WO2012066035A1 - An electrical axle - Google Patents
An electrical axle Download PDFInfo
- Publication number
- WO2012066035A1 WO2012066035A1 PCT/EP2011/070253 EP2011070253W WO2012066035A1 WO 2012066035 A1 WO2012066035 A1 WO 2012066035A1 EP 2011070253 W EP2011070253 W EP 2011070253W WO 2012066035 A1 WO2012066035 A1 WO 2012066035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrical
- axle
- motor
- gear
- planetary gears
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/02—Arrangement or mounting of electrical propulsion units comprising more than one electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/12—Conjoint control of vehicle sub-units of different type or different function including control of differentials
- B60W10/16—Axle differentials, e.g. for dividing torque between left and right wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/34—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
- B60K17/348—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
- B60K17/35—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
- B60K17/352—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches manually operated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/52—Driving a plurality of drive axles, e.g. four-wheel drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2036—Electric differentials, e.g. for supporting steering vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/34—Toothed gearings for conveying rotary motion with gears having orbital motion involving gears essentially having intermeshing elements other than involute or cycloidal teeth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H48/00—Differential gearings
- F16H48/36—Differential gearings characterised by intentionally generating speed difference between outputs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K2001/001—Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/445—Differential gearing distribution type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/42—Electrical machine applications with use of more than one motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/46—Wheel motors, i.e. motor connected to only one wheel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/28—Four wheel or all wheel drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H48/00—Differential gearings
- F16H48/36—Differential gearings characterised by intentionally generating speed difference between outputs
- F16H2048/364—Differential gearings characterised by intentionally generating speed difference between outputs using electric or hydraulic motors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to an electrical axle of a four wheeled vehicle.
- the present invention relates to an electrical axle having a torque vectoring unit for providing a torque difference between a right wheel and a left wheel of said axle.
- Torque vectoring units for road vehicles are thus known which purpose is to cause the drive torque distribution of a vehicle to change.
- Such torque vectoring devices are arranged to shuffle drive torque laterally on a driven axle, or longitudinally between a driven axle and a non-driven axle.
- a drive wheel with a positive torque in relation to the other drive wheel on the driving axle.
- a positive torque may be obtained in a way known per se by a mechanical gear device for gearing-up or increasing the rotational speed of the drive shaft for the wheel in question by for example 10%.
- torque vectoring devices are arranged at either side of the central differential for the two drive shafts.
- WO2010101506 includes an electrical motor coupled to a driven axle of a road vehicle such that, upon activation, it provides a positive torque to one wheel and an opposite torque to another wheel, each wheels being disposed on the same axle.
- the torque vectoring unit is arranged on a driven axle of the vehicle.
- the propulsion force may be provided by means of an electrical motor, such that the torque vectoring unit is operating on an electrical axle of the vehicle.
- Such electrical axles are highly attractive for providing four-wheeled drive in e.g. a hybrid car, i.e. a vehicle being equipped with a first transmission for providing propulsion torque to the front axle, and a second transmission for providing propulsion torque to the rear axle.
- the present invention preferably seeks to mitigate, alleviate or eliminate one or more of the above-identified deficiencies in the art and disadvantages singly or in any combination and solves at least the above-mentioned problems by providing a device according to the appended claims.
- a further object of the present invention is to provide an electrical axle with a torque vectoring unit which provides a higher gear ratio.
- an object of the present invention is to provide an electrical axle with a torque vectoring device which has a significantly reduced size.
- an electrical axle for a four wheeled road vehicle comprises an electrical propulsion motor arranged coaxially on said axle, a first planetary gear connected to said electrical propulsion motor and to a first side of said axle, and a second planetary gear connected to said electrical propulsion motor and to a second side of said axle, said first and second planetary gears is forming a differential mechanism, and a torque vectoring unit comprising an electrical motor arranged coaxially on said axle for providing a change in torque distribution between said first side and said second side of said axle, wherein said electrical motor of said torque vectoring unit is connected to the first and second planetary gears.
- a four wheeled road vehicle comprising an electrical axle according to the first aspect.
- FIG. 1 is a schematic view of a vehicle according to an embodiment
- Fig. 2 is a schematic view of a vehicle according to another embodiment
- Fig. 3 is a schematic view of a vehicle according to a further embodiment
- Fig. 4 is a schematic view of a vehicle according to a yet further embodiment
- Fig. 5 is a schematic view of a vehicle according to another embodiment
- Fig. 6 is a schematic view of a torque vectoring device according to an embodiment
- Fig. 7 is a cross sectional view of an electrical axle of a vehicle including a torque vectoring device according to an embodiment
- Fig. 8 is a cross sectional view of an electrical axle of a vehicle including a torque vectoring device according to another embodiment
- Fig. 9 is an isometric view of the gear change device shown in Fig. 8.
- Fig. 10 is a cross sectional view of a torque vectoring device according to a further embodiment.
- Fig. 11 is an isometric view of the gear change device shown in Fig. 10.
- Figs. 1 to 6 Examples of drive line configurations of a vehicle are shown in Figs. 1 to 6.
- the vehicle 10 has a front axle 12 being connected to a rear axle 14, and a torque vectoring device 16.
- Fig. 1 the front axle 12 is driven by means of a transmission 18, and the rear axle 14 is driven by means of an electrical motor 20.
- the torque vectoring device 16 is arranged at the electrical rear axle 14.
- Fig. 2 a similar configuration is shown but here the rear axle is driven by means of a transmission 18, and the front axle is driven by means of an electrical motor 20. Consequently, the torque vectoring device 16 is arranged at the electrical front axle.
- Figs. 3 and 4 show configurations where the front axle 12 or the rear axle 14 is driven by an electrical motor 20, wherein the torque vectoring device 16 is arranged at the driven electrical axle 12, 14.
- Fig. 5 shows a configuration in which the front axle 12 and the rear axle 14 are driven by electrical motors 20. Torque vectoring devices 16 are arranged at each electrical axle 12, 14.
- FIG. 6 a basic setup of an electrical axle 100 including a torque vectoring device 110 is shown.
- a driving axle 100 of a vehicle is driven by means of a propulsion unit 120 and has two wheels 102a, 102b connected to opposite ends of the axle 100.
- the propulsion unit 120 provided as an electrical motor, is coupled to a differential mechanism 130 for allowing the wheels 102a, 102b to rotate at different velocities.
- An electrical motor 140 is connected to the differential mechanism 130, for providing a torque difference to opposite ends of the axle 100.
- a control means 150 is further connected to the electrical motor 140, and configured to calculate and transmit control signals to the electrical motor 140 of the torque vectoring device 110.
- both wheels 102a, 102b When the vehicle is travelling on a straight course, both wheels 102a, 102b will rotate at the same speed. In this situation, the electrical motor 140 will stand still.
- the torque vectoring device 110 may be used to enhance the traction potential of the driving axle 100.
- the control means 150 sends a signal to the electrical motor 140 of the torque vectoring device 110 that will activate and apply a torque. Upon this, an increase of torque will be provided to one of the ends of the axle 100, and a corresponding torque decrease will be provided to the opposite end of the axle 100.
- the electrical axle 200 which includes an electrical propulsion motor 210, a differential mechanism 220, and a torque vectoring device 240, is configured to be connected to a left wheel shaft and a right wheel shaft (not shown).
- the electrical propulsion motor 210 is arranged coaxially on the axle 200, and is connected on each lateral side to a differential mechanism 220 consisting of two coaxially aligned planetary gears 222a, 222b, of which the electrical propulsion motor 210 is driving the sun gears 224a, 224b.
- the left and right wheel shafts are connected to the planetary carriers 226a, 226b of the respective planetary gears 222a, 222b.
- the ring gear 228a, 228b of the respective planetary gear 222a, 222b has an outer surface which is connectable, e.g. by means of teeth, to the torque vectoring device 240.
- the torque vectoring device 240 includes an electrical motor 242 arranged coaxially on the axle 200, such that the rotational axis of the motor 242 is aligned with the rotational axis of the electrical propulsion motor 210.
- the electrical motor 242 is further arranged distally of the differential mechanism 220, i.e. between one of the planetary gears 220a, 200b and the adjacent wheel shaft.
- the electrical motor 242 of the torque vectoring device 240 is connected directly to the ring wheel 228b of the second planetary gear 222b, and connected to the ring wheel 228a of the first planetary gear 222a via a rotatable balancing shaft 244 extending parallel with the axle 200, and provided with gears for engagement with the ring gear 228a of the planetary gear 222a.
- the gears of the balancing shaft 244 are configured for transmitting torque to the planetary gear 222a upon rotation of the balancing shaft 244, wherein the torque transmitted to the planetary gear 222a has an opposite direction compared to the torque transmitted to the other planetary gear 222b directly.
- the ring wheels 228a, 228b are coupled to the electrical motor via a cycloidal drive 250 for creating a gear reduction between the electrical motor 242 and the differential mechanism 220.
- the cycloidal drive 250 includes an eccentric input shaft 252 which is directly driven by the electrical motor 242.
- a cycloidal disc is directly connected to the input shaft 252 and free to rotate within a stationary ring wheel. Upon rotation, the disc is driving an output shaft including a disc with a plurality of rollers, which rollers are allowed to rotate within corresponding recesses in the disc.
- the gear reduction may be in the range of a factor 30 to 50, although other factors may also be applicable.
- Typical gear reduction requirements may be dependent on the desire for a low performance motor, which thus requires a high reduction, as well as on a desired low reduction in order to reduce the maximum speed of the motor.
- the output shaft of the cycloidal drive is the ring wheel, while the roller disc is held stationary.
- the electrical axle 300 includes an electrical propulsion motor 310 and a differential mechanism 320 identical with what has previously been described with reference to Fig. 7.
- the torque vectoring device 340 differs from the previous embodiment in the choice of reduction gear 350, which in this case is a differential planetary gear.
- Such differential planetary gear is very compact and provides a greater gear reduction between the electrical motor 342 and the differential mechanism 320 than a regular planetary gear.
- the differential planetary gear 350 which is also shown in Fig. 9, includes planets 352 having two different gears of which one is connected to the ring wheels of the planetary gears 322a, 322b of the differential mechanism, and the other is connected to stationary ring wheel 354.
- the second gear of the planets 352 is also connected to a sun wheel 356 which in turn is connected to the electrical motor 342.
- the planet carrier 358 is thus not connected to any of the axles.
- a third embodiment of an electrical axle 400 is shown.
- the electrical axle 400 includes an electrical propulsion motor 410 and a differential mechanism 420 identical with what has previously been described with reference to Fig. 7 and 9.
- the torque vectoring device 440 differs from the previous embodiment in the choice of reduction gear 450, which in this case is a double cycloidal drive.
- Such double cycloidal drive is very compact and provides a greater gear reduction between the electrical motor 442 and the differential mechanism 420 than a regular planetary gear.
- the use of a double cycloidal drive provides a balancing effect of radial reaction forces and balancing of weight, which means that the reduction gear allows a higher rotational speed.
- a double cycloidal drive may e.g. operate up to 16.500 rpm, which is far more than a regular cycloidal drive as described above with reference to Fig. 7.
- the double cycloidal drive which is also shown in Fig. 11, comprises two discs 452, 454 which are arranged eccentric on the rotational shaft of the electrical motor 442.
- a plurality of rollers 456 are provided on a roller support 458 which is locked with respect to rotational movement.
- the eccentric movement of the discs 452, 454 provides a stepwise movement relative the ring wheel 459 of the cycloidal drive 450, whereby a gear reduction is achieved.
- the double cycloidal drive 450 is replaced by a multi- cycloidal drive comprising three or more discs which are arranged on the rotational shaft of the electrical motor.
- the gear reduction 250, 350, 450 is omitted, such that the electrical motor of the torque vectoring unit is connected directly the ring wheel of the second planetary gear of the differential mechanism, and to the ring wheel of the second planetary gear of the differential mechanism via the balancing shaft.
- Such embodiment is advantageous in that less components are used, although it requires extreme performance of the electrical motor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Retarders (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20137013081A KR20130129374A (en) | 2010-11-16 | 2011-11-16 | An electrical axle |
CN201180055339.6A CN103210243B (en) | 2010-11-16 | 2011-11-16 | Electronic axle |
JP2013538239A JP5937607B2 (en) | 2010-11-16 | 2011-11-16 | Electric axle |
EP20110793363 EP2641001B1 (en) | 2010-11-16 | 2011-11-16 | An electrical axle |
US13/885,331 US9120479B2 (en) | 2010-11-16 | 2011-11-16 | Electrical axle |
RU2013122950/11A RU2592198C2 (en) | 2010-11-16 | 2011-11-16 | Electric bridge |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1051198 | 2010-11-16 | ||
SE1051198-8 | 2010-11-16 | ||
SE1051343-0 | 2010-12-17 | ||
SE1051343 | 2010-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012066035A1 true WO2012066035A1 (en) | 2012-05-24 |
Family
ID=45217508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/070253 WO2012066035A1 (en) | 2010-11-16 | 2011-11-16 | An electrical axle |
Country Status (7)
Country | Link |
---|---|
US (1) | US9120479B2 (en) |
EP (1) | EP2641001B1 (en) |
JP (1) | JP5937607B2 (en) |
KR (1) | KR20130129374A (en) |
CN (1) | CN103210243B (en) |
RU (1) | RU2592198C2 (en) |
WO (1) | WO2012066035A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013135720A1 (en) * | 2012-03-15 | 2013-09-19 | Borgwarner Torqtransfer Systems Ab | An electric drive axle arrangement for a road vehicle |
WO2013160014A1 (en) * | 2012-04-27 | 2013-10-31 | Borgwarner Torqtransfer Systems Ab | An electrical axle |
WO2016156566A1 (en) | 2015-04-02 | 2016-10-06 | Borgwarner Torqtransfer Systems Ab | An electrical axle |
WO2017178596A1 (en) | 2016-04-15 | 2017-10-19 | Borgwarner Sweden Ab | A vehicle driveline system |
WO2017178595A2 (en) | 2016-04-15 | 2017-10-19 | Borgwarner Sweden Ab | A vehicle driveline system |
WO2018087375A2 (en) | 2016-11-14 | 2018-05-17 | Borgwarner Sweden Ab | Vehicle driveline system |
EP3339236A1 (en) * | 2016-12-21 | 2018-06-27 | Otis Elevator Company | Self-braking gear and people conveyor comprising a self-braking gear |
US10023406B2 (en) | 2013-08-13 | 2018-07-17 | Actuant Corporation | Cycloidal wheel drive |
US10030755B2 (en) | 2014-05-06 | 2018-07-24 | Borgwarner Torqtransfer Systems Ab | Torque vectoring device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015008325A1 (en) * | 2013-07-16 | 2015-01-22 | 株式会社アルケミカ | Driving gear device |
CN105337473A (en) * | 2015-09-14 | 2016-02-17 | 袁俊允 | Multistage electric shaft |
CN106224471A (en) * | 2016-08-05 | 2016-12-14 | 宋宝玲 | Planet is distributed to dislocation or to coaxial many motor gear box |
DE102017212546B4 (en) | 2017-07-21 | 2019-08-08 | Ford Global Technologies, Llc | axle assembly |
KR102417340B1 (en) | 2017-12-11 | 2022-07-05 | 현대자동차 주식회사 | Device for torque vectoring |
US10400876B1 (en) | 2018-02-12 | 2019-09-03 | Borgwarner Inc. | Power transmitting component for a vehicle driveline having a differential inside a compound gearset |
TWI673945B (en) * | 2018-05-09 | 2019-10-01 | 沃爾奇動力機電股份有限公司 | Rotor cooling appratus of an electric vehicle powertrain comprising integrated motor, reduction gearbox and differential and rotor cooling method of the same |
EP3879134B1 (en) | 2020-03-13 | 2023-11-15 | Volvo Car Corporation | Transmission arrangement with torque vectoring |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5067932A (en) * | 1990-11-28 | 1991-11-26 | Edwards Jonathan R | Dual-input infinite-speed integral motor and transmission device |
US5851162A (en) * | 1996-11-19 | 1998-12-22 | Tether; David | System and apparatus for a multiple input and dual output electric differential motor transmission device |
US20070093342A1 (en) * | 2005-10-26 | 2007-04-26 | Solomon Technologies, Inc. | Multiple input, dual output electric differential motor transmission system |
WO2007097086A1 (en) * | 2006-02-22 | 2007-08-30 | Ntn Corporation | Electric car drive unit |
DE102007023462A1 (en) * | 2007-05-19 | 2008-11-27 | Zf Friedrichshafen Ag | Superposition gear for distributing a drive torque to at least two output shafts |
WO2010101506A1 (en) | 2009-03-05 | 2010-09-10 | Haldex Traction Ab | A device for torque vectoring |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07164908A (en) * | 1993-12-16 | 1995-06-27 | Mazda Motor Corp | Drive device for vehicle |
US5509491A (en) * | 1994-04-18 | 1996-04-23 | General Motors Corporation | Dual-motor electric drive system for vehicles |
US5575730A (en) * | 1994-05-20 | 1996-11-19 | Edwards; Jonathan | Multiple-input infinite-speed integral motor and transmission device |
US6491599B1 (en) * | 2000-09-15 | 2002-12-10 | General Motors Corporation | Two-mode, compound-split, electro-mechanical, vehicular transmission particulary adapted for track-laying vehicles |
GB0109336D0 (en) * | 2001-04-17 | 2001-05-30 | Secr Defence | Drive configuration for a skid steered vehicle |
DE10319684A1 (en) * | 2003-05-02 | 2004-12-23 | Zf Friedrichshafen Ag | Distributor differential for motor vehicles |
US7344469B2 (en) * | 2005-06-28 | 2008-03-18 | Magna Powertrain Usa, Inc. | Torque distributing drive mechanism with ravigneaux gearset |
JP5374215B2 (en) * | 2008-07-02 | 2013-12-25 | Ntn株式会社 | Cycloid reducer, in-wheel motor drive device, and vehicle motor drive device |
GB2466975B (en) * | 2009-01-16 | 2013-06-19 | Gm Global Tech Operations Inc | Torque distributing drive mechanism for motorized vehicles |
JP2010190286A (en) * | 2009-02-17 | 2010-09-02 | Honda Motor Co Ltd | Driving force distributing mechanism for differential gear |
JP2010190287A (en) * | 2009-02-17 | 2010-09-02 | Honda Motor Co Ltd | Driving force distributing mechanism for differential gear |
-
2011
- 2011-11-16 EP EP20110793363 patent/EP2641001B1/en active Active
- 2011-11-16 JP JP2013538239A patent/JP5937607B2/en not_active Expired - Fee Related
- 2011-11-16 KR KR20137013081A patent/KR20130129374A/en active IP Right Grant
- 2011-11-16 CN CN201180055339.6A patent/CN103210243B/en active Active
- 2011-11-16 RU RU2013122950/11A patent/RU2592198C2/en not_active IP Right Cessation
- 2011-11-16 US US13/885,331 patent/US9120479B2/en active Active
- 2011-11-16 WO PCT/EP2011/070253 patent/WO2012066035A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5067932A (en) * | 1990-11-28 | 1991-11-26 | Edwards Jonathan R | Dual-input infinite-speed integral motor and transmission device |
US5851162A (en) * | 1996-11-19 | 1998-12-22 | Tether; David | System and apparatus for a multiple input and dual output electric differential motor transmission device |
US20070093342A1 (en) * | 2005-10-26 | 2007-04-26 | Solomon Technologies, Inc. | Multiple input, dual output electric differential motor transmission system |
WO2007097086A1 (en) * | 2006-02-22 | 2007-08-30 | Ntn Corporation | Electric car drive unit |
DE102007023462A1 (en) * | 2007-05-19 | 2008-11-27 | Zf Friedrichshafen Ag | Superposition gear for distributing a drive torque to at least two output shafts |
WO2010101506A1 (en) | 2009-03-05 | 2010-09-10 | Haldex Traction Ab | A device for torque vectoring |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104205615A (en) * | 2012-03-15 | 2014-12-10 | 博格华纳扭矩输出系统公司 | An electric drive axle arrangement for a road vehicle |
WO2013135720A1 (en) * | 2012-03-15 | 2013-09-19 | Borgwarner Torqtransfer Systems Ab | An electric drive axle arrangement for a road vehicle |
US9744850B2 (en) | 2012-03-15 | 2017-08-29 | Borgwarner Torqtransfer Systems Ab | Electric drive axle arrangement for a road vehicle |
WO2013160014A1 (en) * | 2012-04-27 | 2013-10-31 | Borgwarner Torqtransfer Systems Ab | An electrical axle |
US10023406B2 (en) | 2013-08-13 | 2018-07-17 | Actuant Corporation | Cycloidal wheel drive |
US10030755B2 (en) | 2014-05-06 | 2018-07-24 | Borgwarner Torqtransfer Systems Ab | Torque vectoring device |
WO2016156566A1 (en) | 2015-04-02 | 2016-10-06 | Borgwarner Torqtransfer Systems Ab | An electrical axle |
US10465779B2 (en) | 2015-04-02 | 2019-11-05 | Borgwarner Sweden Ab | Electrical axle |
WO2017178595A2 (en) | 2016-04-15 | 2017-10-19 | Borgwarner Sweden Ab | A vehicle driveline system |
WO2017178596A1 (en) | 2016-04-15 | 2017-10-19 | Borgwarner Sweden Ab | A vehicle driveline system |
US11034232B2 (en) | 2016-04-15 | 2021-06-15 | Borgwarner Sweden Ab | Vehicle driveline system |
WO2018087375A2 (en) | 2016-11-14 | 2018-05-17 | Borgwarner Sweden Ab | Vehicle driveline system |
EP3339236A1 (en) * | 2016-12-21 | 2018-06-27 | Otis Elevator Company | Self-braking gear and people conveyor comprising a self-braking gear |
US10094437B2 (en) | 2016-12-21 | 2018-10-09 | Otis Elevator Company | Self-braking gear and people conveyor comprising a self-braking gear |
Also Published As
Publication number | Publication date |
---|---|
KR20130129374A (en) | 2013-11-28 |
EP2641001A1 (en) | 2013-09-25 |
CN103210243B (en) | 2016-08-17 |
CN103210243A (en) | 2013-07-17 |
RU2013122950A (en) | 2014-12-27 |
JP5937607B2 (en) | 2016-06-22 |
US20140148307A1 (en) | 2014-05-29 |
EP2641001B1 (en) | 2015-03-25 |
US9120479B2 (en) | 2015-09-01 |
RU2592198C2 (en) | 2016-07-20 |
JP2014503758A (en) | 2014-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2641001B1 (en) | An electrical axle | |
AU2001269342B2 (en) | Vehicle transmission systems | |
CN1966334B (en) | Differential torque generator | |
US8272989B2 (en) | Variable ratio transmission for distributing a drive torque to at least two output shafts | |
US8808132B2 (en) | Differential with integrated torque vectoring | |
AU2001269342A1 (en) | Vehicle transmission systems | |
MXPA04007423A (en) | Continuously variable transmission system. | |
US9353847B2 (en) | Torque vectoring device | |
US20070213162A1 (en) | Drive force distribution apparatus | |
WO2011127229A2 (en) | Differential | |
CN113103826B (en) | Torque directional distribution electric drive axle adopting double-planet-wheel cylindrical gear differential mechanism | |
EP1494886B1 (en) | Vehicle transmission system | |
JP2017206074A (en) | Two-motor vehicle drive device for four-wheel drive vehicle | |
JP4068697B2 (en) | Driving axle | |
CN115704462A (en) | Transmission for a vehicle and drive train having such a transmission | |
EP3473471A1 (en) | Control method of power train system | |
WO2018083458A1 (en) | Transmissions | |
CN101780832B (en) | Speed-reducing and rear axle integrated assembly of electric vehicle | |
CN104948705A (en) | High-stability dual-conical-tooth differential gear | |
CN104976312A (en) | Double-end-face gear transmission mechanism with high stability | |
US20020035005A1 (en) | Drive power transmission apparatus | |
JP2003025862A (en) | 4-wheel-drive system | |
CN118434580A (en) | Drive device for a motor vehicle, in particular a passenger vehicle | |
JPH11315906A (en) | Differential device | |
CN104976313A (en) | Dual-bevel-gear transmission mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11793363 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013538239 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137013081 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011793363 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13885331 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2013122950 Country of ref document: RU Kind code of ref document: A |