WO2012063668A1 - Laser machining method and laser machining device - Google Patents

Laser machining method and laser machining device Download PDF

Info

Publication number
WO2012063668A1
WO2012063668A1 PCT/JP2011/075039 JP2011075039W WO2012063668A1 WO 2012063668 A1 WO2012063668 A1 WO 2012063668A1 JP 2011075039 W JP2011075039 W JP 2011075039W WO 2012063668 A1 WO2012063668 A1 WO 2012063668A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
cutting
workpiece
machining
closed path
Prior art date
Application number
PCT/JP2011/075039
Other languages
French (fr)
Japanese (ja)
Inventor
増田 健司
Original Assignee
株式会社 アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アマダ filed Critical 株式会社 アマダ
Publication of WO2012063668A1 publication Critical patent/WO2012063668A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a laser processing method and a laser processing apparatus for cutting a steel plate into an annular shape with a laser.
  • a laser beam is radiated to the processing position of the work and an assist gas is injected.
  • the cut-out piece [blanked] piece] may be inclined at the processing end position, and the inclined cut-out piece is melted by the laser and the melt adheres to the inner peripheral surface of the cut-out hole [blanked hole], or the inclined cut-out piece As a result, the laser beam is reflected and the inner peripheral surface is melted to form a recess (for example, Patent Document 1 or 2 below).
  • Patent Document 1 discloses an apparatus (method) for performing a secondary process of cutting and removing a projecting part after performing a primary process of cutting a workpiece so as to form a projecting part on an inner peripheral surface of a cutout hole. ing.
  • the primary processing described above is completed at the position of the protrusion, adhesion of the melt to the inner peripheral surface and formation of the recess are formed in the protrusion that will be cut off later. Accordingly, it is possible to finally prevent the melt from being attached to the inner peripheral surface of the cut-out hole and the formation of a recess.
  • Patent Document 2 laser cutting is started from the start position, cutting is performed along the closed path, the cutting start position is returned again, and the cutting start position is passed by a distance corresponding to the melting delay of the lower surface with respect to the upper surface of the workpiece.
  • An apparatus (method) for sometimes stopping laser irradiation is disclosed. Since the laser irradiation is stopped when the cutting of the melting delay portion is completed, the adhesion of the melt and the formation of the concave portion on the inner peripheral surface as described above are suppressed.
  • an object of the present invention is to produce a product without causing adhesion of melt or formation of recesses on the inner peripheral surface of the cut closed path when the workpiece is laser cut along the closed path. It is an object to provide a laser processing method and a laser processing apparatus that can improve efficiency.
  • a first feature of the present invention is a laser processing method in which oxygen gas is used as an assist gas to perform laser cutting along a closed path of a steel sheet, and the position reached from the piercing position to the closed path to be cut Is a position A, a position a predetermined distance from the A position in the advancing direction of the cutting process is a B position, and a position a predetermined distance from the A position to the direction opposite to the advancing direction is a C position.
  • Laser cutting and cutting from the A position through the B position to the C position at the time of cutting from the C position to the B position through the A position after cutting from the position to the C position through the B position The laser output is reduced with respect to the speed, and the cutting speed is lowered to perform the cutting process from the C position to the B position through the A position, and the laser output is made zero at the B position.
  • the laser output is controlled to be small and the cutting speed is controlled to be low before reaching the start position after starting laser cutting. Therefore, even when the cutting position reaches the start position again and the cutout piece is inclined, the irradiation energy of the laser light is reduced, so that adhesion of the melt to the inner peripheral surface and formation of the recess can be suppressed.
  • the assist gas it is preferable to switch the assist gas to air, nitrogen gas, or a mixed gas in which at least one of air or nitrogen gas is mixed with oxygen gas at the position C.
  • the second feature of the present invention is a laser processing apparatus, a laser oscillator, a laser processing head for condensing laser light and irradiating a work, and an assist gas supply unit for supplying an assist gas to the laser processing head
  • a control unit that controls a laser output of the laser oscillator and a relative moving speed of the laser processing head with respect to the workpiece, and the laser cutting along the closed path by using oxygen as an assist gas.
  • a machining condition table that stores in advance machining conditions in the cutting end region of the closed path corresponding to the material and thickness of the workpiece, and a machining that is applied from the machining condition table corresponding to the material and thickness of the workpiece to be machined
  • a search unit that searches for a condition, and the control unit is configured to search for a previous position in the cutting end region based on a search result of the search unit. Controlling the laser output and the moving speed, to provide a laser machining apparatus.
  • the laser output and the cutting speed in the cutting end region of the closed path are controlled by the control unit. Therefore, even if the cutting position reaches the start position again and the cut piece is inclined, the laser beam irradiation energy can be controlled to suppress the adhesion of the melt to the inner peripheral surface and the formation of the recess.
  • the third feature of the present invention is a laser processing apparatus, a laser oscillator, a laser processing head for condensing laser light and irradiating a work, and an assist gas supply unit for supplying an assist gas to the laser processing head
  • a control unit for controlling the laser output of the laser oscillator and the relative moving speed of the laser processing head with respect to the workpiece, and when cutting the laser along the closed path using oxygen as an assist gas
  • a memory for storing the processing conditions in the cutting end region of the closed path in correspondence with the material and thickness of the workpiece, and an input unit for inputting the processing conditions in the cutting end region to the memory.
  • the control unit based on the processing conditions in the cutting end area input to the memory, the cutting end area in the cutting end area Controlling the over The output and the moving speed, to provide a laser machining apparatus.
  • the laser output and the cutting speed in the cutting end region of the closed path are controlled by the control unit based on the input processing conditions. Therefore, even if the cutting position reaches the start position again and the cut piece is inclined, the laser beam irradiation energy can be controlled to suppress the adhesion of the melt to the inner peripheral surface and the formation of the recess.
  • the laser processing apparatus 1 of the present embodiment cuts a thick steel plate (workpiece) W having a plate thickness of about 16.0 mm to 25.0 mm, for example.
  • the laser processing apparatus 1 includes a laser processing head 7 that condenses the laser beam LB oscillated from the laser oscillator 3 by a built-in condensing lens 5 and irradiates the workpiece W.
  • the laser processing head 7 is movable relative to the workpiece W in the X, Y, and Z axis directions.
  • An assist gas supply unit 9 for injecting an assist gas to the workpiece W at the time of laser cutting of the workpiece W is connected to the laser processing head 7.
  • the assist gas supply unit 9 includes an oxygen supply unit [oxygen supplier] 11 such as an oxygen cylinder storing high-purity oxygen of 99.99% or more as an assist gas and a nitrogen gas supply unit [nitrogen] that supplies a nitrogen gas as an assist gas. gad supplier] 13. Furthermore, the assist gas supply unit 9 is also provided with an air supply unit [air supplier] 15 for supplying air as assist gas.
  • the oxygen supply unit 11, the nitrogen gas supply unit 13, and the air supply unit 15 are connected to the connection path 17 of the laser processing head 7 via control valves 11V, 13V, and 15V, respectively.
  • the control valves 11V, 13V, and 15V are, for example, known electromagnetic proportional valves.
  • the control valves 11V, 13V, and 15V can communicate / shut off the gas flow through the connection path 17, and can control the flow rate of the gas flow.
  • oxygen, nitrogen gas, or air can be individually supplied as an assist gas, and a mixed gas in which two or more of oxygen, nitrogen gas, and air are mixed can also be supplied. it can.
  • the laser processing apparatus 1 controls the operation of the output of the laser oscillator 3, the servo motors M for moving the laser processing head 7 in the X, Y, and Z axis directions, and the control valves 11V, 13V, and 15V.
  • a controller 19 is provided.
  • the control unit 19 is, for example, a CNC control device, and includes a CPU 20, a ROM 21, a RAM 23, an input unit [input part] 25, a display unit [display] 27, and a memory 39 as shown in FIG. 2.
  • the control unit 19 also includes a machining condition table 29 that stores machining conditions for a cutting end region, which will be described later. Note that the processing condition table 29 may be stored in the ROM 21, RAM 23, memory 29, or the like.
  • a predetermined position that has advanced from the A position in the cutting direction is defined as the B position.
  • the distance between the A position and the B position is a distance corresponding to the melting delay of the lower surface (back surface) with respect to the upper surface (front surface) when cutting the workpiece W, and is appropriate by performing the cutting processing on a trial basis.
  • a correct value is set.
  • a predetermined position that has advanced from the A position in the opposite direction to the aforementioned traveling direction is defined as a C position.
  • the C position is set in advance corresponding to the material and thickness of the workpiece W, and is set to an appropriate position by performing a cutting process on a trial basis.
  • the machining condition table 29 includes a first machining condition table 29A and a second machining table 29B.
  • the first machining condition table 29A includes general machining conditions (piercing time, laser cutting speed, output / frequency / duty of the laser oscillator 3) when cutting from the P position to the C position through the A position and the B position. Ratio, gas pressure of oxygen as an assist gas, etc.) are stored.
  • machining conditions laser cutting speed, output / frequency / duty ratio of the laser oscillator 3, duty ratio, etc.
  • the control unit 19 includes a retrieval unit [retriever] 31 for retrieving an appropriate machining condition from the machining condition table 29 corresponding to the material and thickness of the workpiece W input from the input unit 25 such as a keyboard. .
  • the control unit 19 also has a laser output control unit 33 that controls the output of the laser oscillator 3 based on the processing conditions searched by the search unit 31, and a relative movement speed of the laser processing head 7 with respect to the workpiece W (laser cutting).
  • a cutting speed control unit 35 for controlling the speed) and a valve control unit 37 for controlling the type and gas pressure of the assist gas of the assist gas supply unit 9.
  • FIG. 5 shows processing data indicating the shape and coordinates of the product WA when the product is a product WA having a shape as shown in FIG.
  • the annular hole HA is circular
  • (E001) designates the distance from C to A of the cutting end region.
  • (G112X15Y10I10L4) designates the processing content.
  • (G112) indicates a circle
  • (X15Y10) indicates a coordinate
  • (I10) indicates a radius.
  • (L4) indicates that the machining conditions for the cutting end region are stored in the second machining condition table 29B.
  • the hole HB has a polygonal shape
  • (E002) designates the distance from C to A of the cutting end region.
  • the code (G101X50Y10L4) designates the processing content.
  • (G101) indicates a polygonal shape
  • (X50Y10) indicates coordinates.
  • (L4) indicates that the machining conditions for the cutting end region are stored in the second machining condition table 29B.
  • (E003) and (G111X90Y30I40J25R3K-90L4) are designated for the hole HC.
  • (E004) designates the distance C to A in the cutting end region. However, since it is the cutting process of the outer shape of the entire product WA, the specification of the processing condition of the cutting end region in (L4) is omitted.
  • the above-mentioned codes G111, G112, and G101 are codes set in advance corresponding to the shape of the hole when the hole is cut by the closed path.
  • the above-mentioned E001, E002, E003, E004,... Are the machining condition change positions when the cut pieces in the holes HA, HB, HC from the product WA are cut off or the product WA is cut off from the workpiece W.
  • This is a code for setting (C position: change position from normal machining condition to cutting end region machining condition). That is, preset E001, E002,... Are appropriately designated in accordance with the material and thickness of the workpiece W, and the shapes and dimensions of the holes HA, HB, HC and the product WA, and the A position from the C position. The dimension to the position is set.
  • the material and thickness of the workpiece W and the machining data input from the input unit 25 are stored in the memory 39 of the control unit 19. Then, an appropriate machining condition is retrieved from the first and second machining condition tables 29A and 29B of the machining condition table 29 by the search unit 31. The input value and input data, and the searched processing conditions are displayed on the display unit 27.
  • the processing conditions in the normal region from the P position to the C position through the A and B positions are set to a cutting speed of 800 mm / min.
  • the output 4000 W, the frequency 700 Hz, the duty ratio 70%, the selection of oxygen as the assist gas, and the gas pressure 0.07 MPa are retrieved from the first machining condition table 29A and set.
  • the cutting speed is 100 mm / min
  • the output of the laser oscillator 3 is 4000 W
  • the frequency is 5 Hz
  • the duty ratio is 40%
  • the assist gas is nitrogen gas or air.
  • the laser output is controlled by the laser output controller 33 and the cutting speed is controlled by the cutting speed controller 35 so as to conform to the set value described above. Further, the type and gas pressure of the assist gas are also controlled so as to match the set value. Since the cutting process in the normal region from the P position to the C position through the A position and the B position is a cutting process using oxygen as an assist gas, the work W is not only generated by the irradiation energy of the laser beam LB but also by the oxidation reaction heat. Is promoted to melt. For this reason, for example, even a thick steel plate of 16.0 mm to 25.0 mm can be cut at high speed.
  • the cutting speed is controlled to a low speed based on the machining conditions retrieved from the second machining condition table 29B, and the laser output is reduced by reducing the frequency / duty ratio. It is controlled to be smaller.
  • the irradiation energy at the time of cutting from the C position to the B position is smaller than the irradiation energy in the normal region according to the processing conditions retrieved from the first processing condition table 29A.
  • the irradiation energy of the laser beam reflected and applied to the inner peripheral surface is controlled to be small. Further, after the C position, the assist gas is switched from oxygen to nitrogen gas, air, or a mixed gas thereof by the valve switching control unit 37, so that the oxidation reaction of the workpiece W is also suppressed. For this reason, melt adhesion and recess formation on the inner peripheral surface can be suppressed. In addition, although it cut
  • step S10 it is determined whether or not the material and thickness of the workpiece W and the machining data (see FIG. 5) are input to the input unit 25 (step S10). If the material and thickness of the workpiece W and the machining data are not input (NO in step S10), the process in step S10 is repeated and the input is waited for. When the material and thickness of the workpiece W and the machining data are input (YES in step S10), the input value of the material and thickness of the workpiece W and the input data of the machining data are stored in the memory 39 (step S15). ).
  • the above-described P, A, B, and C positions are determined based on the input value and the input data (step S20).
  • the input machining data includes codes E001, E002, E003, E004,..., And P, A, B, and C positions are determined based on these codes.
  • the processing condition of the normal region is searched from the first processing condition table 29A by the search unit 31 and determined (step S25). Further, based on the input value and the input data, the processing conditions for the cutting end region are also retrieved from the second processing condition table 29B and determined (step S30).
  • the input machining data includes a code that specifies to search the second machining condition table 29B by the code L4.
  • the processing conditions in the cutting end region are set so that the cutting speed is controlled at a low speed and the laser output is reduced by reducing the frequency / duty ratio.
  • the irradiation energy of the laser beam is higher than the irradiation energy in the normal region. Set small.
  • the determined machining conditions are also temporarily stored in the memory (step S35), and laser cutting is started according to the machining conditions determined by the control unit 19 (step S40).
  • laser cutting in the normal region is performed according to the processing conditions determined in step S25 (step S45).
  • it is determined whether or not the processing position has reached the C position step S50. If the machining position has not reached the C position (NO in step S50), the process of step S50 is continued to continue the laser cutting process in the normal region.
  • step S50 when the processing position has reached the C position (YES in step S50), the processing conditions are changed to the processing conditions determined in step S30, and the process proceeds to laser cutting processing in the cutting end region (step S55).
  • step S60 it is determined whether or not the processing position has reached the B position (step S60). If the machining position has not reached the B position (NO in step S60), the process of step S60 is continued to continue the laser cutting process in the cutting end region.
  • step S60 when the processing position has reached the B position (YES in step S60), the laser output is made zero (step S65) in order to end the laser cutting processing. If there are other laser cutting processes along the closed path, the processes in steps S45 to S65 are repeated based on the input process data and the determined process conditions.
  • this invention is not limited to embodiment mentioned above, It can implement also in another form by making an appropriate change.
  • the processing conditions of the cutting end region corresponding to the plate material and thickness of the workpiece W are stored in the processing condition table 29 in advance.
  • the cutting end region processing conditions may be input from the input unit 25 to the memory 39, and the cutting end region may be cut under the input processing conditions.
  • step S10A the machining conditions in the cutting end region are also input to the input unit 25, so whether these are input to the input unit 25 or not. Determination is made (step S10A).
  • step S10A If these are not input (NO in step S10A), the process in step S10A is repeated to wait for input.
  • the input value of the material and thickness of the workpiece W, the input data of the processing data, and the processing conditions in the cutting end region are stored in the memory 39 (step S15A). Thereafter, after the processes in steps S20 and S25, the processing conditions of the input cutting end region are confirmed (step S30A). Note that the confirmation processing in step S30A may be omitted. Thereafter, the processes of steps S35 to S65 are executed.
  • the laser beam irradiation energy is reduced by reducing the frequency and duty ratio while keeping the output of the laser oscillator 3 constant, but the output energy of the laser oscillator 3 is reduced and the irradiation energy is reduced. May be. That is, the laser beam irradiation energy in the cutting end region (the cutting region from the C position through the A position to the B position) is smaller than the laser beam irradiation energy in the cutting region from the A position through the B position to the C position. It suffices to be controlled.
  • the irradiation energy of the laser beam in the cutting end region As a method of controlling the irradiation energy of the laser beam in the cutting end region to be small, it is possible to reduce the irradiation energy at the time of cutting processing from the A position to the C position through the B position to a desired ratio. In this case, when the laser beam irradiation energy in the cutting region from the A position through the B position to the C position is 100%, the laser beam irradiation energy in the cutting end region is reduced to 10% to 50%. Is desirable. In particular, it is desirable that the laser power is reduced to 10% to 50% and the cutting speed is reduced to 10% or less.
  • the assist gas is switched from oxygen to nitrogen gas, air, or a mixed gas thereof in the cutting end region.
  • a mixed gas obtained by mixing oxygen with at least one of nitrogen gas or air may be used as the assist gas, and the oxidation reaction heat can be suppressed even with such an assist gas.

Abstract

In this laser machining method, which performs laser cutting of a steel sheet along a closed path, when the position of the closed path to be cut reached from a piercing machining position is position A, a position that is a predetermined distance in the direction of process of cutting machining from position A is position B, and a position that is a predetermined distance in the reverse direction with respect to the direction of process from position A is position C, during cutting machining from position C through position A to position B after cutting machining from position A through position B to position C, cutting machining is performed from position C through position A to position B at a lower laser output and a slower cutting speed compared to the laser output and cutting speed from position A through position B to position C, and the laser output is caused to be zero at position B. By means of the laser machining method, it is possible to increase machining efficiency without causing the formation of pits or the adherence of molten material to the inner peripheral surface of the cut closed path when laser cutting a work along a closed path.

Description

レーザ加工方法、及び、レーザ加工装置Laser processing method and laser processing apparatus
 本発明は、レーザで鋼板を環状に切断する、レーザ加工方法及びレーザ加工装置に関するものである。 The present invention relates to a laser processing method and a laser processing apparatus for cutting a steel plate into an annular shape with a laser.
 閉じた経路[closed path]に沿って鋼板(ワーク)をレーザによって切断する際には、ワークの加工位置にはレーザ光が照射されると共にアシストガスが噴射される。加工終了位置で切抜き片[blanked piece]が傾斜することがあり、傾斜した切抜き片がレーザによって溶融されてその溶融物が切抜き孔[blanked hole]の内周面に付着したり、傾斜した切抜き片によってレーザ光が反射されて内周面が溶融されて凹部が形成されてしまうことがある(例えば、下記特許文献1又は2)。 When cutting a steel sheet (workpiece) with a laser along a closed path [closed path], a laser beam is radiated to the processing position of the work and an assist gas is injected. The cut-out piece [blanked] piece] may be inclined at the processing end position, and the inclined cut-out piece is melted by the laser and the melt adheres to the inner peripheral surface of the cut-out hole [blanked hole], or the inclined cut-out piece As a result, the laser beam is reflected and the inner peripheral surface is melted to form a recess (for example, Patent Document 1 or 2 below).
 特許文献1は、切抜き孔の内周面に突出部を形成するようにワークを切断する一次加工を行った後、突出部を切断して除去する二次加工を行う装置(方法)を開示している。ここで、上述した一次加工は突出部の位置で終了されるので、内周面への溶融物の付着や凹部形成は、追って切除される突出部に形成される。従って、最終的に切抜き孔の内周面への溶融物付着や凹部形成が防止される。 Patent Document 1 discloses an apparatus (method) for performing a secondary process of cutting and removing a projecting part after performing a primary process of cutting a workpiece so as to form a projecting part on an inner peripheral surface of a cutout hole. ing. Here, since the primary processing described above is completed at the position of the protrusion, adhesion of the melt to the inner peripheral surface and formation of the recess are formed in the protrusion that will be cut off later. Accordingly, it is possible to finally prevent the melt from being attached to the inner peripheral surface of the cut-out hole and the formation of a recess.
 特許文献2は、レーザによる切断を開始位置から開始し、閉じた経路に沿って切断を行って再び切断開始位置戻り、ワークの上面に対する下面の溶融遅れに相当する距離だけ切断開始位置を通り過ぎたときにレーザの照射を停止する装置(方法)を開示している。溶融遅れの部分の切断が完了したときにレーザの照射が停止されるので、上述したような内周面への溶融物の付着や凹部形成が抑制される。 In Patent Document 2, laser cutting is started from the start position, cutting is performed along the closed path, the cutting start position is returned again, and the cutting start position is passed by a distance corresponding to the melting delay of the lower surface with respect to the upper surface of the workpiece. An apparatus (method) for sometimes stopping laser irradiation is disclosed. Since the laser irradiation is stopped when the cutting of the melting delay portion is completed, the adhesion of the melt and the formation of the concave portion on the inner peripheral surface as described above are suppressed.
日本国特開2004-122217号公報Japanese Unexamined Patent Publication No. 2004-122217 日本国特開2006-218535号公報Japanese Unexamined Patent Publication No. 2006-218535
 しかし、上述した特許文献1の装置では、切抜き孔の内周面への溶融物付着や凹部形成を防止できるが、突出部を除去する二次加工が必要となるので、加工容易性や加工効率性の面で問題があった。また、上述した特許文献2の装置では、溶融遅れに相当する距離の間は二重にレーザによる切断が行われるので、切断スリット幅が広くなる場合があり、さらなる改良が望まれていた。 However, in the apparatus of Patent Document 1 described above, melt adhesion to the inner peripheral surface of the cut-out hole and formation of a concave portion can be prevented, but secondary processing for removing the protruding portion is necessary, so that processing ease and processing efficiency are improved. There was a problem in terms of sex. Further, in the apparatus of Patent Document 2 described above, since the laser cutting is performed twice during the distance corresponding to the melting delay, the cutting slit width may be widened, and further improvement has been desired.
 従って、本発明の目的は、ワークを閉じた経路に沿ってレーザ切断する際に、切断された閉じた経路の内周面への溶融物の付着や凹部形成を生じさせずに、かつ、製造効率を向上させることのできる、レーザ加工方法、及び、レーザ加工装置を提供することである。 Accordingly, an object of the present invention is to produce a product without causing adhesion of melt or formation of recesses on the inner peripheral surface of the cut closed path when the workpiece is laser cut along the closed path. It is an object to provide a laser processing method and a laser processing apparatus that can improve efficiency.
 本発明の第一の特徴は、アシストガスとして酸素ガスを使用して鋼板を閉じた経路に沿ってレーザ切断するレーザ加工方法であって、ピアス加工位置から切断すべき閉じた経路に達した位置をA位置とし、前記A位置から切断加工の進行方向に所定距離の位置をB位置とし、前記A位置から前記進行方向に対して逆方向に所定距離の位置をC位置としたとき、前記A位置から前記B位置を経て前記C位置への切断加工後の前記C位置から前記A位置を経て前記B位置までの切断加工時に、前記A位置からB位置を経てC位置までのレーザ出力及び切断速度に対してレーザ出力を小さくすると共に切断速度を低速にして前記C位置から前記A位置を経て前記B位置までの切断加工を行い、前記B位置においてレーザ出力が零にされる、レーザ加工方法を提供する。 A first feature of the present invention is a laser processing method in which oxygen gas is used as an assist gas to perform laser cutting along a closed path of a steel sheet, and the position reached from the piercing position to the closed path to be cut Is a position A, a position a predetermined distance from the A position in the advancing direction of the cutting process is a B position, and a position a predetermined distance from the A position to the direction opposite to the advancing direction is a C position. Laser cutting and cutting from the A position through the B position to the C position at the time of cutting from the C position to the B position through the A position after cutting from the position to the C position through the B position The laser output is reduced with respect to the speed, and the cutting speed is lowered to perform the cutting process from the C position to the B position through the A position, and the laser output is made zero at the B position. To provide a factory method.
 上記特徴によれば、ワークに閉じた経路の切断加工を行うときに、レーザ切断を開始した後に再び開始位置に達する前にレーザ出力が小さく制御されると共に切断速度が低速に制御される。従って、切断位置が再び開始位置に達して切抜き片が傾斜しても、レーザ光の照射エネルギーが小さくされているので、内周面への溶融物の付着や凹部形成を抑制できる。 According to the above feature, when cutting a closed path on the workpiece, the laser output is controlled to be small and the cutting speed is controlled to be low before reaching the start position after starting laser cutting. Therefore, even when the cutting position reaches the start position again and the cutout piece is inclined, the irradiation energy of the laser light is reduced, so that adhesion of the melt to the inner peripheral surface and formation of the recess can be suppressed.
 ここで、前記C位置で、前記アシストガスをエアー、チッソガス、又は、酸素ガスにエアー若しくはチッソガスの少なくとも一方を混合した混合ガスに切換える、ことが好ましい。 Here, it is preferable to switch the assist gas to air, nitrogen gas, or a mixed gas in which at least one of air or nitrogen gas is mixed with oxygen gas at the position C.
 本発明の第二の特徴は、レーザ加工装置であって、レーザ発振器と、レーザ光を集光してワークに照射するレーザ加工ヘッドと、前記レーザ加工ヘッドにアシストガスを供給するアシストガス供給ユニットと、前記レーザ発振器のレーザ出力及び前記レーザ加工ヘッドのワークに対する相対的な移動速度を制御する制御部と、アシストガスとして酸素を使用してワークを閉じた経路に沿ってレーザ切断する際の前記閉じた経路の切断終了領域における加工条件をワークの材質及び厚さに対応させて予め格納する加工条件テーブルと、加工すべきワークの材質及び厚さに対応して前記加工条件テーブルから適用する加工条件を検索する検索部と、を備えており、前記制御部が、前記検索部の検索結果に基づいて、前記切断終了領域における前記レーザ出力及び前記移動速度を制御する、レーザ加工装置を提供する。 The second feature of the present invention is a laser processing apparatus, a laser oscillator, a laser processing head for condensing laser light and irradiating a work, and an assist gas supply unit for supplying an assist gas to the laser processing head A control unit that controls a laser output of the laser oscillator and a relative moving speed of the laser processing head with respect to the workpiece, and the laser cutting along the closed path by using oxygen as an assist gas. A machining condition table that stores in advance machining conditions in the cutting end region of the closed path corresponding to the material and thickness of the workpiece, and a machining that is applied from the machining condition table corresponding to the material and thickness of the workpiece to be machined A search unit that searches for a condition, and the control unit is configured to search for a previous position in the cutting end region based on a search result of the search unit. Controlling the laser output and the moving speed, to provide a laser machining apparatus.
 上記特徴によれば、ワークに閉じた経路の切断加工を行うときに、閉じた経路の切断終了領域でのレーザ出力と切断速度とが制御部によって制御される。従って、切断位置が再び開始位置に達して切抜き片が傾斜しても、レーザ光の照射エネルギーを制御して内周面への溶融物の付着や凹部形成を抑制できる。 According to the above feature, when cutting the closed path on the workpiece, the laser output and the cutting speed in the cutting end region of the closed path are controlled by the control unit. Therefore, even if the cutting position reaches the start position again and the cut piece is inclined, the laser beam irradiation energy can be controlled to suppress the adhesion of the melt to the inner peripheral surface and the formation of the recess.
 本発明の第三の特徴は、レーザ加工装置であって、レーザ発振器と、レーザ光を集光してワークに照射するレーザ加工ヘッドと、前記レーザ加工ヘッドへアシストガスを供給するアシストガス供給ユニットと、前記レーザ発振器のレーザ出力及び前記レーザ加工ヘッドのワークに対する相対的な移動速度を制御するための制御部と、アシストガスとして酸素を使用してワークを閉じた経路に沿ってレーザ切断する際の前記閉じた経路の切断終了領域における加工条件をワークの材質及び厚さに対応させて記憶するメモリと、前記切断終了領域における前記加工条件を前記メモリに入力する入力部と、を備えており、前記制御部が、前記メモリに入力された前記切断終了領域における前記加工条件に基づいて、前記切断終了領域における前記レーザ出力及び前記移動速度を制御する、レーザ加工装置を提供する。 The third feature of the present invention is a laser processing apparatus, a laser oscillator, a laser processing head for condensing laser light and irradiating a work, and an assist gas supply unit for supplying an assist gas to the laser processing head A control unit for controlling the laser output of the laser oscillator and the relative moving speed of the laser processing head with respect to the workpiece, and when cutting the laser along the closed path using oxygen as an assist gas A memory for storing the processing conditions in the cutting end region of the closed path in correspondence with the material and thickness of the workpiece, and an input unit for inputting the processing conditions in the cutting end region to the memory. The control unit, based on the processing conditions in the cutting end area input to the memory, the cutting end area in the cutting end area Controlling the over The output and the moving speed, to provide a laser machining apparatus.
 上記特徴によれば、ワークに閉じた経路の切断加工を行うときに、閉じた経路の切断終了領域でのレーザ出力と切断速度とが入力された加工条件に基づいて制御部によって制御される。従って、切断位置が再び開始位置に達して切抜き片が傾斜しても、レーザ光の照射エネルギーを制御して内周面への溶融物の付着や凹部形成を抑制できる。 According to the above feature, when cutting the closed path on the workpiece, the laser output and the cutting speed in the cutting end region of the closed path are controlled by the control unit based on the input processing conditions. Therefore, even if the cutting position reaches the start position again and the cut piece is inclined, the laser beam irradiation energy can be controlled to suppress the adhesion of the melt to the inner peripheral surface and the formation of the recess.
実施形態に係るレーザ加工装置の主要構成を示す概略構成図である。It is a schematic block diagram which shows the main structures of the laser processing apparatus which concerns on embodiment. 前記加工装置の制御部の機能ブロック図である。It is a functional block diagram of the control part of the said processing apparatus. 閉じた経路の切断加工の説明図である。It is explanatory drawing of the cutting process of the closed path | route. 製品形状を示す平面図である。It is a top view which shows a product shape. 前記製品形状の加工のための形状、寸法及び座標を示す加工データ例の説明図である。It is explanatory drawing of the example of process data which shows the shape, dimension, and coordinate for the process of the said product shape. レーザ切断加工のフローチャートである。It is a flowchart of a laser cutting process. レーザ切断加工のフローチャート(変形例)である。It is a flowchart (modification) of laser cutting processing.
 図1に示されるように、本実施形態のレーザ加工装置1は、例えば、板厚が約16.0mm~25.0mmの厚い鋼板(ワーク)Wを切断する。レーザ加工装置1は、レーザ発振器3から発振されたレーザ光LBを内装された集光レンズ5によって集光してワークWに照射するレーザ加工ヘッド7を備えている。レーザ加工ヘッド7は、ワークWに対して相対的にX、Y、Z軸方向へ移動可能である。ワークWのレーザ切断時にアシストガスをワークWへ噴射するためのアシストガス供給ユニット9が、レーザ加工ヘッド7に接続されている。 As shown in FIG. 1, the laser processing apparatus 1 of the present embodiment cuts a thick steel plate (workpiece) W having a plate thickness of about 16.0 mm to 25.0 mm, for example. The laser processing apparatus 1 includes a laser processing head 7 that condenses the laser beam LB oscillated from the laser oscillator 3 by a built-in condensing lens 5 and irradiates the workpiece W. The laser processing head 7 is movable relative to the workpiece W in the X, Y, and Z axis directions. An assist gas supply unit 9 for injecting an assist gas to the workpiece W at the time of laser cutting of the workpiece W is connected to the laser processing head 7.
 アシストガス供給ユニット9は、アシストガスとしての99.99%以上の高純度の酸素を貯留した酸素ボンベなどの酸素供給部[oxygen supplier]11とアシストガスとしてのチッソガスを供給するチッソガス供給部[nitrogen gad supplier]13とを備えている。さらに、アシストガス供給ユニット9は、アシストガスとしてのエアーを供給するエアー供給部[air supplier]15も備えている。酸素供給部11、チッソガス供給部13及びエアー供給部15は、制御弁11V,13V,15Vを介して、レーザ加工ヘッド7の接続路17とそれぞれ接続されている。制御弁11V,13V,15Vは、例えば、公知の電磁比例弁であり、接続路17を通るガス流を連通/遮断可能であると共に、ガス流の流量を制御可能である。 The assist gas supply unit 9 includes an oxygen supply unit [oxygen supplier] 11 such as an oxygen cylinder storing high-purity oxygen of 99.99% or more as an assist gas and a nitrogen gas supply unit [nitrogen] that supplies a nitrogen gas as an assist gas. gad supplier] 13. Furthermore, the assist gas supply unit 9 is also provided with an air supply unit [air supplier] 15 for supplying air as assist gas. The oxygen supply unit 11, the nitrogen gas supply unit 13, and the air supply unit 15 are connected to the connection path 17 of the laser processing head 7 via control valves 11V, 13V, and 15V, respectively. The control valves 11V, 13V, and 15V are, for example, known electromagnetic proportional valves. The control valves 11V, 13V, and 15V can communicate / shut off the gas flow through the connection path 17, and can control the flow rate of the gas flow.
 制御弁11V,13V,15Vを制御することで、酸素、チッソガス又はエアーを個別にアシストガスとして供給することができると共に、酸素、チッソガス及びエアーの二つ以上を混合した混合ガスを供給することもできる。 By controlling the control valves 11V, 13V, and 15V, oxygen, nitrogen gas, or air can be individually supplied as an assist gas, and a mixed gas in which two or more of oxygen, nitrogen gas, and air are mixed can also be supplied. it can.
 レーザ加工装置1は、レーザ発振器3の出力、レーザ加工ヘッド7のX、Y、Z軸方向への移動のための各サーボモータM、及び、各制御弁11V,13V,15Vの動作を制御する制御部[controller]19を備えている。制御部19は、例えば、CNC制御装置であり、図2に示されるように、CPU20、ROM21、RAM23、入力部[input part]25、表示部[display]27及びメモリ39を備えている。さらに、制御部19は、後述する切断終了領域の加工条件を格納した加工条件テーブル29も備えている。なお、加工条件テーブル29は、ROM21、RAM23又はメモリ29等に格納されていてもよい。 The laser processing apparatus 1 controls the operation of the output of the laser oscillator 3, the servo motors M for moving the laser processing head 7 in the X, Y, and Z axis directions, and the control valves 11V, 13V, and 15V. A controller 19 is provided. The control unit 19 is, for example, a CNC control device, and includes a CPU 20, a ROM 21, a RAM 23, an input unit [input part] 25, a display unit [display] 27, and a memory 39 as shown in FIG. 2. Furthermore, the control unit 19 also includes a machining condition table 29 that stores machining conditions for a cutting end region, which will be described later. Note that the processing condition table 29 may be stored in the ROM 21, RAM 23, memory 29, or the like.
 図3に示されるように、アシストガスとして酸素を使用して厚い(例えば、約16.0mm~25.0mm)ワークWに環状の経路(閉じた経路)Lに沿って切断加工を行う場合、ピアス加工位置Pから切断すべき環状の経路Lに達したA位置は、レーザ切断開始位置に相当する。 As shown in FIG. 3, when oxygen is used as an assist gas and a thick workpiece (for example, about 16.0 mm to 25.0 mm) is cut along a circular path (closed path) L on a workpiece W, The A position that has reached the annular path L to be cut from the piercing position P corresponds to the laser cutting start position.
 そして、A位置から切断加工の進行方向(図3中に示された矢印R方向)に進んだ所定位置をB位置とする。A位置とB位置との間の距離は、ワークWに切断加工を行うときの上面(表面)に対する下面(裏面)の溶融遅れに相当する距離であり、切断加工を試験的に行うことで適正な値が設定される。また、A位置から上述した進行方向に対して逆方向に進んだ所定位置をC位置とする。C位置は、ワークWの材質及び厚さに対応して予め設定され、切断加工を試験的に行うことで適正な位置に設定される。 Then, a predetermined position that has advanced from the A position in the cutting direction (arrow R direction shown in FIG. 3) is defined as the B position. The distance between the A position and the B position is a distance corresponding to the melting delay of the lower surface (back surface) with respect to the upper surface (front surface) when cutting the workpiece W, and is appropriate by performing the cutting processing on a trial basis. A correct value is set. Further, a predetermined position that has advanced from the A position in the opposite direction to the aforementioned traveling direction is defined as a C position. The C position is set in advance corresponding to the material and thickness of the workpiece W, and is set to an appropriate position by performing a cutting process on a trial basis.
 加工条件テーブル29は、第一加工条件テーブル29Aと第二加工テーブル29Bとを備えている。第一加工条件テーブル29Aには、P位置からA位置及びB位置を経てC位置まで切断加工を行うときの一般的な加工条件(ピアス時間、レーザ切断速度、レーザ発振器3の出力・周波数・デューティー比、アシストガスとしての酸素のガス圧等)が格納されている。一方、第二加工条件テーブル29Bには、切断終了領域としてのC位置からA位置を経てB位置まで切断加工を行うときの加工条件(レーザ切断速度、レーザ発振器3の出力・周波数・デューティー比、アシストガスの種類・ガス圧、A位置からB位置までの距離、C位置からA位置までの距離等)が格納されている。したがって、ワークWの材質及び厚さが分かれば、ワークWの切断終了領域の加工条件を第二加工条件テーブル29Bから検索することができる。 The machining condition table 29 includes a first machining condition table 29A and a second machining table 29B. The first machining condition table 29A includes general machining conditions (piercing time, laser cutting speed, output / frequency / duty of the laser oscillator 3) when cutting from the P position to the C position through the A position and the B position. Ratio, gas pressure of oxygen as an assist gas, etc.) are stored. On the other hand, in the second machining condition table 29B, machining conditions (laser cutting speed, output / frequency / duty ratio of the laser oscillator 3, duty ratio, etc.) when performing cutting from the C position as the cutting end region to the B position through the A position. Assist gas type / gas pressure, distance from A position to B position, distance from C position to A position, etc.) are stored. Therefore, if the material and thickness of the workpiece W are known, the machining conditions of the cutting end region of the workpiece W can be retrieved from the second machining condition table 29B.
 制御部19は、キーボード等の入力部25から入力されたワークWの材質及び厚さに対応して加工条件テーブル29から適正な加工条件を検索するための検索部[retriever]31を備えている。また、制御部19は、検索部31によって検索された加工条件に基づいて、レーザ発振器3の出力を制御するレーザ出力制御部33、レーザ加工ヘッド7のワークWに対する相対的な移動速度(レーザ切断速度)を制御する切断速度制御部35、及び、アシストガス供給ユニット9のアシストガスの種類及びガス圧を制御するバルブ制御部37も備えている。 The control unit 19 includes a retrieval unit [retriever] 31 for retrieving an appropriate machining condition from the machining condition table 29 corresponding to the material and thickness of the workpiece W input from the input unit 25 such as a keyboard. . The control unit 19 also has a laser output control unit 33 that controls the output of the laser oscillator 3 based on the processing conditions searched by the search unit 31, and a relative movement speed of the laser processing head 7 with respect to the workpiece W (laser cutting). A cutting speed control unit 35 for controlling the speed) and a valve control unit 37 for controlling the type and gas pressure of the assist gas of the assist gas supply unit 9.
 アシストガスとして酸素を使用して厚い板状のワークWに環状の切断加工を行う際には、入力部25からワークWの材質及び厚さ、並びに、製品の切断加工ための加工データが入力される。例えば、製品が図4に示されるような形状の製品WAの場合の製品WAの形状や座標を示す加工データを図5に示す。ここで、環状の孔HAは円形であり、(E001)は切断終了領域のC~Aの距離を指定している。また、(G112X15Y10I10L4)はその加工内容を指定している。ここで、コード(G112X15Y10I10L4)では、(G112)が円形であることを示し、(X15Y10)が座標を示し、(I10)が半径を示している。さらに、(L4)は、切断終了領域の加工条件が第二加工条件テーブル29Bに格納されていることを示している。 When an annular cutting process is performed on a thick plate-shaped workpiece W using oxygen as an assist gas, the material and thickness of the workpiece W and processing data for cutting the product are input from the input unit 25. The For example, FIG. 5 shows processing data indicating the shape and coordinates of the product WA when the product is a product WA having a shape as shown in FIG. Here, the annular hole HA is circular, and (E001) designates the distance from C to A of the cutting end region. Further, (G112X15Y10I10L4) designates the processing content. Here, in the code (G112X15Y10I10L4), (G112) indicates a circle, (X15Y10) indicates a coordinate, and (I10) indicates a radius. Further, (L4) indicates that the machining conditions for the cutting end region are stored in the second machining condition table 29B.
 同様に、孔HBは多角形状であり、(E002)は切断終了領域のC~Aの距離を指定している。また、コード(G101X50Y10L4)はその加工内容を指定している。コード(G101X50Y10L4)では、(G101)が多角形状であることを示し、(X50Y10)が座標を示している。さらに、(L4)は、切断終了領域の加工条件が第二加工条件テーブル29Bに格納されていることを示している。孔HCに関しても、同様に、(E003)及び(G111X90Y30I40J25R3K-90L4)が指定されている。製品WA全体の切断加工に関しては、(E004)が切断終了領域におけるC~Aの距離を指定している。しかし、製品WA全体の外形の切断加工であるので(L4)での切断終了領域の加工条件の指定は省略されている。 Similarly, the hole HB has a polygonal shape, and (E002) designates the distance from C to A of the cutting end region. The code (G101X50Y10L4) designates the processing content. In the code (G101X50Y10L4), (G101) indicates a polygonal shape, and (X50Y10) indicates coordinates. Further, (L4) indicates that the machining conditions for the cutting end region are stored in the second machining condition table 29B. Similarly, (E003) and (G111X90Y30I40J25R3K-90L4) are designated for the hole HC. Regarding the cutting of the entire product WA, (E004) designates the distance C to A in the cutting end region. However, since it is the cutting process of the outer shape of the entire product WA, the specification of the processing condition of the cutting end region in (L4) is omitted.
 上述したコードG111,G112,G101は、閉じた経路による孔の切断加工時に、孔の形状に対応して予め設定されたコードである。また、上述したE001,E002,E003,E004,・・・は、製品WAからの孔HA,HB,HC内の切抜き片の切離し時や、ワークWからの製品WAの切離し時の加工条件変更位置(C位置:通常加工条件から切断終了領域の加工条件への変更位置)を設定するコードである。すなわち、ワークWの材質及び厚さ、並びに、孔HA,HB,HC及び製品WAの形状及び寸法に対応して、予め設定されたE001,E002,・・・が適宜指定されてC位置からA位置までの寸法が設定される。 The above-mentioned codes G111, G112, and G101 are codes set in advance corresponding to the shape of the hole when the hole is cut by the closed path. The above-mentioned E001, E002, E003, E004,... Are the machining condition change positions when the cut pieces in the holes HA, HB, HC from the product WA are cut off or the product WA is cut off from the workpiece W. This is a code for setting (C position: change position from normal machining condition to cutting end region machining condition). That is, preset E001, E002,... Are appropriately designated in accordance with the material and thickness of the workpiece W, and the shapes and dimensions of the holes HA, HB, HC and the product WA, and the A position from the C position. The dimension to the position is set.
 入力部25から入力されたワークWの材質及び厚さ並びに加工データは、制御部19のメモリ39に格納される。そして、検索部31によって加工条件テーブル29の第一及び第二加工条件テーブル29A,29Bから適正な加工条件が検索される。なお、入力値及び入力データ、並びに、検索された加工条件は、表示部27に表示される。 The material and thickness of the workpiece W and the machining data input from the input unit 25 are stored in the memory 39 of the control unit 19. Then, an appropriate machining condition is retrieved from the first and second machining condition tables 29A and 29B of the machining condition table 29 by the search unit 31. The input value and input data, and the searched processing conditions are displayed on the display unit 27.
 具体的に説明する。例えば、ワークWの材質としてSS400、厚さとして19mmが入力されると、P位置からA位置及びB位置を経てC位置までの通常領域の加工条件として、切断速度800mm/min、レーザ発振器3の出力4000W・周波数700Hz・デューティー比70%、アシストガスとしての酸素の選択、そのガス圧0.07MPaが、第一加工条件テーブル29Aから検索されて設定される。そして、C位置からA位置を経てB位置までの切断終了領域の加工条件として、切断速度100mm/min、レーザ発振器3の出力4000W・周波数5Hz・デューティー比40%、アシストガスとしてのチッソガス又はエアーへの切換、そのガス圧0.70MPa、A位置からB位置までの距離0.1mm~1.0mmの範囲内の0.2mm、C位置からA位置までの距離0.5mm~3.0mmの範囲内の1.5mmが、第二加工条件テーブル29Bから検索されて設定される。なお、A位置からB位置までの距離及びC位置からA位置までの距離は、それぞれパラメータとして(例えば、C~AはE001,E002・・・などとして)設定され、かつ、変更可能である。 Specific explanation. For example, when SS400 is input as the material of the workpiece W and 19 mm is input as the thickness, the processing conditions in the normal region from the P position to the C position through the A and B positions are set to a cutting speed of 800 mm / min. The output 4000 W, the frequency 700 Hz, the duty ratio 70%, the selection of oxygen as the assist gas, and the gas pressure 0.07 MPa are retrieved from the first machining condition table 29A and set. Then, as processing conditions of the cutting end region from the C position through the A position to the B position, the cutting speed is 100 mm / min, the output of the laser oscillator 3 is 4000 W, the frequency is 5 Hz, the duty ratio is 40%, and the assist gas is nitrogen gas or air. Switching, gas pressure 0.70 MPa, distance from A position to B position 0.2 mm within the range of 0.1 mm to 1.0 mm, distance from C position to A position 0.5 mm to 3.0 mm Among them, 1.5 mm is retrieved from the second processing condition table 29B and set. Note that the distance from the A position to the B position and the distance from the C position to the A position are set as parameters (for example, C to A are E001, E002, etc.) and can be changed.
 上述した設定値に適合するように、レーザ出力制御部33によってレーザ出力が制御されると共に、切断速度制御部35によって切断速度が制御される。また、アシストガスの種類及びガス圧も設定値に適合するように制御される。P位置からA位置及びB位置を経てC位置までの通常領域での切断加工はアシストガスとして酸素を使用した切断加工であるので、レーザ光LBの照射エネルギーだけでなく酸化反応熱によってもワークWの溶融が促進される。このため、例えば、16.0mm~25.0mmの厚い鋼板であっても高速で切断加工を行うことができる。 The laser output is controlled by the laser output controller 33 and the cutting speed is controlled by the cutting speed controller 35 so as to conform to the set value described above. Further, the type and gas pressure of the assist gas are also controlled so as to match the set value. Since the cutting process in the normal region from the P position to the C position through the A position and the B position is a cutting process using oxygen as an assist gas, the work W is not only generated by the irradiation energy of the laser beam LB but also by the oxidation reaction heat. Is promoted to melt. For this reason, for example, even a thick steel plate of 16.0 mm to 25.0 mm can be cut at high speed.
 切断加工が進行して予め設定されたC位置に達すると、第二加工条件テーブル29Bから検索された加工条件に基づいて、切断速度が低速に制御され、周波数・デューティー比の低減によってレーザ出力が小さくなるように制御される。C位置からB位置への切断加工時の照射エネルギーは、第一加工条件テーブル29Aから検索された加工条件による通常領域での照射エネルギーよりも小さい。そして、B位置でレーザ出力及び切断速度が零にされて切断加工が終了されるとき、傾斜した切抜き片Sで反射されたレーザ光は内周面に照射される傾向にある。 When the cutting process proceeds and reaches a preset C position, the cutting speed is controlled to a low speed based on the machining conditions retrieved from the second machining condition table 29B, and the laser output is reduced by reducing the frequency / duty ratio. It is controlled to be smaller. The irradiation energy at the time of cutting from the C position to the B position is smaller than the irradiation energy in the normal region according to the processing conditions retrieved from the first processing condition table 29A. When the laser output and the cutting speed are made zero at the B position and the cutting process is finished, the laser beam reflected by the inclined cutout piece S tends to be irradiated on the inner peripheral surface.
 しかし、反射されて内周面に照射されたレーザ光の照射エネルギーは小さく制御されている。また、C位置以降は、バルブ切替制御部37によってアシストガスが酸素からチッソガス、エアー、又は、それらの混合ガスに切換えられているので、ワークWの酸化反応も抑制される。このため、内周面への溶融物付着や凹部形成が抑制され得る。なお、C位置を通過した後のA位置からB位置までの間は二重に切断されるが、上述したように照射エネルギーが小さく制御され、かつ、酸化反応も抑制されるので、切断スリット幅が広くなってしまうことも防止される。 However, the irradiation energy of the laser beam reflected and applied to the inner peripheral surface is controlled to be small. Further, after the C position, the assist gas is switched from oxygen to nitrogen gas, air, or a mixed gas thereof by the valve switching control unit 37, so that the oxidation reaction of the workpiece W is also suppressed. For this reason, melt adhesion and recess formation on the inner peripheral surface can be suppressed. In addition, although it cut | disconnects twice from A position after passing C position to B position, since irradiation energy is controlled small as mentioned above and an oxidation reaction is also suppressed, cutting slit width | variety Is prevented from becoming wide.
 上述したレーザ加工を、図6に示されるフローチャートを参照して説明する。まず、ワークWの材質及び厚さと加工データ(図5参照)とが入力部25に入力された否かが判定される(ステップS10)。ワークWの材質及び厚さと加工データとが入力されていない場合(ステップS10でNO)は、ステップS10の処理が繰り返されて入力を待機する。ワークWの材質及び厚さと加工データとが入力された場合(ステップS10でYES)は、ワークWの材質及び厚さの入力値と加工データの入力データとがメモリ39に格納される(ステップS15)。 The laser processing described above will be described with reference to the flowchart shown in FIG. First, it is determined whether or not the material and thickness of the workpiece W and the machining data (see FIG. 5) are input to the input unit 25 (step S10). If the material and thickness of the workpiece W and the machining data are not input (NO in step S10), the process in step S10 is repeated and the input is waited for. When the material and thickness of the workpiece W and the machining data are input (YES in step S10), the input value of the material and thickness of the workpiece W and the input data of the machining data are stored in the memory 39 (step S15). ).
 次いで、入力値及び入力データに基づいて、上述したP,A,B,C位置が決定される(ステップS20)。上述したように、入力された加工データにはコードE001,E002,E003,E004,・・・が含まれており、これらのコードに基づいてP,A,B,C位置が決定される。そして、入力値及び入力データに基づいて、通常領域の加工条件が検索部31によって第一加工条件テーブル29Aから検索されて決定される(ステップS25)。また、入力値及び入力データに基づいて、切断終了領域の加工条件も第二加工条件テーブル29Bから検索されて決定される(ステップS30)。上述したように、入力された加工データにはコードL4によって第二加工条件テーブル29Bを検索するよう指定するコードが含まれている。なお、切断終了領域の加工条件では、切断速度が低速に制御されると共に周波数・デューティー比の低減によってレーザ出力が小さくなるように設定され、そのレーザ光の照射エネルギーは通常領域での照射エネルギーより小さく設定される。 Next, the above-described P, A, B, and C positions are determined based on the input value and the input data (step S20). As described above, the input machining data includes codes E001, E002, E003, E004,..., And P, A, B, and C positions are determined based on these codes. Based on the input value and the input data, the processing condition of the normal region is searched from the first processing condition table 29A by the search unit 31 and determined (step S25). Further, based on the input value and the input data, the processing conditions for the cutting end region are also retrieved from the second processing condition table 29B and determined (step S30). As described above, the input machining data includes a code that specifies to search the second machining condition table 29B by the code L4. The processing conditions in the cutting end region are set so that the cutting speed is controlled at a low speed and the laser output is reduced by reducing the frequency / duty ratio. The irradiation energy of the laser beam is higher than the irradiation energy in the normal region. Set small.
 決定された加工条件も一旦メモリに格納され(ステップS35)、制御部19によって決定された加工条件に従ってレーザ切断加工が開始される(ステップS40)。まず、通常領域でのレーザ切断加工が、ステップS25で決定された加工条件に従って行われる(ステップS45)。通常領域でのレーザ切断加工の間、加工位置がC位置に達したか否かが判定されている(ステップS50)。加工位置がC位置に達していない場合(ステップS50でNO)は、通常領域でのレーザ切断加工を継続すべくステップS50の処理が継続される。 The determined machining conditions are also temporarily stored in the memory (step S35), and laser cutting is started according to the machining conditions determined by the control unit 19 (step S40). First, laser cutting in the normal region is performed according to the processing conditions determined in step S25 (step S45). During the laser cutting process in the normal region, it is determined whether or not the processing position has reached the C position (step S50). If the machining position has not reached the C position (NO in step S50), the process of step S50 is continued to continue the laser cutting process in the normal region.
 一方、加工位置がC位置に達した場合(ステップS50でYES)は、加工条件がステップS30で決定された加工条件に変更されて切断終了領域でのレーザ切断加工に移行する(ステップS55)。切断終了領域でのレーザ切断加工の間、加工位置がB位置に達したか否かが判定されている(ステップS60)。加工位置がB位置に達していない場合(ステップS60でNO)は、切断終了領域でのレーザ切断加工を継続すべくステップS60の処理が継続される。 On the other hand, when the processing position has reached the C position (YES in step S50), the processing conditions are changed to the processing conditions determined in step S30, and the process proceeds to laser cutting processing in the cutting end region (step S55). During the laser cutting process in the cutting end region, it is determined whether or not the processing position has reached the B position (step S60). If the machining position has not reached the B position (NO in step S60), the process of step S60 is continued to continue the laser cutting process in the cutting end region.
 一方、加工位置がB位置に達した場合(ステップS60でYES)は、レーザ切断加工を終了するために、レーザ出力が零にされる(ステップS65)。なお、閉じた経路に沿ったレーザ切断加工が他にもある場合は、入力された加工データと決定された加工条件とに基づいてステップS45~S65の処理が繰り返し行われることとなる。 On the other hand, when the processing position has reached the B position (YES in step S60), the laser output is made zero (step S65) in order to end the laser cutting processing. If there are other laser cutting processes along the closed path, the processes in steps S45 to S65 are repeated based on the input process data and the determined process conditions.
 なお、本発明は、上述した実施形態に限定されるものではなく、適宜の変更を行うことて他の形態でも実施可能である。例えば、上記実施形態では、ワークWの板材及び厚さに対応した切断終了領域の加工条件が加工条件テーブル29に予め格納されていた。しかし、切断終了領域の加工条件を入力部25からメモリ39に入力し、入力された加工条件で切断終了領域の切断加工が行われてもよい。 In addition, this invention is not limited to embodiment mentioned above, It can implement also in another form by making an appropriate change. For example, in the above embodiment, the processing conditions of the cutting end region corresponding to the plate material and thickness of the workpiece W are stored in the processing condition table 29 in advance. However, the cutting end region processing conditions may be input from the input unit 25 to the memory 39, and the cutting end region may be cut under the input processing conditions.
 この場合のレーザ加工を、図7に示されるフローチャートを参照して説明する。なお、上述した図6に示されたレーザ加工と同じ処理ステップについては、同一の符号を付してそれらの説明は省略する。ここでは、ワークWの材質及び厚さと加工データ(図5参照)とに加えて切断終了領域での加工条件も入力部25に入力されるので、これらが入力部25に入力されたか否かが判定される(ステップS10A)。 The laser processing in this case will be described with reference to the flowchart shown in FIG. Note that the same processing steps as those of the laser processing shown in FIG. 6 described above are denoted by the same reference numerals and description thereof is omitted. Here, in addition to the material and thickness of the workpiece W and the machining data (see FIG. 5), the machining conditions in the cutting end region are also input to the input unit 25, so whether these are input to the input unit 25 or not. Determination is made (step S10A).
 これらが入力されていない場合(ステップS10AでNO)は、ステップS10Aの処理が繰り返されて入力を待機する。これらが入力された場合(ステップS10AでYES)は、ワークWの材質及び厚さの入力値と加工データの入力データと切断終了領域での加工条件がメモリ39に格納される(ステップS15A)。その後、ステップS20及びS25の処理の後、入力された切断終了領域の加工条件が確認される(ステップS30A)。なお、このステップS30Aの確認処理は省略されても良い。その後、ステップS35~S65の処理が実行される。 If these are not input (NO in step S10A), the process in step S10A is repeated to wait for input. When these are input (YES in step S10A), the input value of the material and thickness of the workpiece W, the input data of the processing data, and the processing conditions in the cutting end region are stored in the memory 39 (step S15A). Thereafter, after the processes in steps S20 and S25, the processing conditions of the input cutting end region are confirmed (step S30A). Note that the confirmation processing in step S30A may be omitted. Thereafter, the processes of steps S35 to S65 are executed.
 また、上記実施形態では、レーザ発振器3の出力を一定に保持しつつ周波数及びデューティー比を小さくしてレーザ光の照射エネルギーを小さくしたが、レーザ発振器3の出力を小さくして照射エネルギーを小さくしてもよい。すなわち、切断終了領域(C位置からA位置を経てB位置への切断領域)におけるレーザ光の照射エネルギーが、A位置からB位置を経てC位置への切断領域におけるレーザ光の照射エネルギーよりも小さくなるよう制御されればよい。 Further, in the above embodiment, the laser beam irradiation energy is reduced by reducing the frequency and duty ratio while keeping the output of the laser oscillator 3 constant, but the output energy of the laser oscillator 3 is reduced and the irradiation energy is reduced. May be. That is, the laser beam irradiation energy in the cutting end region (the cutting region from the C position through the A position to the B position) is smaller than the laser beam irradiation energy in the cutting region from the A position through the B position to the C position. It suffices to be controlled.
 切断終了領域におけるレーザ光の照射エネルギーを小さく制御する方法としては、A位置からB位置を経てC位置に至る切断加工時の照射エネルギーを所望の割合まで小さくすることも可能である。この場合、A位置からB位置を経てC位置への切断領域におけるレーザ光の照射エネルギーを100%とした場合に、切断終了領域におけるレーザ光の照射エネルギーを10%~50%まで減少させるすることが望ましい。特に、レーザ出力が10%~50%まで減少され、切断速度が10%以下まで減少されることが望ましい。 As a method of controlling the irradiation energy of the laser beam in the cutting end region to be small, it is possible to reduce the irradiation energy at the time of cutting processing from the A position to the C position through the B position to a desired ratio. In this case, when the laser beam irradiation energy in the cutting region from the A position through the B position to the C position is 100%, the laser beam irradiation energy in the cutting end region is reduced to 10% to 50%. Is desirable. In particular, it is desirable that the laser power is reduced to 10% to 50% and the cutting speed is reduced to 10% or less.
 また、上記実施形態では、アシストガスは、切断終了領域で酸素からチッソガス、エアー又はそれらの混合ガスに切換えられた。しかし、酸素にチッソガス又はエアーの少なくとも一方を混合した混合ガスをアシストガスとして使用してもよく、このようなアシストガスでも酸化反応熱を抑制できる。 In the above embodiment, the assist gas is switched from oxygen to nitrogen gas, air, or a mixed gas thereof in the cutting end region. However, a mixed gas obtained by mixing oxygen with at least one of nitrogen gas or air may be used as the assist gas, and the oxidation reaction heat can be suppressed even with such an assist gas.

Claims (4)

  1.  アシストガスとして酸素ガスを使用して鋼板を閉じた経路に沿ってレーザ切断するレーザ加工方法であって、
     ピアス加工位置から切断すべき閉じた経路に達した位置をA位置とし、前記A位置から切断加工の進行方向に所定距離の位置をB位置とし、前記A位置から前記進行方向に対して逆方向に所定距離の位置をC位置としたとき、前記A位置から前記B位置を経て前記C位置への切断加工後の前記C位置から前記A位置を経て前記B位置までの切断加工時に、前記A位置からB位置を経てC位置までのレーザ出力及び切断速度に対してレーザ出力を小さくすると共に切断速度を低速にして前記C位置から前記A位置を経て前記B位置までの切断加工を行い、前記B位置においてレーザ出力が零にされる、レーザ加工方法。
    A laser processing method in which oxygen gas is used as an assist gas and laser cutting is performed along a closed path of the steel sheet,
    A position that reaches the closed path to be cut from the piercing position is defined as A position, a position that is a predetermined distance from the A position in the traveling direction of the cutting process is defined as B position, and the reverse direction from the A position to the traveling direction When the position at a predetermined distance is the C position, the cutting position from the C position to the B position through the A position to the B position after cutting from the A position to the C position through the B position. Cutting the laser output from the position through the B position to the C position and reducing the laser output relative to the cutting speed and reducing the cutting speed from the C position through the A position to the B position, A laser processing method in which the laser output is made zero at the B position.
  2.  請求項1に記載のレーザ加工方法であって、前記C位置で、前記アシストガスをエアー、チッソガス、又は、酸素ガスにエアー若しくはチッソガスの少なくとも一方を混合した混合ガスに切換える、レーザ加工方法。 2. The laser processing method according to claim 1, wherein at the position C, the assist gas is switched to air, nitrogen gas, or a mixed gas obtained by mixing at least one of air or nitrogen gas with oxygen gas. 3.
  3.  レーザ加工装置であって、
     レーザ発振器と、
     レーザ光を集光してワークに照射するレーザ加工ヘッドと、
     前記レーザ加工ヘッドにアシストガスを供給するアシストガス供給ユニットと、
     前記レーザ発振器のレーザ出力及び前記レーザ加工ヘッドのワークに対する相対的な移動速度を制御する制御部と、
     アシストガスとして酸素を使用してワークを閉じた経路に沿ってレーザ切断する際の前記閉じた経路の切断終了領域における加工条件をワークの材質及び厚さに対応させて予め格納する加工条件テーブルと、
     加工すべきワークの材質及び厚さに対応して前記加工条件テーブルから適用する加工条件を検索する検索部と、を備えており、
     前記制御部が、前記検索部の検索結果に基づいて、前記切断終了領域における前記レーザ出力及び前記移動速度を制御する、レーザ加工装置。
    A laser processing apparatus,
    A laser oscillator;
    A laser processing head for condensing laser light and irradiating the workpiece;
    An assist gas supply unit for supplying an assist gas to the laser processing head;
    A controller that controls the laser output of the laser oscillator and the relative moving speed of the laser processing head with respect to the workpiece;
    A machining condition table that stores in advance the machining conditions in the cutting end region of the closed path corresponding to the material and thickness of the workpiece when the workpiece is laser cut along the closed path using oxygen as an assist gas; ,
    A search unit for searching for a machining condition to be applied from the machining condition table corresponding to the material and thickness of the workpiece to be machined,
    The laser processing apparatus, wherein the control unit controls the laser output and the moving speed in the cutting end region based on a search result of the search unit.
  4.  レーザ加工装置であって、
     レーザ発振器と、
     レーザ光を集光してワークに照射するレーザ加工ヘッドと、
     前記レーザ加工ヘッドへアシストガスを供給するアシストガス供給ユニットと、
     前記レーザ発振器のレーザ出力及び前記レーザ加工ヘッドのワークに対する相対的な移動速度を制御するための制御部と、
     アシストガスとして酸素を使用してワークを閉じた経路に沿ってレーザ切断する際の前記閉じた経路の切断終了領域における加工条件をワークの材質及び厚さに対応させて記憶するメモリと、
     前記切断終了領域における前記加工条件を前記メモリに入力する入力部と、を備えており、
     前記制御部が、前記メモリに入力された前記切断終了領域における前記加工条件に基づいて、前記切断終了領域における前記レーザ出力及び前記移動速度を制御する、レーザ加工装置。
    A laser processing apparatus,
    A laser oscillator;
    A laser processing head for condensing laser light and irradiating the workpiece;
    An assist gas supply unit for supplying an assist gas to the laser processing head;
    A control unit for controlling a laser output of the laser oscillator and a relative moving speed of the laser processing head with respect to a workpiece;
    A memory for storing processing conditions in the cutting end region of the closed path corresponding to the material and thickness of the work when laser cutting the work along the closed path using oxygen as an assist gas;
    An input unit for inputting the processing conditions in the cutting end region to the memory,
    The laser processing apparatus, wherein the control unit controls the laser output and the moving speed in the cutting end region based on the processing conditions in the cutting end region input to the memory.
PCT/JP2011/075039 2010-11-09 2011-10-31 Laser machining method and laser machining device WO2012063668A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-250721 2010-11-09
JP2010250721 2010-11-09
JP2011127059A JP2012115899A (en) 2010-11-09 2011-06-07 Laser machining method and laser machining device
JP2011-127059 2011-06-07

Publications (1)

Publication Number Publication Date
WO2012063668A1 true WO2012063668A1 (en) 2012-05-18

Family

ID=46050819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075039 WO2012063668A1 (en) 2010-11-09 2011-10-31 Laser machining method and laser machining device

Country Status (2)

Country Link
JP (1) JP2012115899A (en)
WO (1) WO2012063668A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065484A1 (en) * 2011-11-02 2013-05-10 日酸Tanaka株式会社 Laser cutting method and laser cutting device
EP2883648A4 (en) * 2013-09-25 2016-02-17 Lg Chemical Ltd Laser cutting apparatus and cutting method therefor
CN107283069A (en) * 2016-04-01 2017-10-24 大族激光科技产业集团股份有限公司 A kind of technique of returning sword of laser cutting
CN109862993A (en) * 2016-10-24 2019-06-07 通快机床两合公司 For the method by laser beam cutting workpiece
DE102018204663A1 (en) 2018-03-27 2019-10-02 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laser cutting process with an increase in cutting nozzle spacing at the cutting end and laser cutting machine and computer program product
WO2021225057A1 (en) * 2020-05-08 2021-11-11 村田機械株式会社 Laser processing machine, laser processing method, and control program generation device
CN114654104A (en) * 2022-02-16 2022-06-24 上海柏楚电子科技股份有限公司 Control method, device, equipment and medium for laser cutting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017044646A1 (en) 2015-09-09 2017-03-16 Electro Scientific Industries, Inc. Laser processing apparatus, methods of laser-processing workpieces and related arrangements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210981A (en) * 1990-01-17 1991-09-13 Mitsubishi Electric Corp Laser beam cutting method for iron-base thick plate
JPH0433788A (en) * 1990-05-25 1992-02-05 Mitsubishi Electric Corp Laser beam drilling method
JPH04339588A (en) * 1991-05-14 1992-11-26 Mitsubishi Electric Corp Laser beam processing method
WO1994021417A1 (en) * 1993-03-25 1994-09-29 Fanuc Ltd Laser beam machining method and apparatus therefor
JPH07284974A (en) * 1994-02-24 1995-10-31 Mitsubishi Electric Corp Laser beam processing method and device therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132385A (en) * 1993-11-10 1995-05-23 Fanuc Ltd Laser beam machine
JP4628129B2 (en) * 2005-02-14 2011-02-09 株式会社アマダ Laser processing method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210981A (en) * 1990-01-17 1991-09-13 Mitsubishi Electric Corp Laser beam cutting method for iron-base thick plate
JPH0433788A (en) * 1990-05-25 1992-02-05 Mitsubishi Electric Corp Laser beam drilling method
JPH04339588A (en) * 1991-05-14 1992-11-26 Mitsubishi Electric Corp Laser beam processing method
WO1994021417A1 (en) * 1993-03-25 1994-09-29 Fanuc Ltd Laser beam machining method and apparatus therefor
JPH07284974A (en) * 1994-02-24 1995-10-31 Mitsubishi Electric Corp Laser beam processing method and device therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065484A1 (en) * 2011-11-02 2013-05-10 日酸Tanaka株式会社 Laser cutting method and laser cutting device
US9434024B2 (en) 2011-11-02 2016-09-06 Nissan Tanaka Corporation Laser cutting method and laser cutting device
EP2883648A4 (en) * 2013-09-25 2016-02-17 Lg Chemical Ltd Laser cutting apparatus and cutting method therefor
CN107283069A (en) * 2016-04-01 2017-10-24 大族激光科技产业集团股份有限公司 A kind of technique of returning sword of laser cutting
CN107283069B (en) * 2016-04-01 2019-04-12 大族激光科技产业集团股份有限公司 A kind of technique of returning sword of laser cutting
CN109862993A (en) * 2016-10-24 2019-06-07 通快机床两合公司 For the method by laser beam cutting workpiece
DE102018204663A1 (en) 2018-03-27 2019-10-02 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laser cutting process with an increase in cutting nozzle spacing at the cutting end and laser cutting machine and computer program product
WO2019185528A1 (en) 2018-03-27 2019-10-03 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laser cutting method with an increased cutting nozzle distance at the end of the cut, laser cutting machine and computer program product
WO2021225057A1 (en) * 2020-05-08 2021-11-11 村田機械株式会社 Laser processing machine, laser processing method, and control program generation device
JP7367861B2 (en) 2020-05-08 2023-10-24 村田機械株式会社 Laser processing machine, laser processing method and control program generation device
CN114654104A (en) * 2022-02-16 2022-06-24 上海柏楚电子科技股份有限公司 Control method, device, equipment and medium for laser cutting
CN114654104B (en) * 2022-02-16 2024-04-16 上海柏楚电子科技股份有限公司 Laser cutting control method, device, equipment and medium

Also Published As

Publication number Publication date
JP2012115899A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2012063668A1 (en) Laser machining method and laser machining device
US9020628B2 (en) Method and system for eliminating external piercing in NC cutting of nested parts
JP5902747B2 (en) Laser processing system with processing resumption preparation function
JP5122833B2 (en) Laser processing method and laser processing apparatus
WO2019188155A1 (en) Laser cutting device and laser cutting method
JP3746019B2 (en) Laser processing machine
JP3235389B2 (en) Laser processing apparatus and processing method
US20050077271A1 (en) Method and installation for modulated plasma jet cutting at sharp changes of direction, in particular angles
US10399173B2 (en) Laser welding of workpieces by machine
JP6980504B2 (en) Cutting method, cutting program, automatic generation program, control system, cutting device and manufacturing method of work material
JP2000351087A (en) Laser beam machine, its numerical controller and control method of laser beam machine
JPH067973A (en) Laser beam machine
JP2009291826A (en) Laser-arc composite welding method and machine
JP7129469B2 (en) Cutting machine and cutting method
JP2011079016A (en) Laser beam machining apparatus and laser beam machining method
JP2008290135A (en) Laser beam machining apparatus and laser beam machining method
JP2015150655A (en) Method for teaching laser machining pattern and method for operating robot
JPH06269967A (en) Method and device for laser beam machining
JP6719683B2 (en) Cutting machine and cutting method
JPH09267187A (en) Laser beam machining method
WO2020008779A1 (en) Cutting machine and cutting method
WO2023037915A1 (en) Laser processing method and laser processing device
EP3766628B1 (en) Cut-processing machine and cut-processing method
JP2618730B2 (en) Laser processing method and laser processing apparatus
JP6670983B1 (en) Cutting machine and cutting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839903

Country of ref document: EP

Kind code of ref document: A1