WO2012067402A9 - Red fluorescent protein fragment having a self-assembly activity, method for preparing same, and method for analyzing protein-protein interactions using same - Google Patents

Red fluorescent protein fragment having a self-assembly activity, method for preparing same, and method for analyzing protein-protein interactions using same Download PDF

Info

Publication number
WO2012067402A9
WO2012067402A9 PCT/KR2011/008697 KR2011008697W WO2012067402A9 WO 2012067402 A9 WO2012067402 A9 WO 2012067402A9 KR 2011008697 W KR2011008697 W KR 2011008697W WO 2012067402 A9 WO2012067402 A9 WO 2012067402A9
Authority
WO
WIPO (PCT)
Prior art keywords
mplum
protein
self
red fluorescent
fragment
Prior art date
Application number
PCT/KR2011/008697
Other languages
French (fr)
Korean (ko)
Other versions
WO2012067402A3 (en
WO2012067402A2 (en
Inventor
정봉현
정용원
김주옥
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110118545A external-priority patent/KR101280014B1/en
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2012067402A2 publication Critical patent/WO2012067402A2/en
Publication of WO2012067402A3 publication Critical patent/WO2012067402A3/en
Publication of WO2012067402A9 publication Critical patent/WO2012067402A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a red fluorescent protein fragment having self-binding activity, a method for preparing the same, and a method for analyzing a protein using the same.
  • Proteins are macromolecules that make up the body of every living organism and are one of the most basic cellular components as a link of many amino acids. Since protein plays a role in mediating various reactions and phenomena in vivo, it is very important to analyze and confirm the function of the protein. In addition, since proteins are expressed or regulated mainly through interaction with other proteins, identifying protein interactions is a research field that must be preceded in order to properly understand various life phenomena occurring in vivo. In particular, analysis of protein interactions in living cells has a biological significance because it can reflect the actual environment as much as possible.
  • proteins perform their functions by binding to other proteins, so when one protein is purified, other proteins that bind to it are also purified.
  • Y is the other protein that binds to X
  • a compound precipitate of X / Y / X-antibody can be obtained when the antibody against X is added.
  • X is detected after electrophoresis analysis of the precipitate, Can be analyzed biochemically.
  • mass spectrometry on unknown proteins purified through immunoprecipitation are used.
  • rapid advances in mass spectrometry have made it possible to identify proteins with only a small amount of protein (up to 100 fmol or less). Recently, protein interaction analysis has been performed at the individual level.
  • the protein interaction can be analyzed through optical shape analysis, mass spectrometry, fluorescence analysis, and electrochemical analysis.
  • binding affinity between proteins can be measured under various conditions such as ionic strength and pH, it is recognized as an essential technique for understanding interaction mechanisms such as changes in interactions according to various parameter changes.
  • the yeast two-hybrid system a method that has been widely used recently, is a method that can analyze protein interactions through transcriptional activity of receptor genes in living yeast cells rather than extracellularly. And genome fusion libraries have been widely used as a way to explore protein interactions.
  • the yeast two-hybrid system has the advantage of being able to see protein interactions in vivo, contributing greatly to the study of protein interactions in cells of higher animals.
  • the yeast two-hybrid system is useful for analyzing protein interactions inside the nucleus because it is a system of complementary binding of transcription factors, but the disadvantage of showing positive error results when analyzing protein interactions outside the nucleus. have.
  • Fluorescent proteins absorb and excite light in different wavelength ranges, and once their energy is released as light or heat, they return to the ground state and emit a unique wavelength range for each fluorescent protein.
  • the fluorescence resonance energy transfer principle is that when two different fluorescent proteins are within 10-100 kHz, the light emitted after the short wavelength fluorescent protein is excited induces the excitation of the long wavelength fluorescent protein to emit fluorescence. That is, by attaching two different fluorescent proteins to each other after the two proteins to be examined for interaction, and detecting fluorescence due to the fluorescence resonance energy transfer phenomenon that occurs when the two proteins are within 10 to 100 ⁇ by protein interaction. It is possible to analyze protein interactions.
  • This system has the advantage of being able to analyze the dynamic interaction of proteins in living cells, but only if the distance between the two fluorescent proteins is very close and detectable, and if overexpression of the protein is required to detect subtle changes in fluorescence wavelengths. There is a disadvantage that expensive equipment is required for fluorescence resonance energy transfer analysis.
  • Two-molecule fluorescence complementation analysis is a technique that uses the phenomenon of fluorescence by dividing a fluorescent protein into two fragments, but when the two fragments are far apart, they do not fluoresce, but when they come close to each other, they bind together to form an intact fluorescent protein complex.
  • fusion proteins with fluorescent protein fragments attached to two proteins to study protein interaction are expressed in a cell, and when the two proteins interact with each other, the fluorescent signals linked to each other are measured. That's how.
  • the two-molecule fluorescence complementation assay may use various receptor proteins depending on the purpose of the study. This is a useful technique for analyzing protein-protein interactions, where the choice of fluorescent proteins that can separate into two fragments is important.
  • Isolate protein-based receptor systems have been widely used to monitor various protein-protein interactions in vitro and in vivo .
  • Receptors based on two-molecule fluorescence complementation assays known to date include dihydrofolate reductase (DHFR), ⁇ -galactosidase, ⁇ -lactamase, TEV protease, luciferase, green fluorescent proteins (GFPs), and modified proteins thereof. .
  • DHFR dihydrofolate reductase
  • ⁇ -galactosidase ⁇ -lactamase
  • TEV protease luciferase
  • green fluorescent proteins green fluorescent proteins
  • fluorescent proteins with several self-cleaving activities have been used for two-molecule fluorescence complementation assays.
  • Representative self-cleaving fluorescent proteins include self-associating fragments of GFP, which have been developed from very stable "superfolder" GFPs. That is, the last ⁇ -strand (GFP 11, amino acids 214-230) of the GFP protein spontaneously binds to large GFP fragments (GFP 1-10, amino acids 1-214) and successfully forms mature chromophores.
  • Such assays include cellular protein solubility testing, synthetic structure of GFPs, and small molecule detection. More importantly, separating and self-binding one ⁇ -strand from the 11 ⁇ -strand barrel form of fluorescent protein for chromophore formation can provide great potential for protein-peptide tagging and detection.
  • YN155 and YC155 fragments cut from yellow fluorescent protein (YFP) at amino acid 155, and VN155, cut at amino acids 155 or 173, which is a variant of yellow fluorescent protein.
  • VC155 or VN173 and VC173 fragments are used.
  • the red fluorescent protein that emits light having a long wavelength is used fragments 1 to 159 and 160 to 237 mCherry fluorescent protein fragments cut between amino acid sequences 159 and 160 of the mCherry fluorescent protein.
  • two-molecule fluorescence complementation assays are powerful assays capable of analyzing the function of proteins in living cells at low cost.
  • the two-molecule fluorescence complementation assay has technically complementary matters.
  • two-molecule fluorescence complementation assays there is room for false positive reactions due to the fusion of only receptor fragments rather than interactions between target proteins.
  • detection of the actual target protein interaction depending on the topology of the receptor fragment or the nature of the target protein, or the nature of the flexible linker linking the target protein to the receptor fragment It is also possible that false negatives do not occur. Therefore, there is a need for the development of fluorescent proteins with self-binding activity in a direction that blocks this possibility.
  • Red fluorescent proteins are thought to be promising in the field of tissue imaging and cellular biosensors due to emission "optical windows" of 600 nm and above.
  • mPlum a monomeric fluorescent protein with one of the most redshifted emission spectra (maximum emission at 649 nm), is excited at 590 nm, and has two major residues (Glu 16 and Ile 65). Is dominated by
  • the mPlum having such spectroscopic characteristics is rarely used in two-molecule fluorescence complementation analysis, and there is almost no research on this. Therefore, after confirming that the mPlum fragment, which is a red fluorescent protein, has self-binding activity, applying the mPlum fragment to a bimolecular fluorescence complementation assay is considered to contribute greatly to the study of protein interaction.
  • the present invention aims to provide a red fluorescent protein fragment having self-binding activity, a method for preparing the same, and a method for analyzing a protein using the same.
  • the red fluorescent protein fragment (mPlum 1 E16V) according to the present invention is linked to the ⁇ -strand 1 of the red fluorescent protein (mPlum) through the flow peptide linker behind the ⁇ -strand 2-11, the ordered mPlum protein (CpmPlum)
  • the mutant (CpmPlum E16V) was prepared by replacing 16 Glu (glutamic acid) of Val (valine) in the amino acid sequence of ⁇ -strand 1 of the ordered mPlum protein (CpmPlum) with val (valine) MPlum 1 peptide (mPlum 1 E16V) is isolated from mPlum 2-11 protein and self-binds with mPlum 2-11 protein to emit red fluorescent signal, thereby having self-binding activity.
  • the red fluorescent protein fragment (mPlum 1 E16V) with self-binding activity according to the present invention can be used as a biosensor as a useful tool for analyzing protein function such as protein location in living cells, protein-protein interactions, etc. Can be.
  • mPlum 1 is a diagram showing the amino acid sequence of full-length mPlum and permuted mPlum protein (CpmPlum) (mPlum 1 (red), mPlum 2-11 (blue), and Glu16 (yellow)).
  • CpmPlum permuted mPlum protein
  • FIG. 2 shows fluorescence images of E. coli colonies expressing several mPlum fragments.
  • FIG. 3 is a diagram showing normalized absorption spectra (solid line) and fluorescence spectra (dashed line, excitation at 570 nm) of mPlum, mPlum E16V, CpmPlum E16V, mPlum fragments.
  • Figure 4 is a diagram showing the manufacturing process of mPlum fragment having a self-binding activity according to the present invention.
  • Figure 5 shows the in vitro complementarity of mPlum 2-11 and synthetic mPlum 1 E16V peptide.
  • Figure 6 shows the in vivo complementarity of several mPlum 1 peptide mutants and mPlum 2-11.
  • FIG. 7 shows the fluorescence spectra of mPlum 1 E16V C-1 peptides bound to mPlum 2-11 and the fluorescence spectra of CmPlum E16V bound to mPlum 2-11.
  • FIG. 10 shows fluorescence images of tetracycline-regulated HeLa cells that sequentially express several mPlum fragments at the time of induction of tetracycline.
  • FIG. 11 is a diagram illustrating the fiberization of ⁇ -syn, ⁇ -syn-mPlum 1 E 16 V, and MBP-mPlum 1 E 16 V.
  • FIG. 11 is a diagram illustrating the fiberization of ⁇ -syn, ⁇ -syn-mPlum 1 E 16 V, and MBP-mPlum 1 E 16 V.
  • the present invention is characterized in that Glu (glutamic acid) of 16 of the amino acid sequence of ⁇ -strand 1 of the red fluorescent protein (mPlum) is replaced with Val (valine), and has a self-binding activity having the amino acid sequence of SEQ ID NO: 1.
  • a red fluorescent protein fragment (mPlum 1 E16V) is provided.
  • the present invention also provides a gene encoding the red fluorescent protein fragment (mPlum 1 E16V).
  • the present invention also provides an expression vector comprising the gene.
  • the present invention also provides a host cell comprising the expression vector.
  • the present invention provides a protein detection kit comprising the red fluorescent protein fragment (mPlum 1 E16V).
  • It provides a method for producing a red fluorescent protein fragment (mPlum 1 E16V) having a self-binding activity, comprising the step of self-binding the separated mPlum 2-11 fragment and mPlum 1 E16V fragment.
  • the present invention also expresses mPlum 1 E16V (MBP-mPlum 1 E16V) and His-tagged mPlum 2-11 (His-mPlum 2-11) fused with a maltose-binding protein in a host cell.
  • the present invention provides a method for analyzing protein interaction using a red fluorescent protein fragment having self-binding activity (mPlum 1 E16V), which is characterized by detecting a red fluorescent signal in a host cell.
  • the red fluorescent protein fragment (mPlum 1 E16V) having self-binding activity according to the present invention can be obtained by linking the ⁇ -strand 1 of the red fluorescent protein (mPlum) through the flow peptide linker behind the ⁇ -strand 2-11.
  • Glu glutamic acid
  • Val Val
  • CpmPlum E16V mutant
  • CpmPlum ordered mPlum protein
  • CpmPlum mutants CpmPlum E16V sequenced in E. coli and co-expression of mPlum 2-11 and mPlum 1 E16V emit red fluorescent signals.
  • the mPlum 2-11 fragment is self-linked with the mPlum 1 E16V peptide, and the mPlum 1 E16V peptide has self-binding activity.
  • the in vitro complementarity between the mPlum 2-11 protein and the mPlum 1 E16V peptide provided that the higher concentration (4 ⁇ M) of the mPlum 1 E16V peptide provided faster complementarity, depending on the change in urea concentration (0.2-0.8 M). Equilibrium is reached after 24 hours.
  • the mutant (mPlum 1 E16V) replacing Glu 16 of the mPlum 1 peptide with Val (valine) shows high levels of in vivo fluorescence complementarity, whereas Glu 16 of the mPlum 1 peptide is expressed as Ile (isoleucine) or Met.
  • mPlum 1 E16I Mutants replaced by (methionine) (mPlum 1 E16I, mPlum 1 E16M) show low levels of in vivo fluorescence complementarity and other mutants do not show fluorescence signals. Thus, it can be seen that the mPlum 1 E16V peptide has good self-binding activity.
  • the minimum residue of mPlum 1 E16V peptide for self-binding with mPlum 2-11 is 18 amino acids, which is the critical point of maximum self-binding. That is, it was confirmed that removing only one residue from the peptide mPlum 1 E16V having 18 amino acid sequences significantly interfered with fluorescence complementation.
  • mPlum and CpmPlum E16V showed red fluorescent activity in HeLa cells, whereas mPlum 2-11 fragment alone did not show fluorescent activity.
  • the co-transformers of mPlum 2-11 and MBP-mPlum 1 E16V peptides show bright red fluorescence.
  • the mPlum 1 E16V peptide tag can be used for tagging and detecting proteins in mammalian cells (HeLa cells).
  • MBP protein tagged in mPlum 1 E16V peptide that is not regulated by tetracycline is expressed immediately, whereas expression of mPlum 2-11 protein is inhibited by tetracycline regulation.
  • wild-type mPlum protein shows a red fluorescence signal upon tetracycline induction.
  • the red fluorescence signal of mPlum is clearly observed within 6 hours after tetracycline induction, and 8 hours are required for mPlum 2-11 to bind to MBP-mPlum 1 E16V peptide and form a mature chromophore.
  • the red fluorescent protein fragment (mPlum 1 E16V) according to the present invention is sequenced by connecting the ⁇ -strand 1 of the red fluorescent protein (mPlum) through the flow peptide linker behind the ⁇ -strand 2-11 times.
  • the mutant (CpmPlum E16V) was replaced by Val (valine) by replacing Glu (glutamic acid) of No. 16 of the amino acid sequence of ⁇ -strand 1 of the circularly ordered mPlum protein (CpmPlum).
  • the mPlum 1 peptide (mPlum 1 E16V), prepared and mutated alone, is isolated from the mPlum 2-11 protein and self-binds with the mPlum 2-11 protein to emit a red fluorescent signal, thereby having self-binding activity.
  • the red fluorescent protein fragment (mPlum 1 E16V) with self-binding activity according to the present invention can be used as a biosensor as a useful tool for analyzing protein function such as protein location in living cells, protein-protein interactions, etc. Can be.
  • mPlum fragments such as full length mPlum and mPlum 2-11 (residues 25-216) were amplified by PCR from the commercial mPlum gene (Clontech). Then, to express the recombinant protein in Escherichia coli , the PCR product was cloned with pET28a expression vector (Novagen). For bacterial expression of the mPlum 1 peptide (residues 6-23), the mPlum 1 peptide was fused to the C-terminus of the maltose binding protein (MBP) with the flow peptide linker (GGSGGT) and cloned with the pET21a expression vector (Novagen).
  • MBP maltose binding protein
  • GGSGGT flow peptide linker
  • the ordered mPlum protein (CpmPlum) was then prepared by fusing the mPlum 1 fragment to the C-terminus of the mPlum 2-11 fragment via a flow peptide linker (GGTGGSGGTGGS).
  • the amino acid sequences of the full length mPlum and the ordered mPlum protein (CpmPlum) are shown in SEQ ID NOs: 2 and 3, respectively, and are shown in FIG. 1 [mPlum 1 (red), mPlum 2-11 (blue), and Glu16 (yellow). ].
  • the protein was then induced with 1 mM IPTG (isopropyl- ⁇ -D-thiogalactopyranoside) and incubated overnight at 25 ° C. After sonication-based disruption of the induced cells, the proteins were purified by Ni-chelating column. Purified protein was dialyzed in PBS buffer and stored at -20 ° C before use.
  • E. coli BL21 (DE3) cells were transformed with expression vectors of mPlum 2-11 (in pET28a, kanamycin resistant) and MBP-fused mPlum 1 peptide (in pET21a, ampicillin resistant) and supplemented with ampicillin and kanamycin Placed on nitrocellulose membrane in LB agar medium. After growing overnight at 37 ° C., the membranes were transferred to LB plates containing 1 mM IPTG to induce proteins and incubated at 22 ° C. for 24 hours. Fluorescence images of E. coli colonies were obtained with a luminescence imaging analyzer LAS 3000 (FujiFilm) using a 575 nm excitation filter and a 670 nm emission filter.
  • red fluorescent protein emitted red fluorescent signal in E. coli
  • CpmPlum permuted mPlum protein
  • CpmPlum randomly mutated permutated mPlum proteins
  • PCR products were cloned into pBAD-A expression vector.
  • Library plasmids were transformed into TOP10 electroshock E. coli cells and plated directly on nitrocellulose membrane. After growing overnight at 37 ° C., the membranes were transferred to LB plates containing 0.02% L-arabinose and protein induced. Protein expression and fluorophore formation in E. coli colonies on the membrane were monitored at 16 ° C. for several days. Fluorescent colonies were selected from 6 ⁇ 10 4 libraries and 13 mutants (CpmPlum E16V) were screened. Amino acid substitutions of the 13 screened mutants (CpmPlum E16V) were analyzed and are shown in Table 1 below.
  • the mutated mPlum 1 peptide alone (mPlum 1 E16V) was isolated from the mPlum 2-11 protein. MBP fused mPlum 1 peptide was then co-expressed with His tagged mPlum 2-11 protein and purified using SDS-PAGE. Bound fluorescent protein was purified in duplicate using fused MBP and His tags. Purified mPlum 2-11 protein spontaneously bound with chemically synthesized mPlum 1 peptide (mPlum 1 E16V). Next, the absorption spectra and fluorescence spectra of the purified proteins were measured.
  • FIG. 2 Fluorescence images of E. coli colonies expressing the ordered CpmPlum mutants (CpmPlum E16V) or mPlum fragments are shown in FIG. 2.
  • CpmPlum E16V ordered CpmPlum mutants
  • mPlum fragments normalized absorption spectra (solid line) and fluorescence spectra (dashed line, excitation at 570 nm) of mPlum, mPlum E16V, CpmPlum E16V, mPlum fragments are shown in FIG. 3.
  • the manufacturing process of the mPlum fragment having a self-binding activity according to the present invention is shown in FIG.
  • the purified protein showed a maximum emission at 615 nm, slightly blue shifted from the original protein. Blue shifts in fluorescence emission of Glu 16 mutants of mPlum have been previously reported [X. Shu, L. Wang, L. Colip, K. Kallio, SJ Remington, Protein Sci. 2009 , 18 , 460.]. Absorption spectra and fluorescence spectra of the protein complex (MBP-mPlum 1 E16V + His-mPlum 2-11) and the ordered CpmPlum mutant (CmPlum E16V) were indistinguishable.
  • the spectroscopic properties of the semisynthetic bound protein (mPlum 1 E16V peptide + mPlum 2-11) were nearly identical to the spectroscopic properties of the co-expressed protein.
  • the mPlum 2-11 fragment self-bound with the co-expressed or synthesized mPlum 1 E16V peptide. That is, it can be seen that the mPlum 1 E16V peptide has self-binding activity.
  • the mutant (mPlum 1 E16V) replacing Glu 16 of mPlum 1 peptide with Val (valine) showed high levels of in vivo fluorescence complementarity, while Glu 16 of mPlum 1 peptide was expressed as Ile (iso).
  • Mutants (mPlum 1 E16I, mPlum 1 E16M) replaced with leucine) or Met (methionine) showed low levels of in vivo fluorescence complementarity and the other mutants did not show fluorescence signals.
  • the mPlum 1 E16V peptide has good self-binding activity.
  • the minimum residues of the mPlum 1 E16V peptide for self-binding with mPlum 2-11 were 18 amino acids, which were confirmed to be the critical point of maximum self-binding. That is, it was confirmed that removing only one residue from the peptide mPlum 1 E16V having 18 amino acid sequences significantly interfered with fluorescence complementation.
  • mPlum 2-11 protein was used to replace fluorescent compounds.
  • the gene of the protein was cloned with the pcDNA expression vector (Invitrogen).
  • Cervical cancer cell lines (HeLa cells) were transiently transformed using Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. After transformation, various forms of mPlum fragments were expressed in HeLa cells for 24 hours, and fluorescent images of HeLa cells with DeltaVision RT fluorescent microscope (Applied Precision) using 555/28 nm excitation filter and 617/23 nm emission filter.
  • mPlum and CpmPlum E16V showed red fluorescent activity in HeLa cells, whereas mPlum 2-11 fragment alone did not show fluorescent activity.
  • the co-transformers of mPlum 2-11 and MBP-mPlum 1 E16V peptides showed bright red fluorescence.
  • the mPlum 1 E16V peptide tag can be used for tagging and detection of proteins in mammalian cells (HeLa cells).
  • T-Rex tetracycline-regulated expression
  • T-Rex Tetracycline-regulated expression
  • T-Rex tetracycline-regulated expression
  • HeLa cells were co-transformed with pcDNA-MBP-peptide (mPlum 1 or mPlum 1 E16V peptide) and pcDNA4 / TO-mPlum 2-11.
  • tetracycline (1 ⁇ g / ml) was added to the cell culture to induce the expression of mPlum 2-11 protein. Fluorescence images of HeLa cells were obtained at various tetracycline induction time points. To confirm the expression of tetracycline-induced protein in HeLa cells, wild type mPlum protein was also induced by tetracycline.
  • FIG. 9 Fluorescence images of tetracycline-regulated HeLa cells expressing several mPlum fragments sequentially are shown in FIG. 9, while fluorescent images of tetracycline-regulated HeLa cells sequentially expressing several mPlum fragments at the time of induction of tetracycline are shown in FIG. 10. Shown in
  • MBP protein tagged in mPlum 1 E16V peptide not regulated by tetracycline was immediately expressed, whereas expression of mPlum 2-11 protein was inhibited by tetracycline regulation.
  • wild-type mPlum protein showed a red fluorescence signal upon tetracycline induction.
  • the red fluorescence signal of mPlum was clearly observed within 6 hours after tetracycline induction, indicating that mPlum 2-11 required 8 hours to bind to MBP-mPlum 1 E16V peptide and form a mature chromophore. Confirmed.
  • ⁇ -syn gene tagged with the ⁇ -syn wild type and c-terminal mPlum 1 E16V was cloned into pET21a.
  • BL21 (DE3) cells containing the above plasmids were incubated at 37 ° C. until the OD600 was 0.6, and the expression of the protein was induced by 1 mM IPTG after 3 hours.
  • Expression induced cells were 10 mM Tris pH 7.4. Collection and expression were stopped.
  • the cell suspension was heated to 100 ° C. for 20 minutes and the supernatant collected using centrifugation. The supernatant was slowly cooled, loaded into a Q-Sepharose Fast Flow column (GE Healthcare), and dissolved using 10 mM Tris (pH 7.4) containing 200 mM NaCl. Purified ⁇ -syn protein was dialyzed with 20 mM HEPES pH 7.2 and 10 mM PMSF and stored at -80 ° C.
  • Small mPlum E16V peptide (18 amino acids) was found to be fused to the C terminus of ⁇ -syn.
  • the fibrosis properties of the peptide-tagged ⁇ -syn were confirmed to be similar to the ⁇ -syn wild type, as is the standard ThioFlavin T fluorescence assay and TEM analysis (FIGS. 11A and B).
  • the exact effect of the large fluorescent protein tag (w27 kDa) on the basic aggregation properties is more controversial than the relatively small ⁇ -syn (w15 kDa).
  • small tags were found to be more suitable for the study of ⁇ -syn folding and flocculation methods. More importantly, recent studies show that cell-to-cell delivery of ⁇ -syn is a key factor in pathology.
  • Peptide tag detection of ⁇ -syn may be valuable for cell-to-cell monitoring because of large proteins that significantly affect cellular protein penetration, such as GFPs. Moreover, multiple chains of self-assembly of fluorescent protein fragments may be possible through observation of various sources of ⁇ -syn protein in living cell systems.
  • mPlum 2-11 and ⁇ -syn-tagged mPlum 1 E16V self-assembly and the generation of fluorescence signal was confirmed and shown in Figure 11 c and d.
  • protein genes were cloned through pcDNA expression vectors (Invitrogen). HeLa cells were transformed using Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. Various forms of mPlum fragments were expressed 24 hours after infection in HeLa cells, and fluorescence images were obtained by DeltaVision RT fluorescent microscope (Applied Precision).
  • MNBP peptide-taking and ⁇ -syn protein were not regulated by the tetracycline of Experiment 2 above and cloned into pcDNA.
  • T-Rex tetracycline-regulated expression
  • HeLa cells were co-transformed with pcDNA- ⁇ -syn-peptide (mPlum 1 or mPlum 1 E16V peptide) and pcDNA4 / TO-mPlum 2-11.
  • tetracycline (1 ⁇ g / ml) was added to the cell culture to induce the expression of mPlum 2-11 protein. Fluorescence images of HeLa cells were obtained at various tetracycline induction time points. To confirm the expression of tetracycline-induced protein in HeLa cells, wild type mPlum protein was also induced by tetracycline.
  • the ⁇ -syn-mPlum 1 E16V genetically encoded with mPlum 2-11 protein was observed.
  • Peptide tagged ⁇ -syn was expressed for 1 day before mPlum 2-11 fluorescence detection.
  • Cell ⁇ -syn proteins were imaged using both mPlum assembly and ⁇ -syn-specific antibodies.
  • the red fluorescent protein fragment (mPlum 1 E16V) having self-binding activity according to the present invention can be used as a biosensor as a useful tool for analyzing protein functions such as protein location in living cells, protein-protein interactions, and the like. .
  • SEQ. ID. NO. 1 amino acid sequence of mPlum 1 E16V peptide: EVIKEFMRFK VHMEGSVN
  • SEQ. ID. NO. 2 (amino acid sequence of mPlum): MVSKGEEVIK EFMRFKEHME GSVNGHEFEI EGEGEGRPYE GTQTARLKVT KGGPLPFAWD ILSPQIMYGS KAYVKHPADI PDYLKLSFPE GFKWERVMNF EDGGVVTVTQ DSSLQDGEFI YKVKVRGTNF PSDGPVMQKK TMGWEASSER MYPEDGALKG EMKMRLRLKD GGHYDAEVKT TYMAKKPVQL PGAYKTDIKL DITSHNEDYT IVEQYERAEG RHSTGA
  • SEQ. ID. NO. 3 amino acid sequence of CpmPlum: MHEFEIEGEG EGRPYEGTQT ARLKVTKGGP LPFAWDILSP QIMYGSKAYV KHPADIPDYL KLSFPEGFKW ERVMNFEDGG VVTVTQDSSL QDGEFIYKVK VRGTNFPSDG PVMQKKTMGW EASSERMYPE DGALKGEMKM RLRLKDGGHY DAEVKTTYMA KKPVQLPGAY KTDIKLDITS HNEDYTIVEQ YERAEGRHST GAGGTGGSGG TGGSVSKGEE VIKEFMRFKE HMEGSVN

Abstract

The present invention relates to a red fluorescent protein fragment having a self-assembly activity, to a method for preparing same, and to a method for analyzing protein-protein interactions using same. The red fluorescent protein fragment (mPlum 1 E16V) according to the present invention is prepared by coupling the β-strand at position 1 of the red fluorescent protein (mPlum) after the β-strands at positions 2 to 11 via a flexible peptide linker so as to prepare a circularly permutated mPlum protein (CpmPlum), replacing glutamic acid (Glu) at position 16 of the amino acid sequence of the β-strand at position 1 of the circularly permutated mPlum protein (CpmPlum) with valine (Val) so as to prepare a mutant (CpmPlum E16V), separating the mPlum 1 peptide (mPlum 1 E16V), which is mutated alone, from mPlum 2-11 protein and self-assembling the separated mPlum 1 peptide and mPlum 2-11 protein in order to emit a red fluorescent signal, thus enabling the red fluorescent protein fragment to have a self-assembly activity. Accordingly, the red fluorescent protein fragment (mPlum 1 E16V) having a self-assembly activity according to the present invention may serve as a biosensor that can be effectively used in analyzing the position of a protein in a living cell and the function of a protein such as protein-protein interaction.

Description

자가-결합 활성을 갖는 적색 형광 단백질 단편, 이의 제조방법 및 이를 이용한 단백질 상호작용의 분석 방법Red fluorescent protein fragment having self-binding activity, preparation method thereof and analysis method of protein interaction using same
본 발명은 자가-결합 활성을 갖는 적색 형광 단백질 단편, 이의 제조방법 및 이를 이용한 단백질의 분석 방법에 관한 것이다.The present invention relates to a red fluorescent protein fragment having self-binding activity, a method for preparing the same, and a method for analyzing a protein using the same.
단백질은 모든 생물의 몸을 구성하는 고분자 유기물로 수많은 아미노산의 연결체로서 가장 기본적인 세포 구성물질 중 하나이다. 단백질은 생체내의 여러 반응 및 현상 등을 매개하는 역할을 하기 때문에 단백질의 기능을 분석하고 확인하는 것은 매우 중요하다. 또한, 단백질은 주로 다른 단백질과의 상호작용을 통해 그 기능이 발현되거나 조절되므로, 단백질의 상호작용을 규명하는 것은 생체 내에서 일어나는 다양한 생명 현상들을 제대로 이해하기 위해 꼭 선행되어야 할 연구 분야이다. 특히, 살아있는 세포 내에서의 단백질 상호작용 분석은 실제 환경을 최대한 반영할 수 있기 때문에 생물학적으로 매우 중요한 의미를 가지고 있다고 할 수 있다.Proteins are macromolecules that make up the body of every living organism and are one of the most basic cellular components as a link of many amino acids. Since protein plays a role in mediating various reactions and phenomena in vivo, it is very important to analyze and confirm the function of the protein. In addition, since proteins are expressed or regulated mainly through interaction with other proteins, identifying protein interactions is a research field that must be preceded in order to properly understand various life phenomena occurring in vivo. In particular, analysis of protein interactions in living cells has a biological significance because it can reflect the actual environment as much as possible.
이와 같이, 단백질 상호작용의 이해에 대한 중요도가 증가함에 따라 이를 분석하기 위한 실험적 기법들도 함께 개발되었다. 일반적으로 단백질 상호작용을 알아보기 위해 수행하는 실험으로 면역침강법(immunoprecipitation)과 단백질 칩 등을 들 수 있다.As such, as the importance of understanding protein interactions increases, experimental techniques for analyzing them have also been developed. In general, experiments performed to examine protein interactions include immunoprecipitation and protein chips.
생체내에서 단백질은 다른 단백질과 결합을 통해 기능을 수행하기 때문에 특정 단백질을 정제하면 그와 결합하는 다른 단백질들도 같이 정제된다. 즉, X와 결합하는 다른 단백질을 Y라 하면 X에 대한 항체를 넣어주었을 때 X/Y/X-항체의 복합 침전물을 얻을 수 있는데, 이 침전물을 전기영동 분석한 후 Y를 검출하면 X와 Y의 상호작용을 생화학적으로 분석할 수 있다. 요즘은 면역침강법을 통해 같이 정제된 미지의 단백질을 질량 분석 기법을 이용하여 단백질 상호작용을 분석하는 방법이 많이 사용되고 있다. 근래 들어서 질량 분석 기술의 급격한 발전으로 극소량(100 fmol 이하 수준)의 단백질만으로도 단백질 확인이 가능해졌고, 이러한 기법을 이용하여 최근에는 개체 수준에서의 단백질 상호작용 분석이 이루어지고 있다.In vivo, proteins perform their functions by binding to other proteins, so when one protein is purified, other proteins that bind to it are also purified. In other words, if Y is the other protein that binds to X, a compound precipitate of X / Y / X-antibody can be obtained when the antibody against X is added. When X is detected after electrophoresis analysis of the precipitate, Can be analyzed biochemically. Nowadays, a lot of methods for analyzing protein interactions using mass spectrometry on unknown proteins purified through immunoprecipitation are used. In recent years, rapid advances in mass spectrometry have made it possible to identify proteins with only a small amount of protein (up to 100 fmol or less). Recently, protein interaction analysis has been performed at the individual level.
단백질 칩은 슬라이드 글라스에 단백질을 고정화시킨 후 광학 형상 분석, 질량 분석, 형광 분석, 전기화학적 분석 등을 통해 단백질 상호작용을 분석할 수 있다. 특히, 이온 강도나 pH 등의 다양한 조건에서 단백질간의 결합친화력 측정이 가능하므로 여러 매개변수 변화에 따른 상호작용의 변화 등 상호작용 기전을 이해하는데 필수적인 기술로 인정되고 있다.After the protein chip is immobilized on the slide glass, the protein interaction can be analyzed through optical shape analysis, mass spectrometry, fluorescence analysis, and electrochemical analysis. In particular, since binding affinity between proteins can be measured under various conditions such as ionic strength and pH, it is recognized as an essential technique for understanding interaction mechanisms such as changes in interactions according to various parameter changes.
하지만 상기의 단백질 상호작용 분석 방법은 모두 생체외 조건에서 실험을 하기 때문에 실제 생체내 상호작용과 상이한 경우가 많을 뿐만 아니라, 면역 침강법의 경우에는 단백질을 정제하는 과정에서 손실이 일어날 가능성이 많기 때문에 아주 강한 결합의 단백질 상호작용이 아니면 탐지하기 어려우며, 단백질 칩은 한 번에 다양한 단백질 상호작용의 분석이 용이하다는 장점에도 불구하고 양성 오류 (false positive) 결과를 많이 보이는 단점이 있다.However, all of the above-described methods for analyzing protein interactions are different from actual in vivo interactions because they are conducted under in vitro conditions, and in the case of immunoprecipitation, there is a high possibility of loss in the purification of proteins. It is difficult to detect without protein interactions with very strong binding, and protein chips have many false positive results despite the advantage of easy analysis of various protein interactions at once.
또한, 최근에 많이 사용되고 있는 방법인 효모 2-하이브리드 시스템(yeast two-hybrid system)은 단백질 상호작용을 세포외가 아닌 살아있는 효모 세포내에서 수용체 유전자의 전사 활성을 통해 분석할 수 있는 방법으로서, cDNA 라이브러리와 게놈 융합 라이브러리에서 단백질 상호작용을 탐색하는 방법으로 많이 이용되고 있다. 효모 2-하이브리드 시스템은 단백질의 상호작용을 생체내에서 볼 수 있다는 장점이 있어 고등 동물의 세포 내에서 일어나는 단백질 상호작용의 연구에 크게 기여하고 있다. 그러나, 효모 2-하이브리드 시스템은 전사 인자들의 상보적 결합에 의한 시스템이기 때문에 핵 내부에 존재하는 단백질 상호작용 분석에는 유용하지만 핵 외부에 존재하는 단백질 상호작용 분석시에는 양성 오류 결과를 많이 보이는 단점이 있다.In addition, the yeast two-hybrid system, a method that has been widely used recently, is a method that can analyze protein interactions through transcriptional activity of receptor genes in living yeast cells rather than extracellularly. And genome fusion libraries have been widely used as a way to explore protein interactions. The yeast two-hybrid system has the advantage of being able to see protein interactions in vivo, contributing greatly to the study of protein interactions in cells of higher animals. However, the yeast two-hybrid system is useful for analyzing protein interactions inside the nucleus because it is a system of complementary binding of transcription factors, but the disadvantage of showing positive error results when analyzing protein interactions outside the nucleus. have.
따라서, 형광 공명에너지 전이(fluorescence resonance energy transfer, FRET) 원리를 이용한 새로운 개념의 단백질 상호작용 분석 시스템이 개발되었다. 형광 단백질은 서로 다른 고유한 파장 영역의 빛을 흡수하여 여기(excitation)되며, 그 에너지가 빛 혹은 열로 방출되고 나면 기저 상태로 회복되면서 형광 단백질 마다 독특한 파장대의 빛을 방출(emission)하게 된다. 형광 공명에너지 전이 원리는 서로 다른 두 형광 단백질이 10~100Å 내에 있을 경우, 단파장 형광 단백질이 여기된 후 방출하는 빛이 장파장 형광 단백질의 여기를 유도하여 형광을 방출하는 현상이다. 즉, 상호작용을 알아보고자 하는 두 단백질 뒤에 서로 다른 두 형광 단백질을 각각 부착시킨 후, 단백질 상호작용에 의해 두 형광 단백질이 10~100Å 이내로 가까워졌을 때 일어나는 형광 공명에너지 전이 현상에 의한 형광을 탐지함으로써 단백질 상호작용을 분석할 수 있는 것이다. 이 시스템은 살아있는 세포내에서 단백질의 동적인 상호작용 분석이 가능하다는 장점이 있지만, 두 형광 단백질의 거리가 매우 가까이 있어야만 탐지가 가능하고 미묘한 형광 파장의 변화를 감지하기 위해서는 단백질의 과량 발현이 필요한 경우가 있으며, 형광 공명에너지 전이 분석을 위해 고가의 장비가 필요한 단점이 있다.Thus, a new concept of protein interaction analysis system was developed using the principle of fluorescence resonance energy transfer (FRET). Fluorescent proteins absorb and excite light in different wavelength ranges, and once their energy is released as light or heat, they return to the ground state and emit a unique wavelength range for each fluorescent protein. The fluorescence resonance energy transfer principle is that when two different fluorescent proteins are within 10-100 kHz, the light emitted after the short wavelength fluorescent protein is excited induces the excitation of the long wavelength fluorescent protein to emit fluorescence. That is, by attaching two different fluorescent proteins to each other after the two proteins to be examined for interaction, and detecting fluorescence due to the fluorescence resonance energy transfer phenomenon that occurs when the two proteins are within 10 to 100 에 by protein interaction. It is possible to analyze protein interactions. This system has the advantage of being able to analyze the dynamic interaction of proteins in living cells, but only if the distance between the two fluorescent proteins is very close and detectable, and if overexpression of the protein is required to detect subtle changes in fluorescence wavelengths. There is a disadvantage that expensive equipment is required for fluorescence resonance energy transfer analysis.
따라서, 최근에는 상기 살펴본 기존의 단백질 분석법들의 한계를 개선한 이분자 형광 상보 분석법(biomolecular protein fluorescence complementation)이 주목받고 있다. 이분자 형광 상보 분석법은 형광 단백질을 두개의 단편으로 나누었을 때 두개의 단편이 멀리 떨어져 있을 때에는 형광을 내지 않다가 서로 가까이 오게 되면 상호 결합하여 온전한 형광 단백질 복합체를 형성함으로써 형광을 내는 현상을 이용한 기법으로서, 단백질 상호작용을 연구하고자 하는 두개의 단백질에 각각 형광 단백질 단편이 부착된 융합 단백질을 세포 내에서 발현시킨 후 두 단백질이 서로 상호작용할 때 이에 연결된 형광 단백질 단편이 서로 결합하여 발생하는 형광 신호를 측정하는 방법이다. 이러한 이분자 형광 상보 분석법은 bZIP과 Rel 족 (family) 단백질들의 상호작용과 세포 내 위치를 분석하는데 성공적으로 이용된 이후, 동물, 식물, 효모 등의 다양한 개체에 적용되고 있다. 또한, 비교적 간단한 장비를 통해 형광 신호를 측정하는 것이 가능하고 세포 내에서 발생하는 신호의 세기가 강하기 때문에 세포 내 어느 위치에서 단백질의 상호작용이 일어나는지 관찰할 수 있어 기존의 방법에 비해 많은 장점을 가지고 있다.Therefore, recently, biomolecular protein fluorescence complementation, which has improved the limitations of the aforementioned conventional protein assays, has attracted attention. Two-molecule fluorescence complementation analysis is a technique that uses the phenomenon of fluorescence by dividing a fluorescent protein into two fragments, but when the two fragments are far apart, they do not fluoresce, but when they come close to each other, they bind together to form an intact fluorescent protein complex. In this study, fusion proteins with fluorescent protein fragments attached to two proteins to study protein interaction are expressed in a cell, and when the two proteins interact with each other, the fluorescent signals linked to each other are measured. That's how. Since these two-molecule fluorescence complementary assays have been successfully used to analyze the interactions and intracellular location of bZIP and Rel family proteins, they have been applied to various individuals such as animals, plants, and yeasts. In addition, it is possible to measure the fluorescence signal through a relatively simple equipment, and because the signal intensity in the cell is strong, it is possible to observe where the protein interaction occurs in the cell has many advantages over the conventional method have.
또한, 이분자 형광 상보 분석법은 연구 목적에 따라 여러 가지 수용체 단백질을 사용할 수 있다. 이는 단백질-단백질 사이의 상호작용을 분석하는데 유용한 기술이며, 이때 두 개의 단편으로 분리할 수 있는 형광 단백질의 선택이 중요하다.In addition, the two-molecule fluorescence complementation assay may use various receptor proteins depending on the purpose of the study. This is a useful technique for analyzing protein-protein interactions, where the choice of fluorescent proteins that can separate into two fragments is important.
분리 단백질-기반 수용체 시스템은 in vitroin vivo에서 다양한 단백질-단백질 상호작용을 모니터하기 위하여 널리 사용되어 왔다. 현재까지 알려져 있는 이분자 형광 상보 분석법에 기반한 수용체로는 DHFR(dihydrofolate reductase), β-갈락토시다제, β-락타마제, TEV 프로테아제, 루시퍼라제, 녹색 형광 단백질 (GFPs) 및 그 변형 단백질 등이 있다. 이러한 수용체 단백질은 자발적으로 결합하지 못하는 두 개의 단편으로 분리된다. 즉, 분리된 단편들은 단지 단백질 파트너가 상호작용을 하여 검출할 수 있는 신호를 발생하는 수용체 단백질들이 융합하여 모일 경우에만 결합된다.Isolate protein-based receptor systems have been widely used to monitor various protein-protein interactions in vitro and in vivo . Receptors based on two-molecule fluorescence complementation assays known to date include dihydrofolate reductase (DHFR), β-galactosidase, β-lactamase, TEV protease, luciferase, green fluorescent proteins (GFPs), and modified proteins thereof. . These receptor proteins are separated into two fragments that do not spontaneously bind. In other words, the isolated fragments are bound only when the receptor proteins fused together to generate a signal that the protein partner can interact to detect.
최근에는, 몇가지 자가-절단 활성을 갖는 형광 단백질이 이분자 형광 상보 분석에 이용되고 있다. 대표적인 자가-절단 형광 단백질로는 GFP의 자가-회합 (self-associating) 단편이 있으며, 이는 매우 안정한 "슈퍼폴더(superfolder)" GFP로부터 개발되었다. 즉, GFP 단백질의 마지막 β-가닥(GFP 11, 아미노산 214-230)은 큰 GFP 단편(GFP 1-10, 아미노산 1-214)에 자발적으로 결합되고, 성숙한 발색단을 성공적으로 형성한다. 이러한 분석은 세포 단백질 용해도 시험, GFPs의 합성 구조, 및 소분자 검출을 포함한다. 보다 중요하게는, 발색단 형성을 위해 형광 단백질의 11 β-가닥 배럴 형태로부터 하나의 β-가닥을 분리하고 자가-결합하면 단백질-펩티드 태깅 및 검출을 위한 커다란 잠재성을 제공할 수 있다.Recently, fluorescent proteins with several self-cleaving activities have been used for two-molecule fluorescence complementation assays. Representative self-cleaving fluorescent proteins include self-associating fragments of GFP, which have been developed from very stable "superfolder" GFPs. That is, the last β-strand (GFP 11, amino acids 214-230) of the GFP protein spontaneously binds to large GFP fragments (GFP 1-10, amino acids 1-214) and successfully forms mature chromophores. Such assays include cellular protein solubility testing, synthetic structure of GFPs, and small molecule detection. More importantly, separating and self-binding one β-strand from the 11 β-strand barrel form of fluorescent protein for chromophore formation can provide great potential for protein-peptide tagging and detection.
또한, 황색 형광 단백질(yellow fluorescent protein; YFP)을 155번 아미노산에서 절단한 형태의 단편인 YN155와 YC155, 황색 형광 단백질의 변종인 비너스 (Venus) 단백질을 155번이나 173번 아미노산에서 절단한 VN155와 VC155 또는 VN173과 VC173 단편이 사용되고 있다. 또한, 장파장의 빛을 방출하는 적색 형광 단백질로는 mCherry 형광 단백질의 아미노산 서열 159번과 160번 사이에서 절단한 1번 내지 159번 단편과 160번 내지 237번의 mCherry 형광 단백질 단편이 사용되고 있다.In addition, YN155 and YC155, fragments cut from yellow fluorescent protein (YFP) at amino acid 155, and VN155, cut at amino acids 155 or 173, which is a variant of yellow fluorescent protein. VC155 or VN173 and VC173 fragments are used. In addition, the red fluorescent protein that emits light having a long wavelength is used fragments 1 to 159 and 160 to 237 mCherry fluorescent protein fragments cut between amino acid sequences 159 and 160 of the mCherry fluorescent protein.
상기한 바와 같이, 이분자 형광 상보 분석법은 저비용으로 살아있는 세포에서 단백질의 기능을 분석할 수 있는 강력한 분석법이다. 그러나, 상기 이분자 형광 상보 분석법은 기술적으로 보완해야 할 사항들이 있다. 이분자 형광 상보 분석법에서는 표적 단백질들 간의 상호작용이 아닌 수용체 단편들만의 융합으로 인한 거짓양성반응이 일어날 수 있는 여지가 있다. 이와 반대로, 수용체 단편이 부착된 위상 (topology)이나 표적 단백질의 특성에 따라, 혹은 표적 단백질과 수용체 단편을 연결하는 유동 연결체(flexible linker)의 성질에 따라 실제 표적 단백질 간의 상호작용이 일어났다 하더라도 검출이 되지 않는 거짓음성반응(false negative)이 나타날 가능성도 있다. 따라서, 이러한 가능성을 차단하는 방향으로의 자가-결합 활성을 지닌 형광 단백질 개발의 필요성이 요구되고 있다.As mentioned above, two-molecule fluorescence complementation assays are powerful assays capable of analyzing the function of proteins in living cells at low cost. However, the two-molecule fluorescence complementation assay has technically complementary matters. In two-molecule fluorescence complementation assays, there is room for false positive reactions due to the fusion of only receptor fragments rather than interactions between target proteins. In contrast, detection of the actual target protein interaction, depending on the topology of the receptor fragment or the nature of the target protein, or the nature of the flexible linker linking the target protein to the receptor fragment It is also possible that false negatives do not occur. Therefore, there is a need for the development of fluorescent proteins with self-binding activity in a direction that blocks this possibility.
한편, 적색 형광 단백질은 600㎚ 이상인 방출 "광학창(optical window)" 때문에 조직 영상 및 세포 바이오센서 분야에서 유망할 것으로 생각한다. 이러한 적색 형광 단백질들 중 DsRed 유도물인 mPlum은 가장 적색편이 방출 스펙트럼(649㎚에서 최대 방출) 중 하나를 갖는 단량체 형광 단백질로, 590㎚에서 여기되고, 2개의 주요 잔기(Glu 16 및 Ile 65)에 의해 지배된다. 그러나, 이러한 분광학적 특성을 갖는 mPlum이 이분자 형광 상보 분석법에 사용된 경우는 거의 없으며, 이에 대한 연구도 거의 전무한 상태이다. 따라서, 적색 형광 단백질인 mPlum 단편이 자가-결합 활성을 갖는지 확인한 후, mPlum 단편을 이분자 형광 상보 분석법에 적용하면 단백질 상호작용의 연구에 크게 기여할 수 있을 것으로 생각된다.Red fluorescent proteins, on the other hand, are thought to be promising in the field of tissue imaging and cellular biosensors due to emission "optical windows" of 600 nm and above. Of these red fluorescent proteins, mPlum, a monomeric fluorescent protein with one of the most redshifted emission spectra (maximum emission at 649 nm), is excited at 590 nm, and has two major residues (Glu 16 and Ile 65). Is dominated by However, the mPlum having such spectroscopic characteristics is rarely used in two-molecule fluorescence complementation analysis, and there is almost no research on this. Therefore, after confirming that the mPlum fragment, which is a red fluorescent protein, has self-binding activity, applying the mPlum fragment to a bimolecular fluorescence complementation assay is considered to contribute greatly to the study of protein interaction.
본 발명자들은 자가-결합 활성을 지닌 형광 단백질에 대해 연구하던 중, 적색 형광 단백질(mPlum)의 1번 β-가닥을 2~11번의 β-가닥 뒤에 유동 펩티드 링커를 통해 연결시켜 원순열된 mPlum 단백질(CpmPlum)을 제조한 후, 1번 β-가닥의 아미노산 서열 중 16번의 Glu(글루탐산)을 Val(발린)으로 대체하여 돌연변이체 (CpmPlum E16V)를 제조하고 단독으로 돌연변이된 mPlum 1 펩티드(mPlum 1 E16V)를 mPlum 2-11 단백질로부터 분리하여 적색 형광 단백질 단편(mPlum 1 E16V)을 얻은 후, 적색 형광 단백질 단편(mPlum 1 E16V)이 mPlum 2-11 단백질과 자가-결합하여 적색 형광 신호를 방출하여 자가-결합 활성을 갖는 것을 확인하고, 본 발명을 완성하였다. While studying the fluorescent protein having self-binding activity, the inventors linked the β-strand 1 of the red fluorescent protein (mPlum) through the flow peptide linker followed by the 11-11 β-strand through a flow peptide linker. After preparing (CpmPlum), mutant (CpmPlum E16V) was prepared by replacing Glu (glutamic acid) of No. 16 of the amino acid sequence of β-strand 1 with Val (valine), and mutated mPlum 1 peptide alone (mPlum 1). E16V) was isolated from the mPlum 2-11 protein to obtain a red fluorescent protein fragment (mPlum 1 E16V), and then the red fluorescent protein fragment (mPlum 1 E16V) self-bound with the mPlum 2-11 protein to emit a red fluorescent signal. It was confirmed to have self-binding activity and the present invention was completed.
본 발명은 자가-결합 활성을 갖는 적색 형광 단백질 단편, 이의 제조방법 및 이를 이용한 단백질의 분석 방법을 제공하고자 한다.The present invention aims to provide a red fluorescent protein fragment having self-binding activity, a method for preparing the same, and a method for analyzing a protein using the same.
본 발명에 따른 적색 형광 단백질 단편(mPlum 1 E16V)은 적색 형광 단백질 (mPlum)의 1번 β-가닥을 2~11번의 β-가닥 뒤에 유동 펩티드 링커를 통해 연결시켜 원순열된 mPlum 단백질(CpmPlum)을 제조한 후, 상기 원순열된 mPlum 단백질 (CpmPlum)의 1번 β-가닥의 아미노산 서열 중 16번의 Glu(글루탐산)을 Val(발린)으로 대체하여 돌연변이체(CpmPlum E16V)를 제조하고 단독으로 돌연변이된 mPlum 1 펩티드(mPlum 1 E16V)를 mPlum 2-11 단백질로부터 분리하고 mPlum 2-11 단백질과 자가-결합하여 적색 형광 신호를 방출함으로써, 자가-결합 활성을 갖는다. 따라서, 본 발명에 따른 자가-결합 활성을 갖는 적색 형광 단백질 단편(mPlum 1 E16V)은 바이오센서로서 살아있는 세포에서의 단백질 위치, 단백질-단백질 사이의 상호작용 등의 단백질 기능을 분석하는데 유용한 도구로서 사용될 수 있다.The red fluorescent protein fragment (mPlum 1 E16V) according to the present invention is linked to the β-strand 1 of the red fluorescent protein (mPlum) through the flow peptide linker behind the β-strand 2-11, the ordered mPlum protein (CpmPlum) After the preparation, the mutant (CpmPlum E16V) was prepared by replacing 16 Glu (glutamic acid) of Val (valine) in the amino acid sequence of β-strand 1 of the ordered mPlum protein (CpmPlum) with val (valine) MPlum 1 peptide (mPlum 1 E16V) is isolated from mPlum 2-11 protein and self-binds with mPlum 2-11 protein to emit red fluorescent signal, thereby having self-binding activity. Thus, the red fluorescent protein fragment (mPlum 1 E16V) with self-binding activity according to the present invention can be used as a biosensor as a useful tool for analyzing protein function such as protein location in living cells, protein-protein interactions, etc. Can be.
도 1은 전장 mPlum 및 원순열된 mPlum 단백질(CpmPlum)의 아미노산 서열을 나타낸 도이다[mPlum 1(적색), mPlum 2-11(청색), 및 Glu16(노란색)].1 is a diagram showing the amino acid sequence of full-length mPlum and permuted mPlum protein (CpmPlum) (mPlum 1 (red), mPlum 2-11 (blue), and Glu16 (yellow)).
도 2는 여러 mPlum 단편을 발현하는 E. coli 콜로니의 형광 영상을 나타낸 도이다.FIG. 2 shows fluorescence images of E. coli colonies expressing several mPlum fragments.
도 3은 mPlum, mPlum E16V, CpmPlum E16V, mPlum 단편의 표준화된 흡광 스펙트럼(실선)과 형광 스펙트럼(점선, 570㎚에서 여기)을 나타낸 도이다.FIG. 3 is a diagram showing normalized absorption spectra (solid line) and fluorescence spectra (dashed line, excitation at 570 nm) of mPlum, mPlum E16V, CpmPlum E16V, mPlum fragments.
도 4는 본 발명에 따른 자가-결합 활성을 갖는 mPlum 단편의 제조과정을 나타낸 도이다.Figure 4 is a diagram showing the manufacturing process of mPlum fragment having a self-binding activity according to the present invention.
도 5는 mPlum 2-11과 합성 mPlum 1 E16V 펩티드의 in vitro 상보성을 나타낸 도이다.Figure 5 shows the in vitro complementarity of mPlum 2-11 and synthetic mPlum 1 E16V peptide.
도 6은 여러 mPlum 1 펩티드 돌연변이체와 mPlum 2-11의 in vivo 상보성을 나타낸 도이다.Figure 6 shows the in vivo complementarity of several mPlum 1 peptide mutants and mPlum 2-11.
도 7은 mPlum 2-11과 결합된 mPlum 1 E16V C-1 펩티드의 형광 스펙트럼, 및 mPlum 2-11과 결합된 CmPlum E16V의 형광 스펙트럼을 비교 관찰하여 나타낸 도이다.FIG. 7 shows the fluorescence spectra of mPlum 1 E16V C-1 peptides bound to mPlum 2-11 and the fluorescence spectra of CmPlum E16V bound to mPlum 2-11.
도 8은 여러 mPlum 단편을 발현하는 HeLa 세포의 형광 영상을 나타낸 도이다.8 shows fluorescence images of HeLa cells expressing various mPlum fragments.
도 9는 여러 mPlum 단편을 순차적으로 발현하는 테트라사이클린-조절 HeLa 세포의 형광 영상을 나타낸 도이다.9 shows fluorescence images of tetracycline-regulated HeLa cells that sequentially express several mPlum fragments.
도 10은 테트라사이클린의 유도 시점에서 여러 mPlum 단편을 순차적으로 발현하는 테트라사이클린-조절 HeLa 세포의 형광 영상을 나타낸 도이다.10 shows fluorescence images of tetracycline-regulated HeLa cells that sequentially express several mPlum fragments at the time of induction of tetracycline.
도 11은 α-syn, α-syn-mPlum 1 E 16 V 및 MBP-mPlum 1 E 16 V의 섬유화를 관찰하여 나타낸 도이다.FIG. 11 is a diagram illustrating the fiberization of α-syn, α-syn-mPlum 1 E 16 V, and MBP-mPlum 1 E 16 V. FIG.
도 12는 테트라사이클린-조절 HeLa 세포의 형광 영상을 나타낸 도이다.12 shows fluorescence images of tetracycline-regulated HeLa cells.
본 발명은 적색 형광 단백질(mPlum)의 1번 β-가닥의 아미노산 서열 중 16번의 Glu(글루탐산)을 Val(발린)으로 대체한 것을 특징으로 하며, 서열번호 1의 아미노산 서열을 갖는 자가-결합 활성을 갖는 적색 형광 단백질 단편(mPlum 1 E16V)을 제공한다.The present invention is characterized in that Glu (glutamic acid) of 16 of the amino acid sequence of β-strand 1 of the red fluorescent protein (mPlum) is replaced with Val (valine), and has a self-binding activity having the amino acid sequence of SEQ ID NO: 1. A red fluorescent protein fragment (mPlum 1 E16V) is provided.
또한, 본 발명은 상기 적색 형광 단백질 단편(mPlum 1 E16V)을 코딩하는 유전자를 제공한다.The present invention also provides a gene encoding the red fluorescent protein fragment (mPlum 1 E16V).
또한, 본 발명은 상기 유전자를 포함하는 발현벡터를 제공한다.The present invention also provides an expression vector comprising the gene.
또한, 본 발명은 상기 발현벡터를 포함하는 숙주 세포를 제공한다.The present invention also provides a host cell comprising the expression vector.
또한, 본 발명은 상기 적색 형광 단백질 단편(mPlum 1 E16V)을 포함하는 단백질 검출용 키트를 제공한다.In addition, the present invention provides a protein detection kit comprising the red fluorescent protein fragment (mPlum 1 E16V).
또한, 본 발명은In addition, the present invention
1) 적색 형광 단백질(mPlum)의 1번 β-가닥을 2~11번의 β-가닥 뒤에 유동 펩티드 링커를 통해 연결시켜 원순열된 mPlum 단백질(CpmPlum)을 제조하는 단계,1) preparing the ordered mPlum protein (CpmPlum) by connecting the β-strand 1 of the red fluorescent protein (mPlum) through the flow peptide linker behind the β-strand 2-11;
2) 상기 원순열된 mPlum 단백질(CpmPlum)의 1번 β-가닥의 아미노산 서열 중 16번의 Glu(글루탐산)을 Val(발린)으로 대체하여 돌연변이체(CpmPlum E16V)를 제조하는 단계,2) preparing a mutant (CpmPlum E16V) by substituting Val (valine) for 16 Glu (glutamic acid) in the amino acid sequence of β-strand 1 of the ordered mPlum protein (CpmPlum),
3) 상기 돌연변이체(CpmPlum E16V)를 mPlum 2-11 단편과 mPlum 1 E16V 단편으로 분리하는 단계, 및3) separating the mutant (CpmPlum E16V) into mPlum 2-11 fragment and mPlum 1 E16V fragment, and
4) 상기 분리한 mPlum 2-11 단편과 mPlum 1 E16V 단편을 자가-결합하는 단계를 포함하는, 자가-결합 활성을 갖는 적색 형광 단백질 단편(mPlum 1 E16V)의 제조방법을 제공한다.4) It provides a method for producing a red fluorescent protein fragment (mPlum 1 E16V) having a self-binding activity, comprising the step of self-binding the separated mPlum 2-11 fragment and mPlum 1 E16V fragment.
또한, 본 발명은 말토오스 결합 단백질(maltose-binding protein)을 융합한 mPlum 1 E16V(MBP-mPlum 1 E16V)와 His-태그된 mPlum 2-11(His-mPlum 2-11)을 숙주 세포에서 함께 발현시킨 후 숙주 세포에서 적색 형광 신호를 검출하는 것을 특징으로 하는, 자가-결합 활성을 갖는 적색 형광 단백질 단편(mPlum 1 E16V)을 이용한 단백질 상호작용의 분석 방법을 제공한다.The present invention also expresses mPlum 1 E16V (MBP-mPlum 1 E16V) and His-tagged mPlum 2-11 (His-mPlum 2-11) fused with a maltose-binding protein in a host cell. The present invention provides a method for analyzing protein interaction using a red fluorescent protein fragment having self-binding activity (mPlum 1 E16V), which is characterized by detecting a red fluorescent signal in a host cell.
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 자가-결합 활성을 갖는 적색 형광 단백질 단편(mPlum 1 E16V)은, 적색 형광 단백질(mPlum)의 1번 β-가닥을 2~11번의 β-가닥 뒤에 유동 펩티드 링커를 통해 연결시켜 원순열된 mPlum 단백질(CpmPlum)을 제조한 후, 상기 원순열된 mPlum 단백질(CpmPlum)의 1번 β-가닥의 아미노산 서열 중 16번의 Glu(글루탐산)을 Val(발린)으로 대체하여 돌연변이체(CpmPlum E16V)를 제조하고 단독으로 돌연변이된 mPlum 1 펩티드(mPlum 1 E16V)를 mPlum 2-11 단백질로부터 분리한 것을 특징으로 한다. 상기 분리된 적색 형광 단백질 단편(mPlum 1 E16V)의 아미노산 서열은 서열번호 1로 표시된다.The red fluorescent protein fragment (mPlum 1 E16V) having self-binding activity according to the present invention can be obtained by linking the β-strand 1 of the red fluorescent protein (mPlum) through the flow peptide linker behind the β-strand 2-11. After preparing the permuted mPlum protein (CpmPlum), Glu (glutamic acid) of 16 of the amino acid sequence of β-strand 1 of the permuted mPlum protein (CpmPlum) was replaced with Val (valine) and the mutant (CpmPlum E16V). ) And the mutated mPlum 1 peptide (mPlum 1 E16V) alone was isolated from the mPlum 2-11 protein. The amino acid sequence of the isolated red fluorescent protein fragment (mPlum 1 E16V) is represented by SEQ ID NO: 1.
E. coli에서 mPlum 1 단편과 mPlum 2-11 단편의 공-발현 및 원순열된 mPlum 단백질(CpmPlum)은 적색 형광 신호를 방출하지 않아, mPlum 1 단편과 mPlum 2-11 단편은 자가-결합 활성을 갖지 않음을 알 수 있다. 그러나, E. coli에서 원순열된 CpmPlum 돌연변이체(CpmPlum E16V) 및 mPlum 2-11와 mPlum 1 E16V의 공-발현은 적색 형광 신호를 방출한다. 따라서, mPlum 2-11 단편은 mPlum 1 E16V 펩티드와 자가-결합되고, mPlum 1 E16V 펩티드는 자가-결합 활성을 갖는다는 것을 알 수 있다.Co-expression of mPlum 1 fragment and mPlum 2-11 fragment in E. coli and the ordered mPlum protein (CpmPlum) do not emit red fluorescence signal, so mPlum 1 fragment and mPlum 2-11 fragment have self-binding activity. It can be seen that it does not have. However, CpmPlum mutants (CpmPlum E16V) sequenced in E. coli and co-expression of mPlum 2-11 and mPlum 1 E16V emit red fluorescent signals. Thus, it can be seen that the mPlum 2-11 fragment is self-linked with the mPlum 1 E16V peptide, and the mPlum 1 E16V peptide has self-binding activity.
또한, mPlum 2-11 단백질과 mPlum 1 E16V 펩티드 사이의 in vitro 상보성은 우레아의 농도 변화(0.2-0.8M)에 따라 mPlum 1 E16V 펩티드의 더 높은 농도(4μM)가 더 빠른 상보성을 제공하며, 대략 24시간 후 평형에 도달한다. 또한, mPlum 1 펩티드의 Glu 16을 Val(발린)으로 대체한 돌연변이체(mPlum 1 E16V)는 높은 수준의 in vivo 형광 상보성을 나타내나, mPlum 1 펩티드의 Glu 16을 Ile(이소루이신) 또는 Met(메티오닌)으로 대체한 돌연변이체(mPlum 1 E16I, mPlum 1 E16M)는 낮은 수준의 in vivo 형광 상보성을 나타내고, 다른 돌연변이체들은 형광 신호를 나타내지 않는다. 따라서, mPlum 1 E16V 펩티드가 우수한 자가-결합 활성을 갖는다는 것을 알 수 있다.In addition, the in vitro complementarity between the mPlum 2-11 protein and the mPlum 1 E16V peptide provided that the higher concentration (4 μM) of the mPlum 1 E16V peptide provided faster complementarity, depending on the change in urea concentration (0.2-0.8 M). Equilibrium is reached after 24 hours. In addition, the mutant (mPlum 1 E16V) replacing Glu 16 of the mPlum 1 peptide with Val (valine) shows high levels of in vivo fluorescence complementarity, whereas Glu 16 of the mPlum 1 peptide is expressed as Ile (isoleucine) or Met. Mutants replaced by (methionine) (mPlum 1 E16I, mPlum 1 E16M) show low levels of in vivo fluorescence complementarity and other mutants do not show fluorescence signals. Thus, it can be seen that the mPlum 1 E16V peptide has good self-binding activity.
또한, mPlum 2-11과 자가-결합을 위한 mPlum 1 E16V 펩티드의 최소 잔기는 18개 아미노산이며, 상기 18개 아미노산이 최대 자가-결합의 임계점임을 확인하였다. 즉, 18개의 아미노산 서열을 갖는 펩티드 mPlum 1 E16V로부터 단지 하나의 잔기만을 제거하는 것이 형광 상보를 유의하게 방해한다는 것을 확인하였다.In addition, it was confirmed that the minimum residue of mPlum 1 E16V peptide for self-binding with mPlum 2-11 is 18 amino acids, which is the critical point of maximum self-binding. That is, it was confirmed that removing only one residue from the peptide mPlum 1 E16V having 18 amino acid sequences significantly interfered with fluorescence complementation.
또한, mPlum와 CpmPlum E16V는 HeLa 세포에서 적색 형광 활성을 나타낸 반면, mPlum 2-11 단편 단독은 형광 활성을 나타내지 않는다. 그러나, mPlum 2-11 및 MBP-mPlum 1 E16V 펩티드의 공-형질전환체는 밝은 적색 형광을 나타낸다. 따라서, mPlum 1 E16V 펩티드 태그가 포유동물 세포(HeLa 세포)에서 단백질의 태깅 및 검출에 사용될 수 있음을 알 수 있다.In addition, mPlum and CpmPlum E16V showed red fluorescent activity in HeLa cells, whereas mPlum 2-11 fragment alone did not show fluorescent activity. However, the co-transformers of mPlum 2-11 and MBP-mPlum 1 E16V peptides show bright red fluorescence. Thus, it can be seen that the mPlum 1 E16V peptide tag can be used for tagging and detecting proteins in mammalian cells (HeLa cells).
또한, 테트라사이클린에 의해 조절되지 않는 mPlum 1 E16V 펩티드에 태그된 MBP 단백질은 즉시 발현되는 반면, mPlum 2-11 단백질의 발현은 테트라사이클린 조절에 의해 억제된다. 또한, 야생형 mPlum 단백질은 테트라사이클린 유도시 적색 형광 신호를 나타낸다. 따라서, MBP-mPlum 1 E16V 펩티드의 형광 라벨링은 테트라사이클린을 첨가하여 mPlum 2-11 단백질을 유도함으로써 성공적으로 이루어진다. 또한, mPlum의 적색 형광 신호는 테트라사이클린 유도 후 6시간 이내에 명백하게 관찰되고, mPlum 2-11가 MBP-mPlum 1 E16V 펩티드에 결합하고 성숙한 발색단을 형성하는데는 8시간이 필요하다.In addition, MBP protein tagged in mPlum 1 E16V peptide that is not regulated by tetracycline is expressed immediately, whereas expression of mPlum 2-11 protein is inhibited by tetracycline regulation. In addition, wild-type mPlum protein shows a red fluorescence signal upon tetracycline induction. Thus, fluorescent labeling of MBP-mPlum 1 E16V peptides was successfully achieved by adding tetracycline to induce mPlum 2-11 protein. In addition, the red fluorescence signal of mPlum is clearly observed within 6 hours after tetracycline induction, and 8 hours are required for mPlum 2-11 to bind to MBP-mPlum 1 E16V peptide and form a mature chromophore.
상기한 바와 같이, 본 발명에 따른 적색 형광 단백질 단편(mPlum 1 E16V)은 적색 형광 단백질(mPlum)의 1번 β-가닥을 2~11번의 β-가닥 뒤에 유동 펩티드 링커를 통해 연결시켜 원순열된 mPlum 단백질(CpmPlum)을 제조한 후, 상기 원순열된 mPlum 단백질(CpmPlum)의 1번 β-가닥의 아미노산 서열 중 16번의 Glu(글루탐산)을 Val(발린)으로 대체하여 돌연변이체(CpmPlum E16V)를 제조하고 단독으로 돌연변이된 mPlum 1 펩티드(mPlum 1 E16V)를 mPlum 2-11 단백질로부터 분리하고 mPlum 2-11 단백질과 자가-결합하여 적색 형광 신호를 방출함으로써, 자가-결합 활성을 갖는다. 따라서, 본 발명에 따른 자가-결합 활성을 갖는 적색 형광 단백질 단편(mPlum 1 E16V)은 바이오센서로서 살아있는 세포에서의 단백질 위치, 단백질-단백질 사이의 상호작용 등의 단백질 기능을 분석하는데 유용한 도구로서 사용될 수 있다.As described above, the red fluorescent protein fragment (mPlum 1 E16V) according to the present invention is sequenced by connecting the β-strand 1 of the red fluorescent protein (mPlum) through the flow peptide linker behind the β-strand 2-11 times. After preparing the mPlum protein (CpmPlum), the mutant (CpmPlum E16V) was replaced by Val (valine) by replacing Glu (glutamic acid) of No. 16 of the amino acid sequence of β-strand 1 of the circularly ordered mPlum protein (CpmPlum). The mPlum 1 peptide (mPlum 1 E16V), prepared and mutated alone, is isolated from the mPlum 2-11 protein and self-binds with the mPlum 2-11 protein to emit a red fluorescent signal, thereby having self-binding activity. Thus, the red fluorescent protein fragment (mPlum 1 E16V) with self-binding activity according to the present invention can be used as a biosensor as a useful tool for analyzing protein function such as protein location in living cells, protein-protein interactions, etc. Can be.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the examples.
실시예 1Example 1 : 적색 형광 단백질(mPlum)의 제조 Preparation of Red Fluorescent Protein (mPlum)
1. 원순열된 mPlum 단백질(CpmPlum)의 제조1. Preparation of the ordered mPlum protein (CpmPlum)
전장 mPlum 및 mPlum 2-11(잔기 25-216)과 같은 mPlum 단편을 암호화하는 유전자를 시판되는 mPlum 유전자(Clontech)로부터 PCR로 증폭시켰다. 이후 Escherichia coli에서 재조합 단백질을 발현시키기 위해, PCR 산물을 pET28a 발현벡터(Novagen)로 클론시켰다. mPlum 1 펩티드(잔기 6-23)의 박테리아 발현을 위해, mPlum 1 펩티드를 유동 펩티드 링커(GGSGGT)로 MBP(maltose binding protein)의 C-말단에 융합시키고, pET21a 발현벡터(Novagen)로 클론시켰다. 그 다음, 유동 펩티드 링커(GGTGGSGGTGGS)를 통해 mPlum 2-11 단편의 C-말단에 mPlum 1 단편을 융합시켜 원순열된 mPlum 단백질(CpmPlum)을 제조하였다. 전장 mPlum 및 원순열된 mPlum 단백질(CpmPlum)의 아미노산 서열은 각각 서열번호 2 및 3으로 표시되며, 도 1에 나타내었다[mPlum 1(적색), mPlum 2-11(청색), 및 Glu16(노란색)].Genes encoding mPlum fragments such as full length mPlum and mPlum 2-11 (residues 25-216) were amplified by PCR from the commercial mPlum gene (Clontech). Then, to express the recombinant protein in Escherichia coli , the PCR product was cloned with pET28a expression vector (Novagen). For bacterial expression of the mPlum 1 peptide (residues 6-23), the mPlum 1 peptide was fused to the C-terminus of the maltose binding protein (MBP) with the flow peptide linker (GGSGGT) and cloned with the pET21a expression vector (Novagen). The ordered mPlum protein (CpmPlum) was then prepared by fusing the mPlum 1 fragment to the C-terminus of the mPlum 2-11 fragment via a flow peptide linker (GGTGGSGGTGGS). The amino acid sequences of the full length mPlum and the ordered mPlum protein (CpmPlum) are shown in SEQ ID NOs: 2 and 3, respectively, and are shown in FIG. 1 [mPlum 1 (red), mPlum 2-11 (blue), and Glu16 (yellow). ].
상기 제조된 원순열된 mPlum 단백질(CpmPlum)의 자가-결합 활성 여부를 확인하기 위하여, 발현 플라스미드가 사는 E. coli BL21(DE3) 세포를 OD600=0.6이 될 때까지 37℃에서 성장시켰다. 그리고, 단백질을 1mM IPTG(isopropyl-β-D-thiogalactopyranoside)로 유도시키고 25℃에서 밤새도록 배양하였다. 유도된 세포의 초음파-기준 파괴 후, 단백질을 Ni-킬레이팅 컬럼으로 정제하였다. 정제된 단백질을 PBS 완충액으로 투석하고, 사용 전 -20℃에서 저장하였다.In order to confirm the self-binding activity of the prepared permutated mPlum protein (CpmPlum), E. coli BL21 (DE3) cells in which the expression plasmid lived were grown at 37 ° C. until OD 600 = 0.6. The protein was then induced with 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) and incubated overnight at 25 ° C. After sonication-based disruption of the induced cells, the proteins were purified by Ni-chelating column. Purified protein was dialyzed in PBS buffer and stored at -20 ° C before use.
mPlum 단편의 in vivo 상보성은, mPlum 단편을 E. coli BL21(DE3)에서 공-발현시켜 실험하였다. 먼저, E. coli BL21(DE3) 세포를 mPlum 2-11(in pET28a, kanamycin resistant) 및 MBP-융합된 mPlum 1 펩티드(in pET21a, ampicillin resistant)의 발현벡터로 변형시키고, 암피실린과 카나마이신으로 보충된 LB 아가 배지에 있는 니트로셀룰로오스 막 위에 놓았다. 37℃에서 밤새 성장시킨 후, 막을 1mM IPTG를 함유하는 LB 플레이트로 옮겨 단백질을 유도하고, 22℃에서 24시간 동안 배양하였다. E. coli 콜로니의 형광 영상은 575㎚ 여기 필터와 670㎚ 방출 필터를 이용하여 발광 영상 분석기 LAS 3000(FujiFilm)으로 얻었다.In vivo complementarity of mPlum fragments was tested by co-expressing the mPlum fragments in E. coli BL21 (DE3). First, E. coli BL21 (DE3) cells were transformed with expression vectors of mPlum 2-11 (in pET28a, kanamycin resistant) and MBP-fused mPlum 1 peptide (in pET21a, ampicillin resistant) and supplemented with ampicillin and kanamycin Placed on nitrocellulose membrane in LB agar medium. After growing overnight at 37 ° C., the membranes were transferred to LB plates containing 1 mM IPTG to induce proteins and incubated at 22 ° C. for 24 hours. Fluorescence images of E. coli colonies were obtained with a luminescence imaging analyzer LAS 3000 (FujiFilm) using a 575 nm excitation filter and a 670 nm emission filter.
여러 mPlum 단편을 발현하는 E. coli 콜로니의 형광 영상은 도 2에 나타내었다.Fluorescence images of E. coli colonies expressing several mPlum fragments are shown in FIG. 2.
도 2에 나타난 바와 같이, E. coli에서 적색 형광 단백질(mPlum)은 적색 형광 신호를 방출하였으나, mPlum 1 단편과 mPlum 2-11 단편의 공-발현 및 원순열된 mPlum 단백질(CpmPlum)은 적색 형광 신호를 방출하지 않았다. 따라서, mPlum 1 단편과 mPlum 2-11 단편은 자가-결합 활성을 가지지 않음을 확인하였다.As shown in FIG. 2, red fluorescent protein (mPlum) emitted red fluorescent signal in E. coli , but co-expression and permuted mPlum protein (CpmPlum) of mPlum 1 fragment and mPlum 2-11 fragment showed red fluorescence. It did not emit a signal. Thus, it was confirmed that the mPlum 1 fragment and the mPlum 2-11 fragment do not have self-binding activity.
2. 원순열된 mPlum 단백질(CpmPlum)의 돌연변이체의 제조 [CpmPlum E16V]2. Preparation of Mutants of Circularly Ordered mPlum Protein (CpmPlum) [CpmPlum E16V]
무작위로 돌연변이시킨 원순열된 mPlum 단백질(CpmPlum)의 라이브러리를 error-prone PCR(GeneMorph II Random Mutagenesis Kit, STRATAGENE)로 제조하였다. PCR 산물을 pBAD-A 발현벡터로 클론하였다. 라이브러리 플라스미드를 TOP10 전기충격용 대장균 세포로 변형시키고, 직접 니트로셀룰로오스 막 위에서 평판 배양하였다. 37℃에서 밤새 성장시킨 후, 막을 0.02% L-아라비노오스를 함유하는 LB 플레이트로 옮기고 단백질을 유도하였다. 막 위의 E. coli 콜로니에서 단백질 발현 및 형광물질(fluorophore) 형성을 16℃에서 며칠 동안 모니터하였다. 6×104 라이브러리로부터 형광 콜로니를 선택하고, 13개의 돌연변이체(CpmPlum E16V)를 스크리닝하였다. 스크리닝된 13개의 돌연변이체(CpmPlum E16V)의 아미노산 치환을 분석하였으며, 하기 표 1에 나타내었다.A library of randomly mutated permutated mPlum proteins (CpmPlum) was prepared by error-prone PCR (GeneMorph II Random Mutagenesis Kit, STRATAGENE). PCR products were cloned into pBAD-A expression vector. Library plasmids were transformed into TOP10 electroshock E. coli cells and plated directly on nitrocellulose membrane. After growing overnight at 37 ° C., the membranes were transferred to LB plates containing 0.02% L-arabinose and protein induced. Protein expression and fluorophore formation in E. coli colonies on the membrane were monitored at 16 ° C. for several days. Fluorescent colonies were selected from 6 × 10 4 libraries and 13 mutants (CpmPlum E16V) were screened. Amino acid substitutions of the 13 screened mutants (CpmPlum E16V) were analyzed and are shown in Table 1 below.
표 1
클론 아미노산 치환
1 E230V
2 H148Y, M158V, E194V, H197Y, E230V
3 S88T, E230V
4 G102C, R125W, E218G, E230V, V236M
5 E218N, E219K, E230V
6 R227P, E230V
7 D150N, E230V
8 K229R, E230V
9 E218Q, E230V
10 R227P, E230V
11 S215N, E218K, E230V
12 K97M, E217G, E230V
13 N74T, E230V
Table 1
Clone Amino acid substitutions
One E230V
2 H148Y, M158V, E194V, H197Y, E230V
3 S88T, E230V
4 G102C, R125W, E218G, E230V, V236M
5 E218N, E219K, E230V
6 R227P, E230V
7 D150N, E230V
8 K229R, E230V
9 E218Q, E230V
10 R227P, E230V
11 S215N, E218K, E230V
12 K97M, E217G, E230V
13 N74T, E230 V
표 1에 나타난 바와 같이, 스크리닝된 13개의 모든 CpmPlum 돌연변이체 (CpmPlum E16V)에서 mPlum의 Glu 16에 대응하는 하나의 공통된 돌연변이(Glu 230 to Val, E230V)가 관찰되었다.As shown in Table 1, one common mutation (Glu 230 to Val, E230V) corresponding to Glu 16 of mPlum was observed in all 13 screened CpmPlum mutants (CpmPlum E16V).
3. mPlum 1 E16V 펩티드와 mPlum 2-11 단백질의 자가-결합3. Self-Binding of mPlum 1 E16V Peptide and mPlum 2-11 Protein
단독으로 돌연변이된 mPlum 1 펩티드(mPlum 1 E16V)를 mPlum 2-11 단백질로부터 분리하였다. 그 다음, MBP가 융합된 mPlum 1 펩티드를 His 태그된 mPlum 2-11 단백질과 공-발현시키고 SDS-PAGE를 이용하여 정제하였다. 결합된 형광 단백질을 융합된 MBP 및 His 태그를 이용하여 이중으로 정제하였다. 정제된 mPlum 2-11 단백질을 화학적으로 합성된 mPlum 1 펩티드(mPlum 1 E16V)와 자발적으로 결합하였다. 그 다음, 정제된 단백질들의 흡광 스펙트럼과 형광 스펙트럼을 측정하였다.The mutated mPlum 1 peptide alone (mPlum 1 E16V) was isolated from the mPlum 2-11 protein. MBP fused mPlum 1 peptide was then co-expressed with His tagged mPlum 2-11 protein and purified using SDS-PAGE. Bound fluorescent protein was purified in duplicate using fused MBP and His tags. Purified mPlum 2-11 protein spontaneously bound with chemically synthesized mPlum 1 peptide (mPlum 1 E16V). Next, the absorption spectra and fluorescence spectra of the purified proteins were measured.
원순열된 CpmPlum 돌연변이체(CpmPlum E16V) 또는 mPlum 단편을 발현하는 E. coli 콜로니의 형광 영상은 도 2에 나타내었다. 또한, mPlum, mPlum E16V, CpmPlum E16V, mPlum 단편의 표준화된 흡광 스펙트럼(실선)과 형광 스펙트럼(점선, 570㎚에서 여기)은 도 3에 나타내었다. 또한, 본 발명에 따른 자가-결합 활성을 갖는 mPlum 단편의 제조과정은 도 4에 나타내었다.Fluorescence images of E. coli colonies expressing the ordered CpmPlum mutants (CpmPlum E16V) or mPlum fragments are shown in FIG. 2. In addition, normalized absorption spectra (solid line) and fluorescence spectra (dashed line, excitation at 570 nm) of mPlum, mPlum E16V, CpmPlum E16V, mPlum fragments are shown in FIG. 3. In addition, the manufacturing process of the mPlum fragment having a self-binding activity according to the present invention is shown in FIG.
도 2에 나타난 바와 같이, E. coli에서 원순열된 CpmPlum 돌연변이체 (CpmPlum E16V) 및 mPlum 2-11와 mPlum 1 E16V의 공-발현은 적색 형광 신호를 방출하였다.As shown in FIG. 2, the CpmPlum mutant (CpmPlum E16V) and co-expression of mPlum 2-11 and mPlum 1 E16V that had been circularly sequenced in E. coli emitted red fluorescent signals.
또한 도 3에 나타난 바와 같이, 정제된 단백질은 원래의 단백질로부터 약간 청색 편이된 615㎚에서 최대 방출을 나타내었다. mPlum의 Glu 16 돌연변이체의 형광 방출에서 청색 편이는 이전에 보고되었다[X. Shu, L. Wang, L. Colip, K. Kallio, S. J. Remington, Protein Sci. 2009, 18, 460.]. 단백질 복합체(MBP-mPlum 1 E16V + His-mPlum 2-11) 및 원순열된 CpmPlum 돌연변이체(CmPlum E16V)의 흡광 스펙트럼과 형광 스펙트럼은 구별할 수 없었다. 또한, 반합성적으로 결합된 단백질(mPlum 1 E16V 펩티드 + mPlum 2-11)의 분광학적 특성은 공-발현된 단백질의 분광학적 특성과 거의 동일하였다. 따라서, mPlum 2-11 단편은 공-발현된 또는 합성된 mPlum 1 E16V 펩티드와 자가-결합됨을 확인하였다. 즉, mPlum 1 E16V 펩티드가 자가-결합 활성을 갖는다는 것을 알 수 있다.As also shown in FIG. 3, the purified protein showed a maximum emission at 615 nm, slightly blue shifted from the original protein. Blue shifts in fluorescence emission of Glu 16 mutants of mPlum have been previously reported [X. Shu, L. Wang, L. Colip, K. Kallio, SJ Remington, Protein Sci. 2009 , 18 , 460.]. Absorption spectra and fluorescence spectra of the protein complex (MBP-mPlum 1 E16V + His-mPlum 2-11) and the ordered CpmPlum mutant (CmPlum E16V) were indistinguishable. In addition, the spectroscopic properties of the semisynthetic bound protein (mPlum 1 E16V peptide + mPlum 2-11) were nearly identical to the spectroscopic properties of the co-expressed protein. Thus, it was confirmed that the mPlum 2-11 fragment self-bound with the co-expressed or synthesized mPlum 1 E16V peptide. That is, it can be seen that the mPlum 1 E16V peptide has self-binding activity.
실험예 1Experimental Example 1 : mPlum 단편의 in vitro 상보성 : In vitro Complementarity of mPlum Fragments
mPlum 단편의 in vitro 상보성은 mPlum 2-11 및 합성 펩티드 mPlum 1 E16V (EVIKEFMRFKVHMEGSVN, Peptron)를 이용하여 수행하였다. 변화하는 결합 완충액(50 mM Tris pH 7.4, 0.1 M NaCl, 10% glycerol, 1% DMSO, 및 0.2-0.8M urea)에서 1μM 의 mPlum 2-11 단백질과 1-4μM의 mPlum 1 E16V 펩티드의 최종 농도로 양 단편을 혼합하였다. mPlum 2-11과 합성 mPlum 1 E16V 펩티드의 결합 및 형광 상보성을 570㎚ 여기 및 615㎚ 방출에서 50시간 동안 관찰하였다.In vitro complementarity of mPlum fragments was performed using mPlum 2-11 and synthetic peptide mPlum 1 E16V (EVIKEFMRFKVHMEGSVN, Peptron). Final concentration of 1 μM of mPlum 2-11 protein and 1-4 μM of mPlum 1 E16V peptide in varying binding buffer (50 mM Tris pH 7.4, 0.1 M NaCl, 10% glycerol, 1% DMSO, and 0.2-0.8 M urea) Both fragments were mixed with. Binding and fluorescence complementarity of mPlum 2-11 with synthetic mPlum 1 E16V peptide was observed for 50 h at 570 nm excitation and 615 nm emission.
결과는 도 5에 나타내었다.The results are shown in FIG.
도 5에 나타난 바와 같이, 1μM의 mPlum 2-11 단백질과 1-4μM의 mPlum 1 E16V 펩티드 사이의 in vitro 상보성은 우레아의 농도 변화(0.2-0.8M)에 따라 mPlum 1 E16V 펩티드의 더 높은 농도(4μM)가 더 빠른 상보성을 제공하였으며, 대략 24시간 후 평형에 도달하였다.As shown in FIG. 5, in vitro complementarity between 1 μM of mPlum 2-11 protein and 1-4 μM of mPlum 1 E16V peptide showed a higher concentration of mPlum 1 E16V peptide according to the change in concentration of urea (0.2-0.8 M). 4 μM) provided faster complementarity and reached equilibrium after approximately 24 hours.
실험예 2Experimental Example 2 : 여러 mPlum 1 펩티드 돌연변이체와 mPlum 2-11의  : Of mPlum 2-11 with Multiple mPlum 1 Peptide Mutants in vivoin vivo 상보성 Complementarity
여러 mPlum 1 펩티드 돌연변이체와 mPlum 2-11과의 자가-결합능을 조사하기 위하여, 하기와 같은 실험을 수행하였다. 즉, 펩티드의 잔기가 형광 방출에 영향을 주기 때문에, mPlum 1 펩티드의 Glu 16을 Gly(글리신), Ile(이소루이신), Met(메티오닌), Gln(글루타민) 및 Ser(세린)과 같은 여러 아미노산으로 돌연변이시켰다. 그 다음, 여러 mPlum 1 펩티드 돌연변이체와 mPlum 2-11의 in vivo 상보성을 E. coli 에서 공-발현시켜 조사하였다.In order to investigate the self-binding ability of various mPlum 1 peptide mutants and mPlum 2-11, the following experiment was performed. In other words, since the residues of the peptides affect fluorescence emission, Glu 16 of the mPlum 1 peptide can be converted into various compounds such as Gly (glycine), Ile (isoleucine), Met (methionine), Gln (glutamine), and Ser (serine). Mutated with amino acids. In vivo complementarity of several mPlum 1 peptide mutants with mPlum 2-11 was then examined by co-expression in E. coli .
결과는 도 6에 나타내었다.The results are shown in FIG.
도 6에 나타난 바와 같이, mPlum 1 펩티드의 Glu 16을 Val(발린)으로 대체한 돌연변이체(mPlum 1 E16V)는 높은 수준의 in vivo 형광 상보성을 나타내었으나, mPlum 1 펩티드의 Glu 16을 Ile(이소루이신) 또는 Met(메티오닌)으로 대체한 돌연변이체(mPlum 1 E16I, mPlum 1 E16M)는 낮은 수준의 in vivo 형광 상보성을 나타내었고, 다른 돌연변이체들은 형광 신호를 나타내지 않았다. 따라서, mPlum 1 E16V 펩티드는 우수한 자가-결합 활성을 갖는다는 것을 알 수 있다.As shown in FIG. 6, the mutant (mPlum 1 E16V) replacing Glu 16 of mPlum 1 peptide with Val (valine) showed high levels of in vivo fluorescence complementarity, while Glu 16 of mPlum 1 peptide was expressed as Ile (iso). Mutants (mPlum 1 E16I, mPlum 1 E16M) replaced with leucine) or Met (methionine) showed low levels of in vivo fluorescence complementarity and the other mutants did not show fluorescence signals. Thus, it can be seen that the mPlum 1 E16V peptide has good self-binding activity.
실험예 3Experimental Example 3 : mPlum 2-11과 자가-결합을 위한 mPlum 1 E16V 펩티드의 최소 잔기 조사 및 형광 스펙트럼 관찰 : Minimal residue investigation and fluorescence spectra of mPlum 1 E16V peptides for self-binding with mPlum 2-11
mPlum 2-11과 자가-결합을 위한 mPlum 1 E16V 펩티드의 최소 잔기를 펩티드의 N- 또는 C-말단 아미노산을 체계적으로 제거하여 조사하였다. 실험에 사용된 mPlum 1 E16V 펩티드의 잔기(아미노산 서열)는 하기 표 2에 나타내었다.Minimum residues of the mPlum 1 E16V peptide for self-binding with mPlum 2-11 were investigated by systematically removing the N- or C-terminal amino acids of the peptide. The residues (amino acid sequence) of the mPlum 1 E16V peptide used in the experiment are shown in Table 2 below.
또한, mPlum 2-11과 결합된 mPlum 1 E16V C-1 펩티드의 형광 스펙트럼, 및 mPlum 2-11과 결합된 CmPlum E16V의 형광 스펙트럼을 비교 관찰하여 도 7에 나타내었다.In addition, the fluorescence spectrum of mPlum 1 E16V C-1 peptide coupled with mPlum 2-11 and the fluorescence spectrum of CmPlum E16V coupled with mPlum 2-11 were compared and observed, and are shown in FIG. 7.
표 2
펩티드 명 아미노산 서열 자가-결합
Long mPlum 1 E16V VSKGEEVIKEFMRFKVHMEGSVN 있음
mPlum 1 E16V EVIKEFMRFKVHMEGSVN 있음
mPlum 1 E16V C-1 EVIKEFMRFKVHMEGSV 약함
mPlum 1 E16V C-3 EVIKEFMRFKVHMEG 없음
mPlum 1 E16V N-3 KEFMRFKVHMEGSVN 없음
mPlum 1 E16V N-6 MRFKVHMEGSVN 없음
TABLE 2
Peptide name Amino acid sequence Self-coupling
Long mPlum
1 E16V VSKGEEVIKEFMRFKVHMEGSVN has exist
mPlum
1 E16V EVIKEFMRFKVHMEGSVN has exist
mPlum
1 E16V C-1 EVIKEFMRFKVHMEGSV weakness
mPlum
1 E16V C-3 EVIKEFMRFKVHMEG none
mPlum
1 E16V N-3 KEFMRFKVHMEGSVN none
mPlum
1 E16V N-6 MRFKVHMEGSVN none
표 2 및 도 7에 나타난 바와 같이, mPlum 2-11과 자가-결합을 위한 mPlum 1 E16V 펩티드의 최소 잔기는 18개 아미노산이었으며, 상기 18개 아미노산이 최대 자가-결합의 임계점임을 확인하였다. 즉, 18개의 아미노산 서열을 갖는 펩티드 mPlum 1 E16V로부터 단지 하나의 잔기만을 제거하는 것이 형광 상보를 유의하게 방해한다는 것을 확인하였다.As shown in Table 2 and FIG. 7, the minimum residues of the mPlum 1 E16V peptide for self-binding with mPlum 2-11 were 18 amino acids, which were confirmed to be the critical point of maximum self-binding. That is, it was confirmed that removing only one residue from the peptide mPlum 1 E16V having 18 amino acid sequences significantly interfered with fluorescence complementation.
실험예 4Experimental Example 4 : 포유동물 세포에서 단백질-펩티드(mPlum 1 E16V)의 태깅 및 검출 : Tagging and Detection of Protein-Peptide (mPlum 1 E16V) in Mammalian Cells
1. 여러 mPlum 단편을 발현하는 HeLa 세포의 형광 영상1. Fluorescence Imaging of HeLa Cells Expressing Multiple mPlum Fragments
자가-결합 활성을 갖는 mPlum 1 E16V 펩티드가 포유동물 세포에서 단백질의 태깅 및 검출에 사용될 수 있는지 여부를 조사하였다. 유전적으로 암호화된 펩티드 태깅과 외부적으로 적용된 형광 화합물로 펩티드의 검출은 다소 큰 형광 단백질 태그의 많은 한계를 극복하였다[a) I. Chen, A. Y. Ting, Curr. Opin. Biotechnol. 2005, 16, 35; b) H. M. O'Hare, K. Johnsson, A. Gautier, Curr. Opin. Struct. Biol. 2007, 17, 488.]. 그러나, 이러한 펩티드-화합물 라벨링 방법의 광범위한 사용은 비특이적 기저 신호, 세포 투과, 및 화합물의 한정된 자원에 의해 제한되었다. 따라서, 본 실험에서는 유전적으로 암호화된 mPlum 2-11 단백질을 사용하여 형광 화합물을 대체하였다. 구체적으로는, 포유동물 세포에서 단백질을 발현시키기 위해, 단백질의 유전자를 pcDNA 발현벡터(Invitrogen)로 클론하였다. 자궁경부암 세포주(HeLa 세포)를 제조자의 프로토콜에 따라 리포펙타민 2000(Invitrogen)을 이용하여 일시적으로 형질전환하였다. 형질전환 후 mPlum 단편의 여러 형태를 HeLa 세포에서 24시간 동안 발현시키고, 555/28㎚의 여기 필터와 617/23㎚의 방출 필터를 이용하여 DeltaVision RT fluorescent microscope(Applied Precision)로 HeLa 세포의 형광 영상을 얻었다.We investigated whether mPlum 1 E16V peptides with self-binding activity can be used for tagging and detection of proteins in mammalian cells. Genetic-encoded peptide tagging and detection of peptides with externally applied fluorescent compounds overcomes many limitations of rather large fluorescent protein tags [a) I. Chen, AY Ting, Curr. Opin. Biotechnol. 2005 , 16 , 35; b) HM O'Hare, K. Johnsson, A. Gautier, Curr. Opin. Struct. Biol. 2007 , 17 , 488.]. However, the widespread use of such peptide-compound labeling methods has been limited by nonspecific basis signals, cell permeation, and limited resources of the compounds. Therefore, in this experiment, genetically encoded mPlum 2-11 protein was used to replace fluorescent compounds. Specifically, to express the protein in mammalian cells, the gene of the protein was cloned with the pcDNA expression vector (Invitrogen). Cervical cancer cell lines (HeLa cells) were transiently transformed using Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. After transformation, various forms of mPlum fragments were expressed in HeLa cells for 24 hours, and fluorescent images of HeLa cells with DeltaVision RT fluorescent microscope (Applied Precision) using 555/28 nm excitation filter and 617/23 nm emission filter. Got.
결과는 도 8에 나타내었다.The results are shown in FIG.
도 8에 나타난 바와 같이, mPlum와 CpmPlum E16V는 HeLa 세포에서 적색 형광 활성을 나타낸 반면, mPlum 2-11 단편 단독은 형광 활성을 나타내지 않았다. 그러나, mPlum 2-11 및 MBP-mPlum 1 E16V 펩티드의 공-형질전환체는 밝은 적색 형광을 나타내었다. 따라서, mPlum 1 E16V 펩티드 태그가 포유동물 세포(HeLa 세포)에서 단백질의 태깅 및 검출에 사용될 수 있음을 확인하였다.As shown in FIG. 8, mPlum and CpmPlum E16V showed red fluorescent activity in HeLa cells, whereas mPlum 2-11 fragment alone did not show fluorescent activity. However, the co-transformers of mPlum 2-11 and MBP-mPlum 1 E16V peptides showed bright red fluorescence. Thus, it was confirmed that the mPlum 1 E16V peptide tag can be used for tagging and detection of proteins in mammalian cells (HeLa cells).
2. 여러 mPlum 단편을 순차적으로 발현하는 테트라사이클린-조절 HeLa 세포의 형광 영상2. Fluorescence imaging of tetracycline-regulated HeLa cells that sequentially express several mPlum fragments
mPlum 단편의 순차적 발현은 테트라사이클린-조절 발현(T-Rex) HeLa 세포주 (Invitrogen)와 함께 수행하였다. 테트라사이클린-조절 발현(T-Rex) HeLa 세포를 제조자의 프로토콜에 따라 성장시키고, mPlum 또는 mPlum 2-11 단편의 유전자를 함유하는 pcDNA4/TO 발현벡터와 함께 형질전환하였다. MBP-mPlum 1 E16V 펩티드는 테트라사이클린에 의해 조절되지 않았으며, 따라서 pcDNA로 클론하였다. 첫째날, 테트라사이클린-조절 발현(T-Rex) HeLa 세포는 pcDNA-MBP-펩티드(mPlum 1 또는 mPlum 1 E16V 펩티드) 및 pcDNA4/TO-mPlum 2-11과 함께 공-형질전환하였다. 둘째날, 테트라사이클린(1㎍/㎖)을 세포 배양액에 가하여 mPlum 2-11 단백질의 발현을 유도하였다. 여러 테트라사이클린 유도 시점에서 HeLa 세포의 형광 영상을 얻었다. HeLa 세포에서 테트라사이클린-유도 단백질의 발현을 확인하기 위하여, 야생형 mPlum 단백질도 테트라사이클린에 의해 유도하였다.Sequential expression of mPlum fragments was performed with tetracycline-regulated expression (T-Rex) HeLa cell line (Invitrogen). Tetracycline-regulated expression (T-Rex) HeLa cells were grown according to the manufacturer's protocol and transformed with pcDNA4 / TO expression vectors containing genes of mPlum or mPlum 2-11 fragments. MBP-mPlum 1 E16V peptide was not regulated by tetracycline and thus cloned into pcDNA. On the first day, tetracycline-regulated expression (T-Rex) HeLa cells were co-transformed with pcDNA-MBP-peptide (mPlum 1 or mPlum 1 E16V peptide) and pcDNA4 / TO-mPlum 2-11. On the second day, tetracycline (1 μg / ml) was added to the cell culture to induce the expression of mPlum 2-11 protein. Fluorescence images of HeLa cells were obtained at various tetracycline induction time points. To confirm the expression of tetracycline-induced protein in HeLa cells, wild type mPlum protein was also induced by tetracycline.
여러 mPlum 단편을 순차적으로 발현하는 테트라사이클린-조절 HeLa 세포의 형광 영상은 도 9에 나타내었으며, 테트라사이클린의 유도 시점에서 여러 mPlum 단편을 순차적으로 발현하는 테트라사이클린-조절 HeLa 세포의 형광 영상은 도 10에 나타내었다.Fluorescence images of tetracycline-regulated HeLa cells expressing several mPlum fragments sequentially are shown in FIG. 9, while fluorescent images of tetracycline-regulated HeLa cells sequentially expressing several mPlum fragments at the time of induction of tetracycline are shown in FIG. 10. Shown in
도 9에 나타난 바와 같이, 테트라사이클린에 의해 조절되지 않는 mPlum 1 E16V 펩티드에 태그된 MBP 단백질은 즉시 발현되는 반면, mPlum 2-11 단백질의 발현은 테트라사이클린 조절에 의해 억제되었다. 또한, 야생형 mPlum 단백질은 테트라사이클린 유도시 적색 형광 신호를 나타내었다. 따라서, MBP-mPlum 1 E16V 펩티드의 형광 라벨링은 테트라사이클린을 첨가하여 mPlum 2-11 단백질을 유도함으로써 성공적으로 이루어짐을 알 수 있다.As shown in FIG. 9, MBP protein tagged in mPlum 1 E16V peptide not regulated by tetracycline was immediately expressed, whereas expression of mPlum 2-11 protein was inhibited by tetracycline regulation. In addition, wild-type mPlum protein showed a red fluorescence signal upon tetracycline induction. Thus, it can be seen that fluorescence labeling of MBP-mPlum 1 E16V peptide was successful by inducing mPlum 2-11 protein by addition of tetracycline.
또한 도 10에 나타난 바와 같이, mPlum의 적색 형광 신호는 테트라사이클린 유도 후 6시간 이내에 명백하게 관찰되었고, mPlum 2-11가 MBP-mPlum 1 E16V 펩티드에 결합하고 성숙한 발색단을 형성하는데는 8시간이 필요함을 확인하였다.In addition, as shown in FIG. 10, the red fluorescence signal of mPlum was clearly observed within 6 hours after tetracycline induction, indicating that mPlum 2-11 required 8 hours to bind to MBP-mPlum 1 E16V peptide and form a mature chromophore. Confirmed.
실험예 5Experimental Example 5 : 시뉴클레인-펩티드(Synuclein-peptide) 융합 단백질의 특성 : Characteristics of Synuclein-peptide Fusion Proteins
α-syn 야생형 및 c-말단 mPlum 1 E16V이 태깅된 α-syn 유전자를 pET21a에 클로닝 시켰다. 상기의 플라스미드를 포함한 BL21 (DE3) 세포를 37℃에서 OD600이 0.6이 될 때까지 배양하고, 단백질의 발현은 3시간 후 1mM IPTG로 유도하였다. 발현 유도된 세포는 10 mM Tris pH 7.4. 로 수집 및 발현을 중지시켰다.The α-syn gene tagged with the α-syn wild type and c-terminal mPlum 1 E16V was cloned into pET21a. BL21 (DE3) cells containing the above plasmids were incubated at 37 ° C. until the OD600 was 0.6, and the expression of the protein was induced by 1 mM IPTG after 3 hours. Expression induced cells were 10 mM Tris pH 7.4. Collection and expression were stopped.
세포 현탁액은 100℃에 20 분 동안 가열하고, 원심분리를 이용하여 상층액을 수집하였다. 상층액은 천천히 냉각시키고, Q-Sepharose Fast Flow column (GE Healthcare) 안으로 로딩시켜, 200 mM NaCl이 포함된 10 mM Tris (pH 7.4)를 이용하여 녹였다. 정제된 α-syn 단백질은 20 mM HEPES pH 7.2 및 10 mM PMSF로 투석하고, -80℃에 저장하였다.The cell suspension was heated to 100 ° C. for 20 minutes and the supernatant collected using centrifugation. The supernatant was slowly cooled, loaded into a Q-Sepharose Fast Flow column (GE Healthcare), and dissolved using 10 mM Tris (pH 7.4) containing 200 mM NaCl. Purified α-syn protein was dialyzed with 20 mM HEPES pH 7.2 and 10 mM PMSF and stored at -80 ° C.
시험관 내(in vitro)에서의 통합 분석을 위해, 20 mM HEPES (pH 7.2) 및 10 mM PMSF에 α-syn 샘플을 포함하는 80 mM 단백질 500 mL을 유리 바이얼을 이용하여 37℃, 연속 교반 조건에서 배양하였다. 원섬유(fibril formation) 형성은 2% 우라닐 아세테이트로 음성염색한 후에 20 mM Thioflavin T를 가진 형광 검출 및 전송 전자 현미경 검사 transmission electron microscopy (TEM) 분석에 의해 관찰하고 그 결과를 도 11에 나타내었다.For in vitro assays, 500 mL of 80 mM protein containing α-syn sample in 20 mM HEPES (pH 7.2) and 10 mM PMSF was subjected to 37 ° C., continuous stirring conditions using a glass vial. Incubated at. Fibril formation formation was observed by fluorescence detection and transmission electron microscopy (TEM) analysis with 20 mM Thioflavin T after negative staining with 2% uranyl acetate and the results are shown in FIG. 11. .
작은 mPlum E16V 펩티드 (18 아미노산)는 α-syn의 C 말단에 융합되는 것을 확인하였다. 펩티드-태깅된 α-syn의 섬유화 속성은 표준 티오플라빈 T 형광 분석(standard ThioFlavin T fluorescence assay) 및 TEM 분석처럼, α-syn 야생형과 유사한 것을 확인하였다(도 11a 및 b). 기본 집합 속성에서 큰 형광 단백질 태그 (w27 kDa)의 정확한 효과는 상대적으로 작은 α-syn (w15 kDa)보다 오히려 논쟁적이다. 그러나, 작은 태그는 α-syn 폴딩 및 응집법의 연구에 더 적합하다는 것을 확인하였다. 더 중요하게는 최근에 보여준 여러 연구에서 α-syn의 cell-to-cell 전달이 병리학의 핵심 요소로 보여지고 있다.Small mPlum E16V peptide (18 amino acids) was found to be fused to the C terminus of α-syn. The fibrosis properties of the peptide-tagged α-syn were confirmed to be similar to the α-syn wild type, as is the standard ThioFlavin T fluorescence assay and TEM analysis (FIGS. 11A and B). The exact effect of the large fluorescent protein tag (w27 kDa) on the basic aggregation properties is more controversial than the relatively small α-syn (w15 kDa). However, small tags were found to be more suitable for the study of α-syn folding and flocculation methods. More importantly, recent studies show that cell-to-cell delivery of α-syn is a key factor in pathology.
α-syn의 펩티드 태그 검출은 GFPs와 같은 현저하게 세포성 단백질 침투에 영향을 미치는 큰 단백질 때문에 cell-to-cell의 모니터링이 가치가 있을 것이다. 더욱이, 형광 단백질 단편의 자가-조립하는 다중 연쇄는 살아있는 세포 시스템에서 α-syn 단백질의 다양한 소스의 관찰을 통해 가능할 수 있다. 여기서, in vitro 및 대장균에서 mPlum 2-11 및 α-syn-tagged mPlum 1 E16V의 자가 조립 및 형광 신호의 발생을 확인하고 도 11 c 및 d에 나타내었다.Peptide tag detection of α-syn may be valuable for cell-to-cell monitoring because of large proteins that significantly affect cellular protein penetration, such as GFPs. Moreover, multiple chains of self-assembly of fluorescent protein fragments may be possible through observation of various sources of α-syn protein in living cell systems. Here, in vitro and Escherichia coli, mPlum 2-11 and α-syn-tagged mPlum 1 E16V self-assembly and the generation of fluorescence signal was confirmed and shown in Figure 11 c and d.
실험예 6Experimental Example 6 :포유동물 세포주(mammalian cells)에서의 시뉴클레인-펩티드(Synuclein-peptide) 검출 : Synuclein-peptide Detection in Mammalian Cells
mammalian cells에서의 단백질 발현을 위해 단백질 유전자는 pcDNA 발현 백터(Invitrogen)를 통해 클로닝하였다. 헬라 세포주(HeLa cells)는 제조자의 프로토콜에 따라, 리포펙타민 2000(Lipofectamine 2000 (Invitrogen))을 이용하여 형질 전환 시켰다. mPlum 단편의 다양한 형태는 헬라 세포주(HeLa cells)에서 감염 후 24시간에 발현되었으며, 형광 이미지는 DeltaVision RT fluorescent microscope (Applied Precision)의해서 획득하였다.For gene expression in mammalian cells, protein genes were cloned through pcDNA expression vectors (Invitrogen). HeLa cells were transformed using Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. Various forms of mPlum fragments were expressed 24 hours after infection in HeLa cells, and fluorescence images were obtained by DeltaVision RT fluorescent microscope (Applied Precision).
MNBP 펩티드-태킹 및 α-syn 단백질은 상기 실험예 4의 2의 테트라사이클린에 의해 조절되지 않아, pcDNA로 클로닝 되었다.MNBP peptide-taking and α-syn protein were not regulated by the tetracycline of Experiment 2 above and cloned into pcDNA.
첫째날, 테트라사이클린-조절 발현(T-Rex) HeLa 세포는 pcDNA-α-syn-펩티드(mPlum 1 또는 mPlum 1 E16V 펩티드) 및 pcDNA4/TO-mPlum 2-11과 함께 공-형질전환하였다. 둘째날, 테트라사이클린(1㎍/㎖)을 세포 배양액에 가하여 mPlum 2-11 단백질의 발현을 유도하였다. 여러 테트라사이클린 유도 시점에서 HeLa 세포의 형광 영상을 얻었다. HeLa 세포에서 테트라사이클린-유도 단백질의 발현을 확인하기 위하여, 야생형 mPlum 단백질도 테트라사이클린에 의해 유도하였다.On the first day, tetracycline-regulated expression (T-Rex) HeLa cells were co-transformed with pcDNA-α-syn-peptide (mPlum 1 or mPlum 1 E16V peptide) and pcDNA4 / TO-mPlum 2-11. On the second day, tetracycline (1 μg / ml) was added to the cell culture to induce the expression of mPlum 2-11 protein. Fluorescence images of HeLa cells were obtained at various tetracycline induction time points. To confirm the expression of tetracycline-induced protein in HeLa cells, wild type mPlum protein was also induced by tetracycline.
면역 조직 화학적 분석을 통해, 세포 표현 α-syn-펩티드는 제조자의 매뉴얼 (BD Bioscience)에 따라 고정되고 투과시켰다. 세포핵은 Hoechst 33342로 염색하였으며, 다양한 형태의 α-syn은 α-syn 항체 Syn211로 염색되었으며, 이를 도 12에 나타내었다.Through immunohistochemical analysis, cell expression α-syn-peptides were fixed and permeated according to the manufacturer's manual (BD Bioscience). Cell nuclei were stained with Hoechst 33342, and various forms of α-syn were stained with α-syn antibody Syn211, which is shown in FIG. 12.
mPlum 2-11 단백질로 유전학적으로 인코딩된 α-syn-mPlum 1 E16V를 관찰하였다. 펩티드 태깅된 α-syn은 mPlum 2-11 형광 검출 전에 1일 동안 발현시켰다. 세포의 α-syn 단백질은 mPlum 조립 및 α-syn-특이적인 항체 모두를 이용하여 이미징하였다.The α-syn-mPlum 1 E16V genetically encoded with mPlum 2-11 protein was observed. Peptide tagged α-syn was expressed for 1 day before mPlum 2-11 fluorescence detection. Cell α-syn proteins were imaged using both mPlum assembly and α-syn-specific antibodies.
도 12에 나타난 바와 같이, 동종 분포 형광 신호(both homogeneously distributed fluorescence signals; 아마도 비집합적) 및 더욱 국한된 신호(localized signals; 아마도 집합적)는 mPlum 조립 및 및 항체 염색으로 관찬하였다. mPlum 및 항체 신호의 공존에서도 역시, 명백한 cell-to-cell의 변화가 있었다.As shown in FIG. 12, both homogeneously distributed fluorescence signals (possibly non-collective) and more localized signals (possibly collective) were correlated with mPlum assembly and antibody staining. Even in the coexistence of mPlum and antibody signals, there was a clear cell-to-cell change.
다양한 α-syn 검출 도구 및 α-syn-특이적 항체의 다양한 소스가 세포적 α-syn 이미징의 면역조직화학적 결과를 높게 제공하고 있다는 것이 보고되었다. 자기 조립 GFP 및 mPlum 단편으로, 두개의 다양한 α-syn-펩티드 단백질이 관찰 될 수 있을 것이다. 예를 들어, 유전학적으로 발현되고 외인성으로 전달되는 α-syn-펩티드 단백질 모두는 동시에 모니터링 될 수도 있다. 게다가 유전학적으로 인코딩된 mPlum 2-11 단편 또한 α-syn-펩티드 타켓의 검출을 허락하고, 이는 셀의 특정 부분에 관한 것일 수도 있다. 따라서 본 발명자들은 mPlum 상보성을 위해 α-synpeptide 폴딩 상태의 효과를 연구하고 있다.It has been reported that various α-syn detection tools and various sources of α-syn-specific antibodies provide high immunohistochemical results of cellular α-syn imaging. With self-assembled GFP and mPlum fragments, two different α-syn-peptide proteins could be observed. For example, both genetically expressed and exogenously delivered α-syn-peptide proteins may be monitored simultaneously. In addition, genetically encoded mPlum 2-11 fragments also allow detection of α-syn-peptide targets, which may be related to specific parts of the cell. Thus we are studying the effect of α-synpeptide folding state for mPlum complementarity.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above are to be understood in all respects as illustrative and not restrictive.
본 발명에 따른 자가-결합 활성을 갖는 적색 형광 단백질 단편(mPlum 1 E16V)은 바이오센서로서 살아있는 세포에서의 단백질 위치, 단백질-단백질 사이의 상호작용 등의 단백질 기능을 분석하는데 유용한 도구로서 사용될 수 있다.The red fluorescent protein fragment (mPlum 1 E16V) having self-binding activity according to the present invention can be used as a biosensor as a useful tool for analyzing protein functions such as protein location in living cells, protein-protein interactions, and the like. .
SEQ. ID. NO. 1(amino acid sequence of mPlum 1 E16V peptide) : EVIKEFMRFK VHMEGSVNSEQ. ID. NO. 1 (amino acid sequence of mPlum 1 E16V peptide): EVIKEFMRFK VHMEGSVN
SEQ. ID. NO. 2(amino acid sequence of mPlum) : MVSKGEEVIK EFMRFKEHME GSVNGHEFEI EGEGEGRPYE GTQTARLKVT KGGPLPFAWD ILSPQIMYGS KAYVKHPADI PDYLKLSFPE GFKWERVMNF EDGGVVTVTQ DSSLQDGEFI YKVKVRGTNF PSDGPVMQKK TMGWEASSER MYPEDGALKG EMKMRLRLKD GGHYDAEVKT TYMAKKPVQL PGAYKTDIKL DITSHNEDYT IVEQYERAEG RHSTGASEQ. ID. NO. 2 (amino acid sequence of mPlum): MVSKGEEVIK EFMRFKEHME GSVNGHEFEI EGEGEGRPYE GTQTARLKVT KGGPLPFAWD ILSPQIMYGS KAYVKHPADI PDYLKLSFPE GFKWERVMNF EDGGVVTVTQ DSSLQDGEFI YKVKVRGTNF PSDGPVMQKK TMGWEASSER MYPEDGALKG EMKMRLRLKD GGHYDAEVKT TYMAKKPVQL PGAYKTDIKL DITSHNEDYT IVEQYERAEG RHSTGA
SEQ. ID. NO. 3(amino acid sequence of CpmPlum) : MHEFEIEGEG EGRPYEGTQT ARLKVTKGGP LPFAWDILSP QIMYGSKAYV KHPADIPDYL KLSFPEGFKW ERVMNFEDGG VVTVTQDSSL QDGEFIYKVK VRGTNFPSDG PVMQKKTMGW EASSERMYPE DGALKGEMKM RLRLKDGGHY DAEVKTTYMA KKPVQLPGAY KTDIKLDITS HNEDYTIVEQ YERAEGRHST GAGGTGGSGG TGGSVSKGEE VIKEFMRFKE HMEGSVNSEQ. ID. NO. 3 (amino acid sequence of CpmPlum): MHEFEIEGEG EGRPYEGTQT ARLKVTKGGP LPFAWDILSP QIMYGSKAYV KHPADIPDYL KLSFPEGFKW ERVMNFEDGG VVTVTQDSSL QDGEFIYKVK VRGTNFPSDG PVMQKKTMGW EASSERMYPE DGALKGEMKM RLRLKDGGHY DAEVKTTYMA KKPVQLPGAY KTDIKLDITS HNEDYTIVEQ YERAEGRHST GAGGTGGSGG TGGSVSKGEE VIKEFMRFKE HMEGSVN

Claims (9)

  1. 적색 형광 단백질(mPlum)의 1번 β-가닥의 아미노산 서열 중 16번의 Glu(글루탐산)을 Val(발린)으로 대체한 것을 특징으로 하며, 서열번호 1의 아미노산 서열을 갖는 자가-결합 활성을 갖는 적색 형광 단백질 단편(mPlum 1 E16V).Characterized by replacing the Glu (glutamic acid) of 16 of the amino acid sequence of β-strand 1 of the red fluorescent protein (mPlum) with Val (valine), red having self-binding activity having the amino acid sequence of SEQ ID NO: Fluorescent protein fragment (mPlum 1 E16V).
  2. 제 1항의 적색 형광 단백질 단편(mPlum 1 E16V)을 코딩하는 유전자.The gene encoding the red fluorescent protein fragment (mPlum 1 E16V) of claim 1.
  3. 제 2항의 유전자를 포함하는 발현벡터.An expression vector comprising the gene of claim 2.
  4. 제 3항의 발현벡터를 포함하는 숙주 세포.A host cell comprising the expression vector of claim 3.
  5. 제 4항에 있어서, 상기 숙주 세포는 대장균(E. coli)인 것을 특징으로 하는 숙주 세포.The host cell of claim 4, wherein the host cell is E. coli .
  6. 제 1항의 적색 형광 단백질 단편(mPlum 1 E16V)을 포함하는 단백질 검출용 키트.Claim 1 protein detection kit comprising a red fluorescent protein fragment (mPlum 1 E16V).
  7. 1) 적색 형광 단백질(mPlum)의 1번 β-가닥을 2~11번의 β-가닥 뒤에 유동 펩티드 링커를 통해 연결시켜 원순열된 mPlum 단백질(CpmPlum)을 제조하는 단계,1) preparing the ordered mPlum protein (CpmPlum) by connecting the β-strand 1 of the red fluorescent protein (mPlum) through the flow peptide linker behind the β-strand 2-11;
    2) 상기 원순열된 mPlum 단백질(CpmPlum)의 1번 β-가닥의 아미노산 서열 중 16번의 Glu(글루탐산)을 Val(발린)으로 대체하여 돌연변이체(CpmPlum E16V)를 제조하는 단계,2) preparing a mutant (CpmPlum E16V) by substituting Val (valine) for 16 Glu (glutamic acid) in the amino acid sequence of β-strand 1 of the ordered mPlum protein (CpmPlum),
    3) 상기 돌연변이체(CpmPlum E16V)를 mPlum 2-11 단편과 mPlum 1 E16V 단편으로 분리하는 단계, 및3) separating the mutant (CpmPlum E16V) into mPlum 2-11 fragment and mPlum 1 E16V fragment, and
    4) 상기 분리한 mPlum 2-11 단편과 mPlum 1 E16V 단편을 자가-결합하는 단계를 포함하는, 제 1항의 자가-결합 활성을 갖는 적색 형광 단백질 단편(mPlum 1 E16V)의 제조방법.4) A method of producing a red fluorescent protein fragment (mPlum 1 E16V) having a self-binding activity of claim 1, comprising the step of self-binding the separated mPlum 2-11 fragment and mPlum 1 E16V fragment.
  8. 말토오스 결합 단백질(maltose-binding protein)을 융합한 mPlum 1 E16V (MBP-mPlum 1 E16V)와 His-태그된 mPlum 2-11(His-mPlum 2-11)을 숙주 세포에서 함께 발현시킨 후 숙주 세포에서 적색 형광 신호를 검출하는 것을 특징으로 하는, 제 1항의 자가-결합 활성을 갖는 적색 형광 단백질 단편(mPlum 1 E16V)을 이용한 단백질 상호작용의 분석 방법.MPlum 1 E16V (MBP-mPlum 1 E16V) and His-tagged mPlum 2-11 (His-mPlum 2-11) fused with maltose-binding protein were expressed together in the host cell and then in the host cell. A method for the analysis of protein interaction using a red fluorescent protein fragment (mPlum 1 E16V) having self-binding activity of claim 1, characterized by detecting a red fluorescent signal.
  9. 제 8항에 있어서, 상기 숙주 세포는 E. coli인 것을 특징으로 하는 자가-결합 활성을 갖는 적색 형광 단백질 단편(mPlum 1 E16V)을 이용한 단백질 상호작용의 분석 방법.The method of claim 8, wherein the host cell is E. coli . 10. The method of analyzing protein interaction using a red fluorescent protein fragment (mPlum 1 E16V) having self-binding activity.
PCT/KR2011/008697 2010-11-16 2011-11-15 Red fluorescent protein fragment having a self-assembly activity, method for preparing same, and method for analyzing protein-protein interactions using same WO2012067402A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100113703 2010-11-16
KR10-2010-0113703 2010-11-16
KR10-2011-0118545 2011-11-14
KR1020110118545A KR101280014B1 (en) 2010-11-16 2011-11-14 Red fluorescent protein fragment with self-assembling activity, method for preparing the same and method for analysis of protein interaction using the same

Publications (3)

Publication Number Publication Date
WO2012067402A2 WO2012067402A2 (en) 2012-05-24
WO2012067402A3 WO2012067402A3 (en) 2012-07-12
WO2012067402A9 true WO2012067402A9 (en) 2012-08-09

Family

ID=46084500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008697 WO2012067402A2 (en) 2010-11-16 2011-11-15 Red fluorescent protein fragment having a self-assembly activity, method for preparing same, and method for analyzing protein-protein interactions using same

Country Status (1)

Country Link
WO (1) WO2012067402A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015065008A1 (en) * 2013-10-28 2015-05-07 서울대학교산학협력단 Multiplex bioassay platform using cut fiber bundle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100886312B1 (en) * 2006-01-20 2009-03-04 연세대학교 산학협력단 Method for analyzing protein-protein interaction

Also Published As

Publication number Publication date
WO2012067402A3 (en) 2012-07-12
WO2012067402A2 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
Chu et al. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions
EP1828403B1 (en) Protein subcellular localization assays using split fluorescent proteins
Valbuena et al. A photostable monomeric superfolder green fluorescent protein
Rizzo et al. Fluorescent protein tracking and detection: applications using fluorescent proteins in living cells
Knöpfel et al. Optical recordings of membrane potential using genetically targeted voltage-sensitive fluorescent proteins
US20150225467A1 (en) Novel far red fluorescent protein
JP2005502323A (en) Green fluorescent protein mutant
JP4214209B2 (en) Fluorescent protein
WO2012067402A9 (en) Red fluorescent protein fragment having a self-assembly activity, method for preparing same, and method for analyzing protein-protein interactions using same
JP4852676B2 (en) Fluorescent protein and chromoprotein
KR101280014B1 (en) Red fluorescent protein fragment with self-assembling activity, method for preparing the same and method for analysis of protein interaction using the same
JPWO2003054191A1 (en) Fluorescent protein
EP2685260A1 (en) Direct and quantitative detection of targets in living cells
JP2005527210A (en) Translocation-dependent complementarity for drug screening
WO2006051944A1 (en) Fluorescent protein
Kodama A bright green-colored bimolecular fluorescence complementation assay in living plant cells
Keem et al. Splitting and self-assembling of far-red fluorescent protein with an engineered beta strand peptide: application for alpha-synuclein imaging in mammalian cells
US9034599B2 (en) Polynucleotides encoding monomeric variants of the tetrameric eqFP611
Gao et al. Fluorescence resonance energy transfer analysis of subunit assembly of the ASIC channel
JP2006506950A (en) Two green fluorescent protein fragments and their use in a method for detecting protein-protein interactions
Junghans et al. Monitoring the diffusion behavior of Na, K-ATPase by fluorescence correlation spectroscopy (FCS) upon fluorescence labelling with eGFP or Dreiklang
US20230203110A1 (en) Photostable fluorescent proteins
WO2013087921A1 (en) Engineered fluorescent proteins for enhanced fret and uses thereof
Sun et al. Rational engineering and synthetic applications of a high specificity BiFC probe derived from Springgreen-M
Wang Illuminate the Pathway of Membrane Protein Association and Degradation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841989

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841989

Country of ref document: EP

Kind code of ref document: A2