WO2012063690A1 - Organic electroluminescent element, illumination device, and display device - Google Patents

Organic electroluminescent element, illumination device, and display device Download PDF

Info

Publication number
WO2012063690A1
WO2012063690A1 PCT/JP2011/075246 JP2011075246W WO2012063690A1 WO 2012063690 A1 WO2012063690 A1 WO 2012063690A1 JP 2011075246 W JP2011075246 W JP 2011075246W WO 2012063690 A1 WO2012063690 A1 WO 2012063690A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
organic
light
layer
Prior art date
Application number
PCT/JP2011/075246
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 ▲高▼
池水 大
修 石毛
北 弘志
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012542879A priority Critical patent/JP5708656B2/en
Publication of WO2012063690A1 publication Critical patent/WO2012063690A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/20Illuminated signs; Luminous advertising with luminescent surfaces or parts
    • G09F13/22Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to an organic electroluminescence element, a lighting device, and a display device.
  • An organic electroluminescence element (hereinafter also referred to as an organic EL element) is an all-solid-state element composed of an organic material film having a thickness of only about 0.1 ⁇ m between electrodes and emits light of 2V to 20V. Since it can be achieved at a relatively low voltage, it is a technology expected as a next-generation flat display and illumination.
  • the object of the present invention is to have a high resistance to external factors such as moisture and oxygen, which have been extremely concerned about organic EL performance, and to dry at low temperature in a short time compared to conventional organic EL elements.
  • an organic electroluminescent element material that makes it possible to provide a long-life organic electroluminescent element.
  • an organic electroluminescence device having at least one organic compound layer sandwiched between an anode and a cathode, at least one layer of the organic compound layer contains nanoparticles, and the nanoparticles include a light-emitting dopant compound
  • An organic electroluminescence device comprising a phosphorescent host compound having a 0-0 band of phosphorescence of 460 nm or less.
  • the light-emitting dopant compound is a nanoparticle obtained by hydrolyzing a compound represented by the following general formula (1) and then polymerizing the compound.
  • P and Q each represent a carbon atom or a nitrogen atom
  • A1 is necessary for forming an aromatic hydrocarbon ring or an aromatic heterocycle together with PC (C represents a carbon atom).
  • A2 represents an atomic group necessary for forming an aromatic heterocyclic ring together with QN (N represents a nitrogen atom).
  • P1-L1-P2 represents a bidentate ligand, and P1 and P2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L1 represents an atomic group necessary for forming a bidentate ligand together with P1 and P2.
  • r represents an integer of 1 to 3
  • s represents an integer of 0 to 2
  • r + s is 2 or 3.
  • M 1 represents a group 8-10 transition metal element in the periodic table.
  • X 1 and X 2 each independently represent a residue having a polymerizable functional group that is hydrolyzed and then may be the same or different.
  • a and b represent 0 or an integer of 1 or more, but a and b are not 0 at the same time.
  • Item 1 or Item 2 is characterized in that the luminescent host compound is a nanoparticle obtained by hydrolyzing a host compound precursor represented by the following general formula (2) and then polymerizing the precursor. The organic electroluminescent element of description.
  • B 1 ⁇ B 8 each represents a CR 4 or N atoms .
  • R 1 ⁇ R 4 represents a hydrogen atom or a substituent, and R 2 and R 3 , and adjacent R 4 may be bonded to each other to form a ring, and a plurality of positions among B 1 to B 8 are CR 4
  • each R 4 may be the same or different, J represents a divalent linking group, R represents an alkyl group, and Y2 represents a simple bond or a divalent linking group.
  • Y3 and Y4 each represent a group derived from a 5-membered or 6-membered aromatic ring, and at least one represents a group derived from an aromatic heterocycle containing a nitrogen atom as a ring-constituting atom. Represents an integer of 4.) 4).
  • the organic electroluminescence device according to any one of items 1 to 3, wherein:
  • An illuminating device comprising the organic electroluminescent element according to any one of items 1 to 6.
  • a display device comprising the organic electroluminescence element according to any one of items 1 to 6.
  • the organic EL element material of the present invention has higher resistance to external factors such as moisture, oxygen, etc., which have been extremely concerned about organic EL performance, and has a low temperature compared to conventional organic EL element materials.
  • High-performance organic EL elements with high cost performance can be provided by production using a wet process that can be dried in a short time.
  • FIG. 4 is a schematic diagram of a display unit A.
  • FIG. It is a schematic diagram of a pixel. It is a schematic diagram of a passive matrix type full-color display device. It is the schematic of an illuminating device. It is a schematic diagram of an illuminating device.
  • the organic EL device of the present invention by having the configuration according to any one of claims 1 to 8, the external factors such as moisture, oxygen, impurities, etc., which have been extremely concerned about the device performance in the past.
  • high-performance organic EL elements with high cost performance can be provided by production using a wet process that has high resistance and can be dried in a short time at a low temperature.
  • an organic EL device having a high external extraction quantum efficiency and a long light emission lifetime is provided.
  • an organic EL element manufactured by the manufacturing method, a display device including the element, and a lighting device can be provided.
  • the light-emitting dopant material according to the present invention is preferably nanoparticles obtained by hydrolyzing the compound represented by the general formula (1) and then polymerizing the compound.
  • the particle size of the nanoparticles is preferably in the range of 1 nm to 100 nm, more preferably in the range of 10 nm to 50 nm.
  • the particle size of the nanoparticles used in the present invention was measured with a transmission electron microscope (JEM-2010F).
  • the residues other than X 1 and X 2 are phosphorescent dopant residues (specifically, also referred to as residues derived from the phosphorescent dopant).
  • the phosphorescent dopant is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), preferably an element periodic table. And organometallic complexes containing Group 8 to Group 10 metal elements.
  • the phosphorescence quantum yield is defined to be a compound of 0.01 or more at 25 ° C., the preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield will be described in the constituent layer of the organic EL element described later.
  • the aromatic hydrocarbon ring formed with PC represented by A1 includes a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene Ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen And a ring, a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
  • a benzene ring is preferable.
  • these rings may further have a substituent described later.
  • examples of the aromatic heterocycle formed with PC represented by A1 include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, Pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiophene ring, benzothiazole ring, benzoxazole ring, quinoxaline Ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring, diazole ring,
  • A2 is an aromatic heterocycle formed with QN, for example, an oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring , Oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring , A naphthyridine ring, and the like. These rings may further have a substituent described later.
  • Substituent As the substituent that the aromatic hydrocarbon ring or aromatic heterocyclic ring represented by A1 may have, and the substituent that the aromatic heterocyclic ring represented by A2 may have,
  • groups include alkyl groups (eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.)
  • a cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • an alkenyl group eg, vinyl group, allyl group, etc.
  • an alkynyl group eg, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon group aromatic hydrocarbon
  • cyclic group aromatic carbocyclic group, aryl group, etc.
  • phenyl group p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group Group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group, etc.
  • aromatic heterocyclic group eg pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl
  • benzimidazolyl group pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl Group,
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • examples of the bidentate ligand represented by P1-L1-P2 include substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, acetylacetone And picolinic acid.
  • L1 represents an atomic group necessary for forming a bidentate ligand together with P1 and P2, r represents an integer of 1 to 3, and s represents an integer of 0 to 2. However, r + s represents 2 or 3, and in the compound represented by the general formula (1), it is particularly preferable that s is 0.
  • M 1 is a transition metal element of group 8-10 of the periodic table (simply a transition metal both Among them, iridium and platinum are preferable, and iridium is particularly preferable.
  • this invention is not limited to these.
  • the compound represented by the general formula (1) is, for example, Inorg. Chem. It can be synthesized by referring to the method described in Vol. 40, 1704-1711.
  • M 1 represents a metal element, preferably Si, Ti, Ni, W, Zr, Mg, Al, Ge, B, Ga, Sb, Sn, Ta, V, and more. Si, Ti, Ni, Al, Zr and Sn are preferable.
  • X 1 and X 2 represent a functional group that can be hydrolyzed and then polymerized, and preferably an alkoxy group (for example, methoxy group, ethoxy group, isopropyloxy group, propyloxy group, etc.), An amino group etc. are mentioned.
  • a and b represent 0 or an integer of 1 or more, but a and b are not 0 at the same time.
  • a phosphorescent dopant (simply referred to as a phosphorescent dopant) consisting of phosphorescent particles obtained by hydrolyzing and then polymerizing the compound represented by the general formula (1) according to the present invention, It preferably has semiconducting properties, and preferably has a specific resistance value in the range of 1.0 ⁇ 10 2 ⁇ ⁇ cm to 1.0 ⁇ 10 10 ⁇ ⁇ cm.
  • Preferred embodiments of the phosphorescent particles obtained by hydrolyzing and then polymerizing the compound represented by the general formula (1) according to the present invention include the pre-CD-1 to pre-CD- described above. Nanoparticles obtained by hydrolyzing a precursor such as 14 and then polymerizing.
  • Pre-CD-1 which is a synthetic raw material shown in FIG. 1 is used as a precursor, and the precursor is hydrolyzed and then polymerized to produce CD-1, which is an example of a light-emitting dopant according to the present invention. .
  • the phosphorescent particles according to the present invention can be used in any constituent layer of the organic electroluminescence device of the present invention, but it is particularly preferable that the phosphorescent particles are used in the light emitting layer.
  • the constituent layers of the organic electroluminescence element of the present invention will be described later in detail.
  • IMIr-1 was obtained by adding sodium borohydride in ethanol.
  • Step 4 Synthesis of pre-CD-1) IMIr-3 (0.2 mmol, 153 mg) was dissolved in 20 ml of anhydrous methanol, 0.5 ml of trimethoxysilane and platinum / activated carbon (10% Pt) were added, and the mixture was heated to reflux overnight under a nitrogen atmosphere. .
  • Host Compound Precursor Represented by Formula (2) (Luminescent Host Compound Precursor) >>
  • the substituent represented by R 4 of CR 4 is represented by the aromatic hydrocarbon ring and aromatic heterocyclic ring formed together with P—C represented by A1 in the general formula (1). It is synonymous with the substituent which may be.
  • an alkylene group for example, ethylene group, trimethylene group, tetramethylene group, propylene group, ethylethylene group, pentamethylene group, hexamethylene group, 2,2,4-trimethylhexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, cyclohexylene group (for example, 1,6-cyclohexanediyl group, etc.), Cyclopentylene group (for example, 1,5-cyclopentanediyl group and the like), alkenylene group (for example, vinylene group, propenylene group, butenylene group, pentenylene group, 1-methylvinylene group, 1-methylpropenylene group, 2-methylpropenylene group, 1-methylpentenylene group, 3-methyl Pentenylene group, 1-ethylvinylene group, 1-
  • acridine ring benzoquinoline ring, carbazole ring, phenazine ring, phenanthridine ring, phenanthroline ring, carboline ring, cyclazine ring, kindrin ring, tepenidine ring, quinindrin ring, triphenodithia Gin ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (representing any one of carbon atoms constituting carboline ring replaced by nitrogen atom), phenanthroline ring, dibenzofuran Ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, Nzodifuran ring, benzodithiophene ring, naphthodifuran ring, naphthodithiophene ring, anthra
  • a 5-membered or 6-membered aromatic ring used for forming a group derived from a 5-membered or 6-membered aromatic ring represented by Y3 and Y4, respectively includes a benzene ring, oxazole Examples include a ring, a thiophene ring, a furan ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a diazine ring, a triazine ring, an imidazole ring, an isoxazole ring, a pyrazole ring, and a triazole ring.
  • At least one of the groups derived from a 5-membered or 6-membered aromatic ring represented by Y3 and Y4 respectively represents a group derived from an aromatic heterocycle containing a nitrogen atom as a ring-constituting atom
  • an aromatic heterocycle containing a nitrogen atom as the ring constituent atom an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a diazine ring, a triazine ring, an imidazole ring, an isoxazole ring, a pyrazole ring, Examples include a triazole ring.
  • Y4 as substituent, of the X 1 and X 2 as defined is hydrolysed, followed in some cases the substituents having a polymerizable functional group. At least one of Y1 and Y4 is a substituent having a functional group that can be hydrolyzed and then polymerized.
  • the divalent linking group represented by J has the same meaning as Y2, and in the general formula (2), examples of the alkyl group represented by R include a methyl group and an ethyl group.
  • examples of the alkyl group represented by R include a methyl group and an ethyl group.
  • a method for measuring the 0-0 band of phosphorescence in the present invention will be described.
  • a method for measuring a phosphorescence spectrum will be described.
  • phosphorescence Since phosphorescence has a longer emission lifetime than fluorescence, it can be considered that light remaining after 100 ms is almost phosphorescence. Note that for compounds with a phosphorescence lifetime shorter than 100 ms, measurement may be performed with a shorter delay time. However, phosphorescence and fluorescence cannot be separated if the delay time is shortened so that it cannot be distinguished from fluorescence. Therefore, it is necessary to select a delay time that can be separated.
  • any solvent that can dissolve the compound may be used (substantially, the above-described measuring method has no problem because the solvent effect of the phosphorescence wavelength is negligible).
  • the 0-0 band is determined.
  • the emission maximum wavelength appearing on the shortest wavelength side in the phosphorescence spectrum chart obtained by the above measurement method is defined as the 0-0 band. . Since the phosphorescence spectrum usually has a low intensity, when it is enlarged, it may be difficult to distinguish between noise and peak.
  • the emission spectrum immediately after the excitation light irradiation (for convenience, this is referred to as a steady light spectrum) is expanded, and the emission spectrum 100 ms after the excitation light irradiation (for convenience, this is referred to as a phosphorescence spectrum) is superimposed. It can be determined by reading the peak wavelength from the stationary light spectrum portion derived from the spectrum.
  • a thin film made of a desired electrode material for example, an anode material, is formed on a suitable substrate so as to have a thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm, and an anode is manufactured.
  • a thin film containing organic compounds such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are element materials, is formed thereon.
  • a method for forming each of these layers there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method), etc., but it is easy to obtain a homogeneous film and it is difficult to generate pinholes.
  • a method of forming and forming a film by a wet method (also referred to as a wet process) is preferable.
  • the wet method include spin coating, casting, die coating, blade coating, roll coating, and inkjet.
  • Printing method, spray coating method, curtain coating method, etc. but it is possible to form precise thin films and roll-to-roll such as die coating method, roll coating method, ink jet method, spray coating method, etc. from the viewpoint of high productivity.
  • -A method with high roll system suitability is preferred.
  • Different film forming methods may be applied for each layer.
  • a thin film made of a cathode material is formed thereon so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a desired organic EL device can be obtained by providing a cathode. .
  • the cathode, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be produced in the order of the reverse order.
  • a DC voltage When a DC voltage is applied to the multicolor display device obtained in this way, light emission can be observed by applying a voltage of about 2V to 40V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the production of the organic EL device of the present invention is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
  • the phosphorescent particles according to the present invention can be used in any constituent layer of the organic EL device of the present invention, but it is particularly preferable that the phosphorescent particles are used in the light emitting layer.
  • Organic compound layer (also called organic layer) >> The organic compound layer according to the present invention will be described.
  • the organic EL device of the present invention preferably has a plurality of organic compound layers as a constituent layer, and examples of the organic compound layer include a hole transport layer, a light emitting layer, and a hole blocking layer in the above-described layer configuration.
  • the organic compound layer according to the present invention an organic compound contained in a constituent layer of the organic EL element, such as a hole injection layer or an electron injection layer, is included. Defined.
  • the organic compound layer includes a layer containing “organic EL element material that can be used for a constituent layer of an organic EL element” or the like.
  • the blue light emitting layer preferably has an emission maximum wavelength of 430 nm to 480 nm
  • the green light emitting layer has an emission maximum wavelength of 510 nm to 550 nm
  • the red light emitting layer has an emission maximum wavelength of 600 nm to 640 nm.
  • a monochromatic light emitting layer in the range is preferable, and a display device using these is preferable.
  • a white light emitting layer may be formed by laminating at least three of these light emitting layers. Further, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • the organic EL element of the present invention is preferably a white light emitting layer, and is preferably a lighting device using these.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
  • the total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 ⁇ m, more preferably in the range of 2 nm to 200 nm, and particularly preferably in the range of 10 nm to 20 nm.
  • a light-emitting dopant or a host compound which will be described later, is formed by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink-jet method. it can.
  • the light emitting layer of the organic EL device of the present invention preferably contains at least one type of phosphorescent nanoparticle. If necessary, a well-known light-emitting dopant (phosphorescent dopant (also referred to as phosphorescent dopant) or fluorescent dopant), and further, a hole transport material or an electron transport material to be described later may be mixed. It may be used.
  • phosphorescent dopant also referred to as phosphorescent dopant
  • fluorescent dopant a well-known light-emitting dopant
  • hole transport material or an electron transport material to be described later may be mixed. It may be used.
  • Luminescent dopant The light emitting dopant according to the present invention will be described.
  • the light emitting material used in the organic electroluminescence device of the present invention is preferably nanoparticles obtained by hydrolyzing the compound represented by the general formula (1) and then polymerizing it.
  • the average particle diameter of the nanoparticles is 1 nm to 100 nm, preferably 10 nm to 50 nm. In order to produce uniform nanoparticles having a uniform average particle shape, it is preferable to carry out the hydrolysis and subsequent polymerization reaction under microwave irradiation.
  • a feature of the present invention is that the compound represented by the general formula (1), that is, nanoparticles containing a host molecule by using a host material during the hydrolysis and polymerization of the nanoparticle light-emitting dopant material precursor is used.
  • Hydrolysis and polymerization are carried out in a solvent in which a compound represented by the general formula (1) and a normal host molecule are dissolved, or a precursor of a host compound represented by the general formula (2) and a normal dopant molecule
  • a solvent in which a compound represented by the general formula (1) and a normal host molecule are dissolved, or a precursor of a host compound represented by the general formula (2) and a normal dopant molecule
  • a particle-emitting material can be obtained.
  • nanoparticles prepared by simultaneously hydrolyzing and polymerizing the precursors of the host compounds represented by the general formula (1) and the general formula (2) in that uniform nanoparticles having a constant composition can be prepared. Is preferred.
  • Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes Examples thereof include dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the details of the cathode buffer layer are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • the buffer layer is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 10 nm, depending on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
  • the ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.
  • Gaussian 98 Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.
  • the ionization potential can be obtained as a value obtained by rounding off the second decimal place of a value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.
  • the ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy.
  • a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
  • the structure of the hole transport layer described later can be used as an electron blocking layer as necessary.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
  • NPD 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the
  • polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067 J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • the present invention contains a polymerizable compound represented by the general formula (1) or a polymer compound having a structural unit derived from the polymerizable compound.
  • organic EL element materials are preferably used, and the above materials may be used in combination.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. However, in the present invention, it is preferably produced by a coating method (wet process).
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • a hole transport layer having such a high p property because a device with lower power consumption can be produced.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers. Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. Any material may be used as long as it has a function of transferring electrons to the light-emitting layer, and any material can be selected from conventionally known compounds.
  • Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • thiadiazole derivatives in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as the electron transport material.
  • quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as the electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the film thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport layer having such a high n property because an element with lower power consumption can be produced.
  • anode As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • Electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film
  • the anode may be formed by depositing a thin film of these electrode materials by vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more)
  • a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • a transparent or semi-transparent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent.
  • the transparent support substrate that can be used include glass, quartz, and a transparent resin film.
  • a particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
  • Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987.
  • a high barrier film having a permeability of 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ MPa) or less and a water vapor permeability of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
  • the material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction efficiency at room temperature of light emission of the organic EL element of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • ⁇ Sealing> As a sealing means used for this invention, the method of adhere
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ MPa) or less measured by a method according to JIS K 7126-1987, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured in (1) is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • heat- and chemical-curing types such as epoxy type can be mentioned.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • the method for forming these films is not particularly limited.
  • a polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil
  • a vacuum is also possible.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
  • the sealing is performed by the sealing film, the mechanical strength is not necessarily high. Therefore, it is preferable to provide such a protective film and a protective plate.
  • a material that can be used for this the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said.
  • a method of improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Bragg diffraction such as first-order diffraction and second-order diffraction.
  • light that cannot go out due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (inside a transparent substrate or transparent electrode). I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface.
  • a specific direction for example, the device light emitting surface.
  • a quadrangular pyramid having a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, the base material may be formed with a triangle stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • the electrode In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
  • the display device of the present invention comprises the organic EL element of the present invention.
  • the display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • the method is not limited, but is preferably a vapor deposition method, an inkjet method, a spin coating method, or a printing method.
  • the configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown in the one aspect
  • a DC voltage When a DC voltage is applied to the obtained multicolor display device, light emission can be observed by applying a voltage of about 2V to 40V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, and various light sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc.
  • the present invention is not limited to these examples.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal.
  • the image information is sequentially emitted to scan the image and display the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate.
  • the main members of the display unit A will be described below.
  • the light L emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not) When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
  • a full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the present invention not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
  • FIG. 4 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the lighting device of the present invention has the said organic EL element.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • the purpose of use of the organic EL element having such a resonator structure is as follows.
  • the light source of a machine, the light source of an optical communication processing machine, the light source of a photosensor, etc. are mentioned, However It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • the organic EL material of the present invention can be applied as an illumination device to an organic EL element that emits substantially white light.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and light from the light emitting material as excitation light. Any of those combined with a dye material that emits light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
  • an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved.
  • the elements themselves are luminescent white.
  • luminescent material used for a light emitting layer For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
  • CF color filter
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate, and an epoxy-based photocurable adhesive (LUX TRACK manufactured by Toagosei Co., Ltd.) is used as a sealing material.
  • LC0629B is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, and an illumination device as shown in FIGS. Can be formed.
  • FIG. 5 shows a schematic diagram of a lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
  • FIG. 6 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • Nanoparticle light emitting materials NP-2 to NP-5 shown in Table 1 below were obtained by the same method.
  • Synthesis Example 2 (Preparation of nanoparticle luminescent material: NP-6) To ethylene glycol dimethyl ether (600 ml) was added tetramethoxysilane (1.0 ml) and pre-CD-7 (0.1 mmol, 155 mg) and pre-CHo-1 (0.4 mmol, 289 mg) followed by 0.1M. / L hydrochloric acid aqueous solution (0.5 ml) was added, and the mixture was stirred at 33 to 36 ° C. for 1 hour. Furthermore, 140 degreeC, 500W, and the microwave for 10 minutes were irradiated by temperature priority control.
  • the obtained suspension was collected by centrifugation, then redispersed in absolute ethanol, centrifuged, and the process of removing the supernatant was repeated three times to obtain 230 mg of nanoparticle luminescent material NP-6 (average particle size) 35 nm).
  • Synthesis Example 3 (Nanoparticle Luminescent Material: NP-7) Pre-CHo-1 (0.4 mmol, 289 mg) and the PD-12 (0.4 mmol, 390 mg) were added to ethylene glycol dimethyl ether (200 ml), followed by 0.1 M / l aqueous hydrochloric acid (0.5 ml). In addition, the mixture was stirred at 33 to 36 ° C. for 1 hour. Furthermore, 140 degreeC, 500W, and the microwave for 10 minutes were irradiated by temperature priority control.
  • the obtained suspension was collected by centrifugation, then redispersed in absolute ethanol, centrifuged, and the process of removing the supernatant was repeated three times to obtain 190 mg of nanoparticle luminescent material NP-7 (average particle size) 40 nm).
  • the obtained suspension was collected by centrifugation, redispersed in absolute ethanol, centrifuged, and the process of removing the supernatant was repeated three times to obtain 190 mg of nanoparticle luminescent material NP-8 (average particle size) 40 nm).
  • Synthesis Example 5 Comparative Nanoparticle: CNP-1) Comparative nanoparticle CNP-1 was synthesized in the same manner as in Synthesis Example 1 except that pre-CHo-1 was not added (average particle size 45 nm).
  • Example 1 Production of Organic EL Element 1-1 >> Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a solution prepared by dissolving 30 mg of OC-9 and 3.0 mg of NP-1 in 3 ml of dichloroethane was formed by spin coating under the condition of 2000 rpm for 30 seconds. It dried at 120 degreeC for 1 hour, and was set as the light emitting layer with a film thickness of 50 nm.
  • the film was dried by heating at 120 ° C. for 1 hour, an electron transport layer having a thickness of 20 nm was provided, this was attached to a vacuum deposition apparatus, and the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa.
  • a cathode was formed by vapor-depositing 1 nm of potassium fluoride as a cathode buffer layer and 110 nm of aluminum as a cathode to produce an organic EL device 1-1.
  • Organic EL elements 1-2 to 1-14 were prepared in exactly the same manner as in the preparation of organic EL element 1-1 except that NP-1 used as the nanoparticle light-emitting material was replaced with the compounds shown in Table 2.
  • the obtained organic EL elements 1-1 to 1-14 and the non-light-emitting surface are covered with a glass case, and sealed with an epoxy-based photo-curing adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.). It was.
  • a spectral radiance meter CS-1000 manufactured by Konica Minolta Sensing was used in the same manner.
  • the results obtained are shown in Table 4 below.
  • the lifetime in the table is the element No.
  • the light emission lifetime under the condition A of 1-11 is shown as a relative value where the lifetime is 100.
  • Example 2 Production of Organic EL Elements 1-1 'to 1-14'>>> Organic EL devices 1-1 ′ to 1-14 ′ were produced in the same manner as in Example 1 except that the drying conditions of the light emitting layer and the electron transport layer were changed from 120 ° C. for 1 hour to 100 ° C. for 30 minutes. .
  • the obtained organic EL elements 1-1 ′ to 1-14 ′ were measured for the sealed emission lifetime under the conditions of the glove box environmental condition A shown in Table 3 of Example 1.
  • Table 5 below shows the ratio of the life of the sample of the environmental condition A in Example 1 to the life of the relative element.
  • Relative element lifetime of element 1-1 (element lifetime of element 1-1 ′ / element lifetime of element 1-1) ⁇ 100
  • the sample of the present invention is not easily affected by the difference in drying conditions, and can be dried at a low temperature in a short time.
  • Example 3 Evaluation of External Extraction Quantum Efficiency Devices 1-1 to 1-14 produced in the same manner as in Example 1 were sealed using the sealing condition C (water concentration 1 ppm, oxygen concentration 5 ppm) shown in Table 3 to obtain external extraction quantum. Efficiency was measured.
  • Table 6 shows the obtained results.
  • the measurement results of the external extraction quantum efficiency and the light emission lifetime were evaluated by relative evaluation with the organic EL element 1-11 as 100.
  • the nanoparticle light-emitting material according to the present invention maintained the external extraction quantum efficiency even in a relatively simple sealing environment.
  • Example 4 ⁇ Production of full-color display device> (Preparation of nanoparticle luminescent material: NP-9, 10) Based on NP-1 shown in Synthesis Example 1, nanoparticle light-emitting materials NP-9 and 10 shown in Table 7 below were prepared.
  • Green light-emitting organic EL device A green light-emitting organic EL device was prepared in the same manner as in Example 1 except that the nanoparticle light-emitting material was changed from NP-1 to NP-9 in accordance with the organic EL device 1-1 produced in Example 1.
  • a green light-emitting organic EL device was prepared in the same manner as in Example 1 except that the nanoparticle light-emitting material was changed from NP-1 to NP-10 in accordance with the organic EL device 1-1 produced in Example 1.
  • the red, green and blue light-emitting organic EL elements are juxtaposed on the same substrate to produce an active matrix type full-color display device having the form shown in FIG. 1, and FIG. 2 shows the display of the produced display device. Only the schematic diagram of part A is shown.
  • a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of juxtaposed pixels 3 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.)
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a lattice shape and are connected to the pixels 3 at the orthogonal positions ( Details are not shown).
  • Example 5 Preparation of white light emitting lighting device ⁇
  • the white light-emitting organic EL device 1-1W was similarly performed except that NP-1 was changed to a mixture of NP-1, NP-9, and NP-10.
  • NP-1 was changed to a mixture of NP-1, NP-9, and NP-10.
  • the obtained organic EL element 1-1W was covered with a glass case on the non-light emitting surface as described above to obtain a lighting device.
  • the illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.

Abstract

By means of using an organic electroluminescent element material that enables drying at a low temperature and in a short time period and that has high tolerance to external factors such as water and oxygen, a long-lasting organic electroluminescent element, illumination device, and display device are provided. The organic electroluminescent element has at least one organic-compound layer sandwiched between a positive electrode and a negative electrode, and is characterized by at least one of the organic-compound layers containing nanoparticles, and by the nanoparticles containing a light-emitting dopant compound and a light-emitting host compound having a 0-0 band of phosphorescence that is at or below 460 nm.

Description

有機エレクトロルミネッセンス素子、照明装置及び表示装置Organic electroluminescence element, lighting device and display device
 本発明は、有機エレクトロルミネッセンス素子、照明装置及び表示装置に関する。 The present invention relates to an organic electroluminescence element, a lighting device, and a display device.
 有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)は、電極と電極の間を厚さわずか0.1μm程度の有機材料の膜で構成する全固体素子であり、かつ、その発光が2V~20V程度の比較的低い電圧で達成できることから、次世代の平面ディスプレイや照明として期待されている技術である。 An organic electroluminescence element (hereinafter also referred to as an organic EL element) is an all-solid-state element composed of an organic material film having a thickness of only about 0.1 μm between electrodes and emits light of 2V to 20V. Since it can be achieved at a relatively low voltage, it is a technology expected as a next-generation flat display and illumination.
 リン光発光を利用した有機EL素子の発見により、以前の蛍光発光を利用するそれに比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成に関する研究開発が世界中で行われて(例えば、特許文献1、非特許文献1~3参照)いる。 The discovery of an organic EL device using phosphorescence emission enables a light emission efficiency of about 4 times in principle compared to the previous method using fluorescence emission. Research and development related to the structure is performed all over the world (for example, see Patent Document 1 and Non-Patent Documents 1 to 3).
 一方で、有機EL素子の製造方法には大別して2つの方法、真空化での蒸着による製膜(ドライプロセス)、溶液の塗布・製膜(ウェットプロセス)が知られており、大面積化や高生産性等の点で優れたウェットプロセスが注目されている。現在主流となっている多層構成の有機EL素子においては、塗布による積層方法や塗布積層可能な材料の開発が求められ、特に実用上の観点からは溶液安定性や製膜性の等の点でまだ不十分であり、更なる改良技術が不可欠である。特に最も重要な役割を担う発光ドーパントの水分や酸素等の影響からの脱却は、プロセス環境の負荷低減と密接な関わりを持つ重要な課題である。最近、ガラスカプセル発光材料(例えば、非特許文献4、5参照)に関する報告はあるが、有機エレクトロルミネッセンス素子における発光ドーパントに関する示唆はなく、課題解決が待たれている。 On the other hand, there are two main methods for producing organic EL elements, known as film formation by vacuum evaporation (dry process) and solution coating / film formation (wet process). An excellent wet process is attracting attention in terms of high productivity. In the organic EL elements having a multi-layer structure which is currently in the mainstream, development of a laminating method by coating and a material that can be laminated by coating is required. Especially from the viewpoint of practical use, in terms of solution stability, film forming property, etc. It is still inadequate and further improvement techniques are essential. In particular, the escape from the influence of moisture, oxygen, etc., of the luminescent dopant, which plays the most important role, is an important issue that is closely related to reducing the load on the process environment. Recently, there have been reports on glass capsule light-emitting materials (see, for example, Non-Patent Documents 4 and 5), but there is no suggestion regarding light-emitting dopants in organic electroluminescent devices, and a problem is awaited.
 また溶液の塗布・製膜(ウェットプロセス)で作製した有機エレクトロルミネッセンス素子では、塗布の際に使用した溶媒が素子中に残留し、素子の性能及び寿命に影響を与えることがある。このため、溶媒を除去するために長時間の乾燥、あるいは高温での乾燥が必要とされるが、これらは長時間乾燥による生産性の低下、あるいは、高温による素子へのダメージ等の課題が存在していた。 Also, in an organic electroluminescence device produced by solution application / film formation (wet process), the solvent used in the application may remain in the device, which may affect the performance and life of the device. For this reason, in order to remove the solvent, it is necessary to dry for a long time or at a high temperature. However, there are problems such as a decrease in productivity due to a long time drying or damage to the device due to a high temperature. Was.
米国特許第6,097,147号明細書US Pat. No. 6,097,147
 本発明の目的は、従来の有機EL素子に比べ、水分、酸素など、これまで有機EL性能に対する懸念が非常に高かった外的要因に対し、高い耐性を有し、低温短時間で乾燥することが可能となる有機エレクトロルミネッセンス素子材料を用いることにより、長寿命の有機エレクトロルミネッセンス素子を提供することにある。 The object of the present invention is to have a high resistance to external factors such as moisture and oxygen, which have been extremely concerned about organic EL performance, and to dry at low temperature in a short time compared to conventional organic EL elements. By using an organic electroluminescent element material that makes it possible to provide a long-life organic electroluminescent element.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.陽極と陰極の間に挟持された少なくとも一層の有機化合物層を有する有機エレクトロルミネッセンス素子において、該有機化合物層の少なくとも1層はナノ粒子を含有し、かつ、該ナノ粒子は、発光ドーパント化合物と、リン光の0-0バンドが460nm以下の発光ホスト化合物とを含有することを特徴とする有機エレクトロルミネッセンス素子。
 2.前記発光ドーパント化合物が、下記一般式(1)で表される化合物を加水分解し、次いで重合して得られたナノ粒子であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
1. In an organic electroluminescence device having at least one organic compound layer sandwiched between an anode and a cathode, at least one layer of the organic compound layer contains nanoparticles, and the nanoparticles include a light-emitting dopant compound, An organic electroluminescence device comprising a phosphorescent host compound having a 0-0 band of phosphorescence of 460 nm or less.
2. 2. The organic electroluminescence device according to item 1, wherein the light-emitting dopant compound is a nanoparticle obtained by hydrolyzing a compound represented by the following general formula (1) and then polymerizing the compound.
Figure JPOXMLDOC01-appb-C000003
 〔式中、P、Qは、各々炭素原子又は窒素原子を表し、A1は、P-C(Cは炭素原子を表す)と共に芳香族炭化水素環又は芳香族複素環を形成するのに必要な原子群を表す。A2は、Q-N(Nは窒素原子を表す)と共に芳香族複素環を形成するのに必要な原子群を表す。P1-L1-P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はP1、P2と共に2座の配位子を形成するのに必要な原子群を表す。rは1~3の整数を表し、sは0~2の整数を表すが、r+sは2又は3である。Mは元素周期表における8族~10族の遷移金属元素を表す。X及びXはそれぞれ独立に加水分解し、次いで重合可能な官能基を有する残基を表し、それぞれ同じであっても異なっていてもよい。a及びbは0又は1以上の整数を表すが、a及びbが同時に0となることはない。〕
 3.前記発光ホスト化合物が、下記一般式(2)で表されるホスト化合物の前駆体を加水分解し、次いで重合して得られたナノ粒子であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000003
[Wherein, P and Q each represent a carbon atom or a nitrogen atom, and A1 is necessary for forming an aromatic hydrocarbon ring or an aromatic heterocycle together with PC (C represents a carbon atom). Represents an atomic group. A2 represents an atomic group necessary for forming an aromatic heterocyclic ring together with QN (N represents a nitrogen atom). P1-L1-P2 represents a bidentate ligand, and P1 and P2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom. L1 represents an atomic group necessary for forming a bidentate ligand together with P1 and P2. r represents an integer of 1 to 3, s represents an integer of 0 to 2, and r + s is 2 or 3. M 1 represents a group 8-10 transition metal element in the periodic table. X 1 and X 2 each independently represent a residue having a polymerizable functional group that is hydrolyzed and then may be the same or different. a and b represent 0 or an integer of 1 or more, but a and b are not 0 at the same time. ]
3. Item 1 or Item 2 is characterized in that the luminescent host compound is a nanoparticle obtained by hydrolyzing a host compound precursor represented by the following general formula (2) and then polymerizing the precursor. The organic electroluminescent element of description.
Figure JPOXMLDOC01-appb-C000004
(式中、Aは、N(R)、酸素原子、硫黄原子又はSi(R)(R)を表し、B~Bは、各々CR又はN原子を表す。R~Rは、各々水素原子又は置換基を表し、RとR、及び隣接するR同士が結合して環を形成しても良い。B~Bのうち複数の箇所がCRである場合、各々のRは、同一でも、異なっていても良い。Jは2価の連結基を表し、Rはアルキル基を表す。Y2は単なる結合手又は2価の連結基を表す。Y3及びY4は、各々5員又は6員の芳香族環から導出される基を表し、少なくとも一方は環構成原子として窒素原子を含む芳香族複素環から導出される基を表す。n2は1~4の整数を表す。)
 4.前記一般式(1)で表される化合物及び、前記一般式(2)で表されるホスト化合物の前駆体を、同時に加水分解し、次いで重合して得られたナノ粒子発光材料を含有することを特徴とする、第1項から第3項のいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000004
(In the formula, A, N (R 1), an oxygen atom, a sulfur atom or a Si (R 2) (R 3 ), B 1 ~ B 8 each represents a CR 4 or N atoms .R 1 ~ R 4 represents a hydrogen atom or a substituent, and R 2 and R 3 , and adjacent R 4 may be bonded to each other to form a ring, and a plurality of positions among B 1 to B 8 are CR 4 And each R 4 may be the same or different, J represents a divalent linking group, R represents an alkyl group, and Y2 represents a simple bond or a divalent linking group. Y3 and Y4 each represent a group derived from a 5-membered or 6-membered aromatic ring, and at least one represents a group derived from an aromatic heterocycle containing a nitrogen atom as a ring-constituting atom. Represents an integer of 4.)
4). Containing a nanoparticle light-emitting material obtained by simultaneously hydrolyzing and then polymerizing the compound represented by the general formula (1) and the host compound precursor represented by the general formula (2). The organic electroluminescence device according to any one of items 1 to 3, wherein:
 5.前記ナノ粒子が、マイクロ波照射下で加水分解し、次いで重合して得られたナノ粒子であることを特徴とする第1項から第4項のいずれか一項に記載の有機エレクトロルミネッセンス素子。 5. The organic electroluminescence device according to any one of Items 1 to 4, wherein the nanoparticles are nanoparticles obtained by hydrolysis under microwave irradiation and then polymerization.
 6.前記ナノ粒子を発光層に含有することを特徴とする第1項から第5項のいずれか一項に記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to any one of claims 1 to 5, wherein the nanoparticle is contained in a light emitting layer.
 7.第1項から第6項のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。 7. An illuminating device comprising the organic electroluminescent element according to any one of items 1 to 6.
 8.第1項から第6項のいずれか一項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。 8. A display device comprising the organic electroluminescence element according to any one of items 1 to 6.
 本発明の有機EL素子材料は、従来の有機EL素子材料に比べて、水分、酸素など、これまで有機EL性能に対する懸念が非常に高かった外的要因に対し、高い耐性を有し、かつ低温短時間で乾燥することが可能なウェットプロセスでの生産により、コストパフォーマンスが高く、高性能な有機EL素子を提供できた。 The organic EL element material of the present invention has higher resistance to external factors such as moisture, oxygen, etc., which have been extremely concerned about organic EL performance, and has a low temperature compared to conventional organic EL element materials. High-performance organic EL elements with high cost performance can be provided by production using a wet process that can be dried in a short time.
有機EL素子から構成される表示装置の一例を示した模式図である。It is the schematic diagram which showed an example of the display apparatus comprised from an organic EL element. 表示部Aの模式図である。4 is a schematic diagram of a display unit A. FIG. 画素の模式図である。It is a schematic diagram of a pixel. パッシブマトリクス方式フルカラー表示装置の模式図である。It is a schematic diagram of a passive matrix type full-color display device. 照明装置の概略図である。It is the schematic of an illuminating device. 照明装置の模式図である。It is a schematic diagram of an illuminating device.
 本発明の有機EL素子においては、請求項1~8のいずれか一項に記載の構成を有することにより、水分、酸素、不純物など、従来、素子性能に対する懸念が非常に高かった外的要因に対し、高い耐性を有し、かつ低温短時間で乾燥することが可能なウェットプロセスでの生産により、コストパフォーマンスが高く、高性能な有機EL素子を提供できた。 In the organic EL device of the present invention, by having the configuration according to any one of claims 1 to 8, the external factors such as moisture, oxygen, impurities, etc., which have been extremely concerned about the device performance in the past. On the other hand, high-performance organic EL elements with high cost performance can be provided by production using a wet process that has high resistance and can be dried in a short time at a low temperature.
 詳しくは、発光ドーパント化合物と、リン光の0-0バンドが460nm以下の発光ホスト化合物とを含有するナノ粒子を用いることにより、外部取り出し量子効率が高く、発光寿命の長い有機EL素子を提供することができ、併せて、該製造方法により製造された有機EL素子、該素子を具備した表示装置及び照明装置を提供することができた。 Specifically, by using nanoparticles containing a light-emitting dopant compound and a light-emitting host compound having a 0-0 band of phosphorescence of 460 nm or less, an organic EL device having a high external extraction quantum efficiency and a long light emission lifetime is provided. In addition, an organic EL element manufactured by the manufacturing method, a display device including the element, and a lighting device can be provided.
 以下、本発明の有機エレクトロルミネッセンス素子の各構成要素の詳細について、順次説明する。 Hereinafter, details of each component of the organic electroluminescence element of the present invention will be described sequentially.
 《発光ドーパント材料》
 本発明に係る発光ドーパント材料は、上記一般式(1)で表される化合物を加水分解し、次いで重合して得られたナノ粒子が好ましい。該ナノ粒子の粒径は、1nm~100nmの範囲が好ましく、更に好ましくは、10nm~50nmの範囲である。
《Light emitting dopant material》
The light-emitting dopant material according to the present invention is preferably nanoparticles obtained by hydrolyzing the compound represented by the general formula (1) and then polymerizing the compound. The particle size of the nanoparticles is preferably in the range of 1 nm to 100 nm, more preferably in the range of 10 nm to 50 nm.
 ここで、本発明に用いられるナノ粒子の粒径は、透過電子顕微鏡(JEM-2010F)により測定した。 Here, the particle size of the nanoparticles used in the present invention was measured with a transmission electron microscope (JEM-2010F).
 続いて、本発明に係る発光ドーパント材料の前駆体である一般式(1)で表される化合物について説明する。 Subsequently, the compound represented by the general formula (1) which is a precursor of the light emitting dopant material according to the present invention will be described.
 《一般式(1)で表される化合物(発光性ドーパント前駆体ともいう)》
 一般式(1)において、X及びXを除く残基は、リン光発光性ドーパント残基(詳しくは、リン光発光性ドーパントから導出される残基ともいう)である。
<< Compound represented by the general formula (1) (also referred to as a light-emitting dopant precursor) >>
In the general formula (1), the residues other than X 1 and X 2 are phosphorescent dopant residues (specifically, also referred to as residues derived from the phosphorescent dopant).
 ここで、リン光発光性ドーパントとは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、好ましくは元素周期表で8族~10族の金属元素を含有する有機金属錯体である。リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 Here, the phosphorescent dopant is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), preferably an element periodic table. And organometallic complexes containing Group 8 to Group 10 metal elements. Although the phosphorescence quantum yield is defined to be a compound of 0.01 or more at 25 ° C., the preferred phosphorescence quantum yield is 0.1 or more.
 尚、リン光量子収率について、後述する有機EL素子の構成層のところで説明する。 The phosphorescence quantum yield will be described in the constituent layer of the organic EL element described later.
 一般式(1)において、A1で表される、P-Cと共に形成される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。中でも、ベンゼン環が好ましい。 In the general formula (1), the aromatic hydrocarbon ring formed with PC represented by A1 includes a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene Ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen And a ring, a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring. Among these, a benzene ring is preferable.
 尚、これらの環は更に、後述する置換基を有してもよい。 In addition, these rings may further have a substituent described later.
 一般式(1)において、A1で表される、P-Cと共に形成される芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチオフェン環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。尚、これらの環は更に後述する置換基を有していても良い。 In the general formula (1), examples of the aromatic heterocycle formed with PC represented by A1 include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, Pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiophene ring, benzothiazole ring, benzoxazole ring, quinoxaline Ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring, diazacarbazole ring (a ring in which one of the carbon atoms constituting the carboline ring is further substituted with a nitrogen atom) Etc.) That. These rings may further have a substituent described later.
 一般式(1)において、A2は、Q-Nと共に形成される芳香族複素環としては、例えば、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、等が挙げられる。尚、これらの環は更に後述する置換基を有していても良い。 In the general formula (1), A2 is an aromatic heterocycle formed with QN, for example, an oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring , Oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring , A naphthyridine ring, and the like. These rings may further have a substituent described later.
 《置換基》
 上記のA1で表される芳香族炭化水素環又は芳香族複素環が有していても良い置換基、また、A2で表される芳香族複素環が有してもよい置換基としては、置換基の例としてはアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
<< Substituent >>
As the substituent that the aromatic hydrocarbon ring or aromatic heterocyclic ring represented by A1 may have, and the substituent that the aromatic heterocyclic ring represented by A2 may have, Examples of groups include alkyl groups (eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.) A cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), an alkenyl group (eg, vinyl group, allyl group, etc.), an alkynyl group (eg, ethynyl group, propargyl group, etc.), an aromatic hydrocarbon group (aromatic hydrocarbon). Also referred to as cyclic group, aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group Group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group, etc., aromatic heterocyclic group (eg pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl) Group, benzimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl Group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl Group (of the carbolinyl group) One of the carbon atoms constituting the ruborin ring is replaced by a nitrogen atom), quinoxalinyl group, pyridazinyl group, triazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl) Group, oxazolidyl group, etc.), alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, cyclopentyloxy group, Cyclohexyloxy group etc.), aryloxy group (eg phenoxy group, naphthyloxy group etc.), alkylthio group (eg methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group etc.), cycl A cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), an arylthio group (eg, phenylthio group, naphthylthio group, etc.), an alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, Octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, Butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group Group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecyl) Carbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group) Etc.), an amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonyl group) Group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group) Dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2- Pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido) Group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group) Group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, Dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridyl group) Sulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group) Etc.), halogen atoms (eg fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon groups (eg fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group etc.), cyano group , Nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphono group and the like.
 また、これらの置換基は上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。 In addition, these substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.
 一般式(1)において、P1-L1-P2で表される2座の配位子としては、例えば、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。 In the general formula (1), examples of the bidentate ligand represented by P1-L1-P2 include substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, acetylacetone And picolinic acid.
 一般式(1)において、L1はP1、P2と共に2座の配位子を形成するのに必要な原子群を表し、rは1~3の整数を表し、sは0~2の整数を表すが、r+sは2又は3を表すが、一般式(1)で表される化合物においては、特にsが0である場合が好ましい。 In the general formula (1), L1 represents an atomic group necessary for forming a bidentate ligand together with P1 and P2, r represents an integer of 1 to 3, and s represents an integer of 0 to 2. However, r + s represents 2 or 3, and in the compound represented by the general formula (1), it is particularly preferable that s is 0.
 一般式(1)において、Mで表される元素周期表における8族~10族の金属元素としては、Mは、元素周期表における8族~10族の遷移金属元素(単に遷移金属ともいう)が用いられるが、中でもイリジウム、白金が好ましく、特にイリジウムが好ましい。
 以下、一般式(1)で表される化合物に含まれるリン光発光性ドーパント残基となる化合物の具体例を示すが、本発明はこれらに限定されない。
In the general formula (1), as the metal element group 8-10 of the periodic table represented by M 1, M 1 is a transition metal element of group 8-10 of the periodic table (simply a transition metal both Among them, iridium and platinum are preferable, and iridium is particularly preferable.
Hereinafter, although the specific example of the compound used as the phosphorescence emission dopant residue contained in the compound represented by General formula (1) is shown, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 上記一般式(1)で表される化合物は、例えば、Inorg.Chem.40巻、1704~1711に記載の方法等を参照することにより合成できる。
Figure JPOXMLDOC01-appb-C000006
The compound represented by the general formula (1) is, for example, Inorg. Chem. It can be synthesized by referring to the method described in Vol. 40, 1704-1711.
 一般式(1)において、Mは金属元素を表し、好ましくは、Si、Ti、Ni、W、Zr、Mg、Al、Ge、B、Ga、Sb、Sn、Ta、Vが挙げられ、より好ましくは、Si、Ti、Ni、Al、Zr、Snである。 In the general formula (1), M 1 represents a metal element, preferably Si, Ti, Ni, W, Zr, Mg, Al, Ge, B, Ga, Sb, Sn, Ta, V, and more. Si, Ti, Ni, Al, Zr and Sn are preferable.
 (加水分解し、次いで重合可能な基)
 一般式(1)において、X及びXは加水分解し、次いで重合可能な官能基を表し、好ましくは、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロピルオキシ基、プロピルオキシ基等)、アミノ基等が挙げられる。a及びbは0又は1以上の整数を表すが、a及びbが同時に0となることはない。
(Group hydrolyzed and then polymerizable)
In the general formula (1), X 1 and X 2 represent a functional group that can be hydrolyzed and then polymerized, and preferably an alkoxy group (for example, methoxy group, ethoxy group, isopropyloxy group, propyloxy group, etc.), An amino group etc. are mentioned. a and b represent 0 or an integer of 1 or more, but a and b are not 0 at the same time.
 本発明に係る、一般式(1)で表される化合物を加水分解し、次いで重合させて得られるリン光発光性粒子からなるリン光発光性ドーパント(単に、リン光発光ドーパントともいう)は、半導体性を有することが望ましく、更に、1.0×10Ω・cm~1.0×1010Ω・cmの範囲の比抵抗値を有することが好ましい。 A phosphorescent dopant (simply referred to as a phosphorescent dopant) consisting of phosphorescent particles obtained by hydrolyzing and then polymerizing the compound represented by the general formula (1) according to the present invention, It preferably has semiconducting properties, and preferably has a specific resistance value in the range of 1.0 × 10 2 Ω · cm to 1.0 × 10 10 Ω · cm.
 (ナノ粒子の好ましい態様)
 本発明に係る一般式(1)で表される化合物を加水分解し、次いで重合させて得られるリン光発光性粒子の好ましい態様は、上記に示した、pre-CD-1~pre-CD-14のような前駆体を加水分解し、次いで重合させて得られたナノ粒子である。
(Preferred embodiment of nanoparticles)
Preferred embodiments of the phosphorescent particles obtained by hydrolyzing and then polymerizing the compound represented by the general formula (1) according to the present invention include the pre-CD-1 to pre-CD- described above. Nanoparticles obtained by hydrolyzing a precursor such as 14 and then polymerizing.
 また、本発明に係る上記一般式(1)で表される化合物(前駆体)の加水分解とそれに続く重合反応により、架橋重合体を製造する方法については、例えば、第5版実験化学講座等に記載の方法を参照することにより合成することが可能である。 Moreover, about the method of manufacturing a crosslinked polymer by hydrolysis of the compound (precursor) represented by the above general formula (1) according to the present invention and subsequent polymerization reaction, for example, 5th edition experimental chemistry course, etc. It is possible to synthesize by referring to the method described in 1.
 上記一般式(1)で表される化合物を加水分解し、次いで重合させて本発明に係るリン光発光性ドーパントを得る工程については、後述する実施例1で詳細に説明するが、例えば、以下に示す合成原料であるpre-CD-1を前駆体として用い、該前駆体を加水分解し、次いで重合反応させ、本発明に係る発光ドーパントの一例である、CD-1を製造することができる。 The step of hydrolyzing and then polymerizing the compound represented by the general formula (1) to obtain the phosphorescent dopant according to the present invention will be described in detail in Example 1 described later. Pre-CD-1 which is a synthetic raw material shown in FIG. 1 is used as a precursor, and the precursor is hydrolyzed and then polymerized to produce CD-1, which is an example of a light-emitting dopant according to the present invention. .
 本発明に係るリン光発光性粒子は、本発明の有機エレクトロルミネッセンス素子のいずれの構成層に用いることができるが、特に好ましいのは発光層に用いられることである。
 尚、本発明の有機エレクトロルミネッセンス素子の構成層については、後に詳細に説明する。
The phosphorescent particles according to the present invention can be used in any constituent layer of the organic electroluminescence device of the present invention, but it is particularly preferable that the phosphorescent particles are used in the light emitting layer.
The constituent layers of the organic electroluminescence element of the present invention will be described later in detail.
 以下、本発明に係る発光ドーパント材料の合成原料(前駆体)として用いられる、一般式(1)で示される化合物(本発明に係る発光ドーパント材料の前駆体、単に前駆体ともいう)の具体例を示すが、本発明はこれらに限定されない。 Hereinafter, specific examples of the compound represented by the general formula (1) (also referred to as a precursor of the light-emitting dopant material according to the present invention, simply referred to as a precursor) used as a synthesis raw material (precursor) of the light-emitting dopant material according to the present invention. However, the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 (本発明に係る発光ドーパント材料前駆体pre-CD-1の合成)
 以下、一般式(1)で示される化合物(本発明に係る発光ドーパント材料の前駆体、単に前駆体ともいう)の具体例であるpre-CD-1の合成例を示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(Synthesis of light-emitting dopant material precursor pre-CD-1 according to the present invention)
Hereinafter, synthesis examples of pre-CD-1 which is a specific example of the compound represented by the general formula (1) (precursor of the light-emitting dopant material according to the present invention, also simply referred to as a precursor) will be shown. It is not limited to.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (工程1)
 塩化イリジウム・n水和物(Ir換算1mmol)と4-(2-ピリジル)ベンズアルデヒド(8mmol、1.46g)及び2-フェニルキノリン(8mmol、1.64g)を2-エトキシエタノール(30ml):水(10ml)混合溶媒中で加熱還流を行った。
(Process 1)
Iridium chloride n-hydrate (1 mmol in terms of Ir), 4- (2-pyridyl) benzaldehyde (8 mmol, 1.46 g) and 2-phenylquinoline (8 mmol, 1.64 g) in 2-ethoxyethanol (30 ml): water (10 ml) The mixture was heated to reflux in a mixed solvent.
 析出した固体をろ別した後。エタノール中で、水素化ホウ素ナトリウムを加え、IMIr-1を得た。 After filtering the precipitated solid. IMIr-1 was obtained by adding sodium borohydride in ethanol.
 (工程2)
 次いでIMIr-1(0.2mmol,238mg)、ピコリン酸(0.5mmol、62mg)を塩基性2-エトキシエタノール中で12時間加熱還流を行った。析出した固体をろ別し、IMIr-2を得た。
(Process 2)
Subsequently, IMIr-1 (0.2 mmol, 238 mg) and picolinic acid (0.5 mmol, 62 mg) were heated to reflux in basic 2-ethoxyethanol for 12 hours. The precipitated solid was filtered off to obtain IMIr-2.
 (工程3)
 得られたIMIr-2(0.2mmol、136mg)、tertブトキシカリウム(1mmol、112mg)を無水THF(20ml)に溶解し、ヨウ化アリル(2ml)を加えた。窒素雰囲気下で12時間加熱還流を行い、通常の処理を行い、IMIr-3を得た。
(Process 3)
The obtained IMIr-2 (0.2 mmol, 136 mg) and tert-butoxypotassium (1 mmol, 112 mg) were dissolved in anhydrous THF (20 ml), and allyl iodide (2 ml) was added. The mixture was heated to reflux for 12 hours under a nitrogen atmosphere and subjected to normal treatment to obtain IMIr-3.
 (工程4)(pre-CD-1の合成)
 20mlの無水メタノールにIMIr-3(0.2mmol、153mg)を溶解した後、0.5mlのトリメトキシシラン、白金/活性炭(10%Pt)を加え、窒素雰囲気下、一晩加熱還流を行った。
(Step 4) (Synthesis of pre-CD-1)
IMIr-3 (0.2 mmol, 153 mg) was dissolved in 20 ml of anhydrous methanol, 0.5 ml of trimethoxysilane and platinum / activated carbon (10% Pt) were added, and the mixture was heated to reflux overnight under a nitrogen atmosphere. .
 室温まで冷却した後、白金/活性炭をろ別し、母液を減圧下濃縮を行いpre-CD-1(トータル収率20%)を得た。 After cooling to room temperature, platinum / activated carbon was filtered off, and the mother liquor was concentrated under reduced pressure to obtain pre-CD-1 (total yield 20%).
 《一般式(2)で表されるホスト化合物前駆体(発光ホスト化合物前駆体)》
 一般式(2)において、Aで表される、N(R)又はSi(R)(R)におけるR~R、で表される置換基、B~Bで各々表されるCRのRで表される置換基は、上記一般式(1)において、A1で表される、P-Cと共に形成される芳香族炭化水素環、芳香族複素環が各々有してもよい置換基と同義である。
<< Host Compound Precursor Represented by Formula (2) (Luminescent Host Compound Precursor) >>
In the general formula (2), a substituent represented by R 1 to R 3 in N (R 1 ) or Si (R 2 ) (R 3 ) represented by A, each represented by B 1 to B 8 The substituent represented by R 4 of CR 4 is represented by the aromatic hydrocarbon ring and aromatic heterocyclic ring formed together with P—C represented by A1 in the general formula (1). It is synonymous with the substituent which may be.
 一般式(2)において、Y2で表される2価の連結基としては、アルキレン基(例えば、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、エチルエチレン基、ペンタメチレン基、ヘキサメチレン基、2,2,4-トリメチルヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、シクロヘキシレン基(例えば、1,6-シクロヘキサンジイル基等)、シクロペンチレン基(例えば、1,5-シクロペンタンジイル基など)等)、アルケニレン基(例えば、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基、1-メチルビニレン基、1-メチルプロペニレン基、2-メチルプロペニレン基、1-メチルペンテニレン基、3-メチルペンテニレン基、1-エチルビニレン基、1-エチルプロペニレン基、1-エチルブテニレン基、3-エチルブテニレン基等)、アルキニレン基(例えば、エチニレン基、1-プロピニレン基、1-ブチニレン基、1-ペンチニレン基、1-ヘキシニレン基、2-ブチニレン基、2-ペンチニレン基、1-メチルエチニレン基、3-メチル-1-プロピニレン基、3-メチル-1-ブチニレン基等)、アリーレン基(例えば、o-フェニレン基、p-フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1′-ビフェニル]-4,4′-ジイル基、3,3′-ビフェニルジイル基、3,6-ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等)、ヘテロアリーレン基(例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子の一つが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等)、酸素や硫黄などのカルコゲン原子、3環以上の環が縮合してなる縮合芳香族複素環から導出される基等(ここで、3環以上の環が縮合してなる縮合芳香族複素環としては、好ましくはN、O及びSから選択されたヘテロ原子を、縮合環を構成する元素として含有する芳香族複素縮合環であることが好ましく、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等)が挙げられる。 In the general formula (2), as the divalent linking group represented by Y2, an alkylene group (for example, ethylene group, trimethylene group, tetramethylene group, propylene group, ethylethylene group, pentamethylene group, hexamethylene group, 2,2,4-trimethylhexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, cyclohexylene group (for example, 1,6-cyclohexanediyl group, etc.), Cyclopentylene group (for example, 1,5-cyclopentanediyl group and the like), alkenylene group (for example, vinylene group, propenylene group, butenylene group, pentenylene group, 1-methylvinylene group, 1-methylpropenylene group, 2-methylpropenylene group, 1-methylpentenylene group, 3-methyl Pentenylene group, 1-ethylvinylene group, 1-ethylpropenylene group, 1-ethylbutenylene group, 3-ethylbutenylene group, etc.), alkynylene group (for example, ethynylene group, 1-propynylene group, 1-butynylene group, 1-pentynylene group) 1-hexynylene group, 2-butynylene group, 2-pentynylene group, 1-methylethynylene group, 3-methyl-1-propynylene group, 3-methyl-1-butynylene group, etc.), arylene group (for example, o-phenylene group) P-phenylene group, naphthalenediyl group, anthracenediyl group, naphthacenediyl group, pyrenediyl group, naphthylnaphthalenediyl group, biphenyldiyl group (for example, [1,1′-biphenyl] -4,4′-diyl group, 3, 3'-biphenyldiyl group, 3,6-biphenyldiyl group, etc.), tellurium Phenyldiyl group, quaterphenyldiyl group, kinkphenyldiyl group, sexiphenyldiyl group, septiphenyldiyl group, octiphenyldiyl group, nobiphenyldiyl group, deciphenyldiyl group, etc.), heteroarylene group (for example, carbazole) Ring, carboline ring, diazacarbazole ring (also called monoazacarboline ring, which shows a ring structure in which one of carbon atoms constituting carboline ring is replaced by nitrogen atom), triazole ring, pyrrole ring, pyridine ring, pyrazine Ring, quinoxaline ring, thiophene ring, oxadiazole ring, dibenzofuran ring, dibenzothiophene ring, divalent group derived from the group consisting of indole ring, etc.), chalcogen atom such as oxygen and sulfur, 3 or more rings Groups derived from condensed aromatic heterocycles formed by condensation (this Here, the condensed aromatic heterocyclic ring formed by condensing three or more rings is preferably an aromatic heterocyclic ring containing a hetero atom selected from N, O and S as an element constituting the condensed ring. Specifically, acridine ring, benzoquinoline ring, carbazole ring, phenazine ring, phenanthridine ring, phenanthroline ring, carboline ring, cyclazine ring, kindrin ring, tepenidine ring, quinindrin ring, triphenodithia Gin ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (representing any one of carbon atoms constituting carboline ring replaced by nitrogen atom), phenanthroline ring, dibenzofuran Ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, Nzodifuran ring, benzodithiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, anthrathiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring, thiophanthrene ring (naphthothiophene ring) ) Etc.).
 一般式(2)において、Y3及びY4で各々表される5員又は6員の芳香族環から導出される基の形成に用いられる5員又は6員の芳香族環としては、ベンゼン環、オキサゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ジアジン環、トリアジン環、イミダゾール環、イソオキサゾール環、ピラゾール環、トリアゾール環等が挙げられる。 In the general formula (2), a 5-membered or 6-membered aromatic ring used for forming a group derived from a 5-membered or 6-membered aromatic ring represented by Y3 and Y4, respectively, includes a benzene ring, oxazole Examples include a ring, a thiophene ring, a furan ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a diazine ring, a triazine ring, an imidazole ring, an isoxazole ring, a pyrazole ring, and a triazole ring.
 更に、Y3及びY4で各々表される5員又は6員の芳香族環から導出される基の少なくとも一方は、環構成原子として窒素原子を含む芳香族複素環から導出される基を表すが、該環構成原子として窒素原子を含む芳香族複素環としては、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ジアジン環、トリアジン環、イミダゾール環、イソオキサゾール環、ピラゾール環、トリアゾール環等が挙げられる。 Furthermore, at least one of the groups derived from a 5-membered or 6-membered aromatic ring represented by Y3 and Y4 respectively represents a group derived from an aromatic heterocycle containing a nitrogen atom as a ring-constituting atom, As the aromatic heterocycle containing a nitrogen atom as the ring constituent atom, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a diazine ring, a triazine ring, an imidazole ring, an isoxazole ring, a pyrazole ring, Examples include a triazole ring.
 また、Y4は、置換基として、前記X及びXと同義の、加水分解し、次いで重合可能な官能基を有する置換基の場合もある。尚、Y1及びY4の少なくともいずれかは、加水分解し、次いで重合可能な官能基を有する置換基である。 Further, Y4 as substituent, of the X 1 and X 2 as defined is hydrolysed, followed in some cases the substituents having a polymerizable functional group. At least one of Y1 and Y4 is a substituent having a functional group that can be hydrolyzed and then polymerized.
 一般式(2)において、Jで表される2価の連結基としては、前記Y2同義であり、一般式(2)において、Rで表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられる。 In the general formula (2), the divalent linking group represented by J has the same meaning as Y2, and in the general formula (2), examples of the alkyl group represented by R include a methyl group and an ethyl group. Propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group and the like.
 本発明におけるリン光の0-0バンドの測定方法について説明する。まず、リン光スペクトルの測定方法について説明する。測定する発光ホスト化合物を、よく脱酸素されたエタノール/メタノール=4/1(vol/vol)の混合溶媒に溶かし、リン光測定用セルに入れた後、液体窒素温度77Kで励起光を照射し、励起光照射後100msでの発光スペクトルを測定する。 A method for measuring the 0-0 band of phosphorescence in the present invention will be described. First, a method for measuring a phosphorescence spectrum will be described. The luminescent host compound to be measured was dissolved in a well-deoxygenated mixed solvent of ethanol / methanol = 4/1 (vol / vol), put into a phosphorescence measurement cell, and then irradiated with excitation light at a liquid nitrogen temperature of 77K. Then, an emission spectrum at 100 ms is measured after the excitation light irradiation.
 リン光は蛍光に比べ発光寿命が長いため、100ms後に残存する光はほぼリン光であると考えることができる。なお、リン光寿命が100msより短い化合物に対しては遅延時間を短くして測定しても構わないが、蛍光と区別できなくなるほど遅延時間を短くしてしまうと、リン光と蛍光が分離できないので問題となるため、その分離が可能な遅延時間を選択する必要がある。 Since phosphorescence has a longer emission lifetime than fluorescence, it can be considered that light remaining after 100 ms is almost phosphorescence. Note that for compounds with a phosphorescence lifetime shorter than 100 ms, measurement may be performed with a shorter delay time. However, phosphorescence and fluorescence cannot be separated if the delay time is shortened so that it cannot be distinguished from fluorescence. Therefore, it is necessary to select a delay time that can be separated.
 また、上記溶剤系で溶解できない化合物については、その化合物を溶解しうる任意の溶剤を使用してもよい(実質上、上記測定法ではリン光波長の溶媒効果はごくわずかなので問題ない)。 In addition, for a compound that cannot be dissolved in the solvent system, any solvent that can dissolve the compound may be used (substantially, the above-described measuring method has no problem because the solvent effect of the phosphorescence wavelength is negligible).
 次に、0-0バンドの求め方であるが、本発明においては、上記測定法で得られたリン光スペクトルチャートの中で最も短波長側に現れる発光極大波長をもって0-0バンドと定義する。リン光スペクトルは通常強度が弱いことが多いため、拡大するとノイズとピークの判別が難しくなるケースがある。 Next, the 0-0 band is determined. In the present invention, the emission maximum wavelength appearing on the shortest wavelength side in the phosphorescence spectrum chart obtained by the above measurement method is defined as the 0-0 band. . Since the phosphorescence spectrum usually has a low intensity, when it is enlarged, it may be difficult to distinguish between noise and peak.
 このような場合には励起光照射直後の発光スペクトル(便宜上これを定常光スペクトルという)を拡大し、励起光照射後100ms後の発光スペクトル(便宜上これをリン光スペクトルという)と重ね合わせ、リン光スペクトルに由来する定常光スペクトル部分からピーク波長を読みとることで決定することができる。 In such a case, the emission spectrum immediately after the excitation light irradiation (for convenience, this is referred to as a steady light spectrum) is expanded, and the emission spectrum 100 ms after the excitation light irradiation (for convenience, this is referred to as a phosphorescence spectrum) is superimposed. It can be determined by reading the peak wavelength from the stationary light spectrum portion derived from the spectrum.
 また、リン光スペクトルをスムージング処理することでノイズとピークを分離し、ピーク波長を読みとることもできる。なお、スムージング処理としては、Savitzky&Golayの平滑化法等を適用することができる。 Also, it is possible to separate the noise and peak by smoothing the phosphorescence spectrum and read the peak wavelength. As the smoothing process, a smoothing method of Savitzky & Golay can be applied.
 以下、本発明に係るホスト化合物の具体例を示すが、本発明はこれらに限定されない。 Specific examples of the host compound according to the present invention are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 尚、一般式(2)で表されるホスト化合物の前駆体は、特開2007-288035号、Chem.Mater.2008,20,5951、実験化学講座第5版(日本化学会編)等に記載の公知の方法を参照して合成することができる。 In addition, the precursor of the host compound represented by the general formula (2) is disclosed in JP 2007-288035, Chem. Mater. It can be synthesized by referring to known methods described in 2008, 20, 5951, Experimental Chemistry Course 5th Edition (Edited by Chemical Society of Japan).
 次に本発明の一般式(2)で表されるホスト化合物の前駆体の具体例を示すが、本発明はこれらに限定されない。 Next, specific examples of the precursor of the host compound represented by the general formula (2) of the present invention are shown, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 (本発明に係る発光ホスト化合物の前駆体pre-CHo-1の合成)
Figure JPOXMLDOC01-appb-C000032
 トルエン40ml、トリメトキシシラン0.73g(6mmol)及びトリス(テトラメチルジビニルジシロキサン)二白金(0)のトルエン溶液0.018mmolを三つ口フラスコに取り、室温で撹拌しながら化合物(A)1.2g(2mmol)のトルエン溶液20mlを滴下した。滴下終了後、70℃で3時間撹拌を行った後、溶媒を減圧下で除き、pre-CHo-1を得た。収量1.37g。
(Synthesis of Pre-CHo-1 Precursor of Luminescent Host Compound According to the Present Invention)
Figure JPOXMLDOC01-appb-C000032
40 ml of toluene, 0.73 g (6 mmol) of trimethoxysilane and 0.018 mmol of a toluene solution of tris (tetramethyldivinyldisiloxane) diplatinum (0) are placed in a three-necked flask and stirred at room temperature with compound (A) 1 20 ml of a toluene solution of .2 g (2 mmol) was added dropwise. After completion of the dropwise addition, the mixture was stirred at 70 ° C. for 3 hours, and then the solvent was removed under reduced pressure to obtain pre-CHo-1. Yield 1.37 g.
 《有機EL素子の製造方法》
 本発明の有機EL素子の製造方法においては、前記ナノ粒子を含有する有機化合物層の少なくとも1層が、湿式法(ウェットプロセス)により成膜、形成される工程を有することが好ましい。
<< Method for Manufacturing Organic EL Element >>
In the manufacturing method of the organic EL element of this invention, it is preferable to have the process by which at least 1 layer of the organic compound layer containing the said nanoparticle is formed into a film and formed by a wet method (wet process).
 以下、本発明の有機EL素子の製造方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる素子の製造方法について説明する。 Hereinafter, as an example of the method for producing the organic EL device of the present invention, a method for producing an element comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.
 まず、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm~200nmの膜厚になるように形成させ、陽極を作製する。 First, a thin film made of a desired electrode material, for example, an anode material, is formed on a suitable substrate so as to have a thickness of 1 μm or less, preferably 10 nm to 200 nm, and an anode is manufactured.
 次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層等の有機化合物を含有する薄膜を形成させる。 Next, a thin film containing organic compounds such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are element materials, is formed thereon.
 これら各層の形成方法としては、蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、かつ、ピンホールが生成しにくい等の点から、本発明においては湿式法(ウェットプロセスともいう)による成膜、形成する方法が好ましく、湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法等があるが、精密な薄膜が形成可能で、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。また、層ごとに異なる製膜法を適用してもよい。 As a method for forming each of these layers, there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method), etc., but it is easy to obtain a homogeneous film and it is difficult to generate pinholes. In view of the above, in the present invention, a method of forming and forming a film by a wet method (also referred to as a wet process) is preferable. Examples of the wet method include spin coating, casting, die coating, blade coating, roll coating, and inkjet. , Printing method, spray coating method, curtain coating method, etc., but it is possible to form precise thin films and roll-to-roll such as die coating method, roll coating method, ink jet method, spray coating method, etc. from the viewpoint of high productivity. -A method with high roll system suitability is preferred. Different film forming methods may be applied for each layer.
 これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように形成させ、陰極を設けることにより所望の有機EL素子が得られる。 After these layers are formed, a thin film made of a cathode material is formed thereon so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a desired organic EL device can be obtained by providing a cathode. .
 また、順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。 Also, the cathode, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be produced in the order of the reverse order.
 このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。尚、印加する交流の波形は任意でよい。 When a DC voltage is applied to the multicolor display device obtained in this way, light emission can be observed by applying a voltage of about 2V to 40V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 本発明の有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。 The production of the organic EL device of the present invention is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
 《有機EL素子の構成層、有機化合物層》
 本発明の有機EL素子の構成層、有機化合物層等について説明する。本発明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
<< Constitutional layer of organic EL element, organic compound layer >>
The constituent layers and organic compound layers of the organic EL device of the present invention will be described. Although the preferable specific example of the layer structure of the organic EL element of this invention is shown below, this invention is not limited to these.
 尚、上記のように、本発明に係るリン光発光性粒子は、本発明の有機EL素子のいずれの構成層に用いることができるが、特に好ましいのは発光層に用いられることである。 As described above, the phosphorescent particles according to the present invention can be used in any constituent layer of the organic EL device of the present invention, but it is particularly preferable that the phosphorescent particles are used in the light emitting layer.
 (i)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (iv)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 《有機化合物層(有機層ともいう)》
 本発明に係る有機化合物層について説明する。本発明の有機EL素子は、構成層として複数の有機化合物層を有することが好ましく、該有機化合物層としては、例えば、上記の層構成の中で、正孔輸送層、発光層、正孔阻止層、電子輸送層等が挙げられるが、その他、正孔注入層、電子注入層等、有機EL素子の構成層に含有される有機化合物が含有されていれば、本発明に係る有機化合物層として定義される。
(I) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode (iii) Anode / hole transport layer / Light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (iv) anode / anode buffer layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode << Organic compound layer (also called organic layer) >>
The organic compound layer according to the present invention will be described. The organic EL device of the present invention preferably has a plurality of organic compound layers as a constituent layer, and examples of the organic compound layer include a hole transport layer, a light emitting layer, and a hole blocking layer in the above-described layer configuration. As the organic compound layer according to the present invention, an organic compound contained in a constituent layer of the organic EL element, such as a hole injection layer or an electron injection layer, is included. Defined.
 更に、陽極バッファー層、陰極バッファー層等に有機化合物が用いられる場合には、陽極バッファー層、陰極バッファー層等も、各々有機化合物層を形成していることになる。
 尚、前記有機化合物層には、『有機EL素子の構成層に使用可能な有機EL素子材料』等を含有する層も含まれる。
Further, when an organic compound is used for the anode buffer layer, the cathode buffer layer, and the like, the anode buffer layer, the cathode buffer layer, and the like each form an organic compound layer.
The organic compound layer includes a layer containing “organic EL element material that can be used for a constituent layer of an organic EL element” or the like.
 本発明の有機EL素子においては、青色発光層の発光極大波長は430nm~480nmにあるものが好ましく、緑色発光層は発光極大波長が510nm~550nm、赤色発光層は発光極大波長が600nm~640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。 In the organic EL device of the present invention, the blue light emitting layer preferably has an emission maximum wavelength of 430 nm to 480 nm, the green light emitting layer has an emission maximum wavelength of 510 nm to 550 nm, and the red light emitting layer has an emission maximum wavelength of 600 nm to 640 nm. A monochromatic light emitting layer in the range is preferable, and a display device using these is preferable.
 また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよい。更に、発光層間には非発光性の中間層を有していてもよい。 Further, a white light emitting layer may be formed by laminating at least three of these light emitting layers. Further, a non-light emitting intermediate layer may be provided between the light emitting layers.
 本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。 The organic EL element of the present invention is preferably a white light emitting layer, and is preferably a lighting device using these.
 本発明の有機EL素子を構成する各層について説明する。 Each layer constituting the organic EL element of the present invention will be described.
 《発光層》
 本発明に係る発光層は、電極又は電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
 発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、さらに好ましくは2nm~200nmの範囲に調整され、特に好ましくは、10nm~20nmの範囲である。 The total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 μm, more preferably in the range of 2 nm to 200 nm, and particularly preferably in the range of 10 nm to 20 nm.
 発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。 For the production of the light-emitting layer, a light-emitting dopant or a host compound, which will be described later, is formed by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink-jet method. it can.
 本発明の有機EL素子の発光層には、少なくとも1種類の前記リン光発光性ナノ粒子を含有することが好ましい。また必要に応じて、一般によく知られた発光ドーパント(リン光発光性ドーパント(リン光発光性ドーパントともいう)や蛍光ドーパント等)、さらには後述する正孔輸送材料や電子輸送材料を混合して用いても良い。 The light emitting layer of the organic EL device of the present invention preferably contains at least one type of phosphorescent nanoparticle. If necessary, a well-known light-emitting dopant (phosphorescent dopant (also referred to as phosphorescent dopant) or fluorescent dopant), and further, a hole transport material or an electron transport material to be described later may be mixed. It may be used.
 (発光ドーパント)
 本発明に係る発光ドーパントについて説明する。
(Luminescent dopant)
The light emitting dopant according to the present invention will be described.
 本発明の有機エレクトロルミネッセンス素子に使用する発光材料は、好ましくは一般式(1)で表される化合物を加水分解し、次いで重合して得られたナノ粒子である。該ナノ粒子の平均粒径は1nm~100nm、好ましくは10nm~50nmである。平均粒形の揃った、均一なナノ粒子の作製に当たっては、マイクロ波照射下に前記加水分解及びそれに続く重合反応を実施することが好ましい。 The light emitting material used in the organic electroluminescence device of the present invention is preferably nanoparticles obtained by hydrolyzing the compound represented by the general formula (1) and then polymerizing it. The average particle diameter of the nanoparticles is 1 nm to 100 nm, preferably 10 nm to 50 nm. In order to produce uniform nanoparticles having a uniform average particle shape, it is preferable to carry out the hydrolysis and subsequent polymerization reaction under microwave irradiation.
 本発明の特徴は、前記一般式(1)で示される化合物、即ちナノ粒子発光ドーパント材料前駆体の加水分解、重合中にホスト材料を共存させることで、ホスト分子を内包させたナノ粒子を用いること、あるいは前記一般式(2)で表されるホスト化合物の前駆体、即ちナノ粒子発光ホスト材料前駆体の加水分解、重合中にドーパント材料を共存させることにより、ドーパント分子を内包させたナノ粒子を用いることにある。一般式(1)で示される化合物と通常のホスト分子を溶かした溶媒中で加水分解、重合を実施すること、あるいは一般式(2)で表されるホスト化合物の前駆体と通常のドーパント分子を溶かした溶媒中で加水分解、重合を実施すること、更には一般式(1)及び一般式(2)で表されるホスト化合物の前駆体を同時に加水分解、重合することで、目的とするナノ粒子発光材料を得ることができる。組成の一定した、均一なナノ粒子を作製できる点で、一般式(1)及び一般式(2)で表されるホスト化合物の前駆体を同時に加水分解、重合して作製したナノ粒子を用いることが好ましい。 A feature of the present invention is that the compound represented by the general formula (1), that is, nanoparticles containing a host molecule by using a host material during the hydrolysis and polymerization of the nanoparticle light-emitting dopant material precursor is used. Or nanoparticles containing a dopant molecule by coexisting a dopant material during hydrolysis and polymerization of a precursor of a host compound represented by the general formula (2), that is, a nanoparticle light-emitting host material precursor Is to use. Hydrolysis and polymerization are carried out in a solvent in which a compound represented by the general formula (1) and a normal host molecule are dissolved, or a precursor of a host compound represented by the general formula (2) and a normal dopant molecule By carrying out hydrolysis and polymerization in a dissolved solvent, and further simultaneously hydrolyzing and polymerizing the precursor of the host compound represented by the general formula (1) and the general formula (2), A particle-emitting material can be obtained. Using nanoparticles prepared by simultaneously hydrolyzing and polymerizing the precursors of the host compounds represented by the general formula (1) and the general formula (2) in that uniform nanoparticles having a constant composition can be prepared. Is preferred.
 (蛍光ドーパント(蛍光性化合物ともいう))
 蛍光ドーパント(蛍光性化合物)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
(Fluorescent dopant (also called fluorescent compound))
Fluorescent dopants (fluorescent compounds) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes Examples thereof include dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
 次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。 Next, an injection layer, a blocking layer, an electron transport layer, and the like used as a constituent layer of the organic EL element of the present invention will be described.
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. May be.
An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~10nmの範囲が好ましい。
The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 10 nm, depending on the material.
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。 The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
 また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。 Moreover, the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
 本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。 In the present invention, when a plurality of light emitting layers having different light emission colors are provided, the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers. In this case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode.
 更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。 Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
 イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。 The ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.
 (1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6-31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。 (1) A keyword using Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), which is molecular orbital calculation software manufactured by Gaussian, USA. The ionization potential can be obtained as a value obtained by rounding off the second decimal place of a value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.
 (2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC-1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。 (2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
 また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nm~100nmであり、更に好ましくは5nm~30nmである。 Moreover, the structure of the hole transport layer described later can be used as an electron blocking layer as necessary. The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
 更に、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Furthermore, polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。 Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
 本発明においては、より高性能の発光素子が得られることから、上記一般式(1)で表される重合性化合物又は該重合性化合物から導かれる構造単位を有する高分子化合物を含有する本発明の有機EL素子材料を用いることが好ましく、また、上記の材料を併用してもよい。 In the present invention, since a higher performance light emitting device can be obtained, the present invention contains a polymerizable compound represented by the general formula (1) or a polymer compound having a structural unit derived from the polymerizable compound. These organic EL element materials are preferably used, and the above materials may be used in combination.
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができるが、本発明においては塗布法(ウェットプロセス)により作製されることが好ましい。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。この正孔輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. However, in the present invention, it is preferably produced by a coating method (wet process). The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 nm to 200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
 以下、本発明の有機EL素子に係る正孔輸送層に用いられる正孔輸送材料の具体例を示すが本発明はこれらに限定されない。 Hereinafter, although the specific example of the hole transport material used for the hole transport layer which concerns on the organic EL element of this invention is shown, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層又は複数層設けることができる。
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. Any material may be used as long as it has a function of transferring electrons to the light-emitting layer, and any material can be selected from conventionally known compounds.
 例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。 Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
 更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Furthermore, in the above oxadiazole derivatives, thiadiazole derivatives in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as the electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。 Also, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material. The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
 電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。電子輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。 The film thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 nm to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use an electron transport layer having a high n property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be produced.
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
 このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。 Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
 また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。 Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. The anode may be formed by depositing a thin film of these electrode materials by vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used.
 この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm~1000nm、好ましくは10nm~200nmの範囲で選ばれる。 When light emission is taken out from the anode, it is desirable that the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
 《陰極》
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。 Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。 The sheet resistance as a cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm. In order to transmit the emitted light, if either the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In addition, a transparent or semi-transparent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。
《Support substrate》
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent.
 好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。 Preferred examples of the transparent support substrate that can be used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m・24h・MPa)以下、水蒸気透過度が、10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。 The surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ± 2)% RH) is preferably 0.01 g / (m 2 · 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987. A high barrier film having a permeability of 10 −3 ml / (m 2 · 24 h · MPa) or less and a water vapor permeability of 10 −5 g / (m 2 · 24 h) or less is preferable.
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。 The material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers.
 無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
 本発明の有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。 The external extraction efficiency at room temperature of light emission of the organic EL element of the present invention is preferably 1% or more, more preferably 5% or more.
 ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。 Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。 Also, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.
 《封止》
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
<Sealing>
As a sealing means used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。 The sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・MPa)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が1×10-3g/(m・24h)以下のものであることが好ましい。 In the present invention, a polymer film and a metal film can be preferably used because the element can be thinned. Furthermore, the polymer film has an oxygen permeability of 1 × 10 −3 ml / (m 2 · 24 h · MPa) or less measured by a method according to JIS K 7126-1987, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured in (1) is 1 × 10 −3 g / (m 2 · 24 h) or less.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。 Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
 また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 In addition, heat- and chemical-curing types (two-component mixing) such as epoxy type can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。 In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. . In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.
 これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザCVD法、熱CVD法、コーティング法等を用いることができる。 The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
 特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。 Particularly, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high. Therefore, it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said.
 これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。 This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。 As a method of improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No. 62-172691), a flat having a lower refractive index between the substrate and the light emitter than the substrate A method of introducing a layer (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283951) Gazette).
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。 In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。 In the present invention, by combining these means, it is possible to obtain an element having higher brightness or durability.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。 When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the efficiency of taking out the light from the transparent electrode to the outside increases as the refractive index of the medium decreases.
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。 Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
 また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。 Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
 全反射を起こす界面若しくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。 The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
 この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Of these, light that cannot go out due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (inside a transparent substrate or transparent electrode). I want to take it out.
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
 回折格子を導入する位置としては前述のとおり、いずれかの層間若しくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。
As described above, the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。 The arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
 《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
《Condensing sheet》
The organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface. By condensing in the front direction, the luminance in a specific direction can be increased.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。 As an example of the microlens array, a quadrangular pyramid having a side of 30 μm and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 μm to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。 As the condensing sheet, it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, the base material may be formed with a triangle stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。 Further, in order to control the light emission angle from the light emitting element, a light diffusion plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。 In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
 パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。 When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
 《表示装置》
 本発明の表示装置について説明する。本発明の表示装置は、本発明の有機EL素子を具備したものである。
<Display device>
The display device of the present invention will be described. The display device of the present invention comprises the organic EL element of the present invention.
 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。 The display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described. In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。 In the case of patterning only the light emitting layer, the method is not limited, but is preferably a vapor deposition method, an inkjet method, a spin coating method, or a printing method.
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。 The configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。 Moreover, the manufacturing method of an organic EL element is as having shown in the one aspect | mode of manufacture of the organic EL element of said this invention.
 得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。尚、印加する交流の波形は任意でよい。 When a DC voltage is applied to the obtained multicolor display device, light emission can be observed by applying a voltage of about 2V to 40V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。 The multicolor display device can be used as a display device, a display, and various light sources. In a display device or display, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。 Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。 Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. The present invention is not limited to these examples.
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。 Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
 図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。 FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。 The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
 制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。 The control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal. The image information is sequentially emitted to scan the image and display the image information on the display unit A.
 図2は表示部Aの模式図である。 FIG. 2 is a schematic diagram of the display unit A.
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。 The display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate. The main members of the display unit A will be described below.
 図においては、画素3の発光した光Lが白矢印方向(下方向)へ取り出される場合を示している。 In the figure, the light L emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。 The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not) When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。 A full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
 次に、画素の発光プロセスを説明する。 Next, the light emission process of the pixel will be described.
 図3は画素の模式図である。 FIG. 3 is a schematic diagram of a pixel.
 画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。 The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
 図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。 3, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
 画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
 即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。 That is, the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out. Such a light emitting method is called an active matrix method.
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサ13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。 Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good. The potential of the capacitor 13 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。 In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
 図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。 FIG. 4 is a schematic view of a passive matrix display device. In FIG. 4, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。 When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。 In the passive matrix method, there is no active element in the pixel 3, and the manufacturing cost can be reduced.
 《照明装置》
 本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。
 本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザ発振をさせることにより上記用途に使用してもよい。
《Lighting device》
The lighting device of the present invention will be described. The illuminating device of this invention has the said organic EL element.
The organic EL element of the present invention may be used as an organic EL element having a resonator structure. The purpose of use of the organic EL element having such a resonator structure is as follows. The light source of a machine, the light source of an optical communication processing machine, the light source of a photosensor, etc. are mentioned, However It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
 また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。 Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。また本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。 The drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors. The organic EL material of the present invention can be applied as an illumination device to an organic EL element that emits substantially white light. A plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing. The combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
 また複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and light from the light emitting material as excitation light. Any of those combined with a dye material that emits light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
 発光層、正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。 It is only necessary to provide a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, etc., and simply arrange them separately by coating with the mask. Since other layers are common, patterning of the mask or the like is not necessary. In addition, for example, an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved.
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。 According to this method, unlike the white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
 発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。 There is no restriction | limiting in particular as a luminescent material used for a light emitting layer, For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
 《本発明の照明装置の一態様》
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
<< One Embodiment of Lighting Device of the Present Invention >>
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。 The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a glass substrate having a thickness of 300 μm is used as a sealing substrate, and an epoxy-based photocurable adhesive (LUX TRACK manufactured by Toagosei Co., Ltd.) is used as a sealing material. LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, and an illumination device as shown in FIGS. Can be formed.
 図5は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(尚、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。 FIG. 5 shows a schematic diagram of a lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
 図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。尚、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 FIG. 6 shows a cross-sectional view of the lighting device. In FIG. 6, 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。尚、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, although an example explains the present invention, the present invention is not limited to these. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 合成例1(ナノ粒子発光材料:NP-1の調製)
 エチレングリコールジメチルエーテル(600ml)に、pre-CD-7(0.1mmol、155mg)及びpre-CHo-1(0.4mmol、289mg)を加え、続いて0.1M/l塩酸水溶液(0.5ml)を加え、33~36℃で1時間撹拌した。更に温度優先制御で140℃、500W、10分マイクロ波を照射した。得られた懸濁液を遠心分離により回収後、無水エタノールへの再分散、遠心分離を行い、上澄み液を除去する工程を3度繰り返すことで、平均粒径30nmのナノ粒子発光材料NP-1 178mgを得た。同様の手法により、下記表1に示すナノ粒子発光材料NP-2~NP-5を得た。
Synthesis Example 1 (Preparation of Nanoparticle Luminescent Material: NP-1)
To ethylene glycol dimethyl ether (600 ml), pre-CD-7 (0.1 mmol, 155 mg) and pre-CHo-1 (0.4 mmol, 289 mg) were added, followed by 0.1 M / l aqueous hydrochloric acid (0.5 ml). And stirred at 33-36 ° C. for 1 hour. Furthermore, 140 degreeC, 500W, and the microwave for 10 minutes were irradiated by temperature priority control. The obtained suspension is recovered by centrifugation, then re-dispersed in absolute ethanol, centrifuged, and the process of removing the supernatant is repeated three times to obtain a nanoparticle light-emitting material NP-1 having an average particle diameter of 30 nm. 178 mg was obtained. Nanoparticle light emitting materials NP-2 to NP-5 shown in Table 1 below were obtained by the same method.
Figure JPOXMLDOC01-appb-T000037
 合成例2(ナノ粒子発光材料:NP-6の調製)
 エチレングリコールジメチルエーテル(600ml)に、テトラメトキシシラン(1.0ml)及びpre-CD-7(0.1mmol、155mg)及びpre-CHo-1(0.4mmol、289mg)を加え、続いて0.1M/l塩酸水溶液(0.5ml)を加え、33~36℃で1時間撹拌した。更に温度優先制御で140℃、500W、10分マイクロ波を照射した。得られた懸濁液を遠心分離により回収後、無水エタノールへの再分散、遠心分離を行い、上澄み液を除去する工程を3度繰り返すことで、ナノ粒子発光材料NP-6 230mg(平均粒径35nm)を得た。
Figure JPOXMLDOC01-appb-T000037
Synthesis Example 2 (Preparation of nanoparticle luminescent material: NP-6)
To ethylene glycol dimethyl ether (600 ml) was added tetramethoxysilane (1.0 ml) and pre-CD-7 (0.1 mmol, 155 mg) and pre-CHo-1 (0.4 mmol, 289 mg) followed by 0.1M. / L hydrochloric acid aqueous solution (0.5 ml) was added, and the mixture was stirred at 33 to 36 ° C. for 1 hour. Furthermore, 140 degreeC, 500W, and the microwave for 10 minutes were irradiated by temperature priority control. The obtained suspension was collected by centrifugation, then redispersed in absolute ethanol, centrifuged, and the process of removing the supernatant was repeated three times to obtain 230 mg of nanoparticle luminescent material NP-6 (average particle size) 35 nm).
 合成例3(ナノ粒子発光材料:NP-7)
 エチレングリコールジメチルエーテル(200ml)に、pre-CHo-1(0.4mmol、289mg)及び前記PD-12(0.4mmol,390mg)を加え、続いて0.1M/l塩酸水溶液(0.5ml)を加え、33~36℃で1時間撹拌した。更に温度優先制御で140℃、500W、10分マイクロ波を照射した。得られた懸濁液を遠心分離により回収後、無水エタノールへの再分散、遠心分離を行い、上澄み液を除去する工程を3度繰り返すことで、ナノ粒子発光材料NP-7 190mg(平均粒径40nm)を得た。
Synthesis Example 3 (Nanoparticle Luminescent Material: NP-7)
Pre-CHo-1 (0.4 mmol, 289 mg) and the PD-12 (0.4 mmol, 390 mg) were added to ethylene glycol dimethyl ether (200 ml), followed by 0.1 M / l aqueous hydrochloric acid (0.5 ml). In addition, the mixture was stirred at 33 to 36 ° C. for 1 hour. Furthermore, 140 degreeC, 500W, and the microwave for 10 minutes were irradiated by temperature priority control. The obtained suspension was collected by centrifugation, then redispersed in absolute ethanol, centrifuged, and the process of removing the supernatant was repeated three times to obtain 190 mg of nanoparticle luminescent material NP-7 (average particle size) 40 nm).
 合成例4(ナノ粒子発光材料:NP-8)
 エチレングリコールジメチルエーテル(200ml)に、pre-CD-7(0.1mmol、155mg)及び前記OC-25(0.8mmol、460mg)を加え、続いて0.1M/l塩酸水溶液(0.5ml)を加え、33~36℃で1時間撹拌した。更に温度優先制御で140℃、500W、10分マイクロ波を照射した。得られた懸濁液を遠心分離により回収後、無水エタノールへの再分散、遠心分離を行い、上澄み液を除去する工程を3度繰り返すことで、ナノ粒子発光材料NP-8 190mg(平均粒径40nm)を得た。
Synthesis Example 4 (Nanoparticle Luminescent Material: NP-8)
Pre-CD-7 (0.1 mmol, 155 mg) and the OC-25 (0.8 mmol, 460 mg) were added to ethylene glycol dimethyl ether (200 ml), followed by 0.1 M / l hydrochloric acid aqueous solution (0.5 ml). In addition, the mixture was stirred at 33 to 36 ° C. for 1 hour. Furthermore, 140 degreeC, 500W, and the microwave for 10 minutes were irradiated by temperature priority control. The obtained suspension was collected by centrifugation, redispersed in absolute ethanol, centrifuged, and the process of removing the supernatant was repeated three times to obtain 190 mg of nanoparticle luminescent material NP-8 (average particle size) 40 nm).
 合成例5(比較ナノ粒子:CNP-1)
 合成例1において、pre-CHo-1を加えないこと以外は同様な操作により、比較ナノ粒子CNP-1を合成した(平均粒径45nm)。
Synthesis Example 5 (Comparative Nanoparticle: CNP-1)
Comparative nanoparticle CNP-1 was synthesized in the same manner as in Synthesis Example 1 except that pre-CHo-1 was not added (average particle size 45 nm).
 実施例1
 《有機EL素子1-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 1
<< Production of Organic EL Element 1-1 >>
Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate as a positive electrode on a 100 mm × 100 mm × 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。 On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. Then, the film was formed by spin coating and then dried at 200 ° C. for 1 hour to provide a 30 nm-thick hole transport layer.
 この正孔輸送層上に、前記OC-9 30mgと3.0mgのNP-1とをジクロロエタン3mlに溶解した溶液を、2000rpm、30秒の条件下、スピンコート法により製膜し、窒素下、120℃で1時間乾燥し、膜厚50nmの発光層とした。 On this hole transport layer, a solution prepared by dissolving 30 mg of OC-9 and 3.0 mg of NP-1 in 3 ml of dichloroethane was formed by spin coating under the condition of 2000 rpm for 30 seconds. It dried at 120 degreeC for 1 hour, and was set as the light emitting layer with a film thickness of 50 nm.
 この発光層上に、10mgのOC-103をヘキサフルオロイソプロパノール3mlに溶解した溶液を、1000rpm、30秒の条件下、スピンコート法により成膜した。 On this light emitting layer, a solution of 10 mg of OC-103 dissolved in 3 ml of hexafluoroisopropanol was deposited by spin coating under conditions of 1000 rpm and 30 seconds.
 120℃で1時間加熱乾燥し、膜厚20nmの電子輸送層を設け、これを真空蒸着装置に取付け、真空槽を4×10-4Paまで減圧した。 The film was dried by heating at 120 ° C. for 1 hour, an electron transport layer having a thickness of 20 nm was provided, this was attached to a vacuum deposition apparatus, and the vacuum chamber was depressurized to 4 × 10 −4 Pa.
 陰極バッファー層としてフッ化カリウム1nm及び陰極としてアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1-1を作製した。 A cathode was formed by vapor-depositing 1 nm of potassium fluoride as a cathode buffer layer and 110 nm of aluminum as a cathode to produce an organic EL device 1-1.
 《有機EL素子1-2~1-14の作製》
 有機EL素子1-1の作製において、ナノ粒子発光材料として用いたNP-1を表2に示す化合物に置き換えた以外は全く同様にして、有機EL素子1-2~1-14を作製した。
<< Preparation of organic EL elements 1-2 to 1-14 >>
Organic EL elements 1-2 to 1-14 were prepared in exactly the same manner as in the preparation of organic EL element 1-1 except that NP-1 used as the nanoparticle light-emitting material was replaced with the compounds shown in Table 2.
Figure JPOXMLDOC01-appb-T000038
 得られた有機EL素子1-1~1-14の各々について、酸素や水等の外的要因の影響を明らかにするために、封止環境と素子の耐久性(発光寿命)について詳細な検討を行った。
Figure JPOXMLDOC01-appb-T000038
In order to clarify the influence of external factors such as oxygen and water on each of the obtained organic EL devices 1-1 to 1-14, detailed examination of the sealing environment and the durability (light emission lifetime) of the device Went.
 具体的には、得られた有機EL素子1-1~1-14、及び非発光面をガラスケースで覆い、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)で封止を行った。 Specifically, the obtained organic EL elements 1-1 to 1-14 and the non-light-emitting surface are covered with a glass case, and sealed with an epoxy-based photo-curing adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.). It was.
 この封止を行う際に使用したグローブボックスの環境(水分濃度及び酸素濃度)を表3に記載のように変化させた際の素子の発光寿命の関係について測定を行った。 The relationship of the light emission lifetime of the device was measured when the environment (water concentration and oxygen concentration) of the glove box used for this sealing was changed as shown in Table 3.
Figure JPOXMLDOC01-appb-T000039
 表3に示したグローブボックス環境における、有機EL素子1-1~1-14の発光寿命は以下のようにして測定、評価を行った。
Figure JPOXMLDOC01-appb-T000039
The light emission lifetimes of the organic EL elements 1-1 to 1-14 in the glove box environment shown in Table 3 were measured and evaluated as follows.
 《発光寿命》
 23℃、2.5mA/cmの一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間(τ0.5)として寿命の指標とした。
<Luminescent life>
When driving at 23 ° C. and a constant current of 2.5 mA / cm 2 , the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance) was measured, and this was calculated as the half-life time (τ0 .5) was used as an index of life.
 尚、測定には同様に分光放射輝度計CS-1000(コニカミノルタセンシング製)を用いた。 For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) was used in the same manner.
 得られた結果を以下、表4に示す。尚、表中の寿命は素子No.1-11の条件Aでの発光寿命を100とする相対値で示した。 The results obtained are shown in Table 4 below. The lifetime in the table is the element No. The light emission lifetime under the condition A of 1-11 is shown as a relative value where the lifetime is 100.
Figure JPOXMLDOC01-appb-T000040
 表4から明らかなように、ナノ粒子を用いていない素子No.1-11,1-12に比較して本発明の素子は封止環境の影響を受け難いことが分かる。ドーパントのみをナノ粒子化した、比較素子No.1-13、1-14のうち、No.1-13では発光層中にホスト材料が含まれていないため、発光が認められなかった。比較素子No.1-14では本発明の素子と略同様に封止環境の影響を受け難かったが、後述する実施例2で本発明との差異が明らかなる。
Figure JPOXMLDOC01-appb-T000040
As is apparent from Table 4, the element No. using no nanoparticles was used. It can be seen that the device of the present invention is less affected by the sealing environment than 1-11, 1-12. Comparative element No. in which only the dopant was made into nanoparticles. No. 1-13 and 1-14 In No. 1-13, no light emission was observed because the host material was not contained in the light emitting layer. Comparative element No. 1-14 was hardly affected by the sealing environment in the same manner as the element of the present invention, but the difference from the present invention becomes clear in Example 2 described later.
 実施例2
 《有機EL素子1-1′~1-14′の作製》
 実施例1において発光層及び電子輸送層の乾燥条件を各々120℃で1時間から、100℃30分に変更した以外は同様にして、有機EL素子1-1′~1-14′を作製した。
Example 2
<< Production of Organic EL Elements 1-1 'to 1-14'>>
Organic EL devices 1-1 ′ to 1-14 ′ were produced in the same manner as in Example 1 except that the drying conditions of the light emitting layer and the electron transport layer were changed from 120 ° C. for 1 hour to 100 ° C. for 30 minutes. .
 得られた有機EL素子1-1′~1-14′を実施例1の表3に示すグローブボックス環境条件Aの条件で、封止発光寿命を測定した。実施例1の環境条件Aのサンプルの寿命との比を相対素子寿命として、下記表5に示す。 The obtained organic EL elements 1-1 ′ to 1-14 ′ were measured for the sealed emission lifetime under the conditions of the glove box environmental condition A shown in Table 3 of Example 1. Table 5 below shows the ratio of the life of the sample of the environmental condition A in Example 1 to the life of the relative element.
 素子1-1の相対素子寿命=(素子1-1′の素子寿命/素子1-1の素子寿命)×100
Figure JPOXMLDOC01-appb-T000041
 表5から明らかなように、本発明のサンプルは乾燥条件の違いによる影響を受け難く、低温短時間で乾燥を行うことができる。
Relative element lifetime of element 1-1 = (element lifetime of element 1-1 ′ / element lifetime of element 1-1) × 100
Figure JPOXMLDOC01-appb-T000041
As is apparent from Table 5, the sample of the present invention is not easily affected by the difference in drying conditions, and can be dried at a low temperature in a short time.
 実施例3
 外部取り出し量子効率の評価
 実施例1と同様に作製した素子1-1から1-14を、表3の封止条件C(水分濃度1ppm、酸素濃度5ppm)を用いて封止し、外部取り出し量子効率を測定した。
Example 3
Evaluation of External Extraction Quantum Efficiency Devices 1-1 to 1-14 produced in the same manner as in Example 1 were sealed using the sealing condition C (water concentration 1 ppm, oxygen concentration 5 ppm) shown in Table 3 to obtain external extraction quantum. Efficiency was measured.
 (外部取り出し量子効率)
 各素子について、23℃、2.5mA/cm定電流を印加した時の外部取り出し量子効率(%)を測定した。尚、測定には分光放射輝度計CS-1000(コニカミノルタセンシング製)を用いた。
(External quantum efficiency)
For each device, the external extraction quantum efficiency (%) when a constant current of 2.5 mA / cm 2 was applied at 23 ° C. was measured. For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) was used.
 得られた結果を表6に示す。尚、外部取り出し量子効率、発光寿命の測定結果は、有機EL素子1-11を100とした時の相対評価で行った。 Table 6 shows the obtained results. The measurement results of the external extraction quantum efficiency and the light emission lifetime were evaluated by relative evaluation with the organic EL element 1-11 as 100.
Figure JPOXMLDOC01-appb-T000042
 表6から、本発明に係るナノ粒子発光材料は、比較的簡便な封止環境においても、外部取り出し量子効率を維持した。
Figure JPOXMLDOC01-appb-T000042
From Table 6, the nanoparticle light-emitting material according to the present invention maintained the external extraction quantum efficiency even in a relatively simple sealing environment.
 これにより、これまで大きな懸念点であった外的要因(酸素や水)からの影響や乾燥条件の影響に対して強い有機EL素子を製造することが可能となり、製造プロセスの簡便化に繋がることが明らかである。 This makes it possible to manufacture an organic EL element that is strong against the influence of external factors (oxygen and water), which has been a major concern, and the influence of drying conditions, leading to simplification of the manufacturing process. Is clear.
 実施例4
 《フルカラー表示装置の作製》
 (ナノ粒子発光材料:NP-9、10の調製)
 合成例1で示したNP-1に準拠し、下表7に示すナノ粒子発光材料NP-9、10を調製した。
Example 4
<Production of full-color display device>
(Preparation of nanoparticle luminescent material: NP-9, 10)
Based on NP-1 shown in Synthesis Example 1, nanoparticle light-emitting materials NP-9 and 10 shown in Table 7 below were prepared.
Figure JPOXMLDOC01-appb-T000043
 (青色発光有機EL素子)
 実施例1で作製した有機EL素子1-1を用いた。
Figure JPOXMLDOC01-appb-T000043
(Blue light emitting organic EL device)
The organic EL element 1-1 produced in Example 1 was used.
 (緑色発光有機EL素子)
 実施例1で作製した有機EL素子1-1に準拠し、ナノ粒子発光材料をNP-1からNP-9に変更した以外は同様にして緑色発光有機EL素子を作製した。
(Green light-emitting organic EL device)
A green light-emitting organic EL device was prepared in the same manner as in Example 1 except that the nanoparticle light-emitting material was changed from NP-1 to NP-9 in accordance with the organic EL device 1-1 produced in Example 1.
 (赤色発光有機EL素子)
 実施例1で作製した有機EL素子1-1に準拠し、ナノ粒子発光材料をNP-1からNP-10に変更した以外は同様にして緑色発光有機EL素子を作製した。
(Red light emitting organic EL device)
A green light-emitting organic EL device was prepared in the same manner as in Example 1 except that the nanoparticle light-emitting material was changed from NP-1 to NP-10 in accordance with the organic EL device 1-1 produced in Example 1.
 上記の赤色、緑色及び青色発光有機EL素子を、同一基板上に並置し、図1に記載の形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図2には、作製した前記表示装置の表示部Aの模式図のみを示した。 The red, green and blue light-emitting organic EL elements are juxtaposed on the same substrate to produce an active matrix type full-color display device having the form shown in FIG. 1, and FIG. 2 shows the display of the produced display device. Only the schematic diagram of part A is shown.
 即ち、同一基板上に、複数の走査線5及びデータ線6を含む配線部と、並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。 That is, a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of juxtaposed pixels 3 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) The scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a lattice shape and are connected to the pixels 3 at the orthogonal positions ( Details are not shown).
 この様に各赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。 In this way, a full color display device was produced by juxtaposing the red, green, and blue pixels appropriately.
 該フルカラー表示装置を駆動することにより、発光効率が高い発光寿命の長いフルカラー動画表示が得られることを確認することができた。 It was confirmed that by driving the full-color display device, a full-color moving image display having a high luminous efficiency and a long light emission life can be obtained.
 実施例5
 《白色発光照明装置の作製》
 実施例1で作製した有機EL素子1-1の作製において、NP-1をNP-1、NP-9、NP-10の混合物に変更した以外は同様して、白色発光有機EL素子1-1Wを作製した。
Example 5
《Preparation of white light emitting lighting device》
In the production of the organic EL device 1-1 produced in Example 1, the white light-emitting organic EL device 1-1W was similarly performed except that NP-1 was changed to a mixture of NP-1, NP-9, and NP-10. Was made.
 得られた有機EL素子1-1Wを、前述のように非発光面をガラスケースで覆い、照明装置とした。照明装置は、発光効率が高く発光寿命の長い白色光を発する薄型の照明装置として使用することができた。 The obtained organic EL element 1-1W was covered with a glass case on the non-light emitting surface as described above to obtain a lighting device. The illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサ
L 光
A 表示部
B 制御部
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor L Light A Display part B Control part 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 With a transparent electrode Glass substrate 108 Nitrogen gas 109 Water trapping agent

Claims (8)

  1.  陽極と陰極の間に挟持された少なくとも一層の有機化合物層を有する有機エレクトロルミネッセンス素子において、該有機化合物層の少なくとも1層はナノ粒子を含有し、かつ、該ナノ粒子は、発光ドーパント化合物と、リン光の0-0バンドが460nm以下の発光ホスト化合物とを含有することを特徴とする有機エレクトロルミネッセンス素子。 In an organic electroluminescence device having at least one organic compound layer sandwiched between an anode and a cathode, at least one layer of the organic compound layer contains nanoparticles, and the nanoparticles include a light-emitting dopant compound, An organic electroluminescence device comprising a phosphorescent host compound having a 0-0 band of phosphorescence of 460 nm or less.
  2.  前記発光ドーパント化合物が、下記一般式(1)で表される化合物を加水分解し、次いで重合して得られたナノ粒子であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
     〔式中、P、Qは、各々炭素原子又は窒素原子を表し、A1は、P-C(Cは炭素原子を表す)と共に芳香族炭化水素環又は芳香族複素環を形成するのに必要な原子群を表す。A2は、Q-N(Nは窒素原子を表す)と共に芳香族複素環を形成するのに必要な原子群を表す。P1-L1-P2は2座の配位子を表し、P1、P2は各々独立に炭素原子、窒素原子又は酸素原子を表す。L1はP1、P2と共に2座の配位子を形成するのに必要な原子群を表す。rは1~3の整数を表し、sは0~2の整数を表すが、r+sは2又は3である。Mは元素周期表における8族~10族の遷移金属元素を表す。X及びXはそれぞれ独立に加水分解し、次いで重合可能な官能基を有する残基を表し、それぞれ同じであっても異なっていてもよい。a及びbは0又は1以上の整数を表すが、a及びbが同時に0となることはない。〕
    2. The organic electroluminescence device according to claim 1, wherein the light-emitting dopant compound is a nanoparticle obtained by hydrolyzing a compound represented by the following general formula (1) and then polymerizing the compound.
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, P and Q each represent a carbon atom or a nitrogen atom, and A1 is necessary for forming an aromatic hydrocarbon ring or an aromatic heterocycle together with PC (C represents a carbon atom). Represents an atomic group. A2 represents an atomic group necessary for forming an aromatic heterocyclic ring together with QN (N represents a nitrogen atom). P1-L1-P2 represents a bidentate ligand, and P1 and P2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom. L1 represents an atomic group necessary for forming a bidentate ligand together with P1 and P2. r represents an integer of 1 to 3, s represents an integer of 0 to 2, and r + s is 2 or 3. M 1 represents a group 8-10 transition metal element in the periodic table. X 1 and X 2 each independently represent a residue having a polymerizable functional group that is hydrolyzed and then may be the same or different. a and b represent 0 or an integer of 1 or more, but a and b are not 0 at the same time. ]
  3.  前記発光ホスト化合物が、下記一般式(2)で表されるホスト化合物の前駆体を加水分解し、次いで重合して得られたナノ粒子であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Aは、N(R)、酸素原子、硫黄原子又はSi(R)(R)を表し、B~Bは、各々CR又はN原子を表す。R~Rは、各々水素原子又は置換基を表し、RとR、及び隣接するR同士が結合して環を形成しても良い。B~Bのうち複数の箇所がCRである場合、各々のRは、同一でも、異なっていても良い。Jは2価の連結基を表し、Rはアルキル基を表す。Y2は単なる結合手又は2価の連結基を表す。Y3及びY4は、各々5員又は6員の芳香族環から導出される基を表し、少なくとも一方は環構成原子として窒素原子を含む芳香族複素環から導出される基を表す。n2は1~4の整数を表す。)
    The said luminescent host compound is a nanoparticle obtained by hydrolyzing the precursor of the host compound represented by following General formula (2), and superposing | polymerizing then, It is characterized by the above-mentioned. Organic electroluminescence device.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, A, N (R 1), an oxygen atom, a sulfur atom or a Si (R 2) (R 3 ), B 1 ~ B 8 each represents a CR 4 or N atoms .R 1 ~ R 4 represents a hydrogen atom or a substituent, and R 2 and R 3 , and adjacent R 4 may be bonded to each other to form a ring, and a plurality of positions among B 1 to B 8 are CR 4 And each R 4 may be the same or different, J represents a divalent linking group, R represents an alkyl group, and Y2 represents a simple bond or a divalent linking group. Y3 and Y4 each represents a group derived from a 5-membered or 6-membered aromatic ring, and at least one represents a group derived from an aromatic heterocycle containing a nitrogen atom as a ring-constituting atom. Represents an integer of 4.)
  4.  前記一般式(1)で表される化合物及び、前記一般式(2)で表されるホスト化合物の前駆体を、同時に加水分解し、次いで重合して得られたナノ粒子発光材料を含有することを特徴とする請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。 Containing a nanoparticle light-emitting material obtained by simultaneously hydrolyzing and then polymerizing the compound represented by the general formula (1) and the host compound precursor represented by the general formula (2). The organic electroluminescence device according to any one of claims 1 to 3, wherein:
  5.  前記ナノ粒子が、マイクロ波照射下で加水分解し、次いで重合して得られたナノ粒子であることを特徴とする請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 4, wherein the nanoparticles are nanoparticles obtained by hydrolysis under microwave irradiation and then polymerization.
  6.  前記ナノ粒子を発光層に含有することを特徴とする請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to claim 1, wherein the light emitting layer contains the nanoparticles.
  7.  請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。 An illumination device comprising the organic electroluminescent element according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 1 to 6.
PCT/JP2011/075246 2010-11-11 2011-11-02 Organic electroluminescent element, illumination device, and display device WO2012063690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012542879A JP5708656B2 (en) 2010-11-11 2011-11-02 Organic electroluminescence element, lighting device and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010252657 2010-11-11
JP2010-252657 2010-11-11
JP2011009508 2011-01-20
JP2011-009508 2011-04-25

Publications (1)

Publication Number Publication Date
WO2012063690A1 true WO2012063690A1 (en) 2012-05-18

Family

ID=46050840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075246 WO2012063690A1 (en) 2010-11-11 2011-11-02 Organic electroluminescent element, illumination device, and display device

Country Status (2)

Country Link
JP (1) JP5708656B2 (en)
WO (1) WO2012063690A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179842A (en) * 2014-02-28 2015-10-08 国立研究開発法人理化学研究所 Fluid dispersion containing light-emitting particle and its utilization
JP2015534211A (en) * 2012-08-29 2015-11-26 ドンジン セミケム カンパニー リミテッド White light emitting quantum dots
JP2018150245A (en) * 2017-03-10 2018-09-27 国立大学法人群馬大学 Novel iridium complex, oxygen concentration measurement reagent, oxygen concentration measuring method, and synthetic intermediate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314689A (en) * 2004-03-31 2005-11-10 Sumitomo Chemical Co Ltd Polymer complex compound and polymer luminescent element using the same
WO2006129471A1 (en) * 2005-05-31 2006-12-07 Konica Minolta Holdings, Inc. Material for organic electroluminescence device, organic electroluminescence device, process for producing organic electroluminescence device, lighting installation and display unit
JP2007266243A (en) * 2006-03-28 2007-10-11 Canon Inc Organic light emitting element
JP2007288035A (en) * 2006-04-19 2007-11-01 Konica Minolta Holdings Inc Organic electroluminescence element, material thereof, display, and illumination apparatus
WO2008053935A1 (en) * 2006-11-01 2008-05-08 Showa Denko K.K. Cyclic siloxane compound, organic electroluminescent element, and use thereof
WO2008073440A2 (en) * 2006-12-08 2008-06-19 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
WO2009064661A1 (en) * 2007-11-15 2009-05-22 Nitto Denko Corporation Light emitting devices and compositions
JP2010532423A (en) * 2007-07-05 2010-10-07 日東電工株式会社 Light emitting device and light emitting composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314689A (en) * 2004-03-31 2005-11-10 Sumitomo Chemical Co Ltd Polymer complex compound and polymer luminescent element using the same
WO2006129471A1 (en) * 2005-05-31 2006-12-07 Konica Minolta Holdings, Inc. Material for organic electroluminescence device, organic electroluminescence device, process for producing organic electroluminescence device, lighting installation and display unit
JP2007266243A (en) * 2006-03-28 2007-10-11 Canon Inc Organic light emitting element
JP2007288035A (en) * 2006-04-19 2007-11-01 Konica Minolta Holdings Inc Organic electroluminescence element, material thereof, display, and illumination apparatus
WO2008053935A1 (en) * 2006-11-01 2008-05-08 Showa Denko K.K. Cyclic siloxane compound, organic electroluminescent element, and use thereof
WO2008073440A2 (en) * 2006-12-08 2008-06-19 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
JP2010532423A (en) * 2007-07-05 2010-10-07 日東電工株式会社 Light emitting device and light emitting composition
WO2009064661A1 (en) * 2007-11-15 2009-05-22 Nitto Denko Corporation Light emitting devices and compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OK-HEE KIM ET AL.: "Excellent Photostability of Phosphorescent Nanoparticles and Their Application as a Color Converter in Light Emitting Diodes", ACS NANO, vol. 4, no. 6, 20 May 2010 (2010-05-20), pages 3397 - 3405 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534211A (en) * 2012-08-29 2015-11-26 ドンジン セミケム カンパニー リミテッド White light emitting quantum dots
JP2015179842A (en) * 2014-02-28 2015-10-08 国立研究開発法人理化学研究所 Fluid dispersion containing light-emitting particle and its utilization
JP2018150245A (en) * 2017-03-10 2018-09-27 国立大学法人群馬大学 Novel iridium complex, oxygen concentration measurement reagent, oxygen concentration measuring method, and synthetic intermediate

Also Published As

Publication number Publication date
JPWO2012063690A1 (en) 2014-05-12
JP5708656B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5604848B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
JP5765223B2 (en) MANUFACTURING METHOD FOR ORGANIC ELECTROLUMINESCENT ELEMENT, AND LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED WITH ORGANIC ELECTROLUMINESCENT ELEMENT
JP6206485B2 (en) Metal complex composition for organic electroluminescence, organic electroluminescence element, lighting device and display device
JP6015451B2 (en) Organic electroluminescence element, lighting device and display device
JP6085985B2 (en) ORGANIC METAL COMPLEX, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
JP5163642B2 (en) Organic electroluminescence device
JP2010021336A (en) Organic electroluminescence device, illuminator, and display device
JP6056884B2 (en) Method for manufacturing organic electroluminescence device
JPWO2008090795A1 (en) Organic electroluminescence element, display device and lighting device
JP5692011B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, AND LIGHTING DEVICE
JP5569531B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE
JP5652083B2 (en) Organic electroluminescence element, display device and lighting device
JP5659819B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2010238880A (en) Organic electroluminescent material, organic electroluminescent element, blue phosphorescence light emitting element, display, and lighting device
JP2012099515A (en) Organic electroluminescent element material, organic electroluminescent element and manufacturing method thereof, display, and luminaire
JP5609761B2 (en) Ptycene-based compound, organic electroluminescence device and lighting device
JP5218185B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME
JP6011535B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, DISPLAY DEVICE, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP5556602B2 (en) Material for organic electronics element, organic electronics element, lighting device and display device
WO2017119200A1 (en) Organic metal complex, organic electroluminescent element, method for manufacturing same, display device and lighting device
JP6631034B2 (en) Organic electroluminescent element material, organic electroluminescent element, and organometallic complex
JP5708656B2 (en) Organic electroluminescence element, lighting device and display device
JPWO2014157268A1 (en) Organic electroluminescence element, lighting device and display device
JP5552268B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, LIGHTING DEVICE, AND DISPLAY DEVICE
JP5920222B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, METHOD FOR MANUFACTURING THE SAME, LIGHTING DEVICE, DISPLAY DEVICE, AND PRECURSOR OF LIGHT EMITTING DOPANT MATERIAL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012542879

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840125

Country of ref document: EP

Kind code of ref document: A1