WO2012062202A1 - Cot-1 dna, preparation method and use thereof - Google Patents

Cot-1 dna, preparation method and use thereof Download PDF

Info

Publication number
WO2012062202A1
WO2012062202A1 PCT/CN2011/081954 CN2011081954W WO2012062202A1 WO 2012062202 A1 WO2012062202 A1 WO 2012062202A1 CN 2011081954 W CN2011081954 W CN 2011081954W WO 2012062202 A1 WO2012062202 A1 WO 2012062202A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
dna fragment
nucleic acid
fragment mixture
hybridization
Prior art date
Application number
PCT/CN2011/081954
Other languages
French (fr)
Chinese (zh)
Inventor
孔淑娟
张俊青
聂超
程玲
张秀清
杨焕明
Original Assignee
深圳华大基因科技有限公司
深圳华大基因研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大基因科技有限公司, 深圳华大基因研究院 filed Critical 深圳华大基因科技有限公司
Publication of WO2012062202A1 publication Critical patent/WO2012062202A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided are a method for preparing c o t-1 DNA, a c o t-1 DNA, a method for hybridizing nucleic acid, a method for capturing a nucleic acid sequence, a composition, a kit and a use of c o t-1 DNA in preparing a reagent for nucleic acid hybridization or nucleic acid sequence capturing, wherein the method for preparing c o t-1 DNA comprises the steps of: fragmenting the genomic DNA so as to obtain a first DNA fragment mixture, wherein the DNA fragment length in the first DNA fragment mixture is 100bp-1000bp; denaturing and re-naturing the first DNA fragment mixture successively so as to obtain a second DNA fragment mixture, wherein the second DNA fragment mixture contains single stranded DNA and double stranded DNA; removing the single stranded DNA from the second DNA fragment mixture so as to obtain a DNA fragment mixture with single stranded DNA removed; and purifying the DNA fragment mixture with single stranded DNA removed so as to obtain the c o t-1 DNA.

Description

C0t-1 DNA及其制备方法和用途 优先权信息 C 0 t-1 DNA and its preparation method and use priority information
本申请请求 2010 年 11 月 12 日向中国国家知识产权局提交的、 专利申请号为 201010541872.0的专利申请的优先权和权益, 并且通过参照将其全文并入此处。  Priority is claimed on Japanese Patent Application No. 201010541872.0, the entire disclosure of which is hereby incorporated by reference.
技术领域 Technical field
本发明涉及分子生物学领域, 具体而言, 涉及 DNA及其制备方法和用途。 更 具体地, 本发明涉及一种制备 c。 DNA的方法、 一种 c。 DNA、 一种核酸杂交的方法、 一种捕获核酸序列的方法、一种组合物、一种试剂盒以及 c0t-l DNA在制备用于进行核酸杂 交或者捕获核酸序列的试剂中的用途。 The present invention relates to the field of molecular biology, and in particular to DNA and methods for its preparation and use. More specifically, the present invention relates to a preparation c. DNA method, a c. DNA, a method of nucleic acid hybridization, a method of capturing a nucleic acid sequence, a composition, a kit, and the use of c 0 tl DNA in the preparation of a reagent for performing nucleic acid hybridization or capturing a nucleic acid sequence.
背景技术 Background technique
在分子生物学中, 将 Cj=l 的一类 DNA定义为 Cj-1 DNA (有时也标记为 cj-l DNA )。 其中, C。是 DNA复性动力学中的一个单位, 表示的是单位浓度(C。, mol/L ) 下 DNA单链的复性时间 (t, sec ) , C。 直实际上是杂交液中单链起始浓度(C。;)和反 应时间 (t ) 的乘积。 在相同的条件下, DNA重复序列的 C。值小, 而非重复序列具有 较大的 C。 直。  In molecular biology, a class of DNA with Cj = l is defined as Cj-1 DNA (sometimes also labeled as cj-l DNA). Among them, C. It is a unit in the renaturation kinetics of DNA, which represents the renaturation time (t, sec), C of a single DNA chain at a unit concentration (C., mol/L). Straight is actually the product of the single-chain starting concentration (C.;) and the reaction time (t) in the hybridization solution. Under the same conditions, the DNA repeats the C. The value is small, and the non-repetitive sequence has a larger C. straight.
C -l DNA通常作为 DNA竟争性封闭剂, 在基因组杂交中封闭可能引起非特异性 杂交的重复序列。例如, 当用含有重复序列的探针来进行 Northern杂交、 Southern杂交、 FISH定位和体细胞原位杂交等实验时, 存在于探针中的重复序列将会产生广泛的非特 异性强杂交背景信号, 从而将那些要检测的低拷贝或单拷贝序列的杂交信号掩盖掉。 所 以, 在进行以上实验操作时, 应首先考虑屏蔽探针中的这些重复序列, 以避免非特异性 杂交信号,从而达到捕获单拷贝或低拷贝序列例如外显子, 增强对这些序列例如外显子 的检测信号的目的。 最理想的方法是釆用过量的基因组重复序列 DNA , 如 cj-l DNA 来预先对这类探针进行封闭杂交, 屏蔽存在于探针中的那些重复序列 DNA。  C-l DNA is commonly used as a DNA competitive blocking agent to block repeats that may cause non-specific hybridization in genomic hybridization. For example, when using probes containing repeat sequences for Northern hybridization, Southern hybridization, FISH localization, and somatic in situ hybridization, the repeats present in the probe will produce a wide range of non-specific strong hybrid background signals. Thereby the hybridization signals of the low copy or single copy sequences to be detected are masked off. Therefore, in performing the above experimental procedures, these repeat sequences in the probe should be considered first to avoid non-specific hybridization signals, thereby capturing single-copy or low-copy sequences such as exons, and enhancing the sequences such as exons. The purpose of the detection signal. The most ideal method is to use an excess of genomic repeat DNA, such as cj-l DNA, to pre-block these probes to block the repetitive DNA present in the probe.
然而, 目前制备 cj-l DNA的方法仍无法满足需要。  However, current methods for preparing cj-1 DNA are still not sufficient.
发明内容 Summary of the invention
本发明旨在至少解决现有技术中存在的技术问题之一。 为此, 本发明的一个方面, 提出了一种制备 cj-l DNA的方法。 根据本发明的实施例, 该方法包括下列步骤: 将基因 组 DNA进行片段化, 以便获得第一 DNA片段混合物, 所述第一 DNA片段混合物中 DNA 片段的长度为 lOObp-lOOObp; 将所述第一 DNA片段混合物依次进行变性处理和复性处理, 以便获得第二 DNA片段混合物, 所述第二 DNA片段混合物包含单链 DNA和双链 DNA; 去除所述第二 DNA片段混合物中的单链 DNA , 以便获得去除单链 DNA的 DNA片段混合 物; 以及对所述去除单链 DNA的 DNA片段混合物进行纯化, 以便获得所述 c。 DNA。基 于该方法, 能够简捷、 高效、 高通量地制备 c。-J DNA, 并且所得的 c。- J DNA用于杂交的 效果良好。 相对于目前较为昂贵的商品化的 cj-l DNA产品, 釆用本发明的制备 cj-l DNA 的方法制备 cj-l DNA成本较低, 易于推广。 进一步,本发明还提供了一种 CJ-1 DNA,其是通过根据本发明实施例的制备 c0t-l DNA 的方法所获得的。 该 c。 DNA的制造成本低, 用途广泛。 The present invention aims to solve at least one of the technical problems existing in the prior art. To this end, in one aspect of the invention, a method of preparing cj-1 DNA is presented. According to an embodiment of the present invention, the method comprises the steps of: fragmenting genomic DNA to obtain a first DNA fragment mixture, wherein the length of the DNA fragment in the first DNA fragment mixture is from 100 bp to 1000 bp; The DNA fragment mixture is subjected to denaturation treatment and renaturation treatment in order to obtain a second DNA fragment mixture, the second DNA fragment mixture comprising single-stranded DNA and double-stranded DNA; and removing single-stranded DNA in the second DNA fragment mixture, To obtain a mixture of DNA fragments from which single-stranded DNA is removed; and to purify the DNA fragment mixture from which the single-stranded DNA is removed, to obtain the c. DNA. Based on this method, c can be prepared simply, efficiently, and with high throughput. -J DNA, and the resulting c. - J DNA works well for hybridization. Compared with the currently expensive commercial cj-1 DNA products, the preparation of cj-1 DNA by the method for preparing cj-1 DNA of the present invention is low in cost and easy to generalize. Further, the present invention also provides a CJ-1 DNA obtained by a method for producing c 0 tl DNA according to an embodiment of the present invention. The c. DNA is inexpensive to manufacture and has a wide range of uses.
根据本发明的又一方面, 本发明还提供了一种核酸杂交的方法。根据本发明的一些 实施例, 该方法包括使用根据本发明实施例的 c^ DNA进行封闭的步骤。 基于该方法, 在核酸杂交前, 使用过量的 c。 DNA, 能够方便、 有效地进行封闭, 以屏蔽重复序列 DNA, 从而在后续的核酸杂交过程中, 能够有效避免重复序列所产生的非特异性杂交 背景信号, 最终能够提高核酸杂交的效率, 增强杂交效果。  According to still another aspect of the present invention, the present invention also provides a method of nucleic acid hybridization. According to some embodiments of the invention, the method comprises the step of blocking using c^ DNA according to an embodiment of the invention. Based on this method, an excess of c is used prior to nucleic acid hybridization. DNA, which can be conveniently and efficiently blocked to shield the repeat DNA, can effectively avoid the non-specific hybrid background signal generated by the repeat sequence in the subsequent nucleic acid hybridization process, and ultimately improve the efficiency of nucleic acid hybridization and enhance the hybridization effect. .
根据本发明的再一方面, 本发明还提供了一种捕获核酸序列的方法。 根据本发明的 实施例, 该方法包括使用根据本发明一些实施例的 c。- J DNA进行封闭的步骤。 基于该 方法, 能够方便、 有效地对探针进行封闭, 屏蔽探针中的重复序列, 从而避免核酸杂交 过程中非特异性杂交信号的干扰, 以便增强核酸杂交的效果, 最终实现对核酸样本中的 核酸序列的有效捕获。  According to still another aspect of the present invention, the present invention also provides a method of capturing a nucleic acid sequence. According to an embodiment of the invention, the method comprises using c according to some embodiments of the invention. - J DNA to perform the blocking step. Based on the method, the probe can be conveniently and efficiently blocked, and the repeat sequence in the probe is shielded, thereby avoiding interference of non-specific hybridization signals during nucleic acid hybridization, thereby enhancing the effect of nucleic acid hybridization, and finally realizing the effect on the nucleic acid sample. Efficient capture of nucleic acid sequences.
根据本发明的又一方面, 本发明还提供了一种组合物。 根据本发明的实施例, 该组 合物包含根据本发明实施例的 c。 DNA。 根据本发明实施例的包含 c。 DNA的该组合 物, 可用于进行核酸杂交或者捕获核酸序列。通过釆用包含 CJ-1 DNA的该组合物进行核酸 杂交和捕获核酸序列, 可以有效地增强核酸杂交的效果, 提高捕获核酸序列的效率。  According to yet another aspect of the invention, the invention also provides a composition. According to an embodiment of the invention, the composition comprises c according to an embodiment of the invention. DNA. Contains c according to an embodiment of the invention. This composition of DNA can be used to perform nucleic acid hybridization or to capture nucleic acid sequences. By carrying out nucleic acid hybridization and capture nucleic acid sequences using the composition comprising CJ-1 DNA, the effect of nucleic acid hybridization can be effectively enhanced, and the efficiency of capturing nucleic acid sequences can be improved.
根据本发明的另一方面, 本发明还提供了一种试剂盒。 根据本发明的实施例, 该试剂 盒包含根据本发明一些实施例的 c。 DNA。 釆用该试剂盒, 能够方便、 有效地进行核酸杂 交或者捕获核酸序列。  According to another aspect of the present invention, the present invention also provides a kit. According to an embodiment of the invention, the kit comprises c according to some embodiments of the invention. DNA. With this kit, nucleic acid hybridization or nucleic acid sequences can be conveniently and efficiently performed.
根据本发明的再一方面,本发明还提供了根据本发明实施例的 cj-l DNA在制备用于进 行核酸杂交或者捕获核酸序列的试剂中的用途。 据此制备的用于进行核酸杂交或者捕获核 酸序列的试剂, 可以有效地进行核酸杂交或者捕获核酸序列。  According to still another aspect of the present invention, the present invention also provides the use of cj-1 DNA in the preparation of a reagent for performing nucleic acid hybridization or capturing a nucleic acid sequence according to an embodiment of the present invention. The reagent for nucleic acid hybridization or capture of a nucleic acid sequence prepared according to this can efficiently perform nucleic acid hybridization or capture of a nucleic acid sequence.
附图说明 DRAWINGS
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解, 其中:  The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from
图 1 : 显示了根据本发明一个实施例的制备c。-J? DNA的方法的流程示意图; 图 2: 显示了根据本发明一个实施例的制备 c。 DNA的方法中的热变性过程和两 种冷却过程示意图; Figure 1 : shows preparation c in accordance with one embodiment of the present invention. - Flow diagram of the method of J ? DNA; Figure 2: shows preparation c according to one embodiment of the present invention. Schematic diagram of the thermal denaturation process and two cooling processes in the DNA method;
图 3: 显示了根据本发明一个实施例的制备 c。 DNA的过程中所得到的第一 DNA 片段混合物的电泳检测结果; 以及  Figure 3: shows preparation c in accordance with one embodiment of the present invention. Electrophoretic detection results of a mixture of first DNA fragments obtained during the process of DNA;
图 4: 显示了根据本发明一个实施例的釆用的 Mixer和芯片。  Figure 4: shows a Mixer and chip for use in accordance with one embodiment of the present invention.
发明详细描述 Detailed description of the invention
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。  The embodiments of the present invention are described in detail below, and the examples of the embodiments are illustrated in the drawings, wherein the same or similar reference numerals are used to refer to the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the drawings are intended to be illustrative only and not to limit the invention.
需要说明的是, 术语 "第一" 、 "第二" 仅用于描述目的, 而不能理解为指示或暗 示相对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二" 的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本发明的描述中, 除非另有说明, "多个" 的含义是两个或两个以上。 It should be noted that the terms "first" and "second" are used for descriptive purposes only and are not to be construed as indicating or dark. Indicates relative importance or implicitly indicates the number of technical features indicated. Thus, features defining "first" and "second" may include one or more of the features, either explicitly or implicitly. Further, in the description of the present invention, "multiple" means two or more unless otherwise stated.
根据本发明的一个方面,本发明提供了一种能够有效制备 c。 DNA的方法。如图 1 所示, 根据本发明的实施例的制备 cj-l DNA的方法包括下列步骤:  According to one aspect of the invention, the invention provides an efficient preparation of c. The method of DNA. As shown in Fig. 1, a method of preparing cj-1 DNA according to an embodiment of the present invention includes the following steps:
S100: 将基因组 DNA进行片段化, 以便获得第一 DNA片段混合物, 该第一 DNA片 段混合物中 DNA片段的长度为 100bp-1000bp。  S100: Fragmenting the genomic DNA to obtain a first DNA fragment mixture, wherein the DNA fragment in the first DNA fragment mixture has a length of 100 bp to 1000 bp.
根据本发明的实施例,基因组 DNA的来源并不受特别限制。根据本发明的一些实施例, 可以釆用直接从生物样本中提取基因组 DNA。 进而, 根据本发明的一个实施例, 制备 c。 DNA的方法可以进一步包括从生物样本中提取基因组 DNA的步骤。根据本发明的实施例, 从生物样本中提取基因组 DNA的方法不受特别限制,可以使用本领域的任何现有技术进行, 例如可以釆用商品化的基因组提取试剂盒。 优选地, 可以例如釆用下列方法: 使用细胞核 裂解液、 蛋白酶 K和 SDS , 在 37 °C - 56°C下优选 56°C下对组织进行消化 12 - 16小时, 使 组织能够充分裂解。 由于釆用了充分的消化时间即 12-16小时, 因此所释放的 DNA已经得 到充分地消化, 只需 3000 - 10000 rpm离心 5 _ 15 min, 即可将 DNA与蛋白等杂质成功分 离。 因此不必要特意配置高速离心机, 例如经过低速离心, 例如 4700 rpm离心 10 min即可 使 DNA和蛋白等杂质分离,因此可免去对 DNA进行纯化的步骤,不仅节约了一部分对 DNA 进行纯化的试剂, 还可避免在纯化过程中减少提出的 DNA的损失。 由此, 能够有效便捷地 获得生物样本的基因组 DNA, 以便实施后续操作, 提高了制备 cj-l DNA的效率。  According to an embodiment of the present invention, the source of genomic DNA is not particularly limited. According to some embodiments of the invention, genomic DNA can be extracted directly from a biological sample. Further, according to an embodiment of the present invention, c is prepared. The method of DNA may further comprise the step of extracting genomic DNA from the biological sample. According to an embodiment of the present invention, the method of extracting genomic DNA from a biological sample is not particularly limited and may be carried out using any prior art in the art, for example, a commercially available genome extraction kit may be employed. Preferably, the following method can be used, for example, by using a nuclear lysate, proteinase K and SDS, and digesting the tissue at 37 ° C - 56 ° C, preferably 56 ° C for 12 - 16 hours to allow the tissue to be fully lysed. Since the digestive time is 12-16 hours, the released DNA has been fully digested, and it can be successfully separated by centrifugation for 5 _ 15 min at 3000 - 10000 rpm. Therefore, it is not necessary to deliberately arrange a high-speed centrifuge, for example, by centrifugation at 4,700 rpm for 10 minutes to separate impurities such as DNA and protein, thereby eliminating the step of purifying the DNA, and not only saving a part of the purification of the DNA. Reagents also avoid the loss of proposed DNA during purification. Thereby, the genomic DNA of the biological sample can be obtained efficiently and conveniently, so as to carry out subsequent operations, and the efficiency of preparing cj-1 DNA is improved.
根据本发明的实施例, 用于提取基因组 DNA的生物样本并不受特别限制。 本领域技术 人员可以理解, 优选地, 用于提取基因组 DNA从而制备 cj-l DNA的生物样本与待杂交或 待封闭的样本来源于同一物种, 由此, 可以准确有效地进行后续的封闭、 核酸杂交等实验。 根据本发明的一些具体示例, 可以釆用的生物样本为选自人的组织或细胞。 进一步地, 用 于提取基因组 DNA的组织部位或者细胞类型并不受特别限制, 虽然不同部位组织的基因组 的丰度不同, 但通过调整组织或者细胞的用量, 就可以得到适当量的基因组 DNA。  According to an embodiment of the present invention, a biological sample for extracting genomic DNA is not particularly limited. It will be understood by those skilled in the art that, preferably, the biological sample for extracting genomic DNA to prepare cj-1 DNA is derived from the same species as the sample to be hybridized or to be blocked, whereby the subsequent blocking, nucleic acid can be accurately and efficiently performed. Hybridization and other experiments. According to some specific examples of the invention, the biological sample that can be used is a tissue or cell selected from a human. Further, the tissue site or cell type for extracting genomic DNA is not particularly limited. Although the abundance of the genome of different tissues is different, an appropriate amount of genomic DNA can be obtained by adjusting the amount of tissue or cells.
根据本发明的实施例, 将基因组 DNA进行片段化的方法不受特别限制。 根据本发明的 一些具体示例, 可以使用本领域已知的技术将基因组 DNA片段化, 例如超声波、 氮气、 机 械打断等技术。 优选地, 釆用超声波将基因组 DNA片段化。 由此, 可以通过调整超声波处 理的参数, 容易控制所得到的基因组 DNA片段的长度。 具体地, 可以釆用下面的步骤: 釆 用超声波细胞粉碎仪, 按照说明书通过设置参数, 将提取得到的基因组 DNA打断为 100 bp - 1000 b 的 DNA片段。 另外, 超声波细胞粉碎仪一次可打断 40 ml DNA, 比起现有的打 断设备可快速地获得大批量的打断完成的 DNA。 发明人发现, 用超声波对基因组 DNA进 行片段化的过程中仪器本身会发出大量的热,且打断时间较长,因此容易引起 DNA的变性, 可以通过在超声处理过程中进行冷却, 例如将含有 DNA的容器置于碎水中, 从而有效地解 决上述问题。  According to an embodiment of the present invention, a method of fragmenting genomic DNA is not particularly limited. According to some specific examples of the invention, genomic DNA can be fragmented using techniques known in the art, such as ultrasonic, nitrogen, mechanical disruption, and the like. Preferably, the genomic DNA is fragmented by ultrasound. Thus, the length of the obtained genomic DNA fragment can be easily controlled by adjusting the parameters of the ultrasonic treatment. Specifically, the following steps can be used: 釆 Using the ultrasonic cell pulverizer, the extracted genomic DNA is interrupted into a DNA fragment of 100 bp - 1000 b by setting parameters according to the instructions. In addition, the ultrasonic cell pulverizer can interrupt 40 ml of DNA at a time, and can quickly obtain large quantities of interrupted DNA compared to existing interrupting equipment. The inventors have found that the instrument itself emits a large amount of heat during the fragmentation of genomic DNA by ultrasonic waves, and the interruption time is long, so that DNA denaturation is easily caused, and it can be cooled by ultrasonic treatment, for example, it will contain The container of DNA is placed in crushed water to effectively solve the above problems.
在将基因组 DNA进行片段化之后, 得到了第一 DNA片段混合物, 该第一 DNA片段 混合物中的片段主要由双链 DNA构成, 并且这些 DNA片段的长度为 100-1000bp。 发明人 发现, 如果第一 DNA片段混合物中 DNA片段的长度大于 1000 bp, 则其扩散速度低, 在后 续的复性过程中, DNA片段线状单链互相发现互补链的机会减少; 如果 DNA片段的长度 小于 100 bp, 则其扩散速度太快, 在变性复性的时候难以把握时间。 After fragmenting the genomic DNA, a first DNA fragment mixture is obtained, the first DNA fragment Fragments in the mixture are mainly composed of double-stranded DNA, and these DNA fragments are 100-1000 bp in length. The inventors have found that if the length of the DNA fragment in the first DNA fragment mixture is greater than 1000 bp, the diffusion rate is low, and in the subsequent renaturation process, the chance of the linear strands of the DNA fragments finding complementary strands is reduced; If the length is less than 100 bp, the diffusion speed is too fast, and it is difficult to grasp the time when the renaturation is renatured.
根据本发明的一个实施例, 可以将基因组 DNA打断为 200 bp - 800 bp的 DNA片段。 根据本发明的一个实施方例, 可以将基因组 DNA打断为 200 bp - 600 bp的 DNA片段。 根 据本发明的一个实施方例, 可以将基因组 DNA打断为 250 bp - 600 bp的 DNA片段。 根据 本发明的一个实施方例, 可以将基因组 DNA打断为 300 bp - 500 bp的 DNA片段, 例如: 300、 350、 400、 450、 或 500 bp。 根据本发明的一些实施例, 第一 DNA片段混合物中 DNA 片段的长度为 300bp。 发明人惊奇地发现, 当第一 DNA片段混合物中 DNA片段的长度为 300bp时, 可以顺利地进行后续的变性及复性处理等步骤, 由此显著提高了制备 cj-1 DNA 的效率, 而且所获得的 cj-1 DNA在应用于封闭探针、核酸杂交和捕获核酸序列的过程中使 用效果非常好。  According to one embodiment of the present invention, genomic DNA can be interrupted into a DNA fragment of 200 bp - 800 bp. According to an embodiment of the present invention, genomic DNA can be interrupted into a DNA fragment of 200 bp - 600 bp. According to one embodiment of the present invention, genomic DNA can be interrupted into a DNA fragment of 250 bp to 600 bp. According to one embodiment of the present invention, genomic DNA can be interrupted into a DNA fragment of 300 bp - 500 bp, for example: 300, 350, 400, 450, or 500 bp. According to some embodiments of the invention, the length of the DNA fragment in the first DNA fragment mixture is 300 bp. The inventors have surprisingly found that when the length of the DNA fragment in the first DNA fragment mixture is 300 bp, subsequent steps of denaturation and renaturation treatment can be smoothly performed, thereby significantly improving the efficiency of preparing cj-1 DNA, and The obtained cj-1 DNA works very well in applications such as blocking probes, nucleic acid hybridization, and capture nucleic acid sequences.
根据本发明的一些实施例, 在获得第一 DNA片段混合物之后, 在进行变性处理之前, 可以进一步包括对所得到的第一 DNA片段混合物进行纯化的步骤。 根据本发明的实施例, 对第一 DNA片段混合物进行纯化, 可以釆用本领域的任何现有技术, 例如可以釆用市售的 DNA纯化试剂盒,也可以釆用酚氯仿纯化(例如参见 Herrmann BG, Frischauf AM: Isolation of genomic DNA. Methods Enzymol 1987, 152:180-183 , 通过参照将其全文并入本文)。 具体地, 才艮据本发明的实施例, 可以釆用下面的方法: 釆用酚氯仿纯化, 并用等体积的异丙醇沉淀 DNA。 发明人发现, 釆用该方法对第一 DNA片段混合物进行纯化, 不仅方便、 快速, 而且 适用于大规模操作, 还能够显著减少试剂消耗, 而等体积的异丙醇沉淀的效果, 与传统的 乙醇沉淀相比, 纯化效果非常好, 由此获得的经过纯化的第一 DNA片段混合物可以满足后 续实验的需求。  According to some embodiments of the present invention, after obtaining the first DNA fragment mixture, the step of purifying the obtained first DNA fragment mixture may be further included before performing the denaturation treatment. Purification of the first DNA fragment mixture according to an embodiment of the present invention may be carried out by any prior art in the art, for example, by using a commercially available DNA purification kit or by purification with phenol chloroform (see, for example, Herrmann). BG, Frischauf AM: Isolation of genomic DNA. Methods Enzymol 1987, 152: 180-183, which is incorporated herein in its entirety by reference. Specifically, according to an embodiment of the present invention, the following method can be employed: Purify with phenol chloroform and precipitate DNA with an equal volume of isopropanol. The inventors have found that the purification of the first DNA fragment mixture by this method is not only convenient, rapid, but also suitable for large-scale operations, and can also significantly reduce reagent consumption, while the effect of equal volume of isopropanol precipitation is compared with conventional Compared to ethanol precipitation, the purification effect is very good, and the thus obtained purified first DNA fragment mixture can meet the needs of subsequent experiments.
S200: 将第一 DNA片段混合物依次进行变性处理和复性处理, 以便获得第二 DNA片 段混合物, 其包含单链 DNA和双链 DNA。  S200: The first DNA fragment mixture is subjected to denaturation treatment and renaturation treatment in order to obtain a second DNA fragment mixture comprising single-stranded DNA and double-stranded DNA.
根据本发明的实施例,可以釆用本领域任何已知的技术对第一 DNA片段混合物进行变 性处理和复性处理, 例如分别釆用加热和冷却使得 DNA片段发生变性和复性。 具体地, 根 据本发明的一些具体示例, 可以釆用下面的步骤: 釆用沸水浴的方法对第一 DNA片段混合 物进行变性处理, 然后将 DNA 快速降温, 以达到 DNA 的复性温度, 以确保按照公式 c。=l=mol/L x T s计算的对 DNA进行复性处理持续的预定时间 T的精确性, 然后在该复性 温度下持续预定时间 T, 使 DNA复性。 根据本发明的实施例, 变性处理是在约 100摄氏度 下进行的。 根据本发明的一些实施例, 复性处理是在约 65摄氏度下进行的。 具体地, 根据 本发明的实施例, 对 DNA进行复性处理时, 将变性后的 DNA置于 65 °C水浴锅中, 使其緩 'ft降温至 65 °C ,才开始对 DNA进行复性处理,复性处理后的 DNA理化性质都能得到恢复, 发明人发现, 如果在对 DNA进行热变性处理后, 进行快速冷却, 则有可能导致 DNA不能 发生复性, 如图 2所示。 根据本发明的实施例, 在复性处理过程中, 可以在第一 DNA片段混合物中添加 NaCl。 本发明的发明人惊奇地发现, 通过添加 NaCl , 可以显著地提高复性的效率。 这里所使用的 表达方式 "在复性过程中, 在第一 DNA片段混合物中添加 NaCl" 应做广义理解, 可以是 在进行复性之前,将 NaCl添加至第一 DNA片段混合物中,也可以在将第一 DNA片段混合 物置于复性条件后,将 NaCl添加至该 DNA片段混合物中。根据本发明的实施例,添加 NaCl 后, 复性反应体系中, NaCl的终浓度可以为 0.1-0.2M, 优选 0.12-0.13M。 本领域技术人员 可以理解, 能够通过任何已知方法实现该终浓度, 例如可以通过使用浓度为 3M的 NaCl, 根据化学计量计算,添加适量的 NaCl至 DNA片段混合物中,以达到所预定的终浓度 NaCl。 根据本发明的具体示例,可以在将 NaCl添加至 DNA片段混合物之前,将 NaCl溶液预热至 变性温度, 由此, 可以减少由于添加 NaCl所引起的温度变化, 从而提高 DNA片段的复性 效率。 According to an embodiment of the present invention, the first DNA fragment mixture can be denatured and renatured by any technique known in the art, such as denaturation and renaturation of the DNA fragments by heating and cooling, respectively. Specifically, according to some specific examples of the present invention, the following steps can be employed: 变性 The first DNA fragment mixture is denatured by a boiling water bath, and then the DNA is rapidly cooled to achieve the renaturation temperature of the DNA to ensure Follow the formula c. =l = mol / L x T s The accuracy of the predetermined time T for which the DNA is subjected to renaturation treatment is continued, and then the DNA is renatured at the renaturation temperature for a predetermined time T. According to an embodiment of the invention, the denaturation treatment is carried out at about 100 degrees Celsius. According to some embodiments of the invention, the renaturation treatment is performed at about 65 degrees Celsius. Specifically, according to an embodiment of the present invention, when the DNA is renatured, the denatured DNA is placed in a 65 ° C water bath, and the temperature is lowered to 65 ° C before the DNA is renatured. After treatment, the physicochemical properties of the DNA after renaturation treatment can be restored. The inventors found that if the DNA is subjected to thermal denaturation treatment and rapidly cooled, the DNA may not be renatured, as shown in FIG. According to an embodiment of the invention, NaCl may be added to the first DNA fragment mixture during the renaturation treatment. The inventors of the present invention have surprisingly found that the efficiency of renaturation can be remarkably improved by the addition of NaCl. The expression used herein "in the process of renaturation, the addition of NaCl to the first DNA fragment mixture" should be understood in a broad sense, either by adding NaCl to the first DNA fragment mixture before renaturation, or After the first DNA fragment mixture is placed under renaturation conditions, NaCl is added to the DNA fragment mixture. According to an embodiment of the present invention, after the addition of NaCl, the final concentration of NaCl in the renaturation reaction system may be from 0.1 to 0.2 M, preferably from 0.12 to 0.13 M. It will be understood by those skilled in the art that the final concentration can be achieved by any known method, for example, by using a concentration of 3 M NaCl, according to stoichiometric calculation, an appropriate amount of NaCl is added to the DNA fragment mixture to reach the predetermined final concentration. NaCl. According to a specific example of the present invention, the NaCl solution can be preheated to the denaturation temperature before the addition of NaCl to the DNA fragment mixture, whereby the temperature change due to the addition of NaCl can be reduced, thereby improving the renaturation efficiency of the DNA fragment.
根据本发明的实施例,复性处理持续预定的时间,该预定的时间是根据 T=330 / c X 1000 计算的, 其中, c为 DNA的浓度, 单位是 ng/ μ ΐ» 具体地, 根据本发明的实施例, 每一管 第一 DNA片段混合物中的 DNA片段复性处理时间 Τ (单位为秒;), 按照公式 T=330 / c χ 1000 ( DNA平均分子量 M=330 ,起始浓度 C。=ng/ μ 1= g/L 10— 3,则 C。=mol/L = c/M 10— 3= c /330 x 10—3; 由 cj-1 DNA的定义可得 C。 χ Ts =l=mol/L s; 则 Ts=l/C。=330 / c χ 1000 )计 算得出, 其中 c为 DNA的浓度 [指 DNA (包括单链和双链) 的浓度, 单位是 ng/ μ ΐ] , 例 如测得第 N管的 DNA浓度为 550 ng/ μ 1, 则该管所需的复性时间 ΤΝ=330 / 550 χ 1000=600 秒。 才艮据本发明的实施例, 本发明人发现, 当复性处理持续的预定时间釆用上面计算的 Τ 时, 复性的效果最佳。 其中, 由于序列的重复性越高, 其复性的速度就会越快, 因此当复 性处理持续该预定时间 Τ时, 复性得到的双链重复序列只能是高度重复或者是少量的中度 重复序列, 由此得到的第二 DNA片段混合物能够满足制备 cj-l DNA的需求, 这里, 术语 "高度重复序列"是指在一个基因组中有几百份甚至几百万份拷贝的 DNA序列, 重复单元 的平均长度 300 bp, 复性时间以秒计; 术语 "中度重复序列" 是指 10到几百拷贝的 DNA 序列,复性时间以分计。其中,中度重复序列通常是非编码序列,重复单元的平均长度 300 bp, 往往构成序列家族, 用单一序列相隔排列, 分散在基因组中, 可能在基因调控中起作用。 在所得到的第二 DNA片段混合物中, 除了双链 DNA片段之外, 还会含有单链 DNA, 这些 单链 DNA可以是在对基因组 DNA进行打断处理过程中产生的, 也可以是在变性和复性处 理后, 未发生复性的单链 DNA。 对于这些单链 DNA, 可以在后续步骤中将这些单链 DNA 进行去除, 例如通过 S1核酸酶将其降解。 According to an embodiment of the invention, the renaturation process lasts for a predetermined time, which is calculated according to T=330 / c X 1000, where c is the concentration of DNA in ng/μ ΐ» specifically, according to In an embodiment of the present invention, the renaturation treatment time Τ (in seconds) of the DNA fragment in the first DNA fragment mixture of each tube is according to the formula T=330 / c χ 1000 (DNA average molecular weight M=330, initial concentration C. = ng / μ 1 = g / L 10- 3, the C. = mol / L = c / M 10- 3 = c / 330 x 10- 3; defined cj-1 DNA can be obtained from C. χ Ts = l = mol / L s; then Ts = l / C. = 330 / c χ 1000 ) Calculated, where c is the concentration of DNA [refers to the concentration of DNA (including single-stranded and double-stranded), the unit is ng / μ ΐ] , for example, if the DNA concentration of the Nth tube is 550 ng/μ 1, the renaturation time required for the tube is 330 Ν 330 330 = 330 / 550 χ 1000 = 600 seconds. According to the embodiment of the present invention, the inventors have found that the doubling effect is optimal when the tempering process continues for a predetermined period of time. Among them, the higher the repeatability of the sequence, the faster the renaturation speed, so when the renaturation treatment continues for the predetermined time ,, the double-stranded repeat sequence obtained by the renaturation can only be highly repetitive or a small amount. Repeating the sequence, the resulting second DNA fragment mixture can meet the requirement for preparing cj-1 DNA. Here, the term "highly repeating sequence" refers to a DNA sequence having hundreds or even millions of copies in one genome. The average length of the repeating unit is 300 bp, and the renaturation time is in seconds; the term "moderate repeat sequence" refers to a DNA sequence of 10 to several hundred copies, and the renaturation time is divided into minutes. Among them, the moderate repeat sequence is usually a non-coding sequence, and the average length of the repeating unit is 300 bp, which often constitutes a sequence family, which is arranged by a single sequence, dispersed in the genome, and may play a role in gene regulation. In the obtained second DNA fragment mixture, in addition to the double-stranded DNA fragment, it also contains single-stranded DNA, which may be generated during the process of interrupting the genomic DNA, or may be denaturing. After renaturation and treatment, no renaturation of single-stranded DNA occurred. For these single-stranded DNA, these single-stranded DNAs can be removed in a subsequent step, such as by S1 nuclease.
S300: 去除第二 DNA片段混合物中的单链 DNA, 以便获得去除单链 DNA的 DNA片 段混合物。  S300: The single-stranded DNA in the second DNA fragment mixture is removed to obtain a DNA fragment mixture in which single-stranded DNA is removed.
根据本发明的实施例, 可以釆用本领域任何已知的技术, 去除第二 DNA片段混合物中 的单链 DNA以及未复性的 DNA分子。根据本发明的一些具体示例,可以使用 S1核酸酶去 除第二 DNA片段混合物中的单链 DNA以及未复性的 DNA分子。  According to an embodiment of the present invention, single-stranded DNA and unreplicated DNA molecules in the second DNA fragment mixture can be removed using any technique known in the art. According to some specific examples of the present invention, S1 nuclease can be used to remove single-stranded DNA and unreplicated DNA molecules in the second DNA fragment mixture.
根据本发明的实施里, S1 核酸酶的使用量不受特别限制。 优选地, 可以通过公式 S1 核酸酶的量 =c x 20 / 320 μ ΐ计算获得 SI 核酸酶的使用量, 其中 c 为 DNA 的浓度(指 DNA [包括单链和双链]的浓度, 单位是 ng/ μ ΐ λ 发明人发现, 通过釆用该公式计算得到的 S1酶的用量, 能够能够有效去除第二 DNA片段混合物中的单链 DNA以及未复性的 DNA 分子,且不会对其中的双链 DNA产生影响,从而能够保证 c0t-l DNA的制备效率及所得 cj-l DNA的质量。 According to the practice of the present invention, the amount of S1 nuclease used is not particularly limited. Preferably, the formula S1 can be adopted The amount of nuclease = cx 20 / 320 μ ΐ Calculate the amount of SI nuclease used, where c is the concentration of DNA (refers to the concentration of DNA [including single-stranded and double-stranded] in ng/μ ΐ λ. The inventors found By using the amount of the S1 enzyme calculated by the formula, the single-stranded DNA and the unreplicated DNA molecule in the second DNA fragment mixture can be effectively removed without affecting the double-stranded DNA therein, thereby enabling The preparation efficiency of c 0 tl DNA and the quality of the obtained cj-1 DNA are guaranteed.
S400: 对去除单链 DNA的 DNA片段混合物进行纯化, 以便获得 cj-l DNA。  S400: Purification of a DNA fragment mixture for removing single-stranded DNA to obtain cj-1 DNA.
根据本发明的实施例, 对去除单链 DNA的 DNA片段混合物进行纯化的方法不受特别 限制, 可以与对第一 DNA片段混合物进行纯化的方法相同, 也可以不同。 具体地, 对去除 单链 DNA的 DNA片段混合物进行纯化, 可以釆用本领域已知的任何技术, 例如釆用市售 的 DNA纯化试剂盒, 也可以釆用酚氯仿纯化 (例如, 可以参考 Herrmann BG, Frischauf AM: Isolation of genomic DNA. Methods Enzymol 1987, 152:180-183 )。 才艮据本发明的一些具体示 例, 对去除单链 DNA的 DNA片段混合物进行纯化是通过釆用酚氯仿法进行的, 其中使用 等体积的异丙醇沉淀 DNA。 发明人惊奇地发现, 当釆用酚氯仿纯化去除单链 DNA的 DNA 片段混合物时, 不仅可以方便快速地对大规模的 DNA进行纯化, 而且能够节省试剂, 降低 成本, 且纯化的效果非常好, 制备的 c。 DNA可以很好地满足实验、 生产的需求。 进一步, 根据本发明的又一方面, 本发明提供了一种 c。 DNA, 其是通过根据本发明 实施例的制备 cj-l DNA的方法制备得到的。 根据本发明的再一方面, 本发明还提供了一种核酸杂交的方法。根据本发明的一些 实施例, 该方法包括使用根据本发明实施例的 cj-l DNA进行封闭的步骤。 根据本发明 的实施例, 这里的表达方式 "使用根据本发明实施例的 cj-l DNA进行封闭" 应作广义 理解, 在核酸杂交过程中, 可以使用根据本发明实施例的 cj-l DNA对核酸探针或者待检 测样品的核酸序列中的重复序列进行封闭杂交。 根据本发明的实施例, 优选釆用 c。 DNA 对核酸探针进行封闭处理。 发明人发现, 根据本发明实施例的 c。 DNA对核酸探针进行 封闭杂交时, 存在于探针中的重复序列被屏蔽, 从而能够避免该重复序列在核酸杂交过 程中产生的非特异性强杂交背景信号将待检测样品中低拷贝或单拷贝序列的杂交信号 掩盖掉, 从而能够使待检测样品的核酸序列成功地进行核酸杂交, 最终能够有效地捕获 单拷贝或低拷贝序列例如可以为在核酸样本中含量相对较小的外显子序列。当使用根据 本发明实施例的 c。 DNA对待检测样品的核酸序列进行封闭杂交时, 同样可以有效去除 待检测样品的核酸序列中的重复序列, 从而能够避免该重复序列在后续核酸杂交过程中的 非特异性杂交信号干扰, 以保证核酸杂交的效率。 此外, 根据本发明的实施例, 使用根据 本发明实施例的 c。-J DNA进行封闭时, c。 DNA都是过量使用的。 具体地, 根据本发明 的一些具体示例, 不论核酸杂交的种类如何, cj-l DNA的使用量都是将待检测样品的核酸 量通过特定计算得来。 根据本发明的一个实施例, c。 DNA的使用量为待检测样品的核酸 量的 20 _ 30倍左右。另外,才艮据本发明的实施例,其中的核酸杂交为 Northern杂交、 Southern 杂交、 或原位杂交, 更具体地, 所述原位杂交为组织原位杂交、 体细胞原位杂交、 或荧光 原位杂交。 对于原位杂交, 样品是指组织; 对于核酸杂交, 样品是指核酸。 基于根据本发 明实施例的核酸杂交的方法, 在核酸杂交前, 使用过量的 DNA, 能够方便、 有效 地进行封闭, 以屏蔽重复序列 DNA, 从而在后续的核酸杂交过程中, 能够有效避免重 复序列产生的非特异性强杂交背景信号的干扰,增强单拷贝或低拷贝序列外显子的检测 信号, 最终能够提高核酸杂交的效率, 增强杂交效果。 According to an embodiment of the present invention, the method of purifying the DNA fragment mixture for removing single-stranded DNA is not particularly limited, and may be the same as or different from the method of purifying the first DNA fragment mixture. Specifically, the DNA fragment mixture from which single-stranded DNA is removed can be purified by any technique known in the art, for example, using a commercially available DNA purification kit, or purified by phenol chloroform (for example, Herrmann can be referred to). BG, Frischauf AM: Isolation of genomic DNA. Methods Enzymol 1987, 152: 180-183). According to some specific examples of the present invention, purification of a DNA fragment mixture from which single-stranded DNA is removed is carried out by a phenol chloroform method in which DNA is precipitated using an equal volume of isopropanol. The inventors have surprisingly found that when phenol chloroform is used to purify a mixture of DNA fragments of single-stranded DNA, not only can large-scale DNA be purified conveniently and quickly, but also reagents can be saved, costs can be reduced, and the purification effect is very good. Prepared c. DNA can well meet the needs of experimentation and production. Further, according to still another aspect of the present invention, the present invention provides a c. DNA, which is prepared by a method for producing cj-1 DNA according to an embodiment of the present invention. According to still another aspect of the present invention, the present invention also provides a method of nucleic acid hybridization. According to some embodiments of the invention, the method comprises the step of blocking using cj-1 DNA according to an embodiment of the invention. According to an embodiment of the present invention, the expression herein "blocking using cj-1 DNA according to an embodiment of the present invention" should be understood broadly, and in the process of nucleic acid hybridization, a cj-1 DNA pair according to an embodiment of the present invention may be used. The nucleic acid probe or the repeat sequence in the nucleic acid sequence of the sample to be detected is subjected to blocking hybridization. According to an embodiment of the invention, it is preferred to use c. The DNA is blocked by a nucleic acid probe. The inventors have found c according to an embodiment of the invention. When the DNA is subjected to blocking hybridization to the nucleic acid probe, the repeat sequence existing in the probe is shielded, thereby preventing the non-specific strong hybridization background signal generated by the repeated sequence in the nucleic acid hybridization process from being low-copy or single-copy in the sample to be detected. The hybridization signal of the sequence is masked off, thereby enabling the nucleic acid sequence of the sample to be detected to be successfully subjected to nucleic acid hybridization, and finally capable of efficiently capturing a single copy or a low copy sequence, for example, an exon sequence having a relatively small content in the nucleic acid sample. When c according to an embodiment of the invention is used. When the nucleic acid sequence of the DNA to be tested is subjected to blocking hybridization, the repeat sequence in the nucleic acid sequence of the sample to be detected can also be effectively removed, thereby avoiding non-specific hybridization signal interference of the repeated sequence in the subsequent nucleic acid hybridization to ensure nucleic acid hybridization. s efficiency. Further, according to an embodiment of the present invention, c according to an embodiment of the present invention is used. -J DNA is blocked when c. DNA is used in excess. Specifically, according to some specific examples of the present invention, regardless of the kind of nucleic acid hybridization, the amount of cj-1 DNA used is a specific calculation of the amount of nucleic acid of the sample to be detected. According to an embodiment of the invention, c. The amount of DNA used is about 20 to 30 times the amount of nucleic acid of the sample to be detected. In addition, according to an embodiment of the present invention, the nucleic acid hybridization thereof is Northern hybridization, Southern Hybridization, or in situ hybridization, more specifically, the in situ hybridization is tissue in situ hybridization, somatic in situ hybridization, or fluorescence in situ hybridization. For in situ hybridization, a sample refers to tissue; for nucleic acid hybridization, a sample refers to a nucleic acid. Based on the method of nucleic acid hybridization according to an embodiment of the present invention, an excess of DNA can be used in a convenient and efficient manner to block the repeat DNA before the nucleic acid hybridization, thereby effectively avoiding the repeat sequence in the subsequent nucleic acid hybridization process. The interference generated by the non-specific strong hybrid background signal enhances the detection signal of the single copy or low copy sequence exon, which can ultimately improve the efficiency of nucleic acid hybridization and enhance the hybridization effect.
根据本发明的再一方面, 本发明还提供了一种捕获核酸序列的方法。 根据本发明的 实施例, 该方法包括使用根据本发明实施例的 cj-l DNA进行封闭的步骤。 根据本发明 的实施例, 这里的表达方式 "使用根据本发明实施例的 cj-l DNA进行封闭" 应作广义 理解, 前面已进行了详细解释, 在此不再赘述。 基于该方法, 能够方便、 有效地对探针或 待检测样品的核酸序列中的重复序列进行封闭,屏蔽重复序列,从而避免核酸杂交过程 中非特异性杂交信号的干扰, 以便增强核酸杂交的效果, 最终实现对待检测核酸样本中 的核酸序列的有效捕获。  According to still another aspect of the present invention, the present invention also provides a method of capturing a nucleic acid sequence. According to an embodiment of the invention, the method comprises the step of blocking using cj-1 DNA according to an embodiment of the invention. According to an embodiment of the present invention, the expression "closed using cj-1 DNA according to an embodiment of the present invention" is to be understood broadly, and has been explained in detail above, and will not be described again. Based on the method, the repeat sequence in the nucleic acid sequence of the probe or the sample to be detected can be conveniently and effectively blocked, and the repeat sequence is shielded, thereby avoiding interference of non-specific hybridization signals during nucleic acid hybridization, so as to enhance the effect of nucleic acid hybridization. Eventually an efficient capture of the nucleic acid sequence in the nucleic acid sample to be detected is achieved.
根据本发明的又一方面, 本发明还提供了一种组合物。 根据本发明的实施例, 该组 合物包含根据本发明实施例的 c。-J DNA。 根据本发明的一些具体示例, 根据本发明实施 例的 cj-l DNA可以应用于核酸杂交和捕获核酸序列中, 具体地, 使用根据本发明实施例 的 cj-l DNA可以有效地对探针或待检测样本的核酸序列中的重复序列进行封闭,以减少非 特异性强杂交信号的干扰, 从而能够提高核酸杂交及捕获核酸序列的效率。 因此, 本领域 技术人员可以理解,根据本发明实施例的包含 cj-l DNA的组合物可以根据其具体的用途含 有其他常规的组分, 这里不再——列举。 根据本发明实施例的该组合物, 可以应用于进行 核酸杂交或者捕获核酸序列。通过釆用包含 cj-l DNA的该组合物进行核酸杂交和捕获核酸 序列, 可以有效地增强核酸杂交的效果, 提高捕获核酸序列的效率。  According to yet another aspect of the invention, the invention also provides a composition. According to an embodiment of the invention, the composition comprises c according to an embodiment of the invention. -J DNA. According to some specific examples of the present invention, cj-1 DNA according to an embodiment of the present invention can be applied to nucleic acid hybridization and capture nucleic acid sequences, and in particular, cj-1 DNA according to an embodiment of the present invention can be effectively used for probes or The repeat sequence in the nucleic acid sequence of the sample to be detected is blocked to reduce the interference of the non-specific strong hybridization signal, thereby improving the efficiency of nucleic acid hybridization and nucleic acid capture. Thus, those skilled in the art will appreciate that compositions comprising cj-1 DNA in accordance with embodiments of the present invention may contain other conventional components depending on their particular use, and are not listed here. The composition according to an embodiment of the present invention can be applied to carry out nucleic acid hybridization or capture nucleic acid sequences. By performing nucleic acid hybridization and capturing nucleic acid sequences using the composition comprising cj-1 DNA, the effect of nucleic acid hybridization can be effectively enhanced, and the efficiency of capturing nucleic acid sequences can be improved.
根据本发明的再一方面, 本发明还提供了一种试剂盒。 根据本发明的实施例, 该试剂 盒包含根据本发明实施例的 c。 DNA。 釆用该试剂盒, 能够简捷、 有效地进行核酸杂交或 者捕获核酸序列, 并且成本较低。  According to still another aspect of the present invention, the present invention also provides a kit. According to an embodiment of the invention, the kit comprises c according to an embodiment of the invention. DNA. With this kit, nucleic acid hybridization or nucleic acid sequence can be carried out simply and efficiently, and the cost is low.
根据本发明的又一方面,本发明还提供了根据本发明实施例的 cj-l DNA在制备用于进 行核酸杂交或者捕获核酸序列的试剂中的用途, 在此不再赘述。 根据本发明的实施例, 利 用该用途制备的用于进行核酸杂交或者捕获核酸序列的试剂, 可以有效地进行核酸杂交或 者捕获核酸序列, 杂交结果良好。  According to still another aspect of the present invention, the present invention also provides the use of cj-1 DNA in the preparation of a reagent for nucleic acid hybridization or capture of a nucleic acid sequence according to an embodiment of the present invention, which will not be described herein. According to an embodiment of the present invention, an agent for nucleic acid hybridization or capture of a nucleic acid sequence prepared by using the same can efficiently perform nucleic acid hybridization or capture of a nucleic acid sequence, and the hybridization result is good.
需要说明的是, 根据本发明实施例的制备 Cot-1 DNA的方法、 核酸杂交的方法、 捕获序 列的方法均是本申请的发明人经过艰苦的创造性劳动和优化工作才完成的。 下面将结合实施例对本发明的实施方案进行详细描述。 本领域技术人员将会理解, 下 面的实施例仅用于说明本发明, 而不应视为限定本发明的范围。 实施例中未注明具体技术 或条件者, 按照本领域内的文献所描述的技术或条件 (例如参考 J.萨姆布鲁克等著, 黄培堂 等译的 《分子克隆实验指南》, 第三版, 科学出版社)或者按照产品说明书进行。 所用试剂 或仪器未注明生产厂商者, 均为可以通过市购获得的常规产品。 实施例 1: Cot-1 DNA样品 1的制备 It should be noted that the method for preparing Cot-1 DNA, the method for nucleic acid hybridization, and the method for capturing sequences according to an embodiment of the present invention are all completed by the inventor of the present application through arduous creative labor and optimization work. Embodiments of the present invention will be described in detail below with reference to the embodiments. Those skilled in the art will understand that the following examples are merely illustrative of the invention and should not be construed as limiting the scope of the invention. In the examples, the specific techniques or conditions are not indicated, according to the techniques or conditions described in the literature in the field (for example, refer to J. Sambrook et al., Huang Peitang et al., Molecular Cloning Experimental Guide, Third Edition, Science Press) or in accordance with the product manual. Reagent used Or if the instrument does not indicate the manufacturer, it is a regular product that can be obtained through the market. Example 1: Preparation of Cot-1 DNA Sample 1
1. 超声波打断  Ultrasonic interruption
1 )将人基因组 DNA分装于 50 ml离心管中, 每管不超过 40 ml。  1) Dispense human genomic DNA into 50 ml centrifuge tubes, each tube not exceeding 40 ml.
2 )用清洗过的超声波细胞粉碎仪(型号: scientz08-II, 浙江宁波新芝生物科技股份有 限公司生产)进行打断。  2) Interrupted with a cleaned ultrasonic cell pulverizer (model: scientz08-II, produced by Zhejiang Ningbo Xinzhi Biotech Co., Ltd.).
按下面的表 3设置参数( 40 ml体系):  Set the parameters (40 ml system) as shown in Table 3 below:
表 1 : 打断条件参数设置  Table 1: Interrupt condition parameter settings
Figure imgf000010_0001
Figure imgf000010_0001
由于在用超声波打断的过程中仪器本身会发出大量的热, 加上打断的时间较长, 如果 不加碎水可能会 I起 DNA的变性。 因此, 在超声波细胞粉碎仪的处理空间中放入水盒, 装 满碎水, 将 DNA置于离心管中, 并将离心管放入碎水中。 注意不要使碎水堆积到离心管的 管口, 以免造成污染。  Since the instrument itself emits a lot of heat during the interruption with ultrasonic waves, and the interruption is long, the DNA may be denatured without adding water. Therefore, a water tank is placed in the processing space of the ultrasonic cell pulverizer, filled with crushed water, the DNA is placed in a centrifuge tube, and the centrifuge tube is placed in the crushed water. Be careful not to allow the broken water to accumulate in the nozzle of the centrifuge tube to avoid contamination.
3 )将打断完的 DNA进行电泳检测, 理想的打断片段大小在 100 bp - 1000 bp, 优选主 带位于 300 bp的位置。 如果打断的片段未能符合要求, 则需根据打断的情况重新调整打断 参数进行二次打断。  3) The interrupted DNA is subjected to electrophoresis detection. The ideal fragment size is 100 bp - 1000 bp, and the main band is preferably located at 300 bp. If the interrupted fragment fails to meet the requirements, the interruption parameter should be re-adjusted according to the interruption to perform a second interruption.
电泳检测结果如图 3所示。 图 3中, 左侧泳道为 100 bp ladder marker, 右侧泳道为 DL2000 marker, 图中的 1 - 3表示 3个样品, 这 3个样品为平行样品。 其中电泳检测时, 3个平行的样品的上样量均为 1微升, 两个 Marker的上样量均为 6微升。 结果显示, 片段 范围在 100 - 1000 bp, 主带集中在 200 - 600 bp, 符合打断要求。  The results of the electrophoresis test are shown in Figure 3. In Figure 3, the left lane is a 100 bp ladder marker, the right lane is a DL2000 marker, and the 1 - 3 in the figure represents three samples, which are parallel samples. In the electrophoresis test, the loading of three parallel samples was 1 microliter, and the loading of both Markers was 6 microliters. The results show that the fragment range is 100 - 1000 bp and the main band is concentrated at 200 - 600 bp, which meets the requirements for interruption.
2. 打断后 DNA的纯化  2. Purification of DNA after interruption
釆用酚氯仿方法对 DNA进行纯化, 具体操作如下:  The DNA was purified by phenol chloroform method as follows:
1 )加入等体积的酚氯仿 (酚: 氯仿: 异戊醇 =25: 24: 1 ), 充分混匀后, 放置 3 min 到 5 min, 4700 rpm离心 5min。  1) Add an equal volume of phenol chloroform (phenol: chloroform: isoamyl alcohol = 25: 24: 1), mix well, place for 3 min to 5 min, and centrifuge at 4700 rpm for 5 min.
2 )将上清转移到新的离心管中,加入等体积的氯仿,充分混匀后,放置 3 min到 5 min , 2) Transfer the supernatant to a new centrifuge tube, add an equal volume of chloroform, mix well, and place for 3 min to 5 min.
4700 rpm离心 5 min。 Centrifuge at 4700 rpm for 5 min.
3 )将上清转移到新的离心管中, 加入 1/10体积的 3M的醋酸钠, 混合均匀, 加入 -20 °C预冷的 0.8倍体积到等体积的异丙醇, -20 °C放置沉淀 1小时以上。  3) Transfer the supernatant to a new centrifuge tube, add 1/10 volume of 3M sodium acetate, mix well, add 0.8 times volume pre-cooled at -20 °C to an equal volume of isopropanol, -20 °C The precipitate was placed for more than 1 hour.
4 ) -20 °C取出后室温放置 10 min, 4700 rpm离心 10 min。  4) Remove at -20 °C for 10 min at room temperature and centrifuge at 10700 rpm for 10 min.
5 )去掉上清, 加入 40 ml 70 %的乙醇洗涤, 4700 rpm离心 5 min。  5) Remove the supernatant, add 40 ml of 70% ethanol, and centrifuge at 4700 rpm for 5 min.
6 )去掉上清, 加入 20 ml无水乙醇洗涤, 4700 rpm离心 5 min。 7 )去掉上清, 将 DNA放于恒温培养箱中 50°C干燥。 6) Remove the supernatant, wash it with 20 ml of absolute ethanol, and centrifuge at 5700 rpm for 5 min. 7) Remove the supernatant and dry the DNA in a constant temperature incubator at 50 °C.
8 )溶于 20 ml mim-Q水中。  8) Dissolved in 20 ml of mim-Q water.
Nanodro 测定 DNA浓度 a。  Nanodro measures DNA concentration a.
在 DNA的纯化中, 也可以使用市售的 DNA纯化试剂盒, 例如 PALL、 QIAGEN等公 司的产品。  In the purification of DNA, a commercially available DNA purification kit such as a product of PALL, QIAGEN, or the like can also be used.
3. 打断后 DNA的变性和复性  3. Denaturation and renaturation of DNA after interruption
进行变复性 DNA之前的准备工作:  Preparation before performing renaturation DNA:
将水浴锅打开, 调整水量, 设置 3个温度分别为 100°C、 65°C和 37°C ; 计算所需的试 剂量: 设总共有 N管, 则所需的 3M的 NaCl为 2.22 χ N ml、 10 x SI 緩冲液为 2.47 χ N ml、 每管所需 SI核酸酶的酶量为 c X 20 / 320微升。 准备一个水盒。  Open the water bath and adjust the water volume. Set the three temperatures to 100 °C, 65 °C and 37 °C respectively. Calculate the required reagent amount: Set a total of N tubes, then the required 3M NaCl is 2.22 χ N The ml, 10 x SI buffer was 2.47 χ N ml, and the amount of SI nuclease required per tube was c X 20 / 320 μl. Prepare a water box.
1 )用 50 ml离心管将 DNA溶液分装成 10 ml每管。  1) Dispense the DNA solution into 10 ml each tube using a 50 ml centrifuge tube.
2 )根据上面 Nanodrop测定的 DNA浓度 a, 按照 50 ml离心管每管 20 ml, 终浓度为 550 纳克 / i升 DNA溶液的量计算所需的 DNA溶液的量。 例如 DNA浓度 a为 750 纳克 / 微升, 则所需的 DNA溶液的量 X ml = 20 ml X 550纳克 /微升 / (750纳克 /微升)。  2) Calculate the amount of DNA solution required according to the DNA concentration a determined by Nanodrop above, according to the amount of 20 ml per tube of 50 ml centrifuge tube and the final concentration of 550 ng / μL DNA solution. For example, if the DNA concentration a is 750 ng/μl, the amount of DNA solution required is X ml = 20 ml X 550 ng / microliter / (750 ng / microliter).
3 )从浓度 a的 DNA溶液中取 x ml加入到 1个新的 50 ml离心管中, 用 milli-Q水将其 总体积补到 20 ml。 留取 100微升加入 1.5 ml离心管中备用作为 QPCR检测的未变性前的 DNA和制备的 cj-l DNA进行比较。 用 Nanodrop准确测定每一管的 DNA溶液的浓度 c。  3) Add x ml from the DNA solution of concentration a to a new 50 ml centrifuge tube and fill the total volume to 20 ml with milli-Q water. 100 μl of the undenatured DNA and the prepared cj-1 DNA, which were used as QPCR assays, were added to a 1.5 ml centrifuge tube for comparison. The concentration of the DNA solution in each tube was accurately determined using Nanodrop.
4 )将 3 ) 中分装好 DNA溶液的 50 ml离心管放入 100 °C水浴中 10 min, 同时将 3M的 NaCl溶液放入 65 C水浴备用。 将 3M的 NaCl提前加热至 65 °C是为了在后面加入其时, 对 液体的温度不造成影响。  4) Place the 50 ml centrifuge tube containing the DNA solution in 3) into a 100 °C water bath for 10 min, and place the 3 M NaCl solution in a 65 C water bath for later use. The 3M NaCl was preheated to 65 °C in advance so as not to affect the temperature of the liquid when it was added later.
5 )将 4 ) 中的 50 ml离心管转入 65 °C水浴平衡 5 min。  5) Transfer the 50 ml centrifuge tube from 4) to a 65 °C water bath for 5 min.
6 ) 向每管中加入 2.22 ml预热的 3M NaCl, 上下颠倒混匀, 放入 65°C水浴并按照计算 的 DNA复性时间 T进行复性。  6) Add 2.22 ml of pre-warmed 3M NaCl to each tube, mix upside down, place in a 65 °C water bath and anneal according to the calculated DNA refolding time T.
7 )复性时间到了以后,迅速将 50 ml离心管取出插入水盒的水中,向每管中加入 2.47 ml 的 10 X S 1 buffer , 上下颠倒混匀, 再插入水中。  7) After the renaturation time has elapsed, quickly remove the 50 ml centrifuge tube into the water in the water tank, add 2.47 ml of 10 X S 1 buffer to each tube, mix upside down, and insert into the water.
8 )等待 2到 3分钟, 向每管中加入所计算的 S1酶量, 上下颠倒混匀, 并用离心机快 速离心至 3000 rpm以上。  8) Wait 2 to 3 minutes, add the calculated amount of S1 enzyme to each tube, mix upside down, and centrifuge quickly to 3000 rpm or more with a centrifuge.
9 )将离心管转入 37 水浴 1小时消化。 消化后的 DNA溶液应该立即进行下一步的抽 提纯化。  9) Transfer the centrifuge tube to a 37 water bath for 1 hour to digest. The digested DNA solution should be immediately subjected to the next extraction and purification.
4. 变复性后 DNA的纯化  4. Purification of DNA after renaturation
1 )加入 25 ml的酚氯仿(酚: 氯仿: 异戊醇 =25: 24: 1 ) ,充分混匀后, 放置 3 min到 5 min, 4700 rpm离心 5 min。  1) Add 25 ml of phenol chloroform (phenol: chloroform: isoamyl alcohol = 25: 24: 1), mix well, place for 3 min to 5 min, and centrifuge at 4700 rpm for 5 min.
2 )将上清转移到新的离心管中, 加入 25ml的氯仿, 充分混匀后, 放置 3 min到 5 min , 4700 rpm离心 5 min。  2) Transfer the supernatant to a new centrifuge tube, add 25 ml of chloroform, mix well, place for 3 min to 5 min, and centrifuge at 4700 rpm for 5 min.
3 )将上清转移到新的离心管中, 加入 1/10体积的 3M的醋酸钠, 混合均匀, 加入 -20 3) Transfer the supernatant to a new centrifuge tube, add 1/10 volume of 3M sodium acetate, mix well, add -20
°C预冷的等体积的异丙醇, -20 °C放置沉淀 1小时以上。 4 ) -20 °C取出后室温放置 10 min, 用吸水纸擦净离心管外壁上的水后, 4700 rpm离心 10 min。 An equal volume of isopropanol precooled at ° C, and the precipitate was allowed to stand at -20 ° C for more than 1 hour. 4) After taking out at -20 °C, leave it at room temperature for 10 min, wipe the water on the outer wall of the centrifuge tube with absorbent paper, and centrifuge at 4700 rpm for 10 min.
5 )注意离心管底部的沉淀,小心的倒掉上清,然后将沉淀的 DNA转移至一个新的 50 ml 离心管, 加入 25 ml 70 %的乙醇洗涤, 4700 rpm离心 5 min。  5) Pay attention to the sediment at the bottom of the centrifuge tube, carefully pour off the supernatant, then transfer the precipitated DNA to a new 50 ml centrifuge tube, add 25 ml of 70% ethanol, and centrifuge at 4700 rpm for 5 min.
6 )去掉上清, 加入 20 mL无水乙醇洗涤, 4700 rpm离心 5 min。  6) Remove the supernatant, wash it with 20 mL of absolute ethanol, and centrifuge at 5700 rpm for 5 min.
7 )去掉上清, 将 DNA放于恒温培养箱中 50°C干燥。  7) Remove the supernatant and place the DNA in a constant temperature incubator at 50 °C.
8 )加入 pH8.0的 TE溶液溶解干燥后的 DNA, cj-l DNA制备完成, 标记好日期和批 次, 备用。  8) Add the pH 8.0 TE solution to dissolve the dried DNA, and prepare the cj-l DNA, mark the date and batch, and set aside.
如此制得 cj-l DNA样品 1。 实施例 2: 复性时间的选择  Thus prepared cj-l DNA sample 1. Example 2: Selection of renaturation time
为了确定实施例 1中 DNA 的复性时间, 本发明人故了不同时间的探索, 方法如下: 按照实施例 1中类似的方法制备 8个 c。 DNA样品, 其复性时间分别如表 2所示。 将 8个样品分别稀释至 10纳克 /^敫升, 加入引物以及 SYBR试剂, 一起放入 QPCR专用板中, 上机做 QPCR检测 (实时荧光定量 PCR )。 QPCR所用引物根据 NimbleGen Arrays User' s Guide-Sequence Capture Array )e/ wry提供的序歹1 J , 由 Invitrogen公司合成, 使用 TaKaRa 公司的 SYBR Premix Ex Tag™(prefect Real Time)200 reactions试剂盒, 货号为 DRR041A, 进行 QPCR检测。 In order to determine the renaturation time of the DNA in Example 1, the inventors have explored at different times as follows: Eight cs were prepared in a similar manner as in Example 1. The renaturation time of DNA samples is shown in Table 2. Dilute 8 samples to 10 ng/μ liter, add primers and SYBR reagent, put them into QPCR special plate, and perform QPCR detection (real-time fluorescent quantitative PCR) on the machine. Sequence bad QPCR provided with primers according NimbleGen Arrays User 's Guide-Sequence Capture Array) e / wry 1 J, synthesized by Invitrogen Corporation, using TaKaRa company SYBR Premix Ex Tag ™ (prefect Real Time) 200 reactions kits, Num. For DRR041A, QPCR detection was performed.
具体操作参照试剂盒的说明书进行。  The specific operation is carried out according to the instructions of the kit.
反应体系如下:  The reaction system is as follows:
cj-l DNA样品 1 ^:升  Cj-l DNA sample 1 ^: liter
ROX Dye 0.4微升  ROX Dye 0.4 microliters
SYBR premix 10微升  SYBR premix 10 microliters
引物 1微升  Primer 1 μL
水 7.6微升  Water 7.6 μl
总体积 20微升  Total volume 20 microliters
反应程序如下:  The reaction procedure is as follows:
95 °C 30s  95 °C 30s
95 °C 5s '  95 °C 5s '
60 °C 34s J 45个循环。  60 °C 34s J 45 cycles.
QPCR结果如表 2所示。  The QPCR results are shown in Table 2.
表 2: 8个不同复性时间制备的 cj-l DNA的 QPCR检测结果
Figure imgf000012_0001
τ SYBR Green I 31.15781
Table 2: QPCR results of cj-l DNA prepared at 8 different renaturation times
Figure imgf000012_0001
τ SYBR Green I 31.15781
τ SYBR Green I 32.52058  τ SYBR Green I 32.52058
2Τ SYBR Green I 27.10918  2Τ SYBR Green I 27.10918
2Τ SYBR Green I 27.59618  2Τ SYBR Green I 27.59618
4Τ SYBR Green I 5.503951  4Τ SYBR Green I 5.503951
4Τ SYBR Green I 5.14319  4Τ SYBR Green I 5.14319
表 2中, Ct值指从基线到指数增长的拐点所对应的循环次数。 这里的 Q指的是经过处 理, 即经过变复性后的样品的 Ct值。 而基线则是指扩增曲线中的水平部分。  In Table 2, the Ct value refers to the number of cycles corresponding to the inflection point from the baseline to the exponential growth. Here, Q refers to the Ct value of the sample after the treatment, that is, after the renaturation. The baseline is the horizontal part of the amplification curve.
表 2显示, 随着复性时间延长, Q值就越小, 则制备的 c。 DNA质量就越难保证, 时间缩短 1/2影响较小, 但这将会造成可以复性的 DNA减少, 因此而影响产率, 因此优选 时间 T, 作为最佳复性时间。 实施例 3: 在序列捕获中的杂交效果验证  Table 2 shows that as the renaturation time is extended, the smaller the Q value, the prepared c. The more difficult it is to ensure the quality of DNA, the less time 1/2 has less effect, but this will result in a reduction in reproducible DNA, thus affecting the yield, so time T is preferred as the optimal renaturation time. Example 3: Verification of hybridization effects in sequence capture
一、 实验所用样本:  First, the sample used in the experiment:
险证样本: 实施例 1制备的 cj-l DNA样品 1。  Sample of the danger certificate: cj-1 DNA sample prepared in Example 1.
对照样本: Invitrogen公司的商品 cj-l DNA (货号是 15279-011 )。  Control sample: Invitrogen's product cj-l DNA (item number 15279-011).
杂交样本: 人基因组文库, 构建流程使用 illumina公司 Paired-End DNA Sample Prep Kit(PE- 102- 1001 ),按照试剂盒说明规范操作。  Hybridization sample: Human genomic library, construction procedure using illumina's Paired-End DNA Sample Prep Kit (PE-102-1001), according to the kit instructions.
二、 实验仪器: 罗氏( Roche ) NimbleGen芯片。  Second, the experimental instrument: Roche NimbleGen chip.
三、 实验方法:  Third, the experimental method:
实验前的准备工作:  Preparation before the experiment:
将杂交仪电源打开, 杂交仪温度调至 42 °C。 将 2个干浴器打开分别调至 70 °C和 95 °C。 利用 PAMT将芯片和 Mixer组装好(参见图 4 ), 将组装好的 Mixer-array放于杂交仪上。  Turn on the hybridization unit and adjust the temperature of the hybridization unit to 42 °C. Turn the 2 dry baths to 70 °C and 95 °C respectively. The chip and Mixer were assembled using PAMT (see Figure 4) and the assembled Mixer-array was placed on the hybridizer.
1 )将验证样本和对照样本分别按照每管 450微克进行分装,用注射器针孔在分装的 1.5 ml 离心管盖上戳一个孔, 然后置于 SpeedVac中减压蒸干。  1) The verification sample and the control sample were separately dispensed in a volume of 450 μg per tube, and a hole was punched in a 1.5 ml centrifuge tube cap with a syringe needle hole, and then evaporated to dryness under a reduced pressure in a SpeedVac.
2 )分别取 5微克杂交样本置于步骤 1 )的离心管中, 加入 11.2微升纯水, 移至 70°C干 浴器中 5分钟。  2) Take 5 μg of the hybrid sample separately into the centrifuge tube of step 1), add 11.2 μl of pure water, and transfer to a 70 °C dry bath for 5 minutes.
3 )将离心管从干浴器中取出, 震荡后置于离心机上全速离心。 加入以下两种试剂: 2X SC Hybridiation Buffer 18.5微升  3) Remove the centrifuge tube from the dry bath, shake it and place it on the centrifuge for full speed centrifugation. Add the following two reagents: 2X SC Hybridiation Buffer 18.5 μl
SC Hybridiation Component A 7.3 ^:升  SC Hybridiation Component A 7.3 ^:L
4 )震荡混匀后置于离心机上全速离心 3 _ 30秒。 将离心后样品转移至 95 °C干浴器中 5 分钟。  4) After shaking and mixing, place it on a centrifuge and centrifuge at full speed for 3 _ 30 seconds. The centrifuged sample was transferred to a 95 °C dry bath for 5 minutes.
5 )将样品取出震荡后置于离心机上全速离心 30秒, 置于杂交仪器上 42°C离心管放置 位置准备杂交。  5) The sample was taken out and shaken, placed in a centrifuge and centrifuged at full speed for 30 seconds, placed on a hybridization instrument, and placed at a position of 42 ° C in a centrifuge tube to prepare for hybridization.
6 )确认芯片放置位置吻合杂交仪, 使用 M100移液器取 37微升样品通过 Fill Port小心 将移液器中样品注入芯片中。 6) Confirm that the chip placement position matches the hybridization instrument, use the M100 pipette to take 37 μl of the sample and carefully pass the Fill Port. The sample in the pipette is injected into the chip.
7 )使用 Port seals将两个样品口封住, 使用两指分别按住两个样品口, 同时用力, 注意 要确认封口没有问题, 42 °C杂交。  7) Use Port seals to seal the two sample ports. Press and hold the two sample ports with two fingers. At the same time, use force. Note that the seal is not problematic and hybridize at 42 °C.
8 )杂交完毕后,按仪器说明使用罗氏 NimbleGen芯片洗脱仪 (NimbleGen Elution System) 将 NimbleGen序列捕获芯片上杂交的 DNA洗脱下来。 得到第 1批次杂交后的样本。  8) After the hybridization, elute the hybridized DNA on the NimbleGen sequence capture chip using the Roche NimbleGen Elution System according to the instrument instructions. The sample after the first batch of hybridization was obtained.
重复上述操作 9次,分别得到第 2 - 10批次杂交后的样本,然后利用实施例 2中的 QPCR 方法进行杂交富集度的检测。  The above operation was repeated 9 times, and the hybridized samples of Batches 2 - 10 were respectively obtained, and then the hybridization degree was detected by the QPCR method of Example 2.
四、 实验结果及数据分析:  Fourth, experimental results and data analysis:
如下面的表 3所示。  As shown in Table 3 below.
表 3: 验证样本和对照样本杂交前后的富集度比较  Table 3: Comparison of enrichment before and after hybridization between validation and control samples
Figure imgf000014_0001
第 5批次 样品 1 33.982 25.875 8.108 117.408 127.309
Figure imgf000014_0001
Batch 5 sample 1 33.982 25.875 8.108 117.408 127.309
29.462 21.963 7.500 75.521  29.462 21.963 7.500 75.521
31.363 23.391 7.972 188.998  31.363 23.391 7.972 188.998
In vitro gen公司商品 33.982 25.884 8.098 116.762 126.244  In vitro gen products 33.982 25.884 8.098 116.762 126.244
29.462 21.989 7.473 74.385  29.462 21.989 7.473 74.385
31.363 23.402 7.961 187.584  31.363 23.402 7.961 187.584
第 6批次 样品 1 33.982 25.949 8.033 112.371 124.861 Batch 6 Sample 1 33.982 25.949 8.033 112.371 124.861
29.462 22.039 7.423 72.271  29.462 22.039 7.423 72.271
31.363 23.383 7.980 189.940  31.363 23.383 7.980 189.940
In vitro gen公司商品 33.982 25.965 8.017 111.304 126.680  In vitro gen products 33.982 25.965 8.017 111.304 126.680
29.462 22.408 7.054 58.421  29.462 22.408 7.054 58.421
31.363 23.228 8.135 210.315  31.363 23.228 8.135 210.315
第 7批次 样品 1 33.982 25.478 8.504 148.205 142.422 Batch 7 Sample 1 33.982 25.478 8.504 148.205 142.422
29.462 21.867 7.595 79.796  29.462 21.867 7.595 79.796
31.363 23.310 8.052 199.264  31.363 23.310 8.052 199.264
In vitro gen公司商品 33.982 25.453 8.530 150.443 147.441  In vitro gen products 33.982 25.453 8.530 150.443 147.441
29.462 21.954 7.508 75.905  29.462 21.954 7.508 75.905
31.363 23.188 8.175 215.974  31.363 23.188 8.175 215.974
第 8批次 样品 1 33.982 26.168 7.814 98.797 116.847 Batch 8 Sample 1 33.982 26.168 7.814 98.797 116.847
29.462 21.940 7.522 76.505  29.462 21.940 7.522 76.505
31.363 23.506 7.857 175.238  31.363 23.506 7.857 175.238
In vitro gen公司商品 33.982 25.912 8.070 114.852 119.227  In vitro gen products 33.982 25.912 8.070 114.852 119.227
29.462 21.953 7.510 75.957  29.462 21.953 7.510 75.957
31.363 23.580 7.783 166.872  31.363 23.580 7.783 166.872
第 9批次 样品 1 33.982 25.845 8.138 119.504 134.531 Batch 9 Sample 1 33.982 25.845 8.138 119.504 134.531
29.462 21.990 7.473 74.357  29.462 21.990 7.473 74.357
31.363 23.233 8.130 209.732  31.363 23.233 8.130 209.732
In vitro gen公司商品 33.982 25.762 8.221 125.458 134.155  In vitro gen products 33.982 25.762 8.221 125.458 134.155
29.462 21.908 7.554 77.929  29.462 21.908 7.554 77.929
31.363 23.312 8.051 199.078  31.363 23.312 8.051 199.078
第 10批次 样品 1 33.982 25.843 8.140 119.634 127.639 Batch 10 Sample 1 33.982 25.843 8.140 119.634 127.639
29.462 22.045 7.418 72.029  29.462 22.045 7.418 72.029
31.363 23.373 7.990 191.254  31.363 23.373 7.990 191.254
In vitro gen公司商品 33.982 25.717 8.265 128.771 131.491  In vitro gen products 33.982 25.717 8.265 128.771 131.491
29.462 21.998 7.465 74.005 31.363 23.369 •994 191.697 29.462 21.998 7.465 74.005 31.363 23.369 •994 191.697
富集度的计算:  Calculation of enrichment:
QPCR可以将杂交前样本的 Ct值和经过杂交过后的样本的 Q值分别测出来,经过这两 者之前的对比可以将样品的富集度算出来。 富集度的公式为 (1+E ) Δα, 其中, Ε代表引物 的扩增效率, 理想状态下 1+Ε=2, 即富集度 =2Δα。 A Ct则指的是杂交前的样品的 Ct值和经 过杂交之后的样品的 Ct值的差值。 The QPCR can measure the Ct value of the sample before hybridization and the Q value of the sample after hybridization, and the enrichment of the sample can be calculated by comparing the two before. The formula for enrichment is (1+E) Δα , where Ε represents the amplification efficiency of the primer, ideally 1+Ε=2, ie enrichment = 2 Δα . A Ct refers to the difference between the Ct value of the sample before hybridization and the Ct value of the sample after hybridization.
通过 QPCR检测将实施例 1制备的 cj-l DNA与 Invitrogen公司生产的 cj-l DNA商品 (货号是 15279-011 )分别应用于罗氏(Roche ) NimbleGen 芯片杂交, 两者通过富集度的 比较, 可见本发明制备的 cj-l DNA能够成功应用于序列捕获技术中。 工业实用性  The cj-1 DNA prepared in Example 1 and the cj-1 DNA product produced by Invitrogen (Cat. No. 15279-011) were respectively applied to the Roche NimbleGen chip hybridization by QPCR detection, and the two were compared by enrichment. It can be seen that the cj-1 DNA prepared by the invention can be successfully applied to the sequence capture technology. Industrial applicability
本发明的一种制备 c。 DNA的方法、 一种 c。 DNA、 一种核酸杂交的方法、 一种捕 获核酸序列的方法、一种组合物、一种试剂盒以及 cj-l DNA在制备用于进行核酸杂交或者 捕获核酸序列的试剂中的用途, 能够制备高质量的 cj-l DNA, 并能有效应用于核酸杂交和 核酸序列的捕获。  A preparation c of the invention. DNA method, a c. DNA, a method of nucleic acid hybridization, a method of capturing a nucleic acid sequence, a composition, a kit, and the use of cj-1 DNA in preparing a reagent for performing nucleic acid hybridization or capturing a nucleic acid sequence, can be prepared High quality cj-l DNA, and can be effectively applied to nucleic acid hybridization and nucleic acid sequence capture.
尽管本发明的具体实施方式已经得到详细的描述,本领域技术人员将会理解。根据已经 公开的所有教导, 可以对那些细节进行各种修改和替换, 这些改变均在本发明的保护范围 之内。 本发明的全部范围由所附权利要求及其任何等同物给出。  Although specific embodiments of the invention have been described in detail, those skilled in the art will understand. Various modifications and substitutions may be made to those details in light of the teachings of the invention, which are within the scope of the invention. The full scope of the invention is given by the appended claims and any equivalents thereof.
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例"、 "具体示例"、 或 "一些示例" 等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语 的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。  In the description of the present specification, the description of the terms "one embodiment", "some embodiments", "illustrative embodiment", "example", "specific example", or "some examples", etc. Particular features, structures, materials or features described in the examples or examples are included in at least one embodiment or example of the invention. In the present specification, the schematic representation of the above terms does not necessarily mean the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Claims

权利要求书 Claim
1、 一种制备 c。 DNA的方法, 其特征在于, 包括下列步骤: 1. A preparation c. The method of DNA is characterized in that it comprises the following steps:
将基因组 DNA进行片段化, 以便获得第一 DNA片段混合物, 所述第一 DNA片段混 合物中 DNA片段的长度为 lOObp-lOOObp;  Fragmenting the genomic DNA to obtain a first DNA fragment mixture, wherein the length of the DNA fragment in the first DNA fragment mixture is from 100 bp to 1000 bp;
将所述第一 DNA片段混合物依次进行变性处理和复性处理, 以便获得第二 DNA片段 混合物, 所述第二 DNA片段混合物包含单链 DNA和双链 DNA;  The first DNA fragment mixture is subjected to denaturation treatment and renaturation treatment in order to obtain a second DNA fragment mixture, the second DNA fragment mixture comprising single-stranded DNA and double-stranded DNA;
去除所述第二 DNA片段混合物中的单链 DNA , 以便获得去除单链 DNA的 DNA片段 混合物; 以及  Removing the single-stranded DNA in the second DNA fragment mixture to obtain a DNA fragment mixture from which single-stranded DNA is removed;
对所述去除单链 DNA的 DNA片段混合物进行纯化, 以便获得所述 cj-l DNA。  The DNA fragment mixture from which the single-stranded DNA is removed is purified to obtain the cj-1 DNA.
2、 根据权利要求 1 所述的方法, 其特征在于, 进一步包括从生物样本中提取基因组 DNA的步骤。  2. The method of claim 1 further comprising the step of extracting genomic DNA from the biological sample.
3、 根据权利要求 2所述的方法, 其特征在于, 所述生物样本为人的组织或细胞。 3. Method according to claim 2, characterized in that the biological sample is human tissue or cells.
4、 根据权利要求 1 所述的方法, 其特征在于, 所述片段化是通过对所述基因组 DNA 进行超声处理进行的。 4. The method according to claim 1, wherein the fragmentation is performed by sonicating the genomic DNA.
5、根据权利要求 1所述的方法, 其特征在于, 所述第一 DNA片段混合物中 DNA片段 的长度为 200 bp - 600 bp。  The method according to claim 1, wherein the DNA fragment in the first DNA fragment mixture has a length of 200 bp to 600 bp.
6、根据权利要求 5所述的方法, 其特征在于, 所述第一 DNA片段混合物中 DNA片段 的长度为 300bp。  The method according to claim 5, wherein the DNA fragment in the first DNA fragment mixture has a length of 300 bp.
7、 根据权利要求 1所述的方法, 其特征在于, 在将所述第一 DNA片段混合物进行变 性处理之前, 进一步包括对所述第一 DNA片段混合物进行纯化的步骤。  7. The method of claim 1, further comprising the step of purifying the first DNA fragment mixture prior to subjecting the first DNA fragment mixture to a variability treatment.
8、 根据权利要求 7所述的方法, 其特征在于, 对所述第一 DNA片段混合物进行纯化 是通过釆用酚氯仿法进行的, 其中使用等体积的异丙醇沉淀 DNA。  8. The method according to claim 7, wherein the purifying the first DNA fragment mixture is carried out by using a phenol chloroform method, wherein an equal volume of isopropanol is used to precipitate DNA.
9、 根据权利要求 1所述的方法, 其特征在于, 所述变性处理是在约 100摄氏度下进行 的。  9. The method of claim 1 wherein said denaturation treatment is performed at about 100 degrees Celsius.
10、 根据权利要求 1所述的方法, 其特征在于, 所述复性处理是在约 65摄氏度下进行 的。  10. The method of claim 1 wherein the renaturation treatment is performed at about 65 degrees Celsius.
11、 根据权利要求 10所述的方法, 其特征在于, 在所述复性处理过程中, 在所述第一 DNA片段混合物中添加 NaCl。  11. The method according to claim 10, wherein during the renaturation treatment, NaCl is added to the first DNA fragment mixture.
12.根据权利要求 1所述的方法, 其特征在于, 所述复性处理持续预定的时间, 所述预 定的时间是根据 T=330 / c x 1000计算的, 其中, c为 DNA的浓度, 单位是 ng/ μ  The method according to claim 1, wherein the renaturation processing continues for a predetermined time, the predetermined time being calculated according to T=330 / cx 1000, wherein c is a concentration of DNA, a unit Is ng/μ
13、 根据权利要求 1所述的方法, 其特征在于, 使用 S1核酸酶去除所述第二 DNA片 段混合物中的单链 DNA。  13. The method according to claim 1, wherein the single-stranded DNA in the mixture of the second DNA fragments is removed using S1 nuclease.
14、 根据权利要求 1所述的方法, 其特征在于, 对所述去除单链 DNA的 DNA片段混 合物进行纯化是通过釆用酚氯仿法进行的, 其中使用等体积的异丙醇沉淀 DNA。  The method according to claim 1, wherein the purification of the DNA fragment mixture for removing single-stranded DNA is carried out by using a phenol chloroform method in which DNA is precipitated using an equal volume of isopropanol.
15、 — Cot-1 DNA, 其是通过权利要求 1至 14中任一项所述的方法制备的。 15. Cot-1 DNA prepared by the method of any one of claims 1 to 14.
16、 一种核酸杂交的方法, 其特征在于, 包括使用权利要求 15所述的 c。 DNA进行 封闭的步骤。 A method of hybridizing nucleic acids, comprising the use of c according to claim 15. The step of blocking the DNA.
17、根据权利要求 16所述的方法,其特征在于,所述核酸杂交为 Northern杂交、 Southern 杂交、 或原位杂交。  17. A method according to claim 16 wherein the nucleic acid hybridizes to Northern hybridization, Southern hybridization, or in situ hybridization.
18、 根据权利要求 17所述的方法, 其特征在于, 所述原位杂交为组织原位杂交、 体细 胞原位杂交、 或荧光原位杂交。  18. The method of claim 17, wherein the in situ hybridization is tissue in situ hybridization, somatic cell in situ hybridization, or fluorescence in situ hybridization.
19、 一种捕获核酸序列的方法, 其特征在于, 包括使用权利要求 15所述的 c。-J DNA 进行封闭的步骤。  A method of capturing a nucleic acid sequence, which comprises using the c of claim 15. -J DNA is the step of blocking.
20、 一种组合物, 其包含权利要求 15所述的 c。-J DNA。  20. A composition comprising c according to claim 15. -J DNA.
21、 一种试剂盒, 其包含权利要求 15所述的 c。 DNA。  A kit comprising the c of claim 15. DNA.
22、 根据权利要求 21所述的试剂盒, 其用于进行核酸杂交或者捕获核酸序列。  22. A kit according to claim 21 for performing nucleic acid hybridization or capturing nucleic acid sequences.
23、 权利要求 15所述的 cj-l DNA在制备用于进行核酸杂交或者捕获核酸序列的试剂 中的用途。  23. Use of cj-1 DNA according to claim 15 for the preparation of a reagent for nucleic acid hybridization or capture of a nucleic acid sequence.
PCT/CN2011/081954 2010-11-12 2011-11-08 Cot-1 dna, preparation method and use thereof WO2012062202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010541872.0 2010-11-12
CN201010541872.0A CN102465178B (en) 2010-11-12 2010-11-12 C0t-1DNA, its preparation method and application

Publications (1)

Publication Number Publication Date
WO2012062202A1 true WO2012062202A1 (en) 2012-05-18

Family

ID=46050411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081954 WO2012062202A1 (en) 2010-11-12 2011-11-08 Cot-1 dna, preparation method and use thereof

Country Status (2)

Country Link
CN (1) CN102465178B (en)
WO (1) WO2012062202A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679945B (en) * 2018-07-26 2022-05-06 麦凯(浙江)医疗器械有限公司 Settling agent for improving extraction rate of free DNA in plasma sample
CN113957125B (en) * 2021-10-21 2024-05-07 上海英基生物科技有限公司 Cot DNA suitable for bisulfite sequencing, preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405407A (en) * 2005-11-18 2009-04-08 儿童慈善医院 Mitigation of Cot-1 DNA distortion in nucleic acid hybridization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405407A (en) * 2005-11-18 2009-04-08 儿童慈善医院 Mitigation of Cot-1 DNA distortion in nucleic acid hybridization

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN YAN ET AL.: "A new protocol for extraction of COt-1 DNA from rice.", AFRICAN JOURNAL OF BIOTECHNOLOGY, vol. 9, no. 28, 12 July 2010 (2010-07-12), pages 4482 - 4485 *
DONG ZHENG-WEI ET AL.: "Comparative Analysis of O. punctata and O. brachyantha Genome with Rice C0 t-1 DNA and Genomic DNA.", JOURNAL OF PLANT GENETIC RESOURCES, vol. 8, no. 3, 31 December 2007 (2007-12-31), pages 343 - 346 *
MICHAEL S. ZWICK ET AL.: "A rapid procedure for the isolation of Cot-1 DNA from plants.", GENOME, vol. 40, no. 1, 31 December 1997 (1997-12-31), pages 138 - 142 *

Also Published As

Publication number Publication date
CN102465178A (en) 2012-05-23
CN102465178B (en) 2014-02-12

Similar Documents

Publication Publication Date Title
US11952569B2 (en) Methods and compositions for the extraction and amplification of nucleic acid from a sample
CN113166797A (en) Nuclease-based RNA depletion
US7964350B1 (en) Sample preparation for in situ nucleic acid analysis
JP5792223B2 (en) Nucleic acid detection
EP3099818B1 (en) Preimplantation assessment of embryos through detection of free embryonic dna
JP2014513523A (en) Methods and products for localized or spatial detection of nucleic acids in tissue samples
WO2009032779A2 (en) Methods and compositions for the size-specific seperation of nucleic acid from a sample
WO2009032781A2 (en) Methods and compositions for universal size-specific polymerase chain reaction
EP3346006B1 (en) Method for amplifying dna
Peng et al. Whole genome amplification from single cells in preimplantation genetic diagnosis and prenatal diagnosis
JP2020529219A (en) Methods and kits for constructing sequencing libraries for use in the detection of chromosomal copy number variation
AU2016102398A4 (en) Method for enriching target nucleic acid sequence from nucleic acid sample
EP1047794A2 (en) Method for the detection or nucleic acid of nucleic acid sequences
WO2013074632A1 (en) Mismatch nucleotide purification and identification
JPH06209797A (en) Specific gene probe for diagnostic research of candida albicans
KR20130107881A (en) A multiplex kit for simultaneously amplifying and detecting target sequence from ct and ng and a method for determining using the same
WO2012062202A1 (en) Cot-1 dna, preparation method and use thereof
KR100785011B1 (en) Method for increasing the specificity of nucleic acid hybridization using zwitterionic compounds
JP2002514909A (en) Compositions and methods for enhancing hybridization specificity
Schumacher et al. Application of microarrays for DNA methylation profiling
JP2008099556A (en) Method of quickly extracting, purifying and cloning target gene by using closed circular double-stranded dna
WO2016015194A1 (en) Glaucoma screening kit
Taiwo Overview of Molecular Diagnosis in Medical Microbiology
RU2258741C1 (en) Method for detection of microorganisms using isothermic amplification reaction - epa (exonuclease-polymerase amplification)
JP2001522588A (en) Methods and compositions for detecting specific nucleotide sequences

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839476

Country of ref document: EP

Kind code of ref document: A1