WO2012067152A1 - Method for testing for cerebral infarction via endothelial protein c receptor - Google Patents

Method for testing for cerebral infarction via endothelial protein c receptor Download PDF

Info

Publication number
WO2012067152A1
WO2012067152A1 PCT/JP2011/076416 JP2011076416W WO2012067152A1 WO 2012067152 A1 WO2012067152 A1 WO 2012067152A1 JP 2011076416 W JP2011076416 W JP 2011076416W WO 2012067152 A1 WO2012067152 A1 WO 2012067152A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerebral infarction
protein
cerebral
value
infarction
Prior art date
Application number
PCT/JP2011/076416
Other languages
French (fr)
Japanese (ja)
Inventor
孝成 北園
正浩 鴨打
哲朗 吾郷
貴弘 桑城
裕 清原
淳 秦
秀人 粟野
啓一郎 金谷
輝章 小林
Original Assignee
三菱化学株式会社
国立大学法人九州大学
一般社団法人久山生活習慣病研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社, 国立大学法人九州大学, 一般社団法人久山生活習慣病研究所 filed Critical 三菱化学株式会社
Priority to JP2012544281A priority Critical patent/JPWO2012067152A1/en
Publication of WO2012067152A1 publication Critical patent/WO2012067152A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/95Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
    • G01N2333/964Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
    • G01N2333/96425Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
    • G01N2333/96427Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
    • G01N2333/9643Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
    • G01N2333/96433Serine endopeptidases (3.4.21)
    • G01N2333/96441Serine endopeptidases (3.4.21) with definite EC number
    • G01N2333/96461Protein C (3.4.21.69)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2871Cerebrovascular disorders, e.g. stroke, cerebral infarct, cerebral haemorrhage, transient ischemic event

Definitions

  • the present invention relates to a test method for diagnosing cerebral infarction and predicting prognosis.
  • Stroke is a general term for cerebrovascular disorders such as cerebral infarction, cerebral hemorrhage, and subarachnoid hemorrhage. Of these stroke types, cerebral infarction has been relatively increasing recently.
  • Thrombolytic therapy, anticoagulant therapy, antiplatelet therapy, administration of cerebral protective drugs, etc. are used as drug therapy in the acute phase of cerebral infarction.
  • Surgical surgery is performed for patients with severe or hemorrhagic cerebral infarction. Is done. Cerebral infarction symptoms are strongest in the acute phase and then gradually improve. This is because the necrotic brain tissue is swollen and the surrounding brain tissue is also compressed and damaged. As the swelling subsides, the surrounding tissues recover their function and the symptoms are fixed.
  • free radicals released from cerebral ischemic sites have the function of necrosing surrounding tissues, continuous treatment is required to improve the functional prognosis even after the acute phase.
  • the clinical types of cerebral infarction include lacunar infarction that develops when the intracerebral small artery is occluded, atherothrombotic cerebral infarction that develops when the intracerebral aorta is occluded by atheroma, and a thrombus in the heart becomes an obturator.
  • Examples include cardiogenic cerebral embolism that develops by blocking an artery. Since appropriate treatment methods for the acute and chronic phases differ depending on these clinical types, a method for rapidly diagnosing the clinical type of patients with cerebral infarction has been demanded.
  • As a method of classifying clinical types of cerebral infarction clinical symptom observation and echocardiography, MRI, MRA, cervical vascular echo, etc.
  • Non-patent Document 1 a flowchart of clinical diagnosis of cerebral infarction based on TOAST classification (Non-patent Document 1), etc.
  • molecular markers such as CRP, D-Dimer, RAGE, MMP-9, S100B, BNP within 24 hours of cerebral infarction
  • BNP a specific cutoff value
  • Non-patent Document 2 There was a need for molecular markers that could be diagnosed.
  • the prognosis of cerebral infarction is to evaluate the degree of movement disorder in daily life by the modified Rankin Scale (Non-patent Document 3) or Barthel Index (Non-patent Document 4) between 3 months or 1 year after onset. It is judged by. Predicting the prognosis in advance is important for early determination of a treatment method for cerebral infarction. Although it has been disclosed that death can be predicted by setting a specific cutoff value with BNP in plasma measured at the time of admission (Non-patent Document 5), a molecular marker for predicting the degree of injury when alive is required It was.
  • Patent Document 1 discloses the use of Endothelial Protein C Receptor protein for the diagnosis of cardiovascular diseases, particularly atherosclerosis. However, there is no disclosure or suggestion that Endothelial Protein C Receptor protein can be used for cerebral infarction disease diagnosis or prognosis prediction.
  • an object of the present invention is to provide a method for quickly and surely examining the disease type and prognosis of cerebral infarction using serum or plasma of a cerebral infarction patient or the like.
  • Endothelial Protein C Receptor protein in patient plasma differs between its concentrations in plasma of patients with different disease types and prognosis.
  • the inventors have found that the amount of Endothelial-Protein-C Receptor protein is a useful index for cerebral infarction disease type and prognosis, and have completed the present invention.
  • the gist of the present invention is as follows.
  • a test method for diagnosing the pathological type of cerebral infarction in an animal comprising measuring the protein amount of Endothelial Protein C Receptor protein in a blood sample collected from the subject animal.
  • the disease type diagnosis is one of lacunar infarction, atherothrombotic, cardiogenic cerebral embolism, aortic cerebral embolism, Branch atheromatous disease (BAD), arterial dissection, or unclassifiable The inspection method according to [1].
  • a test method for predicting the prognosis of cerebral infarction in an animal comprising the step of measuring the amount of Endothelial Protein C Receptor protein in a blood sample collected from the subject animal.
  • Endothelial® Protein® C® Receptor protein whose plasma concentration in patients with cerebral infarction is different from that in plasma of patients with different disease types and prognosis is expressed as a molecular marker for cerebral infarction (in the present specification, (Sometimes referred to as “EPCR protein markers”).
  • EPCR protein markers a molecular marker for cerebral infarction
  • the test method of the present invention is a method for testing the disease type and prognosis of cerebral infarction in the animal, including the step of measuring the amount of Endothelial Protein C Receptor protein in a blood sample collected from the test animal.
  • Cerebral infarction is a disease in which the cerebral artery is blocked by a thrombus or embolus and becomes ischemic, and the brain tissue is necrotized and damaged, and a lacunar infarction that develops due to blocking of a small intracerebral artery.
  • Aortic cerebral embolism which is an embolism that develops when the obturator dissociates from the atherosclerotic lesion and occludes the intracerebral artery, and a plaque formed in the main artery obstructs the entrance of the penetrating branch “Branch atheromatous disease” (hereinafter sometimes referred to as “BAD”), an infarction of the penetrating branch region that occurs, arterial dissection where the intima of the cerebral blood vessel is damaged and blood enters the arterial wall and occludes the cerebral blood vessel Any of these are included.
  • cerebral infarction includes any of acute phase, subacute phase, recovery phase (chronic phase) and the like.
  • EPCR protein Endothelial Protein C Receptor protein
  • Any protein may be used, but specific examples of human-derived proteins include proteins represented by the specific amino acid sequences described below. Furthermore, fragments, derivatives, and mutants of proteins having the same functions as these are also included.
  • the “test animal” may be any animal that may cause cerebral infarction, and specifically includes rodents such as humans, monkeys, and rats.
  • the method for examining cerebral infarction of the present invention is particularly preferably performed in humans suspected of having cerebral infarction, humans after onset of cerebral infarction, or the like.
  • the “blood sample” collected from the test animal is not particularly limited as long as it contains EPCR protein and can measure the concentration thereof.
  • EDTA plasma, citrate plasma, etc. any of plasma, serum, and whole blood may be used, but among these, EDTA plasma is preferably used because it can be easily collected, easily stored, and collected in a large amount.
  • the timing for collecting the blood sample from the test animal may be any timing as long as the diagnosis of cerebral infarction is performed. Since cerebral infarction changes in symptoms and pathology from onset to onset, it will be described in detail below.
  • the Endothelial Protein C Receptor protein which is a target for measuring the content in a blood sample collected from a test animal, is the amino acid represented by UniProtKB Entry Name EPCR # HUMAN in the case of humans.
  • a protein consisting of a sequence.
  • sequence information can be obtained by inputting the above Entry Name in a National Center for Biotechnology Information (NCBI) database.
  • NCBI National Center for Biotechnology Information
  • the amino acid sequence is human, but when the test animal is different, a homologous protein derived from the animal becomes the protein to be measured.
  • the method for measuring the content of the protein in the blood sample is not particularly limited as long as the content of the protein can be measured.
  • an existing immunoassay method using an antibody of the protein or a chromatographic method All components captured on a chromatographic carrier (eg, cation exchanger, anion exchanger, hydrophobic chromatographic carrier, metal ion, etc.) under certain conditions using a combination of holographic techniques and time-of-flight mass spectrometry (TOF-MS)
  • TOF-MS time-of-flight mass spectrometry
  • a method of measuring the mass of the solution at once, a two-dimensional gel electrophoresis method, or the like is used.
  • the immunoassay a method of quantitative detection according to an enzyme immunoassay, a method of measurement by a fluorescence immunoassay, a chemiluminescence immunoassay, or the like is preferable.
  • the enzyme immunoassay method is a detection method using an enzyme as a labeling substance among the labeled immunoassay methods.
  • ELISA enzyme-linked immunosorbent assay
  • the sandwich method is mentioned as one of the particularly preferable measurement modes in consideration of the convenience of operation, economic convenience, and general versatility in clinical examination.
  • Antibodies and the like (including antibody fragments) used in the above measurement can be obtained by a known method using the target EPCR protein as an antigen. However, it is not necessary to be produced using the target EPCR protein as an antigen, and any protein may be used as long as it exhibits at least cross-reactivity with the protein and can measure its content.
  • an immunoassay and an antibody used therefor for example, an antibody attached to Human EPCR Quantikine ELISA Kit (catalog No. DEPCR0) manufactured by R & D is preferably used.
  • the blood sample used in the method of the present invention is preferably used immediately after being collected from the test animal for the above measurement, but a stored sample may be used.
  • the method for storing the blood sample is not particularly limited as long as the amount of molecular marker for cerebral infarction examination does not change, but there are, for example, a low temperature condition such as 0 to 10 ° C. that does not freeze, a dark condition, and no vibration condition. preferable.
  • a low temperature condition such as 0 to 10 ° C. that does not freeze, a dark condition, and no vibration condition.
  • a method capable of avoiding marker molecule decomposition or oxidation reaction such as deep freezing is preferable.
  • the content of the EPCR protein marker in a blood sample collected from a test animal is measured.
  • it is a composite index that combines the contents of specimens such as CRP and D-Dimer, which are existing cerebral infarction markers, and links the observation of clinical symptoms with the results of echocardiography, MRI, MRA, cervical vascular echo, etc. It is possible to inspect more accurately by using.
  • Cerebral infarction type inspection method using EPCR protein marker The type of cerebral infarction means a clinically distinct type known per se, and specifically, “lacuna infarction” ( (Sometimes referred to herein as “lacuna”), “atherothrombotic cerebral infarction” (sometimes referred to herein as “atherothrombotic”), “cardiogenic cerebral embolism” ( In this specification, it may be referred to as “cardiogenic cerebral embolism”), an embolism that develops when the obturator dissociates from the atherosclerotic nest formed from the ascending aorta to the aortic arch and occludes the intracerebral artery Aortic cerebral embolism, which is a symptom, and “Branch atheromatous disease” (hereinafter referred to as “BAD”), which is an infarction of the penetrating branch area caused by a plaque formed in the main artery blocking the entrance of the penetrating branch The inner lining of the
  • a cut-off value that can distinguish each disease type is determined, This is done by comparing the amount of EPCR protein in the sample with the cut-off value to determine which disease type group it belongs to.
  • the cut-off value generally refers to a value determined when a target disease group and a non-disease group (group other than the target disease) are determined by paying attention to a certain substance.
  • determining the target disease and non-disease it is negative if it is below the cut-off value, positive if it is above the cut-off value, or positive if it is below the cut-off value, if it is above the cut-off value
  • the disease can be determined as negative (Kanai Masamitsu, Clinical Laboratory Proposal Kanehara Publishing Co., Ltd.).
  • a cut-off value is defined between the target disease type group and the other groups, and if the cut-off value or less, it falls under the target disease type.
  • the disease type can be determined as not applicable to the target disease type if it is below the value, or as applicable if it is above the cutoff value.
  • Sensitivity and specificity can be cited as an index used for the purpose of evaluating the clinical usefulness of the cutoff value.
  • a certain population is determined using a cut-off value, and among the patients with cerebral infarction of the target disease type, a (true positive) that is positive in the determination is determined while being a cerebral infarction patient of the disease type B (false negative) for negative, c (false positive) for positive in spite of not being the type of cerebral infarction
  • d truee negative
  • the value represented by a / (a + b) is the sensitivity (true positive rate)
  • the value represented by d / (c + d) is the specificity (true negative rate).
  • sensitivity and specificity change by raising or lowering the cutoff value. Decreasing the cut-off value increases the sensitivity, but the specificity decreases, and increasing the cut-off value decreases the sensitivity, but increases the specificity.
  • a determination method it is preferable that both sensitivity and specificity are higher. A determination method in which the values of sensitivity and specificity do not exceed 0.5 is not recognized as useful.
  • 95% of the distribution of other disease type groups including 95% of the distribution at the both ends from the center is set as the cut-off value, and the distribution of other disease type groups is normal.
  • a method of setting an average value + 2 standard deviation (SD) or an average value ⁇ 2SD as a cut-off value may be used.
  • the sensitivity and specificity vary depending on the cutoff value set as described above, so the sensitivity and specificity at a certain cutoff value are simply used. Rather than evaluating, it is desirable to evaluate with an index that maintains high sensitivity and specificity when the cut-off value is raised or lowered, for example, the AUC value of the ROC curve.
  • the AUC value of the ROC curve becomes 1 when a cutoff value exists such that both sensitivity and specificity are 100%, and approaches 0.5 when the diagnostic performance is not good. Therefore, when the performance of a certain diagnostic method is judged by the AUC value of the ROC curve, it can be evaluated that the method is suitable as a diagnostic method if it is 0.7 or more. Since the EPCR protein marker also has an ROC curve AUC value of 0.7 or more, it is used in the cerebral infarction pathological examination method described later.
  • the timing of obtaining the specimen when performing these measurements is not particularly limited immediately after the onset of cerebral infarction-like symptoms, but Table 1 shows preferred timings.
  • the amount of EPCR protein in the blood sample of a patient clinically determined to be the above-mentioned distinct disease type is measured in advance, and the above method is used to distinguish between both disease type groups.
  • the subject who collected the specimen for any disease type by measuring the content of the EPCR protein marker in the collected specimen and comparing this absolute value with the cutoff value set by the above method It can be determined whether (animal) is included.
  • the method for clinically confirming various cerebral infarctions is not particularly limited, but examples include methods for confirming from device diagnostic methods such as head X-ray CT, head MRI, MRA, cerebral angiography, cervical vascular echo, etc. It is done.
  • Test method for predicting cerebral infarction using EPCR protein marker As a specific method of cerebral infarction test method using EPCR protein marker of the present invention, predicting the prognosis of cerebral infarction in a subject (animal) Inspection method for the above.
  • the prognosis of cerebral infarction is indicated by the degree of injury due to cerebral infarction of the patient after a certain period of time after the onset of cerebral infarction. The degree of failure can be assessed using an already established indicator known per se.
  • Indicators include, for example, Japan's modified Rankin Scale (mRS) criteria (Yukito Shinohara et al. MRS Reliability Study Group, research on reliability of modified Rankin Scale-introduction of Japanese criteria and questionnaire, stroke 2007; 29: 6-13) etc. are used.
  • mRS Japan's modified Rankin Scale
  • the amount of EPCR protein in the blood sample obtained from the subject for about 2 weeks immediately after the onset, and the state of the subject 3 months after the onset is preferable.
  • the amount of EPCR protein in a blood sample at the time of measurement is measured in advance for each patient who has clinically determined the above-mentioned mRS at the time of prediction. Then, a cutoff value for distinguishing both mRS groups is set by the above-described method. More specifically, for example, when distinguishing between patients with mRS 0-1 after 3 months and patients with 2-5, patients with mRS 0-5 3 months after the onset (for prediction purposes) 7 days after the onset of the disease (at the time of measurement), the amount of EPCR protein in the blood sample is measured, and the cut-off between the measured value of patients whose mRS is 0 to 1 and the measured value of patients 2 to 5 after 3 months Set the value. After that, the sample for the measurement purpose is collected, the content of the EPCR protein marker in the sample is measured, and this absolute value is compared with the cutoff value set by the above method, so that The state of the subject (animal) can be predicted.
  • the subject in the vicinity of about 3 months later by measuring the amount of EPCR protein in a sample collected from a subject about 2 weeks after onset, more preferably 7 days after onset. And a method for predicting whether the mRS is 2 to 5 or 1 or less.
  • another preferred prediction method of the present invention is to measure the amount of EPCR protein in a sample collected from a subject about 2 weeks from immediately after onset, more preferably 7 days after onset, by measuring the amount of EPCR protein around 3 months later.
  • a method for predicting whether a subject's mRS will be 3-5 or less than 2 or less, about 2 weeks immediately after onset, more preferably EPCR protein amount in a sample collected from a subject 7 days after onset A preferable example is a method of predicting whether the mRS of the subject in the vicinity of 3 months after the measurement will be 4 to 5 or 3 or less.
  • a subject (animal) diagnosed with cerebral infarction by the method of the present invention has a very good prognostic course and therapeutic effect by receiving a treatment suitable for each disease.
  • Example 1 Evaluation of test method for discriminating cerebral infarction type using EPCR protein marker Patients with confirmed diagnosis for each type of cerebral infarction specifically, “Lucuna infarction” (in the table (Referred to as “lacuna”), “atherothrombotic cerebral infarction” (referred to as “atherothrombotic” in the table), “cardiogenic cerebral embolism” (referred to as “cardiogenic cerebral embolism” in the table) ), “Aortic cerebral embolism” (referred to as “aortic cerebral embolism” in the table), “Branch atheromatous disease” (referred to as “BAD” in the table), “arterial dissection” (in the table) , Referred to as “arterial dissection”, or patients with a disease type that does not fall into any of these (referred to as “non-classifiable type” in the table), immediately after the onset of cerebral infarction (described as “DAY0” in the table) EDTA plasma was collected from each (number of people listed in Table
  • the EPCR protein concentration in EDTA plasma was measured by an immunoassay using the R & D Human EPCR Quantikine ELISA Kit (Catalog No. DEPCR0). Specifically, a standard curve was prepared using the standard EPCR protein, and the concentration of the EPCR protein was calculated from this standard curve.
  • the AUC value of the ROC curve was calculated according to the method described in Fawcett, T. (2004) ROC Graphs: NotesNoteand Practical Considerations for researchers. The results are shown in Table 2. At each blood sampling time point, a value exceeding 0.7 is shown to be useful as a test method for discriminating between a target disease and other diseases.
  • Example 3 Evaluation of a test method for predicting the prognosis of cerebral infarction using an EPCR protein marker
  • the prognosis of cerebral infarction is indicated by the degree of injury due to cerebral infarction of the patient after a certain period of time after the onset of cerebral infarction. It is.
  • Japanese version modified Rankin Scale (mRS) criteria Yukito Shinohara et al. MRS Reliability Study Group, reliability of modified Rankin Scale-Japanese version criteria and questionnaire
  • Blood was collected 7 days after the onset of cerebral infarction (indicated as “DAY7” in the table) for patients classified as 0-5 using the introduction of Stroke 2007; 29: 6-13) (each in Table 3) EDTA plasma was obtained.
  • the concentration of EPCR protein in the plasma was measured in the same manner as in Example 1, and the AUC value of the ROC curve was calculated from the measured values in the same manner as in Example 1.
  • the results are shown in Table 3. It is shown that a value exceeding 0.7 at each time of blood collection is useful as a test method for determining the prognosis of a cerebral infarction patient.
  • diagnosis of cerebral infarction and prognosis prediction can be performed, which is useful in the medical and diagnostic fields.

Abstract

A test method for diagnosing the type of or predicting the prognosis of a cerebral infarction in a subject animal, said method including a step wherein the amount of endothelial protein C receptor in a blood sample collected from said animal is measured.

Description

Endothelial Protein C Receptor蛋白質による脳梗塞の検査方法Endothelial Protein C Receptor protein for cerebral infarction
 本発明は、脳梗塞の病型診断や予後予測のための検査方法に関するものである。 The present invention relates to a test method for diagnosing cerebral infarction and predicting prognosis.
 脳卒中とは、脳梗塞、脳出血、くも膜下出血などの脳血管障害の総称である。これら脳卒中の病型のうち、最近では脳梗塞が相対的に増加してきている。脳梗塞急性期の薬物療法としては血栓溶解療法、抗凝固療法、抗血小板療法、脳保護薬投与などが用いられ、重篤な患者や出血性脳梗塞を起こした患者に対しては外科的手術が行われる。脳梗塞の症状は急性期にもっとも強く、その後徐々に改善していく。これは、壊死に陥った脳組織が腫脹して、周囲の脳組織も圧迫・障害していることによる。腫脹が引いていくとともに、周囲の組織が機能を回復して症状は固定していくのである。ただし、脳虚血部位から放出されるフリーラジカルは周囲の組織をも壊死させる働きがあるため急性期を過ぎても機能予後の向上につなげるため継続的な治療が必要とされている。 Stroke is a general term for cerebrovascular disorders such as cerebral infarction, cerebral hemorrhage, and subarachnoid hemorrhage. Of these stroke types, cerebral infarction has been relatively increasing recently. Thrombolytic therapy, anticoagulant therapy, antiplatelet therapy, administration of cerebral protective drugs, etc. are used as drug therapy in the acute phase of cerebral infarction. Surgical surgery is performed for patients with severe or hemorrhagic cerebral infarction. Is done. Cerebral infarction symptoms are strongest in the acute phase and then gradually improve. This is because the necrotic brain tissue is swollen and the surrounding brain tissue is also compressed and damaged. As the swelling subsides, the surrounding tissues recover their function and the symptoms are fixed. However, since free radicals released from cerebral ischemic sites have the function of necrosing surrounding tissues, continuous treatment is required to improve the functional prognosis even after the acute phase.
 脳梗塞の臨床病型には、脳内小動脈が閉塞して発症するラクナ梗塞、脳内大動脈が粥腫で閉塞して発症するアテローム血栓性脳梗塞、心臓内の血栓が栓子となり脳内動脈を閉塞して発症する心原性脳塞栓症等がある。これらの臨床病型により急性期及び慢性期の適切な治療法が異なるため、脳梗塞患者の臨床病型を迅速に診断する方法が求められていた。
 脳梗塞の臨床病型の分類方法としては、臨床症候の観察と心エコー、MRI、MRA、頚部血管エコー等を施行してTOAST分類に準拠した脳梗塞臨床診断のフローチャート(非特許文献1)等により分類する方法や、分子マーカーを用いた方法、具体的には、CRP、D-Dimer、RAGE、MMP-9、S100B、BNP等の分子マーカーを脳梗塞発症24時間以内に同時測定した結果、BNPとD-Dimerで、特定のカットオフ値を設定すると、心原性脳塞栓症を他病型と分類できること(非特許文献2)などが開示されているが、さらに迅速で確実な病型診断が可能となる分子マーカーが求められていた。
 脳梗塞の予後は、発症後3ヶ月後ないしは1年後までの間にmodified Rankin Scale(非特許文献3)、またはBarthel Index(非特許文献4)により日常生活における動作の障害度を評価することで判断されている。予後を事前に予測することは、脳梗塞の治療方法を早期に決める上で重要である。入院時に測定した血漿中のBNPで特定のカットオフ値を定めることにより死亡が予測できること(非特許文献5)が開示されているが、生存した場合の障害の程度を予測する分子マーカーが求められていた。
 特許文献1には、Endothelial Protein C Receptor蛋白質を循環器疾患、特に、アテローム性動脈硬化症の診断に使用することが開示されている。しかしながら、Endothelial Protein C Receptor蛋白質を脳梗塞の病型診断や予後予測に使用できることは開示も示唆もされていない。
The clinical types of cerebral infarction include lacunar infarction that develops when the intracerebral small artery is occluded, atherothrombotic cerebral infarction that develops when the intracerebral aorta is occluded by atheroma, and a thrombus in the heart becomes an obturator. Examples include cardiogenic cerebral embolism that develops by blocking an artery. Since appropriate treatment methods for the acute and chronic phases differ depending on these clinical types, a method for rapidly diagnosing the clinical type of patients with cerebral infarction has been demanded.
As a method of classifying clinical types of cerebral infarction, clinical symptom observation and echocardiography, MRI, MRA, cervical vascular echo, etc. are performed, and a flowchart of clinical diagnosis of cerebral infarction based on TOAST classification (Non-patent Document 1), etc. As a result of simultaneous measurement of molecular markers such as CRP, D-Dimer, RAGE, MMP-9, S100B, BNP within 24 hours of cerebral infarction, Although it has been disclosed that cardiogenic cerebral embolism can be classified as another disease type by setting a specific cutoff value with BNP and D-Dimer (Non-patent Document 2), etc. There was a need for molecular markers that could be diagnosed.
The prognosis of cerebral infarction is to evaluate the degree of movement disorder in daily life by the modified Rankin Scale (Non-patent Document 3) or Barthel Index (Non-patent Document 4) between 3 months or 1 year after onset. It is judged by. Predicting the prognosis in advance is important for early determination of a treatment method for cerebral infarction. Although it has been disclosed that death can be predicted by setting a specific cutoff value with BNP in plasma measured at the time of admission (Non-patent Document 5), a molecular marker for predicting the degree of injury when alive is required It was.
Patent Document 1 discloses the use of Endothelial Protein C Receptor protein for the diagnosis of cardiovascular diseases, particularly atherosclerosis. However, there is no disclosure or suggestion that Endothelial Protein C Receptor protein can be used for cerebral infarction disease diagnosis or prognosis prediction.
米国特許出願公開第2005/0032140号明細書US Patent Application Publication No. 2005/0032140
 本発明は、上記の問題点に鑑み、脳梗塞患者などの血清や血漿等を用いて迅速かつ確実な脳梗塞の病型や予後について検査を行う方法を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a method for quickly and surely examining the disease type and prognosis of cerebral infarction using serum or plasma of a cerebral infarction patient or the like.
 本発明者らは、前述の課題を解決すべく鋭意検討した結果、患者血漿中の、Endothelial Protein C Receptor蛋白質が、病型や予後の異なる患者の血漿中のその濃度の間で異なるという知見を得、Endothelial Protein C Receptor蛋白質の量が脳梗塞の病型や予後の検査のための有用な指標となることを見出して、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that Endothelial Protein C Receptor protein in patient plasma differs between its concentrations in plasma of patients with different disease types and prognosis. As a result, the inventors have found that the amount of Endothelial-Protein-C Receptor protein is a useful index for cerebral infarction disease type and prognosis, and have completed the present invention.
 即ち、本発明は以下を要旨とする。
[1]被検動物より採取された血液試料中のEndothelial Protein C Receptor蛋白質の蛋白質量を測定する工程を含む、該動物における脳梗塞の病型診断のための検査方法。
[2]病型診断が、ラクナ梗塞、アテローム血栓性、心原性脳塞栓症、大動脈原性脳塞栓症、Branch atheromatous disease(BAD)、動脈解離、分類不能のいずれかを診断するものである[1]に記載の検査方法。
[3]被検動物より採取された血液試料中のEndothelial Protein C Receptor蛋白質の蛋白質量を測定する工程を含む、該動物における脳梗塞の予後の予測のための検査方法。
[4]被検動物より採取された血液試料が、脳梗塞発症7日目に被検動物より採取されたものであることを特徴とする[3]に記載の脳梗塞の予後の予測のための検査方法。
That is, the gist of the present invention is as follows.
[1] A test method for diagnosing the pathological type of cerebral infarction in an animal, comprising measuring the protein amount of Endothelial Protein C Receptor protein in a blood sample collected from the subject animal.
[2] The disease type diagnosis is one of lacunar infarction, atherothrombotic, cardiogenic cerebral embolism, aortic cerebral embolism, Branch atheromatous disease (BAD), arterial dissection, or unclassifiable The inspection method according to [1].
[3] A test method for predicting the prognosis of cerebral infarction in an animal, comprising the step of measuring the amount of Endothelial Protein C Receptor protein in a blood sample collected from the subject animal.
[4] The prediction of the prognosis of cerebral infarction according to [3], wherein the blood sample collected from the test animal is collected from the test animal on the seventh day of the onset of cerebral infarction. Inspection method.
 本発明によれば、脳梗塞患者の血漿中の濃度が病型や予後の異なる患者の血漿中のその濃度と異なるEndothelial Protein C Receptor蛋白質が脳梗塞検査用分子マーカー(本明細書中ではこれを「EPCR蛋白質マーカー」と称することがある)として提供される。EPCR蛋白質マーカーを単独で、あるいは他の脳梗塞分子マーカーと組み合わせて用いることにより脳梗塞の病型の分類や予後の予測を行うことが可能となる。 According to the present invention, Endothelial® Protein® C® Receptor protein whose plasma concentration in patients with cerebral infarction is different from that in plasma of patients with different disease types and prognosis is expressed as a molecular marker for cerebral infarction (in the present specification, (Sometimes referred to as “EPCR protein markers”). By using the EPCR protein marker alone or in combination with other cerebral infarction molecular markers, it becomes possible to classify the type of cerebral infarction and predict the prognosis.
以下、本発明の実施の形態を詳細に説明する。
 本発明の検査方法は、被検動物より採取された血液試料中の、Endothelial Protein C Receptor蛋白質量を測定する工程を含む、該動物における脳梗塞の病型や予後を検査する方法である。
Hereinafter, embodiments of the present invention will be described in detail.
The test method of the present invention is a method for testing the disease type and prognosis of cerebral infarction in the animal, including the step of measuring the amount of Endothelial Protein C Receptor protein in a blood sample collected from the test animal.
 本明細書において、「脳梗塞」とは、脳動脈が血栓または塞栓によって閉塞し虚血状態となり、脳組織が壊死および障害される疾患であり、脳内小動脈が閉塞して発症するラクナ梗塞、脳内大動脈が粥腫で閉塞して発症するアテローム血栓性脳梗塞、心臓内の血栓が栓子となり脳内動脈を閉塞して発症する心原性脳塞栓症、上行大動脈から大動脈弓部にできた粥状硬化巣から栓子が解離して脳内動脈を閉塞して発症する塞栓症である大動脈原性脳塞栓症、主幹動脈にできたプラークが穿通枝の入口部を閉塞することによって生じる穿通枝領域の梗塞である「Branch atheromatous disease」(以下、「BAD」と称することがある)、脳血管の内膜が損傷し血液が動脈壁内に侵入して脳血管を閉塞する動脈解離のいずれをも含む。また、脳梗塞でも急性期、亜急性期、回復期(慢性期)等のいずれをも含む。 In the present specification, “cerebral infarction” is a disease in which the cerebral artery is blocked by a thrombus or embolus and becomes ischemic, and the brain tissue is necrotized and damaged, and a lacunar infarction that develops due to blocking of a small intracerebral artery. Atherothrombotic cerebral infarction caused by cerebral aorta occlusion due to atheroma, cardiogenic cerebral embolism caused by occlusion of intracerebral artery due to thrombosis in heart, from ascending aorta to aortic arch Aortic cerebral embolism, which is an embolism that develops when the obturator dissociates from the atherosclerotic lesion and occludes the intracerebral artery, and a plaque formed in the main artery obstructs the entrance of the penetrating branch “Branch atheromatous disease” (hereinafter sometimes referred to as “BAD”), an infarction of the penetrating branch region that occurs, arterial dissection where the intima of the cerebral blood vessel is damaged and blood enters the arterial wall and occludes the cerebral blood vessel Any of these are included. In addition, cerebral infarction includes any of acute phase, subacute phase, recovery phase (chronic phase) and the like.
 本明細書においてEndothelial Protein C Receptor蛋白質(以下、「EPCR蛋白質」)とは、本発明の検査法において血液試料中の含有量を測定する対象であるEPCR蛋白質を意味し、被検動物に由来する蛋白質であればよいが、ヒト由来の蛋白質として具体的には、下述する特定のアミノ酸配列で示される蛋白質が例示される。さらに、これらと同様の機能を有する蛋白質の断片、誘導体、および変異体も包含される。 In this specification, Endothelial Protein C Receptor protein (hereinafter referred to as “EPCR protein”) means an EPCR protein whose content in a blood sample is measured in the test method of the present invention, and is derived from a test animal. Any protein may be used, but specific examples of human-derived proteins include proteins represented by the specific amino acid sequences described below. Furthermore, fragments, derivatives, and mutants of proteins having the same functions as these are also included.
 上記検査方法において、「被検動物」は、脳梗塞を起こす可能性のある動物であれば如何なるものでもよく、具体的には、ヒト、サル、あるいはラット等のげっ歯類等が挙げられる。本発明の脳梗塞の検査方法は、このうち、脳梗塞の疑いのあるヒト、あるいは脳梗塞発症後のヒト等において特に好ましく行われる。 In the above examination method, the “test animal” may be any animal that may cause cerebral infarction, and specifically includes rodents such as humans, monkeys, and rats. Of these, the method for examining cerebral infarction of the present invention is particularly preferably performed in humans suspected of having cerebral infarction, humans after onset of cerebral infarction, or the like.
 また、上記被検動物から採取された「血液試料」としては、EPCR蛋白質を含有し、その濃度を測定できるものであれば特に制限はないが、具体的には、EDTA血漿、クエン酸血漿等の血漿、血清、全血の何れでもよいが、これらのうち、EDTA血漿が簡便に採取でき、保存が容易で且つ採取量が多いため好ましく用いられる。被検動物から該血液試料を採取するために採血するタイミングは、脳梗塞の診断を行うタイミングであればいずれのタイミングでもよい。脳梗塞は、発症後刻々と症状や病態が変化するので、具体的には以下で詳述する。 Further, the “blood sample” collected from the test animal is not particularly limited as long as it contains EPCR protein and can measure the concentration thereof. Specifically, EDTA plasma, citrate plasma, etc. Of these, any of plasma, serum, and whole blood may be used, but among these, EDTA plasma is preferably used because it can be easily collected, easily stored, and collected in a large amount. The timing for collecting the blood sample from the test animal may be any timing as long as the diagnosis of cerebral infarction is performed. Since cerebral infarction changes in symptoms and pathology from onset to onset, it will be described in detail below.
 本発明の検査法において、被検動物から採取した血液試料中の含有量を測定する対象であるEndothelial Protein C Receptor蛋白質とは、ヒトの場合には、UniProtKBのEntry Name EPCR#HUMANで示されるアミノ酸配列からなる蛋白質である。例えば、National Center for Biotechnology Information(NCBI)のデータベースなどにおいて上記Entry Nameを入力することで配列情報を得ることができる。上記アミノ酸配列はヒトのものであるが、被検動物が異なる場合には、該動物由来のホモログ蛋白質が測定対象の蛋白質となる。 In the test method of the present invention, the Endothelial Protein C Receptor protein, which is a target for measuring the content in a blood sample collected from a test animal, is the amino acid represented by UniProtKB Entry Name EPCR # HUMAN in the case of humans. A protein consisting of a sequence. For example, sequence information can be obtained by inputting the above Entry Name in a National Center for Biotechnology Information (NCBI) database. The amino acid sequence is human, but when the test animal is different, a homologous protein derived from the animal becomes the protein to be measured.
 上記蛋白質の血液試料中の含有量の測定方法としては、該蛋白質の含有量が測定できる方法であれば特に制限はないが、例えば、該蛋白質の抗体を用いた既存の免疫測定法や、クロマトグラフィー技術と飛行時間型質量分析(TOF-MS)を組み合わせて、クロマト担体(例:カチオン交換体、アニオン交換体、疎水性クロマト担体、金属イオンなど)に一定条件下で捕捉されるすべての成分の質量を一括して測定する方法、二次元ゲル電気泳動法等が用いられる。免疫測定法としては、酵素免疫定量法に従い定量検出する方法や、蛍光免疫測定法、化学発光免疫測定法等で測定する方法等が好ましい。酵素免疫定量法は、標識イムノアッセイ法のうち、酵素を標識物質として用いる検出方法である。また、イムノソルベントを用いる、enzyme-linked immunosorbent assay(ELISA) 法を選択するのが、特に好適である。また、ELISAのうちサンドイッチ法は、操作の簡便性、経済上の利便性、とりわけ臨床検査における汎用性を考慮すると、特に好適な測定態様の一つとして挙げられる。これらの測定方法は、例えば、新生化学実験講座(日本生化学会編;東京化学同人)、Molecular Cloning, A Laboratory Manual (T. Maniatis et al., Cold Spring Harbor Laboratory (2001))、Antibodies - A Laboratory Manual(E.Harlow, et al., ColdSpring Harbor Laboratory(1988))等の一般的実験書に記載の方法又はそれに準じて行うことができる。 The method for measuring the content of the protein in the blood sample is not particularly limited as long as the content of the protein can be measured. For example, an existing immunoassay method using an antibody of the protein or a chromatographic method. All components captured on a chromatographic carrier (eg, cation exchanger, anion exchanger, hydrophobic chromatographic carrier, metal ion, etc.) under certain conditions using a combination of holographic techniques and time-of-flight mass spectrometry (TOF-MS) For example, a method of measuring the mass of the solution at once, a two-dimensional gel electrophoresis method, or the like is used. As the immunoassay, a method of quantitative detection according to an enzyme immunoassay, a method of measurement by a fluorescence immunoassay, a chemiluminescence immunoassay, or the like is preferable. The enzyme immunoassay method is a detection method using an enzyme as a labeling substance among the labeled immunoassay methods. In addition, it is particularly preferable to select an enzyme-linked immunosorbent assay (ELISA) method using an immunosolvent. Among the ELISA methods, the sandwich method is mentioned as one of the particularly preferable measurement modes in consideration of the convenience of operation, economic convenience, and general versatility in clinical examination. These measurement methods are, for example, the New Chemistry Laboratory (Edited by the Japanese Biochemical Society; Tokyo Kagaku Dojin), MolecularMCloning, A Laboratory Manual (T. Maniatis et al., Cold Spring Harbor Laboratory (2001)), Antibodies-A Laboratory Manual (E. Harlow, et al., ColdSpring Harbor Laboratory (1988)) or the like can be carried out according to the method described in a general experiment or in conformity thereto.
 上記測定を行う際に用いられる抗体等(抗体断片を含む)は、対象のEPCR蛋白質を抗原として公知の方法によって得ることができる。ただし、対象のEPCR蛋白質を抗原として製造されたものである必要はなく、該蛋白質と少なくとも交差反応性を示し、その含有量を測定することができるものであれば何れのものでもよい。このような免疫測定法、及びそれに用いられる抗体としては、例えばR&D社製のHuman EPCR Quantikine ELISA Kit(カタログNo.DEPCR0)に付属の抗体等が好ましく用いられる。 Antibodies and the like (including antibody fragments) used in the above measurement can be obtained by a known method using the target EPCR protein as an antigen. However, it is not necessary to be produced using the target EPCR protein as an antigen, and any protein may be used as long as it exhibits at least cross-reactivity with the protein and can measure its content. As such an immunoassay and an antibody used therefor, for example, an antibody attached to Human EPCR Quantikine ELISA Kit (catalog No. DEPCR0) manufactured by R & D is preferably used.
 本発明の方法で使用する血液試料は、被検動物から採取直後のものを上記測定に用いることが好ましいが、保存したものを用いてもよい。血液試料の保存方法としては、脳梗塞検査用分子マーカー量が変化しない条件であれば特に制限は無いが、例えば0~10℃の凍結しない程度の低温条件、暗所条件および無振動条件下が好ましい。止むをえず凍結する場合には、深凍結などマーカー分子の分解や酸化反応等を避けられる方法が好ましい。 The blood sample used in the method of the present invention is preferably used immediately after being collected from the test animal for the above measurement, but a stored sample may be used. The method for storing the blood sample is not particularly limited as long as the amount of molecular marker for cerebral infarction examination does not change, but there are, for example, a low temperature condition such as 0 to 10 ° C. that does not freeze, a dark condition, and no vibration condition. preferable. In the case of unavoidably freezing, a method capable of avoiding marker molecule decomposition or oxidation reaction such as deep freezing is preferable.
 本発明の検査方法においては、被検動物から採取された血液試料(本明細書中では、これを「検体」と称することがある)中の上記EPCR蛋白質マーカーの含有量を測定して、これを指標として、脳梗塞の病型や予後を検査することができる。また、既存の脳梗塞マーカーであるCRPやD-Dimer等の検体中含有量とを組み合わせることや、臨床症候の観察と心エコー、MRI、MRA、頚部血管エコー等の結果とを関連付けた複合指標を用いることで、より的確に検査することが可能である。 In the test method of the present invention, the content of the EPCR protein marker in a blood sample collected from a test animal (in the present specification, this may be referred to as “specimen”) is measured. Can be used to examine the disease type and prognosis of cerebral infarction. In addition, it is a composite index that combines the contents of specimens such as CRP and D-Dimer, which are existing cerebral infarction markers, and links the observation of clinical symptoms with the results of echocardiography, MRI, MRA, cervical vascular echo, etc. It is possible to inspect more accurately by using.
(1)EPCR蛋白質マーカーを用いた脳梗塞病型検査方法
 脳梗塞の病型とは、それ自体既知の臨床的に区別されている病型を意味し、具体的には、「ラクナ梗塞」(本明細書中では「ラクナ」と称することがある)、「アテローム血栓性脳梗塞」(本明細書中では、「アテローム血栓性」と称することがある)、「心原性脳塞栓症」(本明細書中では、「心原性脳塞栓」と称することがある)、上行大動脈から大動脈弓部にできた粥状硬化巣から栓子が解離して脳内動脈を閉塞して発症する塞栓症である「大動脈原性脳塞栓症」、主幹動脈にできたプラークが穿通枝の入口部を閉塞することによって生じる穿通枝領域の梗塞である「Branch atheromatous disease」(以下、「BAD」と称することがある)、脳血管の内膜が損傷し血液が動脈壁内に侵入して脳血管を閉塞する動脈解離あるいはそれらのいずれにも該当しない病型(以下、これを「分類不能型」と称することがある)が挙げられる。
(1) Cerebral infarction type inspection method using EPCR protein marker The type of cerebral infarction means a clinically distinct type known per se, and specifically, “lacuna infarction” ( (Sometimes referred to herein as “lacuna”), “atherothrombotic cerebral infarction” (sometimes referred to herein as “atherothrombotic”), “cardiogenic cerebral embolism” ( In this specification, it may be referred to as “cardiogenic cerebral embolism”), an embolism that develops when the obturator dissociates from the atherosclerotic nest formed from the ascending aorta to the aortic arch and occludes the intracerebral artery Aortic cerebral embolism, which is a symptom, and “Branch atheromatous disease” (hereinafter referred to as “BAD”), which is an infarction of the penetrating branch area caused by a plaque formed in the main artery blocking the entrance of the penetrating branch The inner lining of the cerebral blood vessels is damaged and blood enters the arterial wall. Aortic dissection or disease types that do not correspond to any of them that occlude a blood vessel (hereinafter sometimes referred to as "non-typeable") can be mentioned.
 検体中に含まれるEPCR蛋白質量を測定することにより脳梗塞の病型を区別するためには、まず、血液試料中のEPCR蛋白質量において、各病型を区別し得るカットオフ値を決定し、検体中のEPCR蛋白質量を該カットオフ値と比較して、いずれの病型群に入るかを判断することにより行われる。 In order to distinguish the type of cerebral infarction by measuring the amount of EPCR protein contained in the specimen, first, in the amount of EPCR protein in the blood sample, a cut-off value that can distinguish each disease type is determined, This is done by comparing the amount of EPCR protein in the sample with the cut-off value to determine which disease type group it belongs to.
 カットオフ値とは、一般に、ある物質に着目して目的とする疾患群と非疾患群(目的とする疾患以外の群)とを判定する場合に定める値をいう。目的とする疾患と非疾患とを判定する場合に、カットオフ値以下であれば陰性、カットオフ値以上であれば陽性として、またはカットオフ値以下であれば陽性、カットオフ値以上であれば陰性として疾患を判定することができる(金井正光編、臨床検査法提要 金原出版株式会社)。
 本発明においては、目的病型群とそれ以外の群の間でカットオフ値を定め、カットオフ値以下であれば目的病型に該当、カットオフ値以上であれば非該当として、またはカットオフ値以下であれば目的病型に非該当、カットオフ値以上であれば該当として病型を判定することができる。
The cut-off value generally refers to a value determined when a target disease group and a non-disease group (group other than the target disease) are determined by paying attention to a certain substance. When determining the target disease and non-disease, it is negative if it is below the cut-off value, positive if it is above the cut-off value, or positive if it is below the cut-off value, if it is above the cut-off value The disease can be determined as negative (Kanai Masamitsu, Clinical Laboratory Proposal Kanehara Publishing Co., Ltd.).
In the present invention, a cut-off value is defined between the target disease type group and the other groups, and if the cut-off value or less, it falls under the target disease type. The disease type can be determined as not applicable to the target disease type if it is below the value, or as applicable if it is above the cutoff value.
 カットオフ値の臨床的有用性を評価する目的で用いられる指標としては、感度と特異度が挙げられる。ある母集団をカットオフ値を用いて判定し、目的の病型の脳梗塞患者のうち、判定で陽性とされたものをa(真陽性)、該病型の脳梗塞患者でありながら判定で陰性とされたものをb(偽陰性)、該病型の脳梗塞でないにも関わらず判定で陽性とされたものをc(偽陽性)、該病型の脳梗塞患者でなく判定で陰性とされたものをd(真陰性)と表したときに、a/(a+b)で表される値を感度(真陽性率)、d/(c+d)で表される値を特異度(真陰性率)として表すことができる。 Sensitivity and specificity can be cited as an index used for the purpose of evaluating the clinical usefulness of the cutoff value. A certain population is determined using a cut-off value, and among the patients with cerebral infarction of the target disease type, a (true positive) that is positive in the determination is determined while being a cerebral infarction patient of the disease type B (false negative) for negative, c (false positive) for positive in spite of not being the type of cerebral infarction When expressed as d (true negative), the value represented by a / (a + b) is the sensitivity (true positive rate), and the value represented by d / (c + d) is the specificity (true negative rate). ).
 目的とする病型群と他の病型群との測定値の分布は通常、一部重複する。したがって、カットオフ値を上下させることにより、感度と特異度は変化する。カットオフ値を下げることにより感度は高くなるが、特異度は低下し、カットオフ値を上げることにより感度は低くなるが、特異度は上がる。判定方法としては、感度と特異度の両者の値が高いほうが好ましい。また、感度と特異度の値が0.5を超えない判定方法は、有用とは認められない。 The distribution of measured values between the target disease type group and other disease type groups usually partially overlaps. Therefore, sensitivity and specificity change by raising or lowering the cutoff value. Decreasing the cut-off value increases the sensitivity, but the specificity decreases, and increasing the cut-off value decreases the sensitivity, but increases the specificity. As a determination method, it is preferable that both sensitivity and specificity are higher. A determination method in which the values of sensitivity and specificity do not exceed 0.5 is not recognized as useful.
 カットオフ値を設定する方法としては、他の病型群の分布の95%を含む、中央からの両端のいずれかの値をカットオフ値として設定する方法、他の病型群の分布が正規分布を示す場合、平均値+2倍の標準偏差(SD)または平均値-2SDをカットオフ値として設定する方法等が挙げられる。 As a method for setting the cut-off value, 95% of the distribution of other disease type groups including 95% of the distribution at the both ends from the center is set as the cut-off value, and the distribution of other disease type groups is normal. In the case of showing the distribution, a method of setting an average value + 2 standard deviation (SD) or an average value−2SD as a cut-off value may be used.
 また、一般に、診断方法が有用かどうかを判定するためには、前述のように設定されたカットオフ値によって感度と特異度が変化するため、単純にあるカットオフ値での感度と特異度で評価するよりも、カットオフ値を上下させたときに感度や特異度が高く保たれるような指標、例えばROC曲線のAUC値で評価するのが望ましい。ROC曲線のAUC値は感度と特異度が両方100%になるようなカットオフ値が存在する場合に1になり、診断性能が良くない場合に0.5に近づく。したがって、ある診断方法の性能をROC曲線のAUC値で判断する場合には0.7以上であれば該方法は診断方法として適当であると評価することが可能である。EPCR蛋白質マーカーについても、ROC曲線のAUC値0.7以上であったので、後述する脳梗塞の病型検査方法に用いられるものである。 In general, in order to determine whether or not a diagnostic method is useful, the sensitivity and specificity vary depending on the cutoff value set as described above, so the sensitivity and specificity at a certain cutoff value are simply used. Rather than evaluating, it is desirable to evaluate with an index that maintains high sensitivity and specificity when the cut-off value is raised or lowered, for example, the AUC value of the ROC curve. The AUC value of the ROC curve becomes 1 when a cutoff value exists such that both sensitivity and specificity are 100%, and approaches 0.5 when the diagnostic performance is not good. Therefore, when the performance of a certain diagnostic method is judged by the AUC value of the ROC curve, it can be evaluated that the method is suitable as a diagnostic method if it is 0.7 or more. Since the EPCR protein marker also has an ROC curve AUC value of 0.7 or more, it is used in the cerebral infarction pathological examination method described later.
 本発明の血液試料中に含まれるEPCR蛋白質量により区別し得る病型としては、両病型群の間でEPCR蛋白質含有量によりお互いが区別されるカットオフ値を設定し得るものであれば特に制限はないが、具体的には、例えば、表1に示すように「アテローム血栓性脳梗塞」と「大動脈原性脳塞栓症」、「アテローム血栓性脳梗塞」と「分類不能型」、「アテローム血栓性脳梗塞」と「動脈解離」、「心原性脳塞栓症」と「動脈解離」、「ラクナ梗塞」と「大動脈原性脳塞栓症」、「ラクナ梗塞」と「動脈解離」、「ラクナ梗塞」と「分類不能型」、「BAD」と「分類不能型」、「動脈解離」とそれ以外の病型、「分類不能型」とそれ以外の病型等が挙げられる。 As a disease type that can be distinguished by the amount of EPCR protein contained in the blood sample of the present invention, as long as it can set a cut-off value that can be distinguished from each other by the EPCR protein content between both disease type groups, Although there is no limitation, specifically, for example, as shown in Table 1, "Atherothrombotic cerebral infarction" and "Aortic cerebral embolism", "Atherothrombotic cerebral infarction" and "Classification not possible", " Atherothrombotic cerebral infarction and arterial dissection, Cardiogenic cerebral embolism and arterial dissection, Lacunar infarction and aortic cerebral embolism, Lacunar infarction and arterial dissection, Examples include “lacuna infarction” and “non-classifiable type”, “BAD” and “non-classifiable type”, “arterial dissection” and other disease types, “non-classifiable type” and other disease types, and the like.
 これらの測定を行う場合の検体の取得のタイミングは、脳梗塞様症状の発症直後から特に制限はないが、表1に好ましいタイミングを示す。 The timing of obtaining the specimen when performing these measurements is not particularly limited immediately after the onset of cerebral infarction-like symptoms, but Table 1 shows preferred timings.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の測定方法では、予め、上記の区別される病型と臨床的に判断された患者の血液試料中のEPCR蛋白質量を測定し、上記の方法で、両病型群を区別するカットオフ値を設定する。採取された検体中の上記EPCR蛋白質マーカーの含有量を測定して、この絶対値を、上記の方法で設定されたカットオフ値と比較することによっていずれの病型に検体を採取した被検者(動物)が含まれるかを判断することができる。臨床的に各種脳梗塞を確認する方法は特に制限がないが、例えば頭部X線CT、頭部MRI、MRA、脳血管造影、頚部血管エコー等の機器診断方法等から確認する方法等が挙げられる。 In the measurement method of the present invention, the amount of EPCR protein in the blood sample of a patient clinically determined to be the above-mentioned distinct disease type is measured in advance, and the above method is used to distinguish between both disease type groups. Set the value. The subject who collected the specimen for any disease type by measuring the content of the EPCR protein marker in the collected specimen and comparing this absolute value with the cutoff value set by the above method It can be determined whether (animal) is included. The method for clinically confirming various cerebral infarctions is not particularly limited, but examples include methods for confirming from device diagnostic methods such as head X-ray CT, head MRI, MRA, cerebral angiography, cervical vascular echo, etc. It is done.
 また、上記病型の検査を行う場合には、既存の脳梗塞マーカーであるCRPやD-Dimer等の検体中含有量とを組み合わせることや、臨床症候の観察と心エコー、MRI、MRA、頚部血管エコー等の結果とを関連付けた複合指標を用いることで、より的確に検査することが可能である。 In addition, when testing for the above-mentioned disease types, it is possible to combine the contents in specimens such as CRP and D-Dimer, which are existing cerebral infarction markers, and to observe clinical symptoms and echocardiography, MRI, MRA, cervical By using a composite index that correlates results such as blood vessel echoes, it is possible to inspect more accurately.
(2)EPCR蛋白質マーカーを用いた脳梗塞の予後予測の検査方法
 本発明のEPCR蛋白質マーカーを用いた脳梗塞検査方法の具体的方法として、被検者(動物)の脳梗塞の予後を予測するための検査方法が挙げられる。脳梗塞の予後は、脳梗塞発症後、ある一定期間の後に、その患者の脳梗塞による障害の程度にて示される。障害の程度は、それ自体公知の既に確定している指標を用いて評価することができる。指標としては、例えば、日本版modified Rankin Scale(mRS)判定基準(篠原幸人らmRS信頼性研究グループ、modified Rankin Scaleの信頼性に関する研究-日本語版判定基準書および問診表の紹介、脳卒中 2007;29:6-13)等が用いられる。
(2) Test method for predicting cerebral infarction using EPCR protein marker As a specific method of cerebral infarction test method using EPCR protein marker of the present invention, predicting the prognosis of cerebral infarction in a subject (animal) Inspection method for the above. The prognosis of cerebral infarction is indicated by the degree of injury due to cerebral infarction of the patient after a certain period of time after the onset of cerebral infarction. The degree of failure can be assessed using an already established indicator known per se. Indicators include, for example, Japan's modified Rankin Scale (mRS) criteria (Yukito Shinohara et al. MRS Reliability Study Group, research on reliability of modified Rankin Scale-introduction of Japanese criteria and questionnaire, stroke 2007; 29: 6-13) etc. are used.
 一定の期間後とは、発症後いつの時点でもよいが、被検者(動物)の社会復帰の状態を評価する観点から、例えば発症3ヶ月後から1年後までの間に評価するのが一般的である。予後の予測においては、予想方法の有用性を考慮して、発症直後から2週間程度の被検者から取得した血液試料中のEPCR蛋白質の量で発症後3ヵ月後の該被検者の状態を予測する方法等が好ましい。 After a certain period of time, it may be any time after onset, but from the viewpoint of assessing the state of rehabilitation of a subject (animal), for example, it is generally evaluated from 3 months to 1 year after the onset Is. In predicting the prognosis, taking into consideration the usefulness of the prediction method, the amount of EPCR protein in the blood sample obtained from the subject for about 2 weeks immediately after the onset, and the state of the subject 3 months after the onset The method of predicting is preferable.
 本発明の測定方法では、予め、予測目的時点で上記mRSをそれぞれ臨床的に判定された患者の、測定目的時の血液試料中のEPCR蛋白質量を測定し、予測目的時点で区別したいmRS間で、上述の方法で両mRS群を区別するカットオフ値を設定する。具体的に説明すると、例えば、発症3ヵ月後のmRSが0~1の患者と2~5の患者を区別する場合には、発症3ヵ月後(予測目的時)にmRSが0~5の患者の発症7日後(測定目的時)の血液試料中のEPCR蛋白質量を測定し、3ヵ月後のmRSが0~1の患者の測定値と2~5の患者の測定値との間にカットオフ値を設定する。この後、測定目的時の検体を採取し、検体中のEPCR蛋白質マーカーの含有量を測定して、この絶対値を、上記の方法で設定されたカットオフ値と比較することにより、予測目的時の該被検者(動物)の状態を予測することができる。 In the measurement method of the present invention, the amount of EPCR protein in a blood sample at the time of measurement is measured in advance for each patient who has clinically determined the above-mentioned mRS at the time of prediction. Then, a cutoff value for distinguishing both mRS groups is set by the above-described method. More specifically, for example, when distinguishing between patients with mRS 0-1 after 3 months and patients with 2-5, patients with mRS 0-5 3 months after the onset (for prediction purposes) 7 days after the onset of the disease (at the time of measurement), the amount of EPCR protein in the blood sample is measured, and the cut-off between the measured value of patients whose mRS is 0 to 1 and the measured value of patients 2 to 5 after 3 months Set the value. After that, the sample for the measurement purpose is collected, the content of the EPCR protein marker in the sample is measured, and this absolute value is compared with the cutoff value set by the above method, so that The state of the subject (animal) can be predicted.
 本発明の予測方法で特に好ましくは、発症直後から2週間程度、さらに好ましくは発症7日後の被検者から採取した検体中のEPCR蛋白質量を測定することにより3ヵ月後付近の該被検者のmRSが2~5となるか/1以下となるかを予測する方法等が挙げられる。 In the prediction method of the present invention, particularly preferably, the subject in the vicinity of about 3 months later by measuring the amount of EPCR protein in a sample collected from a subject about 2 weeks after onset, more preferably 7 days after onset. And a method for predicting whether the mRS is 2 to 5 or 1 or less.
 また、本発明の他の好ましい予測方法としては、発症直後から2週間程度、さらに好ましくは発症7日後の被検者から採取した検体中のEPCR蛋白質量を測定することにより3ヵ月後付近の該被検者のmRSが3~5となるか/2以下となるかを予測する方法、発症直後から2週間程度、さらに好ましくは発症7日後の被検者から採取した検体中のEPCR蛋白質量を測定することにより3ヵ月後付近の該被検者のmRSが4~5となるか/3以下となるかを予測する方法等が好ましい例として挙げられる。 In addition, another preferred prediction method of the present invention is to measure the amount of EPCR protein in a sample collected from a subject about 2 weeks from immediately after onset, more preferably 7 days after onset, by measuring the amount of EPCR protein around 3 months later. A method for predicting whether a subject's mRS will be 3-5 or less than 2 or less, about 2 weeks immediately after onset, more preferably EPCR protein amount in a sample collected from a subject 7 days after onset A preferable example is a method of predicting whether the mRS of the subject in the vicinity of 3 months after the measurement will be 4 to 5 or 3 or less.
 かくして、本発明の方法により脳梗塞の診断がついた被検者(動物)は、それぞれの疾患に適した治療法を受けることにより、予後の経過や治療効果が非常に良好となる。 Thus, a subject (animal) diagnosed with cerebral infarction by the method of the present invention has a very good prognostic course and therapeutic effect by receiving a treatment suitable for each disease.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
実施例1 EPCR蛋白質マーカーを用いた脳梗塞病型を判別するための検査方法の評価
 脳梗塞の各病型に診断が確定している患者、具体的には、「ラクナ梗塞」(表中では「ラクナ」と称する)、「アテローム血栓性脳梗塞」(表中では、「アテローム血栓性」と称する)、「心原性脳塞栓症」(表中では、「心原性脳塞栓」と称する)、「大動脈原性脳塞栓症」(表中では、「大動脈原性脳塞栓」と称する)、「Branch atheromatous disease」(表中では「BAD」と称する)、「動脈解離」(表中では、「動脈解離」と称する)、あるいはそれらのいずれにも該当しない病型(表中では「分類不能型」と称する)の患者について、脳梗塞発症直後(表中「DAY0」と記載されている)のに採血を行い(それぞれ表2中に記載の人数)からそれぞれEDTA血漿を取得した。R&D社のHuman EPCR Quantikine ELISA Kit(カタログNo.DEPCR0)を用いた免疫測定法により、EDTA血漿中のEPCR蛋白質濃度を測定した。具体的には標準品であるEPCR蛋白質を用いて検量線を作成し、この検量線からEPCR蛋白質の濃度を算出した。
Example 1 Evaluation of test method for discriminating cerebral infarction type using EPCR protein marker Patients with confirmed diagnosis for each type of cerebral infarction, specifically, “Lucuna infarction” (in the table (Referred to as “lacuna”), “atherothrombotic cerebral infarction” (referred to as “atherothrombotic” in the table), “cardiogenic cerebral embolism” (referred to as “cardiogenic cerebral embolism” in the table) ), “Aortic cerebral embolism” (referred to as “aortic cerebral embolism” in the table), “Branch atheromatous disease” (referred to as “BAD” in the table), “arterial dissection” (in the table) , Referred to as “arterial dissection”, or patients with a disease type that does not fall into any of these (referred to as “non-classifiable type” in the table), immediately after the onset of cerebral infarction (described as “DAY0” in the table) EDTA plasma was collected from each (number of people listed in Table 2). It was. The EPCR protein concentration in EDTA plasma was measured by an immunoassay using the R & D Human EPCR Quantikine ELISA Kit (Catalog No. DEPCR0). Specifically, a standard curve was prepared using the standard EPCR protein, and the concentration of the EPCR protein was calculated from this standard curve.
 次に各採血時点において判別性能を評価するために、Fawcett, T. (2004) ROC Graphs:Notes and Practical Considerations for Researchers に記載の方法に従い ROC 曲線の AUC 値を算出した。その結果を表2に示す。それぞれの採血時点において、0.7を上回ったものが目的の疾患とそれ以外の疾患の判別をするための検査方法として有用であることが示される。 Next, in order to evaluate the discrimination performance at each blood sampling time point, the AUC value of the ROC curve was calculated according to the method described in Fawcett, T. (2004) ROC Graphs: NotesNoteand Practical Considerations for Researchers. The results are shown in Table 2. At each blood sampling time point, a value exceeding 0.7 is shown to be useful as a test method for discriminating between a target disease and other diseases.
 つまり、発症直後の各病型患者の血漿中のEPCR蛋白質の濃度を比較することにより、「アテローム血栓性脳梗塞」と「大動脈原性脳塞栓症」の病型の脳梗塞患者を判別するための検査を行うことができ、また、同じ比較において「アテローム血栓性脳梗塞」と「分類不能型脳梗塞」の病型の脳梗塞患者の判別、「アテローム血栓性脳梗塞」と「動脈解離」の病型の脳梗塞患者の判別、「心原性脳塞栓症」と「動脈解離」の病型の脳梗塞患者の判別、「ラクナ梗塞」と「大動脈原性脳塞栓症」の病型の脳梗塞患者の判別、「ラクナ梗塞」と「動脈解離」の病型の脳梗塞患者の判別、「ラクナ梗塞」と「分類不能型脳梗塞」の病型の脳梗塞患者の判別、「Branch atheromatous disease」と「分類不能型脳梗塞」の病型の脳梗塞患者の判別、「動脈解離」とそれ以外の病型の脳梗塞患者の判別、及び「分類不能型脳梗塞」とそれ以外の病型の脳梗塞患者の判別をするための検査を行えることがわかった。 In other words, by comparing the concentration of EPCR protein in the plasma of each disease-type patient immediately after the onset, to distinguish between patients with cerebral infarction of the disease type of “Atherothrombotic cerebral infarction” and “Aortogenic cerebral embolism” In addition, in the same comparison, discrimination of cerebral infarction patients with "Atherothrombotic cerebral infarction" and "Unclassifiable cerebral infarction", "Atherothrombotic cerebral infarction" and "Arterial dissection" Cerebral infarction patients with different types of disease, cerebral infarction patients with "cardiogenic cerebral embolism" and "arterial dissection" types, "Lachna infarction" and "aortogenic cerebral embolism" Discrimination of cerebral infarction patients, discrimination of cerebral infarction patients with `` Lucuna infarction '' and `` arterial dissection '', discrimination of cerebral infarction patients with `` Lucuna infarction '' and `` unclassifiable cerebral infarction '', `` Branch atheromatous Distinguishing between patients with cerebral infarction of the disease type `` disease '' and `` unclassifiable cerebral infarction '', `` arterial dissection '' Determination of other disease type cerebral infarction patients, and were found to perform the "non-typeable cerebral infarction" as the inspection for the other disease types the discrimination of stroke patients.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例3 EPCR蛋白質マーカーを用いた脳梗塞の予後予測のための検査方法の評価
 脳梗塞の予後は、脳梗塞発症後、ある一定期間の後に、その患者の脳梗塞による障害の程度にて示される。脳梗塞発症3ヶ月後の障害の程度を、日本版modified Rankin Scale(mRS)判定基準(篠原幸人らmRS信頼性研究グループ、modified Rankin Scaleの信頼性に関する研究-日本語版判定基準書および問診表の紹介、脳卒中 2007;29:6-13)を用いて0~5に分類した患者について、脳梗塞発症7日後(表中「DAY7」と記載されている)に採血を行い(それぞれ表3中に記載の人数)EDTA血漿を取得した。
 該血漿中のEPCR蛋白質の濃度を実施例1の方法と同様に測定し、該測定値から実施例1と同様にROC 曲線の AUC 値を算出した。その結果を表3に示す。それぞれの採血時点において、0.7を上回ったものが脳梗塞患者の予後を判別するための検査方法として有用であることが示される。
Example 3 Evaluation of a test method for predicting the prognosis of cerebral infarction using an EPCR protein marker The prognosis of cerebral infarction is indicated by the degree of injury due to cerebral infarction of the patient after a certain period of time after the onset of cerebral infarction. It is. Japanese version modified Rankin Scale (mRS) criteria (Yukito Shinohara et al. MRS Reliability Study Group, reliability of modified Rankin Scale-Japanese version criteria and questionnaire) Blood was collected 7 days after the onset of cerebral infarction (indicated as “DAY7” in the table) for patients classified as 0-5 using the introduction of Stroke 2007; 29: 6-13) (each in Table 3) EDTA plasma was obtained.
The concentration of EPCR protein in the plasma was measured in the same manner as in Example 1, and the AUC value of the ROC curve was calculated from the measured values in the same manner as in Example 1. The results are shown in Table 3. It is shown that a value exceeding 0.7 at each time of blood collection is useful as a test method for determining the prognosis of a cerebral infarction patient.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 具体的には、脳梗塞発症後3ヶ月後の障害の程度(予後)について、3ヵ月後に各ランクとなる患者の発症後7日目の血漿中のEPCR蛋白質の濃度を比較することにより、発症後3ヶ月でランク2から5の患者と、ランク0から1の患者、ランク3から5の患者と、ランク0から2の患者、及びランク4から5の患者と、ランク0から3の患者を判別するための検査を行うことができることがわかった。 Specifically, on the degree of injury (prognosis) 3 months after the onset of cerebral infarction, by comparing the concentration of EPCR protein in the plasma on the 7th day after the onset of the patients who become each rank after 3 months, the onset 3 months later, rank 2-5 patients, rank 0-1 patients, rank 3-5 patients, rank 0-2 patients, rank 4-5 patients, rank 0-3 patients It turned out that the test | inspection for discrimination can be performed.
参考例1 CD40リガンド蛋白質マーカーを用いた脳梗塞の病型、および予後予測のための検査方法の評価
 脳梗塞発症直後、および7日後時点の脳梗塞患者111名と健常者91名から採血を行い、EDTA血漿を取得したのちにRules Based Medicine社に依頼して免疫測定法(Human MapTM v1.6法)を用いてEDTA血漿中のヒトCD40リガンド (UniProtKBのEntry Name CD40L_HUMANで示されるアミノ酸配列からなる)蛋白質濃度を測定した。次に測定値が検出下限を下回った場合には検出下限の1/2の値を、測定値が検出上限を上回った場合には検出上限の2倍の値を補完して、各採血時点において脳梗塞患者と健常者で差があるかを知るために、Fawcett, T. (2004) ROC Graphs: Notes and Practical Considerations for Researchers に記載の方法に従い ROC 曲線の AUC 値を算出した。その結果を表4に示す。それぞれの採血時点において、0.7を上回ったため、CD40リガンドは脳梗塞患者と健常者の判別をするための検査方法として有用であることが示された。
Reference Example 1 Evaluation of cerebral infarction type using CD40 ligand protein marker and examination method for prognosis prediction Blood was collected from 111 cerebral infarction patients and 91 healthy subjects immediately after the onset of cerebral infarction and 7 days later. from Rules Based Medicine, Inc. ask the immunoassay (human Map TM v1.6 method) the amino acid sequence as shown in Entry Name CD40L_HUMAN of human CD40 ligand (UniProtKB in EDTA plasma with the then obtaining the EDTA plasma The protein concentration was measured. Next, if the measured value falls below the lower limit of detection, the value half of the lower limit of detection is complemented, and if the measured value exceeds the upper limit of detection, a value twice the upper limit of detection is complemented. In order to know whether there is a difference between cerebral infarction patients and healthy individuals, AUC values of ROC curves were calculated according to the method described in Fawcett, T. (2004) ROC Graphs: Notes and Practical Considerations for Researchers. The results are shown in Table 4. Since it exceeded 0.7 at each blood sampling time point, it was shown that CD40 ligand is useful as a test method for discriminating between cerebral infarction patients and healthy subjects.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
  次に上記CD40リガンドで、脳梗塞発症直後、および7日後時点の脳梗塞患者173名から採血を行い、EDTA血漿を取得したのちにRules Based Medicine社に依頼して免疫測定法(Human MapTM v1.6法)を用いてEDTA血漿中のヒトCD40リガンド (UniProtKBのEntry Name CD40L_HUMANで示されるアミノ酸配列からなる)蛋白質濃度を測定した。次に測定値が検出下限を下回った場合には検出下限の1/2の値を、測定値が検出上限を上回った場合には検出上限の2倍の値を補完して、各採血時点において脳梗塞患者と健常者で差があるかを知るために、Fawcett, T. (2004) ROC Graphs: Notes and Practical Considerations for Researchers に記載の方法に従い ROC 曲線の AUC 値を算出した。
 脳梗塞発症直後の測定値に関し、上記表2に相当する群分けで病型診断に関する解析を行ったところ、7つのグループの組み合わせ((2-2)÷2=63通り)の全てにおいてAUCの値は0.7を下回った。このことから、脳梗塞と健常者で差のあるバイオマーカーであっても、病型の診断に用いられないものがあることがわかった。
 また、表4と同様に,脳梗塞発症7日後に採血を行い、予後に関する解析を行ったところ、3つの組み合わせでAUC値は0.7を超えなかった。このことから、脳梗塞と健常者で差のあるバイオマーカーであっても、予後の診断に用いられないものがあることがわかった。
Next, blood was collected from 173 patients with cerebral infarction immediately after the onset of cerebral infarction and 7 days later with the above CD40 ligand, and after obtaining EDTA plasma, an immunoassay method (Human Map TM v1 was requested from Rules Based Medicine). .6) was used to measure the protein concentration of human CD40 ligand (consisting of the amino acid sequence indicated by Entry Name CD40L_HUMAN of UniProtKB) in EDTA plasma. Next, if the measured value falls below the lower limit of detection, the value half of the lower limit of detection is complemented, and if the measured value exceeds the upper limit of detection, a value twice the upper limit of detection is complemented. In order to know whether there is a difference between cerebral infarction patients and healthy individuals, AUC values of ROC curves were calculated according to the method described in Fawcett, T. (2004) ROC Graphs: Notes and Practical Considerations for Researchers.
Regarding the measured values immediately after the onset of cerebral infarction, the analysis of the disease type diagnosis was performed in the grouping corresponding to Table 2 above. As a result, AUC was found in all of the seven group combinations ((2 7 -2) ÷ 2 = 63). The value was below 0.7. From this, it was found that some biomarkers that are different between cerebral infarction and healthy subjects are not used for diagnosis of disease type.
Similarly to Table 4, blood was collected 7 days after the onset of cerebral infarction and analyzed for prognosis. As a result, the AUC value did not exceed 0.7 for the three combinations. From this, it was found that some biomarkers that are different between cerebral infarction and healthy subjects are not used for prognosis diagnosis.
 本発明の方法によれば脳梗塞の診断や予後予測の検査を行うことができ、医療や診断の分野で有用である。 According to the method of the present invention, diagnosis of cerebral infarction and prognosis prediction can be performed, which is useful in the medical and diagnostic fields.

Claims (4)

  1.  被検動物より採取された血液試料中のEndothelial Protein C Receptor蛋白質の蛋白質量を測定する工程を含む、該動物における脳梗塞の病型診断のための検査方法。 A test method for diagnosing a cerebral infarction pathology in the animal, comprising measuring the amount of Endothelial Protein C receptor protein in a blood sample collected from the test animal.
  2.  病型診断が、ラクナ梗塞、アテローム血栓性、心原性脳塞栓症、大動脈原性脳塞栓症、Branch atheromatous disease、動脈解離、分類不能のいずれかを診断するものである請求項1に記載の検査方法。 2. The diagnosis according to claim 1, wherein the disease type diagnosis is one of lacunar infarction, atherothrombotic, cardiogenic cerebral embolism, aortic cerebral embolism, Branch 、 atheromatous disease, arterial dissection, and unclassifiable. Inspection method.
  3.  被検動物より採取された血液試料中のEndothelial Protein C Receptor蛋白質の蛋白質量を測定する工程を含む、該動物における脳梗塞の予後の予測のための検査方法。 A test method for predicting the prognosis of cerebral infarction in an animal, comprising the step of measuring the amount of Endothelial Protein C receptor protein in a blood sample collected from the test animal.
  4.  被検動物より採取された血液試料が、脳梗塞発症7日目に被検動物より採取されたものであることを特徴とする請求項3に記載の脳梗塞の予後の予測のための検査方法。 The test method for predicting the prognosis of cerebral infarction according to claim 3, wherein the blood sample collected from the test animal is collected from the test animal on the seventh day of the onset of cerebral infarction. .
PCT/JP2011/076416 2010-11-16 2011-11-16 Method for testing for cerebral infarction via endothelial protein c receptor WO2012067152A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012544281A JPWO2012067152A1 (en) 2010-11-16 2011-11-16 Method for examining cerebral infarction with Endothelial Protein C Receptor protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010255874 2010-11-16
JP2010-255874 2010-11-16

Publications (1)

Publication Number Publication Date
WO2012067152A1 true WO2012067152A1 (en) 2012-05-24

Family

ID=46084075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076416 WO2012067152A1 (en) 2010-11-16 2011-11-16 Method for testing for cerebral infarction via endothelial protein c receptor

Country Status (2)

Country Link
JP (1) JPWO2012067152A1 (en)
WO (1) WO2012067152A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725813B (en) * 2020-04-09 2021-04-21 國立中央大學 Automatic brain infarction detection system on magnetic resonance imaging and operation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032140A1 (en) * 2003-06-27 2005-02-10 Oklahoma Medical Research Foundation Methods for predicting susceptibility to cardiovascular disease
WO2007094394A1 (en) * 2006-02-16 2007-08-23 Mitsubishi Kagaku Iatron, Inc. Method for detection of condition in consciousness disorder patient and kit for the detection
WO2008088030A1 (en) * 2007-01-17 2008-07-24 Mochida Pharmaceutical Co., Ltd. Composition for prevention or treatment of disease associated with thrombus or embolus
JP2008255059A (en) * 2007-04-05 2008-10-23 Cosmo Oil Co Ltd Mitochondrial encephalopathy-treating agent, and diagnostic agent of the same
JP2009020049A (en) * 2007-07-13 2009-01-29 Univ Of Tokyo Method for diagnosing cerebrovascular disease
WO2009061918A1 (en) * 2007-11-06 2009-05-14 Oklahoma Medical Research Foundation Extracellular histones as biomarkers for prognosis and molecular targets for therapy
JP2010059088A (en) * 2008-09-03 2010-03-18 Protein Express:Kk TREATMENT DRUG AND DETECTION AGENT FOR ARTERIOSCLEROSIS DISEASE TARGETING HEREGULIN beta1

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032140A1 (en) * 2003-06-27 2005-02-10 Oklahoma Medical Research Foundation Methods for predicting susceptibility to cardiovascular disease
WO2007094394A1 (en) * 2006-02-16 2007-08-23 Mitsubishi Kagaku Iatron, Inc. Method for detection of condition in consciousness disorder patient and kit for the detection
WO2008088030A1 (en) * 2007-01-17 2008-07-24 Mochida Pharmaceutical Co., Ltd. Composition for prevention or treatment of disease associated with thrombus or embolus
JP2008255059A (en) * 2007-04-05 2008-10-23 Cosmo Oil Co Ltd Mitochondrial encephalopathy-treating agent, and diagnostic agent of the same
JP2009020049A (en) * 2007-07-13 2009-01-29 Univ Of Tokyo Method for diagnosing cerebrovascular disease
WO2009061918A1 (en) * 2007-11-06 2009-05-14 Oklahoma Medical Research Foundation Extracellular histones as biomarkers for prognosis and molecular targets for therapy
JP2010059088A (en) * 2008-09-03 2010-03-18 Protein Express:Kk TREATMENT DRUG AND DETECTION AGENT FOR ARTERIOSCLEROSIS DISEASE TARGETING HEREGULIN beta1

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GROSSMANN, R. E. ET AL.: "Cystathionine beta- synthase 844ins68 and endothelial protein C receptor 4031ins23 in young patients with cerebrovascular ischaemic disease", ANNALS OF HEMATOLOGY, vol. 80, no. SUP.1, 2001, pages A23 *
KENTARO TAKANO: "The significance of coagulational molecular marker measurement of the cerebral infarction in the disease type diagnosis", THROMBOSIS AND CIRCULATION, vol. 7, no. 3, 1999, pages 227 - 228 *
MASAMITSU ABE ET AL.: "Nonai Kaimenjo Kekkanshu no Zodai Kijo", JAPANESE JOURNAL OF STROKE, vol. 26, no. 1, 2004, pages 270 *
POORT, S. R. ET AL.: "The endothelial protein C receptor (EPCR) 23 bp insert mutation and the risk of venous thrombosis", THROMBOSIS AND HAEMOSTASIS, vol. 88, no. 1, 2002, pages 160 - 162 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725813B (en) * 2020-04-09 2021-04-21 國立中央大學 Automatic brain infarction detection system on magnetic resonance imaging and operation method thereof
US11042983B1 (en) 2020-04-09 2021-06-22 National Central University Automatic brain infarction detection system on magnetic resonance imaging and operation method thereof

Also Published As

Publication number Publication date
JPWO2012067152A1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
Marksteiner et al. Analysis of 27 vascular-related proteins reveals that NT-proBNP is a potential biomarker for Alzheimer's disease and mild cognitive impairment: A pilot-study
WO2015157300A1 (en) Traumatic brain injury and neurodegenerative biomarkers, methods, and systems
US20140350129A1 (en) Diagnostic assay to predict cardiovascular risk
CA2913524C (en) Method for aiding differential diagnosis of stroke
CA2857589C (en) Biomarker-based methods and biochips for aiding the diagnosis of stroke
Herisson et al. Ischemia-modified Albumin and Heart Fatty Acid–binding Protein: Could Early Ischemic Cardiac Biomarkers Be Used in Acute Stroke Management?
JP2019168319A (en) Marker for metabolite in urine for inspecting childhood cancer
Fattouh et al. Inflammatory biomarkers in chronic obstructive pulmonary disease
JP2009539080A (en) Use of MRP8 / 14 levels to identify individuals at risk for acute coronary syndrome
Lippi et al. Prognostic value of troponins in patients with or without coronary heart disease: is it dependent on structure and biology?
WO2012067151A1 (en) Method for testing for cerebral infarction via cartilage acidic protein 1
US20190346458A1 (en) Gfap accumulating in stroke
WO2012067152A1 (en) Method for testing for cerebral infarction via endothelial protein c receptor
JP2011237402A (en) Detection method for cerebral infarction using galectin-3 binding protein
JP2011107116A (en) Inspection method of cerebral infarction
JP2012107935A (en) Inspection method of cerebral infarction with desmoglein-2 protein
WO2012067150A1 (en) Method for testing for cerebral infarction via interleukin-6 receptor subunit beta protein
Murray et al. Fecal calprotectin in gastrointestinal disease
CN107345967A (en) Purposes of the GP73 albumen as serum markers in cancer is diagnosed
JP2012107933A (en) Inspection method of cerebral infarction with hemopexin protein
JP2012107932A (en) Inspection method of cerebral infarction with clusterin protein
EP3639037A1 (en) Combinations for use in stroke diagnosis
WO2013146914A1 (en) Inspection method of brain infarction using kallistatin protein
WO2022255349A1 (en) Method for assessing risk of hemorrhagic stroke using soluble clec2
WO2022255348A1 (en) Method for evaluating risk of acute cerebral vascular disease using soluble clec2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842422

Country of ref document: EP

Kind code of ref document: A1