WO2012066153A1 - System and method for non-catalytic reduction of nitrogen oxides - Google Patents

System and method for non-catalytic reduction of nitrogen oxides Download PDF

Info

Publication number
WO2012066153A1
WO2012066153A1 PCT/ES2010/070731 ES2010070731W WO2012066153A1 WO 2012066153 A1 WO2012066153 A1 WO 2012066153A1 ES 2010070731 W ES2010070731 W ES 2010070731W WO 2012066153 A1 WO2012066153 A1 WO 2012066153A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
injectors
flow
air
injector
Prior art date
Application number
PCT/ES2010/070731
Other languages
Spanish (es)
French (fr)
Inventor
Franscisco J. RODRÍGUEZ BAREA
Enrique Tova Holgado
Miguel A. Delgado Lozano
Enrique Bosch Naval
Julio MONTAÑÉS PÉREZ
Luís CAÑADAS SERRANO
Vicente Jose Cortes Galeano
Original Assignee
Inerco, Ingeniería, Tecnología Y Consultoría, S. A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inerco, Ingeniería, Tecnología Y Consultoría, S. A. filed Critical Inerco, Ingeniería, Tecnología Y Consultoría, S. A.
Priority to PCT/ES2010/070731 priority Critical patent/WO2012066153A1/en
Publication of WO2012066153A1 publication Critical patent/WO2012066153A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/006Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion
    • F23C3/008Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • F23J2215/101Nitrous oxide (N2O)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/20Non-catalytic reduction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05002Measuring CO2 content in flue gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05003Measuring NOx content in flue gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the field of application of the present invention is that of combustion equipment, such as boilers of thermoelectric groups or as process furnaces existing in a wide range of industrial facilities.
  • the invention relates to a method and a system optimized for the non-catalytic reduction of nitrogen oxides in flue gases, in order to minimize the emissions of this pollutant.
  • the use of fossil fuels, such as coal, fuel oil or natural gas, in industrial boilers has as a negative consequence the emission of nitrogen oxides into the atmosphere (NO x ).
  • the NO x mainly comprise NO and NO 2 and are among the gaseous pollutants most harmful to health and the environment.
  • Nitrogen oxides are precursors of photochemical smog and acid rain, phenomena with direct effects on the health of animals, vegetation and humans.
  • the technologies applied to reduce NO x emissions In these types of installations, they can be classified mainly into two groups: modifications and adjustments of the combustion process, or primary measures, and post-combustion abatement, or secondary measures.
  • Secondary measures are applied upon combustion and are based on the selective chemical reduction of the molecule of NO x that evolves nitrogen (N 2) and water vapor (H 2 0) by a reducing agent nitrogenous base, usually ammonia (gas or aqueous solution) or urea solution.
  • a reducing agent nitrogenous base usually ammonia (gas or aqueous solution) or urea solution.
  • the reaction occurs in a reactor designed specifically, equipped with one or more layers of catalyst.
  • the reducing agent injection systems are installed in the reactor inlet ducts, achieving adequate degrees of mixing between the reactant species through the effective design of the injection and distribution systems of the reducing agent. Also, the presence of the catalyst favors the reaction kinetics for a temperature range between 340 ° C and 400 ° C.
  • Non-catalytic systems perform a direct injection of the reducing agent into the combustion equipment itself, in the area where the gas stream to be treated is in the temperature range or window from 850 to 1, 150 ° C.
  • SNCR Non-catalytic systems
  • For the distribution of the reducing agent several injection lances distributed on one or several levels are used to adjust the injection to the possible variations in the location of the temperature window, generally associated with the boiler load regulations.
  • ammonia slip precipitates in the presence of SO3 in the form of sulphate and ammonium bisulfate at temperatures below 300 ° C producing jams in equipment located downstream, mainly air preheaters, and ash contamination, conditioning its sale to the cement industry.
  • this window is, for a wide range of combustion equipment load, in the superheater zone. In this area the temperature of the gases decreases rapidly as the gas progresses, offering a reduced residence time for the abatement reaction.
  • the location of the lances is defined by preliminary tests that identify the range of variation of the Temperature window for all operating loads. In the usual operation of boilers and industrial furnaces there are operational variations that can produce changes in the temperature profiles in the injection sections.
  • the lack of monitoring means that the injection strategy cannot be adapted according to the actual temperature conditions. This causes may occur favoring the occurrence of ammonia slip conditions at certain points, and in others, the generation of NOx by oxidation of the reducing agent.
  • RRI Repach Reagent Injection
  • RRI systems are usually associated with stratification systems of OFA air intakes, providing an additional NO x reduction.
  • the critical parameter that determines the success of RRI technology combined with OFA systems is the stoichiometric ratio or ratio between the combustion air supplied and the air required in stoichiometric conditions (SR) in the injection zone of the reducing agent.
  • SR stoichiometric conditions
  • the SR ratio is establishes based on the total combustion air derived from the OFA system.
  • This practice although it establishes on average a sub-stoichiometric atmosphere in the high temperature zone, it does not allow to ensure the reducing conditions at all points of the section where the injection occurs.
  • point burner stops can produce high-temperature air-rich areas that enhance oxidation to NO x of the injected reagent, reducing the efficiency of the blasting process.
  • the lack of monitoring of the combustion zone conditions of industrial boilers and furnaces, especially in very high temperature areas can lead to reagent injection in inadequate areas (generators of ⁇ ) that penalize the performance of RRI technology.
  • the present invention relates to a system optimized for the non-catalytic abatement of nitrogen oxides in boilers and industrial furnaces, as well as a method of non-catalytic abatement of nitrogen oxides that employs said system, with a view to maximizing the reduction of said nitrogen oxides, while minimizing the consumption of reducing agent used.
  • the preferred field of application of the invention is the optimization of the RRI technology abatement systems which, as previously mentioned, are based on the injection of reducing agent in the sub-stoichiometric zones (with stoichiometric ratio SR between combustion air injected and stoichiometric air less than 1), high temperature (1300 - 1700 ° C) that are generated in industrial furnaces and boilers equipped with OFA or other type air stratification systems.
  • the method is based on the determination, by means of direct measurements, of the actual conditions of the gases to be purified at points close to the injection zones of the reducer to, depending on the information obtained, act on two levels :
  • the method object of the present invention comprises the following steps:
  • the control of the reducing agent contribution comprises injecting reducing agent only in the injectors associated with the measuring points at which values of the SR ratio of less than 1, called active injectors, are determined, establishing flow rates of reducing agent in the active injectors defined as functions of the measured NO x concentration and the values of the SR ratio determined at each measurement point.
  • the reducer flow at each point is established proportionally to the concentration of NO x , taking into account the existence of adequate values of the SR ratio.
  • a number of reducing agent injectors arranged in one or several planes located upstream of the boiler inlet sections or furnace of the air currents associated with the combustion air stratification systems and in which the temperature of the gases is between 1300 and 1700 ° C, to inject the nitrogen reducing agent, said means injectors equipped to control independently the flow of reducing agent provided.
  • a CO, C0 2 , 0 2 and NO x gas concentration analysis system measured at points located in the vertical plane that passes through the longitudinal axis of each injector, upstream of the injection point of each injector.
  • a control system receiving the values of CO, CO 2, O 2 and NO x measured and acts on two levels:
  • Figure 1 shows a general scheme of a boiler equipped with the elements that constitute the non-catalytic chilling system object of the present invention.
  • Figure 2 shows a cross-section of the boiler of Figure 1 at the height of the plane where the reducing agent injectors are located.
  • Figure 3 shows a cross-section of the boiler at the level of the plane of the refrigerated probes for the sampling of gases.
  • the boiler (1) represented in figure 1 corresponds to a 220 MWe tangential coal boiler, controlled by a master control (not shown) and equipped with twenty-four burners distributed in four groups (2a, 2b, 2c, 2d) (see Figure 2) and in six levels.
  • the groups (2a, 2b, 2c, 2d) are located in each of the four corners of said boiler (1).
  • Each group (2a, 2b, 2c, 2d) of burners comprises six burners arranged on two levels.
  • each burner has a secondary air supply duct (5) connected to a common wind box for the burners of each group (2a, 2b, 2c, 2d), equipped with each wind box of a flow regulator (6a, 6d) for the regulation of the flow of air transported by each wind box.
  • a flow regulator (6a, 6d) for each group (2a, 2b, 2c, 2d) of burners, although only flow regulators (6a, 6d), corresponding to the burner groups, are shown in Figure 1 (2nd, 2nd).
  • the boiler (1) is provided with OFA air supply means (7) located above the highest level of burners.
  • the flow of the air derived to the OFA (7) is regulated according to a flow regulator (8) common for all OFA air supply means (7).
  • the mills (3) have a mill control system based on load differentiation signals (bias signals) to generate a differential contribution (positive or negative) of fuel for each mill (3) with respect to the established demand by the master control of the boiler.
  • bias signals load differentiation signals
  • the system of the invention additionally comprises four injectors (9a, 9b, 9c, 9d); means of analysis of concentration of gases CO, CO 2 , O 2 and NO x ; and control means (18).
  • the injectors (9a, 9b, 9c, 9d) (see figures 1 and 2) of aqueous solution of nitrogenous reducing agent, preferably an ammonia reagent, are located in an intermediate plane between the last level of burners and the level of the means of OFA air supply (7). In the area of the injectors, sub-stoichiometric conditions are established, conducive to RRI technology, when operating by deriving a minimum percentage of air to the OFA air supply means (7). Additionally, the temperature of the gases in this The zone is in all operating cases above 1400 ° C.
  • nitrogenous reducing agent preferably an ammonia reagent
  • the injectors (9a, 9b, 9c, 9d) spray the ammonia reagent over an initial coverage area based on the geometric characteristics of the nozzles available to them. Its boiler arrangement is such that it ensures a uniform distribution of the reducing agent in the plane of the injectors (9a, 9b, 9c, 9d). As shown in Figure 2, for the case in question the location of two injectors (9a, 9b, 9c, 9d) has been established on each of two opposite walls of the boiler (1), said injectors facing two to two .
  • Each of the injectors (9a, 9b, 9c, 9d) is provided with a regulating valve (10) of the flow of the reducing agent provided and a meter (11) of said flow, which allows establishing a differential distribution in each of the points.
  • the reducing agent is stored in a tank (12) from where it is pumped by means of a drive module (13) to the injectors (9a, 9b, 9c and 9d).
  • the gas concentration analysis means CO, C0 2 , 0 2 and NO x consist of four probes (14a, 14b, 14c, 14d) cooled for gas extraction, connected to a sample conditioning system (15) common and an analyzer (16) multiparametric CO 2, O 2 and NO x.
  • the probes (14a, 14b, 14c, 14d) are located in a plane located between the last level of burners and the plane of the injectors (9a, 9b, 9c, 9d) of reducing agent, the position and depth of said probes being (14a, 14b, 14c, 14d) such that they allow gas extraction at points (17) located in the vertical plane that passes through the longitudinal axis of each injector, upstream of the point of injection of each injector, depending on the spray profiles of the nozzles of the injectors (9a, 9b, 9c, 9d), as shown in Figure 3.
  • This allows the establishment of an injection pattern of differential reducing agent per injector (9a, 9b, 9c, 9d) depending on the actual concentrations of the gases to be purified measured in representative areas associated with the areas of influence of each injection point.
  • the control means (18) are based on a PLC that, operating continuously, receives the concentration values of CO, CO2, O2 and
  • the necessary adjustments are generated: in the first instance, on the elements that govern the zonal contributions of air and fuel, in this case, the flow regulators (6a , 6d), the OFA air flow regulator (8) and the load differentiation signals (bias) of the mills (3), to produce favorable conditions for high-temperature non-catalytic depletion (RRI) and, second instance, about regulating valves
  • boiler operating conditions (1) are defined, defined in this case, due to the opening percentages in% of the secondary air flow regulators (6a, 6d) and the OFA air flow regulator (8), which are shown in table 1.
  • the opening percentages in% of the secondary air flow regulators (6a, 6d) and the OFA air flow regulator (8) which are shown in table 1.
  • the dejection method comprises the following stages:
  • Table 1 shows, in addition to the status of the secondary air flow regulators (6a, 6d) and the OFA air flow regulator (8), the concentration values of CO, CO 2 , O 2 and NO x obtained in point 1, the value of the calculated SR ratios associated with each measurement point obtained in point 2 and the measurement of NO x measured in chimney.
  • Table 2 shows the values of the same parameters in table 1 after the combustion adjustment. It is observed that, after the new regulation scenario, 3 points have been obtained with values of the SR ratio lower than 1, conditions favorable to RRI technology. At the point associated with the probe (14c) the SR ratio has a value greater than 1 due to limitations in the boiler control elements. It should be remembered that the temperature in the injection plane is above 1400 ° C for all operating conditions.
  • the total flow rate of the reducer to be supplied is defined according to the NSR parameter (Standard Stoichiometric Ratio) defined as:
  • the value of the SR ratio in the upstream zone of the injector (9c) is greater than 1, so that the reagent supply in this area, far from producing an effective reduction of the NO x , would produce the generation of said NO x by oxidation of the reducing agent. This fact significantly penalizes the performance of the global dejection system.
  • reagent will not be injected through the injector (9c) and the injection will be adjusted in each of the remaining injectors (9a, 9b, 9d) by adjusting the regulating valves (10 ) based on the NO x concentration values measured with their associated probes (14a, 14b and 14d).
  • Table 3 shows, together with the data in table 2 and by way of comparison, the injection strategy that would be used by a conventional or RRI system and that derived from the application of the described method and system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

The invention makes it possible to reduce nitrogen oxides in combustion apparatuses (1) with a high level of reduction efficiency as compared with the amount of nitrogenated reducing agent employed. The invention comprises injectors (9a, 9b, 9c, 9d) for the injection of the reducing agent; a system for analysing the concentration of gases (CO, CO2, O2 and NOX1); means for calculating the stoichiometric relationship as a function of the CO, CO2, and O2 concentrations; and a control system for, on the basis of the values of CO, CO2, O2 and NOx1 concentration, influencing the supply of fuel and air to the apparatus (1), with the aim of achieving SR values of between 0.8 and 1 at the points and also injecting a flow of reducing agent only at the SR points below 1, where said flow is proportional to the measured NOx concentrations.

Description

SISTEMA Y METODO DE ABATIMIENTO NO CATALITICO DE OXIDOS  SYSTEM AND METHOD OF NON-CATALYTIC OXIDIZATION
DE NITRÓGENO  NITROGEN
D E S C R I P C I O N D E S C R I P C I O N
OBJETO DE LA INVENCION OBJECT OF THE INVENTION
El campo de aplicación de la presente invención es el de los equipos de combustión, tales como las calderas de los grupos termoeléctricos o como los hornos de proceso existentes en un amplio abanico de instalaciones industriales. The field of application of the present invention is that of combustion equipment, such as boilers of thermoelectric groups or as process furnaces existing in a wide range of industrial facilities.
La invención se refiere a un método y a un sistema optimizado para el abatimiento no catalítico de óxidos de nitrógeno en gases de combustión, con el objeto de minimizar las emisiones de este contaminante. The invention relates to a method and a system optimized for the non-catalytic reduction of nitrogen oxides in flue gases, in order to minimize the emissions of this pollutant.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La utilización de combustibles fósiles, como el carbón, el fueloil o el gas natural, en calderas industriales tiene como consecuencia negativa la emisión a la atmósfera de óxidos de nitrógeno (NOx). Los NOx comprenden principalmente NO y NO2 y se encuentran entre los contaminantes gaseosos más perjudiciales para la salud y el medio ambiente. The use of fossil fuels, such as coal, fuel oil or natural gas, in industrial boilers has as a negative consequence the emission of nitrogen oxides into the atmosphere (NO x ). The NO x mainly comprise NO and NO 2 and are among the gaseous pollutants most harmful to health and the environment.
Los óxidos de nitrógeno son precursores del smog fotoquímico y la lluvia ácida, fenómenos con efectos directos sobre la salud de los animales, la vegetación y los seres humanos. Nitrogen oxides are precursors of photochemical smog and acid rain, phenomena with direct effects on the health of animals, vegetation and humans.
Las tecnologías aplicadas para la reducción de las emisiones de NOx en este tipo de instalaciones pueden clasificarse principalmente en dos grupos: modificaciones y ajustes del proceso de combustión, o medidas primarias, y abatimiento de postcombustión, o medidas secundarias. The technologies applied to reduce NO x emissions In these types of installations, they can be classified mainly into two groups: modifications and adjustments of the combustion process, or primary measures, and post-combustion abatement, or secondary measures.
Las medidas secundarias se aplican tras la combustión y se fundamentan en la reducción química selectiva de la molécula de NOx que evoluciona a nitrógeno (N2) y vapor de agua (H20) a través de un agente reductor de base nitrogenada, normalmente amoniaco (gaseoso o en solución acuosa) o solución de urea. Secondary measures are applied upon combustion and are based on the selective chemical reduction of the molecule of NO x that evolves nitrogen (N 2) and water vapor (H 2 0) by a reducing agent nitrogenous base, usually ammonia (gas or aqueous solution) or urea solution.
Reacción con amoniaco 4 NO + 4 NH3 + O2→ 4 N2 + 6 H2O Reaction with ammonia 4 NO + 4 NH 3 + O 2 → 4 N 2 + 6 H 2 O
Reacción con urea 4 NO + 2 CO(NH2)2 + O2→ 4 N2 + 2 CO2 + 4 H2O Reaction with urea 4 NO + 2 CO (NH 2) 2 + O 2 → 4N 2 + 2 CO 2 + 4 H 2 O
Para que la reacción se produzca es necesaria la confluencia de varios factores: For the reaction to occur, the confluence of several factors is necessary:
Contacto entre las moléculas de NOx y reactivo (condicionado por la distribución y la mezcla del agente reductor en la corriente de gases). Contact between NO x molecules and reagent (conditioned by the distribution and mixing of the reducing agent in the gas stream).
Disponibilidad de un rango óptimo de temperatura para la reacción selectiva de abatimiento.  Availability of an optimum temperature range for the selective abatement reaction.
Tiempo de residencia de las especies reaccionantes en la zona donde se establece el rango óptimo de temperatura.  Residence time of the reacting species in the area where the optimum temperature range is established.
En la medida en la que se optimicen los factores anteriores mayor será el desarrollo de la reacción selectiva y, por tanto, la reducción de las emisiones de NOx. To the extent that the above factors are optimized the greater the development of the selective reaction and, therefore, the reduction of NO x emissions.
En los sistemas catalíticos de abatimiento de NOx (SCR) la reacción se produce en un reactor diseñado ex profeso, equipado con una o varias capas de catalizador. Los sistemas de inyección de agente reductor se instalan en los conductos de entrada al reactor, consiguiéndose adecuados grados de mezcla entre las especies reaccionantes mediante el diseño efectivo de los sistemas de inyección y distribución del agente reductor. Asimismo, la presencia del catalizador favorece la cinética de la reacción para un rango de temperatura comprendido entre los 340 °C y los 400°C. In catalytic NO x chilling systems (SCR) the reaction occurs in a reactor designed specifically, equipped with one or more layers of catalyst. The reducing agent injection systems are installed in the reactor inlet ducts, achieving adequate degrees of mixing between the reactant species through the effective design of the injection and distribution systems of the reducing agent. Also, the presence of the catalyst favors the reaction kinetics for a temperature range between 340 ° C and 400 ° C.
Los sistemas SCR, en función de la bondad de su diseño, permiten alcanzar reducciones superiores al 90%, si bien requieren de elevadas inversiones para su implantación que, en numerosos casos, no pueden ser amortizadas en instalaciones con una reducida vida de explotación remanente. SCR systems, depending on the goodness of their design, allow to achieve reductions greater than 90%, although they require high investments for their implementation that, in many cases, cannot be amortized in facilities with a reduced remaining operating life.
Los sistemas no catalíticos (SNCR) realizan una inyección directa del agente reductor en el propio equipo de combustión, en la zona en que la corriente de gases a tratar está en el rango o ventana de temperatura de 850 a 1 .150 °C. Para la distribución del agente reductor se utilizan varias lanzas de inyección distribuidas en uno o varios niveles para ajustar la inyección a las posibles variaciones de localización de la ventana de temperatura, generalmente asociadas a las regulaciones de carga de la caldera. Non-catalytic systems (SNCR) perform a direct injection of the reducing agent into the combustion equipment itself, in the area where the gas stream to be treated is in the temperature range or window from 850 to 1, 150 ° C. For the distribution of the reducing agent, several injection lances distributed on one or several levels are used to adjust the injection to the possible variations in the location of the temperature window, generally associated with the boiler load regulations.
A temperaturas inferiores a 850 °C la reacción de abatimiento no se produce, por lo que, si se inyecta agente reductor en esos puntos, es emitido junto con los gases de combustión como amoniaco sin reaccionar (en la terminología "ammonia slip"). El ammonia slip precipita en presencia de SO3 en forma de sulfato y bisulfato amónico a temperaturas inferiores a 300 °C produciendo atascos en equipos ubicados aguas abajo, fundamentalmente los precalentadores de aire, y contaminación de la ceniza, condicionando su venta a la industria cementera. At temperatures below 850 ° C, the abatement reaction does not occur, so that if reducing agent is injected at these points, it is emitted together with the flue gases as unreacted ammonia (in the terminology "ammonia slip"). The ammonia slip precipitates in the presence of SO3 in the form of sulphate and ammonium bisulfate at temperatures below 300 ° C producing jams in equipment located downstream, mainly air preheaters, and ash contamination, conditioning its sale to the cement industry.
Si la inyección de agente reductor se produce en puntos con temperatura por encima de 1 150 °C se produce su oxidación por el oxígeno remanente en los gases, evolucionando a NOx, con el consiguiente perjuicio sobre el proceso global de reducción.
Figure imgf000006_0001
If the injection of reducing agent occurs at points with temperature above 1 150 ° C oxidation occurs due to the oxygen remaining in the gases, evolving to NO x , with the consequent damage to the overall reduction process.
Figure imgf000006_0001
Los niveles de reducción conseguidos con esta tecnología son sensiblemente inferiores a los obtenidos por los sistemas SCR. El origen de esta menor eficiencia radica, fundamentalmente, en que las prestaciones de un sistema SNCR están siempre condicionadas por el diseño y operación del equipo de combustión en cuestión. Entre los principales factores que justifican este menor rendimiento caben destacar los siguientes: The reduction levels achieved with this technology are significantly lower than those obtained by SCR systems. The origin of this lower efficiency lies, fundamentally, in that the performance of an SNCR system is always conditioned by the design and operation of the combustion equipment in question. Among the main factors that justify this lower performance, the following stand out:
- Mala distribución y bajo grado de mezcla del agente reductor en la corriente de gases. El gran tamaño de los equipos de combustión, especialmente las calderas de los grandes grupos termoeléctricos, unido a limitaciones de acceso a determinados puntos del interior, penaliza en gran medida la consecución de una concentración adecuada del agente reductor para los niveles de NOx puntuales. - Bad distribution and low degree of mixing of the reducing agent in the gas stream. The large size of the combustion equipment, especially the boilers of the large thermoelectric groups, together with limitations of access to certain interior points, greatly penalizes the achievement of an adequate concentration of the reducing agent for the specific NO x levels.
- Poco tiempo de residencia disponible en la ventana de temperatura. - Short residence time available in the temperature window.
En muchos casos dicha ventana se encuentra, para un amplio rango de carga del equipo de combustión, en la zona de los sobrecalentadores. En esta zona la temperatura de los gases decrece rápidamente conforme se produce el avance de los gases, ofreciéndose un reducido tiempo de residencia para la reacción de abatimiento.  In many cases this window is, for a wide range of combustion equipment load, in the superheater zone. In this area the temperature of the gases decreases rapidly as the gas progresses, offering a reduced residence time for the abatement reaction.
- Deficiente monitorización de la temperatura de los gases en los puntos de inyección. La localización de las lanzas se define mediante pruebas preliminares que identifican el rango de variación de la ventana de temperatura para todas las cargas de funcionamiento. En el funcionamiento habitual de las calderas y los hornos industriales se producen variaciones operativas que pueden producir cambios en los perfiles de temperatura en las secciones de inyección. La falta de monitorización provoca que no se pueda adecuar la estrategia de inyección en función de las condiciones de temperatura real. Esto provoca que, en determinados puntos, se puedan producir condiciones favorecedoras a la aparición de ammonia slip y, en otros, a la generación de NOx por la oxidación del agente reductor. - Poor monitoring of the temperature of the gases at the injection points. The location of the lances is defined by preliminary tests that identify the range of variation of the Temperature window for all operating loads. In the usual operation of boilers and industrial furnaces there are operational variations that can produce changes in the temperature profiles in the injection sections. The lack of monitoring means that the injection strategy cannot be adapted according to the actual temperature conditions. This causes may occur favoring the occurrence of ammonia slip conditions at certain points, and in others, the generation of NOx by oxidation of the reducing agent.
- Deficiente monitorización de la concentración de los gases en los puntos de inyección. De forma análoga a lo anterior, esto provoca que no se pueda adecuar la inyección a la concentración local de NOx, generándose zonas con exceso de agente reductor, potenciadoras de ammonia slip, y zonas con defecto de reactivo, que penalizan el rendimiento global de abatimiento. - Poor monitoring of gas concentration at injection points. In a similar way to the above, this causes that the injection cannot be adapted to the local concentration of NO x , generating areas with excess reducing agent, ammonia slip enhancers, and areas with reagent defect, which penalize the overall performance of dejection.
Los factores anteriores conllevan a la necesidad de operar los sistemas SNCR con un exceso de agente reductor, respecto a los demandados por la estequiometría, para conseguir reducciones significativas; siendo, en cualquier caso, un factor limitante el ammonia slip tolerable en cada instalación. En función del tipo de proceso, la aplicación de la tecnología SNCR puede producir reducciones de NOx en el rango de 20- 60% con consumos de reactivo amoniacal del orden de 1 ,5-3 veces los requeridos por la tecnología SCR. The above factors lead to the need to operate SNCR systems with an excess of reducing agent, compared to those demanded by stoichiometry, to achieve significant reductions; being, in any case, a limiting factor the ammonia slip tolerable in each installation. Depending on the type of process, the application of SNCR technology can produce NO x reductions in the range of 20-60% with ammonia reagent consumptions of the order of 1, 5-3 times those required by SCR technology.
Con posterioridad al desarrollo e implantación de los primeros sistemas SNCR, se ha desarrollado una variante de esta tecnología denominada RRI (Reach Reagent Injection) consistente en la inyección del agente reductor en una zona rica en combustible (zona reductora) a temperaturas comprendidas entre 1300 - 1700 °C. El resultado, al igual que en la tecnología SNCR, es la descomposición de los NOx en N2 y H20. El proceso de combustión se completa con el aporte de aire (OFA, del inglés Over Fire Air) aguas abajo del punto de inyección reactivo. After the development and implementation of the first SNCR systems, a variant of this technology called RRI (Reach Reagent Injection) has been developed consisting of the injection of the reducing agent in a fuel-rich zone (reducing zone) to temperatures between 1300 - 1700 ° C. The result, as in SNCR technology, is the decomposition of NO x into N 2 and H 2 0. The combustion process is completed with the air supply (OFA) from the English Over Fire Air downstream of the point reagent injection.
Las reducciones en las emisiones de NOx obtenidas con la tecnología RRI en grandes calderas de generación eléctrica alcanzan como máximo el 30%, requiriéndose un mayor aporte de reactivo con respecto al requerido por los sistemas SNCR convencionales para la misma reducción, fundamentalmente por la mayor incidencia de las reacciones competitivas en este entorno. Como ventaja principal, cabe destacar que este tipo de sistemas no produce prácticamente ammonia slip. The reductions in NO x emissions obtained with RRI technology in large electric generation boilers reach a maximum of 30%, requiring a greater reagent contribution compared to that required by conventional SNCR systems for the same reduction, mainly due to the greater incidence of competitive reactions in this environment. As a main advantage, it should be noted that this type of system does not practically produce ammonia slip.
Los sistemas RRI suelen ir asociados a sistemas de estratificación de los aportes de aire OFA, proporcionado una reducción de NOx adicional.RRI systems are usually associated with stratification systems of OFA air intakes, providing an additional NO x reduction.
Este planteamiento constituye una solución para aquellos casos en los que se requieren pequeños niveles de reducción no obtenibles con la tecnología SNCR, por ejemplo, por no disponer de tiempo de residencia suficiente de los gases en la ventana de temperatura 850-1.150 °C. This approach constitutes a solution for those cases in which small levels of reduction not obtainable with SNCR technology are required, for example, because there is not enough residence time for the gases in the temperature window 850-1.150 ° C.
El parámetro crítico que determina el éxito de la tecnología RRI combinada con sistemas OFA es la relación estequiométrica o ratio entre el aire de combustión aportado y el aire necesario en condiciones estequiométricas (SR) en la zona de inyección del agente reductor. En zonas reductoras a alta temperatura, donde se realiza la inyección de reactivo en los sistemas RRI, esta relación debe ser menor que 1 ; de otro modo se produciría la reacción de oxidación de reactivo dando lugar a la generación The critical parameter that determines the success of RRI technology combined with OFA systems is the stoichiometric ratio or ratio between the combustion air supplied and the air required in stoichiometric conditions (SR) in the injection zone of the reducing agent. In high temperature reducing zones, where reagent injection is performed in RRI systems, this ratio should be less than 1; otherwise the reagent oxidation reaction would occur giving rise to the generation
En los sistemas RRI conocidos hasta la fecha, el ratio SR se establece en base al aire total de combustión derivado al sistema OFA. Esta práctica, si bien establece en promedio una atmósfera subestequiométrica en la zona de alta temperatura, no permite asegurar las condiciones reductoras en todos los puntos de la sección donde se produce la inyección. Así, por ejemplo, paradas puntuales de quemadores pueden producir zonas ricas en aire a alta temperatura que potencian la oxidación a NOx del reactivo inyectado, reduciendo la eficiencia del proceso de abatimiento. En este sentido, al igual que en los sistemas SNCR, la falta de monitorización de las condiciones zonales de combustión de las calderas y hornos industriales, especialmente en zonas de muy alta temperatura, puede conducir a la inyección de reactivo en zonas inadecuadas (generadoras de ΝΟχ) que penalizan las prestaciones de la tecnología RRI. In the RRI systems known to date, the SR ratio is establishes based on the total combustion air derived from the OFA system. This practice, although it establishes on average a sub-stoichiometric atmosphere in the high temperature zone, it does not allow to ensure the reducing conditions at all points of the section where the injection occurs. Thus, for example, point burner stops can produce high-temperature air-rich areas that enhance oxidation to NO x of the injected reagent, reducing the efficiency of the blasting process. In this sense, as in SNCR systems, the lack of monitoring of the combustion zone conditions of industrial boilers and furnaces, especially in very high temperature areas, can lead to reagent injection in inadequate areas (generators of ΝΟχ) that penalize the performance of RRI technology.
En los últimos años, se han desarrollado programas experimentales para la reducción de NOx por etapas combinando las tecnologías OFA,In recent years, experimental programs have been developed for the reduction of NO x by stages combining OFA technologies,
SNCR y RRI, en calderas de grupos termoeléctricos. Se han reportado grados de abatimiento superiores al 40% con valores de ammonia slip inferiores a 10 ppm, si bien a expensas de un alto consumo de agente reductor. SNCR and RRI, in boilers of thermoelectric groups. Dejection degrees greater than 40% have been reported with slip ammonia values below 10 ppm, although at the expense of a high consumption of reducing agent.
En el marco de este planteamiento, la optimización conjunta de los procesos anteriores podría permitir la consecución de mayores niveles de reducción de las emisiones de NOx ligados a un menor consumo de reactivo, hasta el punto de constituir una alternativa de coste reducido a los sistemas SCR cuando los niveles de reducción requeridos sean inferiores al 90%, según el tipo de instalación. Within the framework of this approach, the joint optimization of the previous processes could allow the achievement of higher levels of reduction of NO x emissions linked to lower reagent consumption, to the point of constituting a reduced cost alternative to the systems SCR when the required reduction levels are below 90%, depending on the type of installation.
Existen documentos de patente publicados referentes a sistemas y/o métodos de control de unidades SNCR cuyo objetivo es la optimización de los niveles de reducción de NOx, el ammonia slip y el consumo del agente reductor. There are published patent documents relating to systems and / or methods SNCR control units aimed at optimizing levels of NO x reduction, the ammonia slip and consumption Agent reducer.
En el caso de las publicaciones US20050063887, US20060052902 y US7712036, se detallan sistemas de control de plantas convencionales SNCR, con inyección en la ventana de temperatura 850-1 150 °C, en los que se plantea el ajuste de la inyección en base a las medidas de concentración de las especies químicas que intervienen en la reacción de abatimiento, NOx y agente reductor sin reaccionar (ammonia slip). La aplicación efectiva de estos planteamientos a escala industrial es normalmente muy limitada ya que, en la mayor parte de los casos, la localización de la ventana de temperatura se produce en los bancos convectivos de tubos en los que es poco factible la obtención de mallados de medida extensivos de los parámetros que proporcionan la información precisa para la inyección zonal. DESCRIPCIÓN DE LA INVENCIÓN In the case of publications US20050063887, US20060052902 and US7712036, control systems of conventional SNCR plants are detailed, with injection in the temperature window 850-1 150 ° C, in which the injection adjustment is proposed based on concentration measures of the chemical species involved in the abatement reaction, NO x and unreacted reducing agent (ammonia slip). The effective application of these approaches on an industrial scale is usually very limited since, in most cases, the location of the temperature window occurs in convective tube benches where it is unlikely to obtain meshes from Extensive measurement of the parameters that provide accurate information for zonal injection. DESCRIPTION OF THE INVENTION
La presente invención se refiere a un sistema optimizado para el abatimiento no catalítico de óxidos de nitrógeno en calderas y hornos industriales, así como a un método de abatimiento no catalítico de óxidos de nitrógeno que emplea dicho sistema, con vistas a maximizar la reducción de dichos óxidos de nitrógeno, minimizando al mismo tiempo el consumo de agente reductor utilizado. The present invention relates to a system optimized for the non-catalytic abatement of nitrogen oxides in boilers and industrial furnaces, as well as a method of non-catalytic abatement of nitrogen oxides that employs said system, with a view to maximizing the reduction of said nitrogen oxides, while minimizing the consumption of reducing agent used.
El campo preferencial de aplicación de la invención es la optimización de los sistemas de abatimiento de tecnología RRI los cuales, como se ha comentado con anterioridad, se basan en la inyección de agente reductor en las zonas subestequiométricas (con relación estequiométrica SR entre aire de combustión inyectado y aire estequiométrico inferiores a 1 ), de alta temperatura (1300 - 1700 °C) que se generan en hornos y calderas industriales dotados de sistemas de estratificación del aire tipo OFA u otros. A grandes rasgos, el método se basa en la determinación, por medio de medidas directas, de las condiciones reales de los gases a depurar en puntos próximos a las zonas de inyección del reductor para, en función de la información obtenida, actuar en dos niveles: The preferred field of application of the invention is the optimization of the RRI technology abatement systems which, as previously mentioned, are based on the injection of reducing agent in the sub-stoichiometric zones (with stoichiometric ratio SR between combustion air injected and stoichiometric air less than 1), high temperature (1300 - 1700 ° C) that are generated in industrial furnaces and boilers equipped with OFA or other type air stratification systems. Broadly speaking, the method is based on the determination, by means of direct measurements, of the actual conditions of the gases to be purified at points close to the injection zones of the reducer to, depending on the information obtained, act on two levels :
- 1 : Realizando ajustes en los parámetros operativos que gobiernan los aportes zonales de comburente y combustible para generar de forma activa las condiciones propicias para la aplicación de la tecnología RRI. Ejemplos de dichos parámetros son: diferenciales de carga (bias) en la inyección de combustible (por ejemplo, las asociadas a la producción de los molinos en calderas de carbón pulverizado), posición de los registros de aire secundario y, en su caso, terciario, caudal de aire primario, caudal de aire derivado a los registros OFA, etc. - 1: Making adjustments to the operating parameters that govern the zonal contributions of combustion and fuel to actively generate the conditions conducive to the application of RRI technology. Examples of such parameters are: load differentials (bias) in fuel injection (for example, those associated with the production of mills in pulverized coal boilers), position of secondary and, where appropriate, tertiary air registers. , primary air flow, air flow derived to OFA registers, etc.
- 2: Estableciendo una estrategia de aporte de agente reductor discretizada por zonas, en función de las condiciones reales de concentración de los gases en los puntos de inyección. Más específicamente, el método objeto de la presente invención comprende los siguientes pasos: - 2: Establishing a reducing agent contribution strategy discretized by zones, depending on the actual conditions of concentration of the gases at the injection points. More specifically, the method object of the present invention comprises the following steps:
1. - Determinación de las concentraciones de monóxido de carbono (CO), dióxido de carbono (CO2), oxígeno (O2) y óxidos de nitrógeno (NOx) en los gases a tratar medidos en puntos situados en el plano vertical que pasa por el eje longitudinal de cada inyector, aguas arriba del punto de inyección de cada inyector. 1. - Determination of the concentrations of carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2) and nitrogen oxides (NO x ) in the gases to be treated measured at points located in the vertical plane that passes through the longitudinal axis of each injector, upstream of the injection point of each injector.
2. - Determinación, en base a las concentraciones de CO, CO2 y O2 medidas anteriormente, de la relación estequiométrica (SR) existente en cada uno de los puntos de medida, definida como la relación entre aire aportado para combustión y aire estequiométrico necesario (SR), en la zona de inyección. 3.- Ajuste de los elementos que gobiernan los aportes zonales de aire y combustible de la cadera u horno, estableciéndose como objetivo la consecución en el mayor número posible de puntos de medida de valores de la relación SR comprendidos en el rango 0, 8-1. 4.- Control del aporte de agente reductor, mediante la actuación sobre los controles de caudal y los reguladores de caudal. 2. - Determination, based on the concentrations of CO, CO 2 and O 2 measured above, of the stoichiometric ratio (SR) existing in each of the measuring points, defined as the ratio between air supplied for combustion and stoichiometric air required (SR), in the injection zone. 3.- Adjustment of the elements that govern the zonal contributions of air and fuel of the hip or furnace, establishing as an objective the achievement in the largest possible number of measurement points of values of the ratio SR included in the range 0, 8- one. 4.- Control of the contribution of reducing agent, by acting on the flow controls and flow regulators.
De manera preferente, el control del aporte de agente reductor comprende inyectar agente reductor únicamente en los inyectores asociados a los puntos de medida en los que se determinan valores de la relación SR inferior a 1 , denominados inyectores activos, estableciendo unos caudales de agente reductor en los inyectores activos definidos como funciones de la concentración de NOx medida y de los valores de la relación SR determinados en cada punto de medida. De esta forma, el caudal de reductor en cada punto se establece de forma proporcional a la concentración de NOx, teniendo en cuenta la existencia de valores adecuados de la relación SR. Preferably, the control of the reducing agent contribution comprises injecting reducing agent only in the injectors associated with the measuring points at which values of the SR ratio of less than 1, called active injectors, are determined, establishing flow rates of reducing agent in the active injectors defined as functions of the measured NO x concentration and the values of the SR ratio determined at each measurement point. In this way, the reducer flow at each point is established proportionally to the concentration of NO x , taking into account the existence of adequate values of the SR ratio.
Es objeto igualmente de la presente invención un sistema automatizado para, en base al método anteriormente detallado, optimizar de forma on-line el rendimiento de un sistema no catalítico para el abatimiento de NOx. Dicho sistema consta de los siguientes elementos: It is also object of the present invention for an automated system, based on the above detailed method, so optimize online performance of a non - catalytic system for the abatement of NO x. This system consists of the following elements:
- Un número de inyectores de agente reductor dispuestos en uno o varios planos ubicados aguas arriba de las secciones de entrada en la caldera u horno de las corrientes de aire asociadas a los sistemas de estratificación del aire de combustión y en los que la temperatura de los gases está comprendida entre 1300 y 1700 °C, para inyectar el agente reductor nitrogenado, equipados dichos inyectores de medios para controlar de forma independiente el caudal de agente reductor aportado. - A number of reducing agent injectors arranged in one or several planes located upstream of the boiler inlet sections or furnace of the air currents associated with the combustion air stratification systems and in which the temperature of the gases is between 1300 and 1700 ° C, to inject the nitrogen reducing agent, said means injectors equipped to control independently the flow of reducing agent provided.
- Un sistema de análisis de concentración de gases CO, C02, 02 y NOx medidos en puntos situados en el plano vertical que pasa por el eje longitudinal de cada inyector, aguas arriba del punto de inyección de cada inyector. - A CO, C0 2 , 0 2 and NO x gas concentration analysis system measured at points located in the vertical plane that passes through the longitudinal axis of each injector, upstream of the injection point of each injector.
- Un sistema de control que recibe los valores de CO, CO2, O2 y NOx medidos y actúa en dos niveles: - A control system receiving the values of CO, CO 2, O 2 and NO x measured and acts on two levels:
- 1 ) Realizando ajustes en continuo sobre los elementos que gobiernan los aportes zonales de aire y combustible de la cadera u horno para la consecución en los puntos de inyección de condiciones favorables a la reacción de abatimiento a alta temperatura, cuantificadas por valores de la relación SR comprendidos en el rango 0, 8-1 - 1) Making continuous adjustments on the elements that govern the zonal contributions of air and fuel of the hip or furnace for the achievement in the injection points of conditions favorable to the reaction of high-temperature blasting, quantified by values of the ratio SR included in the range 0, 8-1
- 2) Ajustando en continuo los caudales de agente reductor aportados por cada inyector en base a las premisas definidas en el método detallado anteriormente. - 2) Continuously adjusting the flow of reducing agent provided by each injector based on the premises defined in the method detailed above.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: La figura 1 muestra un esquema general de una caldera equipada con los elementos que constituyen el sistema de abatimiento no catalítico objeto de la presente invención. To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. where, for illustrative and non-limiting purposes, the following has been represented: Figure 1 shows a general scheme of a boiler equipped with the elements that constitute the non-catalytic chilling system object of the present invention.
En la figura 2 se representa un corte transversal de la caldera de la figura 1 a la altura del plano donde se ubican los inyectores de agente reductor. Figure 2 shows a cross-section of the boiler of Figure 1 at the height of the plane where the reducing agent injectors are located.
La figura 3 muestra un corte transversal de la caldera a la altura del plano de las sondas refrigeradas para la toma de muestra de gases. Figure 3 shows a cross-section of the boiler at the level of the plane of the refrigerated probes for the sampling of gases.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
A continuación, se realiza, con ayuda de las figuras 1 a 3 adjuntas, una descripción de un modo posible de ejecución de la invención para el caso de una caldera de un grupo termoeléctrico de carbón pulverizado. Next, a description of a possible embodiment of the invention for the case of a boiler of a thermoelectric group of pulverized coal is carried out with the aid of the attached figures 1 to 3.
La caldera (1 ) representada en la figura 1 corresponde a una caldera tangencial de carbón de 220 MWe, controlada por un control maestro (no representado) y equipada con veinticuatro quemadores distribuidos en cuatro grupos (2a, 2b, 2c, 2d) (ver figura 2) y en seis niveles. Los grupos (2a, 2b, 2c, 2d) están ubicados en cada una de las cuatro esquinas de dicha caldera (1 ). Cada grupo (2a, 2b, 2c, 2d) de quemadores comprende seis quemadores dispuestos en sendos niveles. The boiler (1) represented in figure 1 corresponds to a 220 MWe tangential coal boiler, controlled by a master control (not shown) and equipped with twenty-four burners distributed in four groups (2a, 2b, 2c, 2d) (see Figure 2) and in six levels. The groups (2a, 2b, 2c, 2d) are located in each of the four corners of said boiler (1). Each group (2a, 2b, 2c, 2d) of burners comprises six burners arranged on two levels.
El combustible es pulverizado en seis molinos (3) cada uno de los cuales alimenta a los 4 quemadores de un nivel a través de tuberías de transporte neumático (4). Por simplicidad, en la figura 1 solo se representa uno de los molinos (3). Según se aprecia en la figura 1 , cada quemador dispone de un conducto (5) de aporte de aire secundario conectado a una caja de vientos común para los quemadores de cada grupo (2a, 2b, 2c, 2d), dotada cada caja de vientos de un regulador de caudal (6a, 6d) para la regulación del caudal de aire vehiculado por cada caja de vientos. Existe un regulador de caudal (6a, 6d) para cada grupo (2a, 2b, 2c, 2d) de quemadores, si bien en la figura 1 solo se representan los reguladores de caudal (6a, 6d), correspondientes a los grupos de quemadores (2a, 2d). The fuel is sprayed in six mills (3) each of which feeds the 4 burners of a level through pneumatic conveying pipes (4). For simplicity, only one of the mills (3) is shown in Figure 1. As can be seen in figure 1, each burner has a secondary air supply duct (5) connected to a common wind box for the burners of each group (2a, 2b, 2c, 2d), equipped with each wind box of a flow regulator (6a, 6d) for the regulation of the flow of air transported by each wind box. There is a flow regulator (6a, 6d) for each group (2a, 2b, 2c, 2d) of burners, although only flow regulators (6a, 6d), corresponding to the burner groups, are shown in Figure 1 (2nd, 2nd).
Adicionalmente, la caldera (1 ) está dotada de medios de aporte de aire OFA (7) ubicados por encima del nivel más elevado de quemadores. El caudal del aire derivado al OFA (7) está regulado en función de un regulador de caudal (8) común para todos los medios de aporte de aire OFA (7). Additionally, the boiler (1) is provided with OFA air supply means (7) located above the highest level of burners. The flow of the air derived to the OFA (7) is regulated according to a flow regulator (8) common for all OFA air supply means (7).
Los molinos (3) disponen de un sistema de control de los molinos en base a señales de diferenciación de carga (señales de bias) para generar un aporte diferencial (positivo o negativo) de combustible por cada molino (3) respecto a la demanda establecida por el control maestro de la caldera. The mills (3) have a mill control system based on load differentiation signals (bias signals) to generate a differential contribution (positive or negative) of fuel for each mill (3) with respect to the established demand by the master control of the boiler.
El sistema de la invención comprende adicionalmente cuatro inyectores (9a, 9b, 9c, 9d); unos medios de análisis de concentración de gases CO, CO2, O2 y NOx; y unos medios de control (18). The system of the invention additionally comprises four injectors (9a, 9b, 9c, 9d); means of analysis of concentration of gases CO, CO 2 , O 2 and NO x ; and control means (18).
Los inyectores (9a, 9b, 9c, 9d) (ver figuras 1 y 2) de solución acuosa de agente reductor nitrogenado, preferentemente un reactivo amoniacal, están ubicados en un plano intermedio entre el último nivel de quemadores y el nivel de los medios de aporte de aire OFA (7). En la zona de los inyectores se establecen condiciones subestequiométricas, propicias a la tecnología RRI, cuando se opera derivando un porcentaje mínimo de aire a los medios de aporte de aire OFA (7). Adicionalmente, la temperatura de los gases en esta zona se encuentra en todos los casos operativos por encima de los 1400 °C. The injectors (9a, 9b, 9c, 9d) (see figures 1 and 2) of aqueous solution of nitrogenous reducing agent, preferably an ammonia reagent, are located in an intermediate plane between the last level of burners and the level of the means of OFA air supply (7). In the area of the injectors, sub-stoichiometric conditions are established, conducive to RRI technology, when operating by deriving a minimum percentage of air to the OFA air supply means (7). Additionally, the temperature of the gases in this The zone is in all operating cases above 1400 ° C.
Los inyectores (9a, 9b, 9c, 9d) pulverizan el reactivo amoniacal sobre un área inicial de cobertura en función de las características geométricas de las boquillas de las que disponen. Su disposición en caldera es tal que permite asegurar una distribución uniforme del agente reductor en el plano de los inyectores (9a, 9b, 9c, 9d). Según se observa en la figura 2, para el caso en cuestión se ha establecido la ubicación de dos inyectores (9a, 9b, 9c, 9d) en cada una de dos paredes opuestas de la caldera (1 ), dichos inyectores enfrentados dos a dos. The injectors (9a, 9b, 9c, 9d) spray the ammonia reagent over an initial coverage area based on the geometric characteristics of the nozzles available to them. Its boiler arrangement is such that it ensures a uniform distribution of the reducing agent in the plane of the injectors (9a, 9b, 9c, 9d). As shown in Figure 2, for the case in question the location of two injectors (9a, 9b, 9c, 9d) has been established on each of two opposite walls of the boiler (1), said injectors facing two to two .
Cada uno de los inyectores (9a, 9b, 9c, 9d) está dotado de una válvula de regulación (10) del caudal de agente reductor aportado y un medidor (11 ) de dicho caudal, lo que permite establecer un reparto diferencial en cada uno de los puntos. Each of the injectors (9a, 9b, 9c, 9d) is provided with a regulating valve (10) of the flow of the reducing agent provided and a meter (11) of said flow, which allows establishing a differential distribution in each of the points.
El agente reductor es almacenado en un tanque (12) desde donde es bombeado por medio de un módulo de impulsión (13) hasta los inyectores (9a, 9b, 9c y 9d). The reducing agent is stored in a tank (12) from where it is pumped by means of a drive module (13) to the injectors (9a, 9b, 9c and 9d).
Los medios de análisis de concentración de gases CO, C02, 02 y NOx están constituidos por cuatro sondas (14a, 14b, 14c, 14d) refrigeradas para la extracción de gases, conectadas a un sistema de acondicionamiento (15) de muestras común y un analizador (16) multiparamétrico de CO, CO2, O2 y NOx. The gas concentration analysis means CO, C0 2 , 0 2 and NO x consist of four probes (14a, 14b, 14c, 14d) cooled for gas extraction, connected to a sample conditioning system (15) common and an analyzer (16) multiparametric CO 2, O 2 and NO x.
Las sondas (14a, 14b, 14c, 14d) se ubican en un plano situado entre el último nivel de quemadores y el plano de los inyectores (9a, 9b, 9c, 9d) de agente reductor, siendo la posición y profundidad de dichas sondas (14a, 14b, 14c, 14d) tales que permitan extraer gases en puntos (17) situados en el plano vertical que pasa por el eje longitudinal de cada inyector, aguas arriba del punto de inyección de cada inyector, en función de los perfiles de pulverización de las boquillas de los inyectores (9a, 9b, 9c, 9d), como se observa en la figura 3. De esta forma se posibilita el establecimiento de un patrón de inyección de agente reductor diferencial por inyector (9a, 9b, 9c, 9d) en función de las concentraciones reales de los gases a depurar medidas en zonas representativas asociadas a las áreas de influencia de cada punto de inyección. The probes (14a, 14b, 14c, 14d) are located in a plane located between the last level of burners and the plane of the injectors (9a, 9b, 9c, 9d) of reducing agent, the position and depth of said probes being (14a, 14b, 14c, 14d) such that they allow gas extraction at points (17) located in the vertical plane that passes through the longitudinal axis of each injector, upstream of the point of injection of each injector, depending on the spray profiles of the nozzles of the injectors (9a, 9b, 9c, 9d), as shown in Figure 3. This allows the establishment of an injection pattern of differential reducing agent per injector (9a, 9b, 9c, 9d) depending on the actual concentrations of the gases to be purified measured in representative areas associated with the areas of influence of each injection point.
Los medios de control (18) están basados en un PLC que, operando de forma continua, recibe los valores de concentración de gases CO, CO2, O2 yThe control means (18) are based on a PLC that, operating continuously, receives the concentration values of CO, CO2, O2 and
ΝΟχ obtenidos por medio de las sondas (14a, 14b, 14c, 14d) y los valores de caudal de agente reductor alimentado a cada inyector (9a, 9b, 9c, 9d). ΝΟχ obtained by means of the probes (14a, 14b, 14c, 14d) and the flow rate of reducing agent fed to each injector (9a, 9b, 9c, 9d).
Una vez procesada toda la información por parte de los medios de control (18), se generan los ajustes necesarios: en primera instancia, sobre los elementos que gobiernan los aportes zonales de aire y combustible, en este caso, los reguladores de caudal (6a, 6d), el regulador de caudal (8) de aire OFA y las señales de diferenciación de carga (bias) de los molinos (3), para producir las condiciones favorables al abatimiento no catalítico a alta temperatura (RRI) y, en segunda instancia, sobre las válvulas de regulaciónOnce all the information is processed by the control means (18), the necessary adjustments are generated: in the first instance, on the elements that govern the zonal contributions of air and fuel, in this case, the flow regulators (6a , 6d), the OFA air flow regulator (8) and the load differentiation signals (bias) of the mills (3), to produce favorable conditions for high-temperature non-catalytic depletion (RRI) and, second instance, about regulating valves
(10) de caudal de agente reductor a cada inyector (9a, 9b, 9c, 9d). (10) of reducing agent flow rate to each injector (9a, 9b, 9c, 9d).
A efectos de materializar la aplicación del método de reducción de NOx utilizando el sistema anteriormente descrito, se hace uso de un ejemplo de situación sin control de NOx en la que se parte de unas condiciones de funcionamiento de la caldera (1 ), definidas en este caso por los porcentajes de apertura en % de los reguladores de caudal (6a, 6d) de aire secundario y del regulador de caudal (8) de aire OFA, que se muestran en la tabla 1. Para simplificar el planteamiento, no se actuará durante el proceso de optimización sobre el reparto de combustible mediante la actuación sobre las señales de diferenciación de carga (bias) de los molinos (3). In order to materialize the application of the NO x reduction method using the system described above, an example of a situation without NO x control is used in which boiler operating conditions (1) are defined, defined in this case, due to the opening percentages in% of the secondary air flow regulators (6a, 6d) and the OFA air flow regulator (8), which are shown in table 1. To simplify the approach, it is not possible will act during the optimization process on the distribution of fuel by acting on the signals of load differentiation (bias) of the mills (3).
Respecto a esta situación, el método de abatimiento comprende las siguientes etapas: Regarding this situation, the dejection method comprises the following stages:
1. - Medida de las concentraciones de gases CO, CO2, O2 y NOx obtenidas por las 4 sondas (14a, 14b, 14c, 14d) y del caudal de agente reductor alimentado a través de cada uno de los inyectores (9a, 9b, 9c, 9d) asociados a cada sonda (14a, 14b, 14c, 14d), en puntos situados en el plano vertical que pasa por el eje longitudinal de cada inyector, aguas arriba del punto de inyección de cada inyector. 1. - Measurement of the concentrations of CO, CO2, O2 and NO x gases obtained by the 4 probes (14a, 14b, 14c, 14d) and the flow rate of reducing agent fed through each of the injectors (9a, 9b , 9c, 9d) associated with each probe (14a, 14b, 14c, 14d), at points located in the vertical plane that passes through the longitudinal axis of each injector, upstream of the injection point of each injector.
2. - Determinación, en base a las concentraciones de CO, CO2 y O2 medidas anteriormente, de la relación estequiométrica (SR) existente en cada uno de los puntos de medida. El cálculo de SR es ejecutado en los medios de control (18) resolviendo el problema conocido de una combustión incompleta y viene dado por la ecuación siguiente: 2. - Determination, based on the concentrations of CO, CO 2 and O 2 measured above, of the stoichiometric ratio (SR) existing at each of the measuring points. The calculation of SR is executed in the control means (18) solving the known problem of incomplete combustion and is given by the following equation:
Figure imgf000018_0001
siendo O2, CO y CO2 las concentraciones expresadas en %.
Figure imgf000018_0001
where O 2 , CO and CO 2 are the concentrations expressed in%.
En la tabla 1 se recogen, además del estado de los reguladores de caudal (6a, 6d) de aire secundario y del regulador de caudal (8) de aire OFA, los valores de concentración de CO, CO2, O2 y NOx obtenidos en el punto 1 , el valor de las relaciones SR calculadas asociadas a cada punto de medida obtenidas en el punto 2 y la medida de NOx medida en chimenea. Table 1 shows, in addition to the status of the secondary air flow regulators (6a, 6d) and the OFA air flow regulator (8), the concentration values of CO, CO 2 , O 2 and NO x obtained in point 1, the value of the calculated SR ratios associated with each measurement point obtained in point 2 and the measurement of NO x measured in chimney.
TABLA 1
Figure imgf000019_0001
TABLE 1
Figure imgf000019_0001
Se observa que los valores de la relación SR se encuentran por encima de 1 en todos los puntos de medida. It is observed that the values of the SR ratio are above 1 at all measurement points.
3.- Ajuste de los reguladores de caudal (6a, 6d) de aire secundario y del regulador de caudal (8) de aire OFA, estableciéndose como objetivo la consecución en los puntos de medida de valores de la relación SR comprendidos en el rango 0.8-1. 3.- Adjustment of the flow regulators (6a, 6d) of secondary air and of the flow regulator (8) of OFA air, establishing the objective at the points of measurement of values of the SR ratio in the range 0.8 -one.
La tabla 2 recoge los valores de los mismos parámetros de la tabla 1 tras el ajuste de combustión. Se observa que, tras el nuevo escenario de regulación, se han obtenido 3 puntos con valores de la relación SR inferiores a 1 , condiciones éstas favorables a la tecnología RRI. En el punto asociado a la sonda (14c) la relación SR presenta un valor superior a 1 debido a limitaciones en los elementos de regulación de la caldera. Cabe recordar que la temperatura en el plano de inyección se encuentra por encima de los 1400 °C para todas las condiciones operativas. Table 2 shows the values of the same parameters in table 1 after the combustion adjustment. It is observed that, after the new regulation scenario, 3 points have been obtained with values of the SR ratio lower than 1, conditions favorable to RRI technology. At the point associated with the probe (14c) the SR ratio has a value greater than 1 due to limitations in the boiler control elements. It should be remembered that the temperature in the injection plane is above 1400 ° C for all operating conditions.
TABLA 2 TABLE 2
Figure imgf000020_0002
Figure imgf000020_0002
4.- Establecimiento de una estrategia de aporte diferencial de agente reductor individualizada por inyector (9a, 9b, 9c y 9d). 4.- Establishment of a strategy of differential contribution of reducing agent individualized by injector (9a, 9b, 9c and 9d).
Para una reducción de NOx objetivo determinada, el caudal total de reductor a suministrar se define en función del parámetro NSR (Relación Estequiométrica Normalizada) definido como:
Figure imgf000020_0001
For a given NO x objective reduction, the total flow rate of the reducer to be supplied is defined according to the NSR parameter (Standard Stoichiometric Ratio) defined as:
Figure imgf000020_0001
En los sistemas RRI convencionales, para un objetivo de reducción de ΝΟχ establecido en el 30%, como en el caso del ejemplo, y suponiendo que los valores de NOx iniciales son del mismo orden que los obtenidos tras los ajustes de combustión del punto 3, los valores de NSR están en torno a 3. Esto se traduciría en un consumo de solución de agente reductor de 500 l/h que se repartiría de forma equitativa entre todos los inyectores (9a, 9b, 9c, 9d). In conventional RRI systems, for a reduction objective of ΝΟχ set at 30%, as in the case of the example, and assuming that the initial NO x values are of the same order as those obtained after the combustion adjustments of point 3 , the NSR values are around 3. This would result in a consumption of reducing agent solution of 500 l / h that would be distributed equally among all injectors (9a, 9b, 9c, 9d).
De acuerdo a lo observado en la tabla 2, el valor de la relación SR en la zona aguas arriba del inyector (9c) es superior a 1 , por lo que el aporte de reactivo en esta zona, lejos de producir una reducción efectiva de los NOx, produciría la generación de dicho NOx por oxidación del agente reductor. Este hecho penaliza sensiblemente el rendimiento del sistema global de abatimiento. Siguiendo los criterios definidos para el método objeto de esta invención, no se inyectará reactivo a través del inyector (9c) y se ajustará la inyección en cada uno de los inyectores restantes (9a, 9b, 9d) ajustando las válvulas de 5 regulación (10) en función de los valores de concentración de NOx medidos con sus sondas asociadas (14a, 14b y 14d). As observed in Table 2, the value of the SR ratio in the upstream zone of the injector (9c) is greater than 1, so that the reagent supply in this area, far from producing an effective reduction of the NO x , would produce the generation of said NO x by oxidation of the reducing agent. This fact significantly penalizes the performance of the global dejection system. Following the criteria defined for the method object of this invention, reagent will not be injected through the injector (9c) and the injection will be adjusted in each of the remaining injectors (9a, 9b, 9d) by adjusting the regulating valves (10 ) based on the NO x concentration values measured with their associated probes (14a, 14b and 14d).
En la tabla 3 se representa, junto con los datos de la tabla 2 y a modo comparativo, la estrategia de inyección que emplearía un sistema RRI l o convencional y la derivada de la aplicación del método y el sistema descritos. Table 3 shows, together with the data in table 2 and by way of comparison, the injection strategy that would be used by a conventional or RRI system and that derived from the application of the described method and system.
Se ha fijado, para establecer la comparación para ambos casos, el mismo valor de ΝΟχ inicial (237 mg/Nm3) y el mismo valor final (165,9 mg/Nm3), donde Nm3 significa metros cúbicos en condiciones normales (0 °C, 1 atm.). Is fixed, for comparison in both cases, the same value of initial ΝΟχ (237 mg / Nm 3) and the same final value (165.9 mg / Nm 3) where Nm 3 means cubic meters at standard conditions ( 0 ° C, 1 atm.).
15 TABLA 3 15 TABLE 3
Figure imgf000021_0001
Figure imgf000021_0001
De dicha tabla se desprende que, para el caso analizado, el ahorro de 25 agente reductor (reactivo) para la misma reducción de NOx derivada de la invención puede cuantificarse en el entorno del 30%. Este ahorro está fundamentado principalmente por la no inyección de agente reductor en zonas no propicias al abatimiento no catalítico a alta temperatura y por la reducción del aporte de agente reductor en los puntos de menor concentración de NOx. From this table it follows that, for the analyzed case, the saving of reducing agent (reagent) for the same NO x reduction derived from the invention can be quantified in the environment of 30%. This saving is mainly based on the non-injection of reducing agent in areas not conducive to high-temperature non-catalytic depletion and by the reduction of the contribution of reducing agent at points of lower NO x concentration.

Claims

R E I V I N D I C A C I O N E S
1.- Sistema de abatimiento no catalítico de óxidos de nitrógeno a través de un agente reductor nitrogenado, para calderas (1 ) y hornos industriales que están dotados de: 1.- Non-catalytic abatement system of nitrogen oxides through a nitrogenous reducing agent, for boilers (1) and industrial furnaces that are equipped with:
- medios de aporte de aire de combustión;  - combustion air supply means;
- medios de aporte de combustible;  - fuel supply means;
- una pluralidad de quemadores (2a, 2b, 2c, 2d) para quemar el combustible empleando el aire de combustión, dotados de unos reguladores de caudal (6a, 6d); y  - a plurality of burners (2a, 2b, 2c, 2d) to burn the fuel using combustion air, equipped with flow regulators (6a, 6d); Y
- sistemas de estratificación del aire de combustión aportado por corrientes de aire aguas abajo de la zona de inyección de combustible, dotados de reguladores de caudal (8), que permiten generar, en las zonas de la caldera - combustion air stratification systems provided by air currents downstream of the fuel injection zone, equipped with flow regulators (8), which allow generating, in the boiler areas
(I ) u horno en las que la temperatura de los gases de combustión se encuentra comprendida aproximadamente entre 1300 y 1700 °C, condiciones subestequiométricas definidas como aquéllas en las que la relación entre el aire de combustión presente y el aire de combustión estequiométrico (relación estequiométrica, SR) es inferior a 1 ; (I) or furnace in which the temperature of the flue gases is approximately between 1300 and 1700 ° C, sub-stoichiometric conditions defined as those in which the ratio between the combustion air present and the stoichiometric combustion air (ratio stoichiometric, SR) is less than 1;
caracterizado porque comprende: characterized in that it comprises:
- una pluralidad de inyectores (9a, 9b, 9c, 9d) dispuestos en uno o varios planos ubicados aguas arriba de las secciones de entrada en la caldera (1 ) u horno de las corrientes de aire asociadas a los sistemas de estratificación del aire de combustión y en los que la temperatura de los gases está comprendida entre 1300 y 1700 °C para inyectar el agente reductor nitrogenado, ubicados en dichas zonas subestequiométricas, equipados dichos inyectores (9a, 9b, 9c, 9d) de sendas válvulas (10) de regulación de caudal, y de sendos medidores - a plurality of injectors (9a, 9b, 9c, 9d) arranged in one or more planes located upstream of the boiler inlet sections (1) or furnace of the air currents associated with the air stratification systems of combustion and in which the temperature of the gases is between 1300 and 1700 ° C to inject the nitrogenous reducing agent, located in said sub-stoichiometric zones, equipped with said injectors (9a, 9b, 9c, 9d) of individual valves (10) of flow regulation, and of two meters
(I I ) de caudal, para controlar de forma independiente el caudal de agente reductor aportado en cada inyector (9a, 9b, 9c, 9d); (I I) of flow, to independently control the flow of reducing agent provided in each injector (9a, 9b, 9c, 9d);
- unos medios de análisis de concentración de gases CO, CO2, O2 y NOx medidos aguas arriba de las secciones de entrada en la caldera (1 ) u horno de las corrientes de aire asociadas a los sistemas de estratificación del aire de combustión en puntos (17) situados en el plano vertical que pasa por el eje longitudinal de cada inyector (9a, 9b, 9c, 9d)y en las proximidades de la zona efectiva (17) de inyección de cada uno de los inyectores (9a, 9b, 9c, 9d); y - unos medios de control (18) conectados con los medios de análisis de concentración de gases, con los reguladores de caudal (6a, 6d) de los quemadores (2a, 2b, 2c, 2d), con los reguladores de caudal (8) del sistema de estratificación de aire, con los medios de aporte de combustible y con las válvulas (10) de regulación de caudal y los medidores de caudal (11 ) de la pluralidad de inyectores (9a, 9b, 9c, 9d) y que están, dichos medios de control- means for analyzing the concentration of CO, CO2, O2 and NO x gases measured upstream of the boiler inlet sections (1) or furnace the air currents associated with the combustion air stratification systems at points (17) located in the vertical plane passing through the longitudinal axis of each injector (9a, 9b, 9c, 9d) and in the vicinity of the effective zone (17) injection of each of the injectors (9a, 9b, 9c, 9d); and - control means (18) connected to the gas concentration analysis means, with the flow regulators (6a, 6d) of the burners (2a, 2b, 2c, 2d), with the flow regulators (8 ) of the air stratification system, with the fuel supply means and with the flow regulation valves (10) and the flow meters (11) of the plurality of injectors (9a, 9b, 9c, 9d) and that are, said control means
(18), adaptados para recibir los valores de concentración de CO, C02, 02 y ΝΟχ medidos, calcular la relación entre el aire de combustión presente y el aire de combustión estequiométrico (relación estequiométrica, SR) en cada uno de los puntos de medida en función de dichas concentraciones y actuar en continuo sobre los reguladores de caudal (6a, 6d) de los quemadores (2a, 2b,(18), adapted to receive the measured CO, C0 2 , 0 2 and ΝΟχ concentration values, calculate the relationship between the present combustion air and the stoichiometric combustion air (stoichiometric ratio, SR) at each of the points measure according to these concentrations and act continuously on the flow regulators (6a, 6d) of the burners (2a, 2b,
2c, 2d), sobre los reguladores de caudal (8) del sistema de estratificación de aire, sobre los medios de aporte de combustible y sobre las válvulas (10) de regulación de caudal (11 ) de la pluralidad de inyectores (9a, 9b, 9c, 9d). 2c, 2d), on the flow regulators (8) of the air stratification system, on the fuel supply means and on the flow regulation valves (10) (11) of the plurality of injectors (9a, 9b , 9c, 9d).
2.- Sistema de abatimiento no catalítico de óxidos de nitrógeno de acuerdo con la reivindicación 1 , caracterizado porque los puntos (17) de medida de CO, CO2, O2 y ΝΟχ están ubicados aguas arriba del punto de inyección de cada inyector (9a, 9b, 9c, 9d). 2. Non-catalytic nitrogen oxidization abatement system according to claim 1, characterized in that the measuring points (17) of CO, CO 2 , O 2 and ΝΟχ are located upstream of the injection point of each injector ( 9a, 9b, 9c, 9d).
3.- Sistema de abatimiento no catalítico de óxidos de nitrógeno de acuerdo con la reivindicación 1 , caracterizado porque el agente reductor nitrogenado es un reactivo de base amoniacal. 3. Non nitrogen catalytic abatement system according to claim 1, characterized in that the nitrogenous reducing agent is an ammoniacal based reagent.
4.- Sistema de abatimiento no catalítico de óxidos de nitrógeno de acuerdo con la reivindicación 3, caracterizado porque el agente reductor nitrogenado está en forma de solución acuosa pulverizable por los inyectores (9a, 9b, 9c, 9d) en la corriente de gases. 4. Non nitrogen catalytic abatement system according to claim 3, characterized in that the nitrogen reducing agent It is in the form of an aqueous solution sprayable by the injectors (9a, 9b, 9c, 9d) in the gas stream.
5. - Sistema de abatimiento no catalítico de óxidos de nitrógeno de acuerdo con la reivindicación 1 , caracterizado porque el sistema de análisis de concentración de gases CO, CO2, O2 y NOx comprende un conjunto de tantas sondas (14a, 14b, 14c, 14d) refrigeradas para la extracción de gases, como inyectores (9a, 9b, 9c, 9d), estando dichas sondas (14a, 14b, 14c, 14d) conectadas a un sistema de acondicionamiento (15) de muestras común y un analizador (16) multiparamétrico de CO, CO2, O2 y NOx. 5. - Non-catalytic abatement system for nitrogen oxides according to claim 1, characterized in that the CO, CO2, O2 and NO x gas concentration analysis system comprises a set of so many probes (14a, 14b, 14c, 14d) refrigerated for gas extraction, such as injectors (9a, 9b, 9c, 9d), said probes (14a, 14b, 14c, 14d) being connected to a common sample conditioning system (15) and an analyzer (16 ) multiparameter of CO, CO2, O2 and NO x .
6. - Sistema de abatimiento no catalítico de óxidos de nitrógeno de acuerdo con la reivindicación 5, caracterizado porque cada sonda (14a, 14b, 14c, 14d) está ubicada aguas arriba de uno de los inyectores (9a, 9b, 9c, 9d), siendo la posición y profundidad de dichas sondas (14a, 14b, 14c, 14d) tales que comprenden un orificio de entrada de gases ubicado en un punto (17) situado en el plano vertical que pasa por el eje longitudinal de cada inyector (9a, 9b, 9c, 9d), aguas arriba del punto de inyección de cada inyector (9a, 9b, 9c, 9d). 6. - Non-catalytic abatement system of nitrogen oxides according to claim 5, characterized in that each probe (14a, 14b, 14c, 14d) is located upstream of one of the injectors (9a, 9b, 9c, 9d) the position and depth of said probes (14a, 14b, 14c, 14d) being such that they comprise a gas inlet hole located at a point (17) located in the vertical plane that passes through the longitudinal axis of each injector (9a , 9b, 9c, 9d), upstream of the injection point of each injector (9a, 9b, 9c, 9d).
7. - Método de abatimiento no catalítico de óxidos de nitrógeno en calderas y hornos industriales, empleando el sistema descrito en una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende los pasos de: 7. - Method of non-catalytic abatement of nitrogen oxides in boilers and industrial furnaces, using the system described in any one of the preceding claims, characterized in that it comprises the steps of:
- determinación, empleando los medios de análisis de concentración de gases, de las concentraciones de monóxido de carbono (CO), dióxido de carbono (CO2), oxígeno (O2) y óxidos de nitrógeno (NOx) en los gases a tratar medidos en puntos (17) situados en el plano vertical que pasa por el eje longitudinal de cada inyector (9a, 9b, 9c, 9d), aguas arriba del punto de inyección de cada inyector (9a, 9b, 9c, 9d); - determination, using the means of gas concentration analysis, of the concentrations of carbon monoxide (CO), carbon dioxide (CO 2 ), oxygen (O 2 ) and nitrogen oxides (NO x ) in the gases to be treated measured at points (17) located in the vertical plane that passes through the longitudinal axis of each injector (9a, 9b, 9c, 9d), upstream of the injection point of each injector (9a, 9b, 9c, 9d);
- determinación, en base a las concentraciones de CO, CO2 y O2 medidas anteriormente, de la relación estequiométrica (SR) existente en cada uno de los puntos de medida, definida como la relación entre aire aportado para combustión y aire estequiométrico necesario (SR), en la zona de inyección; - determination, based on the concentrations of CO, CO 2 and O 2 measured above, of the stoichiometric ratio (SR) existing in each one of the measuring points, defined as the ratio between air supplied for combustion and stoichiometric air required (SR), in the injection zone;
- ajuste, por parte de los medios de control (18), de los elementos que gobiernan los medios de aporte de aire de combustión a los quemadores (2a, - adjustment, by the control means (18), of the elements that govern the combustion air supply means to the burners (2a,
2b, 2c, 2d), los medios de aporte de combustible, y los medios que constituyen el sistema de estratificación del aire de combustión con el objetivo de conseguir, en el mayor número posible de puntos de medida, valores de una relación SR comprendida en el rango 0,8-1 ; y 2b, 2c, 2d), the fuel supply means, and the means that constitute the combustion air stratification system in order to achieve, in the greatest possible number of measurement points, values of an SR ratio comprised in the range 0.8-1; Y
- control del aporte de agente reductor, mediante la actuación sobre las válvulas (10) de regulación y los medidores (11 ) de caudal de los inyectores (9a, 9b, 9c, 9d), por parte de los medios de control (18).  - control of the contribution of reducing agent, by acting on the control valves (10) and the flow meters (11) of the injectors (9a, 9b, 9c, 9d), by the control means (18) .
8. - Método de abatimiento no catalítico de óxidos de nitrógeno de acuerdo con la reivindicación 7, caracterizado porque el control del aporte de agente reductor comprende inyectar únicamente en los inyectores asociados a los puntos de medida en los que se determinan valores de la relación SR inferior a 1 , denominados inyectores activos, estableciendo unos caudales de agente reductor en los inyectores activos definidos como funciones de la concentración de ΝΟχ medida y de los valores de la relación SR determinados en cada punto de medida. 8. - Non-catalytic abatement method of nitrogen oxides according to claim 7, characterized in that the control of the reducing agent contribution comprises injecting only in the injectors associated to the measuring points at which values of the SR ratio are determined. less than 1, called active injectors, establishing flow rates of reducing agent in the active injectors defined as functions of the concentration of ΝΟχ measured and the values of the SR ratio determined at each measurement point.
9. - Método de abatimiento no catalítico de óxidos de nitrógeno de acuerdo con la reivindicación 8, caracterizado porque los caudales de agente reductor en cada inyector activo son proporcionales a la concentración de NOx medida. 9. - Non-catalytic abatement method of nitrogen oxides according to claim 8, characterized in that the flow rates of reducing agent in each active injector are proportional to the concentration of NO x measured.
PCT/ES2010/070731 2010-11-15 2010-11-15 System and method for non-catalytic reduction of nitrogen oxides WO2012066153A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070731 WO2012066153A1 (en) 2010-11-15 2010-11-15 System and method for non-catalytic reduction of nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070731 WO2012066153A1 (en) 2010-11-15 2010-11-15 System and method for non-catalytic reduction of nitrogen oxides

Publications (1)

Publication Number Publication Date
WO2012066153A1 true WO2012066153A1 (en) 2012-05-24

Family

ID=44169005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070731 WO2012066153A1 (en) 2010-11-15 2010-11-15 System and method for non-catalytic reduction of nitrogen oxides

Country Status (1)

Country Link
WO (1) WO2012066153A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756059A (en) * 1996-01-11 1998-05-26 Energy And Environmental Research Corporation Advanced reburning methods for high efficiency NOx control
US6471506B1 (en) * 1999-08-31 2002-10-29 Ge Energy & Environmental Research Corp. Methods for reducing NOx in combustion flue gas using metal-containing additives
US20050063887A1 (en) 2003-05-22 2005-03-24 Stuart Arrol Method and apparatus for zonal injection of chemicals into a furnace convective pass to reduce pollutants from flue gases
US20060052902A1 (en) 2004-08-27 2006-03-09 Neuco, Inc. Method and system for SNCR optimization
US7712036B2 (en) 1999-12-27 2010-05-04 Gateway, Inc. Scannable design of an executable
DE102008056676A1 (en) * 2008-11-11 2010-05-12 Siemens Aktiengesellschaft Method and device for monitoring the combustion of a power plant by means of a real concentration distribution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756059A (en) * 1996-01-11 1998-05-26 Energy And Environmental Research Corporation Advanced reburning methods for high efficiency NOx control
US6471506B1 (en) * 1999-08-31 2002-10-29 Ge Energy & Environmental Research Corp. Methods for reducing NOx in combustion flue gas using metal-containing additives
US7712036B2 (en) 1999-12-27 2010-05-04 Gateway, Inc. Scannable design of an executable
US20050063887A1 (en) 2003-05-22 2005-03-24 Stuart Arrol Method and apparatus for zonal injection of chemicals into a furnace convective pass to reduce pollutants from flue gases
US20060052902A1 (en) 2004-08-27 2006-03-09 Neuco, Inc. Method and system for SNCR optimization
DE102008056676A1 (en) * 2008-11-11 2010-05-12 Siemens Aktiengesellschaft Method and device for monitoring the combustion of a power plant by means of a real concentration distribution

Similar Documents

Publication Publication Date Title
CN104226110B (en) Coal-fired boiler SCR (Selective Catalytic Reduction) denitration control method and system
Strömberg et al. Update on Vattenfall’s 30 MWth oxyfuel pilot plant in Schwarze Pumpe
US7712306B2 (en) Dynamic control of selective non-catalytic reduction system for semi-batch-fed stoker-based municipal solid waste combustion
CN105920997B (en) A kind of coal-burning boiler denitrating system that burnout degree is coupled with SNCR and method
ES2517601T3 (en) Adaptive control system for reagent distribution control in SCR reactors
US10760789B2 (en) Boiler and a method for NOx emission control from a boiler
CN105457465B (en) A kind of SNCR SCR combine the design method of flue gas denitrification system technique
CN104965021A (en) Performance evaluation device and performance evaluation method of coal-fired flue gas denitration catalyst
CN102179171A (en) Multi-stage themolysis coupled denitration method using front flow field uniformizing device and device thereof
CN102961956B (en) CFD-based industrial boiler selective non-catalytic reduction (SNCR) denitration device
CN106237821A (en) A kind of limekiln denitrating system
ES2788130T3 (en) Process and apparatus for reducing the content of nitrogen oxides
CN202983499U (en) Industry furnace selective non-catalytic reduction (SNCR) denitration device based on computational fluid dynamics (CFD)
WO2012066153A1 (en) System and method for non-catalytic reduction of nitrogen oxides
Huang et al. Aerosol formation by heterogeneous reactions in ammonia-based WFGD systems
US20130252184A1 (en) Boiler combustion system and operation method therefor
ES2400594B1 (en) BOILER EQUIPPED WITH INTEGRATED NITROGEN OXIDE CATALYTIC OPENING SYSTEM
Groff et al. Industrial boiler retrofit for NOx control: combined selective noncatalytic reduction and selective catalytic reduction
CN205783064U (en) Novel green Intelligent heating stove
ES2750789T3 (en) Procedure and device to reduce NOx emissions from a rotary tube furnace
EP3431167A1 (en) Method and installation of selective, non-catalytic reduction of nitrogen oxides in grate boilers
US20110117505A1 (en) Tertiary air addition to solid waste-fired furnaces for nox control
Jiang et al. Operation condition evaluation and risk prediction of air preheater in coal-fired power plant
CN109224800A (en) A kind of method and apparatus of solid gas conversion denitration in the stove and its use equipment
KR100955537B1 (en) Reburning System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809234

Country of ref document: EP

Kind code of ref document: A1