WO2012066939A1 - Power control device and power control system - Google Patents
Power control device and power control system Download PDFInfo
- Publication number
- WO2012066939A1 WO2012066939A1 PCT/JP2011/075381 JP2011075381W WO2012066939A1 WO 2012066939 A1 WO2012066939 A1 WO 2012066939A1 JP 2011075381 W JP2011075381 W JP 2011075381W WO 2012066939 A1 WO2012066939 A1 WO 2012066939A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- value
- power control
- electric motor
- torque
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/20—Estimation of torque
Definitions
- the present invention relates to a technique for controlling electric power supplied to a mechanical system including an electric motor.
- the hydraulic drive unit In the industrial machine field such as press machines and injection molding machines, the hydraulic drive unit is being electrified in order to achieve energy saving and high precision control.
- a technique for supplying an appropriate amount of electric power to the electric motor at any time is necessary.
- a technique for estimating the amount of electric power necessary to drive the electric motor and adjusting the electric power with an inverter in the mechanical system based on the estimation result is required.
- the torque estimation unit estimates the torque generated in the motor based on the U-phase current and V-phase current measured by the current sensor, and controls the inverter to rotate the motor at a desired rotational speed. Yes.
- the motor torque at that time is estimated using an actual measurement value such as a motor current, and electric power is supplied or charged in accordance with the estimation result.
- an actual measurement value such as a motor current
- electric power is supplied or charged in accordance with the estimation result.
- the control is based on instantaneous measured values, depending on the load fluctuation state, there is a possibility that charging is not in time and power is insufficient, and the motor cannot perform a desired operation.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a power control apparatus capable of supplying an appropriate amount of power to an electric motor.
- the power control apparatus estimates torque generated in the electric motor in time series, and estimates electric power necessary for driving the electric motor in time series based on the estimation result.
- the power control apparatus estimates the power to be supplied to the electric motor in time series, the electric power necessary for causing the electric motor to perform a desired operation can be prepared in advance. Thereby, possibility that the electric power which drives an electric motor will run short can be reduced.
- FIG. 2 is a functional block diagram of the power control apparatus 100 according to the first embodiment.
- FIG. It is an internal block diagram of the model estimator 110, the power estimator 120, and the inverter 130.
- FIG. 6 is a functional block diagram of a power control apparatus 100 according to a third embodiment.
- FIG. 10 is a functional block diagram of a power control apparatus 100 according to a fourth embodiment. It is a block diagram of the power control systems 1000a and 1000b which concern on Embodiment 5.
- FIG. It is a block diagram of the power control systems 1000a and 1000b which concern on Embodiment 6.
- FIG. 1 is a functional block diagram of a power control apparatus 100 according to Embodiment 1 of the present invention.
- the power control apparatus 100 is an apparatus that controls power supplied to the mechanical system 200, and includes a model estimator 110, a power estimator 120, and an inverter 130.
- the machine system 200 is a system having a machine work function performed by, for example, an industrial machine, and includes a mechanism unit 202 that performs the machine work and an electric motor 201 that drives the mechanism unit 202.
- Sensor 301 measures torque T generated in electric motor 201 and angular velocity ⁇ of electric motor 201 and outputs the measured value 303 to model estimator 110.
- the torque T generated in the electric motor 201 can be obtained by measuring the current flowing through the electric motor 201, for example.
- the sensor 302 measures the displacement z and the load F of the mechanism unit 302 and outputs the measured value 303 to the model estimator 110.
- the sensors 301 and 302 can be installed inside the motor 201 or the mechanism unit 202 or on the housing surface.
- the model estimator 110 uses the measured value 303 to construct a torque estimation model 111 that estimates the torque T generated in the electric motor 201 in time series.
- the torque estimation model 111 is constructed as a function of the angular velocity of the electric motor 201.
- the torque T generated in the electric motor 201 is The model is not limited to this as long as it can be estimated as a series.
- the measurement value 303 used for constructing the torque estimation model 111 is not limited to the above-described one, and it is sufficient that a model that can estimate the torque T generated in the electric motor 201 in time series can be constructed.
- the model estimator 110 updates the torque estimation model 111 while acquiring the latest measured value 303 as needed. Thereby, it is possible to provide the torque estimation model 111 with always high estimation accuracy.
- the torque estimation model 111 may be constructed using only the measured value 303 during a certain period (for example, at the time of startup), and the model may be continuously used thereafter.
- any known technique can be used.
- the sensors 301 and 302 first measure the torque T, the angular velocity ⁇ , the displacement z, and the load F, which are state quantities included in (Equation 1), and output them to the model estimator 110.
- the model estimator 110 estimates each coefficient A 1 , A 2 , A 3 of (Equation 1) by a technique such as multiple regression analysis.
- the torque T can be estimated by applying the coefficients A 1 , A 2 , A 3 , the command value of ⁇ , and the measured values of z and F to (Equation 1).
- the torque estimation model 111 similar to (Equation 1) is analyzed by analyzing each measured value using the system identification method. Can be built. After the torque estimation model 111 is constructed, an unknown coefficient can be estimated by a technique such as multiple regression analysis to obtain a final torque estimation model 111.
- the power estimator 120 inputs the angular velocity command value ⁇ t2 at the future time t2 to the torque estimation model 111 constructed by the model estimator 110. In response to this, the torque estimation model 111 returns the estimated torque T t2 of the electric motor 201 at the future time t2. Electric power estimator 120 estimates electric power P t2 required by electric motor 201 at future time t2 using estimated torque T t2 , and notifies inverter 130 of it.
- the inverter 130 converts the power supplied from the power source 400 into AC power having a desired frequency and supplies it to the electric motor 201.
- the inverter 130 includes a capacitor 131 that stores electric power. Based on the estimated power P t2 notified from the power estimator 120, the inverter 130 stores in the capacitor 131 enough power to supply the power P t2 to the electric motor 201 at a future time t2. If the power is insufficient at the time t2, the power stored in the capacitor 131 is released and supplied to the electric motor 201.
- the inverter 130 may include a controller that controls its own operation, or the control operation may be delegated to the power estimator 120.
- the power estimator 120 controls the operation of the inverter 130
- the estimated power P t2 notified from the power estimator 120 to the inverter 130 is actually a switching element drive command for performing an equivalent operation.
- inverter 130 controls its own operation, only the value of estimated power P t2 may be notified to inverter 130.
- FIG. 2 is an internal configuration diagram of the model estimator 110, the power estimator 120, and the inverter 130. Hereinafter, the configuration of each unit will be described.
- the model estimator 110 includes an I / O unit 112, a communication unit 113, a memory 114, and a CPU (Central Processing Unit) 115.
- the I / O unit 112 acquires the measurement value 303 from the sensors 301 and 302.
- the communication unit 113 transmits and receives the angular velocity command value ⁇ t2 and the estimated torque T t2 to and from the power estimator 120.
- the memory 114 stores data temporarily used by the CPU 115.
- the CPU 115 performs operations such as multiple regression analysis and system identification based on the measured value 303 to construct the torque estimation model 111.
- the I / O unit 112 corresponds to the “state quantity acquisition unit” in the present invention.
- the power estimator 120 includes communication units 121 and 122, a memory 123, and a CPU 124.
- the communication unit 121 transmits and receives the angular velocity command value ⁇ t2 and the estimated torque T t2 to and from the model estimator 110.
- Communication unit 122 transmits estimated power P t2 to inverter 130.
- the memory 123 stores data temporarily used by the CPU 124.
- the CPU 124 estimates the estimated power P t2 based on the estimated torque T t2 .
- the inverter 130 includes a communication unit 132, an I / O unit 133, a memory 134, and a CPU 135 in addition to a circuit unit such as a switching element (not shown).
- the communication unit 132 receives the estimated power P t2 from the power estimator 120.
- the I / O unit 133 outputs an inverter output 136 to the electric motor 201.
- the memory 134 stores data temporarily used by the CPU 135.
- CPU135 controls operation
- the power control apparatus 100 is necessary for constructing the torque estimation model 111 that estimates the model generated in the electric motor 201 in time series and driving the electric motor 201 using the model.
- the power value P t2 is estimated in time series.
- the power control apparatus 100 obtains the estimated torque T t2 of the electric motor 201 at the future time t2 by inputting the angular velocity command value ⁇ t2 at the future time t2 to the torque estimation model 111. Moreover, the electric power P t2 required by the electric motor 201 at the future time t2 is estimated using the estimated torque T t2 . Thereby, before the specific time arrives, the electric power required at that time can be prepared, which is advantageous in that the mechanical system 200 can be systematically operated in addition to the above advantages. It is.
- the power estimator 120 compares the estimated torque T t2 or the estimated power P t2 with these reference values at a predetermined time t2, and when both are extremely different from each other, It may be determined that an abnormality has occurred in the electric motor 201 or the mechanism unit 202. Similarly, the estimated torque T t2 or the estimated power P t2 may be compared with these measured values (obtained from the sensors 301 and 302) to determine abnormality.
- the reference value and the threshold value for determining an abnormality may be stored in advance in a storage device such as an HDD (Hard Disk Drive) or a flash memory.
- the electric power estimator 120 determines that an abnormality has occurred in the electric motor 201 or the mechanism unit 202
- the electric power estimator 120 calculates a power value that stops them or restores them to a normal state, and notifies the inverter 130 of them.
- the inverter 130 can drive or control the electric motor 201 based on the electric power value, thereby stopping the electric motor 201 or the mechanism unit 202 or returning it to a normal state.
- FIG. 3 is a functional block diagram of the power control apparatus 100 according to the third embodiment of the present invention.
- the power control apparatus 100 according to the third embodiment has the same configuration as that of the first and second embodiments, except that each functional unit is built in the inverter 130 and integrally configured.
- the inverter 130 includes all the internal configurations of the model estimator 110, the power estimator 120, and the inverter 130 described in FIG. However, it is not always necessary to provide the same number of components as those shown in FIG. Further, the communication units 113, 121 to 122, 132 are not necessary.
- the communication load for transmitting and receiving estimated values and the like can be reduced.
- the number of parts as the whole power control apparatus 100 can be reduced by sharing parts.
- FIG. 4 is a functional block diagram of the power control apparatus 100 according to the fourth embodiment of the present invention.
- the fourth embodiment there are two systems of the inverter 130, the electric motor 201, and the power source 400, respectively.
- each system is distinguished using the subscripts a and b. Further, description of some components such as the sensor 301 is omitted.
- the model estimator 110 constructs torque estimation models 111a and 111b for the electric motors 201a and 201b, respectively.
- the power estimator 120 inputs the angular velocity command value ⁇ t2 at the future time t2 to the torque estimation model 111, thereby obtaining the estimated torques T t2 and T ′ t2 of the electric motors 201a and 201b at the future time t2.
- Electric power estimator 120 estimates electric powers P t2 and P ′ t2 required by electric motors 201a and 201b at future time t2 based on each estimated torque, and notifies inverters 130a and 130b, respectively.
- Inverters 130a and 130b supply electric power to electric motors 201a and 201b, respectively, and drive mechanism 202. Further, electric power is stored in the capacitors 131a and 131b based on the estimated electric powers P t2 and P ′ t2 .
- the operations of the electric motors 201a and 201b may be the same or different.
- the measured values of the sensors are the same, so the torque estimation models 111a and 111b, the estimated torques T t2 and T ′ t2 , and the estimated powers P t2 and P ′ t2 should be the same. It is. Therefore, the power estimator 120 may determine that an abnormality has occurred in at least one of the electric motor 201 and the mechanism unit 202 when any one of them does not match.
- the power estimator 120 determines that an abnormality has occurred in the electric motor 201 or the mechanism unit 202, the power estimator 120 obtains power values P t2 and P ′ t2 that stop these operations or return to normal operations. Each inverter 130 may be notified. As a result, the abnormal operation can be promptly stopped or returned to the normal operation.
- the same processing may be executed. Thereby, the malfunction by abnormal operation
- FIG. 5 is a configuration diagram of power control systems 1000a and 1000b according to Embodiment 5 of the present invention.
- the power control systems 1000a and 1000b are systems each including the power control device 100, the mechanical system 200, and the sensors 301 and 302 described in the first to fourth embodiments.
- the number and connection relationship of the power control systems 1000 may be arbitrary.
- Power control systems 1000a and 1000b include communication devices 500a and 500b, respectively, and transmit and receive at least one of measured values of each sensor, torque estimation model 111, estimated torque T t2 , and estimated power P t2 to each other. Can do.
- FIG. 6 is a configuration diagram of power control systems 1000a and 1000b according to Embodiment 6 of the present invention.
- each power control system 1000 is connected via the communication devices 500a and 500b.
- the host controller 600 is installed at the higher level, and the host controller 600 collects and integrates information from each communication device 500.
- each power control system 1000 may be controlled.
- each of the above-described configurations, functions, processing units, etc. can be realized as hardware by designing all or a part thereof, for example, with an integrated circuit, or the processor executes a program for realizing each function. By doing so, it can also be realized as software.
- Information such as programs and tables for realizing each function can be stored in a storage device such as a memory or a hard disk, or a storage medium such as an IC card or a DVD.
- Power controller 110 Model estimator 111: Torque estimation model 112: I / O unit 113: Communication unit 114: Memory 115: CPU 120: Power estimator 121-122: Communication unit , 123: Memory, 124: CPU, 130: Inverter, 131: Capacitor, 132: Communication unit, 133: I / O unit, 134: Memory, 135: CPU, 136: Inverter output, 200: Mechanical system, 201: Electric motor 202: mechanism unit, 301 to 302: sensor, 303: measurement value, 400: power supply, 500: communication device, 600: host controller, 1000: power control system.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Multiple Motors (AREA)
Abstract
The purpose of the present invention is to provide a power control device that can supply a suitable amount of power to an electric motor. This power control device chronologically estimates the torque generated in an electric motor, and, on the basis of the estimation results, chronologically estimates the power required for driving the electric motor (see FIG. 1).
Description
本発明は、電動機を備えた機械システムに供給する電力を制御する技術に関するものである。
The present invention relates to a technique for controlling electric power supplied to a mechanical system including an electric motor.
プレス機や射出成型機などの産業機械分野において,省エネルギー化や高精度制御を実現するため、油圧駆動部の電動化が進められている。電動化された機械システムを正常状態で連続運転させるためには、電動機に随時適性量の電力を供給する技術が必要である。これを実現するには、電動機を駆動するために必要な電力量を推定し、推定結果に基づき機械システム内のインバータで電力を調整する技術が必要である。
In the industrial machine field such as press machines and injection molding machines, the hydraulic drive unit is being electrified in order to achieve energy saving and high precision control. In order to continuously operate an electric machine system in a normal state, a technique for supplying an appropriate amount of electric power to the electric motor at any time is necessary. In order to realize this, a technique for estimating the amount of electric power necessary to drive the electric motor and adjusting the electric power with an inverter in the mechanical system based on the estimation result is required.
下記特許文献1では、電流センサで計測したU相電流とV相電流を基にトルク推定部でモータに発生するトルクを推定し、モータを所望の回転速度で回転させるようにインバータを制御している。
In the following Patent Document 1, the torque estimation unit estimates the torque generated in the motor based on the U-phase current and V-phase current measured by the current sensor, and controls the inverter to rotate the motor at a desired rotational speed. Yes.
上記特許文献1では、電動機電流などの実測値を用いてその時点における電動機トルクを推定し、推定結果に合わせて電動機に電力を供給し、または充電している。しかし、瞬時的な実測値に基づく制御であるため、負荷の変動状況によっては、充電が間に合わずに電力が不足し、電動機が所望の動作を実施することができなくなる可能性がある。
In the above-mentioned Patent Document 1, the motor torque at that time is estimated using an actual measurement value such as a motor current, and electric power is supplied or charged in accordance with the estimation result. However, since the control is based on instantaneous measured values, depending on the load fluctuation state, there is a possibility that charging is not in time and power is insufficient, and the motor cannot perform a desired operation.
本発明は、上記のような課題を解決するためになされたものであり、電動機に適切な量の電力を供給することのできる電力制御装置を提供することを目的とする。
The present invention has been made to solve the above-described problems, and an object thereof is to provide a power control apparatus capable of supplying an appropriate amount of power to an electric motor.
本発明に係る電力制御装置は、電動機に発生するトルクを時系列に推定し、その推定結果に基づき、電動機を駆動するために必要となる電力を時系列で推定する。
The power control apparatus according to the present invention estimates torque generated in the electric motor in time series, and estimates electric power necessary for driving the electric motor in time series based on the estimation result.
本発明に係る電力制御装置は、電動機に供給すべき電力を時系列で推定するので、電動機に所望の動作を実施させるために必要な電力をあらかじめ準備しておくことができる。これにより、電動機を駆動させる電力が不足する可能性を低減することができる。
Since the power control apparatus according to the present invention estimates the power to be supplied to the electric motor in time series, the electric power necessary for causing the electric motor to perform a desired operation can be prepared in advance. Thereby, possibility that the electric power which drives an electric motor will run short can be reduced.
<実施の形態1>
図1は、本発明の実施形態1に係る電力制御装置100の機能ブロック図である。電力制御装置100は、機械システム200に供給する電力を制御する装置であり、モデル推定器110、電力推定器120、インバータ130を備える。 <Embodiment 1>
FIG. 1 is a functional block diagram of apower control apparatus 100 according to Embodiment 1 of the present invention. The power control apparatus 100 is an apparatus that controls power supplied to the mechanical system 200, and includes a model estimator 110, a power estimator 120, and an inverter 130.
図1は、本発明の実施形態1に係る電力制御装置100の機能ブロック図である。電力制御装置100は、機械システム200に供給する電力を制御する装置であり、モデル推定器110、電力推定器120、インバータ130を備える。 <Embodiment 1>
FIG. 1 is a functional block diagram of a
機械システム200は、例えば産業機械が実施する機械作業機能を有するシステムであり、機械作業を実施する機構部202、機構部202を駆動する電動機201を備える。
The machine system 200 is a system having a machine work function performed by, for example, an industrial machine, and includes a mechanism unit 202 that performs the machine work and an electric motor 201 that drives the mechanism unit 202.
センサ301は、電動機201に発生するトルクTと電動機201の角速度ωを計測し、計測値303としてモデル推定器110に出力する。電動機201に発生するトルクTは、例えば電動機201に流れる電流を計測することによって得ることができる。センサ302は、機構部302の変位zと荷重Fを計測し、計測値303としてモデル推定器110に出力する。センサ301および302は、電動機201または機構部202の内部または筐体表面に設置することができる。
Sensor 301 measures torque T generated in electric motor 201 and angular velocity ω of electric motor 201 and outputs the measured value 303 to model estimator 110. The torque T generated in the electric motor 201 can be obtained by measuring the current flowing through the electric motor 201, for example. The sensor 302 measures the displacement z and the load F of the mechanism unit 302 and outputs the measured value 303 to the model estimator 110. The sensors 301 and 302 can be installed inside the motor 201 or the mechanism unit 202 or on the housing surface.
モデル推定器110は、計測値303を用いて、電動機201に発生するトルクTを時系列に推定するトルク推定モデル111を構築する。ここでは、電力推定器120が電動機201の角速度指令値を出力することに鑑みて、トルク推定モデル111は電動機201の角速度の関数として構築することとしたが、電動機201に発生するトルクTを時系列に推定することができるモデルであれば、これに限られるものではない。また、トルク推定モデル111を構築するために用いる計測値303は、上述のものに限られず、電動機201に発生するトルクTを時系列に推定することができるモデルを構築することができればよい。
The model estimator 110 uses the measured value 303 to construct a torque estimation model 111 that estimates the torque T generated in the electric motor 201 in time series. Here, considering that the power estimator 120 outputs the angular velocity command value of the electric motor 201, the torque estimation model 111 is constructed as a function of the angular velocity of the electric motor 201. However, the torque T generated in the electric motor 201 is The model is not limited to this as long as it can be estimated as a series. Further, the measurement value 303 used for constructing the torque estimation model 111 is not limited to the above-described one, and it is sufficient that a model that can estimate the torque T generated in the electric motor 201 in time series can be constructed.
モデル推定器110は、最新の計測値303を随時取得しながら、トルク推定モデル111を更新する。これにより、常に推定精度の高いトルク推定モデル111を提供することができる。機械システム200の負荷変動が少ない場合は、ある期間(例えば起動時)における計測値303のみを用いてトルク推定モデル111を構築し、以後そのモデルを継続して用いるようにしてもよい。
The model estimator 110 updates the torque estimation model 111 while acquiring the latest measured value 303 as needed. Thereby, it is possible to provide the torque estimation model 111 with always high estimation accuracy. When the load fluctuation of the mechanical system 200 is small, the torque estimation model 111 may be constructed using only the measured value 303 during a certain period (for example, at the time of startup), and the model may be continuously used thereafter.
モデル推定器110がトルク推定モデル111を構築する手法としては、任意の公知技術を用いることができるが、1例として、多変量解析、重回帰分析、システム同定などの分野で用いられている手法が挙げられる。
As a technique for the model estimator 110 to construct the torque estimation model 111, any known technique can be used. As an example, a technique used in the fields of multivariate analysis, multiple regression analysis, system identification, and the like. Is mentioned.
トルク推定モデル111の基礎的な構成をあらかじめモデル推定器110内に演算プログラムなどの形態で格納しておけば、トルク推定演算を高速化することができる。例えば、機械システム200内のエネルギー保存則に基づき、下記(式1)に示すトルク推定モデル111を構築したと仮定する。
T=A1・f1(ω)+A2・f2(ω,z,F)+A3・f3(ω,z) (式1) If the basic configuration of thetorque estimation model 111 is stored in advance in the model estimator 110 in the form of a calculation program or the like, the torque estimation calculation can be speeded up. For example, it is assumed that a torque estimation model 111 shown in the following (Equation 1) is constructed based on the energy conservation law in the mechanical system 200.
T = A 1 · f 1 (ω) + A 2 · f 2 (ω, z, F) + A 3 · f 3 (ω, z) (Formula 1)
T=A1・f1(ω)+A2・f2(ω,z,F)+A3・f3(ω,z) (式1) If the basic configuration of the
T = A 1 · f 1 (ω) + A 2 · f 2 (ω, z, F) + A 3 · f 3 (ω, z) (Formula 1)
この場合、センサ301および302は、まず(式1)内に含まれる状態量であるトルクT、角速度ω、変位z、荷重Fを計測し、モデル推定器110に出力する。モデル推定器110は、重回帰分析などの手法によって(式1)の各係数A1、A2、A3を推定する。各係数A1、A2、A3と、ωの指令値、zとFの計測値を(式1)に適用することにより、トルクTを推定することができる。
In this case, the sensors 301 and 302 first measure the torque T, the angular velocity ω, the displacement z, and the load F, which are state quantities included in (Equation 1), and output them to the model estimator 110. The model estimator 110 estimates each coefficient A 1 , A 2 , A 3 of (Equation 1) by a technique such as multiple regression analysis. The torque T can be estimated by applying the coefficients A 1 , A 2 , A 3 , the command value of ω, and the measured values of z and F to (Equation 1).
一方、機械システム200の構造がブラックボックスであり、モデル構造を事前に把握することができない場合は、各計測値をシステム同定手法で分析することにより、(式1)と同様のトルク推定モデル111を構築することができる。トルク推定モデル111を構築した後は、重回帰分析などの手法で未知の係数を推定し、最終的なトルク推定モデル111を得ることができる。
On the other hand, when the structure of the mechanical system 200 is a black box and the model structure cannot be grasped in advance, the torque estimation model 111 similar to (Equation 1) is analyzed by analyzing each measured value using the system identification method. Can be built. After the torque estimation model 111 is constructed, an unknown coefficient can be estimated by a technique such as multiple regression analysis to obtain a final torque estimation model 111.
電力推定器120は、モデル推定器110が構築したトルク推定モデル111に対し、将来時刻t2における角速度指令値ωt2を投入する。トルク推定モデル111は、これに対して将来時刻t2における電動機201の推定トルクTt2を返す。電力推定器120は、推定トルクTt2を用いて、将来時刻t2において電動機201が必要とする電力Pt2を推定し、インバータ130に通知する。
The power estimator 120 inputs the angular velocity command value ω t2 at the future time t2 to the torque estimation model 111 constructed by the model estimator 110. In response to this, the torque estimation model 111 returns the estimated torque T t2 of the electric motor 201 at the future time t2. Electric power estimator 120 estimates electric power P t2 required by electric motor 201 at future time t2 using estimated torque T t2 , and notifies inverter 130 of it.
インバータ130は、電源400から供給される電力を所望周波数の交流電力に変換して電動機201に供給する。またインバータ130は、電力を蓄積するコンデンサ131を備える。インバータ130は、電力推定器120から通知された推定電力Pt2に基づき、将来時刻t2において電力Pt2を電動機201に供給することができるだけの電力を、コンデンサ131に蓄積しておく。時刻t2になった時点で電力が不足している場合は、コンデンサ131が蓄積している電力を解放して電動機201に供給する。
The inverter 130 converts the power supplied from the power source 400 into AC power having a desired frequency and supplies it to the electric motor 201. The inverter 130 includes a capacitor 131 that stores electric power. Based on the estimated power P t2 notified from the power estimator 120, the inverter 130 stores in the capacitor 131 enough power to supply the power P t2 to the electric motor 201 at a future time t2. If the power is insufficient at the time t2, the power stored in the capacitor 131 is released and supplied to the electric motor 201.
インバータ130は、自らの動作を制御する制御器を備えていてもよいし、制御動作については電力推定器120に委譲してもよい。電力推定器120がインバータ130の動作を制御する場合は、電力推定器120からインバータ130に通知する推定電力Pt2は、実際には同等の動作を実施するためのスイッチング素子駆動指令となる。インバータ130が自らの動作を制御する場合は、推定電力Pt2の値のみをインバータ130へ通知するようにしてもよい。
The inverter 130 may include a controller that controls its own operation, or the control operation may be delegated to the power estimator 120. When the power estimator 120 controls the operation of the inverter 130, the estimated power P t2 notified from the power estimator 120 to the inverter 130 is actually a switching element drive command for performing an equivalent operation. When inverter 130 controls its own operation, only the value of estimated power P t2 may be notified to inverter 130.
図2は、モデル推定器110、電力推定器120、インバータ130の内部構成図である。以下、各部の構成について説明する。
FIG. 2 is an internal configuration diagram of the model estimator 110, the power estimator 120, and the inverter 130. Hereinafter, the configuration of each unit will be described.
モデル推定器110は、I/O部112、通信部113、メモリ114、CPU(Central Processing Unit)115を備える。I/O部112は、センサ301および302から計測値303を取得する。通信部113は、電力推定器120との間で、角速度指令値ωt2および推定トルクTt2を送受信する。メモリ114は、CPU115が一時的に使用するデータなどを記憶する。CPU115は、計測値303に基づき重回帰分析、システム同定などの演算を実行し、トルク推定モデル111を構築する。I/O部112は、本発明における「状態量取得部」に相当する。
The model estimator 110 includes an I / O unit 112, a communication unit 113, a memory 114, and a CPU (Central Processing Unit) 115. The I / O unit 112 acquires the measurement value 303 from the sensors 301 and 302. The communication unit 113 transmits and receives the angular velocity command value ω t2 and the estimated torque T t2 to and from the power estimator 120. The memory 114 stores data temporarily used by the CPU 115. The CPU 115 performs operations such as multiple regression analysis and system identification based on the measured value 303 to construct the torque estimation model 111. The I / O unit 112 corresponds to the “state quantity acquisition unit” in the present invention.
電力推定器120は、通信部121および122、メモリ123、CPU124を備える。通信部121は、モデル推定器110との間で、角速度指令値ωt2および推定トルクTt2を送受信する。通信部122は、インバータ130に推定電力Pt2を送信する。メモリ123は、CPU124が一時的に使用するデータなどを記憶する。CPU124は、推定トルクTt2に基づき推定電力Pt2を推定する。
The power estimator 120 includes communication units 121 and 122, a memory 123, and a CPU 124. The communication unit 121 transmits and receives the angular velocity command value ω t2 and the estimated torque T t2 to and from the model estimator 110. Communication unit 122 transmits estimated power P t2 to inverter 130. The memory 123 stores data temporarily used by the CPU 124. The CPU 124 estimates the estimated power P t2 based on the estimated torque T t2 .
インバータ130は、図示しないスイッチング素子などの回路部の他、通信部132、I/O部133、メモリ134、CPU135を備える。通信部132は、電力推定器120から推定電力Pt2を受信する。I/O部133は、電動機201にインバータ出力136を出力する。メモリ134は、CPU135が一時的に使用するデータなどを記憶する。CPU135は、インバータ130が備えるスイッチング素子の動作を制御し、電力変換を実施する。また、推定電力Pt2の値に応じて、コンデンサ131に電力を蓄積させる。
The inverter 130 includes a communication unit 132, an I / O unit 133, a memory 134, and a CPU 135 in addition to a circuit unit such as a switching element (not shown). The communication unit 132 receives the estimated power P t2 from the power estimator 120. The I / O unit 133 outputs an inverter output 136 to the electric motor 201. The memory 134 stores data temporarily used by the CPU 135. CPU135 controls operation | movement of the switching element with which the inverter 130 is provided, and implements power conversion. Further, the power is stored in the capacitor 131 according to the value of the estimated power Pt2 .
<実施の形態1:まとめ>
以上のように、本実施形態1に係る電力制御装置100は、電動機201に発生するモデルを時系列に推定するトルク推定モデル111を構築し、これを用いて電動機201を駆動するために必要な電力値Pt2を時系列で推定する。これにより、電動機201が必要とする電力をあらかじめ予測して準備することができるので、電動機201に供給する電力が不足して動作不良などを起こす可能性を低減することができる。 <Embodiment 1: Summary>
As described above, thepower control apparatus 100 according to the first embodiment is necessary for constructing the torque estimation model 111 that estimates the model generated in the electric motor 201 in time series and driving the electric motor 201 using the model. The power value P t2 is estimated in time series. Thereby, since the electric power which the electric motor 201 requires can be estimated and prepared in advance, the possibility that the electric power supplied to the electric motor 201 is insufficient and causes malfunction or the like can be reduced.
以上のように、本実施形態1に係る電力制御装置100は、電動機201に発生するモデルを時系列に推定するトルク推定モデル111を構築し、これを用いて電動機201を駆動するために必要な電力値Pt2を時系列で推定する。これにより、電動機201が必要とする電力をあらかじめ予測して準備することができるので、電動機201に供給する電力が不足して動作不良などを起こす可能性を低減することができる。 <Embodiment 1: Summary>
As described above, the
また、本実施形態1に係る電力制御装置100は、将来時刻t2における角速度指令値ωt2をトルク推定モデル111に投入することにより、将来時刻t2における電動機201の推定トルクTt2を取得する。また、推定トルクTt2を用いて将来時刻t2において電動機201が必要とする電力Pt2を推定する。これにより、特定の時刻が到達するに先んじて、その時点で必要となる電力を準備しておくことができるので、上記利点に加え、機械システム200を計画的に運用することができる点で有利である。
The power control apparatus 100 according to the first embodiment obtains the estimated torque T t2 of the electric motor 201 at the future time t2 by inputting the angular velocity command value ω t2 at the future time t2 to the torque estimation model 111. Moreover, the electric power P t2 required by the electric motor 201 at the future time t2 is estimated using the estimated torque T t2 . Thereby, before the specific time arrives, the electric power required at that time can be prepared, which is advantageous in that the mechanical system 200 can be systematically operated in addition to the above advantages. It is.
<実施の形態2>
実施形態1において、電力推定器120は、推定トルクTt2または推定電力Pt2と、あらかじめ定めておいた時刻t2におけるこれらの基準値とを比較し、両者が極端に乖離している場合は、電動機201または機構部202に異常が発生していると判断するようにしてもよい。同様に、推定トルクTt2または推定電力Pt2と、これらの実測値(センサ301および302から取得)とを比較し、異常判定をしてもよい。基準値および異常判定するための閾値は、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置にあらかじめ格納しておけばよい。 <Embodiment 2>
In the first embodiment, thepower estimator 120 compares the estimated torque T t2 or the estimated power P t2 with these reference values at a predetermined time t2, and when both are extremely different from each other, It may be determined that an abnormality has occurred in the electric motor 201 or the mechanism unit 202. Similarly, the estimated torque T t2 or the estimated power P t2 may be compared with these measured values (obtained from the sensors 301 and 302) to determine abnormality. The reference value and the threshold value for determining an abnormality may be stored in advance in a storage device such as an HDD (Hard Disk Drive) or a flash memory.
実施形態1において、電力推定器120は、推定トルクTt2または推定電力Pt2と、あらかじめ定めておいた時刻t2におけるこれらの基準値とを比較し、両者が極端に乖離している場合は、電動機201または機構部202に異常が発生していると判断するようにしてもよい。同様に、推定トルクTt2または推定電力Pt2と、これらの実測値(センサ301および302から取得)とを比較し、異常判定をしてもよい。基準値および異常判定するための閾値は、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置にあらかじめ格納しておけばよい。 <Embodiment 2>
In the first embodiment, the
電力推定器120は、電動機201または機構部202に異常が発生していると判断した場合は、これらを停止させるかまたは正常状態に復帰させるような電力値を算出し、インバータ130に通知する。インバータ130は、その電力値に基づき電動機201を駆動制御することにより、電動機201または機構部202を停止させるかまたは正常状態に復帰させることができる。
When the power estimator 120 determines that an abnormality has occurred in the electric motor 201 or the mechanism unit 202, the electric power estimator 120 calculates a power value that stops them or restores them to a normal state, and notifies the inverter 130 of them. The inverter 130 can drive or control the electric motor 201 based on the electric power value, thereby stopping the electric motor 201 or the mechanism unit 202 or returning it to a normal state.
<実施の形態3>
図3は、本発明の実施形態3に係る電力制御装置100の機能ブロック図である。本実施形態3に係る電力制御装置100は、実施形態1~2と同様の構成を備えるが、各機能部がインバータ130に内蔵され、一体的に構成されている点が異なる。 <Embodiment 3>
FIG. 3 is a functional block diagram of thepower control apparatus 100 according to the third embodiment of the present invention. The power control apparatus 100 according to the third embodiment has the same configuration as that of the first and second embodiments, except that each functional unit is built in the inverter 130 and integrally configured.
図3は、本発明の実施形態3に係る電力制御装置100の機能ブロック図である。本実施形態3に係る電力制御装置100は、実施形態1~2と同様の構成を備えるが、各機能部がインバータ130に内蔵され、一体的に構成されている点が異なる。 <Embodiment 3>
FIG. 3 is a functional block diagram of the
本実施形態3におけるインバータ130は、図2で説明したモデル推定器110、電力推定器120、インバータ130の内部構成を全て備える。ただし、CPUやメモリなど共通化できる構成要素については、必ずしも図2と同数備える必要はない。また、通信部113、121~122、132は必要ない。
The inverter 130 according to the third embodiment includes all the internal configurations of the model estimator 110, the power estimator 120, and the inverter 130 described in FIG. However, it is not always necessary to provide the same number of components as those shown in FIG. Further, the communication units 113, 121 to 122, 132 are not necessary.
本実施形態3では、モデル推定器110と電力推定器120をインバータ130の外部に設置する場合と比較して、推定値などを送受信する通信負荷を低減することができる。また、部品の共通化により、電力制御装置100全体としての部品点数を削減することができる。
In the third embodiment, compared to the case where the model estimator 110 and the power estimator 120 are installed outside the inverter 130, the communication load for transmitting and receiving estimated values and the like can be reduced. Moreover, the number of parts as the whole power control apparatus 100 can be reduced by sharing parts.
<実施の形態4>
図4は、本発明の実施形態4に係る電力制御装置100の機能ブロック図である。本実施形態4では、インバータ130、電動機201、電源400がそれぞれ2系統存在している。便宜上、添字a、bを用いて各系統を区別する。また、センサ301など一部の構成要素は記載を省略する。 <Embodiment 4>
FIG. 4 is a functional block diagram of thepower control apparatus 100 according to the fourth embodiment of the present invention. In the fourth embodiment, there are two systems of the inverter 130, the electric motor 201, and the power source 400, respectively. For convenience, each system is distinguished using the subscripts a and b. Further, description of some components such as the sensor 301 is omitted.
図4は、本発明の実施形態4に係る電力制御装置100の機能ブロック図である。本実施形態4では、インバータ130、電動機201、電源400がそれぞれ2系統存在している。便宜上、添字a、bを用いて各系統を区別する。また、センサ301など一部の構成要素は記載を省略する。 <Embodiment 4>
FIG. 4 is a functional block diagram of the
本実施形態4において、モデル推定器110は、電動機201a、201bそれぞれのトルク推定モデル111a、111bを構築する。
In the fourth embodiment, the model estimator 110 constructs torque estimation models 111a and 111b for the electric motors 201a and 201b, respectively.
電力推定器120は、将来時刻t2における角速度指令値ωt2をトルク推定モデル111に投入することにより、将来時刻t2における電動機201aおよび201bの推定トルクTt2とT’t2を取得する。電力推定器120は、各推定トルクに基づき将来時刻t2において電動機201aおよび201bが必要とする電力Pt2とP’t2を推定し、インバータ130aと130bにそれぞれ通知する。
The power estimator 120 inputs the angular velocity command value ω t2 at the future time t2 to the torque estimation model 111, thereby obtaining the estimated torques T t2 and T ′ t2 of the electric motors 201a and 201b at the future time t2. Electric power estimator 120 estimates electric powers P t2 and P ′ t2 required by electric motors 201a and 201b at future time t2 based on each estimated torque, and notifies inverters 130a and 130b, respectively.
インバータ130aおよび130bは、それぞれ電動機201aおよび201bに対して電力を供給し、機構部202を駆動させる。また、推定電力Pt2とP’t2に基づきコンデンサ131aおよび131bに電力を蓄積する。
Inverters 130a and 130b supply electric power to electric motors 201a and 201b, respectively, and drive mechanism 202. Further, electric power is stored in the capacitors 131a and 131b based on the estimated electric powers P t2 and P ′ t2 .
その他の構成については実施形態1~3と同様であるため、説明を省略する。
Other configurations are the same as those in the first to third embodiments, and thus description thereof is omitted.
本実施形態4において、電動機201aと201bの動作は同一でもよいし異なっていてもよい。両者の動作が同一である場合は、各センサの計測値は同一であるため、トルク推定モデル111aおよび111b、推定トルクTt2とT’t2、推定電力Pt2とP’t2は同一になるはずである。そこで電力推定器120は、これらのうちいずれかが一致しなくなったときは、電動機201または機構部202の少なくともいずれかに異常が発生していると判断してもよい。
In the fourth embodiment, the operations of the electric motors 201a and 201b may be the same or different. When both operations are the same, the measured values of the sensors are the same, so the torque estimation models 111a and 111b, the estimated torques T t2 and T ′ t2 , and the estimated powers P t2 and P ′ t2 should be the same. It is. Therefore, the power estimator 120 may determine that an abnormality has occurred in at least one of the electric motor 201 and the mechanism unit 202 when any one of them does not match.
電力推定器120は、電動機201または機構部202に異常が発生していると判断したときは、これらの動作を停止させるかまたは正常動作に復帰するような電力値Pt2とP’t2を求め、各インバータ130に通知するようにしてもよい。これにより、速やかに異常動作を停止または正常動作に復帰することができる。
When the power estimator 120 determines that an abnormality has occurred in the electric motor 201 or the mechanism unit 202, the power estimator 120 obtains power values P t2 and P ′ t2 that stop these operations or return to normal operations. Each inverter 130 may be notified. As a result, the abnormal operation can be promptly stopped or returned to the normal operation.
同様に、将来時刻t2において電動機201または機構部202に異常が発生すると判断したときも、同様の処理を実行してもよい。これにより、異常動作による不具合を未然に抑えることができる。
Similarly, when it is determined that an abnormality occurs in the electric motor 201 or the mechanism unit 202 at a future time t2, the same processing may be executed. Thereby, the malfunction by abnormal operation | movement can be suppressed beforehand.
<実施の形態5>
図5は、本発明の実施形態5に係る電力制御システム1000aおよび1000bの構成図である。電力制御システム1000aおよび1000bはそれぞれ、実施形態1~4で説明した電力制御装置100、機械システム200、センサ301および302を備えるシステムである。ここでは、機械システム200の作業対象である工程が2つ存在すると仮定し、2系統の電力制御システム1000を例示したが、電力制御システム1000の個数や接続関係は任意でよい。 <Embodiment 5>
FIG. 5 is a configuration diagram of power control systems 1000a and 1000b according to Embodiment 5 of the present invention. The power control systems 1000a and 1000b are systems each including the power control device 100, the mechanical system 200, and the sensors 301 and 302 described in the first to fourth embodiments. Here, it is assumed that there are two processes that are work targets of the mechanical system 200, and the two power control systems 1000 are illustrated. However, the number and connection relationship of the power control systems 1000 may be arbitrary.
図5は、本発明の実施形態5に係る電力制御システム1000aおよび1000bの構成図である。電力制御システム1000aおよび1000bはそれぞれ、実施形態1~4で説明した電力制御装置100、機械システム200、センサ301および302を備えるシステムである。ここでは、機械システム200の作業対象である工程が2つ存在すると仮定し、2系統の電力制御システム1000を例示したが、電力制御システム1000の個数や接続関係は任意でよい。 <Embodiment 5>
FIG. 5 is a configuration diagram of
電力制御システム1000aおよび1000bは、それぞれ通信機500aおよび500bを備え、各センサの計測値、トルク推定モデル111、推定トルクTt2、推定電力Pt2の少なくともいずれかを相互に送受信して共有することができる。
Power control systems 1000a and 1000b include communication devices 500a and 500b, respectively, and transmit and receive at least one of measured values of each sensor, torque estimation model 111, estimated torque T t2 , and estimated power P t2 to each other. Can do.
電力制御システム1000aが作業対象とする工程と、電力制御システム1000bが作業対象とする工程とが間断なく連続している場合、一方の工程が終了する時点において必要となる電動機201のトルクT、電力Pなどは、次工程が開始する時点においてもほぼ同じ値であると思われる。このような場合には、各電力制御システム1000間でこれらの値を共有し、次工程が開始する時点で前工程におけるこれらの値を引き継げば、次工程をスムーズに開始することができる。
When the process targeted by the power control system 1000a and the process targeted by the power control system 1000b are continuous without interruption, the torque T and power of the motor 201 required at the time when one process ends. P and the like seem to be substantially the same value at the time when the next process starts. In such a case, if these values are shared among the power control systems 1000 and these values in the previous process are taken over when the next process starts, the next process can be started smoothly.
また、いずれかの工程において異常が発生した場合、そのまま他の工程を続行すると危険である場合がある。このような場合には、いずれかの電力推定器120が異常を検出したとき、その旨を他の電力推定器120に通知し、速やかに他工程を停止させて、作業現場の安全を確保することができる。
Also, if an abnormality occurs in any process, it may be dangerous to continue with other processes. In such a case, when one of the power estimators 120 detects an abnormality, it notifies the other power estimators 120 to that effect, and promptly stops other processes to ensure the safety of the work site. be able to.
<実施の形態6>
図6は、本発明の実施形態6に係る電力制御システム1000aおよび1000bの構成図である。実施形態5では、通信機500aおよび500bを介して各電力制御システム1000を接続したが、これらの上位に上位コントローラ600を設置し、上位コントローラ600が各通信機500からの情報を集約して統合的に各電力制御システム1000を制御するようにしてもよい。 <Embodiment 6>
FIG. 6 is a configuration diagram of power control systems 1000a and 1000b according to Embodiment 6 of the present invention. In the fifth embodiment, each power control system 1000 is connected via the communication devices 500a and 500b. However, the host controller 600 is installed at the higher level, and the host controller 600 collects and integrates information from each communication device 500. Alternatively, each power control system 1000 may be controlled.
図6は、本発明の実施形態6に係る電力制御システム1000aおよび1000bの構成図である。実施形態5では、通信機500aおよび500bを介して各電力制御システム1000を接続したが、これらの上位に上位コントローラ600を設置し、上位コントローラ600が各通信機500からの情報を集約して統合的に各電力制御システム1000を制御するようにしてもよい。 <Embodiment 6>
FIG. 6 is a configuration diagram of
以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
また、上記各構成、機能、処理部などは、それらの全部または一部を、例えば集積回路で設計することによりハードウェアとして実現することもできるし、プロセッサがそれぞれの機能を実現するプログラムを実行することによりソフトウェアとして実現することもできる。各機能を実現するプログラム、テーブルなどの情報は、メモリやハードディスクなどの記憶装置、ICカード、DVDなどの記憶媒体に格納することができる。
In addition, each of the above-described configurations, functions, processing units, etc. can be realized as hardware by designing all or a part thereof, for example, with an integrated circuit, or the processor executes a program for realizing each function. By doing so, it can also be realized as software. Information such as programs and tables for realizing each function can be stored in a storage device such as a memory or a hard disk, or a storage medium such as an IC card or a DVD.
100:電力制御装置、110:モデル推定器、111:トルク推定モデル、112:I/O部、113:通信部、114:メモリ、115:CPU、120:電力推定器、121~122:通信部、123:メモリ、124:CPU、130:インバータ、131:コンデンサ、132:通信部、133:I/O部、134:メモリ、135:CPU、136:インバータ出力、200:機械システム、201:電動機、202:機構部、301~302:センサ、303:計測値、400:電源、500:通信機、600:上位コントローラ、1000:電力制御システム。
100: Power controller 110: Model estimator 111: Torque estimation model 112: I / O unit 113: Communication unit 114: Memory 115: CPU 120: Power estimator 121-122: Communication unit , 123: Memory, 124: CPU, 130: Inverter, 131: Capacitor, 132: Communication unit, 133: I / O unit, 134: Memory, 135: CPU, 136: Inverter output, 200: Mechanical system, 201: Electric motor 202: mechanism unit, 301 to 302: sensor, 303: measurement value, 400: power supply, 500: communication device, 600: host controller, 1000: power control system.
Claims (12)
- 電動機を用いて駆動する機構部を備えた機械システムに供給する電力を制御する装置であって、
前記電動機または前記機構部の物理状態量の計測値を取得する状態量取得部と、
前記状態量取得部が取得した前記計測値を用いて、前記電動機に発生するトルクを時系列で推定するトルク推定モデルを構築するモデル推定部と、
前記トルク推定モデルから得られる前記トルクの時系列の推定値に基づき、前記電動機を駆動するために必要となる電力値を時系列で推定する電力推定部と、
前記電力推定部が推定した電力値の電力を前記電動機に供給して前記電動機を駆動するインバータと、
を備えたことを特徴とする電力制御装置。 An apparatus for controlling electric power supplied to a mechanical system having a mechanism that is driven using an electric motor,
A state quantity acquisition unit for acquiring a measurement value of a physical state quantity of the electric motor or the mechanism unit;
Using the measurement value acquired by the state quantity acquisition unit, a model estimation unit that constructs a torque estimation model that estimates torque generated in the electric motor in time series, and
A power estimation unit that estimates a power value necessary for driving the motor in a time series based on a time series estimation value of the torque obtained from the torque estimation model;
An inverter that drives the electric motor by supplying electric power of the electric power value estimated by the electric power estimation unit to the electric motor;
A power control apparatus comprising: - 前記モデル推定部は、
前記電動機に対する角速度指令値を変数として前記トルク推定モデルを構築し、
前記電力推定部は、
前記電動機に対する将来時刻の角速度指令値を前記トルク推定モデルに投入することにより、当該将来時刻における前記トルクの推定値を取得し、
その推定値を用いて、当該将来時刻において前記電動機を駆動するために必要となる電力値を推定する
ことを特徴とする請求項1記載の電力制御装置。 The model estimation unit includes:
Build the torque estimation model with the angular velocity command value for the motor as a variable,
The power estimation unit
By inputting an angular velocity command value at a future time for the electric motor to the torque estimation model, an estimated value of the torque at the future time is obtained,
The power control apparatus according to claim 1, wherein a power value necessary for driving the motor at the future time is estimated using the estimated value. - 前記電力推定部は、
前記将来時刻において前記電動機を駆動するために必要となる電力値を前記インバータに通知し、
前記インバータは、
その電力値に相当する電力を前記将来時刻において前記電動機に供給できるだけの電力を、前記将来時刻に到達する前にあらかじめ充電しておく
ことを特徴とする請求項2記載の電力制御装置。 The power estimation unit
Notifying the inverter of the power value required to drive the electric motor at the future time,
The inverter is
The power control apparatus according to claim 2, wherein power sufficient to supply electric power corresponding to the electric power value to the electric motor at the future time is charged in advance before reaching the future time. - 前記電力推定部は、
前記トルクの推定値または前記電動機を駆動するために必要となる電力の推定値を所定の基準値または実測値と比較することによって前記機械システムの異常動作を監視し、
前記機械システムの異常動作を検出したときは、前記機械システムの動作を停止または正常動作に復帰させる前記電力値を求めて前記インバータに出力し、
前記インバータは、
その電力値に基づき前記機械システムに対して供給する電力を制御して前記機械システムの動作を停止または正常動作に復帰させる
ことを特徴とする請求項1記載の電力制御装置。 The power estimation unit
Monitoring the abnormal operation of the mechanical system by comparing the estimated value of the torque or the estimated value of the electric power required to drive the electric motor with a predetermined reference value or an actual measured value;
When an abnormal operation of the mechanical system is detected, the power value for stopping the operation of the mechanical system or returning to the normal operation is obtained and output to the inverter,
The inverter is
The power control apparatus according to claim 1, wherein power supplied to the mechanical system is controlled based on the power value to stop or return the operation of the mechanical system to normal operation. - 前記モデル推定部は、
前記状態量取得部が取得した計測値を用いて、重回帰分析またはシステム同定演算を実施し、前記トルク推定モデルを構築する
ことを特徴とする請求項1記載の電力制御装置。 The model estimation unit includes:
The power control apparatus according to claim 1, wherein the torque estimation model is constructed by performing a multiple regression analysis or a system identification calculation using the measurement value acquired by the state quantity acquisition unit. - 前記モデル推定部または前記電力推定部は、前記インバータに内蔵されている
ことを特徴とする請求項1記載の電力制御装置。 The power control apparatus according to claim 1, wherein the model estimation unit or the power estimation unit is built in the inverter. - 前記モデル推定部は、
前記機械システムが前記電動機を複数台備える場合は各電動機について前記トルク推定モデルを構築し、
前記電力推定部は、
各前記電動機についての前記トルク推定モデルを用いて、各前記電動機を駆動するために必要となる電力値を時系列で推定する
ことを特徴とする請求項1記載の電力制御装置。 The model estimation unit includes:
If the mechanical system comprises a plurality of the motors, build the torque estimation model for each motor,
The power estimation unit
The power control apparatus according to claim 1, wherein a power value necessary for driving each motor is estimated in time series using the torque estimation model for each motor. - 前記電力推定部は、
各前記電動機を駆動するために必要となる電力値を比較し、相違が生じている場合は前記機械システムに異常が発生しているものと判断し、前記機械システムの動作を停止または正常動作に復帰させる前記電力値を求めて前記インバータに出力し、
前記インバータは、
その電力値に基づき前記機械システムに対して供給する電力を制御して前記機械システムの動作を停止または正常動作に復帰させる
ことを特徴とする請求項7記載の電力制御装置。 The power estimation unit
Compare the power value required to drive each electric motor, and if there is a difference, determine that an abnormality has occurred in the mechanical system, and stop the operation of the mechanical system or change it to normal operation. Find the power value to be restored and output to the inverter,
The inverter is
The power control apparatus according to claim 7, wherein the power supplied to the mechanical system is controlled based on the power value, and the operation of the mechanical system is stopped or returned to a normal operation. - 請求項1記載の電力制御装置と、
前記電動機または前記機構部の物理状態量を計測して前記電力制御装置にその計測値を出力するセンサと、
を有することを特徴とする電力制御システム。 A power control device according to claim 1;
A sensor for measuring a physical state quantity of the electric motor or the mechanism unit and outputting the measured value to the power control device;
A power control system comprising: - 前記センサは、
前記電動機の角速度を計測する角度センサもしくは角速度センサ、前記電動機のモータトルクを計測する電流センサ、前記機構部の変位を計測する変位センサ、または前記機構部の荷重を計測する歪みセンサであり
前記機械システムの内部あるいは筺体表面に設置されている
ことを特徴とする請求項9記載の電力制御システム。 The sensor is
An angle sensor or an angular velocity sensor that measures an angular velocity of the electric motor, a current sensor that measures a motor torque of the electric motor, a displacement sensor that measures a displacement of the mechanism portion, or a strain sensor that measures a load of the mechanism portion. The power control system according to claim 9, wherein the power control system is installed inside the system or on the surface of the housing. - 請求項1記載の電力制御装置を複数有し、
各前記電力制御装置は、
それぞれ異なる前記機械システムに対して供給する電力を制御し、
前記トルク推定モデル、前記トルクの推定値、前記電動機を駆動するために必要となる電力値の少なくともいずれかを相互に送受信して共有する
ことを特徴とする電力制御システム。 A plurality of power control devices according to claim 1,
Each of the power control devices
Controlling the power supplied to the different mechanical systems,
At least one of the torque estimation model, the estimated value of the torque, and an electric power value necessary for driving the electric motor is mutually transmitted and received and shared. - 前記異なる機械システムは連続する作業工程を実施するように構成されており、
前記電力制御装置は、
前記トルク推定モデル、前記トルクの推定値、前記電動機を駆動するために必要となる電力値の少なくともいずれかが前工程から連続するように、前工程の前記機械システムに対して供給する電力を制御する他の前記電力制御装置からその値を引き継ぐ
ことを特徴とする請求項11記載の電力制御システム。 The different mechanical systems are configured to carry out a continuous work process;
The power control device
The power supplied to the mechanical system in the previous process is controlled so that at least one of the torque estimation model, the estimated value of the torque, and the power value required to drive the electric motor is continuous from the previous process. The power control system according to claim 11, wherein the power control system takes over the value from the other power control device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010257719 | 2010-11-18 | ||
JP2010-257719 | 2010-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012066939A1 true WO2012066939A1 (en) | 2012-05-24 |
Family
ID=46083875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075381 WO2012066939A1 (en) | 2010-11-18 | 2011-11-04 | Power control device and power control system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012066939A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004147463A (en) * | 2002-10-25 | 2004-05-20 | Fujitsu Ten Ltd | Motor drive unit |
JP2005245113A (en) * | 2004-02-26 | 2005-09-08 | Yaskawa Electric Corp | Apparatus and method for detecting break of belt in motor drive system |
JP2006054995A (en) * | 2004-07-12 | 2006-02-23 | Toyota Central Res & Dev Lab Inc | Drive control device and method for ac motor |
JP2006238519A (en) * | 2005-02-22 | 2006-09-07 | Ishikawajima Harima Heavy Ind Co Ltd | Load driving unit |
JP2008054811A (en) * | 2006-08-30 | 2008-03-13 | Matsushita Electric Ind Co Ltd | Motor driving device for washing-drying machine |
JP2008154407A (en) * | 2006-12-20 | 2008-07-03 | Juki Corp | Serial communication device for controlling motor |
JP2009207315A (en) * | 2008-02-28 | 2009-09-10 | Hitachi Ltd | Motor controller |
-
2011
- 2011-11-04 WO PCT/JP2011/075381 patent/WO2012066939A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004147463A (en) * | 2002-10-25 | 2004-05-20 | Fujitsu Ten Ltd | Motor drive unit |
JP2005245113A (en) * | 2004-02-26 | 2005-09-08 | Yaskawa Electric Corp | Apparatus and method for detecting break of belt in motor drive system |
JP2006054995A (en) * | 2004-07-12 | 2006-02-23 | Toyota Central Res & Dev Lab Inc | Drive control device and method for ac motor |
JP2006238519A (en) * | 2005-02-22 | 2006-09-07 | Ishikawajima Harima Heavy Ind Co Ltd | Load driving unit |
JP2008054811A (en) * | 2006-08-30 | 2008-03-13 | Matsushita Electric Ind Co Ltd | Motor driving device for washing-drying machine |
JP2008154407A (en) * | 2006-12-20 | 2008-07-03 | Juki Corp | Serial communication device for controlling motor |
JP2009207315A (en) * | 2008-02-28 | 2009-09-10 | Hitachi Ltd | Motor controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109416566B (en) | Predictive thermal control management using temperature and power sensors | |
CN106909074B (en) | Control device | |
CN102150353B (en) | Inverter apparatus, inverter control system, motor control system, and method of controlling inverter apparatus | |
CN104242771B (en) | Temperature estimation device and possess its control device of electric motor | |
CN104570943B (en) | The control device of the lathe according to motor temperature change action and control method | |
JP4575483B2 (en) | Servo motor drive control device for calculating power consumption and regenerative power | |
US6801012B1 (en) | Sensorless control of switched reluctance electric machines | |
CN103926849A (en) | Motor Control Device For Compensating Backlash | |
CN108508784B (en) | Servo motor control unit, servomotor control method and recording medium | |
US11404986B2 (en) | Torque control based on rotor resistance modeling in induction motors | |
CN103051270A (en) | Motor control device that controls d-axis current of permanent magnet synchronous motor | |
US20210152112A1 (en) | Battery current limiting of permanent magnet synchronous motor drives using operation condition monitoring | |
JP7033505B2 (en) | Induction motor overheat monitoring method, induction motor monitoring device, and induction motor control system | |
JP2014123188A (en) | Distribution control device and distribution control method | |
JP2008048579A (en) | Drive controller, and control method thereof | |
US10216151B2 (en) | Power consumption-amount estimation apparatus | |
KR101539067B1 (en) | Apparatus for controlling fan | |
WO2012066939A1 (en) | Power control device and power control system | |
Dehbashi et al. | IoT based condition monitoring and control of induction motor using raspberry pi | |
JP7392503B2 (en) | Control device and disconnection detection method | |
JP5972500B1 (en) | Photocoupler diagnostic device | |
US8471515B2 (en) | Apparatus for operating a machine | |
US10527676B2 (en) | Abnormality diagnosing device and abnormality diagnosing method | |
CN110001764A (en) | High bandwidth general electric steering system controller | |
CN107924347B (en) | Method for determining mean time to failure of an electrical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11841599 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11841599 Country of ref document: EP Kind code of ref document: A1 |