WO2012063286A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2012063286A1
WO2012063286A1 PCT/JP2010/006601 JP2010006601W WO2012063286A1 WO 2012063286 A1 WO2012063286 A1 WO 2012063286A1 JP 2010006601 W JP2010006601 W JP 2010006601W WO 2012063286 A1 WO2012063286 A1 WO 2012063286A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
battery according
separator
nonwoven fabric
ceramic material
Prior art date
Application number
PCT/JP2010/006601
Other languages
French (fr)
Japanese (ja)
Inventor
中島 潤二
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2010/006601 priority Critical patent/WO2012063286A1/en
Publication of WO2012063286A1 publication Critical patent/WO2012063286A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery excellent in performance and safety.
  • a battery is a device that converts the chemical energy of a chemical substance inside into electrical energy through an electrochemical redox reaction.
  • portable electronic devices such as electronics, communications, and computers.
  • mobiles such as electric vehicles and stationary equipment for power load leveling systems. It is expected to be put into practical use and is becoming an increasingly important key device.
  • lithium-ion secondary batteries have brought great spread.
  • This lithium ion secondary battery uses a positive electrode having a lithium-containing transition metal composite oxide as an active material and a material capable of inserting and extracting lithium, such as lithium metal, lithium alloy, metal oxide, or carbon.
  • the main components are a negative electrode, an electrolyte, and a separator.
  • lithium ions emitted from a lithium metal composite oxide used as a positive electrode during initial charging move to a graphite electrode used as a negative electrode and are inserted between the graphite electrodes.
  • a thin film layer is formed on the surface of the graphite negative electrode.
  • Such a layer is called a SEI (Solid-Electrolyte-Interface) layer.
  • the SEI layer serves as an ion tunnel and allows only lithium ions to pass through.
  • the lithium ions again do not side-react with the graphite negative electrode or other substances, and the amount of lithium ions in the electrolyte is reversibly maintained, ensuring stable charge / discharge.
  • gases such as CO, CO 2 , CH 4 , C 2 H 6 are generated during the above-described SEI formation reaction due to decomposition of the carbonate-based organic solvent, This causes the problem that the thickness of the battery expands during charging.
  • the SEI layer gradually collapses as time passes during high temperature storage, and the side reaction in which the exposed negative electrode surface reacts with the surrounding electrolyte continues. Will occur.
  • Patent Document 1 Japanese Translation of PCT Publication No. 2009-507353
  • the present invention has been made to solve these problems, and the problem is that it is particularly excellent in performance, can simultaneously improve capacity and high output performance, and can expand the specification temperature range. Furthermore, it is an object of the present invention to provide a battery having excellent safety because an internal short circuit hardly occurs without contracting the separator.
  • the secondary battery of the present invention basically has a separator carrying a material containing a ceramic material and a phosphorus element in a nonwoven fabric, and the content ratio of the ceramic material is 50 wt% or more and 96 wt% or less,
  • the ceramic material is Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , BaTiO 3 , AlPO 4 , ZrPO 4 , AlF 3 .
  • it is characterized by containing a polymer fiber having cellulose or an acrylic group.
  • the nonwoven fabric material is characterized by comprising materials such as PET (polyethylene terephthalate), PP (polypropylene), PPS (polyphenylene sulfite), mica (mica) and the like.
  • the capacity and high output performance can be improved at the same time, the specification temperature range can be expanded, and the separator is not shrunk, internal short circuit is less likely to occur, and it is safer and prevents copper damage.
  • a battery having a long life can be obtained.
  • the battery of the present invention high output and high capacity can be achieved at the same time, copper damage is suppressed, and the life is improved by being excellent in liquid retention. Further, safety can be improved because the temperature rise in the battery can be suppressed, it is flame retardant and non-flammable, and it does not shrink at high temperatures like a film, thereby preventing a short circuit. Furthermore, even if the battery itself is exposed to a high temperature, safety can be ensured by suppressing ion migration and cutting off the current by vitrification or the like.
  • charging and discharging can be stably performed even in a high operating voltage region (4.45 V or more).
  • This battery has a high voltage and a high capacity, can exhibit excellent charge / discharge performance, life, and rate performance (output characteristics), and can be used without problems even under high voltage and high temperature storage. Furthermore, since generation
  • FIG. 1 is a schematic configuration diagram of a separator of the present invention.
  • FIG. 2 is a table summarizing the battery conditions of this example.
  • FIG. 3 is a table showing the performance of the battery in each example of this example.
  • the separator which is the gist of the present invention is formed by supporting at least a nonwoven material 1 with a ceramic material 2 and a material 3 containing a phosphorus element.
  • the film-like separator does not shrink and short-circuit internally, and is flame retardant and non-flammable, thereby improving safety.
  • the diffusion rate is improved when ions move on the ceramic surface, and high output and rapid charging can be realized.
  • the separator has flame retardancy or nonflammability and does not shrink at high temperatures, a battery having excellent safety can be obtained.
  • the specification temperature range is expanded, and further, it relates to a lithium ion secondary battery or sodium ion secondary battery separator having excellent life characteristics, and a lithium ion secondary battery or sodium ion secondary battery including the separator. .
  • the positive electrode contains an active material capable of inserting and removing lithium ions or sodium ions.
  • active material lithium nickel manganate, lithium manganate, lithium nickelate, nickel cobalt lithium manganate, lithium manganese phosphate, lithium iron manganate, lithium manganese titanate and their modified products (coinciding with metals such as aluminum and magnesium) And composite oxides such as those using sodium instead of lithium.
  • those containing manganese are preferable.
  • PVdF, PTFE, P (VdF / HFP) and modified acrylonitrile rubber particle binder are soluble in carboxymethylcellulose (CMC) and soluble It may be combined with a modified acrylonitrile rubber (such as BM-720H manufactured by Nippon Zeon Co., Ltd.).
  • CMC carboxymethylcellulose
  • BM-720H modified acrylonitrile rubber
  • acetylene black, ketjen black, and various graphites may be used alone or in combination.
  • the negative electrode includes an active material capable of inserting and removing lithium ions or sodium ions.
  • the active material metallic lithium, various natural graphites and artificial graphite, silicon-based composite materials such as silicide, silicon oxide-based materials, titanium alloy-based materials, and various alloy composition materials can be used.
  • As a binder from the viewpoint of improving the lithium ion acceptability, SBR and a modified product thereof are used in combination with a cellulose resin such as CMC and added in a small amount.
  • acrylic resin, PVdF, PTFE or P (VdF / HFP) is used. It is more preferable that
  • the lithium salts include LiPF 6 , LiBF 4 , LiClO 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , One or two selected from the group consisting of LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 ) 2 , LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiCl, LiI, LiBETI, LiTFS
  • the above can be mixed and used.
  • the concentration of the lithium salt is preferably 0.01 mol / l or more and lower than the saturated state.
  • ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), fluorinated ethylene carbonate (FEC), trifluoromethylcyclohexane (TFMCH), bistrifluoromethanesulfonylimide (TFSI), succinonitrile (SN), fluorinated phosphonitrile trimer and the like can also be used.
  • vinylene carbonate VC
  • CHB cyclohexylbenzene
  • PS propane sultone
  • PRS propylene sulfite
  • ES ethylene sulfite
  • a lithium salt or a sodium salt having a low lattice energy, a high degree of dissociation, an excellent ionic conductivity, and a good thermal stability and oxidation resistance.
  • the present invention is not limited to the examples shown below.
  • the following batteries were allowed to stand for a certain period of time after injecting the electrolyte in a dry air environment, and then subjected to a precharge process for about 20 minutes at a current corresponding to 0.1 C. A process of leaving aging in a 60 ° C. environment for 1 day is assumed.
  • Example 1 In Example 1, 10% by weight of propylene carbonate (PC), 10% by weight of fluorinated ethylene carbonate (FEC), 60% by weight of dimethyl carbonate (DMC), and 15% by weight of succinonitrile (SN) as organic solvents Lithium bistrifluoromethanesulfonylimide (LiTFSI) was used in a mixed solvent of 5% by weight, and LiPF 6 was dissolved as a lithium salt at 1 mol / L to obtain an electrolyte for a lithium ion battery. However, it is not limited to this composition.
  • PC propylene carbonate
  • FEC fluorinated ethylene carbonate
  • DMC dimethyl carbonate
  • SN succinonitrile
  • LiTFSI Lithium bistrifluoromethanesulfonylimide
  • the positive electrode uses LiMnO 2 formed on an Al foil. At the time of forming the positive electrode, an appropriate amount of each of acrylene black as a conductive agent and an acrylic resin as a binder is mixed.
  • the negative electrode is made of a copper foil formed by mixing half of artificial graphite and natural graphite. When forming the negative electrode, an appropriate amount of styrene butadiene rubber resin (SBR) and a thickener cellulose (cmc) are applied and mixed as a binder.
  • SBR styrene butadiene rubber resin
  • cmc thickener cellulose
  • the separator is a coating material in which the skeleton of the nonwoven fabric 1 is PET fiber, and ⁇ -Al 2 O 3 is mixed as a ceramic material 2 with an acrylic resin (for example, BM-520B manufactured by Nippon Zeon Co., Ltd.) at a 96: 4 weight ratio.
  • the non-woven fabric is impregnated with AlPO 4 which is phosphorus-containing material 3 having a weight 1/7 of the weight of Al 2 O 3 and dispersed, and heated to remove the solvent.
  • Example 2 In Example 1, the nonwoven fabric 1 is replaced with PET, and fibers made of PP are used.
  • Example 3 In Example 1, the nonwoven fabric 1 is replaced with PET and fibers of PPS material are used.
  • Example 4 the nonwoven fabric 1 is made of mica (mica) material instead of PET.
  • mica mica
  • Neobest manufactured by Olivest Co., Ltd. is used.
  • Example 5 In Example 1, instead of Al 2 O 3 which is the ceramic material 2, SiO 2 is used.
  • Example 6 (Example 6) In Example 1, anatase TiO 2 is used in place of Al 2 O 3 which is the ceramic material 2.
  • Example 7 In Example 1, ZrO 2 is used in place of Al 2 O 3 which is the ceramic material 2.
  • Example 8 In Example 1, BaTiO 3 is used instead of Al 2 O 3 which is the ceramic material 2.
  • Example 9 In Example 1, in place of the Al 2 O 3 is a ceramic material 2, using AlPO 4, a solid powder and only AlPO 4.
  • Example 10 (Example 10) In Example 9, ZrPO 4 is used instead of AlPO 4 .
  • Example 11 In contrast to Example 1, a material obtained by impregnating a paint in which AlF 3 is added to 1/10 weight of Al 2 O 3 weight is used.
  • Example 12 In Example 1, the nonwoven fabric 1 is entangled with cellulose fibers, and the average pore diameter before the cellulose is used is 0.6 ⁇ m, and the average pore diameter is 0.2 ⁇ m.
  • the hole diameter is not limited to this.
  • Example 13 In Example 1, the ratio of Al 2 O 3 and acrylic resin was 50:50 by weight.
  • Example 1 Comparative Example 1 In Example 1, the ratio of Al 2 O 3 and acrylic resin was 49:51 by weight.
  • Example 2 (Comparative Example 2) In Example 1, the ratio of Al 2 O 3 and acrylic resin was 97: 3 by weight.
  • Example 3 (Comparative Example 3) In Example 1, a separator having the same thickness and a PE film was used.
  • Example 1 it was confirmed that the positive electrode obtained the same tendency with other materials regardless of LiMnO 2 . The same applies to the negative electrode.
  • FIG. 2 shows a table summarizing the battery conditions of this example.
  • the battery of the present invention also operated at ⁇ 40 ° C., but it does not have the structure of the present invention, such as a comparative example, a structure that does not contain phosphorus, such as no phosphorus, or that uses a film separator. It did not work at -40 ° C.
  • the secondary battery according to the present invention has excellent performance and is useful as a highly safe and high-performance power source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

Separator films of PE or PP which have been conventionally used oxidize and degrade. The possibility that, as a result, insulation properties are reduced or lifetime performance decreases has not been resolved. Furthermore, with conventional battery configurations, there has been a tradeoff between capacity and output so that it has been difficult to achieve high output. In an electrolyte system, there has been the problem that, as a result of temperature dependency of an electrolyte, performance at a low temperature has deteriorated so that desired performance could not be achieved. Furthermore, as a result of the expansion of specific applications, quick-recharge is being desired for recharge as well. In the separator according to the present invention, by configuring thereof so as to support a material containing ceramic material and elemental phosphorous in a nonwoven fabric, it is possible to continuously maintain insulation in a an expected environment and to improve safety.

Description

二次電池Secondary battery
本発明は、性能及び安全性に優れた二次電池に関する。 The present invention relates to a secondary battery excellent in performance and safety.
 電池は、内部に入っている化学物質の化学エネルギーを電気化学的酸化還元反応によって電気エネルギーに変換する装置である。近年、世界的に電子、通信、コンピュータなどの携帯型電子機器を中心に使用されており、今後は、電気自動車等の移動体や、電力負荷平準化システム等の定置、などの大型電池としても実用化されるものと予測されており、益々、重要なキーデバイスとなっている。 A battery is a device that converts the chemical energy of a chemical substance inside into electrical energy through an electrochemical redox reaction. In recent years, it has been used around the world for portable electronic devices such as electronics, communications, and computers. From now on, it will be used as a large battery for mobiles such as electric vehicles and stationary equipment for power load leveling systems. It is expected to be put into practical use and is becoming an increasingly important key device.
 中でもリチウムイオン二次電池は大きな普及をもたらしている。このリチウムイオン二次電池は、リチウム含有遷移金属複合酸化物を活物質とする正極と、リチウム金属、リチウム合金、金属酸化物あるいはカーボンのようなリチウムを吸蔵・放出することが可能な材料を活物質とする負極と、電解質とセパレータを主要構成要素とする。 Among them, lithium-ion secondary batteries have brought great spread. This lithium ion secondary battery uses a positive electrode having a lithium-containing transition metal composite oxide as an active material and a material capable of inserting and extracting lithium, such as lithium metal, lithium alloy, metal oxide, or carbon. The main components are a negative electrode, an electrolyte, and a separator.
 ここで一例として、リチウムイオン二次電池では、初期充電時に正極として用いられるリチウム金属複合酸化物から出たリチウムイオンは、負極として用いられる黒鉛電極に移動して黒鉛電極間に挿入される。この時、リチウムは反応性が高いため、黒鉛負極表面に薄膜の被膜層を形成する。このような層をSEI(Solid Electrolyte Interface)層と言う。上記SEI層は、一旦形成されるとイオントンネルの役割を果たし、リチウムイオンだけを通過させることになる。このようなイオントンネルの効果を有す保護膜によって、電解液等による黒鉛負極の構造の崩壊を防ぐことができる。 As an example, in a lithium ion secondary battery, lithium ions emitted from a lithium metal composite oxide used as a positive electrode during initial charging move to a graphite electrode used as a negative electrode and are inserted between the graphite electrodes. At this time, since lithium is highly reactive, a thin film layer is formed on the surface of the graphite negative electrode. Such a layer is called a SEI (Solid-Electrolyte-Interface) layer. Once formed, the SEI layer serves as an ion tunnel and allows only lithium ions to pass through. By such a protective film having an ion tunnel effect, the structure of the graphite negative electrode can be prevented from collapsing due to an electrolytic solution or the like.
一旦、SEI層が形成されると、リチウムイオンは、再度黒鉛負極または他の物質と副反応をしなくなり、電解液中のリチウムイオンの量が可逆的に維持されて安定した充放電が確保される。しかしながら、電圧(高電圧)によっては、上述したSEIの形成反応中に、炭酸塩系有機溶媒の分解に起因して、CO、CO2、CH4、C等の気体が発生し、充電時に電池の厚さが膨張すると言う問題を起す。また、ある電圧(高電圧)での満充電状態において、高温保存時に時間の経過に応じて上記SEI層が徐々に崩壊し、露出した負極表面と周りの電解液とが反応する副反応が持続的に発生することになる。この時、継続的な気体発生によって、電池内部の内圧が上昇し、その結果、電池の厚さが増加することになる。更に、従来用いているPEやPPのセパレータフィルムが酸化し、劣化してしまう。そのことで絶縁性が落ち、寿命性能が落ちたり、ショートして内圧上昇時のガスのメタンや酸素にスパークが走り、引火する可能性を持つことになる危険性がある。 Once the SEI layer is formed, the lithium ions again do not side-react with the graphite negative electrode or other substances, and the amount of lithium ions in the electrolyte is reversibly maintained, ensuring stable charge / discharge. The However, depending on the voltage (high voltage), gases such as CO, CO 2 , CH 4 , C 2 H 6 are generated during the above-described SEI formation reaction due to decomposition of the carbonate-based organic solvent, This causes the problem that the thickness of the battery expands during charging. In addition, in a fully charged state at a certain voltage (high voltage), the SEI layer gradually collapses as time passes during high temperature storage, and the side reaction in which the exposed negative electrode surface reacts with the surrounding electrolyte continues. Will occur. At this time, due to continuous gas generation, the internal pressure of the battery rises, and as a result, the thickness of the battery increases. Furthermore, the PE and PP separator films used in the past are oxidized and deteriorated. As a result, there is a risk that the insulation performance is lowered, the life performance is lowered, and there is a possibility that a spark will run on the gas methane or oxygen when the internal pressure rises due to a short circuit and there is a possibility of ignition.
正極においてリチウムに代えてナトリウムを用いた場合でも同様である。 The same applies to the case where sodium is used instead of lithium in the positive electrode.
また、従来のPEやPPと言った高分子フィルムのセパレータでは、高温時に収縮し、ショートする危険性を有している。 In addition, conventional polymer film separators such as PE and PP have a risk of shrinking and short-circuiting at high temperatures.
その結果、電池膨れや発熱による電池の変形や、電池の充放電効率が低下し、電池エネルギー密度の低下によって、電池寿命が短くなるなどの問題が発生している。 As a result, problems such as battery deformation due to battery swelling and heat generation, charge / discharge efficiency of the battery are reduced, and battery life is shortened due to a decrease in battery energy density.
これらの問題点を解決するために、リチウムイオン二次電池のセパレータとして不織布にセラミック材料とポリマー粒子を担持させたものを用いることで、電池性能を確保する試みが行なわれている。
特許文献1:特表2009-507353号公報
In order to solve these problems, attempts have been made to ensure battery performance by using a nonwoven fabric in which a ceramic material and polymer particles are supported as a separator of a lithium ion secondary battery.
Patent Document 1: Japanese Translation of PCT Publication No. 2009-507353
 しかしながら、上記特許文献1に記載の方法によるセパレータを用いても、含有するポリマー粒子の影響で使用できる動作電圧を上げることも高温保存時における電池性能及び安全性は十分でなかった。また、含有するポリマー粒子と活物質との界面で化学反応が起きる場合が有り、更に、ポリマー粒子と負極集電板の銅箔と接触することで銅害を生じ、寿命にも影響することがわかった。更に、高温保存時にポリマー粒子の溶融からセパレータの目詰まりを生じさせ、出力特性も落としてしまうこともわかった。 However, even when the separator according to the method described in Patent Document 1 is used, increasing the operating voltage that can be used due to the influence of the polymer particles contained does not provide sufficient battery performance and safety during high-temperature storage. In addition, a chemical reaction may occur at the interface between the polymer particles and the active material contained, and further, contact with the polymer particles and the copper foil of the negative electrode current collector plate may cause copper damage and affect the life. all right. Furthermore, it was found that the separator was clogged due to melting of the polymer particles during storage at high temperature, and the output characteristics were deteriorated.
 そこで、本発明は、これらの課題を解決すべくなされたものであり、その課題とするところは、特に性能に優れ、容量及び高出力性能を同時に向上させ、仕様温度範囲を拡大することが可能となり、更に、セパレータが収縮することなく、内部短絡が起き難くなり、安全性に優れた電池を提供することにある。 Therefore, the present invention has been made to solve these problems, and the problem is that it is particularly excellent in performance, can simultaneously improve capacity and high output performance, and can expand the specification temperature range. Furthermore, it is an object of the present invention to provide a battery having excellent safety because an internal short circuit hardly occurs without contracting the separator.
 上記課題を解決すべく検討の結果、セパレータとして不織布にセラミック材料とリン元素を含有した材料を担持させることで、高い正電位においても安定した電池となり、高出力、高容量を実現でき、更に、仕様温度領域を拡大でき、また、熱に対しても安定して絶縁性を確保できるため、高安全な電池となる本発明を得るに至った。 As a result of investigations to solve the above problems, by carrying a material containing a ceramic material and phosphorus element on a nonwoven fabric as a separator, it becomes a stable battery even at a high positive potential, and can realize high output and high capacity. Since the specification temperature range can be expanded, and insulation can be secured stably against heat, the present invention is obtained which is a highly safe battery.
 すなわち、本発明の二次電池は、基本として、セパレータにおいて、不織布においてセラミック材料とリン元素を含有した材料を担持しており、セラミック材料の含有割合が50重量%以上96重量%以下であり、セラミック材料がAl2O3、SiO2、TiO2、ZrO2、BaTiO3、AlPO4、ZrPO4、AlF3である。更に、セルロースもしくはアクリル基を有する高分子繊維を含有していることを特徴とする。不織布材料は、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PPS(ポリフェニレンサルファイト)、雲母(マイカ)等の材料からなることを特徴とする。 That is, the secondary battery of the present invention basically has a separator carrying a material containing a ceramic material and a phosphorus element in a nonwoven fabric, and the content ratio of the ceramic material is 50 wt% or more and 96 wt% or less, The ceramic material is Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , BaTiO 3 , AlPO 4 , ZrPO 4 , AlF 3 . Furthermore, it is characterized by containing a polymer fiber having cellulose or an acrylic group. The nonwoven fabric material is characterized by comprising materials such as PET (polyethylene terephthalate), PP (polypropylene), PPS (polyphenylene sulfite), mica (mica) and the like.
 これにより、容量及び高出力性能を同時に向上させ、仕様温度範囲を拡大することが可能となり、更に、セパレータが収縮することなく、内部短絡が起き難くなり、安全性に優れ、更に銅害を防ぎ、高寿命な電池を得ることが出来る。 As a result, the capacity and high output performance can be improved at the same time, the specification temperature range can be expanded, and the separator is not shrunk, internal short circuit is less likely to occur, and it is safer and prevents copper damage. A battery having a long life can be obtained.
 ナトリウムイオン電池の場合も同様にLiに代えてNaとすることで成り立つ。 In the case of a sodium ion battery, it is similarly established by replacing Na with Li.
 本発明電池によれば、高出力と高容量を両立でき、銅害も抑制し、保液性に優れたものとなることで寿命が向上する。また、電池内の温度上昇を抑制できること、難燃性、不燃性であること、フィルムのように高温時に収縮することがないことでショート(短絡)を防止できるため、安全性が向上する。更に、仮に、電池自体が高温に曝されることがあっても、ガラス化等によりイオン移動抑制及び電流遮断することで安全性を確保できる。 According to the battery of the present invention, high output and high capacity can be achieved at the same time, copper damage is suppressed, and the life is improved by being excellent in liquid retention. Further, safety can be improved because the temperature rise in the battery can be suppressed, it is flame retardant and non-flammable, and it does not shrink at high temperatures like a film, thereby preventing a short circuit. Furthermore, even if the battery itself is exposed to a high temperature, safety can be ensured by suppressing ion migration and cutting off the current by vitrification or the like.
本発明電池によれば、高い作動電圧領域(4.45V以上)においても安定に充放電させることができる。 According to the battery of the present invention, charging and discharging can be stably performed even in a high operating voltage region (4.45 V or more).
この電池は、高電圧・高容量で、優れた充放電性能、寿命、レート性能(出力特性)を発揮することができ、高電圧でも高温保存下でも問題なく用いることができる。更に、分解ガスの発生が抑制されることで高安全な電池を得ることができ、実用性の高いものである。 This battery has a high voltage and a high capacity, can exhibit excellent charge / discharge performance, life, and rate performance (output characteristics), and can be used without problems even under high voltage and high temperature storage. Furthermore, since generation | occurrence | production of decomposition gas is suppressed, a highly safe battery can be obtained and it is a highly practical thing.
図1は本発明セパレータの簡単な構成模式図である。FIG. 1 is a schematic configuration diagram of a separator of the present invention. 図2は本実施例の各電池条件を纏めた表である。FIG. 2 is a table summarizing the battery conditions of this example. 図3は本実施例の各々実施例における電池の性能を示す表である。FIG. 3 is a table showing the performance of the battery in each example of this example.
 本発明の好ましい態様を図1を参照しながら以下に示す。 A preferred embodiment of the present invention will be described below with reference to FIG.
 まず、本発明の骨子であるセパレータについては、少なくとも不織布1にセラミック材料2とリン元素を含有した材料3を担持してなる。 First, the separator which is the gist of the present invention is formed by supporting at least a nonwoven material 1 with a ceramic material 2 and a material 3 containing a phosphorus element.
不織布1とセラミック材料2により高温に曝されてもフィルム状のセパレータのような収縮して内部短絡することがなく、難燃性、不燃性であることから安全性が向上する。また、セラミック表面をイオン移動する際、拡散速度が向上することが確認されており、高出力と急速充電を実現できる。 Even if the nonwoven fabric 1 and the ceramic material 2 are exposed to a high temperature, the film-like separator does not shrink and short-circuit internally, and is flame retardant and non-flammable, thereby improving safety. In addition, it has been confirmed that the diffusion rate is improved when ions move on the ceramic surface, and high output and rapid charging can be realized.
また、リン(P)3が含まれると、ホールが発生し、アクセプター機能を相間界面に生じさせる。これによって、脱離反応が向上し、また、活物質(正極も負極も)表面にはイオン伝導性を有する半導体中間層が形成される形となる。そのため、正極活物質自体及び接触する電解質、電解液が高電圧による酸化が抑制される。 Moreover, when phosphorus (P) 3 is contained, holes are generated and an acceptor function is generated at the interphase interface. As a result, the elimination reaction is improved, and a semiconductor intermediate layer having ion conductivity is formed on the surface of the active material (both positive electrode and negative electrode). Therefore, the positive electrode active material itself and the contacting electrolyte and electrolyte are prevented from being oxidized by a high voltage.
 保液性にも優れているため、寿命も向上する。また、注液性も向上するため、製造タクトも向上する。 ¡Since it has excellent liquid retention, its life is also improved. Further, since the liquid injection property is improved, the manufacturing tact is also improved.
 その結果、従来、トレードオフの関係があり、難しい課題であった高出力、急速充電と高容量を両立実現できる。前記リンの効果により、高温放置や高電圧充電時でのガス化反応による電池内圧の上昇や電池缶の膨れが抑制され、電池性能安定性が向上し、サイズ変化が抑制される。また、セパレータが難燃性もしくは不燃性を有し、高温時に収縮をしないため、安全性に優れた電池を得ることが出来る。また、仕様温度範囲も拡大され、更に、寿命特性に優れたリチウムイオン二次電池用もしくはナトリウムイオン二次電池用セパレータとこのセパレータを含むリチウムイオン二次電池またはナトリウムイオン二次電池に関するものである。 As a result, it has been possible to achieve both high output, rapid charging and high capacity, which have been conventionally difficult due to trade-offs. Due to the effect of phosphorus, an increase in the internal pressure of the battery and a swelling of the battery can due to a gasification reaction during high temperature standing and high voltage charging are suppressed, battery performance stability is improved, and size change is suppressed. In addition, since the separator has flame retardancy or nonflammability and does not shrink at high temperatures, a battery having excellent safety can be obtained. In addition, the specification temperature range is expanded, and further, it relates to a lithium ion secondary battery or sodium ion secondary battery separator having excellent life characteristics, and a lithium ion secondary battery or sodium ion secondary battery including the separator. .
以下に実施例を示し、本発明の特徴とするところを明確化するが本発明は、これらの実施例に限定されるものではない。 Examples are shown below to clarify the features of the present invention, but the present invention is not limited to these examples.
 正極については、リチウムイオンもしくはナトリウムイオンを挿入、脱離可能な活物質を含む。活物質としてニッケルマンガン酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、ニッケルコバルトマンガン酸リチウム、リン酸マンガンリチウム、鉄マンガン酸リチウム、マンガンチタン酸リチウムおよび各々その変性体(アルミニウムやマグネシウム等の金属を共晶させたもの)やリチウムに代えてナトリウムを用いたものなどの複合酸化物を挙げることができる。特に、マンガンを含有するものが好ましい。結着剤してはPVdF、PTFE、P(VdF/HFP)やベース材料として変性アクリロニトリルゴム粒子バインダー(日本ゼオン(株)製BM-520Bなど)を増粘効果のあるカルボキシメチルセルロース(CMC)・可溶性変性アクリロニトリルゴム(日本ゼオン(株)製BM-720Hなど)と組み合わせても良い。導電剤としてはアセチレンブラック・ケッチェンブラック・各種グラファイトを単独あるいは組み合わせて用いて良い。 The positive electrode contains an active material capable of inserting and removing lithium ions or sodium ions. As the active material, lithium nickel manganate, lithium manganate, lithium nickelate, nickel cobalt lithium manganate, lithium manganese phosphate, lithium iron manganate, lithium manganese titanate and their modified products (coinciding with metals such as aluminum and magnesium) And composite oxides such as those using sodium instead of lithium. In particular, those containing manganese are preferable. As binder, PVdF, PTFE, P (VdF / HFP) and modified acrylonitrile rubber particle binder (such as BM-520B manufactured by Nippon Zeon Co., Ltd.) as a base material are soluble in carboxymethylcellulose (CMC) and soluble It may be combined with a modified acrylonitrile rubber (such as BM-720H manufactured by Nippon Zeon Co., Ltd.). As the conductive agent, acetylene black, ketjen black, and various graphites may be used alone or in combination.
負極については、リチウムイオンもしくはナトリウムイオンを挿入、脱離可能な活物質を含む。活物質として金属リチウムや各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料、酸化シリコン系材料、チタン合金系材料、および各種合金組成材料を用いることができる。結着剤としてはリチウムイオン受入れ性向上の観点から、SBRおよびその変性体をCMCをはじめとするセルロース系樹脂と併用・少量添加、正極同様にアクリル系樹脂やPVdFやPTFEまたはP(VdF/HFP)とするのがより好ましいと言える。 The negative electrode includes an active material capable of inserting and removing lithium ions or sodium ions. As the active material, metallic lithium, various natural graphites and artificial graphite, silicon-based composite materials such as silicide, silicon oxide-based materials, titanium alloy-based materials, and various alloy composition materials can be used. As a binder, from the viewpoint of improving the lithium ion acceptability, SBR and a modified product thereof are used in combination with a cellulose resin such as CMC and added in a small amount. Like the positive electrode, acrylic resin, PVdF, PTFE or P (VdF / HFP) is used. It is more preferable that
電解液については、リチウム塩としては、LiPF6、LiBF4、LiClO4、LiSbF6、LiAsF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2C2F52、LiC(SO2CF33、LiN(SO3CF32、LiC4F9SO3、LiAlO4、LiAlCl4、LiCl、LiI、LiBETI、LiTFSからなる群より選択される1種もしくは2種以上を混合して用いることができる。
上記リチウム塩の濃度は、0.01mol/l以上であって、飽和状態よりも低い濃度であることが好ましい。リチウム塩の濃度が0.01mol/l未満では、解離したリチウムイオンがほとんどないため、イオン伝達力が足りなく、性能が極度に落ちてしまうことが分かっている。また、逆に飽和状態の場合、リチウムの析出が生じ、電極等構成材料を変形させてしまう。
As for the electrolyte, the lithium salts include LiPF 6 , LiBF 4 , LiClO 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , One or two selected from the group consisting of LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 ) 2 , LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiCl, LiI, LiBETI, LiTFS The above can be mixed and used.
The concentration of the lithium salt is preferably 0.01 mol / l or more and lower than the saturated state. It has been found that when the lithium salt concentration is less than 0.01 mol / l, there is almost no dissociated lithium ion, so that the ion transmission force is insufficient and the performance is extremely lowered. On the other hand, in the saturated state, lithium is precipitated and the constituent materials such as electrodes are deformed.
また溶媒として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、フッ化エチレンカーボネート(FEC)、トリフルオロメチルシクロヘキサン(TFMCH)、ビストリフルオロメタンスルホニルイミド(TFSI)、スクシノニトリル(SN)、フッ化ホスホニトリル三量体などと組み合わせて用いることもできる。また、過充電時の安定性を保証するために、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、プロパンスルトン(PS)、プロピレンサルファイト(PRS)、エチレンサルファイト(ES)等およびその変性体を用いることも可能である。 As solvents, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), fluorinated ethylene carbonate (FEC), trifluoromethylcyclohexane (TFMCH), bistrifluoromethanesulfonylimide (TFSI), succinonitrile (SN), fluorinated phosphonitrile trimer and the like can also be used. In addition, in order to ensure stability during overcharge, vinylene carbonate (VC), cyclohexylbenzene (CHB), propane sultone (PS), propylene sulfite (PRS), ethylene sulfite (ES), and the like and their modified products It is also possible to use.
リン(P)が含まれると、ホールが発生し、アクセプター機能を相間界面に生じさせる。これによって、活物質(正極も負極も)表面にはイオン伝導性を有する半導体中間層が形成されると考えられる。そのため、正極活物質自体及び接触する電解質、電解液が高電圧による酸化されることが抑制される。 When phosphorus (P) is contained, holes are generated and an acceptor function is generated at the interphase interface. Thereby, it is considered that a semiconductor intermediate layer having ion conductivity is formed on the surface of the active material (both positive electrode and negative electrode). Therefore, the positive electrode active material itself and the contacting electrolyte and electrolyte are prevented from being oxidized by a high voltage.
また、亜鉛(Zn)が加わるとアクセプター機能は更に強まる。 Further, when zinc (Zn) is added, the acceptor function is further strengthened.
 ナノレベルでの電位変換(高電位を緩和するエネルギー)は、ドナー・アクセプター間の距離をrとすると、遷移確率W=W-r/Rd (ここで、Rdはドナーのボーア半径)に従うものと考えられるため、略、添加するP含有物質3のサイズと量によって、酸化抑制度を制御できる。但し、反応速度との兼ね合い、すなわち、抵抗やレート特性とトレードオフになる可能性も有り、添加量の最適化によりサイズと量を決定する。 Potential conversion at nano level (energy that relaxes high potential) follows the transition probability W = W 0 e −r / Rd (where Rd is the donor's Bohr radius), where r is the distance between the donor and the acceptor. Therefore, the degree of oxidation inhibition can be controlled by the size and amount of the P-containing material 3 to be added. However, there is a possibility of tradeoff with the reaction rate, that is, resistance and rate characteristics, and the size and amount are determined by optimizing the addition amount.
リチウム塩もしくは、ナトリウム塩は格子エネルギーが小さく、解離度が大きくてイオン伝導度に優れ、熱安定性及び耐酸化性の良いものを用いることが好ましい。 It is preferable to use a lithium salt or a sodium salt having a low lattice energy, a high degree of dissociation, an excellent ionic conductivity, and a good thermal stability and oxidation resistance.
本発明は、以下に示す例に限定されるものではない。 The present invention is not limited to the examples shown below.
また、以下の電池は、ドライエア環境下で電解液注液後、一定時間放置した後、0.1Cに相当する電流で20分程度予備充電工程を経て、その後、封口し、電池とした後、60℃環境下で1日エージング放置する工程を経るものとする。 In addition, the following batteries were allowed to stand for a certain period of time after injecting the electrolyte in a dry air environment, and then subjected to a precharge process for about 20 minutes at a current corresponding to 0.1 C. A process of leaving aging in a 60 ° C. environment for 1 day is assumed.
(釘刺し安全性)
満充電した電池に対して、2.7mm径の鉄製丸釘を常温環境下で5mm/秒の速度で貫通させた時の発熱状態及び外観を観測した。
(Nail penetration safety)
With respect to the fully charged battery, a heat generation state and an appearance were observed when a 2.7 mm diameter iron round nail was penetrated at a speed of 5 mm / second in a normal temperature environment.
(実施例1)
実施例1では、有機溶媒としてプロピレンカーボネート(PC)を10重量%、フッ化エチレンカーボネート(FEC)を10重量%、ジメチルカーボネート(DMC)を60重量%、スクシノニトリル(SN)を15重量%、リチウムビストリフルオロメタンスルホニルイミド(LiTFSI)を5重量%の混合溶媒を用い、これにリチウム塩としてLiPFを1Mol/Lとなるように溶解させ、リチウムイオン電池用電解液とした。ただし、この組成に限定されるものではない。
Example 1
In Example 1, 10% by weight of propylene carbonate (PC), 10% by weight of fluorinated ethylene carbonate (FEC), 60% by weight of dimethyl carbonate (DMC), and 15% by weight of succinonitrile (SN) as organic solvents Lithium bistrifluoromethanesulfonylimide (LiTFSI) was used in a mixed solvent of 5% by weight, and LiPF 6 was dissolved as a lithium salt at 1 mol / L to obtain an electrolyte for a lithium ion battery. However, it is not limited to this composition.
正極はLiMnO2をAl箔に形成したものを用いる。正極形成の際、導電剤としてアセチレンブラックを結着剤としてアクリル樹脂を各々適量適用混合する。負極は人造黒鉛と天然黒鉛を半々混ぜたものを銅箔に形成したものを用いる。負極形成の際、結着剤としてスチレンブタジエンゴム樹脂(SBR)と増粘材であるセルロース(cmc)を各々適量適用混合する。 The positive electrode uses LiMnO 2 formed on an Al foil. At the time of forming the positive electrode, an appropriate amount of each of acrylene black as a conductive agent and an acrylic resin as a binder is mixed. The negative electrode is made of a copper foil formed by mixing half of artificial graphite and natural graphite. When forming the negative electrode, an appropriate amount of styrene butadiene rubber resin (SBR) and a thickener cellulose (cmc) are applied and mixed as a binder.
セパレータは、不織布1の骨格がPET繊維であり、セラミック材料2としてα-Al2O3をアクリル樹脂(例えば、日本ゼオン(株)製BM-520B)と96:4重量%比で混合した塗料にAl2O3の重量の1/7の重量のリン含有物3であるAlPO4を添加し分散させたものを不織布に含浸させ、加熱して溶媒を飛ばして得たものを用いる。 The separator is a coating material in which the skeleton of the nonwoven fabric 1 is PET fiber, and α-Al 2 O 3 is mixed as a ceramic material 2 with an acrylic resin (for example, BM-520B manufactured by Nippon Zeon Co., Ltd.) at a 96: 4 weight ratio. The non-woven fabric is impregnated with AlPO 4 which is phosphorus-containing material 3 having a weight 1/7 of the weight of Al 2 O 3 and dispersed, and heated to remove the solvent.
(実施例2)
 実施例1において、不織布1をPETに代えてPPの材質の繊維を用いる。
(Example 2)
In Example 1, the nonwoven fabric 1 is replaced with PET, and fibers made of PP are used.
(実施例3)
実施例1において、不織布1をPETに代えてPPSの材質の繊維を用いる。
(Example 3)
In Example 1, the nonwoven fabric 1 is replaced with PET and fibers of PPS material are used.
(実施例4)
 実施例1において、不織布1をPETに代えて雲母(マイカ)材質のものを用いる。例えば、オリベスト(株)製ネオベストを用いる。
Example 4
In Example 1, the nonwoven fabric 1 is made of mica (mica) material instead of PET. For example, Neobest manufactured by Olivest Co., Ltd. is used.
(実施例5)
 実施例1において、セラミック材料2であるAl2O3に代えて、SiO2を用いる。
(Example 5)
In Example 1, instead of Al 2 O 3 which is the ceramic material 2, SiO 2 is used.
(実施例6)
 実施例1において、セラミック材料2であるAl2O3に代えて、アナターゼ型TiO2を用いる。
(Example 6)
In Example 1, anatase TiO 2 is used in place of Al 2 O 3 which is the ceramic material 2.
(実施例7)
 実施例1において、セラミック材料2であるAl2O3に代えて、ZrO2を用いる。
(Example 7)
In Example 1, ZrO 2 is used in place of Al 2 O 3 which is the ceramic material 2.
(実施例8)
 実施例1において、セラミック材料2であるAl2O3に代えて、BaTiO3を用いる。
(Example 8)
In Example 1, BaTiO 3 is used instead of Al 2 O 3 which is the ceramic material 2.
(実施例9)
 実施例1において、セラミック材料2であるAl2O3に代えて、AlPO4を用い、固体粉末をAlPO4のみとする。
Example 9
In Example 1, in place of the Al 2 O 3 is a ceramic material 2, using AlPO 4, a solid powder and only AlPO 4.
(実施例10)
 実施例9において、AlPO4に代えて、ZrPO4を用いる。
(Example 10)
In Example 9, ZrPO 4 is used instead of AlPO 4 .
(実施例11)
 実施例1に対して、AlF3をAl2O3重量の1/10重量添加した塗料を含浸してなるものを用いる。
(Example 11)
In contrast to Example 1, a material obtained by impregnating a paint in which AlF 3 is added to 1/10 weight of Al 2 O 3 weight is used.
(実施例12)
 実施例1において、不織布1がセルロース繊維を絡めて、セルロースを用いる前の平均孔径の長軸0.6μmに対して、平均孔径を長軸0.2μmとしたものを用いる。ただし、孔径はこれに限定されるものではない。
(Example 12)
In Example 1, the nonwoven fabric 1 is entangled with cellulose fibers, and the average pore diameter before the cellulose is used is 0.6 μm, and the average pore diameter is 0.2 μm. However, the hole diameter is not limited to this.
(実施例13)
 実施例1において、Al2O3とアクリル樹脂の比率を50:50の重量比とした。
(Example 13)
In Example 1, the ratio of Al 2 O 3 and acrylic resin was 50:50 by weight.
(比較例1)
 実施例1において、Al2O3とアクリル樹脂の比率を49:51の重量比とした。
(Comparative Example 1)
In Example 1, the ratio of Al 2 O 3 and acrylic resin was 49:51 by weight.
(比較例2)
 実施例1において、Al2O3とアクリル樹脂の比率を97:3の重量比とした。
(Comparative Example 2)
In Example 1, the ratio of Al 2 O 3 and acrylic resin was 97: 3 by weight.
(比較例3)
 実施例1において、セパレータが同厚みでPEフィルムのものを用いた。
(Comparative Example 3)
In Example 1, a separator having the same thickness and a PE film was used.
 また、実施例1において、正極は、LiMnO2に拘らず他の材料でも同傾向を得ることを確認している。負極も同様である。 In Example 1, it was confirmed that the positive electrode obtained the same tendency with other materials regardless of LiMnO 2 . The same applies to the negative electrode.
 更に、Liに代えてNaとした場合も同様であることを確認している。 Furthermore, it has been confirmed that the same is true when Na is used instead of Li.
 本実施例の各電池条件を纏めた表を図2に示す。 FIG. 2 shows a table summarizing the battery conditions of this example.
 また、本実施例の各々実施例における電池の性能を図2に示す。 Also, the performance of the battery in each example of this example is shown in FIG.
 また、本発明の電池は-40℃でも作動したが、本発明構成を有さない例えば、比較例のようなもの、リンを含有しない等本構成でないもの、フィルムのセパレータを用いたものは、-40℃においては動作しなかった。 The battery of the present invention also operated at −40 ° C., but it does not have the structure of the present invention, such as a comparative example, a structure that does not contain phosphorus, such as no phosphorus, or that uses a film separator. It did not work at -40 ° C.
 本発明にかかる二次電池は優れた性能を有し、高安全、高性能な電源として有用である。 The secondary battery according to the present invention has excellent performance and is useful as a highly safe and high-performance power source.

Claims (17)

  1. 複合リチウム酸化物もしくは複合ナトリウム酸化物からなる正極と、リチウムもしくはナトリウムを保持しうる材料からなる負極と、セパレータと、非水溶媒からなる電解液もしくは固体電解質により構成されるイオン二次電池において、前記セパレータが、不織布にセラミック材料と燐元素を含有した材料を担持している二次電池 In an ion secondary battery composed of a positive electrode made of composite lithium oxide or composite sodium oxide, a negative electrode made of a material capable of holding lithium or sodium, a separator, and an electrolyte solution or solid electrolyte made of a nonaqueous solvent, A secondary battery in which the separator carries a material containing a ceramic material and a phosphorus element in a nonwoven fabric
  2. 前記セパレータのセラミック材料含有重量割合が、50重量%以上96重量%以下である請求項1記載の二次電池。 The secondary battery according to claim 1, wherein the ceramic material-containing weight ratio of the separator is 50 wt% or more and 96 wt% or less.
  3. 前記セラミック材料が、少なくともアルミナ(Al2O3)を含有している請求項1もしくは請求項2記載の二次電池。 The secondary battery according to claim 1, wherein the ceramic material contains at least alumina (Al 2 O 3 ).
  4. 前記セラミック材料が、少なくともシリカ(SiO2)を含有している請求項1~3記載の二次電池。 The secondary battery according to claims 1 to 3, wherein the ceramic material contains at least silica (SiO 2 ).
  5. 前記セラミック材料が、少なくとも酸化チタン(TiO2)を含有している請求項1~4記載の二次電池。 The secondary battery according to any one of claims 1 to 4, wherein the ceramic material contains at least titanium oxide (TiO 2 ).
  6. 前記セラミック材料が、少なくともジルコニア(ZrO2)を含有する請求項1~5記載の二次電池。 The secondary battery according to any one of claims 1 to 5, wherein the ceramic material contains at least zirconia (ZrO 2 ).
  7. 前記セラミック材料が、少なくともチタン酸バリウム(BaTiO)を含有する請求項1~6記載の二次電池。 The secondary battery according to any one of claims 1 to 6, wherein the ceramic material contains at least barium titanate (BaTiO 3 ).
  8. 前記セパレータが、少なくともリン酸アルミAlPO4を含有する請求項1~7記載の二次電池。 The secondary battery according to any one of claims 1 to 7, wherein the separator contains at least aluminum phosphate AlPO 4 .
  9. 前記セパレータが、少なくともリン酸ジルコニウムZrPO4を含有する請求項1~8記載の二次電池。 The secondary battery according to any one of claims 1 to 8, wherein the separator contains at least zirconium phosphate ZrPO 4 .
  10. 前記セパレータが、少なくともフッ化アルミAlFを含有する請求項1~9記載の二次電池。 The secondary battery according to any one of claims 1 to 9, wherein the separator contains at least aluminum fluoride AlF 3 .
  11. 前記不織布がセルロースを含む材料より成る請求項1~10記載の二次電池。 The secondary battery according to claim 1, wherein the nonwoven fabric is made of a material containing cellulose.
  12. 前記不織布がアクリル基を有する高分子繊維を含む材料より成る請求項1~11記載の二次電池。 The secondary battery according to any one of claims 1 to 11, wherein the nonwoven fabric is made of a material containing polymer fibers having an acrylic group.
  13. 前記不織布がポリエチレンテレフタレート(PET)を含む材料より成る請求項1~12記載の二次電池。 The secondary battery according to claim 1, wherein the nonwoven fabric is made of a material containing polyethylene terephthalate (PET).
  14. 前記不織布がポリプロピレン(PP)を含む材料より成る請求項1~13記載の二次電池。 The secondary battery according to claim 1, wherein the nonwoven fabric is made of a material containing polypropylene (PP).
  15. 前記不織布がポリフェニレンサルファイド(PPS)を含む材料より成る請求項1~14記載の二次電池。 The secondary battery according to claim 1, wherein the non-woven fabric is made of a material containing polyphenylene sulfide (PPS).
  16. 前記不織布が雲母(マイカ)を含む材料より成る請求項1~15記載の二次電池。 The secondary battery according to any one of claims 1 to 15, wherein the nonwoven fabric is made of a material containing mica.
  17. 仕様電圧が充電時に4.45V以上の範囲を使う請求項1~16記載の二次電池。 The secondary battery according to any one of claims 1 to 16, wherein the specified voltage uses a range of 4.45V or more when charged.
PCT/JP2010/006601 2010-11-10 2010-11-10 Secondary battery WO2012063286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006601 WO2012063286A1 (en) 2010-11-10 2010-11-10 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006601 WO2012063286A1 (en) 2010-11-10 2010-11-10 Secondary battery

Publications (1)

Publication Number Publication Date
WO2012063286A1 true WO2012063286A1 (en) 2012-05-18

Family

ID=46050471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006601 WO2012063286A1 (en) 2010-11-10 2010-11-10 Secondary battery

Country Status (1)

Country Link
WO (1) WO2012063286A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103793A (en) * 2014-06-05 2014-10-15 广东工业大学 Preparation method of flame-retardant organic/inorganic composite membrane
CN104143616A (en) * 2014-07-09 2014-11-12 浙江金美能源科技有限公司 Slurry for coating isolating membrane of lithium ion battery, isolating membrane and preparation method of slurry
JP2015215977A (en) * 2014-05-08 2015-12-03 エス・イー・アイ株式会社 Lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015160A (en) * 1999-04-30 2001-01-19 Ohara Inc Glass-ceramic composite electrolyte, and lithium secondary battery
JP2005536860A (en) * 2002-08-27 2005-12-02 デグサ アクチエンゲゼルシャフト Ion conductive battery separator for lithium battery, its production method and its use
JP2006507636A (en) * 2002-11-26 2006-03-02 デグサ アクチエンゲゼルシャフト Long-time stable separator for electrochemical cells
JP2009507353A (en) * 2005-09-05 2009-02-19 エボニック デグサ ゲーエムベーハー Separator with improved handling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015160A (en) * 1999-04-30 2001-01-19 Ohara Inc Glass-ceramic composite electrolyte, and lithium secondary battery
JP2005536860A (en) * 2002-08-27 2005-12-02 デグサ アクチエンゲゼルシャフト Ion conductive battery separator for lithium battery, its production method and its use
JP2006507636A (en) * 2002-11-26 2006-03-02 デグサ アクチエンゲゼルシャフト Long-time stable separator for electrochemical cells
JP2009507353A (en) * 2005-09-05 2009-02-19 エボニック デグサ ゲーエムベーハー Separator with improved handling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215977A (en) * 2014-05-08 2015-12-03 エス・イー・アイ株式会社 Lithium secondary battery
WO2015170785A3 (en) * 2014-05-08 2015-12-30 エス・イー・アイ株式会社 Lithium secondary battery
CN104103793A (en) * 2014-06-05 2014-10-15 广东工业大学 Preparation method of flame-retardant organic/inorganic composite membrane
CN104143616A (en) * 2014-07-09 2014-11-12 浙江金美能源科技有限公司 Slurry for coating isolating membrane of lithium ion battery, isolating membrane and preparation method of slurry

Similar Documents

Publication Publication Date Title
WO2012004839A1 (en) Secondary battery
JP4695748B2 (en) Nonaqueous battery electrolyte and nonaqueous secondary battery
JP5403710B2 (en) Non-aqueous electrolyte and device having the same
JP5605928B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery including the same
JP5630189B2 (en) Lithium ion battery
KR102398690B1 (en) Lithium secondary battery
US20200006753A1 (en) Secondary battery
JP2009199960A (en) Lithium-ion battery
JP5942892B2 (en) Non-aqueous electrolyte, non-aqueous electrolyte secondary battery using the same, and secondary battery system using the non-aqueous electrolyte secondary battery
JP2016131059A (en) Electrolytic solution for nonaqueous electrolyte battery and nonaqueous electrolyte battery arranged by use thereof
KR101195930B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR101279411B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20060083252A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2016504725A (en) Lithium secondary battery
JP2005116424A (en) Nonaqueous electrolyte secondary battery
JP2018523903A (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
KR20140145914A (en) Cathode active material and secondary battery
WO2012063286A1 (en) Secondary battery
JP5966896B2 (en) Lithium ion secondary battery, secondary battery system using the same, and non-aqueous electrolyte for lithium ion secondary battery
JP2015046233A (en) Lithium ion secondary battery, and secondary battery system using the same
JP5867293B2 (en) Lithium ion secondary battery separator, lithium ion secondary battery using the same, and secondary battery system using the lithium ion secondary battery
KR20220053353A (en) Secondary battery having an excellent fire resistance and improved safety
KR20220004305A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR100693288B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2015046234A (en) Lithium ion secondary battery, and secondary battery system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP