WO2012066314A1 - Energy transfer and storage apparatus - Google Patents

Energy transfer and storage apparatus Download PDF

Info

Publication number
WO2012066314A1
WO2012066314A1 PCT/GB2011/052212 GB2011052212W WO2012066314A1 WO 2012066314 A1 WO2012066314 A1 WO 2012066314A1 GB 2011052212 W GB2011052212 W GB 2011052212W WO 2012066314 A1 WO2012066314 A1 WO 2012066314A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
fluid
heat exchanger
energy
target
Prior art date
Application number
PCT/GB2011/052212
Other languages
French (fr)
Inventor
John Varga
Original Assignee
Carding Specialists (Canada) Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carding Specialists (Canada) Ltd filed Critical Carding Specialists (Canada) Ltd
Publication of WO2012066314A1 publication Critical patent/WO2012066314A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to apparatus and a method to collect and transfer energy, and in particular, although not exclusively, to power generation apparatus that utilises solar radiation as an energy source and a gas phase heat transfer medium such that heat energy can be both stored and extracted from the apparatus for power generation.
  • Non-concentrating collectors receive the solar radiation directly, as parallel rays of radiation.
  • Such devices typically comprise a solar panel, or array of photovoltaic cells that may be heated and configured to transmit and store the solar radiation.
  • a further type of solar collector is referred to as a concentrating type which reflects or refracts the radiation using lenses or mirror assemblies so as to concentrate the rays onto a target as a more focused solar footprint.
  • WO 2009/147651 discloses a solar energy generator system for concentrating solar rays for use in a thermodynamic cycle that utilises a gas or steam cycle and a turbine to generate electricity.
  • the solar-ray concentrating system comprises a plurality of concentrating mirrors that act to reflect the radiation towards a suitable absorption and an accumulation body.
  • US 2009/0308072 discloses a modified Brayton cycle engine that utilises a working fluid heated by solar radiation.
  • a metal hydride material within a storage unit is heated and hydrogen driven from the hydride material is recombined with the material at a controlled rate in an exothermic reaction for heating a compressible Brayton working fluid for subsequent driving of a turbine coupled to an electric generator.
  • WO 2010/019990 discloses a solar energy and power generation system.
  • the power generation system comprises a closed working fluid having a super heater, a turbine, a condenser, a subcooler, a receiver and a pump.
  • the working fluid is separated into first and second parallel streams.
  • a solar energy collection system is configured to heat the working fluid by a heat exchanger in both the first and second streams. The first and second fluid streams are then combined, super heated and transferred to the turbine.
  • WO 2010/021706 discloses a steam based electric power plant operable from renewable geothermal, wind and solar energy sources. Wind or solar power is converted to hydrogen in an electrolysis unit. The generated hydrogen is then fed to a boiler for supplying heat energy to a turbine and generator.
  • WO 2009/129166 discloses a solar thermal power plant comprising a steam generator and a turbine. Water is converted to steam using solar energy. A super heater then heats the steam from an evaporator to provide super heated steam that is supplied to the turbine.
  • conventional solar energy based power generation systems have a number of disadvantages including in particular the efficiency of operation by which solar energy is captured and harnessed for power generation. Additionally, conventional systems are also limited due primarily to an insufficient capacity to store the captured solar energy. Their use is typically restricted to hot climates and there is a continual need to recharge the limited energy storage device which may result in power or electricity being unavailable during poor or inclement weather conditions.
  • the inventors provide a solar energy based power generator system that efficiently converts solar energy to heat energy that may be stored conveniently and subsequently converted to electrical energy.
  • the system comprises an array of lenses or mirrors to harness and concentrate solar energy onto a target within a cycle.
  • a suitable heat exchanger and turbine arrangement is coupled to the fluid cycle and/or heat storage device to provide on-demand supply of electricity both during and optionally between solar energy collection periods.
  • solar energy collection apparatus comprising: a plurality of lenses and/or mirrors to receive and concentrate solar radiation; at least one target to respectively receive the concentrated solar radiation from each of the lenses and/or mirrors; a conduit network to contain a heat transfer fluid and allow the fluid to flow in contact with the at least one target such that the fluid is heated by the target; a heat exchanger connected in fluid communication with the conduit network to receive the heated fluid and to transfer the received heat energy to a gas phase fluid; a heat storage device connected in fluid communication via the gas phase fluid to the heat exchanger to receive the heat energy, the storage device comprising a heat storage material to store the heat energy received from the gas phase fluid.
  • the targets comprise a thermally insulated jacket positioned around a portion of the conduit network.
  • each target comprises a heat transfer body positioned in the flow path of the working fluid as it flows through the target.
  • the heat transfer body comprises a plurality of metal plates or fins.
  • the jacket comprises a glass window through which the concentrated solar radiation received from the lens or mirrors may enter the target.
  • the jacket comprises an aperture through which the concentrated solar radiation received from the lens or mirrors may enter the target.
  • the apparatus further comprises means to move the lenses or mirrors to track the position of the sun. More preferably, the apparatus further comprises means to automate movement of the lenses or mirrors to track the motion of the sun.
  • the lenses comprise fresnel lenses.
  • the conduit network comprises ceramic and/or clay based piping.
  • the heat storage material comprises a mineral based material that may be at least one type of rock such as quarried stone or Basalt.
  • the mineral based material is constructed to form a labyrinth of walls within the heat store separated by gas flow channels.
  • the apparatus further comprises at least one gas flow pump and/or fan unit coupled to the conduit network and configured to drive or assist the flow of the working fluid around the conduit network in contact with the targets, the heat exchanger and/or the heat storage device.
  • the apparatus further comprises a plurality of valves positioned at the conduit network so as to control the flow of the fluid.
  • the gas phase fluid is air.
  • the heat transfer fluid is a gas or a liquid.
  • the heat transfer fluid is any one of or a combination the following: a hydrocarbon; an oil; a synthetic organic compound; a salt solution; a solution of saltpeter.
  • apparatus for converting solar energy to electrical energy comprising: solar energy collection apparatus as described herein; a second heat exchanger connected in fluid communication with the heat store to receive the heated gas phase fluid and to transfer the received heat energy; a turbine coupled to the second heat exchanger; and an electric generator coupled to the turbine to generate electricity.
  • the working fluid of the second heat exchanger is water and steam, including in particular supercritical water.
  • the gaseous phase working fluid within the conduit network of the collection apparatus is capable of being heated to high temperatures above 400°C and in particular up to around 700°C, the latter being the recognised maximum operational temperature of a turbine.
  • the working fluid of the present collection apparatus is air, and in particular atmospheric air comprising a ground-level air composition.
  • a method of collecting solar energy comprising: receiving and concentrating solar radiation using a plurality of lenses and/or mirrors; receiving the concentrated solar energy from each lens or mirror at least one target; allowing a heat transfer fluid to flow in contact with the at least one target so as to be heated by the target; transferring the heated fluid to a heat exchanger so as to transfer the heat energy to a gas phase working fluid at the heat exchanger; transferring the heated gas phase working fluid to a heat storage device comprising a heat storage material to store the heat energy received from the gas phase fluid.
  • a method of converting solar energy to electrical energy comprising: collecting and storing solar energy as described herein; transferring the heated gas phase fluid from the heat store to a second heat exchanger; driving a turbine using a working fluid of the heat exchanger that has been heated by the heat energy from the heat store; generating electricity via an electric generator coupled to the turbine.
  • a heat store comprising: a housing having exterior walls that are configured to be thermally insulating, the walls defining an internal cavity; a plurality of internal walls extending within the cavity, the walls comprising stones; wherein the walls of stones are arranged in rows with channels created between the rows through which a heat transfer medium is capable of flowing; an inlet for the heat transfer medium positioned towards each end of each channel and; an outlet at the housing to allow the heat transfer medium out of the internal cavity; wherein the heat transfer medium is supplied to the cavity via the inlets and flows through the channels to permeate the walls in contact with the stones and to exit the cavity via the outlet having transferred heat energy to the stones within the cavity.
  • the means to direct the solar radiation on to the targets comprises at least one mirror, including in particular a trough, parabolic, round or rectangular mirror.
  • the apparatus comprises mechanical movement means connected to each lens and/or mirror and/or target to change the relative position of the lens, mirror and/or target.
  • the targets may be configured to rotate in a lateral direction (East to West).
  • the lens or mirror may be configured to mechanically pivot over two axes (East to West and North to South) so as to track the position of the sun both annually and diurnally to continually focus the solar radiation onto the targets.
  • the apparatus comprises a plurality of working fluid conduits formed as circulation loops connected to a single heat store or a plurality of heat stores.
  • Each circulation loop may comprise one or a plurality of target chambers to receive solar radiation and to heat the fluid passing through the circuit.
  • Each circulation loop may comprise the same or a different arrangement of lenses and/or mirrors.
  • the second heat exchanger is a counter-flow heat exchanger in that water from an input flows to the second heat exchanger output and is converted to steam in an opposite direction of the supply of hot air from the heat store to the heat exchanger.
  • the second heat exchanger and turbine are configured to operate using supercritical water that is in turn heated directly by the gas phase working fluid which is heated by the targets, in turn heated by the solar radiation.
  • the present invention may comprise a plurality of second heat exchanger turbine systems that may be coupled directly to the heat store or plurality of heat stores.
  • the second heat exchanger may also be coupled to and heated by conventional fossil fuel sources so as to provide continuous power on-demand in the event of insufficient sunlight.
  • the heat exchanger that provides the interface between the heat transfer fluid heated by the lenses and/or mirrors and the gas phase fluid that is received by the heat store is preferably a counter-flow heat exchange. That is, the heated heat transfer fluid from the lenses and/or mirrors flows into one end of the heat exchanger whilst the relatively cool gas phase fluid from the heat store enters the heat exchanger at a second end. Accordingly, the flow of the heated heat transfer fluid proceeds in a first direction whilst the flow of the gas phase working fluid from the heat store flows in an opposed second direction within the heat exchanger.
  • the present apparatus may comprise a plurality of heat exchanges positioned between the plurality of lenses and/or mirrors and the heat store.
  • the working fluid of the heat store is positioned in fluid communication with a final heat exchanger that receives heat energy from a working fluid that is heated directly or indirectly by the lenses and/or mirrors.
  • the present invention is not limited to any specific number of heat exchangers that may be included within the apparatus.
  • a plurality of heat exchangers coupled in fluid communication between the plurality of lenses and/or mirrors may be connected in parallel and/or in series and ultimately coupled in indirect or direct contact with the gaseous phase working fluid of the heat store.
  • the subject invention may comprise any type of heat exchanger that is configured to transfer heat energy from a first fluid flowing into the heat exchanger to a second fluid flowing out of the heat exchanger, where both fluids are physically separated.
  • Suitable insulation may provided around the single or plurality of heat exchangers and associated pipe work.
  • figure 1 A is a schematic illustration of the solar energy collection and storage apparatus having a plurality of heat exchangers, a turbine and an electric generator according to a specific implementation of the present invention
  • figure IB illustrates a plurality of lenses to concentrate solar radiation onto a plurality of targets that in turn transfer heat energy to a heat transfer fluid flowing within a conduit network;
  • figure 2 is a cross sectional side view of a part of the heat store of figure 1 A;
  • figure 3 is a cross sectional plan view of the heat store of figure 2;
  • figure 4 is a cross sectional plan view of a part of the heat store of figure 3;
  • figure 5 is a side elevation view of a section of the internal heat store walls separated by a support column;
  • figure 6 is a side elevation view of a section of the internal heat store walls separated by a stack of support discs
  • figure 7 is a schematic side elevation view of the heat store of figure 3;
  • figure 8A illustrates schematically a plan view of the heat store of figure 2 coupled in fluid communication with a plurality of solar energy targets;
  • figure 8B is a cross section through A- A of figure 8 A;
  • figure 8C is a cross section through B-B of figure 8A;
  • figure 9A illustrates schematically a target chamber having a window to receive solar radiation and a radiation transfer plate housed within the target chamber according to a specific implementation of the present invention
  • figure 9B is a cross section through C-C of figure 9 A;
  • figure 1 OA is a further illustration of a cross sectional side view of the target chamber according to a further embodiment comprising an aperture in the target chamber jacket;
  • figure 1 OB is a cross section through D-D of figure 10A;
  • figure 11 is a cross sectional side elevation view of a further specific
  • figure 12 illustrates schematically an array of lenses and associated targets coupled to a heat store in fluid communication via a conduit network enabling the transfer of a gas phase working fluid;
  • figure 13 illustrates a further embodiment in which the lenses are replaced or supplemented by mirrors for concentrating the solar radiation onto the target;
  • figure 14 illustrates schematically a further embodiment comprising trough mirrors arranged below the conduit network for concentrating the solar radiation directly onto the conduit network piping;
  • figure 15 illustrates schematically a cross sectional side view of a part of the heat store of figure 2 coupled to a heat exchanger
  • FIG 16 is a further illustration of the heat exchanger of figure 15.
  • the solar energy collection and storage apparatus comprises a plurality of lenses 100 to concentrate solar radiation 108 towards a plurality of respective targets 101.
  • Each target 101 is coupled in fluid communication to a heat exchanger 125 via a conduit network 123 formed as piping.
  • Piping 123 is capable of withstanding extreme high temperatures of the order of 600°C and comprises a suitable material being ceramic or a clay based material.
  • the energy collection and storage apparatus 102 is coupled to a second heat exchanger 113, a turbine 114 and an electric generator 115 so as to provide apparatus for ultimately converting solar energy to electrical energy.
  • Each target 101 comprises a surrounding jacket 116 that thermally insulates a relatively small region of the conduit network 103.
  • a window 122 is provided at a region of the jacket 116 and is formed from a suitable glass or other low absorption material configured to allow transmission of the concentrated solar rays 108 received from each lens 100 configured to direct solar radiation 107 from the sun onto each target 101.
  • window 122 is configured to prevent or inhibit re-emission of solar radiation in the form of long wave radiation resultant from the heated target that receives the relative shorter wave solar radiation.
  • Heat store 102 comprises a plurality of internal walls 104 formed from a suitable heat storage material such as rock, stone or a man-made/synthetic material configured to withstand high temperatures of the order of 600°C. Walls 104 are separated by fluid flow channels 117 so as to form a walled labyrinth structure internally within the body of the heat store 102.
  • a suitable heat storage material such as rock, stone or a man-made/synthetic material configured to withstand high temperatures of the order of 600°C.
  • Walls 104 are separated by fluid flow channels 117 so as to form a walled labyrinth structure internally within the body of the heat store 102.
  • the conduit network 123 is coupled in fluid communication with heat exchanger 125 which forms a part of the fluid flow network.
  • a return conduit 124 extends from heat exchanger 125 and is coupled to a fluid reservoir 126.
  • Reservoir 126 is also coupled in fluid communication with the array 127 of lenses 100 and associated targets 101.
  • the working fluid 106 is a liquid phase medium such as for example water, oil or a salt based solution having good heat transfer properties.
  • the working fluid 106 may comprise a hydrocarbon based fluid, a silicone based fluid or any other organic based compounds.
  • Further examples include glycols and in particular polyalkylene glycols (PAGs).
  • Mineral oils, silicone oils and fluorocarbon oils may also be used.
  • the heater exchanger 125 provides an interface between the first fluid network comprising working fluid 106 and a second fluid network comprising heat storage device 102.
  • the heat store 102 is connected in fluid communication with heat exchanger 125 via suitable conduit or piping 109.
  • a gas phase working fluid 110 is contained within piping network 109 and is configured to flow to and from heat store 102 in contact with heat exchanger 125.
  • This conduit network 109 also extends to the second heat exchanger 113 that drives turbine 114 and electric generator 115.
  • solar energy 107 is transferred to a first working fluid 106 via lenses 100 and targets 101.
  • the heat energy is then transferred from working fluid 106 to working fluid 110 via heater exchanger 125.
  • the heat energy may then be stored within heat store 102.
  • This stored heat energy is then transferred to turbine 114 via heat exchanger 113 to drive generator 115.
  • heat exchanger 125 and second heat exchanger 113 are counter-flow heat exchangers.
  • Suitable fluid inlet and outlet ports may be provided at reservoir 126 so as to allow additional working fluid to be introduced into network 123, 124 and to allow the working fluid to be drained from the network 123, 124.
  • inlet and outlet ports may be provided at network 109 so as to allow the gas phase working fluid associated with heat exchanger 125 to be introduced and/or drained from the system.
  • the third working fluid within heat exchanger 113 may also be drained from this network via similar inlet and outlet ports (not shown).
  • the present apparatus comprises at least three physically separated working fluid networks, each interconnected via a plurality of heat exchangers. Accordingly, electric generator 115 is powered indirectly by solar radiation 107 via heat exchangers 125 and 113.
  • solar radiation 107 is concentrated by lenses 100 and focused towards targets 101 through each window 122 so as to heat a working fluid 106 flowing through the conduit network 123.
  • the working fluid flows 106 from the targets 101 into the heat exchanger 125 through suitable control valve 109.
  • the heated working fluid then flows 111 through the mineral walls 104 so as to transfer heat to the heat store 102.
  • the cooled air 120 then flows back into the conduit network 123 via suitable control valves 128.
  • the heat within store 102 is extracted by the flow 118 of the gas phase fluid 110 being controlled by a suitable pump or fan 112 positioned between the second heat exchanger 113 and heat store 102. Heat is then transferred from the gas phase working fluid 118 via heat exchanger 113 to drive turbine 114 which converts the heat energy to rotational energy which in turn is converted to electrical energy via generator 115.
  • the lower temperature fluid 119 then flows back into the heat store 102 and/or into the conduit network 109 via additional control pumps or fans (not shown) so as to be reheated at heat exchanger 125.
  • each substantially vertical stone wall 104 may be constructed from two different types of material so as to partition each wall centrally in the vertical plane to define a high temperature side 208 and a lower temperature side 209.
  • the high temperature side 208 comprises Basalt whilst the low temperature half 209 may be formed from non- specific rock 207.
  • the labyrinth of stone walls 104 are encased within suitable thermal insulation 200 of the appropriate thickness as will be appreciated by those skilled in the art.
  • Insulation 200 may comprise rock wool or fibreglass.
  • Insulation 200 is also provided at the bottom of the working fluid flow channels 117 so as to insulate the heat store 102 from the ground below 210.
  • steel support columns 206 are arranged around the perimeter of the outermost wall 104.
  • the outermost wall is also supported by suitable gabion cages 300.
  • the outermost thermal insulation 200 surrounds the steel support columns 206 and is itself contained within an inner and outer steel net 301.
  • the heated gaseous working fluid 110 flows into the heat store 102 via piping 109 and into the fluid flow channels 117 extending between the rock walls 104.
  • the heated gas then percolates through the hot side 208 of the stone wall so as to transfer heat energy to the mineral. It continues to percolate through the second side 209 into a neighbouring flow channel 117 to be subsequently recycled 120 into the conduit network 109 for reheating at heat exchanger 125 to continue the cycle.
  • the gas flow piping 204 within the heat store 102 may be the same or composed of a different material to that of piping 103.
  • Suitable vents and/or diverters 205 are provided within piping 204 so as to direct the gas flow 202 into the labyrinth of channels 117 and ultimately to flow 203 through the stone walls 104.
  • the labyrinth of stone walls 104 is supported internally within the store 102 via intermediate support struts 400 configured to bridge the gap between opposing faces of walls 104 that define the gas flow channels 117.
  • Support struts 400 are separated from one another by a distance 401 responding to approximately half the diameter of each individual rock 207 of wall 104.
  • Figure 5 illustrates a side elevation view of the support struts 400 of figure 4 nestled between the rocks 207 of opposing walls 104.
  • Figure 6 illustrates a further embodiment in which support between walls 104 is provided by a column of discs 600 stacked on top of one another within channel 117.
  • Each disc may be secured to its neighbour via mechanical fixings, formed integrally or non-integrally with the discs, including preformed clips or a mortar or cement based material.
  • each disc may be secured to the opposing walls 104 by a mortar or cement based material.
  • support struts 400, 600 are formed from a ceramic or clay based material.
  • lateral support for the heat store 102 is provided by stanchions or cabling attached to the uppermost region of each outermost steel support column 206 and a suitable anchor position 702 at ground level 210.
  • a cross strut or cable 701 extends between adjacent steel supports 206 so as to provide a rigid support frame for the heat store 102.
  • store 102 may be 13m in diameter and approximately 9m high and is configured to contain approximately 1,000 tonnes of rock.
  • piping 103 is insulated over its perimeter by suitable insulation material optionally being rock wool or fibreglass of the appropriate thickness.
  • piping 204 within heat store 102 is also insulated by the same or a different insulation material 800.
  • heat store 102 comprises four inlet conduits 802 each connecting a respective series of targets 101 via corresponding heat exchangers 125 to the internal chamber of heat store 102. Accordingly, heat store 102 comprises one or a plurality of outlets so as to recirculate the working fluid to each heat exchangers 125 upstream of the store 102.
  • each target 101 comprises a thermal jacket 116 surrounding a region of piping 103.
  • a plurality of thermal conducting plates 1000 extend longitudinally within the inner chamber 1001 of target 101 so as to extend axially along the length of conduit 103. Plates 1000 are positioned side-by-side so as to leave a small gap between opposed faces to allow the passage of the gaseous working fluid as it flows 1002 from the upstream position 1003 to a downstream position 1004 relative to the heat exchanger 125.
  • Solar radiation 107 from the sun 900 is concentrated via lens 100 onto window 122 formed in the thermal jacket 116.
  • the concentrated radiation 108 is received by the thermal transfer plates 1000 that increase in temperature in response to exposure to the solar radiation.
  • the working fluid 1002 flowing into contact with the exposed surfaces of the plates 1000 is in turn heated.
  • FIGS 10A and 10B illustrate a further specific implementation of the present invention.
  • An aperture 1100 is provided at thermal jacket 116 such that the concentrated radiation 108 passes directly into the internal jacket chamber 1103 to be received at heat transfer plates 1000 via further apertures 1102 formed in the piping 103 at the region of the target.
  • the inventors have found that heat loss due to convection through the aperture 1100 is relatively small and may be approximately equal to the thermal absorption of the material of window 122.
  • a thermal insulation material 1101 is positioned externally around jacket 116 so as to minimise heat loss at the region of the target and to ensure efficient heat transfer from plates 1000 to the working fluid.
  • FIG 11 provides a further illustration of target 101.
  • a central region 1200 of target 101 is shaped and dimensioned so as to create turbulence as the working fluid flows through the target from 1203 to 1204.
  • a raised deflecting portion 1201 directs the working fluid upwardly towards sloping walls 1202 extending from window 122 towards the heat transfer plates 1000. Accordingly, the exposure time of the working fluid at the region of the plates 1000 is increased so as to maximise heat transfer.
  • FIG 12 illustrates schematically two parallel series of nine individual lens 100 and target 101 units.
  • Each target 101 of each series forms part of the fluid flow cycle through the heat exchanger 125.
  • An outlet conduit 1300 extends from heat exchanger 125 and is then split into separate conduits 1301 to provide a supply of working fluid to the start of each target series.
  • the fluid then flows 110 into heat exchanger 125 from the last target of the series and having transferred thermal energy to the heat exchanger 125 exits at 120 to flow along conduit 1300.
  • Suitable means 1302 are provided to automatically move lens 100 over a predetermined grid space 1303 to track the position of the sun, both annually and diurnally.
  • Each lens 100 via means 1302 is also configured to move laterally about grid space 1304 in response to the movement of the sun and to ensure solar radiation is continually focused towards target 101.
  • the movement of lens 100 over space 1303 and 1304 occurs over three planes according to X, Y and Z axes. Accordingly, the centre of each lens is capable of movement over an imaginary section of a surface of sphere such that the centre of each lens is continually orientated towards the target with the separation distance between lens and target being substantially equal to the focal length of the lens.
  • FIG. 13 illustrates a further implementation comprising a plurality of mirrors 901 configured to concentrate the solar radiation received from the sun 900 towards target window 122. Accordingly, each target 102 comprises an associated mirror 901 instead of or in addition to lens 100.
  • Figure 14 illustrates a further alternative embodiment comprising a trough mirror 1400 positioned below a region of conduit 103 so as to direct solar radiation onto the lower half of the conduit 103.
  • Thermal insulation 1401 is positioned over an upper half of the conduit 103 such that the concentrated radiation 103 from mirror 1400 is incident directly upon conduit 103.
  • heat store 102 is coupled to second heat exchanger 113.
  • the heat exchanger working fluid 1503 cycles through the heat exchanger body 1500 from an inlet 1502 to an outlet 1501.
  • Outlet 1501 is coupled to the input end of a turbine 114 and inlet 1502 is coupled to the output end of the turbine 114.
  • Second heat exchanger 113 is coupled in fluid communication with the working fluid of the heat store 102 such that the heated fluid 1602 (of heat store 102) flows into the body of the heat exchanger 1500 to heat the heat exchanger working fluid 1503 between inlet 1502 and outlet 1501.
  • the cooled working fluid 1603 of the heat store 102 then flows out of the heat exchanger body 1500 and is re-circulated 1503 into a cavity region 1600 between the heat store internal chamber and the outermost thermal insulation 200. Accordingly, this cavity region 1600 provides a further cooler thermal layer around the heat store to reduce heat loss from the walled labyrinth 104.

Abstract

Apparatus to collect solar radiation using a series of lenses or mirrors that concentrate the solar energy onto at least one target. A working fluid flowing through the targets is heated and is supplied to a heat exchanger. A heat storage device is coupled to the heat exchanger and allows transfer of heat from the heat exchanger via a gas phase working fluid. A second heat exchanger, a turbine and an electricity generator are coupled to the heat store so as to provide a power plant for the conversion of solar energy to electricity.

Description

ENERGY TRANSFER AND STORAGE APPARATUS
The present invention relates to apparatus and a method to collect and transfer energy, and in particular, although not exclusively, to power generation apparatus that utilises solar radiation as an energy source and a gas phase heat transfer medium such that heat energy can be both stored and extracted from the apparatus for power generation.
The supply of power or energy in the form of electricity typically requires an energy source which may be subsequently converted and/or supplied as electricity. Traditionally, fossil fuels have been used as a source of energy to drive the turbines for electricity generation. As natural resources are diminished and in the face of climate change, renewable energy sources have been investigated for power and electricity generation. In particular, solar energy has received reasonable attention as an alternative energy source to conventional fossil fuels.
Solar energy collection devices are well established and may be categorised according to two types. Non-concentrating collectors receive the solar radiation directly, as parallel rays of radiation. Such devices typically comprise a solar panel, or array of photovoltaic cells that may be heated and configured to transmit and store the solar radiation. A further type of solar collector is referred to as a concentrating type which reflects or refracts the radiation using lenses or mirror assemblies so as to concentrate the rays onto a target as a more focused solar footprint.
WO 2009/147651 discloses a solar energy generator system for concentrating solar rays for use in a thermodynamic cycle that utilises a gas or steam cycle and a turbine to generate electricity. The solar-ray concentrating system comprises a plurality of concentrating mirrors that act to reflect the radiation towards a suitable absorption and an accumulation body. US 2009/0308072 discloses a modified Brayton cycle engine that utilises a working fluid heated by solar radiation. In particular, a metal hydride material within a storage unit is heated and hydrogen driven from the hydride material is recombined with the material at a controlled rate in an exothermic reaction for heating a compressible Brayton working fluid for subsequent driving of a turbine coupled to an electric generator.
WO 2010/019990 discloses a solar energy and power generation system. The power generation system comprises a closed working fluid having a super heater, a turbine, a condenser, a subcooler, a receiver and a pump. The working fluid is separated into first and second parallel streams. A solar energy collection system is configured to heat the working fluid by a heat exchanger in both the first and second streams. The first and second fluid streams are then combined, super heated and transferred to the turbine.
WO 2010/021706 discloses a steam based electric power plant operable from renewable geothermal, wind and solar energy sources. Wind or solar power is converted to hydrogen in an electrolysis unit. The generated hydrogen is then fed to a boiler for supplying heat energy to a turbine and generator.
WO 2009/129166 discloses a solar thermal power plant comprising a steam generator and a turbine. Water is converted to steam using solar energy. A super heater then heats the steam from an evaporator to provide super heated steam that is supplied to the turbine. However, conventional solar energy based power generation systems have a number of disadvantages including in particular the efficiency of operation by which solar energy is captured and harnessed for power generation. Additionally, conventional systems are also limited due primarily to an insufficient capacity to store the captured solar energy. Their use is typically restricted to hot climates and there is a continual need to recharge the limited energy storage device which may result in power or electricity being unavailable during poor or inclement weather conditions.
Moreover, conventional systems that employ a liquid phase or non-gaseous phase working fluid as the thermal vector are restricted inherently to a limiting operational output temperature. As will be appreciated, a number of different types of turbine are used in power generation with varying efficiency. Water based supercritical working fluid turbines are commonly regarded as the most efficient, necessitating working fluid temperatures of around 400°C with capacity to operate up to 700°C.
There is therefore a need for better apparatus and methods for power generation utilising renewable energy sources that address the above problems.
Accordingly, the inventors provide a solar energy based power generator system that efficiently converts solar energy to heat energy that may be stored conveniently and subsequently converted to electrical energy. The system comprises an array of lenses or mirrors to harness and concentrate solar energy onto a target within a cycle. A suitable heat exchanger and turbine arrangement is coupled to the fluid cycle and/or heat storage device to provide on-demand supply of electricity both during and optionally between solar energy collection periods. According to a first aspect of the present invention there is provided solar energy collection apparatus comprising: a plurality of lenses and/or mirrors to receive and concentrate solar radiation; at least one target to respectively receive the concentrated solar radiation from each of the lenses and/or mirrors; a conduit network to contain a heat transfer fluid and allow the fluid to flow in contact with the at least one target such that the fluid is heated by the target; a heat exchanger connected in fluid communication with the conduit network to receive the heated fluid and to transfer the received heat energy to a gas phase fluid; a heat storage device connected in fluid communication via the gas phase fluid to the heat exchanger to receive the heat energy, the storage device comprising a heat storage material to store the heat energy received from the gas phase fluid.
Preferably, the targets comprise a thermally insulated jacket positioned around a portion of the conduit network. Preferably, each target comprises a heat transfer body positioned in the flow path of the working fluid as it flows through the target. Preferably, the heat transfer body comprises a plurality of metal plates or fins. Preferably, the jacket comprises a glass window through which the concentrated solar radiation received from the lens or mirrors may enter the target. Alternatively, the jacket comprises an aperture through which the concentrated solar radiation received from the lens or mirrors may enter the target. Preferably, the apparatus further comprises means to move the lenses or mirrors to track the position of the sun. More preferably, the apparatus further comprises means to automate movement of the lenses or mirrors to track the motion of the sun. Preferably, the lenses comprise fresnel lenses.
Preferably, the conduit network comprises ceramic and/or clay based piping. Preferably, the heat storage material comprises a mineral based material that may be at least one type of rock such as quarried stone or Basalt. Optionally, the mineral based material is constructed to form a labyrinth of walls within the heat store separated by gas flow channels.
Optionally, the apparatus further comprises at least one gas flow pump and/or fan unit coupled to the conduit network and configured to drive or assist the flow of the working fluid around the conduit network in contact with the targets, the heat exchanger and/or the heat storage device. Optionally, the apparatus further comprises a plurality of valves positioned at the conduit network so as to control the flow of the fluid.
Preferably, the gas phase fluid is air. Optionally, the heat transfer fluid is a gas or a liquid. Optionally, the heat transfer fluid is any one of or a combination the following: a hydrocarbon; an oil; a synthetic organic compound; a salt solution; a solution of saltpeter.
According to second aspect of the present invention there is provided apparatus for converting solar energy to electrical energy comprising: solar energy collection apparatus as described herein; a second heat exchanger connected in fluid communication with the heat store to receive the heated gas phase fluid and to transfer the received heat energy; a turbine coupled to the second heat exchanger; and an electric generator coupled to the turbine to generate electricity. Preferably, the working fluid of the second heat exchanger is water and steam, including in particular supercritical water. In particular, the gaseous phase working fluid within the conduit network of the collection apparatus is capable of being heated to high temperatures above 400°C and in particular up to around 700°C, the latter being the recognised maximum operational temperature of a turbine. Preferably, the working fluid of the present collection apparatus is air, and in particular atmospheric air comprising a ground-level air composition.
According to a third aspect of the present invention there is provided a method of collecting solar energy comprising: receiving and concentrating solar radiation using a plurality of lenses and/or mirrors; receiving the concentrated solar energy from each lens or mirror at least one target; allowing a heat transfer fluid to flow in contact with the at least one target so as to be heated by the target; transferring the heated fluid to a heat exchanger so as to transfer the heat energy to a gas phase working fluid at the heat exchanger; transferring the heated gas phase working fluid to a heat storage device comprising a heat storage material to store the heat energy received from the gas phase fluid.
According to a fourth aspect of the present invention there is provided a method of converting solar energy to electrical energy comprising: collecting and storing solar energy as described herein; transferring the heated gas phase fluid from the heat store to a second heat exchanger; driving a turbine using a working fluid of the heat exchanger that has been heated by the heat energy from the heat store; generating electricity via an electric generator coupled to the turbine.
According to one embodiment there is provided a heat store comprising: a housing having exterior walls that are configured to be thermally insulating, the walls defining an internal cavity; a plurality of internal walls extending within the cavity, the walls comprising stones; wherein the walls of stones are arranged in rows with channels created between the rows through which a heat transfer medium is capable of flowing; an inlet for the heat transfer medium positioned towards each end of each channel and; an outlet at the housing to allow the heat transfer medium out of the internal cavity; wherein the heat transfer medium is supplied to the cavity via the inlets and flows through the channels to permeate the walls in contact with the stones and to exit the cavity via the outlet having transferred heat energy to the stones within the cavity. Optionally, the means to direct the solar radiation on to the targets comprises at least one mirror, including in particular a trough, parabolic, round or rectangular mirror. Preferably, the apparatus comprises mechanical movement means connected to each lens and/or mirror and/or target to change the relative position of the lens, mirror and/or target. In particular, the targets may be configured to rotate in a lateral direction (East to West). Additionally, the lens or mirror may be configured to mechanically pivot over two axes (East to West and North to South) so as to track the position of the sun both annually and diurnally to continually focus the solar radiation onto the targets.
Preferably, the apparatus comprises a plurality of working fluid conduits formed as circulation loops connected to a single heat store or a plurality of heat stores. Each circulation loop may comprise one or a plurality of target chambers to receive solar radiation and to heat the fluid passing through the circuit. Each circulation loop may comprise the same or a different arrangement of lenses and/or mirrors.
Preferably, the second heat exchanger is a counter-flow heat exchanger in that water from an input flows to the second heat exchanger output and is converted to steam in an opposite direction of the supply of hot air from the heat store to the heat exchanger.
Preferably, the second heat exchanger and turbine are configured to operate using supercritical water that is in turn heated directly by the gas phase working fluid which is heated by the targets, in turn heated by the solar radiation. The present invention may comprise a plurality of second heat exchanger turbine systems that may be coupled directly to the heat store or plurality of heat stores.
The second heat exchanger may also be coupled to and heated by conventional fossil fuel sources so as to provide continuous power on-demand in the event of insufficient sunlight. The heat exchanger that provides the interface between the heat transfer fluid heated by the lenses and/or mirrors and the gas phase fluid that is received by the heat store is preferably a counter-flow heat exchange. That is, the heated heat transfer fluid from the lenses and/or mirrors flows into one end of the heat exchanger whilst the relatively cool gas phase fluid from the heat store enters the heat exchanger at a second end. Accordingly, the flow of the heated heat transfer fluid proceeds in a first direction whilst the flow of the gas phase working fluid from the heat store flows in an opposed second direction within the heat exchanger.
According to further specific embodiments, the present apparatus may comprise a plurality of heat exchanges positioned between the plurality of lenses and/or mirrors and the heat store. However, and ultimately the working fluid of the heat store is positioned in fluid communication with a final heat exchanger that receives heat energy from a working fluid that is heated directly or indirectly by the lenses and/or mirrors. The present invention is not limited to any specific number of heat exchangers that may be included within the apparatus. Additionally, a plurality of heat exchangers coupled in fluid communication between the plurality of lenses and/or mirrors may be connected in parallel and/or in series and ultimately coupled in indirect or direct contact with the gaseous phase working fluid of the heat store.
Additionally, the subject invention may comprise any type of heat exchanger that is configured to transfer heat energy from a first fluid flowing into the heat exchanger to a second fluid flowing out of the heat exchanger, where both fluids are physically separated. Suitable insulation may provided around the single or plurality of heat exchangers and associated pipe work.
A specific implementation of the present invention will now be described by way of example only and with reference to the accompanying drawings in which:
figure 1 A is a schematic illustration of the solar energy collection and storage apparatus having a plurality of heat exchangers, a turbine and an electric generator according to a specific implementation of the present invention;
figure IB illustrates a plurality of lenses to concentrate solar radiation onto a plurality of targets that in turn transfer heat energy to a heat transfer fluid flowing within a conduit network;
figure 2 is a cross sectional side view of a part of the heat store of figure 1 A; figure 3 is a cross sectional plan view of the heat store of figure 2; figure 4 is a cross sectional plan view of a part of the heat store of figure 3;
figure 5 is a side elevation view of a section of the internal heat store walls separated by a support column;
figure 6 is a side elevation view of a section of the internal heat store walls separated by a stack of support discs;
figure 7 is a schematic side elevation view of the heat store of figure 3;
figure 8A illustrates schematically a plan view of the heat store of figure 2 coupled in fluid communication with a plurality of solar energy targets;
figure 8B is a cross section through A- A of figure 8 A;
figure 8C is a cross section through B-B of figure 8A;
figure 9A illustrates schematically a target chamber having a window to receive solar radiation and a radiation transfer plate housed within the target chamber according to a specific implementation of the present invention;
figure 9B is a cross section through C-C of figure 9 A;
figure 1 OA is a further illustration of a cross sectional side view of the target chamber according to a further embodiment comprising an aperture in the target chamber jacket;
figure 1 OB is a cross section through D-D of figure 10A;
figure 11 is a cross sectional side elevation view of a further specific
implementation of the solar radiation target that receives solar radiation from the lens; figure 12 illustrates schematically an array of lenses and associated targets coupled to a heat store in fluid communication via a conduit network enabling the transfer of a gas phase working fluid;
figure 13 illustrates a further embodiment in which the lenses are replaced or supplemented by mirrors for concentrating the solar radiation onto the target;
figure 14 illustrates schematically a further embodiment comprising trough mirrors arranged below the conduit network for concentrating the solar radiation directly onto the conduit network piping;
figure 15 illustrates schematically a cross sectional side view of a part of the heat store of figure 2 coupled to a heat exchanger; and
figure 16 is a further illustration of the heat exchanger of figure 15. Referring to figure 1 A and IB, the solar energy collection and storage apparatus comprises a plurality of lenses 100 to concentrate solar radiation 108 towards a plurality of respective targets 101. Each target 101 is coupled in fluid communication to a heat exchanger 125 via a conduit network 123 formed as piping. Piping 123 is capable of withstanding extreme high temperatures of the order of 600°C and comprises a suitable material being ceramic or a clay based material.
The energy collection and storage apparatus 102 is coupled to a second heat exchanger 113, a turbine 114 and an electric generator 115 so as to provide apparatus for ultimately converting solar energy to electrical energy.
Each target 101 comprises a surrounding jacket 116 that thermally insulates a relatively small region of the conduit network 103. A window 122 is provided at a region of the jacket 116 and is formed from a suitable glass or other low absorption material configured to allow transmission of the concentrated solar rays 108 received from each lens 100 configured to direct solar radiation 107 from the sun onto each target 101. In particular, window 122 is configured to prevent or inhibit re-emission of solar radiation in the form of long wave radiation resultant from the heated target that receives the relative shorter wave solar radiation.
Heat store 102 comprises a plurality of internal walls 104 formed from a suitable heat storage material such as rock, stone or a man-made/synthetic material configured to withstand high temperatures of the order of 600°C. Walls 104 are separated by fluid flow channels 117 so as to form a walled labyrinth structure internally within the body of the heat store 102.
The conduit network 123 is coupled in fluid communication with heat exchanger 125 which forms a part of the fluid flow network. A return conduit 124 extends from heat exchanger 125 and is coupled to a fluid reservoir 126. Reservoir 126 is also coupled in fluid communication with the array 127 of lenses 100 and associated targets 101.
According to the specific embodiment, the working fluid 106 is a liquid phase medium such as for example water, oil or a salt based solution having good heat transfer properties. In particular, the working fluid 106 may comprise a hydrocarbon based fluid, a silicone based fluid or any other organic based compounds. Further examples include glycols and in particular polyalkylene glycols (PAGs). Mineral oils, silicone oils and fluorocarbon oils may also be used.
The heater exchanger 125 provides an interface between the first fluid network comprising working fluid 106 and a second fluid network comprising heat storage device 102. The heat store 102 is connected in fluid communication with heat exchanger 125 via suitable conduit or piping 109. A gas phase working fluid 110 is contained within piping network 109 and is configured to flow to and from heat store 102 in contact with heat exchanger 125. This conduit network 109 also extends to the second heat exchanger 113 that drives turbine 114 and electric generator 115. According to a specific cycle, solar energy 107 is transferred to a first working fluid 106 via lenses 100 and targets 101. The heat energy is then transferred from working fluid 106 to working fluid 110 via heater exchanger 125. The heat energy may then be stored within heat store 102. This stored heat energy is then transferred to turbine 114 via heat exchanger 113 to drive generator 115. According to the specific implementation, heat exchanger 125 and second heat exchanger 113 are counter-flow heat exchangers.
Suitable fluid inlet and outlet ports (not shown) may be provided at reservoir 126 so as to allow additional working fluid to be introduced into network 123, 124 and to allow the working fluid to be drained from the network 123, 124. Similarly, inlet and outlet ports (not shown) may be provided at network 109 so as to allow the gas phase working fluid associated with heat exchanger 125 to be introduced and/or drained from the system. Accordingly, the third working fluid within heat exchanger 113 may also be drained from this network via similar inlet and outlet ports (not shown). Accordingly, the present apparatus comprises at least three physically separated working fluid networks, each interconnected via a plurality of heat exchangers. Accordingly, electric generator 115 is powered indirectly by solar radiation 107 via heat exchangers 125 and 113.
According to a specific cycle, solar radiation 107 is concentrated by lenses 100 and focused towards targets 101 through each window 122 so as to heat a working fluid 106 flowing through the conduit network 123. The working fluid flows 106 from the targets 101 into the heat exchanger 125 through suitable control valve 109. The heated working fluid then flows 111 through the mineral walls 104 so as to transfer heat to the heat store 102. The cooled air 120 then flows back into the conduit network 123 via suitable control valves 128.
When required to generate electricity, the heat within store 102 is extracted by the flow 118 of the gas phase fluid 110 being controlled by a suitable pump or fan 112 positioned between the second heat exchanger 113 and heat store 102. Heat is then transferred from the gas phase working fluid 118 via heat exchanger 113 to drive turbine 114 which converts the heat energy to rotational energy which in turn is converted to electrical energy via generator 115. The lower temperature fluid 119 then flows back into the heat store 102 and/or into the conduit network 109 via additional control pumps or fans (not shown) so as to be reheated at heat exchanger 125.
Referring to figure 2, each substantially vertical stone wall 104 may be constructed from two different types of material so as to partition each wall centrally in the vertical plane to define a high temperature side 208 and a lower temperature side 209. The high temperature side 208 comprises Basalt whilst the low temperature half 209 may be formed from non- specific rock 207.
The labyrinth of stone walls 104 are encased within suitable thermal insulation 200 of the appropriate thickness as will be appreciated by those skilled in the art. Insulation 200 may comprise rock wool or fibreglass. Insulation 200 is also provided at the bottom of the working fluid flow channels 117 so as to insulate the heat store 102 from the ground below 210. Referring to figures 2 and 3, in order to provide structural support for the rock labyrinth 104, steel support columns 206 are arranged around the perimeter of the outermost wall 104. The outermost wall is also supported by suitable gabion cages 300. The outermost thermal insulation 200 surrounds the steel support columns 206 and is itself contained within an inner and outer steel net 301.
In use, the heated gaseous working fluid 110 flows into the heat store 102 via piping 109 and into the fluid flow channels 117 extending between the rock walls 104. The heated gas then percolates through the hot side 208 of the stone wall so as to transfer heat energy to the mineral. It continues to percolate through the second side 209 into a neighbouring flow channel 117 to be subsequently recycled 120 into the conduit network 109 for reheating at heat exchanger 125 to continue the cycle. The gas flow piping 204 within the heat store 102 may be the same or composed of a different material to that of piping 103. Suitable vents and/or diverters 205 are provided within piping 204 so as to direct the gas flow 202 into the labyrinth of channels 117 and ultimately to flow 203 through the stone walls 104.
Referring to figure 4, the labyrinth of stone walls 104 is supported internally within the store 102 via intermediate support struts 400 configured to bridge the gap between opposing faces of walls 104 that define the gas flow channels 117. Support struts 400 are separated from one another by a distance 401 responding to approximately half the diameter of each individual rock 207 of wall 104.
Figure 5 illustrates a side elevation view of the support struts 400 of figure 4 nestled between the rocks 207 of opposing walls 104. Figure 6 illustrates a further embodiment in which support between walls 104 is provided by a column of discs 600 stacked on top of one another within channel 117. Each disc may be secured to its neighbour via mechanical fixings, formed integrally or non-integrally with the discs, including preformed clips or a mortar or cement based material. Similarly, each disc may be secured to the opposing walls 104 by a mortar or cement based material. According to the specific implementation, support struts 400, 600 are formed from a ceramic or clay based material. Referring to figure 7, lateral support for the heat store 102 is provided by stanchions or cabling attached to the uppermost region of each outermost steel support column 206 and a suitable anchor position 702 at ground level 210. A cross strut or cable 701 extends between adjacent steel supports 206 so as to provide a rigid support frame for the heat store 102. According to a specific implementation, store 102 may be 13m in diameter and approximately 9m high and is configured to contain approximately 1,000 tonnes of rock. Referring to figures 8 A to 8C, piping 103 is insulated over its perimeter by suitable insulation material optionally being rock wool or fibreglass of the appropriate thickness. Similarly, piping 204 within heat store 102 is also insulated by the same or a different insulation material 800. Accordingly, thermal heat loss from the working fluid is minimised so as to increase the efficiency of the collection and storage apparatus so as to optimise efficiency of the system and process for generating electricity from solar energy. The present invention is suitable for use with a single target or a plurality of targets 101 arranged in series as a set of targets positioned upstream and in fluid communication with the heat exchanger 125. According to the specific implementation, heat store 102 comprises four inlet conduits 802 each connecting a respective series of targets 101 via corresponding heat exchangers 125 to the internal chamber of heat store 102. Accordingly, heat store 102 comprises one or a plurality of outlets so as to recirculate the working fluid to each heat exchangers 125 upstream of the store 102.
Referring to figures 9 A to 9B, each target 101 comprises a thermal jacket 116 surrounding a region of piping 103. A plurality of thermal conducting plates 1000 extend longitudinally within the inner chamber 1001 of target 101 so as to extend axially along the length of conduit 103. Plates 1000 are positioned side-by-side so as to leave a small gap between opposed faces to allow the passage of the gaseous working fluid as it flows 1002 from the upstream position 1003 to a downstream position 1004 relative to the heat exchanger 125. Solar radiation 107 from the sun 900 is concentrated via lens 100 onto window 122 formed in the thermal jacket 116. The concentrated radiation 108 is received by the thermal transfer plates 1000 that increase in temperature in response to exposure to the solar radiation. The working fluid 1002 flowing into contact with the exposed surfaces of the plates 1000 is in turn heated.
Figures 10A and 10B illustrate a further specific implementation of the present invention. An aperture 1100 is provided at thermal jacket 116 such that the concentrated radiation 108 passes directly into the internal jacket chamber 1103 to be received at heat transfer plates 1000 via further apertures 1102 formed in the piping 103 at the region of the target. The inventors have found that heat loss due to convection through the aperture 1100 is relatively small and may be approximately equal to the thermal absorption of the material of window 122. A thermal insulation material 1101 is positioned externally around jacket 116 so as to minimise heat loss at the region of the target and to ensure efficient heat transfer from plates 1000 to the working fluid.
Figure 11 provides a further illustration of target 101. A central region 1200 of target 101 is shaped and dimensioned so as to create turbulence as the working fluid flows through the target from 1203 to 1204. In particular, a raised deflecting portion 1201 directs the working fluid upwardly towards sloping walls 1202 extending from window 122 towards the heat transfer plates 1000. Accordingly, the exposure time of the working fluid at the region of the plates 1000 is increased so as to maximise heat transfer.
Figure 12 illustrates schematically two parallel series of nine individual lens 100 and target 101 units. Each target 101 of each series forms part of the fluid flow cycle through the heat exchanger 125. An outlet conduit 1300 extends from heat exchanger 125 and is then split into separate conduits 1301 to provide a supply of working fluid to the start of each target series. The fluid then flows 110 into heat exchanger 125 from the last target of the series and having transferred thermal energy to the heat exchanger 125 exits at 120 to flow along conduit 1300.
Suitable means 1302 are provided to automatically move lens 100 over a predetermined grid space 1303 to track the position of the sun, both annually and diurnally. Each lens 100 via means 1302 is also configured to move laterally about grid space 1304 in response to the movement of the sun and to ensure solar radiation is continually focused towards target 101. The movement of lens 100 over space 1303 and 1304 occurs over three planes according to X, Y and Z axes. Accordingly, the centre of each lens is capable of movement over an imaginary section of a surface of sphere such that the centre of each lens is continually orientated towards the target with the separation distance between lens and target being substantially equal to the focal length of the lens.
Figure 13 illustrates a further implementation comprising a plurality of mirrors 901 configured to concentrate the solar radiation received from the sun 900 towards target window 122. Accordingly, each target 102 comprises an associated mirror 901 instead of or in addition to lens 100.
Figure 14 illustrates a further alternative embodiment comprising a trough mirror 1400 positioned below a region of conduit 103 so as to direct solar radiation onto the lower half of the conduit 103. Thermal insulation 1401 is positioned over an upper half of the conduit 103 such that the concentrated radiation 103 from mirror 1400 is incident directly upon conduit 103.
Referring to figures 15 and 16, heat store 102 is coupled to second heat exchanger 113. The heat exchanger working fluid 1503 cycles through the heat exchanger body 1500 from an inlet 1502 to an outlet 1501. Outlet 1501 is coupled to the input end of a turbine 114 and inlet 1502 is coupled to the output end of the turbine 114. Second heat exchanger 113 is coupled in fluid communication with the working fluid of the heat store 102 such that the heated fluid 1602 (of heat store 102) flows into the body of the heat exchanger 1500 to heat the heat exchanger working fluid 1503 between inlet 1502 and outlet 1501. The cooled working fluid 1603 of the heat store 102 then flows out of the heat exchanger body 1500 and is re-circulated 1503 into a cavity region 1600 between the heat store internal chamber and the outermost thermal insulation 200. Accordingly, this cavity region 1600 provides a further cooler thermal layer around the heat store to reduce heat loss from the walled labyrinth 104.

Claims

CLAIMS:
1. Solar energy collection apparatus comprising:
a plurality of lenses and/or mirrors to receive and concentrate solar radiation; at least one target to respectively receive the concentrated solar radiation from each of the lenses and/or mirrors;
a conduit network to contain a heat transfer fluid and allow the fluid to flow in contact with the at least one target such that the fluid is heated by the target;
a heat exchanger connected in fluid communication with the conduit network to receive the heated fluid and to transfer the received heat energy to a gas phase fluid;
a heat storage device connected in fluid communication via the gas phase fluid to the heat exchanger to receive the heat energy, the storage device comprising a heat storage material to store the heat energy received from the gas phase fluid.
2. The apparatus as claimed in any preceding claim wherein the lenses comprise fresnel lenses.
3. The apparatus as claimed in any preceding claim wherein the conduit network comprises ceramic and/or clay based piping.
4. The apparatus as claimed in any preceding claim wherein the heat storage material comprises a mineral based material.
5. The apparatus as claimed in claim 4 wherein the mineral based material comprises at least one type of rock material.
6. The apparatus as claimed in claim 5 wherein the mineral based material is constructed to form a labyrinth of walls separated by gas flow channels.
7. The apparatus as claimed in any preceding claim further comprising at least one gas flow pump and/or fan unit coupled to the conduit network and/or the heat storage device and configured to drive or assist the flow of the fluid.
8. The apparatus as claimed in any preceding claim further comprising a plurality of valves positioned at the conduit network so as to control the flow of fluid.
9. The apparatus as claimed in any preceding claim wherein the gas phase fluid is air.
10. The apparatus as claimed in any preceding claim wherein the heat transfer fluid is a gas or liquid.
11. The apparatus as claimed in claim 10 wherein the heat transfer fluid is any one of or a combination the following:
• an oil; and
• a solution of saltpeter.
12. Apparatus for converting solar energy to electrical energy comprising:
solar energy collection apparatus according to any one of claims 1 to 11 ;
a second heat exchanger connected in fluid communication with the heat store to receive the heated gas phase fluid and to transfer the received heat energy;
a turbine coupled to the second heat exchanger; and
an electric generator coupled to the turbine to generate electricity.
13. The apparatus as claimed in claim 12 comprising a steam turbine.
14. The apparatus as claimed in claims 12 or 13 comprising a water based working fluid heat exchanger.
15. A method of collecting solar energy comprising:
receiving and concentrating solar radiation using a plurality of lenses and/or mirrors;
receiving the concentrated solar energy from each lens or mirror at least one target; allowing a heat transfer fluid to flow in contact with the at least one target so as to be heated by the target;
transferring the heated fluid to a heat exchanger so as to transfer the heat energy to a gas phase working fluid at the heat exchanger;
transferring the heated gas phase working fluid to a heat storage device comprising a heat storage material to store the heat energy received from the gas phase fluid.
16. A method of converting solar energy to electrical energy comprising:
collecting and storing solar energy according to the method of claim 15;
transferring the heated gas phase fluid from the heat store to a second heat exchanger;
driving a turbine using a working fluid of the heat exchanger that has been heated by the heat energy from the heat store;
generating electricity via an electric generator coupled to the turbine.
PCT/GB2011/052212 2010-11-19 2011-11-14 Energy transfer and storage apparatus WO2012066314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1019646.7A GB201019646D0 (en) 2010-11-19 2010-11-19 Heat transfer fluid and storage apparatus
GB1019646.7 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012066314A1 true WO2012066314A1 (en) 2012-05-24

Family

ID=43431729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2011/052212 WO2012066314A1 (en) 2010-11-19 2011-11-14 Energy transfer and storage apparatus

Country Status (2)

Country Link
GB (1) GB201019646D0 (en)
WO (1) WO2012066314A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014072952A1 (en) * 2012-11-09 2014-05-15 Carding Specialists (Canada) Limited Heat storage apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10329623B3 (en) * 2003-06-25 2005-01-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar-thermal extraction of electrical energy involves heating medium by solar heating to above temperature working point of steam turbine, using to charge heat store connected before steam turbine.
US20080066736A1 (en) * 2006-07-25 2008-03-20 Yanong Zhu Method and apparatus for solar energy storage system using gas and rock
WO2009129166A2 (en) 2008-04-16 2009-10-22 Alstom Technology Ltd Solar thermal power plant
WO2009147651A2 (en) 2008-06-06 2009-12-10 Xelos S.R.L. A solar energy generator
US20090308072A1 (en) 2008-06-11 2009-12-17 Kay Thomas P Solar Energy Conversion Using Brayton Cycle System
WO2010019990A1 (en) 2008-08-18 2010-02-25 Renewable Energy Systems Limited Solar energy collection system and power generation system including a solar energy collection system
WO2010021706A1 (en) 2008-08-19 2010-02-25 Canyon West Energy, Llc Steam-based electric power plant operated on renewable energy
WO2010032238A2 (en) * 2008-09-17 2010-03-25 Siemens Concentrated Solar Power Ltd. Solar thermal power plant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10329623B3 (en) * 2003-06-25 2005-01-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar-thermal extraction of electrical energy involves heating medium by solar heating to above temperature working point of steam turbine, using to charge heat store connected before steam turbine.
US20080066736A1 (en) * 2006-07-25 2008-03-20 Yanong Zhu Method and apparatus for solar energy storage system using gas and rock
WO2009129166A2 (en) 2008-04-16 2009-10-22 Alstom Technology Ltd Solar thermal power plant
WO2009147651A2 (en) 2008-06-06 2009-12-10 Xelos S.R.L. A solar energy generator
US20090308072A1 (en) 2008-06-11 2009-12-17 Kay Thomas P Solar Energy Conversion Using Brayton Cycle System
WO2010019990A1 (en) 2008-08-18 2010-02-25 Renewable Energy Systems Limited Solar energy collection system and power generation system including a solar energy collection system
WO2010021706A1 (en) 2008-08-19 2010-02-25 Canyon West Energy, Llc Steam-based electric power plant operated on renewable energy
WO2010032238A2 (en) * 2008-09-17 2010-03-25 Siemens Concentrated Solar Power Ltd. Solar thermal power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014072952A1 (en) * 2012-11-09 2014-05-15 Carding Specialists (Canada) Limited Heat storage apparatus
CN104870924A (en) * 2012-11-09 2015-08-26 卡丁专家(加拿大)有限公司 Heat storage apparatus

Also Published As

Publication number Publication date
GB201019646D0 (en) 2010-12-29

Similar Documents

Publication Publication Date Title
US20120111006A1 (en) Solar energy transfer and storage apparatus
Tian et al. A review of solar collectors and thermal energy storage in solar thermal applications
US7340899B1 (en) Solar power generation system
US7836695B2 (en) Solar energy system
US9989278B1 (en) Solar energy collector and/or concentrator, and thermal energy storage and retrieval system including the same
US5685151A (en) U.S. solar power supply
Lovegrove et al. Solar thermal energy systems in Australia
US20130133324A1 (en) Hybrid solar power plant
AU2009312347A1 (en) Solar thermal power plant and dual-purpose pipe for use therewith
WO2009121030A2 (en) Solar thermal receiver for medium-and high-temperature applications
US20100294266A1 (en) Concentrated solar thermal energy collection device
US20150292771A1 (en) Heat storage apparatus
Ghodbane et al. Brief on Solar Concentrators: Differences and Applications.
WO2010027360A2 (en) Multiple heat engine power generation system
WO2012022273A1 (en) Solar power ammonia thermoelectric conversion system
WO2017136377A1 (en) Combination photovoltaic and thermal energy system
WO2010076754A1 (en) A solar energy collecting system
WO2015033249A1 (en) Solar energy transfer and storage apparatus
US20160032903A1 (en) Solar Power Plant
EP2976579A1 (en) Integrated thermal storage, heat exchange, and steam generation
US11073305B2 (en) Solar energy capture, energy conversion and energy storage system
KR101078134B1 (en) Complex Energy Supply Systems in Solar Cell and Method of Suppling Complex Energy using the systems
Donatini et al. High efficency integration of thermodynamic solar plant with natural gas combined cycle
CN101029778B (en) Solar thermal generating system of optical lens hot pipe
WO2016179199A1 (en) Solar power plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11788563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11788563

Country of ref document: EP

Kind code of ref document: A1