 und 12, bevorzugt zwischen pH 4,5 und 9, besonders bevorzugt zwischen pH 5 und 8 gehalten.
Unter enantiomerenreinen bzw. chiralen Produkten sind im erfindungsgemäßen Verfahren E- nantiomere zu verstehen, die eine Enantiomerenanreicherung zeigen. Bevorzugt werden im Verfahren Enantiomerenreinheiten von mindestens 70 %ee, bevorzugt von min. 80 %ee, besonders bevorzugt von min. 90 %ee, ganz besonders bevorzugt min. 98 %ee erreicht.
Für das erfindungsgemäße Verfahren können wachsende Zellen verwendet werden, die die erfindungsgemäßen Nukleinsäuren, Nukleinsäurekonstrukte oder Vektoren enthalten. Auch ruhende oder aufgeschlossene Zellen können verwendet werden. Unter aufgeschlossenen Zellen sind beispielsweise Zellen zu verstehen, die über eine Behandlung mit beispielsweise Lösungsmitteln durchlässig gemacht worden sind, oder Zellen die über eine Enzymbehandlung, über eine mechanische Behandlung (z.B. French Press oder Ultraschall) oder über eine sonsti- ge Methode aufgebrochen wurden. Die so erhaltenen Rohextrakte sind für das erfindungsgemäße Verfahren vorteilhaft geeignet. Auch gereinigte oder angereinigte Enzyme können für das Verfahren verwendet werden. Ebenfalls geeignet sind immobilisierte Mikroorganismen oder Enzyme, die vorteilhaft in der Reaktion Anwendung finden können. Das erfindungsgemäße Verfahren kann batchweise, semi-batchweise oder kontinuierlich betrieben werden. Die Durchführung des Verfahrens kann vorteilhafterweise in Bioreaktoren erfolgen, wie z.B. beschrieben in Biotechnology, Band 3, 2. Auflage, Rehm et al Hrsg., (1993) insbesondere Kapitel II.
Die nachfolgenden Beispiele sollen die Erfindung veranschaulichen, ohne sie jedoch einzu- schränken.
Experimenteller Teil
Beispiel 1 : Klonierung der Alkohol-Dehydrogenase EbN2 aus Azoarcus sp. EbN1.
Die Sequenz des Dehydrogenasegens EbN2 aus Azoarcus sp. EbN1 ist in Datenbanken hinterlegt (SEQ ID NO: 1 , [Genbank ID 56475432, Region: 2797788..2798528]). Von der Nukleinsäuresequenz des Gens wurden Oligonukleotide abgeleitet, mit denen nach bekannten Verfahren das Gen aus genomischer DNA von Azoarcus sp. EbN1 amplifiziert wurde. Die erhaltene Sequenz entspricht der publizierten Sequenz.
PCR-Bedingungen:
2 μΙ_ 10*Pfu-Ultra Puffer (Stratagene)
100 ng Primer #1
100 ng Primer #2
1 μΙ_ dNTP (je 10 mM)
ca. 30 ng chromosomale DNA aus Azoarcus sp. EbN1
1 U Pft/-Ultra DNA Polymerase
ad 20 μΙ_ H20
Temperaturprogramm:
5 min, 94°C,
60 sec, 50°C,
2 min, 72°C, U (35 Zyklen)
60 sec, 94°C, J
10 min, 72°C,
abkühlen auf 10°C Das PCR-Produkt (ca. 751 bp) wurde mit den Restriktionsendonukleasen Nde\ und ßamHI verdaut und in entsprechend verdauten pDHE19.2-Vektor (DE19848129) kloniert. Die Ligationsan- sätze wurden in E.coli XL1 Blue (Stratagene) transformiert. Das erhaltene Plasmid pDHE-PDH-L wurde in den Stamm E.coli TG10 pAgro4 pHSG575 transformiert (TG10: ein RhaA"-Derivat von E.coli TG 1 (Stratagene); pAgro4: Takeshita, S; Sato, M; Toba, M; Masahashi, W; Hashimoto-Gotoh, T (1987) Gene 61 , 63-74; pHSG575: T. Tomoyasu et al (2001), Mol. Microbiol. 40(2), 397-413). Die rekombianten E. coli werden mit LU 13151 bezeichnet.
Beispiel 2: Klonierung der Alkohol-Dehydrogenase ChnA aus Azoarcus sp. EbN1.
Die Sequenz des Dehydrogenasegens ChnA aus Azoarcus sp. EbN1 ist in Datenbanken hinterlegt ([Genbank ID 56475432, Region: (complement) 192247..192993]). Von der Nukleinsäuresequenz des Gens wurden Oligonukleotide abgeleitet, mit denen nach bekannten Verfahren das Gen aus genomischer DNA von Azoarcus sp. EbN 1 amplifiziert wurde. Die erhaltene Sequenz entspricht der publizierten Sequenz.
PCR-Bedingungen:
2 μΙ_ 10*Pfu-Ultra Puffer (Stratagene)
100 ng Primer #3
100 ng Primer #4
1 μΙ_ dNTP (je 10 mM)
ca. 30 ng chromosomale DNA aus Azoarcus sp. EbN1
1 U Pft/-Ultra DNA Polymerase
ad 20 μΙ_ H20
Temperaturprogramm:
5 min, 94°C,
60 sec, 50°C,
2 min, 72°C, L (35 Zyklen)
60 sec, 94°C, J
10 min, 72°C,
abkühlen auf 10°C
Das PCR-Produkt (ca. 743bp) wurde mit den Restriktionsendonukleasen Nde\ und BglW verdaut und in einen Nde\ und ßamHI restringierten pDHE19.2-Vektor (DE19848129) kloniert. Die Liga- tionsansätze wurden in E.coli XL1 Blue (Stratagene) transformiert.
Das erhaltene Plasmid pDHE-PDH-L wurde in den Stamm E.coli TG 10 pAgro4 pHSG575 transformiert (TG10: ein RhaA"-Derivat von E.coli TG 1 (Stratagene); pAgro4: Takeshita, S; Sato, M; Toba, M; Masahashi, W; Hashimoto-Gotoh, T (1987) Gene 61 , 63-74; pHSG575: T. Tomoyasu et al (2001), Mol. Microbiol. 40(2), 397-413).
Die rekombianten E. coli werden mit LU 13283 bezeichnet. Beispiel 3: Bereitstellung rekombinanter 'anti-Prelog'-Dehydrogenasen
LU 13151 oder LU 13283 wurden in 20mL LB-Amp/Spec/Cm (100Mg/l Ampicillin; 100Mg/l Spec- tinomycin; 20 g/l Chloramphenicol), 0, 1 mM IPTG, 0,5g/L Rhamnose in 100mL Erlenmeyerkol- ben (Schikanen) 18 h bei 37°C angezogen (alternativ kann man auch zuerst eine Vorkultur machen mit gleichen Antibiotikakonz., aber ohne IPTG und Rhamnose. Diese wird 5 h bei 37°C inkubiert und dann mit 1 % in die Hauptkultur beimpft), bei 5000*g/10min zentrifugiert, einmal mit 10mM TRIS*HCI, pH7,0 gewaschen und in 2 mL des gleichen Puffers resuspendiert.
Zellfreier Proteinrohextrakt wurde hergestellt indem Zellpaste von LU 13151 bzw. LU 13283 0,7ml Glaskugeln (d=0,5mm) in einer Schwingmühle (3x 5min mit Zwischenkühlung auf Eis) aufgeschlossen wurde.
Beispiel 4: Aktivitätsbestimmung der rekombinanten 'anti-Prelog'-Dehydrogenasen aus Azoar- cus sp. EbN1
Je 6 Transformanten wurden in 20mL LB Amp/Spec/Cm (100μ9/Ι Amp; 100mg/l Spec; 20μ9/Ι Cm) 0, 1 mM IPTG 0,5g/L Rhamnose in 100mL Erlenmeyerkolben (Schikanen) 18 h bei 37°C angezogen, bei 5000*g/10min zentrifugiert, einmal mit 10mM Tris/HCI pH7,0 gewaschen und in 2 mL des gleichen Puffers resuspendiert.
Zellfreier Rohextrakt der rekombinanten E.coli, die die Dehydrogenasegene enthalten wurde durch Zellaufschluss mit 0,7ml Glaskugeln (d=0,5mm) in einer Schwingmühle (3x 5min mit Zwi- schenkühlung auf Eis) gewonnen.
Im Photometer kann bei 340 nm der Verbrauch reduzierter Kosubstrate während der Reduktion von Ketonen verfolgt werden. In 1 mL 50 mM KP,, 1 mM MgCI2, pH 6.5 wurden bei 30° C 10 verdünnter zellfreier Rohextrakt (= 10 μg Protein), 10 μηιοΙ Keton und 250 nmol NADH oder NADPH inkubiert. 1 Unit (1 U) entspricht der Enzymmenge, die in 1 min 1 μηιοΙ Keton reduziert.
Beispiel 5: Herstellung von (S)-1-Pyridin-4-yl-ethanol im 4L-Labormaßstab
Es wurde eine Batchfahrweise statt einer Dosierung für das Pyridin-4-yl-ethanon getestet, da es die Handhabung im Technikum vereinfacht. Des Weiteren wurde 2-Butanol als Lösungsmittel statt /'so-Propanol getestet. In einem weiteren Versuch wurde die Menge an /'so-Propanol von 40% auf 20% reduziert, um die anschließende Destillationszeit zu verkürzen. Dazu wurden in einem beheizbaren 4-l-Reaktor mit Rührer 0,8 I /'so-Propanol bzw. 2 I 2-Butanol in einem 33 mM KH2P04-Puffer (pH 6,5) ohne Zusatz von MgCI2 bzw. MgS04 (dies kann zu einer Vergiftung des Katalysators bei der späteren Kernhydrierung führen) vorgelegt. 0,5 g (0,2 mM) NAD und 483 g (1 M) Pyridin-4-yl-ethanon wurden zugegeben. Durch Zugabe von 100 ml des Biokatalysators LU 11558 in Form von ganzen Zellen (unbehandelter Fermenteraustrag) wurde die Reaktion gestartet. Das einphasige Reaktionsgemisch wurde bei 40°C. Der pH-Wert blieb konstant auf pH~6,5. Jede Stunde wurde eine Probe gezogen, mit konz. HCl abgestoppt und mittels HPLC (GV31366/132) analysiert. Das Gesamtvolumen des Ansatzes betrug 4 I. Nach ca. 24 h wurde die Reaktionsmischung abgelassen und zur Aufarbeitung gegeben.
Die Batchfahrweise mit 50% 2-Butanol (v/v) zeigt nach 5 Stunden einen nahezu vollständigen Umsatz Es sind noch ca. 1 ,6% Keton übrig, welche sich über Nacht auf 1 ,4% reduzieren. Ein Problem bei dieser Fahrweise stellt jedoch die spätere Aufarbeitung dar: Man erhält nicht wie erwartet ein zweiphasiges Gemisch, sondern nur eine Phase. Dies liegt vermutlich an den großen Mengen von Pyridin-4-yl-ethanon, die lösungsvermittelnd wirken können. Selbst bei Zugabe von Wasser bzw. 2-Butanol zum Austrag kommt es zu keiner Phasentrennung, so dass hier eine Destillation erfolgen muss.
Die Batchfahrweise mit 20% /'so-Propanol zeigt einen deutlich langsameren Verlauf der Reduktion im Vergleich zu 2-Butanol. Nach ca. 24 h erhält man einen nahezu vollständigen Umsatz mit noch ca. 1 ,9% verbleibendem Keton.
Für die Aufarbeitung bringt jedoch der Einsatz von /'so-Propanol statt 2-Butanol Vorteile, da man /'so-Propanol leichter abdesti ll ieren kann . Durch die Verri ngerung des Vol umens an /'so-Propanol wird außerdem die Destillationszeit verkürzt.
Aufarbeitung:
Die Reduktionsausträge werden zunächst jeweils über Celite® filtriert.
Bei der Verwendung von 50% 2-Butanol als Hilfsalkohol erhält man ein einphasiges Reaktionsgemisch, welches beim Einengen am Rotationsverdampfer keine klare, rasche Phasentrennung ergibt. Durch Zugabe von 10 Gew.% NaCI erhält man eine gute, schnelle Phasentrennung mit einer Mulmschicht, die sich an der Trennzone konzentriert. Einengen der organischen Phase am Rotationsverdampfer liefert das gewünschte Produkt in 82% Ausbeute. Der Chlorgehalt beträgt 0, 1 % und erweist sich bei der anschließenden Hydrierung vermutlich als Katalysatorgift. Daher wurde auch bei der enzymatischen Reduktion auf Zusatz jeglicher Chlorid-haltiger Salze (z.B. MgCI2) verzichtet (s. 2.2). Gegenextraktion der organischen Phasen mit Wasser führte zu deutlichem Produktverlust aufgrund der guten Löslichkeit des (S)-1 -Pyridin-4-yl-ethanols in Wasser.
Die Fahrweise mit 20% /'so-Propanol (Raschig-Ware) stellte sich für die Technikums-kampagne als Methode der Wahl heraus aufgrund der einfachen Aufarbeitungsweise: nach erfolgter Celi- te®-F i ltrati o n wi rd d as einphasige Gemisch zunächst auf ca. 50% (w/w) bei 50 - 60°C am Rotationsverdampfer eingeengt.
Eine erste Extraktion erfolgt dann mit der doppelten Menge (w/w) Ethylacetat wahlweise bei Raumtemperatur bzw. bei 50°C, um eine schnellere Phasentrennung zu erhalten. In jedem Fall erhält man eine Mulmschicht zwischen wässriger und organischer Phase. Diese kann mit der organischen (a) oder mit der wässrigen Phase (b) separiert werden. Im Fall a ist eine nochmalige Filtration erforderlich. Nach Entfernen des Lösungsmittels am Rotationsver-dampfer erhält man 78% des gewünschten Produktes als hell-sandfarbenen Feststoff. Nochmalige Extraktion der wässrigen Phase mit 150% (w/w) Ethylacetat und Aufarbeitung nach (a) ergibt weitere 10%, d. h. insgesamt 88% Ausbeute an (S)-1 -Pyridin-4-yl-ethanol i m 4L-Labormaßstab (ee>99%, ehem. Reinheit >98%).
Beispiel 6: Herstellung von (S)-1 -Piperidin-4-yl-ethanol
In einem ersten Schritt wurde ein gängiger Kernhydrierungskatalysator für die beabsichtigte Reaktion getestet. Dabei handelte es sich um einen geträgerten Metallkatalysator bestehend aus 5%Ru auf Al203. Diese Kontakte sind für das Festbett vorgesehen und wurden daher für eine batch-Fahrweise gemahlen.
Umgesetzt wurde eine 26%-Lösung von enantiomerenreinen (S)-1 -Pyridin-4-yl-ethanol aus der enzymatischen Reduktion von 4-Acetylpyridin, Beispiel 5) in Methanol bei 130 °C und 200 bar H2 mit einer Katalysatorenbeladung von 1 ,5 Gew.-% bezogen auf das Edukt. Der getestete Katalysator zeigte einen sehr guten Umsatz mit ebenfalls sehr gute Selektivität, weshalb er in den folgenden Optimierungsarbeiten verwendet wurde.
Der Umsatz lag bei >99%, die Selektivität bei 93%. Der ee-Wert betrug 96% Weitere optische Anreicherung
Eine weitere Möglichkeit der Erhöhung des ee-Wertes liegt in der Fällung der Rohware mit (R)- Mandelsäure. Dazu wurde der Alkohol in Isopropanol mit einer äquimolaren Menge an ( )-Mandelsäure versetzt und zum Rückfluss erhitzt. Beim langsamen Abkühlen bildeten sich ab 73 °C vereinzelt Kristalle. Mit einer Rampe von -5 °C/h wurde die Temperatur auf 20 °C reduziert und das Kristallisat abfiltriert. Dabei lag die Feststoffbeladung bei ca. 1 1 % und der Filtrationswiderstand bei 1 ,36*1012 mPas/m2.
Aus dem Mandelsäuresalz wurde der gewünschte Alkohol freigesetzt. Der ee-Wert konnte bei einer Gesamtausbeute von 76% auf 99,2% gesteigert werden. Die chemische Reinheit lag bei >99,5%.

Claims

Patentansprüche
1 . Verfahren zur Herstellun von N-heterozyklischen optisch aktiven Alkoholen der Formel I
Figure imgf000033_0001
Formel I
worin
R1 für Alkylgruppen stehen, die wiederum ein- oder mehrfach substituiert sein können, durch Alkyl, Halogen, SH.SR3 ,OH, OR3, N02, CN, CO, COOR3, NR3R4 oder NR3R3R5+X", wobei R3, R4 und R5 unabhängig voneinander für H oder einen Niedrigalkyl- oder Niedrigalkoxy-Rest stehen und X" für ein Gegenion steht
R2 für N-haltige Heteroarylgruppen stehen, die wiederum ein- oder mehrfach substituiert sein können, durch Alkyl, Halogen, SH.SR3 ,OH, OR3, N02, CN, CO, COOR3, NR3R4 oder NR3R3R5+X", wobei R3, R4 und R5 unabhängig voneinander für H oder einen Niedrigalkyl- oder Niedrigalkoxy-Rest stehen und X" für ein Gegenion steht durch Reduktion des entsprechenden Ketons, wobei die Reduktion mit einer Dehydrogenase mit der Polypeptidsequenz SEQ ID NO:2 oder NO:4, oder mit einer Polypeptid- sequenz, bei der bis zu 25% der Aminosäurereste gegenüber SEQ ID NO:2 oder NO:4 durch Deletion; Insertion, Substitution oder einer Kombination davon verändert sind, durchgeführt wird.
2. Verwendung eines Verfahrens nach Anspruch 1 in einer Reaktion zur Herstellung von N- heterozyklischen optisch aktiven Alkoholen der Formel III,
Figure imgf000033_0002
Formel III wobei der gemäß Anspruch 1 erhaltene Alkohol der Formel I durch Hydrierung des N- haltigen Heteroarylrestes R2 weiter umgesetzt wird.
3. Verfahren zur Herstellung von N-heterozyklischen optisch aktiven Alkoholen der Formel
III,
Figure imgf000034_0001
Formel III indem man in einem ersten Schritt (a) das Verfahren gemäß Anspruch 1 durchführt und in einem zweiten Schritt (b) den in (a) erhaltenen optisch aktiven Alkohol der Formel I durch Hydrierung in III überführt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Hydrierung in Schritt (b) mit einem Ruthenium-Katalysator auf Al203 durchgeführt wird.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass R2 4-Pyridinyl und R1 Methyl ist.
PCT/EP2011/070607 2010-11-24 2011-11-22 Verfahren zur herstellung n-heterozyklischer optisch aktiver alkohole WO2012069434A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11784705.3A EP2643467A1 (de) 2010-11-24 2011-11-22 Verfahren zur herstellung n-heterozyklischer optisch aktiver alkohole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10192418.1 2010-11-24
EP10192418 2010-11-24

Publications (1)

Publication Number Publication Date
WO2012069434A1 true WO2012069434A1 (de) 2012-05-31

Family

ID=44993593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070607 WO2012069434A1 (de) 2010-11-24 2011-11-22 Verfahren zur herstellung n-heterozyklischer optisch aktiver alkohole

Country Status (2)

Country Link
EP (1) EP2643467A1 (de)
WO (1) WO2012069434A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017026A1 (de) 2012-08-28 2014-03-06 Forschungszentrum Jülich GmbH Sensor für NADP(H) und Entwicklung von Alkoholdehydrogenasen
CN111041008A (zh) * 2018-10-11 2020-04-21 沈阳药科大学 短链脱氢酶突变体及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19848129A1 (de) 1998-10-19 2000-04-20 Basf Ag Verfahren zur Herstellung chiraler Carbonsäuren aus Nitrilen mit Hilfe einer Nitrilase oder Mikroorganismen, die ein Gen für die Nitrilase enthalten
EP1069183A2 (de) 1999-07-09 2001-01-17 Basf Aktiengesellschaft Immobilisierte Lipase
DE10019377A1 (de) 2000-04-19 2001-10-25 Basf Ag Verfahren zur Immobilisierung von biologisch aktiven Stoffen auf Trägermaterialien und Verwendung der mit biologisch aktiven Stoffen geträgerten Materialien für chirale Synthesen
EP1149849A1 (de) 2000-04-19 2001-10-31 Basf Aktiengesellschaft Verfahren zur Herstellung von kovalent gebundenen biologisch aktiven Stoffen an Polyurethanschaumstoffen sowie Verwendung der geträgerten Polyurethanschaumstoffe für chirale Synthesen
WO2005108590A2 (de) * 2004-05-05 2005-11-17 Basf Aktiengesellschaft Verfahren zur herstellung optisch aktiver alkohole aus alkanonen unter verwendung einer dehydrogenase aus azoarcus
DE102006056526A1 (de) * 2006-11-30 2008-06-05 Archimica Gmbh Verfahren zur stereoselektiven Synthese von chiralen Epoxiden durch ADH-Reduktion von alpha-Abgangsgruppen-substituierten Ketonen und Cyclisierung
WO2008155302A1 (de) * 2007-06-20 2008-12-24 Basf Se Verfahren zur herstellung optisch aktiver alkohole unter verwendung einer azoarcus sp. ebn1 dehydrogenase

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19848129A1 (de) 1998-10-19 2000-04-20 Basf Ag Verfahren zur Herstellung chiraler Carbonsäuren aus Nitrilen mit Hilfe einer Nitrilase oder Mikroorganismen, die ein Gen für die Nitrilase enthalten
EP1069183A2 (de) 1999-07-09 2001-01-17 Basf Aktiengesellschaft Immobilisierte Lipase
DE10019377A1 (de) 2000-04-19 2001-10-25 Basf Ag Verfahren zur Immobilisierung von biologisch aktiven Stoffen auf Trägermaterialien und Verwendung der mit biologisch aktiven Stoffen geträgerten Materialien für chirale Synthesen
EP1149849A1 (de) 2000-04-19 2001-10-31 Basf Aktiengesellschaft Verfahren zur Herstellung von kovalent gebundenen biologisch aktiven Stoffen an Polyurethanschaumstoffen sowie Verwendung der geträgerten Polyurethanschaumstoffe für chirale Synthesen
WO2005108590A2 (de) * 2004-05-05 2005-11-17 Basf Aktiengesellschaft Verfahren zur herstellung optisch aktiver alkohole aus alkanonen unter verwendung einer dehydrogenase aus azoarcus
DE102006056526A1 (de) * 2006-11-30 2008-06-05 Archimica Gmbh Verfahren zur stereoselektiven Synthese von chiralen Epoxiden durch ADH-Reduktion von alpha-Abgangsgruppen-substituierten Ketonen und Cyclisierung
WO2008155302A1 (de) * 2007-06-20 2008-12-24 Basf Se Verfahren zur herstellung optisch aktiver alkohole unter verwendung einer azoarcus sp. ebn1 dehydrogenase

Non-Patent Citations (36)

* Cited by examiner, † Cited by third party
Title
A. SCHMIDT; F. HOLLMANN; B. BÜHLER: "Enzyme Catalysis in Organic Synthesis", vol. 111, 2002, WILEY-VCH, article "Oxidation of Alcohols", pages: 991 - 1032
ARKIN; YOURVAN, PNAS, vol. 89, 1992, pages 7811 - 7815
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1985, JOHN WILEY & SONS
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1989, JOHN WILEY & SONS, pages: 6.3.1 - 6.3.6
AUSUBEL, F.M. ET AL.: "Current Protocols in Molecular Biology", 1987, GREENE PUBLISHING ASSOC. AND WILEY INTERSCIENCE
BROWN: "Essential Molecular Biology: A Practical Approach", 1991, IRL PRESS AT OXFORD UNIVERSITY PRESS
CHEMICO-BIOLOGICAL INTERACTIONS, vol. 143, 2003, pages 247
DELGRAVE ET AL., PROTEIN ENGINEERING, vol. 6, no. 3, 1993, pages 327 - 331
F. AUSUBEL ET AL.,: "Current Protocols in Mo lecular Biology", 1997, WILEY INTERSCIENCE
GOEDDEL: "Gene Expression Technology: Methods in Enzymology", vol. 185, 1990, ACADEMIC PRESS
HAMES AND HIGGINS: "Nucleic Acids Hybridization: A Practical Approach", 1985, IRL PRESS AT OXFORD UNIVERSITY PRESS
HARLOW, E.; LANE, D.: "Antibodies: A Laboratory Manual.", 1988, COLD SPRING HARBOR (N.Y.) PRESS
J. LALONDE; A. MARGOLIN: "Enzyme Catalysis in Organic Synthesis", vol. III, 2002, WILEY-VCH, article "Immobilization of Enzymes", pages: 991 - 1032
J.ORG.CHEM., vol. 57, 1992, pages 1532
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, 2002, pages 25677
K. NAKAMURA; T. MATSUDA; K. DRAUZ; H. WALDMANN: "Enzyme Catalysis in Organic Synthesis", vol. 111, 2002, WILEY-VCH, article "Reduction of Ketones", pages: 991 - 1032
MATSUDA T ET AL: "Recent progress in biocatalysis for asymmetric oxidation and reduction", TETRAHEDRON ASYMMETRY, PERGAMON PRESS LTD, OXFORD, GB, vol. 20, no. 5, 25 March 2009 (2009-03-25), pages 513 - 557, XP026088241, ISSN: 0957-4166, [retrieved on 20090415], DOI: 10.1016/J.TETASY.2008.12.035 *
PEARSON; LIPMAN, PROC. NATL. ACAD, SCI. (USA, vol. 85, no. 8, 1988, pages 2444 - 2448
POUWELS P. H. ET AL.: "Cloning Vectors", 1985, ELSEVIER
PURE AND APPLIED CHEMISTRY, vol. 9, 1964, pages 119
REHM ET AL: "Biotechnology, 2. Auflage", vol. 3, 1993
SAMBROOK ET AL.: "Molecular Cloning", 1989, COLD SPRING HARBOR LABORATORY
SAMBROOK ET AL.: "Molecular Cloning: A laboratory manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual.. 2. Aufl.", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK, J.; FRITSCH, E.F.; MANIATIS, T.: "Molecular Cloning: A Laboratory Manual. 2. Aufl.", 1989, COLD SPRING HARBOR LABORATORY PRESS
T. MANIATIS; E.F. FRITSCH; J. SAMBROOK: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY
T. TOMOYASU ET AL., MOL. MICROBIOL., vol. 40, no. 2, 2001, pages 397 - 413
T.J. SILHAVY; M.L. BERMAN; L.W. ENQUIST: "Experiments with Gene Fusions", 1984, COLD SPRING HARBOR LABORATORY
TAKESHITA, S; SATO, M; TOBA, M; MASAHASHI, W; HASHIMOTO-GOTOH, T, GENE, vol. 61, 1987, pages 63 - 74
TETRAHEDRON, vol. 60, 2004, pages 633
THOMAS, K.R.; CAPECCHI, M.R., CELL, vol. 51, 1987, pages 503
TOBA, M; MASAHASHI, W; HASHIMOTO-GOTOH, T, GENE, vol. 61, 1987, pages 63 - 74
TRENDS BIOTECHNOL, vol. 17, 1999, pages 487
VOET: "Phosphoamiditmethode, 2. Auflage,", WILEY PRESS, pages: 896 - 897
W. HUMMEL; K. ABOKITSE; K. DRAUZ; C. ROLLMANN; H. GRÖGER, ADV. SYNTH. CATAL., vol. 345, no. 1, 2, 2003, pages 153 - 159
YANG, P.,: "The Chemistry of Nanostructured Materials", 2003, WORLD SCIENTIFIC PUBLISHING, pages: 329 - 357

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017026A1 (de) 2012-08-28 2014-03-06 Forschungszentrum Jülich GmbH Sensor für NADP(H) und Entwicklung von Alkoholdehydrogenasen
WO2014032777A1 (de) 2012-08-28 2014-03-06 Forschungszentrum Jülich GmbH Sensor für nadp(h) und entwicklung von alkoholdehydrogenasen
CN111041008A (zh) * 2018-10-11 2020-04-21 沈阳药科大学 短链脱氢酶突变体及其应用
CN111041008B (zh) * 2018-10-11 2022-02-01 沈阳药科大学 短链脱氢酶突变体及其应用

Also Published As

Publication number Publication date
EP2643467A1 (de) 2013-10-02

Similar Documents

Publication Publication Date Title
EP2334801B1 (de) Verfahren zur herstellung von l-phenylephrin unter verwendung einer alkoholdehydrogenase
EP1929001B1 (de) Neue dehydrogenasen, deren derivate und ein verfahren zur herstellung von optisch aktiven alkanolen
EP1745133B1 (de) Verfahren zur herstellung optisch aktiver alkohole aus alkanonen unter verwendung einer dehydrogenase aus azoarcus
EP2171074B1 (de) Verfahren zur Herstellung optisch aktiver Alkohole unter Verwendung einer Dehydrogenase aus Azoarcus sp. EbN1
EP3201184B1 (de) Verfahren zur biokatalytischen cyclisierung von geranyllinalool und dabei erhaltene cyclisierungsprodukte
EP3444340A1 (de) 7beta-hydroxysteroid dehydrogenase-mutanten und verfahren zur herstellung von ursodesoxycholsäure
EP2268803A2 (de) Neue 12alpha-hydroxysteroiddehydrogenasen, deren herstellung und verwendung
WO2012066059A2 (de) Verfahren zur biokatalytischen cyclisierung von terpenen und darin einsetzbare cyclase-mutanten
WO2006094945A2 (de) Verfahren zur herstellung optisch aktiver alkohole durch enzymatische reduktion
EP3417067A1 (de) Enzymatische zyklisierung von homofarnesylsäure
EP2825661B1 (de) Verfahren zur herstellung von terpen-nitrilen aus terpen-oximen unter verwendung einer aldoxim dehydratase
EP1613745B1 (de) L-carnitin dehydrogenasen, deren derivate und ein verfahren zur herstellung von substituierten (s)-alkanolen
EP1815002B1 (de) Verfahren zur herstellung von (s)-butan-2-ol
EP1969132B1 (de) Enzymatische reduktion zur herstellung optisch aktiver alkohole
WO2012069434A1 (de) Verfahren zur herstellung n-heterozyklischer optisch aktiver alkohole
EP1966381A2 (de) Verfahren zur herstellung von 5-norbornen-2-carbonsäure aus 5-norbornen-2-carbonitril unter verwendung einer arylacetonitrilase
WO2010079068A1 (de) Verbesserte biokatalysatoren zur herstellung von duloxetinalkohol
DE102006039189A1 (de) Enantioselektive Darstellung von aliphatischen azyklischen Estern und Ketonen
US20120135476A1 (en) Process for preparing n-heterocyclic optically active alcohols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11784705

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011784705

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE