WO2012066940A1 - Tandem accelerator and charge exchanger - Google Patents

Tandem accelerator and charge exchanger Download PDF

Info

Publication number
WO2012066940A1
WO2012066940A1 PCT/JP2011/075422 JP2011075422W WO2012066940A1 WO 2012066940 A1 WO2012066940 A1 WO 2012066940A1 JP 2011075422 W JP2011075422 W JP 2011075422W WO 2012066940 A1 WO2012066940 A1 WO 2012066940A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative ions
ions
plates
charge exchanger
accelerator
Prior art date
Application number
PCT/JP2011/075422
Other languages
French (fr)
Japanese (ja)
Inventor
元 和田
貴弘 剣持
眞實子 笹尾
純男 北島
岡本 敦
健祐 寺井
Original Assignee
学校法人同志社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人同志社, 国立大学法人東北大学 filed Critical 学校法人同志社
Priority to JP2012544176A priority Critical patent/JPWO2012066940A1/en
Publication of WO2012066940A1 publication Critical patent/WO2012066940A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses
    • H05H5/06Multistage accelerators
    • H05H5/063Tandems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/14Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using charge exchange devices, e.g. for neutralising or changing the sign of the electrical charges of beams

Definitions

  • the present invention relates to a tandem accelerator that obtains a high-energy ion beam by accelerating negative ions, converting them into positive ions, and accelerating them again, and a charge exchanger used in the tandem accelerator.
  • Neutron generator tubes that irradiate heavy metal targets with high-energy ion beams to generate high-density neutrons by fusion are widely used for inspection of plastic bombs in baggage at airports and as a neutron source for treatment. It is going to be used.
  • the tandem accelerator has a low-pressure side acceleration tube, a charge exchanger, and a high-energy side acceleration tube arranged in this order in a metal pressure tank whose inside is kept in vacuum.
  • a metal pressure tank whose inside is kept in vacuum.
  • the negative ion When a negative ion given kinetic energy passes through the charge exchanger, the negative ion emits two or more electrons that have been held so far to become a positive ion, and enters the opposite region of the charge exchanger with respect to the ion source. Head towards a certain high energy accelerator tube. In the high energy side accelerating tube, there is an electric field having the same strength as the electric field formed in the low energy side accelerating tube and having a direction opposite to 180 degrees. The positive ions are further accelerated in the direction of travel, and obtain an energy that is an integral multiple of that of the high-voltage power supply, depending on the number of electrons lost in the charge exchanger.
  • tandem acceleration By using an acceleration device that is operated based on the above principle called tandem acceleration, it is possible to easily obtain a high-energy positive ion beam that is an integer multiple of 2 or more of simple acceleration by the high-voltage power supply used.
  • the conversion method using stripper gas requires the gas to be circulated inside the acceleration device, which not only complicates the device but also prevents charge exchange reaction unless a sufficient amount of gas is supplied. It will be enough. Furthermore, the supplied gas increases the operating pressure in the accelerator and adversely affects the insulation of the high voltage power supply. In particular, in order to maintain the gas pressure in the apparatus appropriately, the apparatus becomes large, and it has been difficult to realize a small tandem accelerator that is operated with a power supply of about tens of thousands to hundreds of thousands of volts.
  • the present invention has been made in view of the above-mentioned problems, and provides a charge exchanger having a high conversion efficiency from negative ions to positive ions, a long life and a simple structure, and a tandem accelerator using the same. With the goal.
  • a tandem acceleration apparatus includes an ion source that generates negative ions, a low-energy side acceleration tube that electrostatically accelerates negative ions extracted from the ion source, and positive ions that are incident on the negative ions.
  • a tandem accelerator that is accommodated in this order in a pressure tank, a charge exchanger that converts the positive ions into a high-energy accelerator tube that electrostatically accelerates the converted positive ions again,
  • the charge exchanger is composed of a plurality of plates made of a refractory metal arranged in parallel at a predetermined interval, One side of the plurality of plates has a smooth surface; Each of the plates is installed such that an angle formed by the one surface with respect to the incident direction of the negative ions is 10 degrees or less, The negative ions are reflected by one surface of each plate and converted into positive ions.
  • the root mean square roughness which is a parameter of the surface roughness is preferably 0.071 or less.
  • the negative ions are preferably deuterium negative ions, and the plate is preferably made of molybdenum.
  • the ion source may extract the deuterium negative ions from the vaporized cesium.
  • the plurality of plates are held at predetermined intervals in a hollow portion of a rectangular tube-shaped frame, and the frame is centered with respect to the negative ion incidence direction by an angle adjusting member. It is preferable that it is comprised so that can rotate.
  • the charge exchanger of the present invention If the charge exchanger of the present invention is used, deuterium negative ions can be converted into positive ions with high efficiency. In addition, since it is not necessary to circulate the gas in the apparatus, the structure is simplified, and the degree of vacuum can be maintained high, so that a high energy ion beam can be realized. Furthermore, since it can be used repeatedly once installed, the operating cost of the tandem accelerator can be greatly reduced as compared with the case of using a carbon foil.
  • FIG. 1 is a cross-sectional view showing a schematic configuration when a tandem accelerator according to an embodiment of the present invention is used as a neutron generating tube.
  • FIG. 2 is a view of the charge exchanger of FIG. 1 as viewed from the incident direction of negative ions.
  • FIG. 3 is a view of one of the molybdenum plates held on the frame of FIG. 2 as viewed from a direction orthogonal to the negative ion entry direction A.
  • FIG. FIG. 4 shows the intensity of a reflected beam when a negative ion (D ⁇ ) having an energy of 75 keV is incident at an angle ⁇ of 10 degrees on a flat surface at the atomic level of a molybdenum plate, based on theoretical calculation.
  • D ⁇ negative ion
  • FIG. 5 shows the intensity of a reflected beam when a negative ion (D ⁇ ) having an energy of 75 keV is incident at an angle ⁇ of 5 degrees on a flat surface at the atomic level of a molybdenum plate, based on theoretical calculation. It is a figure which shows the calculated result.
  • FIG. 6 shows the intensity of a reflected beam when a negative ion (D ⁇ ) having an energy of 75 keV is incident at an angle ⁇ of 1 degree on a flat surface at the atomic level of a molybdenum plate, based on theoretical calculation. It is a figure which shows the calculated result.
  • FIG. 5 shows the intensity of a reflected beam when a negative ion (D ⁇ ) having an energy of 75 keV is incident at an angle ⁇ of 5 degrees on a flat surface at the atomic level of a molybdenum plate, based on theoretical calculation. It is a figure which shows the calculated result.
  • FIG. 6 shows the intensity of
  • FIG. 7 shows the intensity of a reflected beam when a negative ion (D ⁇ ) having an energy of 75 keV is incident at an angle ⁇ of 20 degrees on a flat surface at the atomic level of a molybdenum plate, based on theoretical calculation. It is a figure which shows the calculated result.
  • FIG. 8 is a diagram showing a schematic configuration of an evaluation apparatus for evaluating the performance of the charge exchanger.
  • FIG. 9 is a graph showing an example of the performance evaluation result of the charge exchanger measured using the evaluation apparatus of FIG.
  • FIG. 10 is a graph showing the result of detecting the ratio of the intensity of the ion beam in the low energy accelerator tube and the high energy accelerator tube with the detectors installed at the respective outlets.
  • a charge exchanger is configured by utilizing a recoil phenomenon that occurs on the surface of a refractory metal. It can be seen that deuterium negative ions (D ⁇ ) collide at high speed with the surface of a plate made of a refractory metal such as molybdenum or tungsten, and electrons are emitted and converted to positive ions (D + ). ing. Through experiments, the inventors have found that the directivity of the reflected beam becomes sharp when negative ions of deuterium are incident on a refractory metal plate whose surface is polished smoothly at a shallow angle.
  • the present invention has been made on the basis of the above experimental results.
  • the charge exchanger is made of a high melting point metal, and a plurality of plates whose one surface is polished smoothly are arranged in parallel at a predetermined interval. These plates are installed so as to be inclined so that the angle formed by the one surface with respect to the incident direction of the negative ion beam is 10 degrees or less.
  • FIG. 1 shows a schematic configuration of a tandem accelerator according to the present embodiment.
  • the tandem accelerator 1 is basically composed of an ion source 2, a low energy side acceleration tube 3, a high energy side acceleration tube 4, a high voltage terminal 5, a charge exchanger 6, a high voltage power source 7, and a target 8. Each member except the voltage power source 7 is accommodated in a metal pressure tank 9 in a vacuum state.
  • an ion source 2 that generates deuterium negative ions (D ⁇ ) is used.
  • an alkali metal such as cesium
  • an alkali metal positive ion and a deuterium negative ion are generated.
  • positive ions of alkali metal are adsorbed on the wall of the pressure tank 9 and removed, leaving only deuterium negative ions (D ⁇ ).
  • cesium is optimal as an alkali metal, the same effect is acquired even if it uses another alkali metal.
  • a high frequency generator is provided inside the ion source 2, and a permanent magnet is provided around the ion source 2. Due to the application of high frequency and the action of a permanent magnet, the deuterium negative ions (D ⁇ ) are in a plasma state, and after being formed into a beam shape by a lens system (not shown), they are released into the low energy side acceleration tube 3 from the ion emission holes.
  • D ⁇ deuterium negative ions
  • the low energy side accelerating tube 3 has a plurality of electrodes 31 having a hole through which an ion beam passes at the center and arranged at equal intervals through a short tube 32 made of an insulator such as alumina ceramic. Is.
  • a voltage dividing resistor is connected between the adjacent electrodes 31 (not shown), and a series of voltage dividing resistors and the electrode 31 constitute a voltage dividing circuit.
  • the potential of the electrode on the inlet side of the low energy side acceleration tube 3 is fixed to the ground potential, and the electrode on the outlet side is electrically connected to the high voltage terminal 5.
  • the high energy side acceleration tube 4 is configured in the same manner as the low energy side acceleration tube 3.
  • a plurality of electrodes 41 having a hole through which an ion beam passes at the center and arranged at equal intervals are stacked via a short tube 42 made of an insulator such as glass.
  • a voltage dividing resistor is connected between the adjacent electrodes 41 (not shown), and a series of voltage dividing resistors and the electrode 41 constitute a voltage dividing circuit.
  • the electrode at the end of the high energy side acceleration tube 4 on the inlet side is electrically connected to the high voltage terminal 5, and the potential of the electrode at the end on the outlet side is fixed to the ground potential.
  • the high voltage terminal 5 made of cylindrical metal is applied with a positive acceleration voltage with respect to the ground potential from the high voltage power source 7, and each of the low energy side acceleration tube 3 and the high energy side acceleration tube 4. An equal voltage obtained by dividing the acceleration voltage by a voltage dividing circuit is applied between adjacent electrodes.
  • the high voltage terminal 5 accommodates a charge exchanger 6. The configuration of the charge exchanger 6 will be described in detail later with reference to FIGS.
  • a target 8 in which palladium is impregnated with deuterium is used.
  • the ion beam incident on the low energy side acceleration tube 3 is accelerated by the electric field between the electrodes 31 to obtain energy of about 75 keV, and then supplied to the charge exchanger 6 in the high voltage terminal 5.
  • the deuterium negative ions (D ⁇ ) accelerated by the low energy side accelerating tube 3 collide with the atoms of the molybdenum plate 61 as will be described later, whereby the extranuclear electrons are stripped off and positive ions (D + ). Is converted to
  • the ion beam of deuterium positive ions (D + ) output from the charge exchanger 6 is incident on the high energy side acceleration tube 4 and accelerated again toward the ground potential by the electric field between the electrodes 41, and has an energy of about 150 keV. After obtaining, the target 8 collides. Neutrons are emitted from the target 8 by the collision of deuterium positive ions (D + ).
  • FIG. 2 is a view of the charge exchanger 6 as seen from the direction of incidence of negative ions.
  • the charge exchanger 6 includes a plurality of plates 61 made of molybdenum, a frame 62, an arm 63, and an angle adjusting member 64.
  • the frame 62 is made of a rectangular tube-shaped metal in which the axis of the hollow portion is arranged in the vertical direction (perpendicular to the paper surface).
  • a plurality of grooves are formed at equal intervals on the opposing inner walls of the hollow portion of the frame 62, and both ends of the molybdenum plate 61 are inserted into the grooves.
  • the plurality of molybdenum plates 61 are held by these grooves in a state of being arranged in parallel at a predetermined interval.
  • the frame 62 is attached to the angle adjusting member 64 via a pair of arms 63.
  • the angle adjusting member 64 is fixed to the high voltage terminal 5 and is configured to be rotated in the vertical direction (perpendicular to the paper surface) and held at the rotated position by an angle adjusting mechanism (not shown).
  • each molybdenum plate 61 that is irradiated with a negative ion beam is polished with a polishing agent such as scouring powder, and then surface irregularities are removed using a silk cloth or the like, and the flatness is flat at the atomic level.
  • FIG. 3 shows a state in which one of the molybdenum plates 61 held by the frame 62 is viewed from a direction orthogonal to the negative ion entry direction.
  • the molybdenum plate 61 is arranged so that the smooth surface 61S polished with the ion beam is irradiated.
  • FIG. 3A shows a case where the angle ⁇ formed between the approach direction A of deuterium negative ions (D ⁇ ) and the polished smooth surface 61S of the molybdenum plate 61 is small
  • FIG. 3B shows the angle. The case where ⁇ is relatively large is shown.
  • an angle formed by the entrance direction A of negative ions and the polished surface 61S of the metal plate 61 is formed.
  • 10 degrees or less
  • incident negative ions of hydrogen collide with molybdenum atoms of the molybdenum plate 61 and are converted to positive ions with a probability of almost 100%, and most positive ions have an incident angle of It was found to reflect at equal angles.
  • the directivity of the reflected positive ions is the steepest when the angle ⁇ is around 1 degree.
  • ACAT is well known as a sputtering analysis code and is described in detail in the following documents, for example. “(2) Sputtering analysis codes ACAT and ACAT-DIFFUSE” in “Project Materials” of “New Development of Tritium Research Aiming for Realization of Fusion Reactor” Kenji and others (searched on October 14, 2011), Internet ⁇ URL: // http: //tritium.nifs.ac.jp/project/02/index.html>
  • FIG. 5 shows the intensity of the reflected beam when a negative ion (D ⁇ ) having an energy of 75 keV is incident at ⁇ 85 degrees, that is, at an angle ⁇ of 5 degrees.
  • FIG. 6 shows the intensity of the reflected beam when negative ions (D ⁇ ) having an energy of 75 keV are incident at ⁇ 89 degrees, that is, at an angle ⁇ of 1 degree.
  • the directivity of the reflected beam becomes steeper as the angle ⁇ decreases. In particular, it converges to a straight line at 1 degree.
  • the angle ⁇ is 10 It was found that the ion beam is scattered on the reflecting surface even when the angle is less than or equal to the degree, the number of ions incident on the high energy side acceleration tube 4 is reduced, and the conversion efficiency is lowered.
  • FIG. 7 shows that a negative ion (D ⁇ ) having an energy of 75 keV is applied to ⁇ 70 degrees (that is, the negative ion approach direction A shown in FIG.
  • the result of calculating the intensity of the reflected beam when incident at an angle ⁇ of 20 degrees with the smooth surface 61S is calculated using ACAT as in FIG. As shown in the figure, when the angle ⁇ is 20 degrees, the reflected beam spreads and the directivity deteriorates.
  • the evaluation device 10 is installed instead of the target 8 on the ion beam exit side of the high energy side acceleration tube 4 of the tandem accelerator 1 shown in FIG.
  • the evaluation apparatus 10 includes an ion beam detector 11, a shielding plate 12 attached to the entrance of the detector 11 and formed with a slit 12S having a width of about 0.3 mm, and a parallel plate type that deflects the ion beam by an electric field.
  • the detector 11 detects the intensity of the ion beam incident from the slit 12S of the shielding plate 12 as a current value.
  • the shielding plate 12 is configured to be movable in a direction orthogonal to the traveling direction A of the ion beam by a driving means (not shown) as indicated by an arrow. Further, the shielding plate 12 and the detector 11 move integrally.
  • the deuterium positive ion (D + ) ion beam is substantially parallel to the traveling direction A of the negative ion ion beam as shown by the solid arrow. proceed.
  • the traveling direction of the ion beam is deflected as indicated by the broken arrow.
  • FIG. 9 shows the result of the performance evaluation test of the charge exchanger 6 measured using the evaluation apparatus 10 of FIG. In this test, performance was evaluated using hydrogen instead of deuterium.
  • the horizontal axis indicates the displacement of the slit 12S with respect to the traveling direction of the ion beam when the shielding plate 12 is moved in the arrow direction of FIG. 8, and the vertical axis indicates the current value of the ion beam detected by the detector 11.
  • an angle ⁇ formed by the negative ion approach direction A and the polished surface 61S of the molybdenum plate 61 was set to 1 degree.
  • the energy of positive ions (H ⁇ ) of the obtained hydrogen was 145 keV.
  • the measured value when the voltage is applied, the broken line indicates the value obtained by theoretical calculation.
  • the negative current value is obtained by detecting that the ion beam of negative ions (H ⁇ ) incident on the charge exchanger 6 leaks and passes between the plates without being reflected by the surface of the molybdenum plate 61. It can be seen that has almost reached the center.
  • the leakage of the negative ion (H ⁇ ) ion beam can be almost eliminated by adjusting the length and interval of the molybdenum plate 61.
  • FIG. 10 shows the ratio of the intensity of the ion beam in the low energy side acceleration tube 3 and the high energy side acceleration tube 4 detected by the detectors 11 installed at the respective outlets.
  • FIG. The angle ⁇ formed between the negative ion entry direction A and the polished surface 61S of the molybdenum plate 61 is set to 1 degree.
  • the horizontal axis indicates the energy of the positive ion (H + ) ion beam obtained by the tandem accelerator
  • the vertical axis indicates the current value indicating the intensity of the ion beam at the exit of the high energy side acceleration tube 4.
  • a ratio between Ip and a current value In indicating the intensity of an ion beam of negative ions (H ⁇ ) at the exit of the low energy side acceleration tube 3 is shown.
  • the ⁇ mark is the value when using a molybdenum plate (polishing level 1) whose surface is polished, and the ⁇ mark is the value when using a molybdenum plate (polishing level 2) that has been finely polished after polishing the surface.
  • Each value is flat at the atomic level.
  • the squares are ideal values obtained by calculation.
  • Table 1 shows the measurement results of the surface roughness of the molybdenum plate used in this measurement. Each row of Table 1 shows various parameters of the surface roughness, and each column shows a measured value of the polishing level 1 and polishing level 2 molybdenum plates.
  • the ion beam intensity is slightly lower than that of the molybdenum plate 61 at the polishing level 2. However, it shows a value that can be practically enough.
  • the ratio of the ion beam when the surface of the molybdenum plate 61 is polished approaches the calculated value. Therefore, as the beam energy increases, the negative ions are positively corrected with higher efficiency. It turns out that it can convert into ion.
  • the charge exchanger of the present invention by using the charge exchanger of the present invention, deuterium negative ions can be converted into positive ions with high efficiency.
  • the structure is simpler than when a stripper gas is used, and a high degree of vacuum can be maintained, so that a high-energy ion beam can be realized.
  • the installed metal plate can be used repeatedly, the operating cost of the tandem accelerator can be greatly reduced as compared with the case of using a carbon foil.
  • the charge exchanger is used to convert deuterium negative ions into positive ions, but the present invention is not limited to this.
  • a tandem accelerator may be used to generate high energy ion beams of various materials.
  • the configuration of the charge exchanger is not limited to that shown in FIG. Any configuration may be adopted as long as a plurality of metal plates for converting negative ions into positive ions can be arranged in parallel and the angle can be adjusted.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

Provided are: a charge exchanger with highly efficient exchange from negative ions to positive ions, a long life, and a simple structure; and a tandem accelerator using same. A low energy-side accelerator tube that electrostatically accelerates negative ions (D-) pulled out from an ion source (2), a charge exchanger that converts incident negative ions (D-) to positive ions (D+), and a high energy-side accelerator tube that again electrostatically accelerates the converted positive ions (D+) are housed, in that order, inside a pressure tank in the tandem accelerator. The charge exchanger comprises a plurality of plates (61) made from a high-fusion point metal arranged in parallel at prescribed intervals. The plurality of plates (61) have a smooth surface on one surface (61S), and each plate is arranged such that said surface (61S) forms an angle of 10° or less with the incident direction of the negative ions (D-). The negative ions (D-) are reflected by said surface (61S) of each plate (6) and are converted into positive ions (D+).

Description

タンデム加速装置および電荷交換器Tandem accelerator and charge exchanger
 本発明は、負イオンを加速した後正イオンに変換して再度加速することにより、高エネルギーのイオンビームを得るタンデム加速装置、およびこのタンデム加速装置に用いる電荷交換器に関する。 The present invention relates to a tandem accelerator that obtains a high-energy ion beam by accelerating negative ions, converting them into positive ions, and accelerating them again, and a charge exchanger used in the tandem accelerator.
 高エネルギーのイオンビームを重金属製のターゲットに照射して、核融合により高密度の中性子を発生させる中性子発生管が、空港での手荷物中のプラスチック爆弾の検査用として、また治療用中性子源として広く利用されようとしている。 Neutron generator tubes that irradiate heavy metal targets with high-energy ion beams to generate high-density neutrons by fusion are widely used for inspection of plastic bombs in baggage at airports and as a neutron source for treatment. It is going to be used.
 上述の中性子発生管を実現するためには、長寿命かつ小型で高信頼性の中性子源が必要となり、これを簡便に得るためには、重水素が吸着されたターゲットに加速された重水素のイオンビームを衝突させて、ヘリウムと中性子を得る核反応を利用することが効果的である。 In order to realize the neutron generator tube described above, a long-life, small-sized and highly reliable neutron source is required. To obtain this easily, the deuterium accelerated by the target on which deuterium is adsorbed is obtained. It is effective to use a nuclear reaction to obtain helium and neutrons by colliding with an ion beam.
 上述の核反応を起こすためには、重水素に150keV程度のエネルギーを与える必要があり、このような高エネルギーのイオンビームを発生させる手段として、タンデム加速装置が利用されている(例えば、特許文献1)。 In order to cause the above-described nuclear reaction, it is necessary to give deuterium energy of about 150 keV, and a tandem accelerator is used as means for generating such a high-energy ion beam (for example, Patent Documents). 1).
 タンデム加速装置は、内部が真空に保持された金属製の圧力タンク内に、低エネルギー側加速管、電荷交換器および高エネルギー側加速管を、この順序に配置したものである。以下、タンデム加速装置の動作について簡単に説明する。 The tandem accelerator has a low-pressure side acceleration tube, a charge exchanger, and a high-energy side acceleration tube arranged in this order in a metal pressure tank whose inside is kept in vacuum. Hereinafter, the operation of the tandem accelerator will be briefly described.
 まず高圧電源を用いて、数万ボルト程度の高い正の電圧を電荷交換器に印加し、イオン源から負イオンのイオンビームを取り出す。次に、低エネルギー側加速管内に生成された電界によって負イオンを加速し、高圧電源の電圧に対応する運動エネルギーを与える。 First, using a high-voltage power supply, a high positive voltage of about tens of thousands of volts is applied to the charge exchanger, and an ion beam of negative ions is taken out from the ion source. Next, the negative ions are accelerated by the electric field generated in the low energy side acceleration tube, and kinetic energy corresponding to the voltage of the high voltage power source is given.
 運動エネルギーを与えられた負イオンが電荷交換器を通過すると、負イオンはそれまで保持していた電子を2個以上放出し正イオンとなって、イオン源に対し電荷交換器の逆側領域にある高エネルギー側加速管に向かう。高エネルギー側加速管内には、低エネルギー側加速管内に形成される電界と強さが同じで向きが180度逆の電界が存在する。正イオンは進んできた方向に向かってさらに加速力を受け、電荷交換器で失った電子の数に応じて、高圧電源の整数倍のエネルギーを得る。 When a negative ion given kinetic energy passes through the charge exchanger, the negative ion emits two or more electrons that have been held so far to become a positive ion, and enters the opposite region of the charge exchanger with respect to the ion source. Head towards a certain high energy accelerator tube. In the high energy side accelerating tube, there is an electric field having the same strength as the electric field formed in the low energy side accelerating tube and having a direction opposite to 180 degrees. The positive ions are further accelerated in the direction of travel, and obtain an energy that is an integral multiple of that of the high-voltage power supply, depending on the number of electrons lost in the charge exchanger.
 タンデム加速と呼ばれる以上の原理に基づいて運転される加速装置を用いることにより、使用する高圧電源による単純加速の2以上の整数倍の高エネルギーの正イオンビームを簡便に得ることができる。 By using an acceleration device that is operated based on the above principle called tandem acceleration, it is possible to easily obtain a high-energy positive ion beam that is an integer multiple of 2 or more of simple acceleration by the high-voltage power supply used.
 上述の従来のタンデム加速装置では、電荷交換器において負イオンを正イオンに変換する方法として、特許文献1に記載されたようなストリッパガスを用いる方法と、非特許文献1に記載されたような炭素フォイルを用いる方法が採用されてきた。 In the conventional tandem accelerator described above, as a method of converting negative ions into positive ions in the charge exchanger, a method using a stripper gas as described in Patent Document 1 and a method described in Non-Patent Document 1 are used. A method using carbon foil has been adopted.
特開2000-164398号公報JP 2000-164398 A
 上述の方法のうちストリッパガスを用いる変換方法は、加速装置内部にガスを循環させる必要があるため、装置が複雑化するばかりでなく、十分な量のガスを供給しなければ電荷交換反応が不十分となる。さらに、供給されたガスが加速装置内の運転圧力を増加させ、高圧電源の絶縁に悪影響を及ぼす。特に、装置内のガス圧を適正に維持するために装置が大型化し、数万から数十万ボルト程度の電源で運転される小型のタンデム加速装置を実現することは困難であった。 Of the above methods, the conversion method using stripper gas requires the gas to be circulated inside the acceleration device, which not only complicates the device but also prevents charge exchange reaction unless a sufficient amount of gas is supplied. It will be enough. Furthermore, the supplied gas increases the operating pressure in the accelerator and adversely affects the insulation of the high voltage power supply. In particular, in order to maintain the gas pressure in the apparatus appropriately, the apparatus becomes large, and it has been difficult to realize a small tandem accelerator that is operated with a power supply of about tens of thousands to hundreds of thousands of volts.
 一方、炭素フォイルを用いる変換方法では、負イオンを多くの粒子と衝突させると、折角加速してきた粒子が薄膜内で衝突を繰り返し、固体中で止まってしまう。このため、炭素フォイルを極めて薄く形成することによって衝突回数を減らし、入射した負イオンを通過させる必要がある。しかし、あまりに薄いフォイルは機械的強度が十分でなく、簡単に破壊されると言う問題があった。その結果、フォイルを頻繁に取り換える必要が生じ、装置の運用コストが高くなる。 On the other hand, in the conversion method using carbon foil, when negative ions collide with many particles, the particles that have been accelerated are repeatedly collided in the thin film and stopped in the solid. For this reason, it is necessary to reduce the number of collisions by making the carbon foil very thin and allow incident negative ions to pass through. However, a too thin foil has a problem that it has a mechanical strength and is easily broken. As a result, it is necessary to frequently replace the foil, which increases the operating cost of the apparatus.
 本発明は上述の問題点に鑑みてなされたもので、負イオンから正イオンへの変換効率が高く、長寿命で構造も簡単な電荷交換器と、それを用いたタンデム加速装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and provides a charge exchanger having a high conversion efficiency from negative ions to positive ions, a long life and a simple structure, and a tandem accelerator using the same. With the goal.
 上記目的を達成するため本発明にかかるタンデム加速装置は、負イオンを生成するイオン源、このイオン源から引き出される負イオンを静電加速する低エネルギー側加速管、入射する前記負イオンを正イオンに変換する電荷交換器、および変換された正イオンを再び静電加速する高エネルギー側加速管が、圧力タンク内にこの順序で収容されたタンデム加速装置であって、
 前記電荷交換器は、高融点金属で作製された複数の板が所定の間隔を隔てて並列に並べられて構成され、
 前記複数の板の一方の面は滑らかな表面を持ち、
 前記各板は、前記負イオンの入射方向に対して前記一方の面のなす角度が10度以下となるように設置され、
 前記負イオンは前記各板の一方の面で反射して正イオンに変換されることを特徴とする。
In order to achieve the above object, a tandem acceleration apparatus according to the present invention includes an ion source that generates negative ions, a low-energy side acceleration tube that electrostatically accelerates negative ions extracted from the ion source, and positive ions that are incident on the negative ions. A tandem accelerator that is accommodated in this order in a pressure tank, a charge exchanger that converts the positive ions into a high-energy accelerator tube that electrostatically accelerates the converted positive ions again,
The charge exchanger is composed of a plurality of plates made of a refractory metal arranged in parallel at a predetermined interval,
One side of the plurality of plates has a smooth surface;
Each of the plates is installed such that an angle formed by the one surface with respect to the incident direction of the negative ions is 10 degrees or less,
The negative ions are reflected by one surface of each plate and converted into positive ions.
 ここで、前記板の一方の面の平坦度は、表面粗さのパラメータである二乗平均平方根粗さが0.071以下であることが好ましい。 Here, as for the flatness of one surface of the plate, the root mean square roughness which is a parameter of the surface roughness is preferably 0.071 or less.
 また前記負イオンは重水素の負イオンであり、かつ前記板はモリブデンで作製されていることが好ましい。なお前記イオン源は、セシウムを蒸発させたものから前記重水素の負イオンを取り出すものであってもよい。 The negative ions are preferably deuterium negative ions, and the plate is preferably made of molybdenum. The ion source may extract the deuterium negative ions from the vaporized cesium.
 また前記複数の板は、角筒状のフレームの中空部に所定の間隔を隔てて保持され、かつ前記フレームは、角度調整部材により、前記負イオンの入射方向に対して前記中空部の中心軸が回転できるように構成されていることが好ましい。 The plurality of plates are held at predetermined intervals in a hollow portion of a rectangular tube-shaped frame, and the frame is centered with respect to the negative ion incidence direction by an angle adjusting member. It is preferable that it is comprised so that can rotate.
 本発明の電荷交換器を用いれば、高い効率で重水素の負イオンを正イオンに変換できる。また、装置内にガスを循環させる必要がないため構造が簡単になり、しかも真空度を高く維持できるため、高エネルギーのイオンビームを実現できる。更に、一旦設置すれば繰り返して使用できるため、炭素フォイルを用いる場合に比較して、タンデム加速装置の運用コストを大幅に低減できる。 If the charge exchanger of the present invention is used, deuterium negative ions can be converted into positive ions with high efficiency. In addition, since it is not necessary to circulate the gas in the apparatus, the structure is simplified, and the degree of vacuum can be maintained high, so that a high energy ion beam can be realized. Furthermore, since it can be used repeatedly once installed, the operating cost of the tandem accelerator can be greatly reduced as compared with the case of using a carbon foil.
図1は、本発明の実施の形態にかかるタンデム加速装置を中性子発生管として使用した場合の概略的な構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration when a tandem accelerator according to an embodiment of the present invention is used as a neutron generating tube. 図2は、図1の電荷交換器を負イオンの入射方向から見た図である。FIG. 2 is a view of the charge exchanger of FIG. 1 as viewed from the incident direction of negative ions. 図3は、図2のフレームに保持されたモリブデン板のうち1枚を、負イオンの進入方向Aと直交する方向から見た図である。FIG. 3 is a view of one of the molybdenum plates held on the frame of FIG. 2 as viewed from a direction orthogonal to the negative ion entry direction A. FIG. 図4は、モリブデン板の原子レベルにおいて平坦である面に、75keVのエネルギーの負イオン(D-)を角度θが10度で入射させた時の反射ビームの強さを、理論計算に基づいて算出した結果を示す図である。FIG. 4 shows the intensity of a reflected beam when a negative ion (D ) having an energy of 75 keV is incident at an angle θ of 10 degrees on a flat surface at the atomic level of a molybdenum plate, based on theoretical calculation. It is a figure which shows the calculated result. 図5は、モリブデン板の原子レベルにおいて平坦である面に、75keVのエネルギーの負イオン(D-)を角度θが5度で入射させた時の反射ビームの強さを、理論計算に基づいて算出した結果を示す図である。FIG. 5 shows the intensity of a reflected beam when a negative ion (D ) having an energy of 75 keV is incident at an angle θ of 5 degrees on a flat surface at the atomic level of a molybdenum plate, based on theoretical calculation. It is a figure which shows the calculated result. 図6は、モリブデン板の原子レベルにおいて平坦である面に、75keVのエネルギーの負イオン(D-)を角度θが1度で入射させた時の反射ビームの強さを、理論計算に基づいて算出した結果を示す図である。FIG. 6 shows the intensity of a reflected beam when a negative ion (D ) having an energy of 75 keV is incident at an angle θ of 1 degree on a flat surface at the atomic level of a molybdenum plate, based on theoretical calculation. It is a figure which shows the calculated result. 図7は、モリブデン板の原子レベルにおいて平坦である面に、75keVのエネルギーの負イオン(D-)を角度θが20度で入射させた時の反射ビームの強さを、理論計算に基づいて算出した結果を示す図である。FIG. 7 shows the intensity of a reflected beam when a negative ion (D ) having an energy of 75 keV is incident at an angle θ of 20 degrees on a flat surface at the atomic level of a molybdenum plate, based on theoretical calculation. It is a figure which shows the calculated result. 図8は、電荷交換器の性能を評価する評価装置の概略構成を示す図である。FIG. 8 is a diagram showing a schematic configuration of an evaluation apparatus for evaluating the performance of the charge exchanger. 図9は、図8の評価装置を用いて測定した電荷交換器の性能評価結果の一例を示すグラフである。FIG. 9 is a graph showing an example of the performance evaluation result of the charge exchanger measured using the evaluation apparatus of FIG. 図10は、低エネルギー加速管および高エネルギー加速管におけるイオンビームの強さの比を、それぞれの出口に設置した検出器で検出した結果を示すグラフである。FIG. 10 is a graph showing the result of detecting the ratio of the intensity of the ion beam in the low energy accelerator tube and the high energy accelerator tube with the detectors installed at the respective outlets.
 以下、本発明の実施の形態にかかるタンデム加速装置および電荷交換器について、図面を参照して説明する。最初に、本発明にかかる電荷交換器の主たる特徴について説明する。 Hereinafter, a tandem acceleration device and a charge exchanger according to embodiments of the present invention will be described with reference to the drawings. First, main features of the charge exchanger according to the present invention will be described.
 本発明は、高融点金属の表面で生じる反跳現象を利用して電荷交換器を構成したものである。モリブデンやタングステン等の高融点金属で作製された板の表面に重水素の負イオン(D-)を高速で衝突させると、電子が放出されて正イオン(D+)に変換されることが分かっている。発明者らは実験を通じ、表面が滑らかに研磨された高融点金属の板に重水素の負イオンを浅い角度で入射させると、反射ビームの指向性が鋭くなることを見出した。 In the present invention, a charge exchanger is configured by utilizing a recoil phenomenon that occurs on the surface of a refractory metal. It can be seen that deuterium negative ions (D ) collide at high speed with the surface of a plate made of a refractory metal such as molybdenum or tungsten, and electrons are emitted and converted to positive ions (D + ). ing. Through experiments, the inventors have found that the directivity of the reflected beam becomes sharp when negative ions of deuterium are incident on a refractory metal plate whose surface is polished smoothly at a shallow angle.
 本発明は上述の実験結果に基づいてなされたもので、電荷交換器を、高融点金属で作製され、一方の面が滑らかに研磨された複数の板を、所定の間隔を隔てて並列に並べたもので構成し、かつこれらの板を、負イオンのイオンビームの入射方向に対して前記一方の面のなす角度が10度以下となるように傾けて設置したものである。 The present invention has been made on the basis of the above experimental results. The charge exchanger is made of a high melting point metal, and a plurality of plates whose one surface is polished smoothly are arranged in parallel at a predetermined interval. These plates are installed so as to be inclined so that the angle formed by the one surface with respect to the incident direction of the negative ion beam is 10 degrees or less.
 <タンデム加速装置の構成と動作>
 次に、図1を参照して、本発明のタンデム加速装置を中性子発生管として使用した場合の実施の形態について説明する。図1に、本実施の形態にかかるタンデム加速装置の概略的な構成を示す。
<Configuration and operation of tandem accelerator>
Next, an embodiment when the tandem accelerator of the present invention is used as a neutron generating tube will be described with reference to FIG. FIG. 1 shows a schematic configuration of a tandem accelerator according to the present embodiment.
 タンデム加速装置1は、基本的に、イオン源2、低エネルギー側加速管3、高エネルギー側加速管4、高電圧ターミナル5、電荷交換器6、高電圧電源7およびターゲット8で構成され、高電圧電源7を除く各部材は、金属製の圧力タンク9に真空状態で収容されている。 The tandem accelerator 1 is basically composed of an ion source 2, a low energy side acceleration tube 3, a high energy side acceleration tube 4, a high voltage terminal 5, a charge exchanger 6, a high voltage power source 7, and a target 8. Each member except the voltage power source 7 is accommodated in a metal pressure tank 9 in a vacuum state.
 本発明では、タンデム加速装置1を中性子発生管として機能させるため、重水素の負イオン(D-)を生成するイオン源2を用いている。例えば、セシウムなどのアルカリ金属と重水素を結合させた化学薬品をイオンの発生源として用い、これを加熱・蒸発させると、アルカリ金属の正イオンと重水素の負イオンが発生する。このうちアルカリ金属の正イオンは圧力タンク9の壁に吸着して取り除かれ、重水素の負イオン(D-)だけが残る。なお、アルカリ金属としてはセシウムが最適であるが、他のアルカリ金属を用いても同様の効果が得られる。 In the present invention, in order to make the tandem accelerator 1 function as a neutron generating tube, an ion source 2 that generates deuterium negative ions (D ) is used. For example, when a chemical obtained by combining deuterium with an alkali metal such as cesium is used as an ion generation source and heated and evaporated, an alkali metal positive ion and a deuterium negative ion are generated. Of these, positive ions of alkali metal are adsorbed on the wall of the pressure tank 9 and removed, leaving only deuterium negative ions (D ). In addition, although cesium is optimal as an alkali metal, the same effect is acquired even if it uses another alkali metal.
 図示しないが、イオン源2の内部には高周波発生装置が設けられ、またイオン源2の周辺には永久磁石が設けられている。高周波の印加と永久磁石の作用により重水素の負イオン(D-)はプラズマ状態となり、図示しないレンズ系によりビーム形状に成形された後、イオン放出孔より低エネルギー側加速管3内に放出される。 Although not shown, a high frequency generator is provided inside the ion source 2, and a permanent magnet is provided around the ion source 2. Due to the application of high frequency and the action of a permanent magnet, the deuterium negative ions (D ) are in a plasma state, and after being formed into a beam shape by a lens system (not shown), they are released into the low energy side acceleration tube 3 from the ion emission holes. The
 低エネルギー側加速管3は、中心部にイオンビームを通過させる孔を有し、かつ等間隔に配置された複数の電極31を、アルミナセラミックなどの絶縁物からなる短管32を介して積層したものである。隣り合う電極31間には分圧抵抗が接続され(図示せず)、一連の分圧抵抗と電極31によって分圧回路が構成されている。 The low energy side accelerating tube 3 has a plurality of electrodes 31 having a hole through which an ion beam passes at the center and arranged at equal intervals through a short tube 32 made of an insulator such as alumina ceramic. Is. A voltage dividing resistor is connected between the adjacent electrodes 31 (not shown), and a series of voltage dividing resistors and the electrode 31 constitute a voltage dividing circuit.
 電極31のうち低エネルギー側加速管3の入口側の端部の電極の電位は接地電位に固定され、出口側の端部の電極は高電圧ターミナル5に電気的に接続されている。 Among the electrodes 31, the potential of the electrode on the inlet side of the low energy side acceleration tube 3 is fixed to the ground potential, and the electrode on the outlet side is electrically connected to the high voltage terminal 5.
 高エネルギー側加速管4は、低エネルギー側加速管3と同様に構成されている。ずなわち、中心部にイオンビームを通過させる孔を有し、かつ等間隔に配置された複数の電極41が、ガラスなどの絶縁物からなる短管42を介して積層されている。また隣り合う電極41間には分圧抵抗が接続され(図示せず)、一連の分圧抵抗と電極41によって分圧回路が構成されている。 The high energy side acceleration tube 4 is configured in the same manner as the low energy side acceleration tube 3. In other words, a plurality of electrodes 41 having a hole through which an ion beam passes at the center and arranged at equal intervals are stacked via a short tube 42 made of an insulator such as glass. A voltage dividing resistor is connected between the adjacent electrodes 41 (not shown), and a series of voltage dividing resistors and the electrode 41 constitute a voltage dividing circuit.
 電極41のうち高エネルギー側加速管4の入口側の端部の電極は高電圧ターミナル5に電気的に接続され、出口側の端部の電極の電位は接地電位に固定されている。 Among the electrodes 41, the electrode at the end of the high energy side acceleration tube 4 on the inlet side is electrically connected to the high voltage terminal 5, and the potential of the electrode at the end on the outlet side is fixed to the ground potential.
 筒状の金属で作製された高電圧ターミナル5は、高電圧電源7から接地電位に対して正の加速電圧が印加されており、低エネルギー側加速管3および高エネルギー側加速管4のそれぞれの隣り合う電極間には、加速電圧を分圧回路により分圧して得た等しい電圧が印加される。また高電圧ターミナル5には、電荷交換器6が収容されている。電荷交換器6の構成については、後に図2および図3を参照して詳述する。 The high voltage terminal 5 made of cylindrical metal is applied with a positive acceleration voltage with respect to the ground potential from the high voltage power source 7, and each of the low energy side acceleration tube 3 and the high energy side acceleration tube 4. An equal voltage obtained by dividing the acceleration voltage by a voltage dividing circuit is applied between adjacent electrodes. The high voltage terminal 5 accommodates a charge exchanger 6. The configuration of the charge exchanger 6 will be described in detail later with reference to FIGS.
 本実施の形態では、ターゲット8に、パラジウムに重水素を含浸させたものを用いている。高エネルギー側加速管4から放出された重水素の正イオン(D+)のイオンビームがターゲット8に高速で衝突すると、衝撃によりターゲット8に含浸された重水素との間で核融合反応が生じ、ヘリウムと中性子が発生する。 In the present embodiment, a target 8 in which palladium is impregnated with deuterium is used. When an ion beam of deuterium positive ions (D + ) emitted from the high energy side acceleration tube 4 collides with the target 8 at a high speed, a fusion reaction occurs with the deuterium impregnated in the target 8 by impact. Helium and neutrons are generated.
 次に、タンデム加速装置1の動作について説明する。低エネルギー側加速管3、高電圧ターミナル5および高エネルギー側加速管4が真空に保持された状態において、図1に矢印で示すように、イオン源2から放射された重水素の負イオン(D-)のイオンビームが、低エネルギー側加速管3に入射する。 Next, the operation of the tandem acceleration device 1 will be described. In a state where the low energy side acceleration tube 3, the high voltage terminal 5 and the high energy side acceleration tube 4 are maintained in vacuum, as shown by arrows in FIG. 1, deuterium negative ions (D The ion beam of ) enters the low energy side acceleration tube 3.
 低エネルギー側加速管3に入射したイオンビームは、電極31間の電界により加速されて75keV程度のエネルギーを得た後、高電圧ターミナル5内の電荷交換器6に供給される。低エネルギー側加速管3により加速された重水素の負イオン(D-)は、後述するようにモリブデン板61の原子に衝突することにより、核外電子が剥ぎ取られて正イオン(D+)に変換される。 The ion beam incident on the low energy side acceleration tube 3 is accelerated by the electric field between the electrodes 31 to obtain energy of about 75 keV, and then supplied to the charge exchanger 6 in the high voltage terminal 5. The deuterium negative ions (D ) accelerated by the low energy side accelerating tube 3 collide with the atoms of the molybdenum plate 61 as will be described later, whereby the extranuclear electrons are stripped off and positive ions (D + ). Is converted to
 電荷交換器6から出力される重水素の正イオン(D+)のイオンビームは高エネルギー側加速管4に入射され、電極41間の電界により接地電位に向かって再度加速され、150keV程度のエネルギーを得た後、ターゲット8に衝突する。重水素の正イオン(D+)の衝突により、ターゲット8から中性子が放出される。 The ion beam of deuterium positive ions (D + ) output from the charge exchanger 6 is incident on the high energy side acceleration tube 4 and accelerated again toward the ground potential by the electric field between the electrodes 41, and has an energy of about 150 keV. After obtaining, the target 8 collides. Neutrons are emitted from the target 8 by the collision of deuterium positive ions (D + ).
 <電荷交換器の構成と動作>
 次に、図2および図3を参照して、本実施の形態にかかる電荷交換器6の構成と動作を説明する。図2は、電荷交換器6を負イオンの入射方向から見た図である。電荷交換器6は、モリブデンで作製された複数枚の板61、フレーム62、アーム63および角度調整部材64で構成されている。
<Configuration and operation of charge exchanger>
Next, the configuration and operation of the charge exchanger 6 according to the present embodiment will be described with reference to FIGS. FIG. 2 is a view of the charge exchanger 6 as seen from the direction of incidence of negative ions. The charge exchanger 6 includes a plurality of plates 61 made of molybdenum, a frame 62, an arm 63, and an angle adjusting member 64.
 フレーム62は、中空部の軸が上下方向(紙面と垂直方向)に配置された角筒状の金属で作製されている。フレーム62の中空部の対向する内壁に、複数の溝が等間隔に形成されており、その溝にモリブデン板61の両端部が挿入されている。これらの溝により複数のモリブデン板61は、所定の間隔を隔てて並列に並べられた状態で保持される。 The frame 62 is made of a rectangular tube-shaped metal in which the axis of the hollow portion is arranged in the vertical direction (perpendicular to the paper surface). A plurality of grooves are formed at equal intervals on the opposing inner walls of the hollow portion of the frame 62, and both ends of the molybdenum plate 61 are inserted into the grooves. The plurality of molybdenum plates 61 are held by these grooves in a state of being arranged in parallel at a predetermined interval.
 フレーム62は、一対のアーム63を介して角度調整部材64に取り付けられている。角度調整部材64は高電圧ターミナル5に固定されており、図示しない角度調整機構により、上下方向(紙面の垂直方向)に回転し、かつ回転した位置で保持できるように構成されている。 The frame 62 is attached to the angle adjusting member 64 via a pair of arms 63. The angle adjusting member 64 is fixed to the high voltage terminal 5 and is configured to be rotated in the vertical direction (perpendicular to the paper surface) and held at the rotated position by an angle adjusting mechanism (not shown).
 各モリブデン板61のうち負イオンのイオンビームが照射される面は、磨き粉などの研磨剤を用いて研磨した後、絹布等を用いて表面の凹凸が取り除かれ、平坦度が原子レベルにおいて平坦である、具体的には表面粗さのパラメータの一種である粗さ曲線要素の最大山高さおよび最大谷深さが1μm以下である滑らかな面に仕上げられている。 The surface of each molybdenum plate 61 that is irradiated with a negative ion beam is polished with a polishing agent such as scouring powder, and then surface irregularities are removed using a silk cloth or the like, and the flatness is flat at the atomic level. In particular, a smooth surface having a maximum peak height and a maximum valley depth of 1 μm or less of a roughness curve element, which is a kind of surface roughness parameter, is finished.
 図3は、フレーム62に保持されたモリブデン板61のうち一枚を、負イオンの進入方向と直交する方向から見た状態を示す。モリブデン板61は、イオンビームが研磨された滑らかな面61Sに照射されるように配置されている。図3(a)は、重水素の負イオン(D-)の進入方向Aとモリブデン板61の研磨された滑らかな面61Sとのなす角度θが小さい場合を示し、図3(b)は角度θが比較的大きい場合を示す。 FIG. 3 shows a state in which one of the molybdenum plates 61 held by the frame 62 is viewed from a direction orthogonal to the negative ion entry direction. The molybdenum plate 61 is arranged so that the smooth surface 61S polished with the ion beam is irradiated. FIG. 3A shows a case where the angle θ formed between the approach direction A of deuterium negative ions (D ) and the polished smooth surface 61S of the molybdenum plate 61 is small, and FIG. 3B shows the angle. The case where θ is relatively large is shown.
 重水素での実験を模擬するため,水素を用いた実験を重ねた結果、図3(a)に示すように、負イオンの進入方向Aと金属板61の研磨された面61Sとのなす角度θが10度以下の場合には、入射した水素の負イオンは、モリブデン板61のモリブデン原子に衝突して、ほぼ100%の確率で正イオンに変換され、また大半の正イオンが入射角と等しい角度で反射することが分かった。更に、角度θが1度前後のときに、反射した正イオンの指向性が最も急峻になることが分かった。 As a result of repeated experiments using hydrogen in order to simulate an experiment using deuterium, as shown in FIG. 3A, an angle formed by the entrance direction A of negative ions and the polished surface 61S of the metal plate 61 is formed. When θ is 10 degrees or less, incident negative ions of hydrogen collide with molybdenum atoms of the molybdenum plate 61 and are converted to positive ions with a probability of almost 100%, and most positive ions have an incident angle of It was found to reflect at equal angles. Furthermore, it was found that the directivity of the reflected positive ions is the steepest when the angle θ is around 1 degree.
 参考として図4に、モリブデン板の原子レベルにおいて平坦である面に、75keVのエネルギーの負イオン(D-)を-80度(すなわち図3に示す負イオンの進入方向Aとモリブデン板61の研磨された滑らかな面61Sとのなす角度θが10度)で入射させた時の反射ビームの強さを、ACAT(Atomic Collision in Amorphous Target)を用いて算出した結果を示す。 For reference, in FIG. 4, negative ions (D ) with energy of 75 keV are applied to −80 degrees (that is, the negative ion approach direction A and the molybdenum plate 61 shown in FIG. The result of calculating the intensity of the reflected beam when incident at an angle θ formed with the smooth surface 61S of 10 degrees) using ACAT (Atomic Collision in Amorphous Target) is shown.
 ACATはスパッタリング解析コードとしてよく知られており、例えば、以下の資料に詳述されている。
 「核融合炉実現を目指したトリチウム研究の新展開」の“プロジェクト資料”の「(2)スパッタリング解析コードACAT、ACAT-DIFFUSEについて」剣持他2名〔平成23年10月14日検索〕、インターネット〈URL://http://tritium.nifs.ac.jp/project/02/index.html〉
ACAT is well known as a sputtering analysis code and is described in detail in the following documents, for example.
“(2) Sputtering analysis codes ACAT and ACAT-DIFFUSE” in “Project Materials” of “New Development of Tritium Research Aiming for Realization of Fusion Reactor” Kenji and others (searched on October 14, 2011), Internet <URL: // http: //tritium.nifs.ac.jp/project/02/index.html>
 図4において、円周方向には負イオン(D-)の入射角度(-90度~90度)が示されている。また径方向に示したYieldは、100個の粒子が入射したときに反射する粒子の数を、角度毎に●印で示したものである。図より、入射角度が10度の場合、反射ビームは優れた指向性を示すことが分かる。 In FIG. 4, the incident angle (−90 degrees to 90 degrees) of negative ions (D ) is shown in the circumferential direction. Yield shown in the radial direction indicates the number of particles that are reflected when 100 particles are incident by a circle for each angle. From the figure, it can be seen that when the incident angle is 10 degrees, the reflected beam exhibits excellent directivity.
 同様に、図5には、75keVのエネルギーの負イオン(D-)を-85度、すなわち角度θが5度で入射させた時の反射ビームの強さを示す。また図6には、75keVのエネルギーの負イオン(D-)を-89度、すなわち角度θが1度で入射させた時の反射ビームの強さを示す。図5および図6から明らかなように、角度θが小さくなるにつれて反射ビームの指向性が急峻になることが分かる。特に1度ではほぼ直線に収束している。 Similarly, FIG. 5 shows the intensity of the reflected beam when a negative ion (D ) having an energy of 75 keV is incident at −85 degrees, that is, at an angle θ of 5 degrees. FIG. 6 shows the intensity of the reflected beam when negative ions (D ) having an energy of 75 keV are incident at −89 degrees, that is, at an angle θ of 1 degree. As can be seen from FIGS. 5 and 6, the directivity of the reflected beam becomes steeper as the angle θ decreases. In particular, it converges to a straight line at 1 degree.
 これに対し、モリブデン板61の表面を十分に研磨せず、面が原子レベルにおいて平坦でない、すなわち粗さ曲線要素の最大山高さまたは最大谷深さが1μmを超える場合には、角度θが10度以下であっても、イオンビームが反射面で散乱して、高エネルギー側加速管4に入射するイオンの数が減り、変換効率が低下することがわかった。 On the other hand, when the surface of the molybdenum plate 61 is not sufficiently polished and the surface is not flat at the atomic level, that is, when the maximum peak height or the maximum valley depth of the roughness curve element exceeds 1 μm, the angle θ is 10 It was found that the ion beam is scattered on the reflecting surface even when the angle is less than or equal to the degree, the number of ions incident on the high energy side acceleration tube 4 is reduced, and the conversion efficiency is lowered.
 更に、図3(b)に示すように、角度θが10度を超える場合には、面61Sの平坦度が原子レベルにおいて平坦である、すなわち粗さ曲線の最大山高さおよび最大谷深さが1μm以下あっても、イオンビームが反射面で散乱して、変換効率が大幅に低下することが分かった。 Further, as shown in FIG. 3B, when the angle θ exceeds 10 degrees, the flatness of the surface 61S is flat at the atomic level, that is, the maximum peak height and the maximum valley depth of the roughness curve are It was found that even when the thickness was 1 μm or less, the ion beam was scattered on the reflecting surface, and the conversion efficiency was greatly reduced.
 参考として図7に、モリブデン板の原子レベルにおいて平坦である面に、75keVのエネルギーの負イオン(D-)を-70度(すなわち図3に示す負イオンの進入方向Aとモリブデン板61の研磨された滑らかな面61Sとのなす角度θが20度)で入射させた時の反射ビームの強さを、図4と同様にACATを用いて算出した結果を示す。図に示すように角度θが20度の場合には、反射ビームが広がって指向性が悪くなっている。 For reference, FIG. 7 shows that a negative ion (D ) having an energy of 75 keV is applied to −70 degrees (that is, the negative ion approach direction A shown in FIG. The result of calculating the intensity of the reflected beam when incident at an angle θ of 20 degrees with the smooth surface 61S is calculated using ACAT as in FIG. As shown in the figure, when the angle θ is 20 degrees, the reflected beam spreads and the directivity deteriorates.
 <性能評価試験>
 次に、電荷交換器6の性能評価試験について説明する。最初に、図8を参照して、電荷交換器6の性能を評価する評価装置10の構成を説明する。
<Performance evaluation test>
Next, the performance evaluation test of the charge exchanger 6 will be described. Initially, with reference to FIG. 8, the structure of the evaluation apparatus 10 which evaluates the performance of the charge exchanger 6 is demonstrated.
 評価装置10は、図1に示すタンデム加速装置1の高エネルギー側加速管4のイオンビームの出口側に、ターゲット8の代わりに設置する。評価装置10は、イオンビームの検出器11と、検出器11の入口に取り付けられ、0.3mm程度の幅のスリット12Sが形成された遮蔽板12と、電界によりイオンビームを偏向させる並行平板型の一対のビーム偏向板13aおよび13bとで構成されている。 The evaluation device 10 is installed instead of the target 8 on the ion beam exit side of the high energy side acceleration tube 4 of the tandem accelerator 1 shown in FIG. The evaluation apparatus 10 includes an ion beam detector 11, a shielding plate 12 attached to the entrance of the detector 11 and formed with a slit 12S having a width of about 0.3 mm, and a parallel plate type that deflects the ion beam by an electric field. The pair of beam deflecting plates 13a and 13b.
 検出器11は、遮蔽板12のスリット12Sから入射したイオンビームの強さを電流値として検出するものである。遮蔽板12は、矢印で示すように図示しない駆動手段により、イオンビームの進行方向Aと直交する方向に移動できるように構成されている。また、遮蔽板12と検出器11は一体的に移動する。 The detector 11 detects the intensity of the ion beam incident from the slit 12S of the shielding plate 12 as a current value. The shielding plate 12 is configured to be movable in a direction orthogonal to the traveling direction A of the ion beam by a driving means (not shown) as indicated by an arrow. Further, the shielding plate 12 and the detector 11 move integrally.
 ビーム偏向板13aおよび13bの間に偏向電圧を印加しない場合、重水素の正イオン(D+)のイオンビームは、実線の矢印で示すように負イオンのイオンビームの進行方向Aとほぼ並行に進行する。一方、偏向電圧を印加した場合は、破線の矢印で示すようにイオンビームの進行方向は偏向する。 When a deflection voltage is not applied between the beam deflecting plates 13a and 13b, the deuterium positive ion (D + ) ion beam is substantially parallel to the traveling direction A of the negative ion ion beam as shown by the solid arrow. proceed. On the other hand, when a deflection voltage is applied, the traveling direction of the ion beam is deflected as indicated by the broken arrow.
 図9に、図8の評価装置10を用いて測定した電荷交換器6の性能評価試験の結果を示す。本試験では、重水素の代わりに水素を用いて性能評価を行った。図中、横軸は、遮蔽板12を図8の矢印方向に移動させたときのイオンビームの進行方向に対するスリット12Sの変位を示し、縦軸は、検出器11で検出したイオンビームの電流値を示す。電荷交換器6として、大きさ25mm×31mm、厚さ0.4mmの12枚のモリブデン板61を、フレーム62に所定の間隔を隔てて保持したもの(図2参照)を用いた。測定の際、負イオンの進入方向Aとモリブデン板61の研磨された面61Sとのなす角度θを1度に設定した。得られた水素の正イオン(H-)のエネルギーは145keVであった。 FIG. 9 shows the result of the performance evaluation test of the charge exchanger 6 measured using the evaluation apparatus 10 of FIG. In this test, performance was evaluated using hydrogen instead of deuterium. In the figure, the horizontal axis indicates the displacement of the slit 12S with respect to the traveling direction of the ion beam when the shielding plate 12 is moved in the arrow direction of FIG. 8, and the vertical axis indicates the current value of the ion beam detected by the detector 11. Indicates. As the charge exchanger 6, 12 molybdenum plates 61 having a size of 25 mm × 31 mm and a thickness of 0.4 mm held on a frame 62 at a predetermined interval (see FIG. 2) were used. At the time of measurement, an angle θ formed by the negative ion approach direction A and the polished surface 61S of the molybdenum plate 61 was set to 1 degree. The energy of positive ions (H ) of the obtained hydrogen was 145 keV.
 図中、実線は、ビーム偏向板13a、13b間に偏向電圧Vを印加しなかった場合(V=0kV)の測定値、一点差線は、ビーム偏向板13a、13b間に2kVの偏向電圧Vを印加した場合の測定値、破線は理論計算により求めた値を示す。 In the figure, a solid line indicates a measured value when the deflection voltage V is not applied between the beam deflecting plates 13a and 13b (V = 0 kV), and a one-point difference line indicates a deflection voltage V of 2 kV between the beam deflecting plates 13a and 13b. The measured value when the voltage is applied, the broken line indicates the value obtained by theoretical calculation.
 最初に、(実線で示した)偏向電圧Vを印加しなかった場合の測定結果について説明する。マイナスの電流値は、電荷交換器6に入射した負イオン(H-)のイオンビームがモリブデン板61の表面で反射することなく、板の間を漏れて通過したものを検出したものであり、イオンビームがほぼ中央に到達していることがわかる。 First, the measurement result when the deflection voltage V (shown by a solid line) is not applied will be described. The negative current value is obtained by detecting that the ion beam of negative ions (H ) incident on the charge exchanger 6 leaks and passes between the plates without being reflected by the surface of the molybdenum plate 61. It can be seen that has almost reached the center.
 これに対し、正イオン(H+)のイオンビームが到達する位置には、中心軸から遠いところへと尾を引いた形のプラスの電流値が観測された。図中、破線はモリブデン板61の表面での正イオンが反射した場合のイオンビームの広がりを理論計算したものであるが、計算値と実線で示した測定値がほぼ一致していることがわかる。 On the other hand, a positive current value in the form of a tail extending away from the central axis was observed at the position where the ion beam of positive ions (H + ) reached. In the figure, the broken line is a theoretical calculation of the spread of the ion beam when positive ions are reflected on the surface of the molybdenum plate 61, and it can be seen that the calculated value and the measured value indicated by the solid line are almost the same. .
 なお、負イオン(H-)のイオンビームの漏れについては、モリブデン板61の長さと間隔を調整することにより、ほぼ解消できる。 The leakage of the negative ion (H ) ion beam can be almost eliminated by adjusting the length and interval of the molybdenum plate 61.
 次に、(一点差線で示した)偏向電圧Vを印加した場合の測定結果について説明する。ビーム偏向板13a、13bに印加された2kVの偏向電圧Vによって、負イオン(H-)によるマイナスの電流値は左側(マイナス方向)にシフトし、正イオン(H+)によるプラスの電流値は右側(プラス方向)にシフトしている。ただし、正イオン(H+)によるイオンビームの形状は右にシフトしているだけで、ビームの形状に大きな変化はないことが分かる。 Next, the measurement result when the deflection voltage V (indicated by a one-dot difference line) is applied will be described. Due to the deflection voltage V of 2 kV applied to the beam deflecting plates 13a and 13b, the negative current value due to negative ions (H ) shifts to the left (negative direction), and the positive current value due to positive ions (H + ) is Shifted to the right (positive direction). However, it can be seen that the shape of the ion beam due to positive ions (H + ) is only shifted to the right, and there is no significant change in the shape of the beam.
 上述の性能評価の結果、電荷交換器6における負イオンから正イオンへの変換効率はほぼ100%であり、ビーム径の広がりも許容サイズ以内で、十分実用に耐える品質の水素の正イオン(H+)のイオンビームが得られることが分かった。 As a result of the performance evaluation described above, the conversion efficiency from negative ions to positive ions in the charge exchanger 6 is almost 100%, the beam diameter is within an allowable size, and hydrogen positive ions (H + ) Ion beam was found to be obtained.
 次に、図10のグラフについて説明する。図10は、低エネルギー側加速管3および高エネルギー側加速管4におけるイオンビームの強さの比を、それぞれの出口に設置した検出器11で検出したものである。負イオン(H-)のイオンビームの強さについては、電荷交換器6の変わりに、その位置に設置された検出器11を用いて検出した。なお、負イオンの進入方向Aとモリブデン板61の研磨された面61Sとのなす角度θは1度に設定している。 Next, the graph of FIG. 10 will be described. FIG. 10 shows the ratio of the intensity of the ion beam in the low energy side acceleration tube 3 and the high energy side acceleration tube 4 detected by the detectors 11 installed at the respective outlets. About the intensity | strength of the ion beam of a negative ion (H < - >), it detected using the detector 11 installed in the position instead of the charge exchanger 6. FIG. The angle θ formed between the negative ion entry direction A and the polished surface 61S of the molybdenum plate 61 is set to 1 degree.
 図中、横軸はタンデム加速装置で得られる水素の正イオン(H+)のイオンビームのエネルギーを示し、縦軸は、高エネルギー側加速管4の出口のイオンビームの強さを示す電流値Ipと、低エネルギー側加速管3の出口の負イオン(H-)のイオンビームの強さを示す電流値Inとの比を示す。図中、▲印は表面を研磨したモリブデン板(研磨レベル1)を用いたときの値、●印は表面を研磨した後、更に精細に研磨したモリブデン板(研磨レベル2)を用いたときの値であり、いずれも面の平坦度は原子レベルにおいて平坦である。また□印は計算により求めた理想的な値である。 In the figure, the horizontal axis indicates the energy of the positive ion (H + ) ion beam obtained by the tandem accelerator, and the vertical axis indicates the current value indicating the intensity of the ion beam at the exit of the high energy side acceleration tube 4. A ratio between Ip and a current value In indicating the intensity of an ion beam of negative ions (H ) at the exit of the low energy side acceleration tube 3 is shown. In the figure, the ▲ mark is the value when using a molybdenum plate (polishing level 1) whose surface is polished, and the ● mark is the value when using a molybdenum plate (polishing level 2) that has been finely polished after polishing the surface. Each value is flat at the atomic level. The squares are ideal values obtained by calculation.
 また表1に、本測定に使用したモリブデン板の表面粗さの測定結果を示す。表1の各行には表面粗さの各種パラメータを示し、各列には研磨レベル1と研磨レベル2のモリブデン板の測定値を示す。 Table 1 shows the measurement results of the surface roughness of the molybdenum plate used in this measurement. Each row of Table 1 shows various parameters of the surface roughness, and each column shows a measured value of the polishing level 1 and polishing level 2 molybdenum plates.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図10のグラフから明らかなように、モリブデン板61の表面を精細に研磨し、表面粗さのパラメータである二乗平均平方根粗さが0.014の場合(研磨レベル2)には、正イオン(H+)のイオンビームの強さが高い値を示している。すなわち、モリブデン板61の表面を精細に研磨することによりイオンビームの指向性が急峻になることを示している。 As apparent from the graph of FIG. 10, when the surface of the molybdenum plate 61 is finely polished and the root mean square roughness which is a parameter of the surface roughness is 0.014 (polishing level 2), positive ions ( The intensity of the ion beam of H + ) is high. That is, the directivity of the ion beam becomes sharper by finely polishing the surface of the molybdenum plate 61.
 一方、モリブデン板61の表面を普通に研磨して二乗平均平方根粗さが0.071の場合(研磨レベル1)には、研磨レベル2のモリブデン板61に比べてイオンビームの強さは若干低いが、実用には十分絶えうる値を示している。 On the other hand, when the surface of the molybdenum plate 61 is normally polished and the root mean square roughness is 0.071 (polishing level 1), the ion beam intensity is slightly lower than that of the molybdenum plate 61 at the polishing level 2. However, it shows a value that can be practically enough.
 また、図10のグラフにおいて、ビームエネルギーが大きくなるほど、モリブデン板61の表面を研磨したときのイオンビームの比が計算値に近づくことから、ビームエネルギーが大きくなるほど、より高い効率で負イオンを正イオンに変換できることが分かる。 Further, in the graph of FIG. 10, as the beam energy increases, the ratio of the ion beam when the surface of the molybdenum plate 61 is polished approaches the calculated value. Therefore, as the beam energy increases, the negative ions are positively corrected with higher efficiency. It turns out that it can convert into ion.
 以上説明したように、本発明の電荷交換器を用いれば、高い効率で重水素の負イオンを正イオンに変換できる。また、ストリッパガスを用いる場合に比べて構造が簡単になり、しかも真空度を高く維持できるため、高エネルギーのイオンビームを実現できる。更に、設置された金属板を繰り返し使用できるため、炭素フォイルを用いる場合に比較して、タンデム加速装置の運用コストを大幅に低減できる。 As described above, by using the charge exchanger of the present invention, deuterium negative ions can be converted into positive ions with high efficiency. In addition, the structure is simpler than when a stripper gas is used, and a high degree of vacuum can be maintained, so that a high-energy ion beam can be realized. Furthermore, since the installed metal plate can be used repeatedly, the operating cost of the tandem accelerator can be greatly reduced as compared with the case of using a carbon foil.
 なお、上述した実施の形態では、電荷交換器を、重水素の負イオンを正イオンに変換するために用いたが、本発明はこれに限定されない。タンデム加速装置を用いて、各種材料の高エネルギーイオンビームを生成するのに使用してもよい。 In the above-described embodiment, the charge exchanger is used to convert deuterium negative ions into positive ions, but the present invention is not limited to this. A tandem accelerator may be used to generate high energy ion beams of various materials.
 また、電荷交換器の構成は図2に示すものに限定されない。負イオンを正イオンに変換する金属板を複数枚並列に並べて設置でき、更に角度を調整できるものであれば、どのような構成を採用してもよい。 Further, the configuration of the charge exchanger is not limited to that shown in FIG. Any configuration may be adopted as long as a plurality of metal plates for converting negative ions into positive ions can be arranged in parallel and the angle can be adjusted.
  1 タンデム加速装置
  2 イオン源
  3 低エネルギー側加速管
  4 高エネルギー側加速管
  5 高電圧ターミナル
  6 電荷交換器
  7 高電圧電源
  8 ターゲット
  9 圧力タンク
 10 評価装置
 11 検出器
 12 遮蔽板
 13a,13b ビーム偏向板
 61 モリブデン板
 62 フレーム
 63 アーム
 64 角度調整部材
DESCRIPTION OF SYMBOLS 1 Tandem accelerator 2 Ion source 3 Low energy side acceleration tube 4 High energy side acceleration tube 5 High voltage terminal 6 Charge exchanger 7 High voltage power supply 8 Target 9 Pressure tank 10 Evaluation apparatus 11 Detector 12 Shielding plate 13a, 13b Beam deflection Plate 61 Molybdenum plate 62 Frame 63 Arm 64 Angle adjustment member

Claims (8)

  1.  負イオンを生成するイオン源、このイオン源から引き出される負イオンを静電加速する低エネルギー側加速管、入射する前記負イオンを正イオンに変換する電荷交換器、および変換された正イオンを再び静電加速する高エネルギー側加速管が、圧力タンク内にこの順序で収容されたタンデム加速装置であって、
     前記電荷交換器は、高融点金属で作製された複数の板が所定の間隔を隔てて並列に並べられて構成され、
     前記複数の板の一方の面は滑らかな表面を持ち、
     前記各板は、前記負イオンの入射方向に対して前記一方の面のなす角度が10度以下となるように設置され、
     前記負イオンは前記一方の面で反射して正イオンに変換されることを特徴とするタンデム加速装置。
    An ion source that generates negative ions, a low-energy accelerator tube that electrostatically accelerates negative ions extracted from the ion source, a charge exchanger that converts the incident negative ions to positive ions, and the converted positive ions again A high-energy acceleration tube that electrostatically accelerates is a tandem accelerator accommodated in this order in a pressure tank,
    The charge exchanger is composed of a plurality of plates made of a refractory metal arranged in parallel at a predetermined interval,
    One side of the plurality of plates has a smooth surface;
    Each of the plates is installed such that an angle formed by the one surface with respect to the incident direction of the negative ions is 10 degrees or less,
    The tandem accelerator according to claim 1, wherein the negative ions are reflected by the one surface and converted into positive ions.
  2.  前記板の一方の面の平坦度は、表面粗さのパラメータである二乗平均平方根粗さが0.071以下であることを特徴とする、請求項1に記載のタンデム加速装置。 The tandem acceleration device according to claim 1, wherein the flatness of one surface of the plate has a root mean square roughness which is a parameter of surface roughness of 0.071 or less.
  3.  前記負イオンは重水素の負イオンであり、かつ前記板はモリブデンで作製されていることを特徴とする、請求項1に記載のタンデム加速装置。 The tandem accelerator according to claim 1, wherein the negative ions are deuterium negative ions, and the plate is made of molybdenum.
  4.  前記イオン源は、セシウムを蒸発させたものから前記重水素の負イオンを取り出すことを特徴とする、請求項3に記載のタンデム加速装置。 4. The tandem accelerator according to claim 3, wherein the ion source takes out negative ions of the deuterium from the vaporized cesium.
  5.  タンデム加速装置に用いられ、低エネルギー側加速管で静電加速された負イオンを正イオンに変換し、得られた正イオンを高エネルギー側加速管に供給する電荷交換器であって、
     高融点金属で作製された複数の板が所定の間隔を隔てて並列に並べられて構成され、
     前記複数の板の一方の面は滑らかな表面を持ち、
     前記各板は、前記負イオンの入射方向に対して前記一方の面のなす角度が10度以下となるように設置され、
     前記負イオンは前記一方の面で反射して正イオンに変換されることを特徴とする電荷交換器。
    A charge exchanger that is used in a tandem accelerator, converts negative ions electrostatically accelerated in a low energy side accelerator tube into positive ions, and supplies the obtained positive ions to a high energy side accelerator tube,
    A plurality of plates made of refractory metal are arranged in parallel at a predetermined interval,
    One side of the plurality of plates has a smooth surface;
    Each of the plates is installed such that an angle formed by the one surface with respect to the incident direction of the negative ions is 10 degrees or less,
    The charge exchanger according to claim 1, wherein the negative ions are reflected by the one surface and converted into positive ions.
  6.  前記板の一方の面の平坦度は、表面粗さのパラメータである二乗平均平方根粗さが0.071以下であることを特徴とする、請求項5に記載の電荷交換器。 The charge exchanger according to claim 5, wherein the flatness of one surface of the plate has a root mean square roughness which is a parameter of surface roughness of 0.071 or less.
  7.  前記負イオンは重水素の負イオンであり、かつ前記板はモリブデンで作製されていることを特徴とする、請求項5に記載の電荷交換器。 6. The charge exchanger according to claim 5, wherein the negative ions are deuterium negative ions, and the plate is made of molybdenum.
  8.  前記複数の板は、角筒状のフレームの中空部に所定の間隔を隔てて保持され、
     かつ前記フレームは、角度調整部材により、前記負イオンの入射方向に対して前記中空部の中心軸が回転できるように構成されていることを特徴とする、請求項5に記載の電荷交換器。
    The plurality of plates are held at predetermined intervals in a hollow portion of a rectangular tube-shaped frame,
    6. The charge exchanger according to claim 5, wherein the frame is configured such that a central axis of the hollow portion can be rotated with respect to an incident direction of the negative ions by an angle adjusting member.
PCT/JP2011/075422 2010-11-15 2011-11-04 Tandem accelerator and charge exchanger WO2012066940A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012544176A JPWO2012066940A1 (en) 2010-11-15 2011-11-04 Tandem accelerator and charge exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-254663 2010-11-15
JP2010254663 2010-11-15

Publications (1)

Publication Number Publication Date
WO2012066940A1 true WO2012066940A1 (en) 2012-05-24

Family

ID=46083876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075422 WO2012066940A1 (en) 2010-11-15 2011-11-04 Tandem accelerator and charge exchanger

Country Status (2)

Country Link
JP (1) JPWO2012066940A1 (en)
WO (1) WO2012066940A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575963B1 (en) * 2013-09-06 2014-08-20 株式会社京都ニュートロニクス Charged particle accelerator and neutron generator equipped with the charged particle accelerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233843A (en) * 1990-02-07 1991-10-17 Fujitsu Ltd Negative ion generating device
JPH0462500A (en) * 1990-06-29 1992-02-27 Shimadzu Corp Charge converting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233843A (en) * 1990-02-07 1991-10-17 Fujitsu Ltd Negative ion generating device
JPH0462500A (en) * 1990-06-29 1992-02-27 Shimadzu Corp Charge converting device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENSUKE TERAI ET AL.: "Study of charge exchange foil for compact neutron source", ABSTRACTS OF THE MEETING OF THE PHYSICAL SOCIETY OF JAPAN, vol. 65, no. 1, 1 March 2010 (2010-03-01), pages 143 *
P. A. ALEKSANDROV ET AL.: "Charge exchange at grazing reflection of swift ions from a solid surface,", RADIATION EFFECTS AND DEFECTS IN SOLIDS, vol. 117, 1991, pages 95 - 98 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575963B1 (en) * 2013-09-06 2014-08-20 株式会社京都ニュートロニクス Charged particle accelerator and neutron generator equipped with the charged particle accelerator

Also Published As

Publication number Publication date
JPWO2012066940A1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5472944B2 (en) High current DC proton accelerator
Shevelko et al. Atomic multielectron processes
Roth et al. Energetic ions generated by laser pulses: A detailed study on target properties
JP2000030654A (en) Particle beam device
JP2014164818A (en) Laser ion source and heavy particle beam therapy apparatus
US9230789B2 (en) Printed circuit board multipole for ion focusing
WO2014123701A1 (en) Method and apparatus for generation of a uniform-profile particle beam
WO2012066940A1 (en) Tandem accelerator and charge exchanger
JP6214906B2 (en) Laser ion source, ion accelerator and heavy ion beam therapy system
Ni et al. Feasibility study of the magnetic beam self-focusing phenomenon in a stack of conducting foils: Application to TNSA proton beams
Kondrashev et al. Features of ion generation using Nd-glass laser
CN116088030A (en) Real-time angle-resolved thomson electronic ion spectrometer
Wang et al. Collimated particle acceleration by vortex laser-induced self-structured “plasma lens”
Ito et al. Angular distribution measurements of energy spectra of protons emitted from hydrogen plasma focus
WO2020214197A1 (en) Ion source and neutron generator
US9530608B2 (en) X-ray generation from a super-critical field
Welsch Non-destructive beam profile monitors
Todoroki et al. Beam profile monitor for antiproton-nucleus annihilation cross section measurements
Buon Possibility to measure very small spot sizes using gas ionization at future linear colliders
JP4034304B2 (en) X-ray generator having an emitter formed on a semiconductor structure
Bhowmick et al. A new gridless ion optics for high resolution time-of-flight mass spectrometer
WO2006134380A2 (en) Atom probe
Bryzgunov et al. High voltage electron cooler
Itagaki et al. Spectroscopic analysis of linear shaped Inertial Electrostatic Confinement Fusion (IECF) device
Kishimoto et al. Evaluation of pulsed ion beam produced in plasmas focus device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841310

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012544176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841310

Country of ref document: EP

Kind code of ref document: A1