WO2012068848A1 - 一种时间同步的方法和系统 - Google Patents

一种时间同步的方法和系统 Download PDF

Info

Publication number
WO2012068848A1
WO2012068848A1 PCT/CN2011/074720 CN2011074720W WO2012068848A1 WO 2012068848 A1 WO2012068848 A1 WO 2012068848A1 CN 2011074720 W CN2011074720 W CN 2011074720W WO 2012068848 A1 WO2012068848 A1 WO 2012068848A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
packet
synchronization
message
master device
Prior art date
Application number
PCT/CN2011/074720
Other languages
English (en)
French (fr)
Inventor
罗丽
傅小明
白磊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012068848A1 publication Critical patent/WO2012068848A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays

Definitions

  • the present invention relates to the field of clock synchronization, and in particular, to a method and system for time synchronization.
  • CDMA Code Division Multiple Access 2000
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time) Division-Synchronous Code Division Multiple Access
  • WIMAX Worldwide Interoperability for Microwave Access, Global Interoperability for Microwave Access
  • LTE Long Time Evolution, Long Term Evolution (TDD/FDD)
  • TDD Time Division Duplex
  • CDMA2000, TD-SCDMA, LTE (TDD), WIMAX, etc. in order to ensure that cell handover can be successfully completed, strict phase synchronization is required.
  • FDD Frequency Division Duplex
  • GSM Global System for Mobile Communications
  • WCDMA Global System for Mobile Communications
  • LTE LTE
  • GPS Global Positioning System
  • PTP Precision Time Synchronization Protocol
  • the IEEE1588 Precision Clock Synchronization Protocol is a timing mechanism for overcoming the lack of real-time Ethernet. Its emergence has brought us hope. Its main principle is to send and receive specific messages, calculation and reference sources through master-slave. The time offset is used to achieve the purpose of synchronization. Synchronous device vendors are currently trying to replace the GPS clock source with the IEEE1588 network clock, but the IEEE1588-2008 is released. There are still some problems in the implementation. Summary of the invention
  • the existing IEEE 1588-2008 standard does not explicitly describe the length of the various packets. This may result in inconsistent packet lengths sent by different vendors. Inconsistent packet lengths may cause delay asymmetry, resulting in synchronization between master and slave. There will be a certain phase deviation. When the phase deviation exceeds the protocol requirement, it will cause problems such as unsuccessful cell handover, dropped calls, and interference between adjacent cells.
  • the technical problem to be solved by the present invention is to provide a time synchronization method and system, which solves the problem of phase misalignment caused by the inconsistency of the length of the event 4 when the IEEE 1588 is used for time synchronization.
  • the present invention provides a method for time synchronization, including:
  • the slave device constructs a delay request message that is consistent with the length of the synchronization packet sent by the master device to the slave device, and sends the delay request message to the master device;
  • the slave device calculates a time offset between the slave device and the master device according to the sending and receiving time of the synchronization message and the sending and receiving time of the delay request message, and then synchronizes with the master device time.
  • the above method has the following characteristics:
  • the step of the slave device constructing a delay request message that is consistent with the length of the synchronization packet sent by the master device to the slave device includes: the slave device sends a signaling message to the master device to perform negotiation, and learns the negotiation.
  • the length of the subsequent synchronization message is further configured to construct a delay request that matches the length of the synchronization message.
  • the above method has the following characteristics:
  • the step of sending the signaling packet between the slave device and the master device to negotiate the length of the synchronized message after the negotiation includes:
  • the slave device sends a first signaling packet to the master device, where the type length value (TLV) carries the synchronization packet length information to be negotiated;
  • TLV type length value
  • the master device After receiving the first signaling packet, the master device learns the synchronization packet length information to be negotiated, and sends a second signaling packet to the slave device, where the TLV carries the negotiated synchronization packet length. information; After receiving the second signaling packet, the slave device learns the length of the synchronization packet to be sent by the master device after the negotiation.
  • the above method has the following characteristics:
  • the step of the slave device constructing the delay request message with the length of the synchronization packet sent by the master device to the slave device includes: after receiving the synchronization packet sent by the master device, the slave device obtains the length of the synchronization packet And constructing a delay request message that is consistent with the length of the synchronization packet.
  • the above method has the following characteristics:
  • the master device and the slave device agree on the length of the synchronization packet and the delay request packet, so that the length of the delay request packet is the same as the length of the synchronization packet.
  • the present invention provides a time synchronization system including a master device and a slave device,
  • the master device is configured to send a synchronization message to the slave device
  • the slave device is configured to construct a delay request message that is consistent with the length of the synchronization message, and send the delay request message to the master device; and, according to the sending and receiving time of the synchronization message, and the delay request message
  • the sending and receiving time of the text calculates the time deviation between the slave device and the master device, and then synchronizes with the master device time.
  • the above system has the following characteristics:
  • the slave device is configured to send a signaling message to the master device to perform a negotiation, and learn the length of the synchronization message after the negotiation, and then construct a delay request message that is consistent with the length of the synchronization message; or, receive After the synchronization packet is received, the length of the synchronization packet is obtained, and then the delay request packet with the length of the synchronization packet is configured; or the synchronization packet and the delay request packet are agreed in advance with the master device.
  • the length is such that the length of the delayed request message is the same as the length of the synchronization message.
  • the present invention provides a slave device, including a message transceiver module and a synchronization module, where
  • the packet sending and receiving module is configured to configure a delay request message that is consistent with the length of the synchronization message sent by the master device to the slave device, and send the delay request message to the master device;
  • the synchronization module calculates a time deviation between the slave device and the master device according to the sending and receiving time of the synchronization packet, and the sending and receiving time of the delay request packet, and further, the master device Synchronized.
  • the above slave device has the following characteristics:
  • the sending and receiving module is configured to send a signaling message to and communicate with the master device to learn the length of the synchronized message after the negotiation, and then construct a delay request message that is consistent with the length of the synchronous message; or After receiving the synchronization packet, obtaining the length of the synchronization packet, and constructing a delay request packet that is consistent with the length of the synchronization packet; or, according to the master device, agreeing on the synchronization packet and the delay request in advance The length of the packet, and the delayed request packet with the length of the synchronization packet is constructed.
  • the above slave device has the following characteristics:
  • the negotiation is performed, and the length of the synchronization packet after the negotiation is obtained, and then the delay request packet with the length of the synchronization packet is configured.
  • the packet sending and receiving module is configured to send a first signaling packet to the master device, where the type length value (TLV) carries the synchronization packet length information to be negotiated; and receives the second signaling packet sent by the master device. After the text, the length of the synchronized message after negotiation is obtained from the TLV of the second signaling packet.
  • TLV type length value
  • phase asymmetry problem caused by the inconsistency of the event message length can be avoided in the delay request response mechanism.
  • FIG. 1 is a schematic diagram of a delay request response mechanism provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of networking provided by an embodiment of the present invention.
  • FIG. 3 is a flow chart of a first embodiment of an application example of the present invention.
  • FIG. 4 is a flow chart of a second scheme of an application example of the present invention.
  • IEEE 1588 is an Ethernet clock synchronization protocol (PTP protocol) that implements master-slave synchronization by synchronizing messages.
  • PTP protocol can be carried over Ethernet 802.3, UDP/IPv4, and UDP/IPv6.
  • the format of the 802.3 frame structure is shown in Table 1.
  • the data field must be at least 46 bytes.
  • PTP messages the contents are placed in the Data/Load section, so the PTP message must have a minimum of 46 bytes.
  • synchronization is achieved using Sync, Follow-up, Delay_Req, and Delay_Resp in Figure 1.
  • tl and t2 are respectively The timestamp of sending and receiving Sync packets, that is, t1 is the time when the Sync message is sent to the master device, and t2 is the time when the Sync message arrives at the slave device (Slave).
  • T3 and t4 are the transmission and reception timestamps of the Delay-Req packet, that is, t3 is the time of the Delay-Req message from the device, and t4 is the time of the Delay-Req message to the master device.
  • Table 2 shows the packet structure of the Sync and Delay-Req packets. It can be seen from the table that the useful length of the Sync and Delay-Req packets is 44 bytes. If the PTP standard protocol is carried on the Ethernet 802.3, there is no IP header. Then, the length of the Sync and Delay-Req messages does not meet the requirements, so it is necessary to compensate for the length of at least 2 bytes.
  • the cable delay is symmetrical, and the line transmission delays in both directions are equal;
  • the main device and the slave device are both FE switches.
  • the delay of the event message is:
  • N is the number of levels exchanged between the master device and the slave device.
  • L Pie _ amble is the length of the frame preamble, and 3 ⁇ 4 ⁇ /3 ⁇ 43 ⁇ 4 is the time for each 100 MB physical network port to forward each bit of data.
  • J Fra is the length of the check bit (FCS).
  • the average line transmission delay is:
  • 2 offsetFromMaster is the difference between the time of the slave device and the time of the master device.
  • the formula is ( 4 )
  • offsetFromMaster should be 0, and (5) knows that this value and Sync and Delay-Req are the difference between the length and the exchange level. The number has a relationship. If the length of the Sync message is the same as the length of the Delay-Req message, this value is independent of the number of switching stages, which is 0. Otherwise, the deviation will increase as the number of switching stages increases.
  • the method includes: sending, by the device, a Delay-Req message that is consistent with a Sync message length, and sending the Delay-Req message to the primary device; according to the sending and receiving time of the Sync message, and the Delay— The time of sending and receiving Req packets, calculating the time deviation between the slave device and the master device, and then synchronizing with the master device time.
  • the line transmission delay can be calculated according to the equation (3).
  • the invention proposes three schemes for guaranteeing the same length of the Sync message and the Delay-Req message.
  • Solution 1 The slave device sends a signaling (Signaling) message to the master device to negotiate, and the slave device learns the length of the Sync packet sent by the master device after the negotiation, thereby constructing a Delay that is consistent with the length of the Sync packet. — Req 4 ⁇ .
  • Signaling packets can be used to negotiate the rate and duration of the primary and secondary devices. This is only valid in unicast mode.
  • the scheme adds the corresponding TLV (Type Length Value) to increase the message field of the Signaling packet and negotiate the packet length.
  • the method may include the following steps: the first signaling packet is sent from the device to the primary device, where the TLV carries the synchronization packet length information to be negotiated; after receiving the first signaling packet, the master device learns The synchronization packet length information to be negotiated, the second signaling packet is sent to the slave device, where the TLV carries the negotiated synchronization packet length information; after receiving the second signaling packet, the device learns The length of the synchronization packet that the master device will send after negotiation.
  • the Singaling message is sent from the device to request the master device to send Announce (Notification), Sync, and Delay_Resp messages at a fixed time interval and duration, where the Signaling format is as shown in Table 4.
  • the content of the device is carried in the TLV, and the unicast negotiation TLV includes REQUEST_U ICAST_TRANSMISSION (request unicast transmission), GRANT U ICAST TRANSMISSION (authorized unicast transmission), CANCEL U ICAST TRANSMISSION (cancel unicast transmission), and ACKNOWLEDGE CANCEL U ICAST TRANSMISSION, these TLVs include message type, transmission interval and transmission duration, as shown in Table 5.
  • messageLength The format of the TLV in this embodiment is shown in Table 6. .
  • messageLength has a total of 2 bytes. The default value is Oxffff. Because the length of the Ethernet packet is 64 ⁇ : 1518, the FCS (check digit) is removed, and the packet length is 60 ⁇ : 1514. Therefore, the value is 0x003C ⁇ 0x05EA. Valid values, otherwise they are considered invalid.
  • the master device responds to the slave device GRANT_UNICAST- TRANSMISSION TLV packet, and also needs to increase the packet length information for this TLV.
  • Table 7 in the prior art GRANT-UNIICAST- TRANSMISSION TLV format, Table 8 adds the TLV format of the message length information to the present embodiment.
  • the slave device can obtain the length of the synchronization packet sent by the master device by using the signaling packet, and determine the length of the Delay-Req packet according to the length. Therefore, it can be ensured that the length of the event message is consistent in the delayed response mechanism.
  • Step 301 Configure the slave device to communicate with the master device in unicast mode and configure the unicast negotiation function.
  • Step 302 Configure, by the device, the parameters of the signaling request, including the packet type, the packet duration, and the length of the packet proposed by the present invention, according to the content of the REQUEST-UNIICAST- TRANSMISSION TLV defined by the present invention in Table 6, The signal is sent to the master device through the Signaling message.
  • Step 303 After receiving the Signaling message, the master device sends a message carrying the GRANT_UNICAST- TRANSMISSION TLV to the slave device according to the content of the GRANT_UNICAST- TRANSMISSION TLV defined in the present invention in Table 8.
  • the device can obtain the length of the Sync packet sent by the master device from the packet.
  • Step 304 The slave device sends a Delay-Req packet in a length synchronized with the Sync packet.
  • Solution 2 After receiving the Sync message, the device obtains the length of the Sync message, so as to construct a Delay-Req message that is consistent with the length of the Sync message.
  • the length of the Sync packet is directly obtained from the device, and then the Delay-Req packet is sent, which is applicable to the unicast and multicast scenarios.
  • the specific implementation steps are as follows:
  • Step 401 The master device actively sends a Sync packet.
  • Step 402 After obtaining the Sync message, the slave device obtains the length information of the Sync message, and sends the Delay-Req message with the same length.
  • Solution 3 The master device and the slave device agree on the length of the Sync packet and the Delay-Req packet in advance, so that the length of the Delay-Req packet is the same as the length of the Sync packet.
  • the fixed length of the corresponding packet may be determined according to the protocol requirements. The following requirements are required: The length of the packet of 1588 is required. For the packet carrying the packet on Ethernet 802.3, the packet is smaller than 46 bytes. In this case, there is no VLAN (Virtual Local Area Network) label. , determine 1588 ⁇ ⁇ text length is 64 bytes, that can and must be increased 2 bytes of additional bytes, additional bytes cannot be added in the following cases:
  • the time synchronization system of the embodiment of the present invention includes a master device and a slave device, wherein the master device is configured to send a synchronization message to the slave device;
  • the slave device is configured to construct a delay request message that is consistent with the length of the synchronization message, and send the delay request message to the master device; and, according to the sending and receiving time of the synchronization message, and the delay request message
  • the sending and receiving time of the text calculates the time deviation between the slave device and the master device, and then synchronizes with the master device time.
  • the slave device is configured to send a signaling message to the master device to perform a negotiation, and learn the length of the synchronization message after the negotiation, so as to construct a delay request message that is consistent with the length of the synchronization message; Or, after receiving the synchronization packet, obtaining the length of the synchronization packet, so as to construct a delay request packet that is consistent with the length of the synchronization packet; or, agreeing with the master device to synchronize the message and delay request
  • the length of the packet is such that the length of the delayed request packet is the same as the length of the synchronization packet.
  • the slave device of the embodiment of the present invention includes a packet sending and receiving module and a synchronization module, where the packet sending and receiving module is configured to construct a delay request packet with a length of a synchronization packet sent by the master device to the slave device to the master device. Sending the delay request message;
  • the synchronization module calculates a time offset between the slave device and the master device according to the sending and receiving time of the synchronization message and the sending and receiving time of the delay request message, and then synchronizes with the master device time.
  • the packet sending and receiving module is configured to send a signaling message to the master device to perform a negotiation, and learn the length of the synchronized message after the negotiation, so as to construct a synchronization packet having the same length as the synchronization packet. Or, after receiving the synchronization packet, obtaining the length of the synchronization packet, so as to construct a delay request message that is consistent with the length of the synchronization packet; or, according to the master device, agreeing on the synchronization message and Delaying the length of the request packet, and constructing a delayed request packet that is consistent with the length of the synchronization packet.
  • the negotiation is performed, and the length of the synchronization message after the negotiation is obtained, so as to construct a delay request message that is consistent with the length of the synchronization message
  • the message is
  • the transceiver module is configured to send a first signaling packet to the primary device, where the TLV carries the synchronization packet length information to be negotiated; after receiving the second signaling packet sent by the primary device, the second signaling packet is sent from the second signaling The length of the synchronized message after negotiation is obtained in the TLV of the packet.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may use software functions.
  • the form of the module is implemented. The invention is not limited to any specific form of combination of hardware and software.
  • the present invention provides a time synchronization method and system, by constructing a delay request message from a device and transmitting it to a master device; the slave device according to the sending and receiving time of the synchronization message, and the sending and sending of the delayed request message Receive time, calculate the time deviation between the slave device and the master device, and then synchronize with the master device time to solve the phase misalignment caused by the inconsistent event packet length when IEEE1588 is used for time synchronization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明公开一种时间同步的方法和系统,其中,所述方法包括:从设备构造与主设备发送给从设备的同步报文长度一致的延迟请求报文,向主设备发送所述延迟请求报文;从设备根据所述同步报文的发送和接收时间,以及所述延迟请求报文的发送和接收时间,计算从设备与主设备的时间偏差,进而与主设备时间同步。采用本发明,在延时请求响应机制中将可以避免由于事件报文长度不一致带来的相位不对称问题。

Description

一种时间同步的方法和系统
技术领域
本发明涉及时钟同步领域, 尤其涉及一种时间同步的方法和系统。
背景技术
在 3G无线通信领域,存在几种无线标准: CDMA( Code Division Multiple Access, 码分多址接入) 2000、 WCDMA ( Wideband Code Division Multiple Access, 宽带码分多址接入)、 TD-SCDMA ( Time Division-Synchronous Code Division Multiple Access, 时分同步码分多址接入) 、 WIMAX ( Worldwide Interoperability for Microwave Access , 微波技术全球互通接入) 、 LTE ( Long Time Evolution,长期演进( TDD/FDD ) )。对于基于 TDD( Time Division Duplex, 时分双工) 系统, 如 CDMA2000、 TD-SCDMA, LTE ( TDD ) 、 WIMAX等, 为了保证小区切换能够顺利完成,需要严格的相位同步。基于 FDD( Frequency Division Duplex , 频分双工) 系统, 如 GSM ( Global System for Mobile Communications, 全球移动通讯系统) 、 WCDMA、 LTE ( FDD )等, 需要保 证基站系统间保持频率同步。
为了保证相位同步, 现在各产品线大量使用的是同步于 GPS ( Global Positioning System, 全球定位系统)等标准参考源方法, 但是用 GPS做参考 大大受制于美国的控制, 曾出现过由于 GPS卫星系统升级导致地面大部分基 站瘫痪的局面; 另外还存在 GPS的安装成本高、 不是所有的地方都可以安装 等问题。 随着 IEEE 1588协议(即 Precision Time Synchronization Protocol, 精 确时钟同步协议, 简称 PTP ) 的出现, 通信系统也逐渐用网络的 PTP来用于 基站同步, 代替 GPS天馈系统, 解决时钟同步问题。
IEEE1588 精密时钟同步协议是为克服以太网实时性不足而规定的一种 对时机制, 它的出现给我们带来了希望, 它的主要原理是通过主从间收发特 定报文, 计算与参考源的时间偏差来达到同步的目的。 目前同步设备厂商们 正在试图用 IEEE1588网络时钟代替 GPS时钟源,但是发布的 IEEE1588-2008 在实现时还存在一些问题。 发明内容
现有的 IEEE1588-2008标准没有明确描述各种报文必须的长度, 这样可 能导致不同厂家发送的报文长度不一致, 报文长度不一致会引起延时不对称 性问题, 导致同步后主从之间会存在一定的相位偏差。 当相位偏差超过协议 要求时, 将会引起小区切换不成功、 掉话、 相邻小区间干扰等问题。
本发明要解决的技术问题提出一种时间同步的方法和系统, 解决 IEEE1588 用于时间同步时由于事件 4艮文长度不一致, 引起的相位不对齐问 题。
为了解决上述问题, 本发明提供一种时间同步的方法, 包括:
从设备构造与主设备发送给从设备的同步报文长度一致的延迟请求报 文, 向主设备发送所述延迟请求报文;
从设备根据所述同步报文的发送和接收时间, 以及所述延迟请求报文的 发送和接收时间, 计算从设备与主设备的时间偏差, 进而与主设备时间同步。
优选地, 上述方法具有以下特点:
所述从设备构造与主设备发送给所述从设备的同步报文长度一致的延迟 请求报文的步骤包括: 所述从设备通过与主设备之间发送信令报文, 进行协 商, 获知协商后的同步报文长度, 进而构造与所述同步报文长度一致的延迟 请求 ^艮文。
优选地, 上述方法具有以下特点:
所述从设备与主设备之间发送信令报文, 进行协商, 获知协商后的同步 报文长度的步骤包括:
从设备向主设备发送第一信令报文, 其中的类型长度值(TLV ) 中携带 待协商的同步报文长度信息;
所述主设备接收到所述第一信令报文后, 获知待协商的同步报文长度信 息, 向所述从设备发送第二信令报文, 其中的 TLV携带协商后的同步报文长 度信息; 所述从设备接收到所述第二信令报文后, 获知协商后主设备即将发送的 同步报文长度。
优选地, 上述方法具有以下特点:
所述从设备构造与主设备发送给所述从设备的同步报文长度一致的延迟 请求报文的步骤包括: 从设备接收到主设备发送的同步报文后, 获取所述同 步报文的长度, 进而构造与所述同步报文长度一致的延迟请求报文。
优选地, 上述方法具有以下特点:
从设备构造延迟请求报文之前, 所述主设备和从设备事先约定好同步报 文和延迟请求报文的长度, 使延迟请求报文的长度与同步报文长度相同。
为了解决上述问题, 本发明提供一种时间同步的系统, 包括主设备和从 设备,
主设备设置为向从设备发送同步报文;
从设备设置为构造与所述同步报文长度一致的延迟请求报文, 向主设备 发送所述延迟请求报文; 以及, 根据所述同步报文的发送和接收时间, 以及 所述延迟请求报文的发送和接收时间, 计算从设备与主设备的时间偏差, 进 而与主设备时间同步。
优选地, 上述系统具有以下特点:
所述从设备是设置为通过与主设备之间发送信令报文, 进行协商, 获知 协商后的同步报文长度,进而构造与所述同步报文长度一致的延迟请求报文; 或者, 接收到所述同步报文后, 获取所述同步报文的长度, 进而构造与所述 同步报文长度一致的延迟请求报文; 或者, 与主设备事先约定好同步报文和 延迟请求报文的长度, 使延迟请求报文的长度与同步报文长度相同。
为了解决上述问题, 本发明提供一种从设备, 包括报文收发模块和同步 模块, 其中,
所述报文收发模块设置为构造与主设备发送给从设备的同步报文长度一 致的延迟请求报文, 向主设备发送所述延迟请求报文;
所述同步模块根据所述同步报文的发送和接收时间, 以及所述延迟请求 报文的发送和接收时间, 计算从设备与主设备的时间偏差, 进而与主设备时 间同步。
优选地, 上述从设备具有以下特点:
所述艮文收发模块是设置为通过与主设备之间发送信令报文,进行协商, 获知协商后的同步报文长度, 进而构造与所述同步报文长度一致的延迟请求 报文; 或者, 接收到所述同步报文后, 获取所述同步报文的长度, 进而构造 与所述同步报文长度一致的延迟请求报文; 或者, 根据与主设备事先约定好 同步报文和延迟请求报文的长度, 构造与所述同步报文长度一致的延迟请求 报文。
优选地, 上述从设备具有以下特点:
当从设备与主设备之间发送信令报文, 进行协商, 获知协商后的同步报 文长度, 进而构造与所述同步报文长度一致的延迟请求报文时,
所述报文收发模块是设置为向主设备发送第一信令报文, 其中的类型长 度值(TLV ) 中携带待协商的同步报文长度信息; 接收到主设备发送的第二 信令报文后, 从所述第二信令报文的 TLV中获知协商后的同步报文长度。
釆用本发明, 在延时请求响应机制中将可以避免由于事件报文长度不一 致带来的相位不对称问题。
附图概述
图 1是本发明实施例所提供的延时请求响应机制示意图;
图 2是本发明实施例所提供的组网示意图;
图 3是本发明应用示例的方案一流程图;
图 4是本发明应用示例的方案二流程图。
本发明的较佳实施方式
IEEE 1588是一种以太网的时钟同步协议( PTP协议), 通过同步报文实 现主从同步。 PTP协议可以承载在 Ethernet 802.3、 UDP/IPv4和 UDP/IPv6 , 802.3帧结 构的形式如表 1所示, 数据字段最少要 46个字节。对于 PTP报文, 其内容放 在 Data/Load (数据 /负载 )部分, 因此 PTP报文最少要有 46个字节。
表 1 preamble SFD Des MAC Sour MAC Data /Load FCS
Figure imgf000007_0001
7 bytes 1 byte 6 bytes 6 bytes 2 bytes 46-1500 bytes 4 bytes
在延时请求响应机制中,使用图 1中的 Sync (同步)、 Follow— up (跟踪)、 Delay_Req (延迟请求 )和 Delay_Resp (延迟响应 ) 4艮文实现同步, 图 1中 tl 和 t2分别为 Sync报文的发送和接收时间戳, 即 tl 是 Sync报文出主设备 ( Master ) 时的时间, t2为 Sync报文到从设备(Slave ) 时的时间。 t3和 t4 分别为 Delay— Req报文的发送和接收时间戳, 即 t3为 Delay— Req报文出从设 备的时间, t4为 Delay— Req报文到主设备的时间。
表 2 为 Sync 和 Delay— Req报文的包结构, 从表中可以看出 Sync 和 Delay— Req报文的有用长度为 44字节, 如果 PTP标准协议承载在 Ethernet 802.3上, 即没有 IP等包头, 则 Sync和 Delay— Req报文的长度不满足要求, 因此需要补偿至少 2个字节的长度。
表 2
Figure imgf000007_0002
如上面描述, 需要补充一定的字节才能符合要求, 这样有可能不同厂家 补充的字节长度不一致, 而在实际使用中主设备和从设备经常是来自不同的 厂家。 PTP用于时间同步时常用的应用场景如图 2。主设备和从设备之间经过 交换机或者路由器, 并且速率不确定, 中间有 FE/GE/10GE (百兆 /千兆 /万兆) 等接口, 下面将对由于事件报文长度不一致引起的问题进行分析。
为了分析 Sync报文和 Delay— Req报文长度不一致引起的问题,做如下假 设:
(1 )线路(cable)延时是对称的, 两个方向的线路传输延时相等;
(2)报文帧由交换机完全读入緩存后再开始转发;
( 3 ) Sync 4艮文的长度与 Delay_Req ^艮文长度不一致;
(4) 中间经过的都是 FE交换机;
( 5 )主设备和从设备的频率和时间是完全同步的;
( 6 )主设备和从设备中间都是 FE交换机。
在主设备到从设备的方向上, 事件报文的延时为:
t2-N {Lsync_PKT + LFCS)hytes x ^bits/byte x FEm/bit + {LVxe_amhle )hytes x ^bits/byte x FEm/bit +1 ( 1 ) 其中, U Sync报文的长度, N为主设备与从设备之间交换的级数,
LPie_amble 为帧前导的长度, ¾∞/¾¾为 100M物理网口转发每 bit数据的时间。
在从设备到主设备的方向上, 事件报文的延时为: t4 = N {J^
(2)
为 Delay— Req报文的长度, JFra为检验位 (FCS)长度。
平均线路传输延时为:
[(t2-tl) + (t4-t3)]
N, (3)
2 offsetFromMaster是从设备的时间与主设备的时间之差, 其公式为 ( 4 )
[(tl-t2) + (t4-t3)1 . Λ
< offsetFromMaster > =― '―^ ― ( 4 ) 将(1 )和(2)代入(4)为:
Λ 4 . N ~x (Ldel req_PKT L _ρκτ ) x 8 x (FE)m c
< offsetFromMaster > = J ) 因为上面 4叚设主设备和从设备的频率和时间完全同步, 理论上 offsetFromMaster应该为 0, 而由 (5 )可知, 这个值与 Sync与 Delay— Req才艮 文长度之差和经过的交换级数有关系。如果 Sync报文与 Delay— Req报文的长 度一样时, 这个值与交换级数无关, 即为 0, 否则这个偏差将会随着交换级 数的增加而增加。
假设 Sync报文长度比 Delay— Req报文长度多 20字节, 当中间的交换为
FE交换时, offsetFromMaster的值为:
N x 20 x 8 x l0 一 ΛΓ r
< offsetFromMaster > = = 800 x N b ) 为了证明这个理论的正确性, 做了如下实验, Sync 报文的长度比 Delay— Req报文长度少 20个字节, 交换级数与相位偏差的关系如表 3所示。
表 3
Figure imgf000009_0001
说明: "-"表示 Slave的相位超前于 Master的相位 从表 3中看出, 每增加一级 FE交换, 相位偏差将会波动 800ns左右, 由 于网络有一些不确定性存在一些偏差, 这样随着交换级数的增多, 将会引起 主从间相位不对称问题,最终对于无线系统基站将会导致小区间切换不成功、 掉话以及相邻小区间干扰的问题。
将会导致主设备到从设备与从设备到主设备的延迟时间不同。 承载在 Ethernet 802.3上的报文存在这个问题, 同样承载在 UDP/IPv4和 UDP/IPv6存在同样的问题。 只要 Sync报文和 Delay— Req报文长度一样将不 会存在同样问题, 因此, 本发明的基本思想是: 在延时请求响应机制中要保 证 Sync报文和 Dleay— Req 艮文长度一样。
具体地, 包括: 从设备构造与 Sync报文长度一致的 Delay— Req报文, 向 主设备发送所述 Delay— Req报文; 根据所述 Sync报文的发送和接收时间, 以 及所述 Delay— Req报文的发送和接收时间,计算从设备与主设备的时间偏差, 进而与主设备时间同步。
其中, 可以根据式(3 )计算线路传输延时。
本发明提出三种保证 Sync报文与 Delay— Req报文长度一样的方案。
方案一: 从设备通过与主设备之间发送信令(Signaling )报文, 进行协 商, 从设备获知协商后的主设备发送 Sync报文长度, 从而构造与所述 Sync 才艮文长度一致的 Delay— Req 4艮文。
Signaling报文可以用来协商主设备和从设备的发包速率和持续时间, 这 种 文只有在单播方式下生效。 本方案通过增加相应的 TLV ( Type Length Value , 类型长度值)来增加 Signaling报文的消息字段, 协商 报文长度。
具体地, 可包括如下步骤: 从设备向主设备发送第一信令报文, 其中的 TLV中携带待协商的同步报文长度信息;主设备接收到所述第一信令报文后, 获知待协商的同步报文长度信息, 向所述从设备发送第二信令报文, 其中的 TLV携带协商后的同步报文长度信息; 从设备接收到所述第二信令报文后, 获知协商后主设备即将发送的同步报文长度。
现有技术中, 从设备发送 Singaling报文请求主设备以固定的时间间隔和 持续时间发送 Announce (通知)、 Sync, Delay_Resp才艮文, 其中 Signaling才艮 文格式如表 4所示, 其中请求主设备的内容在 TLV中携带, 单播协商 TLV 包括 REQUEST_U ICAST_TRANSMISSION ( 请求单播传输 ) 、 GRANT U ICAST TRANSMISSION ( 授 权 单 播 传 输 ) 、 CANCEL U ICAST TRANSMISSION ( 取 消 单 播 传 输 ) 和 ACKNOWLEDGE CANCEL U ICAST TRANSMISSION (确认取消单播传 输 ) , 这些 TLV包括消息类型、发送时间间隔和发送持续时间, 如表 5所示。
表 4
Figure imgf000011_0001
表 5 现有技术 REQUEST— UNICAST— TRANSMISSION TLV格式
Figure imgf000011_0002
为了保证主设备发送的 Sync报文与从设备发送的 Delay— Req报文长度一 样, 可以将这些 TLV增加表示报文长度的信息, 称为 messageLength, 本实 施例的 TLV的形式如表 6所示。 messageLength共 2个字节,默认值为 Oxffff, 因为以太网包的长度为 64〜: 1518,去除 FCS (校验位),报文长度为 60〜: 1514, 因此这个值为 0x003C~0x05EA内为有效值, 否则都认为无效。
表 6 本发明 REQUEST— UNICAST— TRANSMISSION TLV格式 Bits
Octets Offset
7 6 5 4 3 2 1 0
tlvType 2 0 lengthField 2 2 messageType reserved 1 4 loglnterMessagePeriod 1 5 durationField 4 6 messageLength (信息长度) 2 10
主设备 回应从设备 GRANT— UNICAST— TRANSMISSION TLV报文,也 需要对这个 TLV 增加报文长度信息。 如表 7 所示, 为现有技术 GRANT— UNICAST— TRANSMISSION TLV格式 ,表 8为本实施例增加了报文 长度信息的 TLV格式。这样从设备通过 Signaling报文可以获取主设备发送的 同步报文的长度, 依据这个长度来确定 Delay— Req的报文长度。 从而可以保 证在延迟响应机制中事件报文长度一致。
表 Ί 现有技术 GRANT— UNICAST— TRANSMISSION TLV格式
Bits
Octets Offset
6 5 4 3 2 1 0
tlvType 2 0 lengthField 2 2 messageType reserved 1 4 loglnterMessagePeriod 1 5 durationField 4 6 reserved 1 10
0 0 0 0 0 0 R 1 11 本发明 GRANT— UNICAST— TRANSMISSION TLV格式
Figure imgf000013_0001
下面以一具体的应用示例说明方案一的实现步骤, 如图 3所示: 步骤 301 , 配置从设备, 以单播的形式与主设备通信, 同时配置单播协 商功能。
步骤 302, 配置从设备发送 Signaling协商请求报文参数, 包括报文类型、 报文持续时间和本发明提出的报文长度, 按照表 6 中本发明定义的 REQUEST— UNICAST— TRANSMISSION TLV形式的内容, 通过 Signaling报 文发送给主设备。
步骤 303 , 主设备收到这个 Signaling报文后, 按照表 8中的本发明定义 的 GRANT— UNICAST— TRANSMISSION TLV 形式的内容, 发出携带 GRANT— UNICAST— TRANSMISSION TLV的报文给从设备,这时从设备可从 报文中获取主设备发送的 Sync报文长度。
步骤 304, 从设备以与 Sync报文同步的长度发送 Delay— Req报文。
方案二: 从设备接收到 Sync报文后, 获取所述 Sync报文的长度, 从而 构造与所述 Sync报文长度一致的 Delay— Req报文。
在本方案中, 从设备直接获取 Sync报文的长度, 然后发送 Delay— Req报 文, 适用于单播和组播的情况, 如图 4所示, 其具体实施步骤为:
步骤 401 , 主设备主动发送 Sync报文;
步骤 402, 从设备在获取到 Sync报文后, 获取 Sync报文的长度信息, 以 相同的长度发送 Delay— Req报文。
方案三:主设备和从设备事先约定好 Sync报文和 Delay— Req报文的长度, 使 Delay— Req报文的长度与 Sync报文长度相同。
具体地, 可根据协议要求, 确定相应报文的固定长度。 可做如下要求: 要求 1588的报文长度, 对于承载在 Ethernet 802.3上的报文, 由于报文 消息小于 46个字节, 这时在没有 VLAN ( Virtual Local Area Network, 虚拟局 域网)标签的情况下, 确定 1588 ^艮文长度为 64字节, 即可以并且必须增加 2个字节的附加字节, 在下列情况下不能加入附加字节:
( 1 )承载在 Ethernet 802.3上的报文, 带有 VLAN标签;
( 2 )承载在 UDP/lPv4或者 UDP/lPv6的报文。
相应地, 本发明实施例的时间同步的系统, 包括主设备和从设备, 其中, 主设备设置为向从设备发送同步报文;
从设备设置为构造与所述同步报文长度一致的延迟请求报文, 向主设备 发送所述延迟请求报文; 以及, 根据所述同步报文的发送和接收时间, 以及 所述延迟请求报文的发送和接收时间, 计算从设备与主设备的时间偏差, 进 而与主设备时间同步。
优选地, 所述从设备是设置为通过与主设备之间发送信令报文, 进行协 商, 获知协商后的同步报文长度, 从而构造与所述同步报文长度一致的延迟 请求报文; 或者, 接收到所述同步报文后, 获取所述同步报文的长度, 从而 构造与所述同步报文长度一致的延迟请求报文; 或者, 与主设备事先约定好 同步报文和延迟请求报文的长度, 使延迟请求报文的长度与同步报文长度相 同。
本发明实施例的从设备, 包括报文收发模块和同步模块, 其中, 所述报文收发模块设置为构造与主设备发送给从设备的同步报文长度一 致的延迟请求报文, 向主设备发送所述延迟请求报文;
所述同步模块根据所述同步报文的发送和接收时间, 以及所述延迟请求 报文的发送和接收时间, 计算从设备与主设备的时间偏差, 进而与主设备时 间同步。
优选地, 所述报文收发模块是设置为通过与主设备之间发送信令报文, 进行协商, 获知协商后的同步报文长度, 从而构造与所述同步报文长度一致 的同步报文; 或者, 接收到所述同步报文后, 获取所述同步报文的长度, 从 而构造与所述同步报文长度一致的延迟请求报文; 或者, 根据与主设备事先 约定好同步报文和延迟请求报文的长度, 构造与所述同步报文长度一致的延 迟请求报文。 优选地, 当从设备与主设备之间发送信令报文, 进行协商, 获知协商后 的同步报文长度, 从而构造与所述同步报文长度一致的延迟请求报文时, 所述报文收发模块是设置为向主设备发送第一信令报文,其中的 TLV中 携带待协商的同步报文长度信息; 接收到主设备发送的第二信令报文后, 从 所述第二信报文的 TLV中获知协商后的同步报文长度。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现, 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。
工业实用性
本发明提出一种时间同步的方法和系统, 通过从设备构造延迟请求报文 并发送给主设备; 从设备根据所述同步报文的发送和接收时间, 以及所述延 迟请求报文的发送和接收时间, 计算从设备与主设备的时间偏差, 进而与主 设备时间同步,解决 IEEE1588用于时间同步时由于事件报文长度不一致, 引 起的相位不对齐问题。

Claims

权 利 要 求 书
1、 一种时间同步的方法, 包括:
从设备构造与主设备发送给所述从设备的同步报文长度一致的延迟请求 报文, 向所述主设备发送所述延迟请求报文;
从设备根据所述同步报文的发送和接收时间, 以及所述延迟请求报文的 发送和接收时间, 计算所述从设备与所述主设备的时间偏差, 进而与所述主 设备时间同步。
2、 如权利要求 1所述方法, 其中, 所述从设备构造与主设备发送给所述 从设备的同步报文长度一致的延迟请求报文的步骤包括:
所述从设备通过与所述主设备之间发送信令报文, 进行协商, 获知协商 后的所述同步报文长度, 进而构造与所述同步报文长度一致的所述延迟请求 报文。
3、 如权利要求 2所述方法, 其中,
所述从设备与所述主设备之间发送信令报文, 进行协商, 获知协商后的 同步报文长度的步骤包括:
从设备向所述主设备发送第一信令报文, 其中的类型长度值(TLV ) 中 携带待协商的同步报文长度信息;
所述主设备接收到所述第一信令报文后, 获知所述待协商的同步报文长 度信息, 向所述从设备发送第二信令报文, 其中的 TLV携带协商后的同步报 文长度信息;
所述从设备接收到所述第二信令报文后, 获知协商后所述主设备即将发 送的同步报文长度。
4、 如权利要求 1所述的方法, 其中, 所述从设备构造与主设备发送给所 述从设备的同步报文长度一致的延迟请求报文的步骤包括:
所述从设备接收到所述主设备发送的同步报文后, 获取所述同步报文的 长度, 进而构造与所述同步报文长度一致的所述延迟请求报文。
5、 如权利要求 1所述的方法, 其还包括: 所述从设备构造延迟请求报文之前, 所述主设备和所述从设备事先约定 好所述同步报文和所述延迟请求报文的长度, 使所述延迟请求报文的长度与 所述同步报文长度相同。
6、 一种时间同步的系统, 包括主设备和从设备, 其中,
所述主设备设置为向所述从设备发送同步报文;
所述从设备设置为: 构造与所述同步报文长度一致的延迟请求报文, 向 所述主设备发送所述延迟请求报文; 以及, 根据所述同步报文的发送和接收 时间, 以及所述延迟请求 ^艮文的发送和接收时间, 计算所述从设备与所述主 设备的时间偏差, 进而与所述主设备时间同步。
7、 如权利要求 6所述的系统, 其中,
所述从设备是设置为: 通过与所述主设备之间发送信令报文, 进行协商, 获知协商后的同步报文长度, 进而构造与所述同步报文长度一致的延迟请求 报文; 或者, 接收到所述同步报文后, 获取所述同步报文的长度, 进而构造 与所述同步报文长度一致的延迟请求报文; 或者, 与所述主设备事先约定好 所述同步报文和所述延迟请求报文的长度, 使所述延迟请求报文的长度与所 述同步报文长度相同。
8、 一种从设备, 包括报文收发模块和同步模块, 其中,
所述报文收发模块设置为: 构造与主设备发送给所述从设备的同步报文 长度一致的延迟请求报文, 向所述主设备发送所述延迟请求报文;
所述同步模块设置为: 根据所述同步报文的发送和接收时间, 以及所述 延迟请求报文的发送和接收时间,计算所述从设备与所述主设备的时间偏差, 进而与所述主设备时间同步。
9、 如权利要求 8所述的从设备, 其中,
所述报文收发模块是设置为: 通过与所述主设备之间发送信令报文, 进 行协商, 获知协商后的所述同步报文长度, 进而构造与所述同步报文长度一 致的所述延迟请求报文; 或者, 接收到所述同步报文后, 获取所述同步报文 的长度, 进而构造与所述同步报文长度一致的延迟请求报文; 或者, 根据与 所述主设备事先约定好所述同步报文和所述延迟请求报文的长度, 构造与所 述同步报文长度一致的所述延迟请求报文。
10、 如权利要求 9所述的从设备, 其中,
当所述从设备与所述主设备之间发送信令报文, 进行协商, 获知协商后 的所述同步报文长度, 进而构造与所述同步报文长度一致的所述延迟请求报 文时,
所述报文收发模块是设置为: 向所述主设备发送第一信令报文, 其中的 类型长度值(TLV ) 中携带待协商的所述同步报文长度信息; 接收到所述主 设备发送的第二信令报文后,从所述第二信令报文的 TLV中获知协商后的所 述同步报文长度。
PCT/CN2011/074720 2010-11-26 2011-05-26 一种时间同步的方法和系统 WO2012068848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010560917.9 2010-11-26
CN201010560917.9A CN102006660B (zh) 2010-11-26 2010-11-26 一种时间同步的方法和系统

Publications (1)

Publication Number Publication Date
WO2012068848A1 true WO2012068848A1 (zh) 2012-05-31

Family

ID=43813628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074720 WO2012068848A1 (zh) 2010-11-26 2011-05-26 一种时间同步的方法和系统

Country Status (2)

Country Link
CN (1) CN102006660B (zh)
WO (1) WO2012068848A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006660B (zh) * 2010-11-26 2015-08-12 中兴通讯股份有限公司 一种时间同步的方法和系统
CN102355346B (zh) * 2011-10-13 2018-02-09 中兴通讯股份有限公司 一种时钟同步源设备有效性判定方法及装置
CN102412956B (zh) * 2011-11-29 2014-12-10 中兴通讯股份有限公司 协议单播方式同步的方法、设备和系统
CN102684866B (zh) * 2011-12-07 2016-06-01 北京云星宇交通科技股份有限公司 一种基于消息的时间同步方法
US9369224B2 (en) 2013-01-30 2016-06-14 Huawei Technologies Co., Ltd. Clock synchronization method and device
CN103166729B (zh) * 2013-01-30 2015-11-25 华为技术有限公司 时钟同步方法及设备
CN103731252B (zh) * 2013-12-18 2017-01-11 电信科学技术第五研究所 一种ieee1588单播协商机制改进方法及系统
CN108111224B (zh) * 2017-12-05 2019-08-09 艾乐德电子(南京)有限公司 一种异步光纤通信方法、装置及网络
CN112039621B (zh) * 2019-06-04 2022-11-29 中国信息通信研究院 一种时间同步方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247168A (zh) * 2007-02-15 2008-08-20 华为技术有限公司 一种时间同步的方法及系统
CN101594673A (zh) * 2009-06-29 2009-12-02 中兴通讯股份有限公司 一种分布式处理1588时间戳的方法及系统
CN101895384A (zh) * 2010-07-07 2010-11-24 中兴通讯股份有限公司 一种实现边界时钟的方法和装置
CN102006660A (zh) * 2010-11-26 2011-04-06 中兴通讯股份有限公司 一种时间同步的方法和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150442B (zh) * 2007-10-25 2011-02-02 杭州华三通信技术有限公司 一种bss网络内sta的管理方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247168A (zh) * 2007-02-15 2008-08-20 华为技术有限公司 一种时间同步的方法及系统
CN101594673A (zh) * 2009-06-29 2009-12-02 中兴通讯股份有限公司 一种分布式处理1588时间戳的方法及系统
CN101895384A (zh) * 2010-07-07 2010-11-24 中兴通讯股份有限公司 一种实现边界时钟的方法和装置
CN102006660A (zh) * 2010-11-26 2011-04-06 中兴通讯股份有限公司 一种时间同步的方法和系统

Also Published As

Publication number Publication date
CN102006660B (zh) 2015-08-12
CN102006660A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2012068848A1 (zh) 一种时间同步的方法和系统
US11838106B2 (en) Synchronization method and apparatus
US11695491B2 (en) 5G system support for conveying TSN time synchronization
US9077468B2 (en) Methods and apparatus for communication synchronization
US9667370B2 (en) Communication device with peer-to-peer assist to provide synchronization
JP2010011457A5 (zh)
JP5455138B2 (ja) 高精度時間プロトコルメッセージを処理するための方法およびクロックデバイス
CN110475336A (zh) 一种实现网络同步的方法及装置
WO2011076051A1 (zh) 时间同步的方法、设备及系统
WO2020081060A1 (en) Synchronization in wireless networks for supporting ieee tsn-based industrial automation
JP2013521692A (ja) 通信システムでの通信階層とサブ階層との相互作用を介した通信システムの正確なクロック同期化のための方法及びシステム
JP4853625B2 (ja) 伝搬遅延時間測定方法、同期方法、及び無線lanシステム
WO2017133478A1 (zh) 用于时间同步的方法和时钟
WO2012068845A1 (zh) 一种时间同步的方法和系统
WO2020081062A1 (en) Wireless network support for ieee tsn based industrial automation
WO2012003746A1 (zh) 一种实现边界时钟的方法和装置
CN112314017A (zh) 用于支持基于精度定时协议(ptp)的时间敏感网络(tsn)应用的时间同步无线电承载
WO2012055360A1 (zh) 时间同步方法和相关设备及系统
US20220361129A1 (en) Time synchronization method, access network device, communication apparatus, computer storage medium, and communication system
WO2014117489A1 (zh) 时钟同步方法及设备
WO2012034330A1 (zh) 汇聚式网络中设备间的同步方法、系统和汇聚环设备
WO2021238685A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2013178148A1 (zh) 通信网络时钟同步方法和装置
WO2015131350A1 (zh) 时钟同步方法、设备及通信系统
AU2020332948B2 (en) Timing synchronization method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843377

Country of ref document: EP

Kind code of ref document: A1