WO2012062095A1 - Method and apparatus for detecting multi-antenna ranging - Google Patents

Method and apparatus for detecting multi-antenna ranging Download PDF

Info

Publication number
WO2012062095A1
WO2012062095A1 PCT/CN2011/074130 CN2011074130W WO2012062095A1 WO 2012062095 A1 WO2012062095 A1 WO 2012062095A1 CN 2011074130 W CN2011074130 W CN 2011074130W WO 2012062095 A1 WO2012062095 A1 WO 2012062095A1
Authority
WO
WIPO (PCT)
Prior art keywords
ranging
carrier
code
data
point
Prior art date
Application number
PCT/CN2011/074130
Other languages
French (fr)
Chinese (zh)
Inventor
李鹏飞
鲁志兵
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012062095A1 publication Critical patent/WO2012062095A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Abstract

A method and an apparatus for detecting multi-antenna ranging are disclosed in the present invention. The method includes the following steps: extracting plurality of carrier pairs from ranging carriers according to different carrier intervals(S302); doing conjugate multiplication on given ranging carrier data corresponding to each carrier pair of the plurality of carrier pairs to obtain single-antenna difference data, and, according to the number of enabled antennae, combining the signal-antenna difference data to generate multi-antenna difference data(S304); doing point-to-point multiplication on the multi-antenna difference data and difference data of local user codes, and according to the result of the point-to-point multiplication, seeking out an average value of power and a peak value of power of the code word of current code(S306). With the method and apparatus of the present invention, the veracity and performance of a system are enhanced and the user experience is improved.

Description

多天线测 if巨的检测方法^置 技术领域 本发明涉及啟波接入全球互通 ( Worldwide Interoperability for Microwave Access , 简称为 WiMAX ) 系统, 尤其涉及一种多天线测距( Ranging ) 的检测 方法及装置。 背景技术  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Worldwide Interoperability for Microwave Access (WiMAX) system, and more particularly to a multi-antenna ranging (Ranging) detection method and apparatus. . Background technique
WiMAX是一种基于标准的宽带无线接入技术, 能够提供面向互联网的高 速连接, 其数据传输距离最远可达 50km。 随着技术标准的发展, WiMAX逐步 实现宽带业务的移动化, 提供固定、 移动、 便携形式的无线宽带连接, 使城区 以及城市之间形成"城城地带 (MetroZones)" , 为用户提供便携的室外宽带无线 接入。 WiMAX is a standards-based broadband wireless access technology that provides high-speed connectivity to the Internet with data transmission distances up to 50km. With the development of technical standards, WiMAX gradually realizes the mobilization of broadband services, providing wireless broadband connections in fixed, mobile and portable forms, enabling the formation of "MetroZones" between urban areas and cities, providing users with portable outdoor. Broadband wireless access.
Ranging是移动台( Mobile Station,简称为 MS ,即,用户终端)和基站( Base Station, 简称为 BS ) 之间用于保证链路通信的一组操作。 WiMAX 系统中的 Ranging的主要功能有: 网络初始接入、 网络再接入、 切换过程中的关联处理、 频偏估计调整、 定时估计、 功率控制调整、 登记等。 在 WiMAX 系统中, 在上行分配的 Ranging子信道上发送 Ranging码, Ranging码釆用二相相移键控( Binary Phase Shift Keying, 简称为 BPSK )方式 调制在 Ranging信道的子载波上面, 每个子载波调制一个比特, 每个比特以子 载波频率递增的次序映射到相应的子载波上, 即, 最低索引的比特调制在最低 频率索引的子载波上, 最高索引的比特调制在最高索引的子载波上。 其中, Ranging信道可以由一组或者多组 6个相邻的子信道构成, Ranging可以分为初 始 Ranging和周期 Ranging。 图 1是根据相关技术的初始 Ranging符号的结构示意图, 如图 1所示, 初 始 Ranging用于用户站 ( Subscriber Station, 简称为 SS )在开机进行初始接入、 失同步以及硬切换后开始的 Ranging处理。 其中, 一个初始 Ranging的发送可 以在两个连续的符号间完成, 每个符号期间, Ranging 信道上发送相同的 Ranging 码, 且两个符号之间保持连续的相位。 图 2 是才艮据相关技术的周期 Ranging符号的结构示意图, 如图 2所示, 周期 Ranging用于 SS进行周期性的 参数校正, 其中, 调整参数包括时间、 频率和功率。 在相关技术中, Ranging的检测技术有: Ranging is a set of operations for ensuring link communication between a mobile station (Mobile Station, MS for short) and a base station (BS). The main functions of Ranging in WiMAX system are: network initial access, network re-access, association processing during handover, frequency offset estimation adjustment, timing estimation, power control adjustment, registration, etc. In the WiMAX system, the Ranging code is transmitted on the uplink allocated Ranging subchannel, and the Ranging code is modulated on the subcarrier of the Ranging channel by using Binary Phase Shift Keying (BPSK), each subcarrier. Modulating one bit, each bit is mapped to the corresponding subcarrier in an order of increasing subcarrier frequency, that is, the lowest indexed bit is modulated on the lowest frequency indexed subcarrier, and the highest indexed bit is modulated on the highest indexed subcarrier. . The Ranging channel may be composed of one or more groups of 6 adjacent subchannels, and the Ranging may be divided into an initial Ranging and a periodic Ranging. 1 is a schematic structural diagram of an initial Ranging symbol according to the related art. As shown in FIG. 1, an initial Ranging is used for a user station (Subscriber Station, SS for short) to start Ranging after initial access, out-of-synchronization, and hard handover. deal with. Wherein, an initial Ranging transmission can be completed between two consecutive symbols, and each symbol period, the same Ranging code is transmitted on the Ranging channel, and a continuous phase is maintained between the two symbols. FIG. 2 is a schematic structural diagram of a periodic Ranging symbol according to the related art. As shown in FIG. 2, a period Ranging is used for SS to perform periodic parameter correction, wherein the adjustment parameters include time, frequency, and power. In the related art, Ranging's detection technologies include:
( 1 ) 时域相关法: 将频域中的码变换到时域中, 与接收到的时域信号进 行码片的滑动相关计算, 即: power (j) = max( Σ (" + /) (/) ) 其中, .(/)(/ = 0, 1, 2, . 为第 个码变换到时域之后的样点, 为接收 到的时域信号, ρ为可能发送的码字个数, 为信号长度, powerij ^ j 个码的功率。 若求出的峰值功率大于阈值, 则认为有 Ranging码被检出。 (1) Time domain correlation method: The code in the frequency domain is transformed into the time domain, and the sliding correlation calculation is performed on the chip with the received time domain signal, namely: power (j) = max( Σ (" + /) (/) ) where , .(/)(/ = 0, 1, 2, . is the sample after the first code is transformed into the time domain, and is the received time domain signal, ρ is the number of possible code words. , is the power of the signal length, powerij ^ j codes. If the peak power obtained is greater than the threshold, it is considered that the Ranging code is detected.
( 2 ) 频域相关法: 将接收到的数据先进行 FFT变换到频域, 然后从中取 出 Ranging子信道中所有载波的值和所有可能的用户码进行相关运算, 之后进 行 IFFT变换, 即: (2) Frequency domain correlation method: The received data is first FFT-transformed into the frequency domain, and then the values of all carriers in the Ranging subchannel are taken out and all possible user codes are correlated, and then IFFT is performed, that is:
M =∑CkYk exp(2^(m - τ0 )ΙΝ) 其中, (^为当前码向量的第 A个值, 为某一个 Ranging子信道可能的码 向量在第 A个载波上的频域发送信号, N为符号长度, M为当前码字 C 和 Ranging载波数据 Y相关后的结果, r。为时间延时。 再进行峰值功率和均值功 率的求解, 若峰均比 (峰值功率和均值功率的比值) 大于一定的阈值, 则认为 有 Ranging码被检出。 但是,在上述的相关技术中, 时域相关法复杂度过高,需要 JxNxNxT N 为符号长度, P为码字个数, Γ为天线数) 次复数乘运算。 频域相关法抗千扰 能力较差,且由于该算法釆用直接相加的方式进行天线合并,算法性能也较差, 此外, 其可以支持的覆盖范围仅限于 20公里以内, 不能满足当下用户的覆盖 需求。 发明内容 本发明的主要目的在于提供一种多天线 Ranging的检测方案, 以至少解决 上述相关技术中 Ranging检测方法复杂度高以及抗千扰能力差的问题之一。 为了实现上述目的, 居本发明的一个方面, 提供了一种多天线测距 Ranging的检测方法。 才艮据本发明的多天线测距 Ranging的检测方法包括以下步骤: 根据不同的 载波间隔从 Ranging载波中提取多个载波对; 将与多个载波对中每个载波对对 应的特定的 Ranging载波数据进行共轭相乘, 得到单天线差分数据, 并根据使 能天线的个数将单天线差分数据进行合并, 生成多天线差分数据; 以及将多天 线差分数据和本地用户码差分数据进行点对点相乘, 并才艮据点对点相乘后的结 果求取当前码码字的均值功率和峰值功率。 优选地, 将与多个载波对中每个载波对对应的特定的 Ranging载波数据进 行共轭相乘之前,该方法还包括:按照不同符号的分配权值对接收到的 Ranging 载波数据进行合并, 生成特定的 Ranging载波数据。 优选地, 与接收到的 Ranging载波数据对应的初始 Ranging码釆用 4个符 号发送。 优选地,在载波间隔为 Tile间隔的情况下,根据不同的载波间隔从 Ranging 载波中提取多个载波对包括: 根据不同的 Tile间隔从 Ranging载波中提取相应 的 Tile对, 再由 Tile对得到多个载波对。 优选地, 居点对点相乘后的结果求取当前码码字的均值功率和峰值功率 包括: 将点对点相乘乘积中具有相同载波间隔的值合并后经过快速傅里叶变换 FFT , 并根据 FFT运算后的结果求取当前码码字的均值功率和峰值功率。 优选地, 居点对点相乘后的结果求取当前码码字的均值功率和峰值功率 之后, 该方法还包括: 在确定当前码码字的峰均比超过第一阈值的情况下, 判 断峰值功率与当前 Ranging区域中除当前码之外的所有本地码的峰值功率和的 比值是否超过第二阈值;若超过第二阈值,则判定当前码为需要检测的 Ranging 码, 其中, 峰均比为当前码码字的峰值功率与当前码码字的均值功率的比值。 优选地, 判定当前码为需要检测的 Ranging码之后, 该方法还包括: 按照 不同符号下接收到的 Ranging载波数据的峰值功率的比例关系, 调整与当前码 码字对应的峰值位置。 为了实现上述目的, 根据本发明的另一个方面, 还提供了一种多天线测距 Ranging的检测装置。 根据本发明的多天线测距 Ranging的检测装置, 包括: 提取模块, 设置为 根据不同的载波间隔从 Ranging载波中提取多个载波对; 差分模块, 设置为将 与多个载波对中每个载波对对应的特定的 Ranging载波数据进行共轭相乘, 得 到单天线差分数据, 并根据使能天线的个数将单天线差分数据进行合并, 生成 多天线差分数据; 以及求解功率模块, 设置为将多天线差分数据和本地用户码 差分数据进行点对点相乘, 并才艮据点对点相乘后的结果求取当前码码字的均值 功率和峰值功率。 优选地, 差分模块包括: 生成单元, 设置为按照不同符号的分配权值对接 收到的 Ranging载波数据进行合并, 生成特定的 Ranging载波数据。 优选地, 提取模块还设置为根据不同的 Tile间隔从 Ranging载波中提取相 应的 Tile对, 再由 Tile对得到多个载波对。 通过本发明, 釆用多天线差分数据和本地用户码差分数据点对点相乘的方 式, 解决了相关技术中 Ranging检测方法复杂度高以及抗千扰能力差的问题, 增强了系统的准确性和性能, 提高了用户体验。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不 当限定。 在附图中: 图 1是根据相关技术的初始 Ranging符号的结构示意图; 图 2是根据相关技术的周期 Ranging符号的结构示意图; 图 3是根据本发明实施例的多天线 Ranging的检测方法的流程图; 图 4是根据本发明实施例的多天线 Ranging的检测装置的结构框图; 图 5是根据本发明优选实施例的多天线 Ranging的检测装置的结构框图; 图 6是 居本发明优选实施例的多天线差分原理的示意图; 图 7是根据本发明优选实施例的载波 Tile的划分、 Tile对及 Tile间隔的提 取的示意图; 图 8是才艮据本发明优选实施例的 Tile内部的载波间隔提取的示意图; 以及 图 9是根据本发明优选实施例的 Ranging超远覆盖算法实现的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不 冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在本实施例中, 根据本发明的实施例, 提供了一种多天线 Ranging的检测 方法, 图 3是根据本发明实施例的多天线 Ranging的检测方法的流程图, 如图 3所示, 该方法包括以下步 4聚: 步骤 S302, 根据不同的载波间隔从 Ranging载波中提取多个载波对; 步骤 S304 ,将与多个载波对中每个载波对对应的特定的 Ranging载波数据 进行共轭相乘, 得到单天线差分数据, 并根据使能天线的个数将单天线差分数 据进行合并, 生成多天线差分数据; 以及 步骤 S306, 将多天线差分数据和本地用户码差分数据进行点对点相乘, 并 才艮据点对点相乘后的结果求取当前码码字的均值功率和峰值功率。 通过上述步骤, 釆用多天线差分数据和本地用户码差分数据点对点相乘的 方式,解决了相关技术中 Ranging检测方法复杂度高以及抗千扰能力差的问题, 增强了系统的准确性和性能, 提高了用户体验。 例如, 本地用户码差分数据可以是本地用户码才艮据多个载波对生成的差分 数据。 优选地, 在步骤 S304 中, 将与多个载波对中每个载波对对应的特定的M = ∑C k Y k exp(2^(m - τ 0 )ΙΝ) where (^ is the A value of the current code vector, which is the possible code vector of a certain Ranging subchannel on the Ath carrier The signal is transmitted in the frequency domain, N is the symbol length, M is the result of the correlation between the current codeword C and the Ranging carrier data Y, and r is the time delay. Then the peak power and the mean power are solved, if the peak-to-average ratio (peak power) If the ratio of the average power is greater than a certain threshold, then the Ranging code is considered to be detected. However, in the related art described above, the time domain correlation method is too complex, and JxNxNxT N is required to be the symbol length, and P is the code word. Number, Γ is the number of antennas) Submultiple multiplication. The frequency domain correlation method has poor anti-interference ability, and the algorithm performs poorly because the algorithm uses direct addition to perform antenna merging. In addition, the coverage that can be supported is limited to 20 km or less, and cannot satisfy the current users. Coverage needs. SUMMARY OF THE INVENTION A primary object of the present invention is to provide a multi-antenna Ranging detection scheme to at least solve one of the problems of high complexity and poor anti-interference capability of the Ranging detection method in the above related art. In order to achieve the above object, in one aspect of the present invention, a multi-antenna ranging Ranging detection method is provided. The method for detecting multi-antenna ranging Ranging according to the present invention comprises the steps of: extracting a plurality of carrier pairs from a Ranging carrier according to different carrier intervals; and selecting a specific Ranged carrier corresponding to each carrier pair of the plurality of carrier pairs The data is conjugate multiplied to obtain single antenna differential data, and the single antenna differential data is combined according to the number of enabled antennas to generate multi-antenna differential data; and the multi-antenna differential data and the local user code differential data are point-to-point. Multiply, and then calculate the mean power and peak power of the current codeword by multiplying the points by the point. Preferably, before the conjugate multiplication of the specific Ranged carrier data corresponding to each of the plurality of carrier pairs, the method further comprises: combining the received Ranging carrier data according to the assigned weights of the different symbols, Generate specific Ranging carrier data. Preferably, the initial Ranging code corresponding to the received Ranging carrier data is transmitted with 4 symbols. Preferably, in the case that the carrier spacing is a Tile interval, extracting multiple carrier pairs from the Ranging carrier according to different carrier intervals includes: extracting corresponding Tile pairs from the Ranging carrier according to different Tile intervals, and then obtaining more by the Tile pair. Carrier pairs. Preferably, the result of multiplying the point-to-point multiplier to obtain the mean power and the peak power of the current code code word comprises: combining the values of the same carrier interval in the point-to-point multiplication product, passing the fast Fourier transform FFT, and performing the FFT operation according to the FFT operation The resulting result is obtained by taking the mean power and peak power of the current codeword. Preferably, after the result of multiplying the point-to-point multiplier to obtain the mean power and the peak power of the current codeword, the method further includes: determining the peak power in a case where determining that the peak-to-average ratio of the current codeword exceeds the first threshold Whether the ratio of the peak power sum of all the local codes except the current code in the current Ranging area exceeds a second threshold; if the second threshold is exceeded, determining that the current code is a Ranging code to be detected, wherein the peak-to-average ratio is current The ratio of the peak power of the codeword word to the mean power of the current codeword word. Preferably, after determining that the current code is a Ranging code to be detected, the method further comprises: adjusting a peak position corresponding to the current code code word according to a proportional relationship of peak power of the received Ranging carrier data under different symbols. In order to achieve the above object, according to another aspect of the present invention, a multi-antenna ranging Ranging detecting apparatus is also provided. The apparatus for detecting multi-antenna ranging Ranging according to the present invention includes: an extracting module configured to extract a plurality of carrier pairs from a Ranging carrier according to different carrier intervals; and a difference module configured to pair each carrier with the plurality of carriers Perform conjugate multiplication on the corresponding specific Ranging carrier data to obtain single antenna differential data, and combine the single antenna differential data according to the number of enabled antennas to generate multi-antenna differential data; and solve the power module, set to The multi-antenna differential data and the local user code differential data are multiplied point-to-point, and the average power and peak power of the current code code word are obtained by multiplying the result of the point-to-point multiplication. Preferably, the difference module comprises: a generating unit, configured to combine the received Ranging carrier data according to the assigned weights of different symbols to generate specific Ranging carrier data. Preferably, the extraction module is further configured to extract corresponding pair pairs from the Ranging carrier according to different Tile intervals, and then obtain multiple carrier pairs by the Tile pair. Through the invention, the multi-antenna differential data and the local user code differential data point-to-point multiplication method are used to solve the problem that the Ranging detection method in the related art has high complexity and poor anti-interference ability, and the system accuracy and performance are enhanced. , improved user experience. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the drawings: FIG. 1 is a schematic structural diagram of an initial Ranging symbol according to the related art; FIG. 2 is a schematic structural diagram of a periodic Ranging symbol according to the related art; FIG. 3 is a flow chart of a multi-antenna Ranging detecting method according to an embodiment of the present invention; Figure 4 is a block diagram showing the structure of a multi-antenna Ranging detecting device according to an embodiment of the present invention; Figure 5 is a block diagram showing a multi-antenna Ranging detecting device according to a preferred embodiment of the present invention; Figure 6 is a preferred embodiment of the present invention. FIG. 7 is a schematic diagram of partitioning of a tile tile, tile pairing, and extraction of a tile interval according to a preferred embodiment of the present invention; FIG. 8 is a schematic diagram of carrier spacing extraction within a tile according to a preferred embodiment of the present invention; and FIG. 9 is a flow diagram of an implementation of a Ranging hyper-coverage algorithm in accordance with a preferred embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. In this embodiment, according to an embodiment of the present invention, a multi-antenna Ranging detection method is provided, and FIG. 3 is a flowchart of a multi-antenna Ranging detection method according to an embodiment of the present invention. The method includes the following steps: Step S302: Extract multiple carrier pairs from the Ranging carrier according to different carrier intervals; Step S304, perform conjugate phase with specific Ranged carrier data corresponding to each carrier pair of the multiple carrier pairs Multiplying, obtaining single antenna differential data, and combining the single antenna differential data according to the number of enabled antennas to generate multi-antenna differential data; and step S306, multiplying the multi-antenna differential data and the local user code differential data by point-to-point multiplication, Then, the average power and peak power of the current code code word are obtained by the result of multiplying the points by the point. Through the above steps, multi-antenna differential data and local user code differential data point-to-point multiplication are used to solve the problem that the Ranging detection method has high complexity and poor anti-interference ability in the related art, and the system accuracy and performance are enhanced. , improved user experience. For example, the local user code differential data may be a local user code to generate differential data based on multiple carrier pairs. Preferably, in step S304, a specific one corresponding to each carrier pair of the plurality of carrier pairs is to be
Ranging 载波数据进行共轭相乘之前, 可以按照不同符号的分配权值对接收到 的 Ranging载波数据进行合并, 生成特定的 Ranging载波数据。 在具体实施过程中, 釆用多符号 Ranging发送时, Ranging检测时只用到 一个符号的信息量, 即, 通过不同符号的权值分配, 对多符号数据进行加权合 并。例如,釆用两符号 Ranging发送时,符号 1和符号 2的载波数据分别为 和 , 两符号权值分别为 和 A , 加权后合并后的用于 Ranging处理的符号数据 (即, 特定的 Ranging 载波数据) 为: = ^ + ^2。 这样综合了多符号的信 息, 提高了 Ranging数据的准确性和算法的检测性能。 优选地, 与接收到的 Ranging载波数据对应的初始 Ranging码可以釆用 4 个符号发送。 例如, 初始 Ranging釆用 4符号发送, 可以实现 40公里的超远覆盖, 即, 当有超远覆盖需求时, 初始 Ranging可以釆用 4符号发送。 这样, 可以提高基 站的覆盖范围和资源的利用率。 优选地, 在步骤 S302中, 在载波间隔为块(Tile ) 间隔的情况下, 可以根 据不同的 Tile间隔从 Ranging载波中提取相应的 Tile对,再由 Tile对得到多个 载波对。 该方法通过 Tile对的提取完成载波对的提取, 减少了系统的运算量, 提高了系统的运算效率, 降低了算法的复杂度。 优选地, 在步骤 S306 中, 可以将点对点相乘乘积中具有相同载波间隔的 值合并后经过快速傅里叶变换 FFT,并才艮据 FFT运算后的结果求取当前码码字 的均值功率和峰值功率。 该方法可以提高算法的精确度。 优选地, 在步骤 S306之后, 在确定当前码码字的峰均比超过第一阈值的 情况下, 判断峰值功率与当前 Ranging区域中除所述当前码之外的所有本地码 的峰值功率和的比值是否超过第二阈值; 若超过第二阈值, 则判定当前码为需 要检测的 Ranging码, 其中, 峰均比为当前码码字的峰值功率与当前码码字的 均值功率的比值。 该方法通过两次阈值比较, 提高了码字的检测率。 优选地, 在步骤 S306之后, 可以按照不同符号下接收到的 Ranging载波 数据的峰值功率的比例关系,调整与当前码码字对应的峰值位置(即,时偏值)。 该方法可以使时偏值更精准, 提高了系统的性能。 例如, 可以对当前码码字对应的峰值位置进行调整, 从而得出当前检测出 的 Ranging码的时偏值。 需要说明的是, 在具体实施过程中, 可以结合上述多个优选的实施例, 例 如, 将与多个载波对中每个载波对对应的特定的 Ranging载波数据进行共轭相 乘, 形成单天线的载波数据差分后数据, 并根据使能天线个数, 对单天线的载 波数据差分后数据进行多天线合并,生成合并后的载波数据差分后数据; 同样, 根据多个载波对中每个载波对对应的当前用户码的数据进行共轭相乘, 形成用 户码差分后数据, 之后将合并后的载波数据差分后数据和用户码差分后数据进 行点对点相乘, 生成需要的差分处理数据; 再将具有相同载波间隔的载波对的 差分处理数据进行累加, 生成 N点差分处理后序列, 其中, N为载波间隔的个 数; 最后, 对生成的 N点差分后序列进行 FFT变换, 并当前码字的均值功率 和峰值功率。 对应于上述的方法, 在本实施例中还提供了一种多天线 Ranging的检测装 置, 图 4是根据本发明实施例的多天线 Ranging的检测装置的结构框图, 如图 4所示, 该装置包括: 提取模块 42、 差分模块 44和求解功率模块 46 , 下面对 该结构进行详细说明。 提取模块 42 ,设置为根据不同的载波间隔从 Ranging载波中提取多个载波 对; 差分模块 44 , 耦合至提取模块 42 , 设置为将与多个载波对中每个载波对 对应的特定的 Ranging载波数据进行共轭相乘, 得到单天线差分数据, 并根据 使能天线的个数将单天线差分数据进行合并, 生成多天线差分数据; 以及求解 功率模块 46 , 耦合至差分模块 44 , 设置为将多天线差分数据和本地用户码差 分数据进行点对点相乘, 并 居所述点对点相乘后的结果求取当前码码字的均 值功率和峰值功率。 通过上述装置, 釆用多天线差分数据和本地用户码差分数据点对点相乘的 方式,解决了相关技术中 Ranging检测方法复杂度高以及抗千扰能力差的问题, 增强了系统的准确性和性能, 提高了用户体验。 图 5是才艮据本发明优选实施例的多天线 Ranging的检测装置的结构框图, 如图 5所示, 差分模块 44包括: 生成单元 442 , 设置为按照不同符号的分配权 值对接收到的 Ranging载波数据进行合并, 生成特定的 Ranging载波数据。 优选地, 提取模块 42还设置为根据不同的 Tile间隔从 Ranging载波中提 取相应的 Tile对,再由 Tile对得到多个载波对。该方法可以减少系统的运算量。 优选地, 该装置还包括: 码字检测模块 48 , 耦合至求解功率模块 46 , 设 置为当前 Ranging码字的检出和时偏修正。 在具体实施过程中, 为了检测出当前 Ranging码字可以设置两个阈值。 例 如, 在确定当前码码字的峰均比超过第一阈值的情况下, 码字检测模块 48 判 断当前码码字的峰值功率与当前 Ranging区域中除所述当前码之外的所有本地 码的峰值功率和的比值是否超过第二阈值; 若超过第二阈值, 则判定当前码为 需要检测的 Ranging码, 其中, 峰均比为当前码码字的峰值功率与当前码码字 的均值功率的比值。 该方法通过两次阈值比较, 提高了码字的检测率。 优选地, 码字检测模块 48还设置为按照不同符号下接收到的 Ranging载 波数据的峰值功率的比例关系, 调整与当前码码字对应的峰值位置 (即, 时偏 值)。 该方法可以使时偏值更精准, 提高了系统的性能。 以下各个实施例结合了上述优选的实施方式。 实施例一 在本实施例中, 提供了一种 WiMAX系统中多天线测距的检测方法, 该方 法包括如下步 4聚: 步骤 1 , 初始 Ranging釆用 4符号发送, 以实现 40公里的超远覆盖。 因为 Α = [ / 1 1 ·2Μ/^Χ3 Χ 1 ()^ / ^ / 2 , 其中, ^为 Ranging检测中的时偏 定位, D'为根据当前时偏计算出的终端和基站间的距离, 所以, 由该公式可以 看出, 基站的覆盖范围和 Ranging码支持的时偏有关。 例如, 现有的算法中通 常釆用的两符号发送, 当带宽为 10M时, 可支持的时偏范围为 (-511 , 1536 ), 才艮据如上公式计算可知, 当前算法最多可以支持 20公里覆盖范围。 而本发明 釆用了初始 Ranging的 4符号发送,则最大可支持时偏范围可以为( -511 , 3584 ) , 同样, 由该公式可知, 本发明实施例中算法的覆盖范围可扩展至 40公里, 从 而实现基站 40公里的超远覆盖。 同时, 4符号的 Ranging码发送, 有向下兼容 特性, 兼顾了 20公里和 40公里覆盖的基站功能。 在没有超远覆盖需求时, 会 只对 Ranging的前两个符号信息进行 20公里的覆盖需求, 当有超远覆盖需求 时, 会继续对后两个符号进行处理, 这种动态处理方法, 增加了算法的灵活性, 避免了非超远覆盖时基站过多的功率损耗。 步骤 2 , 在充分考虑了信道特性的基础上, 单天线数据的差分处理和多天 线合并, 可以增强算法的抗千扰能力。 图 6是根据本发明优选实施例的多天线 差分原理的示意图。 在具体实施过程中, 可以^ _定 为某一个 Ranging子信道可能的码向量在 第 k个载波上的频域发送信号, J ^是第 k个载波的信道特性(即, 信道的频率 响应), 时间延迟为 τ° (时间延迟 τ°对应到频域上是一个相位的旋转), 那么第 k 个载波上接收到的频域信号为 ^^^^^^^^^)。 同理, 为某一个 Ranging子信道可能的码向量在第 k+n个载波上的频域发送信号 (其中, n为相 应的载波间隔), 是第 k+n个载波的信道特性 (即, 信道的频率响应), 时 间 延迟 为 Τι , 那 么 第 k+n 个 载 波上接 收到 的 频 域信 号 为 Yk+nHk+n e p(-j2^k + η)Α/τ,;)。 1^1 = 1 , 载波上的 Ranging 信息共轭为Before the Ranging carrier data is conjugate multiplied, the received Ranging carrier data may be combined according to the assigned weights of different symbols to generate specific Ranging carrier data. In the specific implementation process, when multi-symbol Ranging is used for transmission, Ranging detects only one symbol of information, that is, weights the multi-symbol data by weight assignment of different symbols. For example, when transmitting with two symbols Ranging, the carrier data of symbol 1 and symbol 2 are respectively sum, and the weights of the two symbols are respectively sum A, and the weighted and combined symbol data for Ranging processing. (ie, specific Ranging carrier data) is: = ^ + ^ 2 . This integrates the multi-symbol information, improving the accuracy of the Ranging data and the detection performance of the algorithm. Preferably, the initial Ranging code corresponding to the received Ranging carrier data can be transmitted with 4 symbols. For example, the initial Ranging 釆 is transmitted with 4 symbols, which can achieve ultra-long coverage of 40 kilometers, that is, when there is a need for ultra-long coverage, the initial Ranging can be transmitted with 4 symbols. In this way, the coverage of the base station and the utilization of resources can be improved. Preferably, in step S302, in the case that the carrier spacing is a block (Tile) interval, the corresponding Tile pair may be extracted from the Ranging carrier according to different Tile intervals, and then multiple pairs of carriers are obtained by the Tile pair. The method completes the carrier pair extraction by extracting the pair of pairs, reduces the computational complexity of the system, improves the computational efficiency of the system, and reduces the complexity of the algorithm. Preferably, in step S306, the values of the same carrier interval in the point-to-point multiplication product may be combined and subjected to fast Fourier transform FFT, and the average power of the current code code word is obtained according to the result of the FFT operation. Peak power. This method can improve the accuracy of the algorithm. Preferably, after step S306, in a case where it is determined that the peak-to-average ratio of the current code codeword exceeds the first threshold, determining the peak power and the peak power sum of all the local codes except the current code in the current Ranging region Whether the ratio exceeds the second threshold; if the second threshold is exceeded, determining that the current code is a Ranging code to be detected, wherein the peak-to-average ratio is a ratio of the peak power of the current codeword to the mean power of the current codeword. The method improves the detection rate of the codeword by two threshold comparisons. Preferably, after step S306, the peak position corresponding to the current code code word (ie, the time offset value) may be adjusted according to the proportional relationship of the peak power of the Ranging carrier data received under different symbols. This method can make the time offset value more accurate and improve the performance of the system. For example, the peak position corresponding to the current code code word can be adjusted to obtain the time offset value of the currently detected Ranging code. It should be noted that, in a specific implementation process, the foregoing multiple preferred embodiments may be combined, for example, conjugate multiplied with specific Ranging carrier data corresponding to each carrier pair of multiple carrier pairs to form a single antenna. The carrier data is differentially differentiated data, and according to the number of enabled antennas, multi-antenna combining is performed on the difference data of the single-antenna carrier data to generate the combined carrier data differential data; likewise, according to each carrier of the multiple carrier pairs Conjugating and multiplying the data of the corresponding current user code to form After the difference code between the user code and the difference between the combined carrier data and the user code, the data is subjected to point-to-point multiplication to generate the required differential processing data; and the differential processing data of the carrier pair having the same carrier spacing is accumulated. A sequence of N-point differential processing is generated, where N is the number of carrier intervals; finally, the generated N-point differential sequence is subjected to FFT transformation, and the mean power and peak power of the current codeword. Corresponding to the above method, in the embodiment, a multi-antenna Ranging detecting device is further provided, and FIG. 4 is a structural block diagram of a multi-antenna Ranging detecting device according to an embodiment of the present invention. As shown in FIG. The method includes: an extraction module 42, a difference module 44, and a solution power module 46, which will be described in detail below. The extracting module 42 is configured to extract a plurality of carrier pairs from the Ranging carrier according to different carrier intervals; the difference module 44 is coupled to the extracting module 42 and configured to set a specific Ranging carrier corresponding to each carrier pair of the plurality of carrier pairs The data is conjugate multiplied to obtain single antenna differential data, and the single antenna differential data is combined according to the number of enabled antennas to generate multi-antenna differential data; and the power module 46 is solved and coupled to the difference module 44, which is set to be The multi-antenna differential data and the local user code differential data are multiplied point-to-point, and the average power and peak power of the current code code word are obtained by multiplying the point-to-point multiplication result. Through the above device, the method of multi-antenna differential data and local user code differential data point multiplication is used to solve the problem that the Ranging detection method in the related art has high complexity and poor anti-interference ability, and the system accuracy and performance are enhanced. , improved user experience. FIG. 5 is a structural block diagram of a multi-antenna Ranging detecting apparatus according to a preferred embodiment of the present invention. As shown in FIG. 5, the difference module 44 includes: a generating unit 442 configured to receive the received weights according to different symbols. Ranging carrier data is combined to generate specific Ranging carrier data. Preferably, the extraction module 42 is further configured to extract corresponding pair pairs from the Ranging carrier according to different Tile intervals, and then obtain multiple carrier pairs by the Tile pair. This method can reduce the amount of computation of the system. Preferably, the apparatus further comprises: a codeword detection module 48 coupled to the solution power module 46, configured to detect and time offset correction of the current Ranging codeword. In the specific implementation process, two thresholds may be set in order to detect the current Ranging codeword. For example, in a case where it is determined that the peak-to-average ratio of the current codeword exceeds the first threshold, the codeword detecting module 48 determines the peak power of the current codeword and all the local codes except the current code in the current Ranging region. Whether the ratio of the peak power sum exceeds the second threshold; if the second threshold is exceeded, the current code is determined to be The Ranging code to be detected, wherein the peak-to-average ratio is the ratio of the peak power of the current codeword word to the mean power of the current codeword word. The method improves the detection rate of the codeword by two threshold comparisons. Preferably, the codeword detection module 48 is further configured to adjust the peak position (ie, the time offset value) corresponding to the current codeword word according to the proportional relationship of the peak power of the Ranging carrier data received under different symbols. This method can make the time offset value more accurate and improve the performance of the system. The following various embodiments incorporate the above-described preferred embodiments. Embodiment 1 In this embodiment, a method for detecting multi-antenna ranging in a WiMAX system is provided. The method includes the following steps: Step 1: Initial Ranging is transmitted with 4 symbols to achieve a super long distance of 40 kilometers. cover. Because Α = [ / 1 1 · 2Μ / ^ Χ 3 Χ 1 () ^ / ^ / 2 , where ^ is the time-biased position in Ranging detection, and D ' is the distance between the terminal and the base station calculated based on the current time offset Therefore, it can be seen from the formula that the coverage of the base station is related to the time offset supported by the Ranging code. For example, in the existing algorithm, two symbols are usually used for transmission. When the bandwidth is 10M, the supported time offset range is (-511, 1536). According to the above formula, the current algorithm can support up to 20 kilometers. Coverage. However, the present invention uses the 4-symbol transmission of the initial Ranging, and the maximum supportable time offset range can be (-511, 3584). Similarly, the algorithm can be extended to 40 kilometers in the embodiment of the present invention. Thus, the super-long coverage of the base station of 40 kilometers is achieved. At the same time, the 4-symbol Ranging code is transmitted with backward compatibility, taking into account the base station functions of 20 km and 40 km coverage. In the absence of far-reaching coverage requirements, only the first two symbols of Ranging will be covered by 20 km. When there is a need for far-reaching coverage, the latter two symbols will continue to be processed. This dynamic processing method increases The flexibility of the algorithm avoids excessive power loss in the base station when non-super-range coverage. Step 2: On the basis of fully considering the channel characteristics, the differential processing of the single antenna data and the multi-antenna combining can enhance the anti-interference ability of the algorithm. 6 is a schematic diagram of a multi-antenna difference principle in accordance with a preferred embodiment of the present invention. In a specific implementation process, a possible code vector of a certain Ranging subchannel may be used to transmit a signal in a frequency domain on the kth carrier, and J ^ is a channel characteristic of the kth carrier (ie, a frequency response of the channel). , the time delay is τ ° (the time delay τ ° corresponds to a phase rotation in the frequency domain), then the first The frequency domain signal received on k carriers is ^^^^^^^^^). Similarly, for a possible Ranging subchannel, the possible code vector transmits a signal in the frequency domain on the k+nth carrier (where n is the corresponding carrier interval), which is the channel characteristic of the k+nth carrier (ie, The frequency response of the channel, the time delay is Τι , then the frequency domain signal received on the k+nth carrier is Y k+n H k+n ep(-j2^k + η)Α/τ, ;). 1^1 = 1 , the Ranging information on the carrier is conjugated to
YkHk O W ) * Yk+nHk+n τλ )) , 由上式可以看出,计算的结
Figure imgf000011_0001
果可分为三部分,其中, - η )) 为接收到的 Ranging信息共轭相乘值, HkHk+n为相邻载波信道特性的共轭值, 由于 1^1 = 1 , 所以, 不同载波上的信道特性只体现在虚部, 共轭处理抑制了不 同信道的信道特性对 Ranging数据造成的千扰。 由仿真结果显示, 随着天线数 目的增加, 算法性能会得到更大提升。 步骤 3 , 充分利用 WiMAX系统中子信道的 Tile结构特点, 简化了差分法 的提取载波对的方法, 减少了计算量, 提高了算法效率。 以带宽为 10M的系统为例, 在 1024个载波中, Ranging的有效载波只有 144个, 但载波对的提取需要遍历所有载波, 根据统计, 有效计算率不足 1%。 所以, 本实施例中充分利用了 Ranging载波中 Tile内部载波的连续性以及只有 144个有效 Ranging载波的特点, 只对 144个载波进行两两比较。 图 7是根据本发明优选实施例的载波 Tile的划分、 Tile对及 Tile间隔的提 取的示意图, 图 8是根据本发明优选实施例的 Tile内部的载波间隔提取的示意 图,如图 7和 8所示,只对 Ranging有效 Tile的间隔进行比较,根据得到的 Tile 间隔, 完成载波对的提取, 即, 通过设定一定的载波间隔 K, 对 Ranging载波 进行共轭载波对提取。 如图 6所示, 居提取的载波对, 先对每个载波对对应 的 Ranging载波数据进行共轭相乘, 然后再对相同载波间隔的 Tile对结果进行 乘累加。 最后, 对经过差分运算法的单天线数据进行相加合并, 完成多天线合 并处理。 步骤 4 , 多符号 Ranging数据的加权合并, 提高了 Ranging数据的利用率。 在具体实施过程中, 有别于其它算法中单独釆用第二个符号信息进行 Ranging处理的方法, 本实施例 Ranging检测时, 只用到一个符号的信息量, 即, 多符号 Ranging发送时, 通过不同符号的权值分配, 对多符号数据进行加 权合并, 以两符号为例, 设符号 1和符号 2的载波数据分别为 和 ^ , 两符号 权值分别为 和 A , 加权后合并后的用于 Ranging 处理的符号数据为:
Y k H k OW ) * Y k+n H k+n τ λ )) , as can be seen from the above formula, the calculated knot
Figure imgf000011_0001
The result can be divided into three parts, wherein - η )) is the conjugate multiplication value of the received Ranging information, and H k H k +n is the conjugate value of the adjacent carrier channel characteristic, since 1^1 = 1 , The channel characteristics on different carriers are only reflected in the imaginary part, and the conjugate processing suppresses the interference caused by the channel characteristics of different channels to the Ranging data. The simulation results show that as the number of antennas increases, the performance of the algorithm will be improved. Step 3: Make full use of the Tile structure characteristics of the subchannel in the WiMAX system, simplify the method of extracting the carrier pair by the difference method, reduce the calculation amount, and improve the efficiency of the algorithm. Taking a system with a bandwidth of 10M as an example, among 1024 carriers, Ranging has only 144 effective carriers, but the carrier pair extraction needs to traverse all carriers. According to statistics, the effective calculation rate is less than 1%. Therefore, in this embodiment, the continuity of the internal carrier of the Tile in the Ranging carrier and the characteristic of only 144 effective Ranging carriers are fully utilized, and only 144 carriers are compared in pairs. 7 is a schematic diagram of partitioning, tile pairing, and tile spacing extraction of a carrier tile according to a preferred embodiment of the present invention. FIG. 8 is a schematic diagram of carrier spacing extraction inside a tile according to a preferred embodiment of the present invention, as shown in FIGS. 7 and 8. It is shown that only the interval of the Ranging effective Tile is compared, and the carrier pair is extracted according to the obtained Tile interval, that is, the conjugate carrier pair is extracted from the Ranging carrier by setting a certain carrier interval K. As shown in FIG. 6 , the extracted carrier pairs are first conjugate multiplied by the corresponding Ranging carrier data of each carrier, and then the results of the same carrier interval are multiplied and accumulated. Finally, the single antenna data subjected to the difference operation is added and combined to complete the multi-antenna combining process. Step 4: Weighted merging of multi-symbol Ranging data improves the utilization of Ranging data. In the specific implementation process, different from the other algorithms, the second symbol information is used for the Ranging processing. In the Ranging detection, only one symbol information is used, that is, when the multi-symbol Ranging is sent, Add multi-symbol data by weight assignment of different symbols For the combination of weights, taking two symbols as an example, let the carrier data of symbol 1 and symbol 2 be sum and ^ respectively, and the weights of the two symbols are respectively A, and the symbol data used for Ranging processing after weighting is:
S = P^ 。 多符号数据加权合并, 避免了单独使用一个符号上数据的片面 性, 综合多符号信息, 提高 Ranging数据的准确性, 同时提高了算法的检测性 能。 可见, 本实施例中初始 Ringing釆用 4个符号发送, 能够支持大于 40公里 的超远覆盖; 通过差分合并, 提供了一种高性能的天线合并方法, 且考虑了接 收信号的信道冲击响应 而不是简单的作为 1 ; 充分利用 WiMAX系统中 子信道的 Tile结构及子载波上的信息量, 提高了载波数据信息的利用率, 简化 了处理步骤; 经过多符号数据的加权合并, 提高了 Ranging载波数据信息的准 确性。 实施例二 以具体应用为例, 详细说明本发明实施中多天线 Ranging的检测方法。 £ 设 WiMAX系统一个符号的子载波个数是 1024, Ranging信道占用六个子信道, 共有 144个 Ranging子信道, 初始 Ranging釆用 2符号实现, 超远覆盖的初始 Ranging釆用 4符号是实现。 图 9是根据本发明优选实施例的 Ranging超远覆盖算法实现的流程, 如图 9所示, 该方法包括以下步 4聚: 步骤 S902, 解信道化, 提取 Ranging子载波。 根据 802.16e协议中的解旋 转, 从分配的 Ranging子信道中进行 Ranging载波提取。 步骤 S904, Ranging共库厄 Tile对提取。 例如, Ranging共占用了 144个子 载波, 36个 Tile,根据步骤 S902中的载波提取结果,遍历 Ranging的 36个 Tile, ΐ己录每一个共轭 Tile对和其对应的 Tile间隔 k 。 步骤 S906, 产生本地用户码及本地用户码的差分处理。 例如, 产生当前用 户码 每个用户码共 144Bit, 其中, m为第 m个用户码, j为第 j个 Bit。 根据步骤 S904中 Tile对, 对当前本地码进行差分处理, 生成本地码差分后结 果 LocCodeDifi esult。 步骤 S908 , Ranging载波数据的差分处理。 在具体实施过程中, 可以根据 不同符号的权值分配, 进行 Ranging码的合并, 生成用于处理的 Ranging载波 数据 , 其中, k为载波序号。 根据步骤 S904 中提取的 Tile对, 对 Ranging 载波数据 进行单天线差分处理和多天线相加合并, 处理原理如图 6所示, 生 成 Ranging载波数据的差分后结果 RngDataDifi esult。 步骤 S910 , FFT 处理。 例如, 将步骤 S906 产生的本地码差分后结果 LocCodeDifi esult 和步骤 S908 中 Ranging 载波数据差分后的结果 RngDataDiflEResult点对点相乘, 将乘积中具有相同载波间隔的数据合并后进行 FFT处理。 步 4聚 S912, 求解峰值功率和均值功率。 例如, 居步 4聚 S910中的处理结 果, 生成当前码码字的均值功率 P 和峰值功率 ^^, 并记录相应的峰值位置 P pos 步骤 S914 , 门限比较。 在具体实施过程中, 这里可以包括两次门限比较, 即, 峰均比门限比较和峰值功率门限比较。 其中, 峰均比门限比较是 Ranging 码的初筛选。 例如, 求取当前码的峰值功率/ ^和均值功率 的比值 , 即 p S = P ^. The weighted combination of multi-symbol data avoids the one-sidedness of using data on one symbol alone, synthesizes multi-symbol information, improves the accuracy of Ranging data, and improves the detection performance of the algorithm. It can be seen that in the embodiment, the initial Ringing is transmitted with 4 symbols, and can support super-long coverage of more than 40 kilometers. By differential combining, a high-performance antenna combining method is provided, and the channel impulse response of the received signal is considered. It is not simple as 1; Make full use of the Tile structure of subchannels in WiMAX system and the amount of information on subcarriers, improve the utilization of carrier data information, simplify the processing steps; After the weighted combination of multi-symbol data, the Ranging carrier is improved. The accuracy of the data information. The second embodiment takes a specific application as an example to describe in detail the detection method of the multi-antenna Ranging in the implementation of the present invention. The number of subcarriers for one symbol of the WiMAX system is 1024, the Ranging channel occupies six subchannels, and there are 144 Ranging subchannels. The initial Ranging is implemented with 2 symbols, and the initial Ranging for super far coverage is implemented with 4 symbols. FIG. 9 is a flowchart of an implementation of a Ranging super-far coverage algorithm according to a preferred embodiment of the present invention. As shown in FIG. 9, the method includes the following steps: Step S902, de-channelizing, and extracting Ranging subcarriers. Ranging carrier extraction is performed from the allocated Ranging subchannel according to the derotation in the 802.16e protocol. Step S904, Ranging a total of Couile pair pairs are extracted. For example, Ranging occupies a total of 144 subcarriers and 36 tiles. According to the carrier extraction result in step S902, traversing the 36 tiles of Ranging, each conjugated pair and its corresponding tile interval k are recorded. Step S906, generating differential processing of the local user code and the local user code. For example, the current user code is generated by 144 Bits per user code, where m is the mth user code and j is the jth bit. According to the Tile pair in step S904, the current local code is differentially processed to generate a local code difference result LocCodeDifi esult. Step S908, Ranging differential processing of carrier data. In a specific implementation process, the Ranging code may be combined according to the weight assignment of different symbols to generate Ranging carrier data for processing, where k is a carrier sequence number. According to the Tile pair extracted in step S904, the Ranging carrier data is subjected to single antenna differential processing and multi-antenna addition and combining. The processing principle is as shown in FIG. 6, and the difference result RngDataDifi esult of the Ranging carrier data is generated. Step S910, FFT processing. For example, the local code difference result LocCodeDifi esult generated in step S906 is multiplied by the point RngDataDiflEResult of the Ranging carrier data difference in step S908, and the data having the same carrier spacing in the product is combined and subjected to FFT processing. Step 4 gathers S912 to solve the peak power and the mean power. For example, in the result of the processing in the step S910, the average power P and the peak power of the current codeword are generated, and the corresponding peak position Ppos is recorded in step S914, and the threshold is compared. In the specific implementation process, two threshold comparisons may be included here, that is, the peak-to-average comparison is compared with the threshold and the peak power threshold. Among them, the peak-to-average comparison is the initial screening of the Ranging code. For example, to find the ratio of the peak power / ^ and the mean power of the current code, ie p
― peak  ― peak
P , 然后和指定门限7 ^ (即, 第一阈值)进行比较, 若 > 7^ , 则通过第 一次门限比较。 在所有码字 (即, 最后一个码字) 经过第一次门限比较后, 求 取当前码字的峰值功率 和当前 Ranging区域中的所有本地码 (当前码字除 夕卜) 的峰值功率和 的比值 , 将比值 与第二次检测门限 (即, 第二阈 值)做比较, 若 > , 则可以确定当前码即为要检测的 Ranging码。 需要说明的是, 这里有别于原有算法的一次门限比较, 本发明实施例中釆 用二次门限比较的方法, 是考虑了一个二维的概念, 即, 时间偏置方面和码字 偏置。 一次门限是在实践偏置上求取最大值, 二次门限检测是在码字偏置一维 进行码字的筛选。 通过二维码子筛选, 从而提高码字的检测率。 步骤 S916 , 计算出 Ranging码, 求解 Ranging码的时偏。 通过不同符号的 峰值功率比较, 根据求取的 Ranging码, 求解其时偏值。 例如, 根据原始接收 到的 Ranging数据分别求取第一个符号和第二个符号上的峰值功率 和 , 再 才艮据求取 ^和 ^的比例关系, 对当前码对应的 Γ 进行爹正, 求取正确的时偏 值。 综上所述, 通过上述实施例, 釆用多天线差分数据和本地用户码差分数据 点对点相乘的方式, 解决了相关技术中 Ranging检测方法复杂度高以及抗千扰 能力差的问题, 减少了系统的运算量, 增强了系统的准确性和性能, 提高了用 户体验。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以 用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多 个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码 来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并且在某些 情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者将它们分别 制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电 路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。 P is then compared to the specified threshold of 7 ^ (ie, the first threshold), and if > 7 ^ , the first threshold is compared. After all the codewords (ie, the last codeword) have undergone the first threshold comparison, the ratio of the peak power of the current codeword to the peak power sum of all local codes (current codeword New Year's Eve) in the current Ranging region is obtained. The ratio is compared with the second detection threshold (ie, the second threshold). If >, the current code is determined to be the Ranging code to be detected. It should be noted that there is a single threshold comparison different from the original algorithm. In the embodiment of the present invention, the method of comparing the second threshold is to consider a two-dimensional concept, that is, the time offset and the codeword bias. Set. The first threshold is to obtain the maximum value on the practical bias, and the second threshold detection is to filter the codeword in one dimension of the codeword offset. The two-dimensional code is used to filter, thereby improving the detection rate of the codeword. Step S916, calculating a Ranging code to solve the time offset of the Ranging code. Through the peak power comparison of different symbols, the time offset value is solved according to the obtained Ranging code. For example, according to the original received Ranging data, the peak power sum on the first symbol and the second symbol is respectively obtained, and then According to the ratio of ^ and ^, the 对应 of the current code is corrected to obtain the correct time offset value. In summary, according to the foregoing embodiment, the method of multi-antenna differential data and local user code differential data point-to-point multiplication is used to solve the problem that the Ranging detection method has high complexity and poor anti-interference ability in the related art, and reduces the problem. The amount of computation of the system enhances the accuracy and performance of the system and improves the user experience. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. The steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种多天线测距 Ranging的检测方法, 包括以下步 4聚: 1. A multi-antenna ranging Ranging detection method, including the following steps:
才艮据不同的载波间隔从 Ranging载波中提取多个载波对; 将与所述多个载波对中每个载波对对应的特定的 Ranging载波数据 进行共轭相乘, 得到单天线差分数据, 并根据使能天线的个数将所述单 天线差分数据进行合并, 生成多天线差分数据; 以及  Extracting a plurality of carrier pairs from the Ranging carrier according to different carrier intervals; conjugate multiplying the specific Ranged carrier data corresponding to each of the plurality of carrier pairs to obtain single antenna differential data, and Combining the single antenna differential data according to the number of enabled antennas to generate multi-antenna differential data;
将所述多天线差分数据和本地用户码差分数据进行点对点相乘, 并 才艮据所述点对点相乘后的结果求取当前码码字的均值功率和峰值功率。  And multiplying the multi-antenna differential data and the local user code difference data by point-to-point multiplication, and obtaining the mean power and peak power of the current code code word according to the result of the point-to-point multiplication.
2. 根据权利要求 1所述的方法, 其中, 将与多个所述载波对中每个载波对 对应的所述特定的 Ranging载波数据进行共轭相乘之前, 还包括: The method according to claim 1, wherein before the conjugate multiplication of the specific Ranging carrier data corresponding to each of the plurality of carrier pairs, the method further includes:
按照不同符号的分配权值对接收到的 Ranging载波数据进行合并, 生成所述特定的 Ranging载波数据。  The received Ranging carrier data is combined according to the assigned weights of different symbols to generate the specific Ranging carrier data.
3. 根据权利要求 2所述的方法, 其中, 与所述接收到的 Ranging载波数据 对应的初始 Ranging码釆用 4个符号发送。 The method according to claim 2, wherein the initial Ranging code corresponding to the received Ranging carrier data is transmitted with 4 symbols.
4. 根据权利要求 1所述的方法, 其中, 在所述载波间隔为 Tile间隔的情况 下, 才艮据不同的所述载波间隔从所述 Ranging载波中提取所述多个载波 对包括: The method according to claim 1, wherein, when the carrier interval is a tile interval, extracting the plurality of carrier pairs from the Ranging carrier according to different carrier intervals includes:
根据不同的所述 Tile间隔从所述 Ranging载波中提取相应的 Tile对, 再由所述 Tile对得到所述多个载波对。  Extracting corresponding Tile pairs from the Ranging carrier according to different Tile intervals, and then obtaining the multiple carrier pairs by the Tile pair.
5. 根据权利要求 4所述的方法, 其中, 根据所述点对点相乘后的结果求取 所述当前码码字的均值功率和峰值功率包括: 5. The method according to claim 4, wherein determining the mean power and peak power of the current code codeword according to the result of the point-to-point multiplication comprises:
将所述点对点相乘乘积中具有相同所述载波间隔的值合并后经过快 速傅里叶变换 FFT, 并根据 FFT运算后的结果求取所述当前码码字的均 值功率和峰值功率。 The values of the point-to-point multiplied product having the same carrier interval are combined and subjected to fast Fourier transform FFT, and the mean power and peak power of the current code code word are obtained according to the result of the FFT operation.
6. 根据权利要求 1至 5中任一项所述的方法, 其中, 根据所述点对点相乘 后的结果求取所述当前码码字的均值功率和峰值功率之后, 还包括: 在确定所述当前码码字的峰均比超过第一阈值的情况下, 判断所述 峰值功率与当前 Ranging 区域中除所述当前码之外的所有本地码的峰值 功率和的比值是否超过第二阈值; The method according to any one of claims 1 to 5, wherein after determining the mean power and the peak power of the current codeword according to the result of the point-to-point multiplication, the method further includes: If the peak-to-average ratio of the current codeword word exceeds the first threshold, determining whether the ratio of the peak power to the peak power sum of all local codes except the current code in the current Ranging region exceeds a second threshold;
若超过所述第二阈值,则判定所述当前码为需要检测的 Ranging码, 其中, 所述峰均比为所述当前码码字的峰值功率与所述当前码码字的均 值功率的比值。  If the second threshold is exceeded, determining that the current code is a Ranging code that needs to be detected, where the peak-to-average ratio is a ratio of a peak power of the current code codeword to a mean power of the current codeword word. .
7. 才艮据权利要求 6 所述的方法, 其中, 判定所述当前码为需要检测的 Ranging码之后, 还包括: 7. The method according to claim 6, wherein after determining that the current code is a Ranging code to be detected, the method further includes:
按照不同符号下接收到的 Ranging 载波数据的峰值功率的比例关 系, 调整与所述当前码码字对应的峰值位置。  The peak position corresponding to the current code code word is adjusted according to the proportional relationship of the peak power of the Ranging carrier data received under different symbols.
8. —种多天线测距 Ranging的检测装置, 包括: 8. Multi-antenna ranging Ranging detection device, including:
提取模块, 设置为根据不同的载波间隔从 Ranging载波中提取多个 载波对;  An extraction module, configured to extract multiple carrier pairs from the Ranging carrier according to different carrier intervals;
差分模块, 设置为将与所述多个载波对中每个载波对对应的特定的 Ranging 载波数据进行共轭相乘, 得到单天线差分数据, 并根据使能天 线的个数将所述单天线差分数据进行合并, 生成多天线差分数据; 以及 求解功率模块, 设置为将所述多天线差分数据和本地用户码差分数 据进行点对点相乘, 并才艮据所述点对点相乘后的结果求取当前码码字的 均值功率和峰值功率。  a difference module, configured to conjugate multiply specific Ranging carrier data corresponding to each of the plurality of carrier pairs to obtain single antenna differential data, and to use the single antenna according to the number of enabled antennas The differential data is combined to generate multi-antenna differential data; and the power module is configured to perform point-to-point multiplication of the multi-antenna differential data and the local user code differential data, and then obtain the result according to the point-to-point multiplication The mean power and peak power of the current codeword word.
9. 根据权利要求 8所述的装置, 其中, 所述差分模块包括: 9. The device according to claim 8, wherein the difference module comprises:
生成单元, 设置为按照不同符号的分配权值对接收到的 Ranging载 波数据进行合并, 生成所述特定的 Ranging载波数据。  The generating unit is configured to combine the received Ranging carrier data according to the assigned weights of different symbols to generate the specific Ranging carrier data.
10. 根据权利要求 8所述的装置, 其中, 所述提取模块还设置为根据不同的 所述 Tile间隔从所述 Ranging载波中提取相应的 Tile对, 再由所述 Tile 对得到所述多个载波对。 10. The apparatus according to claim 8, wherein the extracting module is further configured to extract a corresponding pair of Tiles from the Ranging carrier according to different Tile intervals, and then obtain the multiple by the Tile pair. Carrier pair.
PCT/CN2011/074130 2010-11-08 2011-05-16 Method and apparatus for detecting multi-antenna ranging WO2012062095A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010536049.0A CN102468889B (en) 2010-11-08 2010-11-08 Detection method of multi-antenna range finding and apparatus thereof
CN201010536049.0 2010-11-08

Publications (1)

Publication Number Publication Date
WO2012062095A1 true WO2012062095A1 (en) 2012-05-18

Family

ID=46050362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074130 WO2012062095A1 (en) 2010-11-08 2011-05-16 Method and apparatus for detecting multi-antenna ranging

Country Status (2)

Country Link
CN (1) CN102468889B (en)
WO (1) WO2012062095A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595669B (en) * 2013-10-27 2016-08-17 西安电子科技大学 A kind of multiple antennas initial ranging method and device
CN114362839B (en) * 2021-12-07 2024-05-03 芯象半导体科技(北京)有限公司 Signal detection method and device based on HPLC dual-mode wireless system and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232315A (en) * 2008-01-22 2008-07-30 中兴通讯股份有限公司 Method for checking multi aerial ranging code in WiMAX system
CN101409603A (en) * 2007-10-09 2009-04-15 中兴通讯股份有限公司 Method for detecting ranging code
WO2010000312A1 (en) * 2008-07-01 2010-01-07 Nokia Siemens Networks Oy Apparatus for ranging, in particular for use in a multiple user multiple input multiple output wireless telecommunications network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409603A (en) * 2007-10-09 2009-04-15 中兴通讯股份有限公司 Method for detecting ranging code
CN101232315A (en) * 2008-01-22 2008-07-30 中兴通讯股份有限公司 Method for checking multi aerial ranging code in WiMAX system
WO2010000312A1 (en) * 2008-07-01 2010-01-07 Nokia Siemens Networks Oy Apparatus for ranging, in particular for use in a multiple user multiple input multiple output wireless telecommunications network

Also Published As

Publication number Publication date
CN102468889B (en) 2015-01-28
CN102468889A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US11706725B2 (en) Short and long training fields
CN108924943B (en) Maximum correlation estimation detection method based on narrowband Internet of things random access channel
US8842601B2 (en) Method and device for detecting primary synchronization signal and generating sequence in long term evolution (LTE) system
JP5535937B2 (en) Method and apparatus for synchronization and detection in a wireless communication system
JP3628977B2 (en) Radio base station apparatus and communication terminal apparatus
US7742392B2 (en) Blind carrier frequency offset estimator based on single-OFDM-symbol PN ranging code in multi-user OFDMA uplink
CN1988526B (en) Synchronizing method for multiple input multiple output orthogonal frequency division multiplex radio system
CN102291351B (en) Timing synchronization method of receiver in OFDM wireless communication system
WO2007079680A1 (en) Frequency offset correction method for wideband time division duplex cell communication system and method for cell first searching
EP2255450A2 (en) A physical layer convergence protocol (plcp) packet structure for multiple-input-multiple-output (mimo) communication systems
US20230344582A1 (en) Pilot transmission method and apparatus, device, and storage medium
CN101330316B (en) Time synchronization method and device for up link of wireless communication system
CN101582870B (en) Method and device for realizing synchronization
WO2018024127A1 (en) Signal transmission method and network device
WO2010130170A1 (en) Method and apparatus for transmitting random access signal, and related method and system
WO2011137631A1 (en) Method and apparatus for detecting ranging code
WO2012062095A1 (en) Method and apparatus for detecting multi-antenna ranging
CN102142909B (en) Ranging signal detection method and base station
CN103346985B (en) A kind of method estimated fast for time and frequency parameter in TD-LTE system
CN101820407B (en) Serial interference cancellation based frequency domain initial ranging method and system
WO2008067721A1 (en) Synchronization process method, base-station, user device and communication system
Al-Haddad et al. Joint carrier frequency and symbol timing synchronization sequence for FBMC based system
WO2011011995A1 (en) Method and device for detecting random access signal in orthogonal frequency division multiplexing system
Sekhar et al. Comparative analysis of offset estimation capabilities in mathematical sequencesfor WLAN
CN113315610A (en) Wireless communication method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839514

Country of ref document: EP

Kind code of ref document: A1