WO2012067097A1 - Fire retardant electrolytic capacitor - Google Patents

Fire retardant electrolytic capacitor Download PDF

Info

Publication number
WO2012067097A1
WO2012067097A1 PCT/JP2011/076258 JP2011076258W WO2012067097A1 WO 2012067097 A1 WO2012067097 A1 WO 2012067097A1 JP 2011076258 W JP2011076258 W JP 2011076258W WO 2012067097 A1 WO2012067097 A1 WO 2012067097A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
flame retardant
acid
electrolytic capacitor
resin
Prior art date
Application number
PCT/JP2011/076258
Other languages
French (fr)
Japanese (ja)
Inventor
小澤 正
淳一 川上
宏一 黒田
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to JP2012544252A priority Critical patent/JPWO2012067097A1/en
Publication of WO2012067097A1 publication Critical patent/WO2012067097A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0003Protection against electric or thermal overload; cooling arrangements; means for avoiding the formation of cathode films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Definitions

  • the present invention relates to a flame retardant electrolytic capacitor that minimizes the combustion of the electrolytic capacitor during safety valve operation.
  • the safety valve with an explosion-proof function operates, but there is a risk that the capacitor element will burn by igniting the gasified electrolyte due to a spark generated by a short circuit or the like. It was.
  • Patent Document 1 a technique is known in which a phosphoric acid ester is added to an electrolytic solution to impart flame retardancy and suppress the generation of combustible gas.
  • Patent Document 1 the technique described in Patent Document 1 is that the phosphate ester disappears during the safety valve operation due to the hydrolysis of the phosphate ester, and the flame retardant effect cannot be sufficiently exhibited.
  • the electrode foil is attacked, the electrode foil is dissolved and the pressure resistance is lowered.
  • phosphate ester is microencapsulated and present in an electrolyte without hydrolysis for a long period of time. It wasn't.
  • An object of the present invention is to prevent hydrolysis of phosphate ester over a long period of time by encapsulating a flame retardant comprising a phosphate ester or a condensate thereof in a microcapsule, and when the electrolytic capacitor becomes hot,
  • An object of the present invention is to provide a flame retardant electrolytic capacitor in which a capsule is dissolved and a flame retardant is dissolved in an electrolytic solution to suppress combustion of a capacitor element.
  • the electrolytic capacitor of the present invention is to prepare a microcapsule of a flame retardant by encapsulating a flame retardant comprising a phosphate ester or a condensate thereof in a resin that dissolves at 150 ° C. or higher.
  • a microcapsule of a flame retardant is contained in a capacitor element.
  • the resin constituting the shell of the microcapsule is at least one selected from an epoxy resin, a phenol resin, polyphenylene sulfide (hereinafter referred to as PPS), polyimide (hereinafter referred to as PI), polyaramid, melamine resin, polyurea or polyurethane. It is characterized by that.
  • the amount of the flame retardant added is 3 to 20% by weight with respect to the electrolytic solution.
  • Phosphate esters or condensates used as flame retardants are trimethyl phosphate, trihexyl phosphate, tri-n-butyl phosphate, triethyl phosphate, methyl polyphosphate, poly-n-butyl phosphate, ethyl polyphosphate, phosphorus It is characterized by being one or more of trityl acid, cresyl diphenyl phosphate.
  • a microencapsulated flame retardant is produced by encapsulating a flame retardant composed of a phosphate ester or a condensate thereof in a resin that dissolves at 150 ° C. or higher. Prevents hydrolysis of flame retardants.
  • the microencapsulated flame retardant in the capacitor element, when the electrolytic capacitor becomes hot due to an abnormality such as a short circuit, the microcapsule dissolves and the flame retardant dissolves into the electrolyte. Suppresses the combustion of the capacitor element.
  • flame retardant microcapsules those obtained by the following production method can be used.
  • Chemical methods such as interfacial polymerization method and in-situ polymerization method
  • Physicochemical methods such as submerged drying method and coacervation method
  • Mechanical methods such as dry mixing method and spray drying method
  • the shell of the microcapsule among the above resins, PPS, PI, polyaramid, melamine resin, polyurea or polyurethane is preferable. These resins exhibit stable non-dissolving performance with respect to the solvent, solute, and phosphoric acid ester encapsulated therein. Therefore, when these resins are used, the flame retardant is not leaked into the electrolytic solution and hydrolyzed even after a long period of time, and the function as the flame retardant is not lost.
  • the microcapsule may be destroyed or dissolved in the normal use state of the electrolytic capacitor.
  • the flame retardant is added to the electrolyte solution without destruction or dissolution of the microcapsule when the electrolytic capacitor reaches an abnormally high temperature state. May not be released.
  • the size of the microcapsule is 0.02 to 100 ⁇ m, preferably 0.02 to 0.05 ⁇ m.
  • the thickness is 0.02 ⁇ m or less, it is difficult to produce a heat-resistant microcapsule.
  • the thickness exceeds 100 ⁇ m, the characteristics of the electrolytic capacitor, particularly the impedance characteristics in the high frequency region, are affected.
  • a protic polar solvent As the solvent used in the electrolytic solution of the present invention, a protic polar solvent, an aprotic polar solvent, and a mixture thereof can be used.
  • Protic polar solvents include monohydric alcohols (ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, benzyl alcohol, etc.), polyhydric alcohols and oxyalcohol compounds (ethylene glycol) Propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, dimethoxypropanol, etc.).
  • aprotic polar solvents examples include amides (N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethylacetamide, hexamethylphosphoricamide, etc.), lactones ( ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, etc.), sulfolanes (sulfolane, 3-methylsulfolane, 2 , 4-dimethylsulfolane, etc.), cyclic amides (N-methyl-2-pyrrolidone, etc.), carbonates (ethylene carbonate, propylene carbonate, isobutylene carbonate, etc.), nitriles (acetonitrile, etc.), sulfoxides (dimethylsulfoxide, etc.) , -Imid
  • an organic acid or an inorganic acid or a salt thereof can be used alone or in combination.
  • Organic acids include aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, enanthic acid, malonic acid, succinic acid, glutaric acid, adipic acid, methylmalonic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Aliphatic dicarboxylic acids such as dodecanedioic acid, 1,6-decanedicarboxylic acid, undecanedioic acid, tridecanedioic acid, maleic acid, citraconic acid, and itaconic acid, benzoic acid, phthalic acid, salicylic acid, toluic acid, and pyromellitic acid Aromatic carboxylic acids such as can be used.
  • aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, enanthic acid, malonic acid, succinic acid, glutaric acid, adipic acid, methylmalonic acid,
  • boric acid As the inorganic acid, boric acid, phosphoric acid, silicic acid and the like can be used.
  • organic acid and inorganic acid salts mentioned above include ammonium salts, monoalkylamines such as ammonium, methylamine, ethylamine, and propylamine, dialkylamines such as dimethylamine, diethylamine, ethylmethylamine, and dibutylamine, and trimethylamine.
  • Trialkylamines such as triethylamine, tributylamine and ethyldiisopropylamine, quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium and tetraethylammonium, imidazolium salts such as ethyldimethylimidazolium and tetramethylimidazolium, ethyldimethyl Imidazolinium salts such as imidazolinium and tetramethylimidazolinium can be used.
  • phosphonium salts and the like can be used.
  • fragrances such as nitrophenol, nitrobenzoic acid, nitroacetophenone, nitrobenzyl alcohol, 2- (nitrophenoxy) ethanol, nitroanisole, nitrophenetol, nitrotoluene, dinitrobenzene, etc.
  • fragrances such as nitrophenol, nitrobenzoic acid, nitroacetophenone, nitrobenzyl alcohol, 2- (nitrophenoxy) ethanol, nitroanisole, nitrophenetol, nitrotoluene, dinitrobenzene, etc.
  • Group nitro compounds can be added.
  • nonionic surfactants that can improve the withstand voltage of electrolytic solutions, polyoxygens obtained by addition polymerization of polyhydric alcohols and ethylene oxide and / or propylene oxide An alkylene polyhydric alcohol ether compound and polyvinyl alcohol can also be added.
  • the withstand voltage is further improved. Can be measured.
  • Examples of phosphoric acid esters or condensates used as flame retardants include trimethyl phosphate, trihexyl phosphate, tri-n-butyl phosphate, triethyl phosphate, methyl polyphosphate, poly-n-butyl phosphate, ethyl polyphosphate, Tolyl phosphate, cresyl diphenyl phosphate, ethylene methyl phosphate, ethylene ethyl phosphate, methyl trimethylene phosphate, trimethylol ethane phosphate, methyl acid phosphate, butyl acid phosphate, dibutyl phosphate, monobutyl phosphate, 2-ethylhexyl acid phosphate, iso Decyl acid phosphate, monoisodecyl phosphate, 2,6,7-trioxa-1-phosphabicyclo [2,2,2] octane 1-oxide, 3,9-dimethoxy 2,4,8,10-tetraoxa-3
  • phosphate esters preferred are trimethyl phosphate, trihexyl phosphate, tri-n-butyl phosphate, triethyl phosphate, methyl polyphosphate, poly-n-butyl phosphate, ethyl polyphosphate, phosphoric acid. It is tritolyl and cresyl diphenyl phosphate, and a good flame retardant effect can be obtained.
  • the amount of flame retardant added is 3 to 20% by weight, preferably 5 to 10% by weight, with respect to the electrolyte.
  • the amount of flame retardant in the microcapsule exceeds 20% by weight with respect to the electrolytic solution, it adversely affects the characteristics of the electrolytic capacitor, particularly the impedance in the high frequency region.
  • the amount is less than 3% by weight, even if the microcapsules are dissolved and the flame retardant leaks, the total amount of the flame retardant is insufficient and the flame retardant effect cannot be exhibited.
  • the present invention by adding a microcapsule encapsulating a flame retardant into an electrolyte containing water, hydrolysis of the phosphate ester which is a flame retardant does not occur even in an electrolyte containing moisture.
  • the flame retardant effect can be obtained over a long period of time.
  • the amount of moisture in the element is 35% by weight or less, it is difficult to obtain a flame retardant effect due to moisture, and in the case of containing a small amount of moisture, by containing a microencapsulated flame retardant in the element, flame retardant The effect is noticeable.
  • condenser element in this application contains not only the water
  • the microencapsulated flame retardant in the capacitor element may be added to the electrolyte solution and dispersed, or may be attached in advance to a separator, an electrode foil or the like.
  • the size of the microcapsules is 0.02 to 0.05 ⁇ m because the microcapsules are easily dispersed in the electrolytic solution.
  • size of 0.05 micrometer or more may be sufficient.
  • the arrangement state of the microencapsulated flame retardant in the capacitor element can be controlled by attaching the microencapsulated flame retardant in advance to a separator, an electrode foil, or the like. Furthermore, since the microencapsulated flame retardant is attached to a separator, electrode foil, or the like, the arrangement state in the capacitor element can be maintained for a long period of time. Further, the effect of the present invention can be obtained even when a microencapsulated flame retardant is attached in advance to a capacitor case and contained in an electrolytic capacitor.
  • Examples 1 to 4 of the present invention will be described below.
  • Table 1 shows the composition of the electrolytic solution for electrolytic capacitors in Examples 1 to 4 and Comparative Examples of the present invention.
  • the electrolytic solution A was used, and the water content in each element was 3% by weight.
  • the electrolytic solution B was used, and the amount of water in each element was 7% by weight.
  • a microencapsulated flame retardant encapsulating trimethyl phosphate as a flame retardant with PPS was added to the electrolyte, and phosphoric acid was used in Comparative Examples 1-2 and 2-2. Trimethyl was added as is.
  • Comparative Example 1-1 and Comparative Example 2-1 no flame retardant was added.
  • Examples 1 and 2 and Comparative Examples 1-1 and 1-2 a device having a diameter of 10 mm and a length of 20 mm and a 35 V-680 ⁇ F was used.
  • Examples 3 to 4 and Comparative Examples 2-1 to 2-2 elements having a diameter of 10 mm and a length of 20 mm and 400 V-10 ⁇ F were used.
  • the electrolyte solutions shown in Table 1 were prepared by a conventional method, and ammonia gas was injected into the electrolyte solution B to adjust the pH. And the electrode extraction means was connected to the anode electrode foil which performed the etching process and the chemical conversion process, and the cathode electrode foil which performed only the etching process, and it wound through the separator, and formed the capacitor
  • Table 2 shows the amount of flame retardant added to the electrolyte solution, the amount of flame retardant added in the microcapsule to the electrolyte solution, presence or absence of initial self-extinguishing performance, and rating for 500 hours at 105 ° C. Indicates the presence or absence of self-extinguishing performance after voltage is applied.
  • the ignition means was brought close to the capacitor element taken out from the case, a flame was applied for 10 seconds, the ignition means was separated from the capacitor element, and the presence or absence of self-extinguishing performance was confirmed.
  • a circle indicates that there is self-extinguishing performance
  • a cross indicates that there is no self-extinguishing performance.
  • the combustion reaction is not observed after the ignition means is separated from the burning capacitor element. Further, when there is no self-extinguishing performance, the combustion reaction does not disappear and continues to burn even after the ignition means is separated from the burning capacitor element.
  • Comparative Examples 1-1 and 2-1 to which no trimethyl phosphate was added the capacitor element continued to burn even after the ignition means was released in the initial stage. Further, in Comparative Examples 1-2 and 2-2, although it was confirmed that the initial fire extinguishing means was immediately extinguished and the self-extinguishing performance was confirmed, the rated voltage was applied at 105 ° C. for 500 hours. For the capacitor, the capacitor element continued to burn after the ignition means was released. This is because the flame retardant component is present in the capacitor element in the initial stage, but after application of the rated voltage, trimethyl phosphate reacts with the moisture in the element and hydrolyzes, and exists as a flame retardant component. It seems to be because it has not.
  • Examples 1 to 4 to which the microencapsulated flame retardant was added were extinguished after releasing the ignition means even after application of the rated voltage, and it was confirmed that they had self-extinguishing performance. This is because trimethyl phosphate is present in the microcapsule even after the rated voltage is applied, and by bringing the ignition means closer, the microcapsule dissolves and the trimethyl phosphate dissolves, suppressing the combustion of the capacitor element, and It is thought that fire extinguishing performance was demonstrated.
  • Examples 5 to 8 of the present invention will be described.
  • Examples 5 and 6 use tolyl phosphate as a flame retardant instead of trimethyl phosphate in Examples 1 to 4, and
  • Examples 7 and 8 use cresyl diphenyl phosphate as a flame retardant. It is a thing.
  • electrolyte solution the electrolyte solution B shown in Table 2 was used, and the moisture content in each element was 7 weight%. Other conditions were set in the same manner as in Examples 3 to 4, and the presence or absence of the self-extinguishing performance of the capacitor was confirmed.
  • Table 3 shows the amount of the flame retardant added in the microcapsules with respect to the electrolytes of Examples 5 to 8, presence / absence of initial self-extinguishing performance, and presence / absence of self-extinguishing performance after applying the rated voltage at 105 ° C. for 500 hours. Indicates.
  • a wound capacitor is used, but the present invention is not limited to this, and a microencapsulated flame retardant may be added to the multilayer capacitor.

Abstract

In the present invention, microcapsules of a fire retardant are produced by encapsulating the fire retardant, which comprises a phosphate ester or a condensate thereof, in a resin that melts at or above 150°C, and the microcapsules of the fire retardant are added into a capacitor element. The resin that configures the microcapsule shells comprises at least one resin selected from: epoxy resin, phenol resin, polyphenylene sulfide, polyimide, polyaramide, melamine resin, polyruea, or polyurethane. As the fire retardant, for example, trimethyl phosphate, tritolyl phosphate, or cresyldiphenyl phosphate is used.

Description

難燃性電解コンデンサFlame retardant electrolytic capacitor
 本発明は、安全弁動作時の電解コンデンサの燃焼を最小限に抑制する難燃性電解コンデンサに関する。 The present invention relates to a flame retardant electrolytic capacitor that minimizes the combustion of the electrolytic capacitor during safety valve operation.
 電解コンデンサに過大な電気ストレスが加えられると、防爆機能を有する安全弁が動作するが、その際、ショート等で発生した火花により、ガス化した電解液に引火してコンデンサ素子が燃焼するおそれがあった。 When an excessive electrical stress is applied to the electrolytic capacitor, the safety valve with an explosion-proof function operates, but there is a risk that the capacitor element will burn by igniting the gasified electrolyte due to a spark generated by a short circuit or the like. It was.
 そのため、特許文献1に記載のように、電解液にリン酸エステルを添加して難燃性を付与し、可燃性ガスの発生を抑制する技術が知られている。 Therefore, as described in Patent Document 1, a technique is known in which a phosphoric acid ester is added to an electrolytic solution to impart flame retardancy and suppress the generation of combustible gas.
特開平3-180014号公報Japanese Patent Laid-Open No. 3-180014
 しかし、特許文献1に記載の技術は、リン酸エステルの加水分解により安全弁動作時にはリン酸エステルが消失してしまい、難燃効果を十分に発揮できないことや、電解液中で生じたリン酸イオンが電極箔にアタックすることで電極箔が溶解し、耐圧が低下してしまうなどの問題点があった。 However, the technique described in Patent Document 1 is that the phosphate ester disappears during the safety valve operation due to the hydrolysis of the phosphate ester, and the flame retardant effect cannot be sufficiently exhibited. However, when the electrode foil is attacked, the electrode foil is dissolved and the pressure resistance is lowered.
 このように、従来からリン酸エステルを難燃剤として使用することは知られていても、リン酸エステルをマイクロカプセル化し、長期間、加水分解させることなく、電解液中に存在させることは知られていなかった。 Thus, even though it has been known to use phosphate ester as a flame retardant, it is known that phosphate ester is microencapsulated and present in an electrolyte without hydrolysis for a long period of time. It wasn't.
 このような技術的背景により、次のような条件を満足するマイクロカプセルを用い、難燃剤を添加した電解コンデンサの出現が要望されていた。
(1)長期間、電解液中の水分と接触していても、溶解あるいは破壊することなく、シェル内部のリン酸エステルと電解液中の水分との加水分解を確実に阻止する。
(2)電解コンデンサの不具合による自己発熱によって、コンデンサ中に存在するマイクロカプセルが溶解して、シェル内部のリン酸エステルを放出する。
With such a technical background, there has been a demand for the appearance of an electrolytic capacitor using a microcapsule that satisfies the following conditions and having a flame retardant added thereto.
(1) Even if it is in contact with moisture in the electrolytic solution for a long period of time, hydrolysis of the phosphoric ester within the shell and the moisture in the electrolytic solution is surely prevented without being dissolved or destroyed.
(2) The microcapsules existing in the capacitor are dissolved by self-heating due to the malfunction of the electrolytic capacitor, and the phosphate ester inside the shell is released.
 本発明は、上述したような従来技術の問題点を解決するために提案されたものである。本発明の目的は、リン酸エステルまたはその縮合体からなる難燃剤をマイクロカプセルに封入することで、長期間にわたりリン酸エステルの加水分解を防止し、電解コンデンサが高温になった場合にはマイクロカプセルが溶解して難燃剤が電解液中に溶け出し、コンデンサ素子の燃焼を抑制する難燃性電解コンデンサを提供することにある。 The present invention has been proposed in order to solve the problems of the conventional techniques as described above. An object of the present invention is to prevent hydrolysis of phosphate ester over a long period of time by encapsulating a flame retardant comprising a phosphate ester or a condensate thereof in a microcapsule, and when the electrolytic capacitor becomes hot, An object of the present invention is to provide a flame retardant electrolytic capacitor in which a capsule is dissolved and a flame retardant is dissolved in an electrolytic solution to suppress combustion of a capacitor element.
 上記の課題を解決するため、本発明の電解コンデンサは、リン酸エステルまたはその縮合体からなる難燃剤を、150℃以上で溶解する樹脂内に封入して難燃剤のマイクロカプセルを作製し、前記難燃剤のマイクロカプセルをコンデンサ素子内に含有したことを特徴とする。 In order to solve the above-mentioned problems, the electrolytic capacitor of the present invention is to prepare a microcapsule of a flame retardant by encapsulating a flame retardant comprising a phosphate ester or a condensate thereof in a resin that dissolves at 150 ° C. or higher. A microcapsule of a flame retardant is contained in a capacitor element.
さらに、前記マイクロカプセルのシェルを構成する樹脂が、エポキシ樹脂、フェノール樹脂、ポリフェニレンサルファイド(以下、PPS)、ポリイミド(以下、PI)、ポリアラミド、メラミン樹脂、ポリウレアまたはポリウレタンから選択される少なくとも一種からなることを特徴とする。 Further, the resin constituting the shell of the microcapsule is at least one selected from an epoxy resin, a phenol resin, polyphenylene sulfide (hereinafter referred to as PPS), polyimide (hereinafter referred to as PI), polyaramid, melamine resin, polyurea or polyurethane. It is characterized by that.
そして、コンデンサ素子に含まれる水分量が、35重量%以下であることを特徴とする。 And the moisture content contained in a capacitor | condenser element is 35 weight% or less, It is characterized by the above-mentioned.
また、難燃剤の添加量は、電解液に対して、3~20重量%であることを特徴とする。 The amount of the flame retardant added is 3 to 20% by weight with respect to the electrolytic solution.
 難燃剤として使用するリン酸エステルまたはその縮合体が、リン酸トリメチル、リン酸トリヘキシル、リン酸トリ-n-ブチル、リン酸トリエチル、ポリリン酸メチル、ポリリン酸-n-ブチル、ポリリン酸エチル、リン酸トリトリル、リン酸クレジルジフェニルの一種、または複数種であることを特徴とする。 Phosphate esters or condensates used as flame retardants are trimethyl phosphate, trihexyl phosphate, tri-n-butyl phosphate, triethyl phosphate, methyl polyphosphate, poly-n-butyl phosphate, ethyl polyphosphate, phosphorus It is characterized by being one or more of trityl acid, cresyl diphenyl phosphate.
 本発明によれば、リン酸エステルまたはその縮合体からなる難燃剤を、150℃以上で溶解する樹脂内に封入してマイクロカプセル化難燃剤を作製することで、長期間にわたり、電解コンデンサ内での難燃剤の加水分解を防止する。また、前記マイクロカプセル化難燃剤をコンデンサ素子中に含有することにより、ショート等の異常が原因で電解コンデンサが高温になった場合にはマイクロカプセルが溶解して難燃剤が電解液中に溶け出し、コンデンサ素子の燃焼を抑制する。 According to the present invention, a microencapsulated flame retardant is produced by encapsulating a flame retardant composed of a phosphate ester or a condensate thereof in a resin that dissolves at 150 ° C. or higher. Prevents hydrolysis of flame retardants. In addition, by containing the microencapsulated flame retardant in the capacitor element, when the electrolytic capacitor becomes hot due to an abnormality such as a short circuit, the microcapsule dissolves and the flame retardant dissolves into the electrolyte. Suppresses the combustion of the capacitor element.
 難燃剤のマイクロカプセルとしては、次のような製造方法により得られるものが使用できる。
(1)界面重合法、in-situ重合法などの化学的方法
(2)液中乾燥法、コアセルベーション法などの物理化学的方法
(3)乾式混合法、噴霧乾燥法などの機械的方法
As the flame retardant microcapsules, those obtained by the following production method can be used.
(1) Chemical methods such as interfacial polymerization method and in-situ polymerization method (2) Physicochemical methods such as submerged drying method and coacervation method (3) Mechanical methods such as dry mixing method and spray drying method
 マイクロカプセルのシェルとしては、前記各樹脂の中でも、PPS、PI、ポリアラミド、メラミン樹脂、ポリウレアまたはポリウレタンが好ましい。これらの樹脂は、電解液の溶媒、溶質、及び内部に封入したリン酸エステルに対して、安定した非溶解性能を発揮する。そのためこれらの樹脂を使用した場合、長期間経過した場合においても、難燃剤が電解液中に漏出して、加水分解し、難燃剤としての機能が失われることがない。 As the shell of the microcapsule, among the above resins, PPS, PI, polyaramid, melamine resin, polyurea or polyurethane is preferable. These resins exhibit stable non-dissolving performance with respect to the solvent, solute, and phosphoric acid ester encapsulated therein. Therefore, when these resins are used, the flame retardant is not leaked into the electrolytic solution and hydrolyzed even after a long period of time, and the function as the flame retardant is not lost.
 マイクロカプセルのシェル物質の融点が150℃未満の場合には,電解コンデンサの通常使用状態において、マイクロカプセルの破壊又は溶解が起こるおそれがある。また、マイクロカプセルのシェル物質の融点がコンデンサ素子の燃焼温度を越える場合には,電解コンデンサが異常な高温状態に達したときに,マイクロカプセルの破壊又は溶解が起こらずに、難燃剤を電解液へ放出することができないおそれがある。 If the melting point of the shell material of the microcapsule is less than 150 ° C., the microcapsule may be destroyed or dissolved in the normal use state of the electrolytic capacitor. In addition, when the melting point of the shell material of the microcapsule exceeds the combustion temperature of the capacitor element, the flame retardant is added to the electrolyte solution without destruction or dissolution of the microcapsule when the electrolytic capacitor reaches an abnormally high temperature state. May not be released.
 マイクロカプセルの大きさは、0.02~100μmであり、好ましくは0.02~0.05μmである。0.02μm以下の場合には、耐熱性を有するマイクロカプセルを作製することが困難であり、100μmを超えると、電解コンデンサの特性、特に高周波領域のインピーダンス特性に影響を与える。 The size of the microcapsule is 0.02 to 100 μm, preferably 0.02 to 0.05 μm. When the thickness is 0.02 μm or less, it is difficult to produce a heat-resistant microcapsule. When the thickness exceeds 100 μm, the characteristics of the electrolytic capacitor, particularly the impedance characteristics in the high frequency region, are affected.
 本発明の電解液に用いる溶媒としては、プロトン性極性溶媒、非プロトン性極性溶媒、及びこれらの混合物を用いることができる。プロトン性極性溶媒としては、一価アルコール類(エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類およびオキシアルコール化合物類(エチレングリコール、プロピレングリコール、グリセリン、メチルセロソルブ、エチルセロソルブ、メトキシプロピレングリコール、ジメトキシプロパノール等)等が挙げられる。また、非プロトン性の極性溶媒としては、アミド系(N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド、ヘキサメチルホスホリックアミド等)、ラクトン類(γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン等)、スルホラン系(スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等)、環状アミド系(N-メチル-2-ピロリドン等)、カーボネイト類(エチレンカーボネイト、プロピレンカーボネイト、イソブチレンカーボネイト等)、ニトリル系(アセトニトリル等)、スルホキシド系(ジメチルスルホキシド等)、2-イミダゾリジノン系〔1,3-ジアルキル-2-イミダゾリジノン(1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチルー2-イミダゾリジノン、1,3-ジ(n-プロピル)-2-イミダゾリジノン等)、1,3,4-トリアルキル-2-イミダゾリジノン(1,3,4-トリメチル-2-イミダゾリジノン等)〕等が代表として挙げられる。中でも、γ-ブチロラクトンを用いるとインピーダンス特性が向上するので好ましく、エチレングリコールを用いると耐電圧特性が向上するので好ましい。 As the solvent used in the electrolytic solution of the present invention, a protic polar solvent, an aprotic polar solvent, and a mixture thereof can be used. Protic polar solvents include monohydric alcohols (ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, benzyl alcohol, etc.), polyhydric alcohols and oxyalcohol compounds (ethylene glycol) Propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, dimethoxypropanol, etc.). Examples of aprotic polar solvents include amides (N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethylacetamide, hexamethylphosphoricamide, etc.), lactones (γ-butyrolactone, δ-valerolactone, γ-valerolactone, etc.), sulfolanes (sulfolane, 3-methylsulfolane, 2 , 4-dimethylsulfolane, etc.), cyclic amides (N-methyl-2-pyrrolidone, etc.), carbonates (ethylene carbonate, propylene carbonate, isobutylene carbonate, etc.), nitriles (acetonitrile, etc.), sulfoxides (dimethylsulfoxide, etc.) , -Imidazolidinone series [1,3-dialkyl-2-imidazolidinone (1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-di (n-propyl ) -2-imidazolidinone, etc.), 1,3,4-trialkyl-2-imidazolidinone (1,3,4-trimethyl-2-imidazolidinone, etc.)] and the like. Among these, use of γ-butyrolactone is preferable because impedance characteristics are improved, and use of ethylene glycol is preferable because voltage resistance characteristics are improved.
 本発明に用いる電解液の溶質としては、有機酸もしくは無機酸またはその塩を単独または組み合わせて用いることができる。 As the solute of the electrolytic solution used in the present invention, an organic acid or an inorganic acid or a salt thereof can be used alone or in combination.
有機酸としては、ギ酸、酢酸、プロピオン酸、エナント酸等の脂肪族モノカルボン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、メチルマロン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、1,6-デカンジカルボン酸、ウンデカン二酸、トリデカン二酸、マレイン酸、シトラコン酸、並びにイタコン酸等の脂肪族ジカルボン酸、安息香酸、フタル酸、サリチル酸、トルイル酸、並びにピロメリト酸等の芳香族カルボン酸等を用いることができる。 Organic acids include aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, enanthic acid, malonic acid, succinic acid, glutaric acid, adipic acid, methylmalonic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Aliphatic dicarboxylic acids such as dodecanedioic acid, 1,6-decanedicarboxylic acid, undecanedioic acid, tridecanedioic acid, maleic acid, citraconic acid, and itaconic acid, benzoic acid, phthalic acid, salicylic acid, toluic acid, and pyromellitic acid Aromatic carboxylic acids such as can be used.
 無機酸としては、ホウ酸、リン酸、ケイ酸等を用いることができる。 As the inorganic acid, boric acid, phosphoric acid, silicic acid and the like can be used.
 上述した有機酸、無機酸の塩の例としてはアンモニウム塩があり、アンモニウム、メチルアミン、エチルアミン、プロピルアミン等のモノアルキルアミン、ジメチルアミン、ジエチルアミン、エチルメチルアミン、ジブチルアミン等のジアルキルアミン、トリメチルアミン、トリエチルアミン、トリブチルアミン、エチルジイソプロピルアミン等のトリアルキルアミン、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等の第4級アンモニウム塩、エチルジメチルイミダゾリウム、テトラメチルイミダゾリウム等のイミダゾリウム塩、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウム等のイミダゾリニウム塩を用いることができる。その他にもホスホニウム塩等を使用することができる。 Examples of the organic acid and inorganic acid salts mentioned above include ammonium salts, monoalkylamines such as ammonium, methylamine, ethylamine, and propylamine, dialkylamines such as dimethylamine, diethylamine, ethylmethylamine, and dibutylamine, and trimethylamine. , Trialkylamines such as triethylamine, tributylamine and ethyldiisopropylamine, quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium and tetraethylammonium, imidazolium salts such as ethyldimethylimidazolium and tetramethylimidazolium, ethyldimethyl Imidazolinium salts such as imidazolinium and tetramethylimidazolinium can be used. In addition, phosphonium salts and the like can be used.
 また、電解コンデンサの寿命特性を安定化する目的で、ニトロフェノール、ニトロ安息香酸、ニトロアセトフェノン、ニトロベンジルアルコール、2-(ニトロフェノキシ)エタノール、ニトロアニソール、ニトロフェネトール、ニトロトルエン、ジニトロベンゼン等の芳香族ニトロ化合物を添加することができる。 In addition, in order to stabilize the life characteristics of electrolytic capacitors, fragrances such as nitrophenol, nitrobenzoic acid, nitroacetophenone, nitrobenzyl alcohol, 2- (nitrophenoxy) ethanol, nitroanisole, nitrophenetol, nitrotoluene, dinitrobenzene, etc. Group nitro compounds can be added.
 また、電解コンデンサの安全性向上を目的として、電解液の耐電圧向上を図ることができる非イオン性界面活性剤、多価アルコールと酸化エチレン及び/または酸化プロピレンを付加重合して得られるポリオキシアルキレン多価アルコールエーテル化合物、ポリビニルアルコールを添加することもできる。 In addition, for the purpose of improving the safety of electrolytic capacitors, nonionic surfactants that can improve the withstand voltage of electrolytic solutions, polyoxygens obtained by addition polymerization of polyhydric alcohols and ethylene oxide and / or propylene oxide An alkylene polyhydric alcohol ether compound and polyvinyl alcohol can also be added.
 また、本発明のアルミ電解コンデンサ用電解液に、多糖類(マンニット、ソルビット、ペンタエリスリトールなど)、ホウ酸と多糖類との錯化合物、コロイダルシリカ等を添加することによって、さらに耐電圧の向上をはかることができる。 In addition, by adding polysaccharides (mannitol, sorbit, pentaerythritol, etc.), complex compounds of boric acid and polysaccharides, colloidal silica, etc. to the electrolytic solution for aluminum electrolytic capacitors of the present invention, the withstand voltage is further improved. Can be measured.
 難燃剤として使用するリン酸エステルまたはその縮合体としては、リン酸トリメチル、リン酸トリヘキシル、リン酸トリ-n-ブチル、リン酸トリエチル、ポリリン酸メチル、ポリリン酸-n-ブチル、ポリリン酸エチル、リン酸トリトリル、リン酸クレジルジフェニル、エチレンメチルホスフェート、エチレンエチルホスフェート、メチルトリメチレンホスフェート、トリメチロールエタンホスフェート、メチルアシッドホスフェート、ブチルアシッドホスフェート、ジブチルホスフェート、モノブチルホスフェート、2-エチルヘキシルアシッドホスフェート、イソデシルアシッドホスフェート、モノイソデシルホスフェート、2,6,7-トリオキサ-1-ホスファビシクロ[2,2,2]オクタン1-オキシド、3,9-ジメトキシ-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン、または[化1]~[化3]の式で表される化合物などが挙げられ、これらのいずれか1種、あるいは複数種の組み合わせが使用できる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Examples of phosphoric acid esters or condensates used as flame retardants include trimethyl phosphate, trihexyl phosphate, tri-n-butyl phosphate, triethyl phosphate, methyl polyphosphate, poly-n-butyl phosphate, ethyl polyphosphate, Tolyl phosphate, cresyl diphenyl phosphate, ethylene methyl phosphate, ethylene ethyl phosphate, methyl trimethylene phosphate, trimethylol ethane phosphate, methyl acid phosphate, butyl acid phosphate, dibutyl phosphate, monobutyl phosphate, 2-ethylhexyl acid phosphate, iso Decyl acid phosphate, monoisodecyl phosphate, 2,6,7-trioxa-1-phosphabicyclo [2,2,2] octane 1-oxide, 3,9-dimethoxy 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, or compounds represented by the formulas of [Chemical Formula 1] to [Chemical Formula 3], and any one of these Or a combination of several types can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 上記のリン酸エステルのなかで好適なものは、リン酸トリメチル、リン酸トリヘキシル、リン酸トリ-n-ブチル、リン酸トリエチル、ポリリン酸メチル、ポリリン酸-n-ブチル、ポリリン酸エチル、リン酸トリトリル、リン酸クレジルジフェニルであり、良好な難燃効果を得ることができる。 Among the above-mentioned phosphate esters, preferred are trimethyl phosphate, trihexyl phosphate, tri-n-butyl phosphate, triethyl phosphate, methyl polyphosphate, poly-n-butyl phosphate, ethyl polyphosphate, phosphoric acid. It is tritolyl and cresyl diphenyl phosphate, and a good flame retardant effect can be obtained.
 難燃剤の添加量は、電解液に対して、3~20重量%であり、好ましくは5~10重量%である。マイクロカプセル中の難燃剤の総量が、電解液に対して20重量%を超える場合、電解コンデンサの特性、特に高周波領域のインピーダンスに悪影響を与えることになる。3重量%に満たない場合には、マイクロカプセルが溶解して難燃剤が漏出しても、難燃剤の総量が不足して、難燃効果を発揮することができない。 The amount of flame retardant added is 3 to 20% by weight, preferably 5 to 10% by weight, with respect to the electrolyte. When the total amount of the flame retardant in the microcapsule exceeds 20% by weight with respect to the electrolytic solution, it adversely affects the characteristics of the electrolytic capacitor, particularly the impedance in the high frequency region. When the amount is less than 3% by weight, even if the microcapsules are dissolved and the flame retardant leaks, the total amount of the flame retardant is insufficient and the flame retardant effect cannot be exhibited.
 本発明によれば、難燃剤を封入したマイクロカプセルを、水分を含む電解液内に添加することにより、水分を含有した電解液であっても難燃剤であるリン酸エステルの加水分解が起こらず、長期間にわたり難燃効果を得ることができる。特に、素子中の水分量が35重量%以下のような、水分による難燃効果が得られにくい、少量の水分を含む場合において、素子中にマイクロカプセル化難燃剤を含有することにより、難燃効果が顕著に現れる。ここで、本願におけるコンデンサ素子中の水分とは、電解液中に含まれる水分のみではなく、セパレータや電極箔に付着している水分も含まれる。 According to the present invention, by adding a microcapsule encapsulating a flame retardant into an electrolyte containing water, hydrolysis of the phosphate ester which is a flame retardant does not occur even in an electrolyte containing moisture. The flame retardant effect can be obtained over a long period of time. In particular, when the amount of moisture in the element is 35% by weight or less, it is difficult to obtain a flame retardant effect due to moisture, and in the case of containing a small amount of moisture, by containing a microencapsulated flame retardant in the element, flame retardant The effect is noticeable. Here, the water | moisture content in the capacitor | condenser element in this application contains not only the water | moisture content contained in electrolyte solution but the water | moisture content adhering to a separator or electrode foil.
 また、コンデンサ素子中へのマイクロカプセル化難燃剤の含有方法としては、電解液に添加して分散しても良いし、セパレータや電極箔等にあらかじめ付着させておいても良い。マイクロカプセルを電解液に分散させる場合、マイクロカプセルの大きさを0.02~0.05μmにすると、電解液に分散させやすくなるため好適である。また、セパレータや電極箔に付着させる場合は、0.05μm以上の大きさであっても良い。マイクロカプセル化難燃剤をセパレータや電極箔等にあらかじめ付着させておくと、コンデンサ素子中でマイクロカプセルが分散した状態になる。また、巻回したセパレータや電極箔の電解コンデンサの安全弁付近に配置される箇所に、マイクロカプセル化難燃剤を多量に付着させておくと、コンデンサ素子着火時にコンデンサ素子の燃焼を抑制しやすくなる。このように、マイクロカプセル化難燃剤をセパレータや電極箔等にあらかじめ付着させておくことで、コンデンサ素子中におけるマイクロカプセル化難燃剤の配置状態を制御することができる。さらに、マイクロカプセル化難燃剤はセパレータや電極箔等に付着させているため、コンデンサ素子中における配置状態を長期間にわたり維持することができる。また、マイクロカプセル化難燃剤をコンデンサケースにあらかじめ付着させ、電解コンデンサ中に含有させておいても本発明の効果を得られる。 In addition, as a method of containing the microencapsulated flame retardant in the capacitor element, it may be added to the electrolyte solution and dispersed, or may be attached in advance to a separator, an electrode foil or the like. When the microcapsules are dispersed in the electrolytic solution, it is preferable that the size of the microcapsules is 0.02 to 0.05 μm because the microcapsules are easily dispersed in the electrolytic solution. Moreover, when making it adhere to a separator or electrode foil, the magnitude | size of 0.05 micrometer or more may be sufficient. When the microencapsulated flame retardant is attached in advance to a separator, an electrode foil or the like, the microcapsules are dispersed in the capacitor element. Further, if a large amount of the microencapsulated flame retardant is attached to a place where the wound separator or electrode foil is disposed near the safety valve of the electrolytic capacitor, it is easy to suppress the combustion of the capacitor element when the capacitor element is ignited. In this way, the arrangement state of the microencapsulated flame retardant in the capacitor element can be controlled by attaching the microencapsulated flame retardant in advance to a separator, an electrode foil, or the like. Furthermore, since the microencapsulated flame retardant is attached to a separator, electrode foil, or the like, the arrangement state in the capacitor element can be maintained for a long period of time. Further, the effect of the present invention can be obtained even when a microencapsulated flame retardant is attached in advance to a capacitor case and contained in an electrolytic capacitor.
 以下、本発明の実施例1~4について説明する。表1は、本発明の実施例1~4および比較例について、電解コンデンサ用電解液の組成を示したものである。実施例1~2および比較例1-1~1-2は電解液Aを用い、各素子中の水分量は3重量%であった。また、実施例3~4及び比較例2-1~2-2は電解液Bを用い、各素子中の水分量は7重量%であった。ただし、実施例1~4については、難燃剤であるリン酸トリメチルをPPSで封入した、マイクロカプセル化難燃剤を電解液に添加し、比較例1-2および比較例2-2にはリン酸トリメチルをそのまま添加した。また、比較例1-1および比較例2-1は難燃剤を全く添加しなかった。
Figure JPOXMLDOC01-appb-T000004
Examples 1 to 4 of the present invention will be described below. Table 1 shows the composition of the electrolytic solution for electrolytic capacitors in Examples 1 to 4 and Comparative Examples of the present invention. In Examples 1 and 2 and Comparative Examples 1-1 and 1-2, the electrolytic solution A was used, and the water content in each element was 3% by weight. In Examples 3 to 4 and Comparative Examples 2-1 to 2-2, the electrolytic solution B was used, and the amount of water in each element was 7% by weight. However, for Examples 1 to 4, a microencapsulated flame retardant encapsulating trimethyl phosphate as a flame retardant with PPS was added to the electrolyte, and phosphoric acid was used in Comparative Examples 1-2 and 2-2. Trimethyl was added as is. In Comparative Example 1-1 and Comparative Example 2-1, no flame retardant was added.
Figure JPOXMLDOC01-appb-T000004
 実施例1~2及び比較例1-1~1-2は、径10mm、長さ20mmで、35V-680μFの素子を用いた。また、実施例3~4及び比較例2-1~2-2は、径10mm、長さ20mmで、400V-10μFの素子を用いた。 In Examples 1 and 2 and Comparative Examples 1-1 and 1-2, a device having a diameter of 10 mm and a length of 20 mm and a 35 V-680 μF was used. In Examples 3 to 4 and Comparative Examples 2-1 to 2-2, elements having a diameter of 10 mm and a length of 20 mm and 400 V-10 μF were used.
表1に示す電解液を常法により作製し、電解液Bにはアンモニアガスを注入してpHを調整した。そして、エッチング処理及び化成処理を施した陽極電極箔と、エッチング処理のみを施した陰極電極箔に電極引き出し手段を接続し、セパレータを介して巻回し、コンデンサ素子を形成した。このコンデンサ素子に電解液を含浸した後、有底筒状の外装ケースに収納し、外装ケースの開口部に弾性ゴムからなる封口体を装着し、絞り加工により外装ケースを密封して電解コンデンサを作製した。 The electrolyte solutions shown in Table 1 were prepared by a conventional method, and ammonia gas was injected into the electrolyte solution B to adjust the pH. And the electrode extraction means was connected to the anode electrode foil which performed the etching process and the chemical conversion process, and the cathode electrode foil which performed only the etching process, and it wound through the separator, and formed the capacitor | condenser element. After this capacitor element is impregnated with an electrolytic solution, it is stored in a bottomed cylindrical outer case, a sealing body made of elastic rubber is attached to the opening of the outer case, the outer case is sealed by drawing, and the electrolytic capacitor is sealed. Produced.
表2に、実施例1~4および比較例の、電解液に対する難燃剤添加量、電解液に対するマイクロカプセル中の難燃剤添加量、初期の自己消火性能の有無、及び500時間、105℃で定格電圧を印加した後の自己消火性能の有無を示す。本願においては、ケースから取り出したコンデンサ素子に着火手段を近付け、10秒間炎をあて、着火手段をコンデンサ素子から離して自己消火性能の有無を確認した。ここで、○印は自己消火性能が有ることを示し、×印は自己消火性能が無いことを示す。自己消火性能を有する場合は、燃焼しているコンデンサ素子から着火手段を離した後に、燃焼反応が見られなくなる。また、自己消火性能が無い場合は、燃焼しているコンデンサ素子から着火手段を離した後も、燃焼反応が消えずに燃焼し続ける。
Figure JPOXMLDOC01-appb-T000005
Table 2 shows the amount of flame retardant added to the electrolyte solution, the amount of flame retardant added in the microcapsule to the electrolyte solution, presence or absence of initial self-extinguishing performance, and rating for 500 hours at 105 ° C. Indicates the presence or absence of self-extinguishing performance after voltage is applied. In the present application, the ignition means was brought close to the capacitor element taken out from the case, a flame was applied for 10 seconds, the ignition means was separated from the capacitor element, and the presence or absence of self-extinguishing performance was confirmed. Here, a circle indicates that there is self-extinguishing performance, and a cross indicates that there is no self-extinguishing performance. In the case of having self-extinguishing performance, the combustion reaction is not observed after the ignition means is separated from the burning capacitor element. Further, when there is no self-extinguishing performance, the combustion reaction does not disappear and continues to burn even after the ignition means is separated from the burning capacitor element.
Figure JPOXMLDOC01-appb-T000005
 リン酸トリメチルを添加していない比較例1-1及び2-1は、初期の段階で、着火手段を離した後もコンデンサ素子が燃焼し続けた。また、比較例1-2及び2-2は、初期は着火手段を離した後、すぐに消火し、自己消火性能を有することが確認できたものの、105℃で500時間、定格電圧を印加したものについては、着火手段を離した後もコンデンサ素子が燃焼し続けた。これは、初期段階においては難燃剤成分がコンデンサ素子中に存在しているが、定格電圧印加後には、リン酸トリメチルが素子中の水分と反応して加水分解してしまい、難燃剤成分として存在していないためだと思われる。これに対し、マイクロカプセル化難燃剤を添加した実施例1~4は、定格電圧印加後においても着火手段を離した後に消火し、自己消火性能を有することが確認できた。これは、定格電圧印加後にもマイクロカプセル中にリン酸トリメチルが存在しており、着火手段を近付けたことによりマイクロカプセルが溶解してリン酸トリメチルが溶け出し、コンデンサ素子の燃焼を抑制し、自己消火性能を発揮したと考えられる。 In Comparative Examples 1-1 and 2-1 to which no trimethyl phosphate was added, the capacitor element continued to burn even after the ignition means was released in the initial stage. Further, in Comparative Examples 1-2 and 2-2, although it was confirmed that the initial fire extinguishing means was immediately extinguished and the self-extinguishing performance was confirmed, the rated voltage was applied at 105 ° C. for 500 hours. For the capacitor, the capacitor element continued to burn after the ignition means was released. This is because the flame retardant component is present in the capacitor element in the initial stage, but after application of the rated voltage, trimethyl phosphate reacts with the moisture in the element and hydrolyzes, and exists as a flame retardant component. It seems to be because it has not. On the other hand, Examples 1 to 4 to which the microencapsulated flame retardant was added were extinguished after releasing the ignition means even after application of the rated voltage, and it was confirmed that they had self-extinguishing performance. This is because trimethyl phosphate is present in the microcapsule even after the rated voltage is applied, and by bringing the ignition means closer, the microcapsule dissolves and the trimethyl phosphate dissolves, suppressing the combustion of the capacitor element, and It is thought that fire extinguishing performance was demonstrated.
 次に、本発明の実施例5~8について説明する。実施例5,6は、難燃剤として、前記実施例1~4のリン酸トリメチルに代えて、リン酸トリトリルを使用し、実施例7,8は、難燃剤として、リン酸クレジルジフェニルを使用したものである。また、電解液としては、表2に示す電解液Bを用い、各素子中の水分量は7重量%であった。その他の条件については、前記実施例3~4と同様に設定し、コンデンサの自己消火性能の有無を確認した。 Next, Examples 5 to 8 of the present invention will be described. Examples 5 and 6 use tolyl phosphate as a flame retardant instead of trimethyl phosphate in Examples 1 to 4, and Examples 7 and 8 use cresyl diphenyl phosphate as a flame retardant. It is a thing. Moreover, as electrolyte solution, the electrolyte solution B shown in Table 2 was used, and the moisture content in each element was 7 weight%. Other conditions were set in the same manner as in Examples 3 to 4, and the presence or absence of the self-extinguishing performance of the capacitor was confirmed.
 表3に、実施例5~8の、電解液に対するマイクロカプセル中の難燃剤添加量、初期の自己消火性能の有無、及び500時間、105℃で定格電圧を印加した後の自己消火性能の有無を示す。
Figure JPOXMLDOC01-appb-T000006
Table 3 shows the amount of the flame retardant added in the microcapsules with respect to the electrolytes of Examples 5 to 8, presence / absence of initial self-extinguishing performance, and presence / absence of self-extinguishing performance after applying the rated voltage at 105 ° C. for 500 hours. Indicates.
Figure JPOXMLDOC01-appb-T000006
 この表3から明らかなように、難燃剤として、リン酸トリトリルまたはリン酸クレジルジフェニルを使用した場合も、前記実施例1~4のリン酸トリメチルと同様に、長期間に渡り電解コンデンサの難燃効果が持続することを確認した。 As can be seen from Table 3, even when tolyl phosphate or cresyl diphenyl phosphate is used as the flame retardant, it is difficult to use the electrolytic capacitor over a long period of time as in the case of trimethyl phosphate in Examples 1 to 4. It was confirmed that the fuel effect lasted.
 実施例5~8では、エチレングリコールを主溶媒とした電解液Bを用いたが、γ-ブチロラクトンを主溶媒とした電解液Aを用いた場合でも、同様の効果が得られた。 In Examples 5 to 8, the electrolytic solution B containing ethylene glycol as the main solvent was used, but the same effect was obtained even when using the electrolytic solution A containing γ-butyrolactone as the main solvent.
 本実施例では、巻回形コンデンサを使用したが、これに限定されるものではなく、積層形コンデンサにマイクロカプセル化難燃剤を添加しても良い。 In this embodiment, a wound capacitor is used, but the present invention is not limited to this, and a microencapsulated flame retardant may be added to the multilayer capacitor.

Claims (5)

  1.  リン酸エステルまたはその縮合体からなる難燃剤を、150℃以上で溶解する樹脂内に封入してマイクロカプセル化難燃剤を作製し、前記マイクロカプセル化難燃剤をコンデンサ素子内に含有したことを特徴とする難燃性電解コンデンサ。 A microencapsulated flame retardant is produced by encapsulating a flame retardant comprising a phosphate ester or a condensate thereof in a resin that dissolves at 150 ° C. or higher, and the microencapsulated flame retardant is contained in a capacitor element. And flame retardant electrolytic capacitor.
  2.  前記マイクロカプセルのシェルを構成する樹脂が、エポキシ樹脂、フェノール樹脂、ポリフェニレンサルファイド(PPS)、ポリイミド(PI)、ポリアラミド、メラミン樹脂、ポリウレアまたはポリウレタンから選択される少なくとも一種からなることを特徴とする請求項1に記載の難燃性電解コンデンサ。 The resin constituting the shell of the microcapsule is composed of at least one selected from epoxy resin, phenol resin, polyphenylene sulfide (PPS), polyimide (PI), polyaramid, melamine resin, polyurea or polyurethane. Item 2. A flame retardant electrolytic capacitor according to Item 1.
  3. 前記コンデンサ素子に含まれる水分量が、35重量%以下であることを特徴とする請求項1または請求項2に記載の難燃性電解コンデンサ。 3. The flame-retardant electrolytic capacitor according to claim 1, wherein the amount of water contained in the capacitor element is 35% by weight or less.
  4. 難燃剤の添加量は、電解液に対して、3~20重量%であることを特徴とする請求項1~3のいずれかに記載の難燃性電解コンデンサ。 4. The flame retardant electrolytic capacitor according to claim 1, wherein the amount of the flame retardant added is 3 to 20% by weight with respect to the electrolytic solution.
  5.  難燃剤として使用するリン酸エステルまたはその縮合体が、リン酸トリメチル、リン酸トリヘキシル、リン酸トリ-n-ブチル、リン酸トリエチル、ポリリン酸メチル、ポリリン酸-n-ブチル、ポリリン酸エチル、リン酸トリトリル、リン酸クレジルジフェニルの一種、または複数種であることを特徴とする請求項1~4のいずれかに記載の難燃性電解コンデンサ。 Phosphate esters or condensates used as flame retardants are trimethyl phosphate, trihexyl phosphate, tri-n-butyl phosphate, triethyl phosphate, methyl polyphosphate, poly-n-butyl phosphate, ethyl polyphosphate, phosphorus The flame-retardant electrolytic capacitor according to any one of claims 1 to 4, which is one or more of tritolyl acid and cresyl diphenyl phosphate.
PCT/JP2011/076258 2010-11-16 2011-11-15 Fire retardant electrolytic capacitor WO2012067097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012544252A JPWO2012067097A1 (en) 2010-11-16 2011-11-15 Flame retardant electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-256133 2010-11-16
JP2010256133 2010-11-16

Publications (1)

Publication Number Publication Date
WO2012067097A1 true WO2012067097A1 (en) 2012-05-24

Family

ID=46084023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076258 WO2012067097A1 (en) 2010-11-16 2011-11-15 Fire retardant electrolytic capacitor

Country Status (3)

Country Link
JP (1) JPWO2012067097A1 (en)
TW (1) TW201233789A (en)
WO (1) WO2012067097A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599739A (en) * 2013-11-25 2014-02-26 深圳大学 Method for preparing epoxy microcapsules by taking phenolic resin as wall material
JPWO2014024603A1 (en) * 2012-08-10 2016-07-25 日本ケミコン株式会社 Flame retardant electrolytic capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195512A (en) * 1987-10-08 1989-04-13 Mitsubishi Petrochem Co Ltd Fire retardant electrolytic capacitor
JPH03180014A (en) * 1989-12-08 1991-08-06 Hitachi Aic Inc Electrolyte for electrolytic capacitor
JPH0913037A (en) * 1995-07-03 1997-01-14 Nippon Carbide Ind Co Inc Capsuled flame retardant composition
JPH10116629A (en) * 1996-10-15 1998-05-06 Mitsui Chem Inc Non-aqueous electrolyte
JPH11233376A (en) * 1998-02-12 1999-08-27 Matsushita Electric Ind Co Ltd Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195512A (en) * 1987-10-08 1989-04-13 Mitsubishi Petrochem Co Ltd Fire retardant electrolytic capacitor
JPH03180014A (en) * 1989-12-08 1991-08-06 Hitachi Aic Inc Electrolyte for electrolytic capacitor
JPH0913037A (en) * 1995-07-03 1997-01-14 Nippon Carbide Ind Co Inc Capsuled flame retardant composition
JPH10116629A (en) * 1996-10-15 1998-05-06 Mitsui Chem Inc Non-aqueous electrolyte
JPH11233376A (en) * 1998-02-12 1999-08-27 Matsushita Electric Ind Co Ltd Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014024603A1 (en) * 2012-08-10 2016-07-25 日本ケミコン株式会社 Flame retardant electrolytic capacitor
CN103599739A (en) * 2013-11-25 2014-02-26 深圳大学 Method for preparing epoxy microcapsules by taking phenolic resin as wall material
WO2015074341A1 (en) * 2013-11-25 2015-05-28 深圳大学 Method for preparing epoxy microcapsule by using phenolic resin as wall material
CN103599739B (en) * 2013-11-25 2015-10-21 深圳大学 A kind of take phenolic resins as the preparation method of the epoxy microcapsule of wall material

Also Published As

Publication number Publication date
TW201233789A (en) 2012-08-16
JPWO2012067097A1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
TWI655657B (en) Electrolytic capacitor and method of manufacturing same
KR101548193B1 (en) Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP6310848B2 (en) Flame retardant electrolytic capacitor
JP6297798B2 (en) Flame retardant electrolytic capacitor
WO2012067097A1 (en) Fire retardant electrolytic capacitor
JP5964653B2 (en) Flame retardant electrolytic capacitor
JP5040567B2 (en) Electrolytic capacitor
JP2012069576A (en) Nonaqueous electrolytic solution and electrochemical device using the same
JPWO2004051679A1 (en) Flame retardant electrolyte electrolytic capacitor
JP2002184655A (en) Flat electrolytic capacitor
JP4488128B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP2010171305A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor using the same
JP2001319833A (en) Aluminum electrolytic capacitor, electrolyte solution used therefor, and its manufacturing method
JP4720962B2 (en) Aluminum electrolytic capacitor, electrolytic solution for aluminum electrolytic capacitor used therefor, and manufacturing method thereof.
JP4488163B2 (en) Electrolytic solution for electrolytic capacitors
JP2007123821A (en) Electrolyte for electrolytic capacitor, and electrolytic capacitor
JP4784543B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the electrolytic solution
JP4096133B2 (en) Electrolytic solution for electrolytic capacitors
JP4811969B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2002083743A (en) Aluminum electrolytic capacitor, electrolytic solution for the same and manufacturing method therefor
JP4569725B2 (en) Aluminum electrolytic capacitor, electrolytic solution for aluminum electrolytic capacitor used therefor, and manufacturing method thereof.
JP2003100563A (en) Electrolyte for driving electrolytic capacitor
TW202217879A (en) Electrolyte for electrolytic capacitors and electrolytic capacitors
JP2001319834A (en) Aluminum electrolytic capacitor, electrolyte solution used therefor, and its manufacturing method
JP2001326147A (en) Aluminum electrolytic capacitor, electrolyer solution used there and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841114

Country of ref document: EP

Kind code of ref document: A1