WO2012060656A2 - Method for transmitting channel measurement information and device therefor - Google Patents

Method for transmitting channel measurement information and device therefor Download PDF

Info

Publication number
WO2012060656A2
WO2012060656A2 PCT/KR2011/008366 KR2011008366W WO2012060656A2 WO 2012060656 A2 WO2012060656 A2 WO 2012060656A2 KR 2011008366 W KR2011008366 W KR 2011008366W WO 2012060656 A2 WO2012060656 A2 WO 2012060656A2
Authority
WO
WIPO (PCT)
Prior art keywords
base station
serving cell
cell
pico
signal
Prior art date
Application number
PCT/KR2011/008366
Other languages
French (fr)
Korean (ko)
Other versions
WO2012060656A3 (en
Inventor
김진민
류탁기
문성호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2012060656A2 publication Critical patent/WO2012060656A2/en
Publication of WO2012060656A3 publication Critical patent/WO2012060656A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting channel measurement information and an apparatus therefor.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a communication device feeds downlink measurement information, the method comprising: measuring a plurality of first signals by measuring a signal of the macro base station for each serving cell Generating a value; Measuring a signal of the pico base station to generate a second signal measurement value; And if the predetermined condition is satisfied, providing the second measurement value to the macro base station, wherein the predetermined condition is that the sum of the second signal measurement value and the bias value is the plurality of first signal measurement values.
  • a bias value is greater than at least one of the above, wherein the bias value is independently given to each serving cell for a plurality of serving cells constituting the macro base station.
  • a communication apparatus configured to feedback downlink measurement information in a wireless communication system including a macro base station and a pico base station, comprising: a radio frequency (RF) unit; And a processor, wherein the processor measures a signal of the macro base station for each serving cell to generate a plurality of first signal measurement values, and measures a signal of the pico base station to generate a second signal measurement value. And if the condition is met, provide the second measurement value to the macro base station, wherein the predetermined condition is that a sum of the second signal measurement value and a bias value is greater than at least one of the plurality of first signal measurement values.
  • the bias value is provided with a communication device is provided independently for each serving cell for a plurality of serving cells constituting a macro base station.
  • the bias value for each serving cell is calculated using the bias value and the offset value of the reference serving cell.
  • the bias value for each serving cell is calculated using a ratio of the number of ABS (Almost Blank Subframe) of the reference serving cell and the number of ABS of the serving cell for a predetermined time interval.
  • the bias value for each serving cell is calculated using a ratio of the number of orthogonal frequency division symbols (OFDM) for physical downlink control channel (PDCCH) transmission of the reference serving cell and the number of OFDM symbols for PDCCH transmission of the corresponding serving cell.
  • OFDM orthogonal frequency division symbols
  • PDCCH physical downlink control channel
  • the bias value for each serving cell is calculated using a ratio of the maximum transmit power of the reference serving cell and the maximum transmit power of the corresponding serving cell.
  • channel measurement information can be efficiently transmitted in a wireless communication system. More specifically, channel measurement information can be efficiently transmitted in a multicarrier situation.
  • FIG. 1 illustrates physical channels used in a 3GPP LTE system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • 5 illustrates a structure of an uplink subframe.
  • CA 6 illustrates a Carrier Aggregation (CA) system.
  • FIG. 7 illustrates a heterogeneous network comprising a macro cell and a micro cell.
  • FIG. 9 illustrates a method for canceling intercell interference in a heterogeneous network.
  • FIG. 11 illustrates a problem expected when applying a conventional feedback process for intercell interference in a multicarrier situation.
  • FIG. 12 illustrates a process of performing feedback according to an embodiment of the present invention.
  • FIG 13 shows an application example according to an embodiment of the present invention.
  • FIG. 14 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • the terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDSCH) according to the physical downlink control channel (PDCCH) and the physical downlink control channel information in step S102.
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • System information can be obtained.
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
  • PRACH physical random access channel
  • S105 additional physical random access channel
  • S106 reception of a physical downlink control channel and a corresponding physical downlink shared channel
  • the UE After performing the above-described procedure, the UE performs a physical downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure.
  • the physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like.
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX.
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CPs include extended CPs and normal CPs.
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 (b) illustrates the structure of a type 2 radio frame.
  • Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • One downlink slot may include 7 (6) OFDM symbols, and the resource block may include 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12x7 (6) REs.
  • the number of RBs included in the downlink slot NRB depends on the downlink transmission band.
  • the structure of an uplink slot is the same as that of a downlink slot, but an OFDM symbol is replaced with an SC-FDMA symbol.
  • FIG. 4 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared CHance (PDSCH) is allocated.
  • Examples of a downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
  • DCI downlink control information
  • the DCI format is defined as format 0 for uplink, formats 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A, and so on for downlink.
  • the DCI format includes a hopping flag, RB assignment, modulation coding scheme (MCS), redundancy version (RV), new data indicator (NDI), transmit power control (TPC), and cyclic shift DM RS, depending on the application.
  • MCS modulation coding scheme
  • RV redundancy version
  • NDI new data indicator
  • TPC transmit power control
  • Information including a reference signal (CQI), a channel quality information (CQI) request, a HARQ process number, a transmitted precoding matrix indicator (TPMI), and a precoding matrix indicator (PMI) confirmation are optionally included.
  • CQI reference signal
  • CQI channel quality information
  • TPMI transmitted precoding matrix indicator
  • PMI pre
  • the PDCCH includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel, Resource allocation information of upper-layer control messages such as paging information on PCH), system information on DL-SCH, random access response transmitted on PDSCH, Tx power control command set for individual terminals in terminal group, Tx power control command , The activation instruction information of the Voice over IP (VoIP).
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier (eg, a radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH.
  • RNTI radio network temporary identifier
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • 5 illustrates a structure of an uplink subframe used in LTE.
  • an uplink subframe includes a plurality of slots (eg, two).
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit a data signal such as voice.
  • the control region includes a PUCCH and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • PUCCH may be used to transmit the following control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of ACK / NACK is transmitted in response to a single downlink codeword (CodeWord, CW), and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CQI Channel Quality Indicator
  • MIMO Multiple input multiple output
  • RI rank indicator
  • PMI precoding matrix indicator
  • PTI precoding type indicator
  • the amount of control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports seven formats according to the transmitted information.
  • Table 1 shows a mapping relationship between PUCCH format and UCI in LTE.
  • Uplink Control Information Format 1 Scheduling Request (SR) (Unmodulated Waveform) Format 1a 1-bit HARQ ACK / NACK (with or without SR) Format 1b 2-bit HARQ ACK / NACK (with or without SR) Format 2 CQI (20 coded bits) Format 2 CQI and 1- or 2-bit HARQ ACK / NACK (20 bit) (Extended CP only) Format 2a CQI and 1-Bit HARQ ACK / NACK (20 + 1 Coded Bits) Format 2b CQI and 2-bit HARQ ACK / NACK (20 + 2 coded bits)
  • SR Scheduling Request
  • the LTE-A system uses a carrier aggregation or bandwidth aggregation technique that combines a plurality of uplink / downlink frequency bandwidths for a wider frequency bandwidth and uses a larger uplink / downlink bandwidth.
  • Each small frequency bandwidth is transmitted using a component carrier (CC).
  • the component carrier may be understood as the carrier frequency (or center carrier, center frequency) for the corresponding frequency block.
  • Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • the bandwidth of the CC may be limited to the bandwidth of the existing system for backward compatibility with the existing system.
  • the existing 3GPP LTE system supports ⁇ 1.4, 3, 5, 10, 15, 20 ⁇ MHz bandwidth
  • LTE_A can support a bandwidth greater than 20MHz using only the bandwidths supported by LTE.
  • the bandwidth of each CC can be determined independently. It is also possible to merge asymmetric carriers in which the number of UL CCs and the number of DL CCs differ.
  • the DL CC / UL CC link may be fixed in the system or configured semi-statically. For example, as shown in FIG.
  • the frequency band that a specific UE can monitor / receive may be limited to M ( ⁇ N) CCs.
  • Various parameters for carrier aggregation may be set in a cell-specific, UE group-specific or UE-specific manner.
  • the control information may be set to be transmitted and received only through a specific CC.
  • a specific CC may be referred to as a primary CC (PCC) and the remaining CC may be referred to as a secondary CC (SCC).
  • PCC primary CC
  • SCC secondary CC
  • LTE-A uses the concept of a cell to manage radio resources.
  • a cell is defined as a combination of downlink resources and uplink resources, and uplink resources are not required. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources. If carrier aggregation is supported, the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by system information.
  • a cell operating on the primary frequency (or PCC) may be referred to as a primary cell (PCell), and a cell operating on the secondary frequency (or SCC) may be referred to as a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • the PCell is used by the terminal to perform an initial connection establishment process or to perform a connection re-establishment process.
  • PCell may refer to a cell indicated in the handover process.
  • the SCell is configurable after a Radio Resource Control (RRC) connection is established and can be used to provide additional radio resources.
  • RRC Radio Resource Control
  • PCell and SCell may be collectively referred to as a serving cell. Therefore, in the case of the UE that is in the RRC_CONNECTED state, but carrier aggregation is not configured or does not support carrier aggregation, there is only one serving cell configured only with the PCell.
  • the network may configure one or more SCells for the UE supporting carrier aggregation in addition to the PCell initially configured in the connection establishment process.
  • FIG. 7 illustrates a heterogeneous network comprising a macro cell and a micro cell.
  • next-generation communication standards including 3GPP LTE-A, heterogeneous networks in which microcells with low power transmission power overlap within existing macro cell coverage are discussed.
  • a macro cell may overlap one or more micro cells.
  • the service of the macro cell is provided by the macro base station (Macro eNodeB, MeNB).
  • the macro cell and the macro base station may be used interchangeably.
  • the terminal connected to the macro cell may be referred to as a macro UE.
  • the macro terminal receives a downlink signal from the macro base station and transmits an uplink signal to the macro base station.
  • Micro cells are also referred to as femto cells, pico cells.
  • the service of the micro cell is provided by a pico base station (Pico eNodeB), a home base station (Home eNodeB, HeNB), a relay node (Relay Node, RN) and the like.
  • a pico base station (Pico eNodeB), a home base station (Home eNodeB, HeNB), and a relay node (Relay Node, RN) are collectively referred to as a home base station (HeNB).
  • the micro cell and the home base station may be used interchangeably.
  • the terminal connected to the micro cell may be referred to as a micro terminal or a home terminal.
  • the home terminal receives a downlink signal from the home base station and transmits an uplink signal to the home base station.
  • Micro cells may be divided into OA (open access) cells and CSG (closed subscriber group) cells according to accessibility.
  • the OA cell refers to a micro cell that can receive a service at any time when the terminal is required without additional access restriction.
  • the CSG cell refers to a micro cell in which only a specific authorized terminal can receive a service.
  • inter-cell interference is more problematic because macro and micro cells overlap.
  • the downlink signal of the home base station acts as an interference to the macro terminal.
  • the downlink signal of the macro base station may act as interference to the home terminal in the micro cell.
  • the uplink signal of the macro terminal may act as an interference to the home base station.
  • the uplink signal of the home terminal may act as an interference to the macro base station.
  • FIG. 8 illustrates a situation in which inter-cell interference occurs in a heterogeneous network in more detail. Dotted lines indicate communication links and dotted lines indicate interference in the figures. Referring to FIG. 8, (a) the macro terminal not connected to the CSG cell may be interfered by the home base station, (b) the macro terminal may cause interference with the home base station, and (c) the CSG terminal May be interfered by other CSG home base stations.
  • the illustrated interference situation is an example, and various interference situations may occur according to a network and a terminal configuration.
  • the macro cell may cause strong interference to the terminal of the pico cell, particularly the pico cell at the boundary of the pico cell. Accordingly, a method of resolving uplink and downlink interference on data and L1 / L2 control signals, synchronization signals, and reference signals is required.
  • Inter-Cell Interference Cancellation (ICIC) schemes can be addressed in the time, frequency and / or spatial domains.
  • FIG 9 illustrates a method for canceling intercell interference in a heterogeneous network.
  • an object to be protected from intercell interference is a pico terminal.
  • the network node causing interference becomes a macro cell (or macro base station).
  • a macro cell causing intercell interference may configure an ABS (or ABSF) (Almost Blank Subframe) in a radio frame.
  • ABS represents a subframe (Subframe, SubF) is set so that the normal DL signal is not transmitted except for a specific DL signal.
  • Specific DL signals include, but are not limited to, for example, a cell-specific reference signal (CRS) or a cell-common reference signal (CRS).
  • CRS cell-specific reference signal
  • CRS cell-common reference signal
  • the ABS may be repeated to have a constant pattern within one or more radio frames.
  • the figure illustrates a case where ABS is set in subframe # 2 / # 6.
  • the macro cell informs the pico cell of the ABS configuration through the backhaul, and the pico cell may schedule the pico terminal using the ABS configuration. For example, the pico terminal may be scheduled only during the ABS period. In this case, channel state information (CSI) measurement of the pico terminal may be performed only in the ABS.
  • CSI channel state information
  • Radio Link Management RLM
  • RRM Radio Resource Management
  • RRM Radio Resource Management
  • RSRP Reference Signal Received Power
  • 3GPP RAN Radio Access Network 2 requires defining new signaling indicating which subframe should be measured. For example, bitmap signaling having the same period as backhaul signaling (eg, 1 means “terminal can measure” in the corresponding subframe, and 0 means “terminal should not measure” in the corresponding subframe). Can be applied).
  • the restriction pattern can be constructed independently from the backhaul bit-pattern.
  • CRE refers to a method in which the coverage of a specific cell is expanded by adding a bias to a signal measurement value of a specific cell when the terminal measures the signal of each cell.
  • the coverage of a specific cell is virtually extended by the CRE, so that the base station of the specific cell may be preferred at the time of cell selection or handover.
  • FIG. 10 it is assumed that a terminal is in a state of being serviced by a macro cell (macro base station) and that pico cell # 1 (pico base station # 1) and pico cell # 2 (pico base station # 2) are overlaid in the macro cell.
  • the terminal receives bias information from the macro base station (S1002).
  • the bias information may be used in a CRE process (eg, feedback information generation, feedback triggering, etc.).
  • the bias information indicates a bias value for the PCell of the macro base station and may be given independently for each pico base station.
  • the bias information may be given by broadcast information and higher layer (RRC layer) signaling.
  • the bias information may be given cell-specific, terminal-group specific, terminal-specific.
  • the terminal may receive information about the pico base station from the macro base station.
  • Information about the pico base station may include, but is not limited to, pico base station identification information, frequency configuration information of the pico base station.
  • the bias information and the information about the pico base station may be signaled together or separately signaled.
  • the terminal measures downlink signals of the macro base station, the pico base station # 1, the pico base station # 2 (S1004).
  • Downlink signal measurement is performed based on a reference signal (RS).
  • the reference signal includes a cell-specific reference signal (CRS).
  • the downlink signal measurement result can be obtained in various forms. For example, Signal to Noise Ratio (SNR), Signal to Interference and Noise Ratio (SINR), Carrier to Interference Ratio (CIR), Carrier to Interference and Noise Ratio (CINR), Reference Signal Received Power (RSRP), RSRQ (RSRQ) Reference Signal Received Quality) or a value related thereto.
  • SNR Signal to Noise Ratio
  • SINR Signal to Interference and Noise Ratio
  • CIR Carrier to Interference Ratio
  • CINR Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the terminal compares the measured value of the pico base station signal with the measured value of the macro base station signal in consideration of the bias (S1006).
  • the signal measurement value is RSRP
  • the UE can compare [RSRP Pico # 1 + Bias # 1] and [RSRP Macro ] and compare [RSRP Pico # 2 + Bias # 2] and [RSRP Macro ].
  • RSRP Pico # X represents the RSRP for the signal of Pico Base Station # X
  • Bias # X represents the bias value given for Pico Base Station #X for the PCell of the macro base station.
  • RSRP pico # X When the measurement / comparison of the pico base station signal is performed in units of cells (ie, component carriers), RSRP pico # X may be replaced with RSRP pico # X and cell # i .
  • Cell #i represents the cell (ie, component carrier) index of the pico base station.
  • the RSRP macro represents the RSRP for the PCell of the macro base station. [RSRP Pico # X + Bias # X] has an effect of relatively increasing the coverage of Pico Base Station #X compared to the PCell coverage of the Macro Base Station.
  • the terminal transmits the feedback information to the macro base station (S1008).
  • the feedback information can be obtained when [RSRP Pico # X + Bias # X]> (or ⁇ ) [RSRP Macro ] is satisfied or [RSRP Pico # X + Bias #X]> (or ⁇ ) [RSRP Macro ] It can be sent if it is satisfied during the period. That is, the frequency / number of feedback transmissions for the pico base station can be adjusted by the bias value.
  • the feedback information may include information indicating a pico base station that satisfies [RSRP pico # X + bias # X]> (or ⁇ ) [RSRP macro ], or signal measurement information related to the pico base station.
  • the feedback information is an identifier of Pico Base Station #X, [RSRP Pico # X] and [RSRP Pico # X]. It may include at least one of + bias # X].
  • the macro base station may share feedback information from the terminal with the pico base station using a backhaul link.
  • step S1008 describes a case in which the feedback information includes only information about the pico base station, this is an example.
  • the pico base station related information in the feedback information may be replaced with or included with the macro base station related information.
  • the terminal and the macro / pico base station may perform various operations in consideration of the feedback information (S1010).
  • the terminal and the macro / pico base station may perform handover, cell- (re) selection process, etc. using the feedback information.
  • the UE may perform a cell- (re) selection process by selecting a pico cell (pico base station) having the largest value of [RSRP pico # X + bias # X].
  • the feedback information includes [RSRP Pico # X]
  • the macro base station may convert [RSRP Pico # X] to [RSRP Pico # X + Bias # X] and then perform a handover process.
  • the feedback information includes [RSRP Pico # X + Bias # X]
  • the macro base station may perform a handover process using the feedback information as it is.
  • the above-described process mainly describes the case where the UE belongs to the macro cell (that is, the macro terminal), but this is an example for canceling the inter-cell interference in a similar manner even when the UE belongs to the pico cell (ie, the pico terminal).
  • the feedback process can be performed.
  • the bias value may be added to the measured value of the macro cell signal or the measured value of the pico cell signal according to the cell priority.
  • the above-described conventional CRE feedback process considers only the PCell of the macro base station. That is, the coverage increase effect of the pico base station is effective only for the PCell of the macro base station, and for this, a bias value for the CRE is also given only for the PCell. Only the PCell is considered in the CRE process because the RLF (Radio Link Failure) determination and the handover process are performed based on the PCell, so that the feedback process of the neighbor cell (base station) signal is performed based only on the PCell signal of the macro base station. For this reason, even if the macro base station supports multicarrier, feedback information for canceling inter-cell interference is not provided for the SCC (that is, the SCell), thereby reducing flexibility in resource usage.
  • the SCC that is, the SCell
  • the coverage of each CC is determined based on the PCC (ie, PCell), which is inflexible for supporting various communication scenarios.
  • PCell ie, PCell
  • a PCell / SCell reconfiguration within one base station may be restricted when two or more base stations divide a PCell and a SCell for one terminal.
  • FIG. 11 illustrates a problem expected when applying a conventional feedback process for intercell interference in a multicarrier situation.
  • one pico cell is overlaid on the macro cell, and both the macro cell and the pico cell use the same frequency band (ie, f1 and f2). This example has been described in terms of pico terminals.
  • an ABS (almost blank subframe) is a sub-blank of an area of the remaining PDSCH except for important information (eg, PCFICH, PDCCH, PSCH, SSCH, PBCH, SIB1, Paging) during one subframe for interference control. Frame.
  • important information eg, PCFICH, PDCCH, PSCH, SSCH, PBCH, SIB1, Paging
  • ABS is configured in the radio frame of the macro cell, but this may be configured as an example in the radio frame of the pico cell.
  • the ABS may have various patterns during one or multiple radio frames.
  • the pico terminal located at the pico cell boundary may remove the influence of the interference from the macro base station by receiving the scheduling in the pico subframe corresponding to the ABS at f2.
  • the pico terminal is interrupted due to the control information signal of the macro base station even when scheduled in the pico subframe corresponding to the ABS. For this reason, the pico terminal may not be able to smoothly perform PDCCH decoding of the pico cell downlink. To overcome this problem, cross scheduling may be used.
  • component carriers of a macro cell may set different PDCCH lengths and PDSCH loads, as shown in FIG. 11, a short PDCCH is allocated to f2 (or the same number of OFDM symbols are actually transmitted.
  • f2 the same number of OFDM symbols are actually transmitted.
  • the pico terminal and / or pico base station may arbitrarily increase the coverage of the pico cell by adding a bias to a signal measurement value (eg, RSRP / RSRQ) for the pico PCell.
  • Signal measurement for the pico PCell f2 may be performed in a pico subframe corresponding to the ABS.
  • Data throughput of the macro cell, which is lost in ABS, can be obtained from the pico cell, and the throughput of the entire cell can be improved through the offload effect of the macro cell.
  • the pico terminal measures and reports RSRP / RSRQ based on only one component carrier (ie, PCell, f2).
  • PCell component carrier
  • the pico terminal measures and reports RSRP / RSRQ based on only one component carrier (ie, PCell, f2).
  • the present invention proposes a method of independently using a bias value for each CC (ie, cell, serving cell) in downlink channel measurement (eg, RSRP / RSRQ measurement) in a heterogeneous network.
  • a bias value for each component carrier ie, cell, serving cell
  • downlink channel measurement eg, RSRP / RSRQ measurement
  • FIG. 12 illustrates a process of performing feedback according to an embodiment of the present invention.
  • the terminal receives bias information from the macro base station (S1202).
  • the bias information may be used in a CRE process (eg, feedback information generation, feedback triggering, etc.).
  • the bias information indicates a bias value for the PCC (ie, PCell) and / or SCC (ie, SCell) of the macro base station, and may be given independently for each pico base station.
  • Each CC-specific bias value may be explicitly given by broadcast information, higher layer (RRC layer) signaling, and L1 signaling (eg, PDCCH).
  • the bias information may be given cell-specific, terminal-group specific, terminal-specific, preferably terminal-specific.
  • the bias value of the other CC may be calculated implicitly from the bias value of the reference CC.
  • the reference CC may be a PCC (PCell) or a CC initially receiving an explicit bias value from the base station.
  • PCell PCell
  • the following method may be considered.
  • the bias value and the constant offset value of the reference CC can be determined by +/-.
  • the offset value may be signaled from the base station to the terminal through higher layer (eg, RRC) signaling.
  • the bias value of the reference CC and the bias offset value for the corresponding CC may be signaled together or separately.
  • the offset step size may be determined in advance, and only the increase or decrease may be signaled.
  • the bias value may be calculated according to the number of ABS set for N (N ⁇ 1) radio frames per CC (or during one cycle of an ABS configuration).
  • the bias value of each CC may be determined according to a ratio of the ABS number of the reference CC and the ABS number of the CC, or may be set according to an inverse relationship.
  • the bias value may be calculated by considering only the number of ABS for a given period in each CC without considering the ratio of the number of ABS.
  • the mapping relationship between the ABS number and the bias value accordingly can be determined in advance, and the bias value can be automatically calculated according to the ABS number.
  • the number of ABS and the bias value may be proportional.
  • the bias value of each CC is the number of PDCCHM symbols of the reference CC and the number of PDCCH symbols of the CC. It can be determined according to the ratio. For example, a bias value may be set to be small for a CC having a large number of PDCCH symbols. As another example, the bias value may be calculated by considering only the number of PDCCH symbols for a given period in each CC without considering the ratio of the number of PDCCH symbols. For example, the mapping relationship between the number of PDCCH symbols and the corresponding bias value may be determined in advance, and the bias value may be automatically calculated according to the number of PDCCH symbols. The number of PDCCH symbols and the bias value may be inversely proportional.
  • the bias value of each CC may be determined according to the ratio of the maximum power of the reference CC and the maximum power of the CC.
  • the bias value may be calculated by individually considering the maximum TX power of each CC without considering the ratio of the maximum TX power. For example, a mapping relationship between TX maximum power and a corresponding bias value may be determined in advance, and a bias value may be automatically calculated according to the TX maximum power.
  • the TX maximum power and bias values can be inversely proportional.
  • the bias value of the target CC can be determined according to the number of adjacent pico cells or the interference level (eg, SIR, SINR, CINR, etc.). For example, a bias value may be set to be small when the number of adjacent pico cells has a large interference level, and a bias value may be set to be large when the number of adjacent pico cells is small.
  • the interference level eg, SIR, SINR, CINR, etc.
  • the terminal may receive information about the pico base station from the macro base station.
  • Information about the pico base station may include, but is not limited to, pico base station identification information, frequency configuration information of the pico base station.
  • the bias information and the information about the pico base station may be signaled together or separately signaled.
  • the UE measures downlink signals of the macro base station, pico base station # 1, and pico base station # 2 (S1204).
  • Downlink signal measurement is performed based on the reference signal.
  • the downlink signal measurement result can be obtained in various forms. For example, SNR, SINR, CIR, CINR, RSRP, RSRQ or a value related thereto may be indicated.
  • the terminal compares the measured value of the pico base station signal with the measured value of the macro base station signal in consideration of the bias (S1206). Assuming that the signal measurement value is RSRP, the terminal compares the [RSRP Pico # 1 + bias # 1 cell # k ] and [RSRP macro, cell # k ], and [RSRP Pico # 2 + bias # 2 cell # k ] and [RSRP macro, cell #k ] can be compared.
  • RSRP Pico # X represents RSRP for the signal of Pico Base Station #X.
  • the bias #X cell #k represents a bias value given for pico base station #X for cell #k of the macro base station.
  • RSRP pico # X When the signal of the pico base station is performed in units of cells (ie, component carriers), RSRP pico # X may be replaced with RSRP pico # X and cell # i .
  • Cell #i represents the cell (ie, component carrier) index of the pico base station.
  • RSRP macro, cell #k represents the RSRP for the cell #i signal of the macro base station.
  • the terminal transmits the feedback information to the macro base station (S1208).
  • Feedback information is available when [RSRP Pico # X + Bias # X Cell # k ]> (or ⁇ ) [RSRP Macro, Cell # k ] is satisfied or [RSRP Pico # X + Bias # X Cell # k ]> ( Or ⁇ ) [RSRP macro, cell #k ] may be transmitted if it is satisfied for a predetermined period. That is, the frequency / number of feedback transmissions for the pico base station can be adjusted by the bias value.
  • the feedback information includes information indicating a pico base station satisfying [RSRP pico # X + bias # X cell # k ]> (or ⁇ ) [RSRP macro, cell # k ], or signal measurement information related to the pico base station. can do. For example, if [RSRP Pico # X + Bias # X Cell # k ]> (or ⁇ ) [RSRP Macro, Cell # k ] is satisfied, the feedback information may be an identifier of Pico Base Station #X, [RSRP Pico # X]. And [RSRP Pico # X + Bias # X Cell # k ].
  • the feedback process may also be performed in units of cells of the pico base station.
  • the macro base station may share feedback information from the terminal with the pico base station using a backhaul link.
  • Step S1208 describes a case in which the feedback information includes only information about the pico base station.
  • the pico base station related information in the feedback information may be replaced with or included with the macro base station related information.
  • the terminal and the macro / pico base station may perform various operations in consideration of the feedback information (S1210).
  • the terminal and the macro / pico base station may perform PCell / SCell reconfiguration, handover, cell- (re) selection process, etc. using the feedback information.
  • the terminal may select a pico cell (Pico base station) having the largest value of [RSRP pico #X + bias #X cell #k ] to perform a corresponding operation.
  • the feedback information includes [RSRP pico # X]
  • the macro base station may convert [RSRP pico # X] to [RSRP pico # X + bias # X cell # k ] and then perform a corresponding operation.
  • the feedback information includes [RSRP Pico # X + Bias # X Cell # k ]
  • the macro base station may perform the operation by using the feedback information as it is.
  • the above-described process mainly describes the case where the UE belongs to the macro cell (that is, the macro terminal). However, this is an example and the CRE may be performed in a similar manner even when the UE belongs to the pico cell (ie, the pico terminal). have.
  • the bias value may be added to the measured value of the macro cell signal or the measured value of the pico cell signal according to the cell priority.
  • the feedback method according to the embodiment of the present invention has the following advantages.
  • the pico base station or the macro base station may use the RSRP / RSRQ value of each component carrier received from the terminal for switching between the PCell and the SCell of each terminal to maximize the cell throughput.
  • the macro / pico base station may assign different bias values to component carriers to allow the terminal to control unnecessary or unintended reporting.
  • the macro terminal can easily make a handover procedure to a pico cell by increasing only a cell boundary of a component carrier having low interference effects. Through this, first of all, the total cell throughput can be increased by increasing the number of terminals belonging to the PCell of the pico cell.
  • the macro terminal 13 shows an application example according to an embodiment of the present invention.
  • the macro CC2 is configured as the PCell and the macro CC1 is configured as the SCell for the specific macro terminal.
  • the macro terminal may compare and report the RSRP of the pico cell and the RSRP of the macro SCell. Therefore, the macro terminal / macro base station can compare the RSRP of the macro CC1 and pico CC1 & 2. If a large bias value is given to the pico CC2, the macro terminal will perform a feedback report, and may configure the pico CC2 as a SCell to the macro terminal in cooperation with the base stations. That is, for one terminal, the load balance for the SCell can be achieved by configuring the PCell as the macro CC2 and the SCell as the pico CC2. This can improve overall cell throughput.
  • the base station 14 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • the base station includes a macro base station and a pico base station.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • embodiments of the present invention have been mainly described based on data transmission / reception relations between a terminal and a base station.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a wireless communication system. More specifically, the present invention relates to a method for feeding back downlink measurement information and a device therefor, wherein the method comprises the steps of: measuring a signal of a macro base station according to each serving cell, and generating a plurality of first signal measurement values; measuring signals of pico base stations, and generating second signal measurement values; and providing said second measurement values to said macro base station if predetermined conditions are satisfied, wherein said predetermined conditions include a condition that the sum of said second signal measurement values and bias values is larger than at least one of the plurality of said first signal measurement values, and each of said bias values is independently given to every serving cell relative to a plurality of serving cells that constitute the macro base station.

Description

채널 측정 정보를 전송하는 방법 및 이를 위한 장치Method for transmitting channel measurement information and apparatus therefor
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 채널 측정 정보를 전송하는 방법 및 이를 위한 장치에 관한 것이다.The present invention relates to a wireless communication system, and more particularly, to a method for transmitting channel measurement information and an apparatus therefor.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data. In general, a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
본 발명의 목적은 무선 통신 시스템에서 채널 측정 정보를 효율적으로 전송하는 방법 및 이를 위한 장치를 제공하는데 있다. 본 발명의 다른 목적은 멀티캐리어 상황에서 채널 측정 정보를 효율적으로 전송하는 방법 및 이를 위한 장치를 제공하는데 있다.An object of the present invention is to provide a method and an apparatus therefor for efficiently transmitting channel measurement information in a wireless communication system. Another object of the present invention is to provide a method and an apparatus therefor for efficiently transmitting channel measurement information in a multicarrier situation.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved in the present invention are not limited to the above technical problems, and other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 양상으로, 매크로 기지국과 피코 기지국을 포함하는 무선 통신 시스템에서 통신 장치가 하향링크 측정 정보를 피드백 하는 방법에 있어서, 상기 매크로 기지국의 신호를 서빙 셀별로 측정하여 복수의 제1 신호 측정 값을 생성하는 단계; 상기 피코 기지국의 신호를 측정하여 제2 신호 측정 값을 생성하는 단계; 및 소정의 조건이 만족할 경우, 상기 제2 측정 값을 상기 매크로 기지국에게 제공하는 단계를 포함하고, 상기 소정의 조건은 상기 제2 신호 측정 값과 바이어스 값의 합이 상기 복수의 제1 신호 측정 값 중 적어도 하나보다 큰 것을 포함하며, 상기 바이어스 값은 매크로 기지국을 구성하는 복수의 서빙 셀에 대해 서빙 셀마다 각각 독립적으로 주어지는 방법이 제공된다.According to an aspect of the present invention, in a wireless communication system including a macro base station and a pico base station, a communication device feeds downlink measurement information, the method comprising: measuring a plurality of first signals by measuring a signal of the macro base station for each serving cell Generating a value; Measuring a signal of the pico base station to generate a second signal measurement value; And if the predetermined condition is satisfied, providing the second measurement value to the macro base station, wherein the predetermined condition is that the sum of the second signal measurement value and the bias value is the plurality of first signal measurement values. And a bias value is greater than at least one of the above, wherein the bias value is independently given to each serving cell for a plurality of serving cells constituting the macro base station.
본 발명의 다른 양상으로, 매크로 기지국과 피코 기지국을 포함하는 무선 통신 시스템에서 하향링크 측정 정보를 피드백 하도록 구성된 통신 장치에 있어서, 무선 주파수(Radio Frequency, RF) 유닛; 및 프로세서를 포함하고, 상기 프로세서는 상기 매크로 기지국의 신호를 서빙 셀별로 측정하여 복수의 제1 신호 측정 값을 생성하고, 상기 피코 기지국의 신호를 측정하여 제2 신호 측정 값을 생성하며, 소정의 조건이 만족할 경우, 상기 제2 측정 값을 상기 매크로 기지국에게 제공하도록 구성되며, 상기 소정의 조건은 상기 제2 신호 측정 값과 바이어스 값의 합이 상기 복수의 제1 신호 측정 값 중 적어도 하나보다 큰 것을 포함하며, 상기 바이어스 값은 매크로 기지국을 구성하는 복수의 서빙 셀에 대해 서빙 셀마다 각각 독립적으로 주어지는 통신 장치가 제공된다.In another aspect of the present invention, a communication apparatus configured to feedback downlink measurement information in a wireless communication system including a macro base station and a pico base station, comprising: a radio frequency (RF) unit; And a processor, wherein the processor measures a signal of the macro base station for each serving cell to generate a plurality of first signal measurement values, and measures a signal of the pico base station to generate a second signal measurement value. And if the condition is met, provide the second measurement value to the macro base station, wherein the predetermined condition is that a sum of the second signal measurement value and a bias value is greater than at least one of the plurality of first signal measurement values. The bias value is provided with a communication device is provided independently for each serving cell for a plurality of serving cells constituting a macro base station.
바람직하게, 서빙 셀별 바이어스 값은 기준 서빙 셀의 바이어스 값과 오프셋 값을 이용하여 계산된다.Preferably, the bias value for each serving cell is calculated using the bias value and the offset value of the reference serving cell.
바람직하게, 서빙 셀별 바이어스 값은 소정 시간 구간 동안 기준 서빙 셀의 ABS(Almost Blank Subframe) 개수와 해당 서빙 셀의 ABS 개수의 비율을 이용하여 계산된다.Preferably, the bias value for each serving cell is calculated using a ratio of the number of ABS (Almost Blank Subframe) of the reference serving cell and the number of ABS of the serving cell for a predetermined time interval.
바람직하게, 서빙 셀별 바이어스 값은 기준 서빙 셀의 PDCCH(Physical Downlink Control CHannel) 전송을 위한 OFDM(Orthogonal Frequency Division Symbol) 개수와 해당 서빙 셀의 PDCCH 전송을 위한 OFDM 심볼 개수의 비율을 이용하여 계산된다.Preferably, the bias value for each serving cell is calculated using a ratio of the number of orthogonal frequency division symbols (OFDM) for physical downlink control channel (PDCCH) transmission of the reference serving cell and the number of OFDM symbols for PDCCH transmission of the corresponding serving cell.
바람직하게, 서빙 셀별 바이어스 값은 기준 서빙 셀의 최대 전송 파워와 해당 서빙 셀의 최대 전송 파워의 비율을 이용하여 계산된다.Preferably, the bias value for each serving cell is calculated using a ratio of the maximum transmit power of the reference serving cell and the maximum transmit power of the corresponding serving cell.
본 발명에 의하면, 무선 통신 시스템에서 채널 측정 정보를 효율적으로 전송할 수 있다. 보다 구체적으로, 멀티캐리어 상황에서 채널 측정 정보를 효율적으로 전송할 수 있다. According to the present invention, channel measurement information can be efficiently transmitted in a wireless communication system. More specifically, channel measurement information can be efficiently transmitted in a multicarrier situation.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtained in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as part of the detailed description in order to provide a thorough understanding of the present invention, provide examples of the present invention and together with the description, describe the technical idea of the present invention.
도 1은 무선 통신 시스템의 일례인 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다. 1 illustrates physical channels used in a 3GPP LTE system, which is an example of a wireless communication system, and a general signal transmission method using the same.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.2 illustrates a structure of a radio frame.
도 3은 하향링크 슬롯의 자원 그리드를 예시한다.3 illustrates a resource grid of a downlink slot.
도 4는 하향링크 프레임의 구조를 나타낸다.4 shows a structure of a downlink frame.
도 5는 상향링크 서브프레임의 구조를 예시한다.5 illustrates a structure of an uplink subframe.
도 6은 캐리어 병합(Carrier Aggregation, CA) 시스템을 예시한다.6 illustrates a Carrier Aggregation (CA) system.
도 7은 매크로 셀과 마이크로 셀을 포함하는 이종 네트워크를 예시한다.7 illustrates a heterogeneous network comprising a macro cell and a micro cell.
도 8은 이종 네트워크에서 셀간 간섭이 발생하는 상황을 예시한다.8 illustrates a situation in which inter-cell interference occurs in a heterogeneous network.
도 9는 이종 네트워크에서 셀간 간섭을 해소하는 방안을 예시한다.9 illustrates a method for canceling intercell interference in a heterogeneous network.
도 10은 종래의 셀간 간섭 해소를 위한 피드백 과정을 예시한다.10 illustrates a conventional feedback process for canceling inter-cell interference.
도 11은 종래의 셀간 간섭을 위한 피드백 과정을 멀티캐리어 상황에 적용 시 예상되는 문제점을 예시한다.11 illustrates a problem expected when applying a conventional feedback process for intercell interference in a multicarrier situation.
도 12는 본 발명의 일 실시예에 따른 피드백 수행 과정을 예시한다.12 illustrates a process of performing feedback according to an embodiment of the present invention.
도 13는 본 발명의 일 실시예에 따른 응용 예를 나타낸다.13 shows an application example according to an embodiment of the present invention.
도 14는 본 발명에 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다.14 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various radio access systems. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA). UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA. LTE-A (Advanced) is an evolution of 3GPP LTE.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.For clarity, the following description focuses on 3GPP LTE / LTE-A, but the technical spirit of the present invention is not limited thereto. In addition, specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
도 1은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다. FIG. 1 is a diagram for explaining physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리방송채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.The terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101. To this end, the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크제어채널(Physical Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.After completing the initial cell search, the UE receives a physical downlink control channel (PDSCH) according to the physical downlink control channel (PDCCH) and the physical downlink control channel information in step S102. System information can be obtained.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송(S105) 및 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널 수신(S106)과 같은 충돌해결절차(Contention Resolution Procedure)를 수행할 수 있다.Thereafter, the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station. To this end, the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104). In case of contention-based random access, contention resolution procedures such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106) may be performed. .
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널/물리하향링크공유채널 수신(S107) 및 물리상향링크공유채널(Physical Uplink Shared Channel, PUSCH)/물리상향링크제어채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ-ACK 혹은 ACK/NACK(A/N)으로 지칭된다. HARQ-ACK은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 및 NACK/DTX 중 적어도 하나를 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다. After performing the above-described procedure, the UE performs a physical downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure. The physical uplink control channel (PUCCH) transmission (S108) may be performed. The control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI). UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like. In the present specification, HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N). HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX. UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
도 2는 무선 프레임의 구조를 예시한다. 셀룰라 OFDM 무선 패킷 통신 시스템에서, 상향링크/하향링크 데이터 패킷 전송은 서브프레임(subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다. 2 illustrates the structure of a radio frame. In a cellular OFDM wireless packet communication system, uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols. The 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
도 2(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다. 2 (a) illustrates the structure of a type 1 radio frame. The downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain. The time taken for one subframe to be transmitted is called a transmission time interval (TTI). For example, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms. One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. In the 3GPP LTE system, since OFDMA is used in downlink, an OFDM symbol represents one symbol period. An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period. A resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 표준 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 표준 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 표준 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.The number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP). CPs include extended CPs and normal CPs. For example, when an OFDM symbol is configured by a standard CP, the number of OFDM symbols included in one slot may be seven. When the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP. In the case of an extended CP, for example, the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
표준 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.When a standard CP is used, since one slot includes 7 OFDM symbols, one subframe includes 14 OFDM symbols. In this case, the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
도 2(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(Guard Period, GP), UpPTS(Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 2 (b) illustrates the structure of a type 2 radio frame. Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS). One subframe consists of two slots. DwPTS is used for initial cell search, synchronization or channel estimation at the terminal. UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal. The guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.The structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
도 3은 하향링크 슬롯의 자원 그리드를 예시한다.3 illustrates a resource grid of a downlink slot.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함한다. 하나의 하향링크 슬롯은 7(6)개의 OFDM 심볼을 포함하고 자원 블록은 주파수 도메인에서 12개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소(element)는 자원 요소(Resource Element, RE)로 지칭된다. 하나의 RB는 12×7(6)개의 RE를 포함한다. 하향링크 슬롯에 포함되는 RB의 개수 NRB는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일하되, OFDM 심볼이 SC-FDMA 심볼로 대체된다.Referring to FIG. 3, the downlink slot includes a plurality of OFDM symbols in the time domain. One downlink slot may include 7 (6) OFDM symbols, and the resource block may include 12 subcarriers in the frequency domain. Each element on the resource grid is referred to as a resource element (RE). One RB contains 12x7 (6) REs. The number of RBs included in the downlink slot NRB depends on the downlink transmission band. The structure of an uplink slot is the same as that of a downlink slot, but an OFDM symbol is replaced with an SC-FDMA symbol.
도 4는 하향링크 서브프레임의 구조를 예시한다.4 illustrates a structure of a downlink subframe.
도 4를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4)개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대응한다. 남은 OFDM 심볼은 PDSCH(Physical Downlink Shared CHancel)가 할당되는 데이터 영역에 해당한다. LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답으로 HARQ ACK/NACK(Hybrid Automatic Repeat request acknowledgment/negative-acknowledgment) 신호를 나른다.Referring to FIG. 4, up to three (4) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated. The remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared CHance (PDSCH) is allocated. Examples of a downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like. The PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe. The PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 한다. DCI 포맷은 상향링크용으로 포맷 0, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A 등의 포맷이 정의되어 있다. DCI 포맷은 용도에 따라 호핑 플래그(hopping flag), RB 할당, MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), 사이클릭 쉬프트 DM RS(demodulation reference signal), CQI (channel quality information) 요청, HARQ 프로세스 번호, TPMI(transmitted precoding matrix indicator), PMI(precoding matrix indicator) 확인(confirmation) 등의 정보를 선택적으로 포함한다.Control information transmitted through the PDCCH is referred to as downlink control information (DCI). The DCI format is defined as format 0 for uplink, formats 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A, and so on for downlink. The DCI format includes a hopping flag, RB assignment, modulation coding scheme (MCS), redundancy version (RV), new data indicator (NDI), transmit power control (TPC), and cyclic shift DM RS, depending on the application. Information including a reference signal (CQI), a channel quality information (CQI) request, a HARQ process number, a transmitted precoding matrix indicator (TPMI), and a precoding matrix indicator (PMI) confirmation are optionally included.
PDCCH는 하향링크 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 나른다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집합(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH가 특정 단말을 위한 것일 경우, 해당 단말의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system information block, SIC))를 위한 것일 경우, SI-RNTI(system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다.The PDCCH includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel, Resource allocation information of upper-layer control messages such as paging information on PCH), system information on DL-SCH, random access response transmitted on PDSCH, Tx power control command set for individual terminals in terminal group, Tx power control command , The activation instruction information of the Voice over IP (VoIP). A plurality of PDCCHs may be transmitted in the control region. The terminal may monitor the plurality of PDCCHs. The PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs). CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions. The CCE corresponds to a plurality of resource element groups (REGs). The format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs. The base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information. The CRC is masked with an identifier (eg, a radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH. For example, when the PDCCH is for a specific terminal, an identifier (eg, cell-RNTI (C-RNTI)) of the corresponding terminal may be masked on the CRC. If the PDCCH is for a paging message, a paging identifier (eg, paging-RNTI (P-RNTI)) may be masked to the CRC. When the PDCCH is for system information (more specifically, a system information block (SIC)), a system information RNTI (SI-RNTI) may be masked to the CRC. If the PDCCH is for a random access response, a random access-RNTI (RA-RNTI) may be masked to the CRC.
도 5는 LTE에서 사용되는 상향링크 서브프레임의 구조를 예시한다.5 illustrates a structure of an uplink subframe used in LTE.
도 5를 참조하면, 상향링크 서브프레임은 복수(예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH를 포함하고 상향링크 제어 정보(Uplink Control Information, UCI)를 전송하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍(RB pair)을 포함하며 슬롯을 경계로 호핑한다.Referring to FIG. 5, an uplink subframe includes a plurality of slots (eg, two). The slot may include different numbers of SC-FDMA symbols according to the CP length. The uplink subframe is divided into a data region and a control region in the frequency domain. The data area includes a PUSCH and is used to transmit a data signal such as voice. The control region includes a PUCCH and is used to transmit uplink control information (UCI). The PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.PUCCH may be used to transmit the following control information.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.SR (Scheduling Request): Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
- HARQ ACK/NACK: PDSCH 상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드(CodeWord, CW)에 대한 응답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.HARQ ACK / NACK: This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received. One bit of ACK / NACK is transmitted in response to a single downlink codeword (CodeWord, CW), and two bits of ACK / NACK are transmitted in response to two downlink codewords.
- CQI(Channel Quality Indicator): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator), PMI(Precoding Matrix Indicator), PTI(Precoding Type Indicator) 등을 포함한다. 서브프레임 당 20비트가 사용된다.Channel Quality Indicator (CQI): Feedback information for the downlink channel. Multiple input multiple output (MIMO) related feedback information includes a rank indicator (RI), a precoding matrix indicator (PMI), a precoding type indicator (PTI), and the like. 20 bits are used per subframe.
단말이 서브프레임에서 전송할 수 있는 제어 정보(UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다. PUCCH는 전송되는 정보에 따라 7개의 포맷을 지원한다.The amount of control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission. SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded. The reference signal is used for coherent detection of the PUCCH. PUCCH supports seven formats according to the transmitted information.
표 1은 LTE에서 PUCCH 포맷과 UCI의 맵핑 관계를 나타낸다.Table 1 shows a mapping relationship between PUCCH format and UCI in LTE.
표 1
PUCCH 포맷 상향링크 제어 정보 (Uplink Control Information, UCI)
포맷 1 SR(Scheduling Request) (비변조된 파형)
포맷 1a 1-비트 HARQ ACK/NACK (SR 존재/비존재)
포맷 1b 2-비트 HARQ ACK/NACK (SR 존재/비존재)
포맷 2 CQI (20개의 코딩된 비트)
포맷 2 CQI 및 1- 또는 2-비트 HARQ ACK/NACK (20비트) (확장 CP만 해당)
포맷 2a CQI 및 1-비트 HARQ ACK/NACK (20+1개의 코딩된 비트)
포맷 2b CQI 및 2-비트 HARQ ACK/NACK (20+2개의 코딩된 비트)
Table 1
PUCCH format Uplink Control Information (UCI)
Format 1 Scheduling Request (SR) (Unmodulated Waveform)
Format 1a 1-bit HARQ ACK / NACK (with or without SR)
Format 1b 2-bit HARQ ACK / NACK (with or without SR)
Format 2 CQI (20 coded bits)
Format 2 CQI and 1- or 2-bit HARQ ACK / NACK (20 bit) (Extended CP only)
Format 2a CQI and 1-Bit HARQ ACK / NACK (20 + 1 Coded Bits)
Format 2b CQI and 2-bit HARQ ACK / NACK (20 + 2 coded bits)
도 6은 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다. LTE-A 시스템은 보다 넓은 주파수 대역폭을 위해 복수의 상/하향링크 주파수 대역폭을 모아 더 큰 상/하향링크 대역폭을 사용하는 캐리어 병합(carrier aggregation 또는 bandwidth aggregation) 기술을 사용한다. 각각의 작은 주파수 대역폭은 콤포넌트 캐리어(Component Carrier, CC)를 이용해 전송된다. 콤포넌트 캐리어는 해당 주파수 블록을 위한 캐리어 주파수 (또는 중심 캐리어, 중심 주파수)로 이해될 수 있다. 6 illustrates a Carrier Aggregation (CA) communication system. The LTE-A system uses a carrier aggregation or bandwidth aggregation technique that combines a plurality of uplink / downlink frequency bandwidths for a wider frequency bandwidth and uses a larger uplink / downlink bandwidth. Each small frequency bandwidth is transmitted using a component carrier (CC). The component carrier may be understood as the carrier frequency (or center carrier, center frequency) for the corresponding frequency block.
각각의 CC들은 주파수 영역에서 서로 인접하거나 비-인접할 수 있다. CC의 대역폭은 기존 시스템과의 역호환(backward compatibility)을 위해 기존 시스템의 대역폭으로 제한될 수 있다. 예를 들어, 기존의 3GPP LTE 시스템에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, LTE_A에서는 LTE에서 지원하는 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원할 수 있다. 각 CC 의 대역폭은 독립적으로 정해질 수 있다. UL CC의 개수와 DL CC의 개수가 다른 비대칭 캐리어 병합도 가능하다. DL CC/UL CC 링크는 시스템에 고정되어 있거나 반-정적으로 구성될 수 있다. 예를 들어, 도 6(a)와 같이 DL CC 4개 UL CC 2개인 경우 DL CC:UL CC=2:1로 대응되도록 DL-UL 링키지 구성이 가능하다. 유사하게, 도 6(b)와 같이 DL CC 2개 UL CC 4개인 경우 DL CC:UL CC=1:2로 대응되도록 DL-UL 링키지 구성이 가능하다. 도시한 바와 달리, DL CC의 개수와 UL CC의 개수가 동일한 대칭 캐리어 병합도 가능하고, 이 경우 DL CC:UL CC=1:1의 DL-UL 링키지 구성도 가능하다.Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain. The bandwidth of the CC may be limited to the bandwidth of the existing system for backward compatibility with the existing system. For example, the existing 3GPP LTE system supports {1.4, 3, 5, 10, 15, 20} MHz bandwidth, LTE_A can support a bandwidth greater than 20MHz using only the bandwidths supported by LTE. . The bandwidth of each CC can be determined independently. It is also possible to merge asymmetric carriers in which the number of UL CCs and the number of DL CCs differ. The DL CC / UL CC link may be fixed in the system or configured semi-statically. For example, as shown in FIG. 6 (a), when there are four DL CCs and two UL CCs, DL-UL linkages can be configured to correspond to DL CC: UL CC = 2: 1. Similarly, as shown in FIG. 6 (b), DL-UL linkage can be configured to correspond to DL CC: UL CC = 1: 2 when two DL CCs are four UL CCs. Unlike illustrated, symmetric carrier merging is possible, where the number of DL CCs and the number of UL CCs are the same. In this case, a DL-UL linkage configuration of DL CC: UL CC = 1: 1 is also possible.
또한, 시스템 전체 대역폭이 N개의 CC로 구성되더라도 특정 단말이 모니터링/수신할 수 있는 주파수 대역은 M(<N)개의 CC로 한정될 수 있다. 캐리어 병합에 대한 다양한 파라미터는 셀 특정(cell-specific), 단말 그룹 특정(UE group-specific) 또는 단말 특정(UE-specific) 방식으로 설정될 수 있다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설정될 수 있다. 특정 CC를 프라이머리 CC(Primary CC, PCC)로 지칭하고, 나머지 CC를 세컨더리 CC(Secondary CC, SCC)로 지칭할 수 있다.In addition, even if the system overall bandwidth is composed of N CCs, the frequency band that a specific UE can monitor / receive may be limited to M (<N) CCs. Various parameters for carrier aggregation may be set in a cell-specific, UE group-specific or UE-specific manner. Meanwhile, the control information may be set to be transmitted and received only through a specific CC. A specific CC may be referred to as a primary CC (PCC) and the remaining CC may be referred to as a secondary CC (SCC).
LTE-A는 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 셀은 하향링크 자원과 상향링크 자원의 조합으로 정의되며, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 캐리어 병합이 지원되는 경우, 하향링크 자원의 캐리어 주파수(또는, DL CC)와 상향링크 자원의 캐리어 주파수(또는, UL CC) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 프라이머리 주파수(또는 PCC) 상에서 동작하는 셀을 프라이머리 셀(Primary Cell, PCell)로 지칭하고, 세컨더리 주파수(또는 SCC) 상에서 동작하는 셀을 세컨더리 셀(Secondary Cell, SCell)로 지칭할 수 있다. PCell은 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용된다. PCell은 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. SCell은 RRC(Radio Resource Control) 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. PCell과 SCell은 서빙 셀로 통칭될 수 있다. 따라서, RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, PCell로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우, 하나 이상의 서빙 셀이 존재하고, 전체 서빙 셀에는 PCell과 전체 SCell이 포함된다. 캐리어 병합을 위해, 네트워크는 초기 보안 활성화(initial security activation) 과정이 개시된 이후, 연결 설정 과정에서 초기에 구성되는 PCell에 부가하여 하나 이상의 SCell을 캐리어 병합을 지원하는 단말을 위해 구성할 수 있다.LTE-A uses the concept of a cell to manage radio resources. A cell is defined as a combination of downlink resources and uplink resources, and uplink resources are not required. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources. If carrier aggregation is supported, the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by system information. A cell operating on the primary frequency (or PCC) may be referred to as a primary cell (PCell), and a cell operating on the secondary frequency (or SCC) may be referred to as a secondary cell (SCell). The PCell is used by the terminal to perform an initial connection establishment process or to perform a connection re-establishment process. PCell may refer to a cell indicated in the handover process. The SCell is configurable after a Radio Resource Control (RRC) connection is established and can be used to provide additional radio resources. PCell and SCell may be collectively referred to as a serving cell. Therefore, in the case of the UE that is in the RRC_CONNECTED state, but carrier aggregation is not configured or does not support carrier aggregation, there is only one serving cell configured only with the PCell. On the other hand, in the case of the UE in the RRC_CONNECTED state and the carrier aggregation is configured, one or more serving cells exist, and the entire serving cell includes the PCell and the entire SCell. For carrier aggregation, after the initial security activation process is initiated, the network may configure one or more SCells for the UE supporting carrier aggregation in addition to the PCell initially configured in the connection establishment process.
도 7은 매크로 셀과 마이크로 셀을 포함하는 이종 네트워크를 예시한다. 3GPP LTE-A를 비롯한 차세대 통신 표준에서는 기존 매크로 셀 커버러지 내에 저전력 송신 파워를 갖는 마이크로 셀이 중첩되어 존재하는 이종 네트워크가 논의되고 있다. 7 illustrates a heterogeneous network comprising a macro cell and a micro cell. In next-generation communication standards including 3GPP LTE-A, heterogeneous networks in which microcells with low power transmission power overlap within existing macro cell coverage are discussed.
도 7을 참조하면, 매크로 셀은 하나 이상의 마이크로 셀과 중첩될 수 있다. 매크로 셀의 서비스는 매크로 기지국(Macro eNodeB, MeNB)에 의해 제공된다. 본 명세서에서 매크로 셀과 매크로 기지국은 혼용될 수 있다. 매크로 셀에 접속된 단말은 매크로 단말(Macro UE)로 지칭될 수 있다. 매크로 단말은 매크로 기지국으로부터 하향링크 신호를 수신하고, 매크로 기지국에게 상향링크 신호를 전송한다.Referring to FIG. 7, a macro cell may overlap one or more micro cells. The service of the macro cell is provided by the macro base station (Macro eNodeB, MeNB). In the present specification, the macro cell and the macro base station may be used interchangeably. The terminal connected to the macro cell may be referred to as a macro UE. The macro terminal receives a downlink signal from the macro base station and transmits an uplink signal to the macro base station.
마이크로 셀은 펨토 셀, 피코 셀로도 지칭된다. 마이크로 셀의 서비스는 피코 기지국(Pico eNodeB), 홈 기지국(Home eNodeB, HeNB), 릴레이 노드(Relay Node, RN) 등에 의해 서비스가 제공된다. 편의상, 피코 기지국(Pico eNodeB), 홈 기지국(Home eNodeB, HeNB), 릴레이 노드(Relay Node, RN)를 홈 기지국(HeNB)으로 통칭한다. 본 명세서에서 마이크로 셀과 홈 기지국은 혼용될 수 있다. 마이크로 셀에 접속된 단말은 마이크로 단말, 혹은 홈 단말(Home-UE)로 지칭될 수 있다. 홈 단말은 홈 기지국으로부터 하향링크 신호를 수신하고, 홈 기지국에게 상향링크 신호를 전송한다.Micro cells are also referred to as femto cells, pico cells. The service of the micro cell is provided by a pico base station (Pico eNodeB), a home base station (Home eNodeB, HeNB), a relay node (Relay Node, RN) and the like. For convenience, a pico base station (Pico eNodeB), a home base station (Home eNodeB, HeNB), and a relay node (Relay Node, RN) are collectively referred to as a home base station (HeNB). In the present specification, the micro cell and the home base station may be used interchangeably. The terminal connected to the micro cell may be referred to as a micro terminal or a home terminal. The home terminal receives a downlink signal from the home base station and transmits an uplink signal to the home base station.
마이크로 셀은 접근성에 따라 OA(open access) 셀과 CSG(closed subscriber group) 셀로 나뉘어 질 수 있다. OA 셀은 단말이 별도의 접근 제한 없이 필요할 경우 언제든지 서비스를 받을 수 있는 마이크로 셀을 의미한다. 반면, CSG 셀은 허가된 특정 단말만이 서비스를 받을 수 있는 마이크로 셀을 의미한다.Micro cells may be divided into OA (open access) cells and CSG (closed subscriber group) cells according to accessibility. The OA cell refers to a micro cell that can receive a service at any time when the terminal is required without additional access restriction. On the other hand, the CSG cell refers to a micro cell in which only a specific authorized terminal can receive a service.
이종 네트워크에서는 매크로 셀과 마이크로 셀이 중첩되므로 셀간 간섭이 보다 문제된다. 도 7에 도시된 바와 같이, 매크로 단말이 매크로 셀과 마이크로 셀의 경계에 있는 경우, 홈 기지국의 하향링크 신호는 매크로 단말에게 간섭으로 작용한다. 유사하게, 매크로 기지국의 하향링크 신호는 마이크로 셀 내에 홈 단말에게 간섭으로 작용할 수 있다. 또한, 매크로 단말의 상향링크 신호는 홈 기지국에게 간섭으로 작용할 수 있다. 유사하게, 홈 단말의 상향링크 신호는 매크로 기지국에게 간섭으로 작용할 수 있다.In heterogeneous networks, inter-cell interference is more problematic because macro and micro cells overlap. As shown in FIG. 7, when the macro terminal is at the boundary between the macro cell and the micro cell, the downlink signal of the home base station acts as an interference to the macro terminal. Similarly, the downlink signal of the macro base station may act as interference to the home terminal in the micro cell. In addition, the uplink signal of the macro terminal may act as an interference to the home base station. Similarly, the uplink signal of the home terminal may act as an interference to the macro base station.
도 8은 이종 네트워크에서 셀간 간섭이 발생하는 상황을 보다 구체적으로 예시한다. 도면에서 점선은 통신 링크를 나타내고 점선은 간섭을 나타낸다. 도 8을 참조하면, (a) CSG 셀에 접속하지 않는 매크로 단말이 홈 기지국에 의해 간섭을 받을 수 있고, (b) 매크로 단말이 홈 기지국에 대해 간섭을 유발할 수 있고, (c) CSG 단말이 다른 CSG 홈 기지국에 의해 간섭을 받을 수 있다. 도시한 간섭 상황은 예시로서, 네트워크 및 단말 구성에 따라 다양한 간섭 상황이 발생할 수 있다.8 illustrates a situation in which inter-cell interference occurs in a heterogeneous network in more detail. Dotted lines indicate communication links and dotted lines indicate interference in the figures. Referring to FIG. 8, (a) the macro terminal not connected to the CSG cell may be interfered by the home base station, (b) the macro terminal may cause interference with the home base station, and (c) the CSG terminal May be interfered by other CSG home base stations. The illustrated interference situation is an example, and various interference situations may occur according to a network and a terminal configuration.
상술한 바와 같이, 매크로-피코 이종 네트워크의 경우, 매크로 셀은 피코 셀의 단말, 특히 피코 셀의 경계에 있는 피코 단말에게 강한 간섭을 유발할 수 있다. 따라서, 데이터 및 L1/L2 제어 신호, 동기 신호 및 참조 신호에 대한 상향링크 및 하향링크 간섭을 해소하는 방법이 요구된다. 셀간 간섭 해소(Inter-Cell Interference Cancellation, ICIC) 방안은 시간, 주파수 및/또는 공간 도메인에서 다뤄질 수 있다. As described above, in the case of the macro-pico heterogeneous network, the macro cell may cause strong interference to the terminal of the pico cell, particularly the pico cell at the boundary of the pico cell. Accordingly, a method of resolving uplink and downlink interference on data and L1 / L2 control signals, synchronization signals, and reference signals is required. Inter-Cell Interference Cancellation (ICIC) schemes can be addressed in the time, frequency and / or spatial domains.
도 9는 이종 네트워크에서 셀간 간섭을 해소하는 방안을 예시한다. 편의상, 셀간 간섭으로부터 보호해야 할 대상을 피코 단말이라고 가정한다. 이 경우, 간섭을 유발하는 네트워크 노드는 매크로 셀 (혹은 매크로 기지국)이 된다.9 illustrates a method for canceling intercell interference in a heterogeneous network. For convenience, it is assumed that an object to be protected from intercell interference is a pico terminal. In this case, the network node causing interference becomes a macro cell (or macro base station).
도 9를 참조하면, 셀간 간섭을 유발하는 매크로 셀은 무선 프레임 내에 ABS(혹은 ABSF)(Almost Blank Subframe)를 구성할 수 있다. ABS는 특정 DL 신호를 제외하고는 보통의 DL 신호가 전송되지 않도록 설정된 서브프레임(Subframe, SubF)을 나타낸다. 특정 DL 신호는 이로 제한되는 것은 아니지만 예를 들어 CRS(Cell-specific Reference Signal, 또는 Cell-common Reference Signal)를 포함한다. ABS는 하나 이상의 무선 프레임 내에서 일정한 패턴을 갖도록 반복될 수 있다. 도면은 ABS가 서브프레임 #2/#6에 설정된 경우를 예시한다. 매크로 셀은 ABS 구성(configuration)을 백홀을 통해 피코 셀에게 알려주고, 피코 셀은 ABS 구성을 이용하여 피코 단말을 스케줄링 할 수 있다. 예를 들어, 피코 단말은 ABS 구간 동안에만 스케줄링 될 수 있다. 이 경우, 피코 단말의 CSI(Channel State Information) 측정은 ABS에서만 이뤄질 수 있다.Referring to FIG. 9, a macro cell causing intercell interference may configure an ABS (or ABSF) (Almost Blank Subframe) in a radio frame. ABS represents a subframe (Subframe, SubF) is set so that the normal DL signal is not transmitted except for a specific DL signal. Specific DL signals include, but are not limited to, for example, a cell-specific reference signal (CRS) or a cell-common reference signal (CRS). The ABS may be repeated to have a constant pattern within one or more radio frames. The figure illustrates a case where ABS is set in subframe # 2 / # 6. The macro cell informs the pico cell of the ABS configuration through the backhaul, and the pico cell may schedule the pico terminal using the ABS configuration. For example, the pico terminal may be scheduled only during the ABS period. In this case, channel state information (CSI) measurement of the pico terminal may be performed only in the ABS.
피간섭(interfered) 단말이 제한된 서브프레임(예, ABS)에서만 RLM(Radio Link Management)/RRM(Radio Resource Management)을 위한 측정을 수행하도록 구성될 경우, 불필요한 RLF(Radio Link Failure)를 방지하고 RSRQ(Reference Signal Received Quality)/RSRP(Reference Signal Received Power)의 측정 결과를 정확하게 할 수 있다. 3GPP RAN(Radio Access Network) 2는 어떤 서브프레임이 측정되어야 하는지를 지시하는 새로운 시그널링을 정의할 것을 요구하고 있다. 일 예로, 백홀 시그널링과 동일한 주기를 가지는 비트맵 시그널링(예, 1은 해당 서브프레임에서“단말이 측정할 수 있다”를 의미하고, 0은 해당 서브프레임에서 “단말이 측정하지 않아야 한다”를 의미할 수 있다)이 적용될 수 있다. 제한 패턴은 백홀 비트-패턴으로부터 독립적으로 구성될 수 있다.When the interfered UE is configured to perform measurement for Radio Link Management (RLM) / RRM (Radio Resource Management) only in a limited subframe (eg, ABS), it prevents unnecessary RLF (Radio Link Failure) and RSRQ The measurement results of (Reference Signal Received Quality) / RSRP (Reference Signal Received Power) can be accurate. 3GPP RAN (Radio Access Network) 2 requires defining new signaling indicating which subframe should be measured. For example, bitmap signaling having the same period as backhaul signaling (eg, 1 means “terminal can measure” in the corresponding subframe, and 0 means “terminal should not measure” in the corresponding subframe). Can be applied). The restriction pattern can be constructed independently from the backhaul bit-pattern.
도 10은 종래의 셀간 간섭 해소를 위한 피드백 과정을 예시한다. 본 예는 종래의 CRE(Cell Range Expansion)를 위한 피드백 과정을 예시한다. CRE는 단말이 각 셀의 신호를 측정 시에 특정 셀의 신호 측정 값에 바이어스를 더함으로써 특정 셀의 커버리지가 확장된 것처럼 하는 방안을 의미한다. CRE에 의해 특정 셀의 커버리지가 가상적으로 확장됨으로써, 셀 선택 또는 핸드오버 시에 특정 셀의 기지국이 선호되도록 할 수 있다. 도 10에서 단말은 매크로 셀(매크로 기지국)에 의해 서비스를 받는 상태이고, 매크로 셀 내에 피코 셀#1(피코 기지국#1) 및 피코 셀#2(피코 기지국#2)가 오버레이 되어 있다고 가정한다.10 illustrates a conventional feedback process for canceling inter-cell interference. This example illustrates a conventional feedback process for cell range expansion (CRE). CRE refers to a method in which the coverage of a specific cell is expanded by adding a bias to a signal measurement value of a specific cell when the terminal measures the signal of each cell. The coverage of a specific cell is virtually extended by the CRE, so that the base station of the specific cell may be preferred at the time of cell selection or handover. In FIG. 10, it is assumed that a terminal is in a state of being serviced by a macro cell (macro base station) and that pico cell # 1 (pico base station # 1) and pico cell # 2 (pico base station # 2) are overlaid in the macro cell.
도 10을 참조하면, 단말은 매크로 기지국으로부터 바이어스 정보를 수신한다(S1002). 바이어스 정보는 CRE 과정(예, 피드백 정보 생성, 피드백 트리거링 등)에서 사용될 수 있다. 바이어스 정보는 매크로 기지국의 PCell에 대한 바이어스 값을 지시하며, 피코 기지국별로 독립적으로 주어질 수 있다. 바이어스 정보는 방송 정보, 상위 계층(RRC 계층) 시그널링에 의해 주어질 수 있다. 바이어스 정보는 셀-특정(cell-specific), 단말-그룹 특정, 단말-특정하게 주어질 수 있다. 도시하지는 않았지만, 단말은 매크로 기지국으로부터 피코 기지국에 관한 정보를 수신할 수 있다. 피코 기지국에 관한 정보는 이로 제한되는 것은 아니지만 예를 들어 피코 기지국 식별 정보, 피코 기지국의 주파수 구성 정보를 포함할 수 있다. 바이어스 정보와 피코 기지국에 관한 정보는 함께 시그널링되거나 별도로 시그널링될 수 있다.Referring to FIG. 10, the terminal receives bias information from the macro base station (S1002). The bias information may be used in a CRE process (eg, feedback information generation, feedback triggering, etc.). The bias information indicates a bias value for the PCell of the macro base station and may be given independently for each pico base station. The bias information may be given by broadcast information and higher layer (RRC layer) signaling. The bias information may be given cell-specific, terminal-group specific, terminal-specific. Although not shown, the terminal may receive information about the pico base station from the macro base station. Information about the pico base station may include, but is not limited to, pico base station identification information, frequency configuration information of the pico base station. The bias information and the information about the pico base station may be signaled together or separately signaled.
이후, 단말은 매크로 기지국, 피코 기지국#1, 피코 기지국#2의 하향링크 신호를 측정한다(S1004). 하향링크 신호 측정은 참조 신호(Reference Signal, RS)에 기반하여 수행된다. 참조 신호는 CRS(Cell-specific Reference Signal, Cell-common Reference Signal)을 포함한다. 하향링크 신호 측정 결과는 다양한 형태로 얻어질 수 있다. 예를 들어, SNR(Signal to Noise Ratio), SINR(Signal to Interference and Noise Ratio), CIR(Carrier to Interference Ratio), CINR(Carrier to Interference and Noise Ratio), RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality) 또는 이와 관련된 값을 나타낼 수 있다.Thereafter, the terminal measures downlink signals of the macro base station, the pico base station # 1, the pico base station # 2 (S1004). Downlink signal measurement is performed based on a reference signal (RS). The reference signal includes a cell-specific reference signal (CRS). The downlink signal measurement result can be obtained in various forms. For example, Signal to Noise Ratio (SNR), Signal to Interference and Noise Ratio (SINR), Carrier to Interference Ratio (CIR), Carrier to Interference and Noise Ratio (CINR), Reference Signal Received Power (RSRP), RSRQ (RSRQ) Reference Signal Received Quality) or a value related thereto.
이후, 단말은 바이어스를 고려하여 피코 기지국 신호의 측정 값과 매크로 기지국 신호의 측정 값을 비교한다(S1006). 신호 측정 값이 RSRP인 경우를 가정하면, 단말은 [RSRP피코#1+바이어스#1]과 [RSRP매크로]를 비교하고, [RSRP피코#2+바이어스#2]과 [RSRP매크로]를 비교할 수 있다. RSRP피코#X는 피코 기지국#X의 신호에 대한 RSRP를 나타내고, 바이어스#X는 매크로 기지국의 PCell에 대해 피코 기지국#X를 위해 주어진 바이어스 값을 나타낸다. 피코 기지국 신호의 측정/비교가 셀(즉, 콤포넌트 캐리어) 단위로 수행될 경우, RSRP피코#X는 RSRP피코#X,셀#i로 대체될 수 있다. 셀#i는 피코 기지국의 셀(즉, 콤포넌트 캐리어) 인덱스를 나타낸다. RSRP매크로는 매크로 기지국의 PCell에 대한 RSRP를 나타낸다. [RSRP피코#X+바이어스#X]는 매크로 기지국의 PCell 커버리지와 비교해 피코 기지국#X의 커버리지를 상대적으로 증가시키는 효과가 있다.Thereafter, the terminal compares the measured value of the pico base station signal with the measured value of the macro base station signal in consideration of the bias (S1006). Assuming that the signal measurement value is RSRP, the UE can compare [RSRP Pico # 1 + Bias # 1] and [RSRP Macro ] and compare [RSRP Pico # 2 + Bias # 2] and [RSRP Macro ]. have. RSRP Pico # X represents the RSRP for the signal of Pico Base Station # X, and Bias # X represents the bias value given for Pico Base Station #X for the PCell of the macro base station. When the measurement / comparison of the pico base station signal is performed in units of cells (ie, component carriers), RSRP pico # X may be replaced with RSRP pico # X and cell # i . Cell #i represents the cell (ie, component carrier) index of the pico base station. The RSRP macro represents the RSRP for the PCell of the macro base station. [RSRP Pico # X + Bias # X] has an effect of relatively increasing the coverage of Pico Base Station #X compared to the PCell coverage of the Macro Base Station.
이후, 단말은 피드백 정보를 매크로 기지국에게 전송한다(S1008). 피드백 정보는 [RSRP피코#X+바이어스#X] > (또는 ≥) [RSRP매크로]가 만족되는 경우, 혹은 [RSRP피코#X+바이어스#X] > (또는 ≥) [RSRP매크로]가 소정의 기간 동안 만족되는 경우에 전송될 수 있다. 즉, 피코 기지국에 대한 피드백 전송 빈도/횟수가 바이어스 값에 의해 조절될 수 있다. 피드백 정보는 [RSRP피코#X+바이어스#X] > (또는 ≥) [RSRP매크로]를 만족하는 피코 기지국을 지시하는 정보, 혹은 해당 피코 기지국과 관련된 신호 측정 정보를 포함할 수 있다. 예를 들어, [RSRP피코#X+바이어스#X] > (또는 ≥) [RSRP매크로]가 만족되는 경우, 피드백 정보는 피코 기지국#X의 식별자, [RSRP피코#X] 및 [RSRP피코#X+바이어스#X] 중 적어도 하나를 포함할 수 있다. 매크로 기지국은 단말로부터 피드백 정보를 백홀 링크를 이용하여 피코 기지국과 공유할 수 있다. 단계 S1008은 피드백 정보가 피코 기지국에 관한 정보만을 포함하는 경우를 기술하고 있으나, 이는 예시로서 본 예에서 피드백 정보 내의 피코 기지국 관련 정보는 매크로 기지국 관련 정보로 대체되거나 함께 포함될 수 있다.Thereafter, the terminal transmits the feedback information to the macro base station (S1008). The feedback information can be obtained when [RSRP Pico # X + Bias # X]> (or ≥) [RSRP Macro ] is satisfied or [RSRP Pico # X + Bias #X]> (or ≥) [RSRP Macro ] It can be sent if it is satisfied during the period. That is, the frequency / number of feedback transmissions for the pico base station can be adjusted by the bias value. The feedback information may include information indicating a pico base station that satisfies [RSRP pico # X + bias # X]> (or ≥) [RSRP macro ], or signal measurement information related to the pico base station. For example, if [RSRP Pico # X + Bias # X]> (or ≥) [RSRP Macro ] is satisfied, the feedback information is an identifier of Pico Base Station #X, [RSRP Pico # X] and [RSRP Pico # X]. It may include at least one of + bias # X]. The macro base station may share feedback information from the terminal with the pico base station using a backhaul link. Although step S1008 describes a case in which the feedback information includes only information about the pico base station, this is an example. In this example, the pico base station related information in the feedback information may be replaced with or included with the macro base station related information.
이후, 단말과 매크로/피코 기지국은 피드백 정보를 고려하여 다양한 동작을 수행할 수 있다(S1010). 예를 들어, 단말과 매크로/피코 기지국은 피드백 정보를 이용하여 핸드오버, 셀-(재)선택 과정 등을 수행할 수 있다. 예를 들어, 단말은 [RSRP피코#X+바이어스#X] 값이 가장 큰 피코 셀(피코 기지국)을 선택하여 셀-(재)선택 과정을 수행할 수 있다. 피드백 정보가 [RSRP피코#X]을 포함하는 경우, 매크로 기지국은 [RSRP피코#X]을 [RSRP피코#X+바이어스#X]로 환산한 뒤, 핸드오버 과정 등을 수행할 수 있다. 피드백 정보가 [RSRP피코#X+바이어스#X]을 포함하는 경우, 매크로 기지국은 피드백 정보를 그대로 이용하여 핸드오버 과정 등을 수행할 수 있다.Thereafter, the terminal and the macro / pico base station may perform various operations in consideration of the feedback information (S1010). For example, the terminal and the macro / pico base station may perform handover, cell- (re) selection process, etc. using the feedback information. For example, the UE may perform a cell- (re) selection process by selecting a pico cell (pico base station) having the largest value of [RSRP pico # X + bias # X]. When the feedback information includes [RSRP Pico # X], the macro base station may convert [RSRP Pico # X] to [RSRP Pico # X + Bias # X] and then perform a handover process. When the feedback information includes [RSRP Pico # X + Bias # X], the macro base station may perform a handover process using the feedback information as it is.
상술한 과정은 단말이 매크로 셀에 속해있는 경우(즉, 매크로 단말)를 위주로 설명하고 있으나, 이는 예시로서 단말이 피코 셀에 속해있는 경우(즉, 피코 단말)에도 유사한 방식으로 셀간 간섭 해소를 위한 피드백 과정을 수행할 수 있다. 바이어스 값은 셀 우선 순위에 따라 매크로 셀 신호의 측정 값 또는 피코 셀 신호의 측정 값에 더해질 수 있다.The above-described process mainly describes the case where the UE belongs to the macro cell (that is, the macro terminal), but this is an example for canceling the inter-cell interference in a similar manner even when the UE belongs to the pico cell (ie, the pico terminal). The feedback process can be performed. The bias value may be added to the measured value of the macro cell signal or the measured value of the pico cell signal according to the cell priority.
상술한 종래의 CRE를 피드백 과정은 매크로 기지국의 PCell만을 고려하고 있다. 즉, 피코 기지국의 커버리지 증가 효과는 매크로 기지국의 PCell에 대해서만 유효하며, 이를 위해 CRE를 위한 바이어스 값도 PCell에 대해서만 주어졌다. CRE 과정에서 PCell만을 고려한 것은, RLF(Radio Link Failure) 판단, 핸드오버 과정 등이 PCell을 기준으로 이뤄지므로 이웃 셀(기지국) 신호의 피드백 과정이 매크로 기지국의 PCell 신호만을 기준으로 수행됐기 때문이다. 이로 인해, 매크로 기지국이 멀티캐리어를 지원하더라도, SCC(즉, SCell)에 대해서는 셀간 간섭 해소를 위한 피드백 정보가 제공되지 않으므로 자원 사용 시에 유연성이 떨어진다. 또한, 각 CC 별로 신호 세기, 부하 등이 다름에도 불구하고, 각 CC의 커버리지는 PCC(즉, PCell)를 기준으로 정해지게 되어 다양한 통신 시나리오를 지원하기 위한 유연성이 떨어진다. 예를 들어, 멀티캐리어 상황에서 한 기지국 내에서 PCell/SCell 재구성, 한 단말에 대해 둘 이상의 기지국이 PCell 및 SCell을 나눠서 구성 시에 제한이 따를 수 있다.The above-described conventional CRE feedback process considers only the PCell of the macro base station. That is, the coverage increase effect of the pico base station is effective only for the PCell of the macro base station, and for this, a bias value for the CRE is also given only for the PCell. Only the PCell is considered in the CRE process because the RLF (Radio Link Failure) determination and the handover process are performed based on the PCell, so that the feedback process of the neighbor cell (base station) signal is performed based only on the PCell signal of the macro base station. For this reason, even if the macro base station supports multicarrier, feedback information for canceling inter-cell interference is not provided for the SCC (that is, the SCell), thereby reducing flexibility in resource usage. In addition, despite the different signal strength, load, etc. for each CC, the coverage of each CC is determined based on the PCC (ie, PCell), which is inflexible for supporting various communication scenarios. For example, in a multicarrier situation, a PCell / SCell reconfiguration within one base station may be restricted when two or more base stations divide a PCell and a SCell for one terminal.
도 11은 종래의 셀간 간섭을 위한 피드백 과정을 멀티캐리어 상황에 적용 시 예상되는 문제점을 예시한다. 편의상, 매크로 셀 상에 한 개의 피코 셀이 오버레이 되고, 매크로 셀과 피코 셀 모두 동일한 주파수 대역(즉, f1, f2)을 사용한다고 가정한다. 본 예는 피코 단말의 관점에서 기술되었다.11 illustrates a problem expected when applying a conventional feedback process for intercell interference in a multicarrier situation. For convenience, it is assumed that one pico cell is overlaid on the macro cell, and both the macro cell and the pico cell use the same frequency band (ie, f1 and f2). This example has been described in terms of pico terminals.
도 11에서 ABS(almost blank subframe)는 간섭 제어를 위해 한 서브프레임 동안 중요한 정보(예, PCFICH, PDCCH, PSCH, SSCH, PBCH, SIB1, Paging)를 제외한 나머지 PDSCH의 영역이 블랭크(blank)된 서브프레임이다. 본 예에서 ABS는 매크로 셀의 무선 프레임에 구성된다고 가정하지만, 이는 예시로서 ABS는 피코 셀의 무선 프레임에 구성될 수도 있다. ABS는 한 개 혹은 다수의 무선 프레임 동안 다양한 패턴을 가질 수 있다. 피코 셀 경계에 위치한 피코 단말은 f2에서 ABS에 대응하는 피코 서브프레임에서 스케줄링을 받음으로써 매크로 기지국으로부터 오는 간섭의 영향을 제거할 수 있다. 그러나, CRS, PDCCH와 같은 제어 정보는 ABS안에도 존재하므로, 피코 단말은 ABS에 대응하는 피코 서브프레임에서 스케줄링 되더라도 매크로 기지국의 제어 정보 신호로 인해 간섭을 받는다. 이로 인해, 피코 단말은 피코 셀 하향링크의 PDCCH 복호를 원활하게 수행할 수 없을 수 있다. 이러한 문제점을 극복하기 위하여 크로스 스케줄링을 이용할 수 있다.In FIG. 11, an ABS (almost blank subframe) is a sub-blank of an area of the remaining PDSCH except for important information (eg, PCFICH, PDCCH, PSCH, SSCH, PBCH, SIB1, Paging) during one subframe for interference control. Frame. In this example, it is assumed that ABS is configured in the radio frame of the macro cell, but this may be configured as an example in the radio frame of the pico cell. The ABS may have various patterns during one or multiple radio frames. The pico terminal located at the pico cell boundary may remove the influence of the interference from the macro base station by receiving the scheduling in the pico subframe corresponding to the ABS at f2. However, since control information such as CRS and PDCCH exist in the ABS, the pico terminal is interrupted due to the control information signal of the macro base station even when scheduled in the pico subframe corresponding to the ABS. For this reason, the pico terminal may not be able to smoothly perform PDCCH decoding of the pico cell downlink. To overcome this problem, cross scheduling may be used.
구체적으로, 매크로 셀의 콤포넌트 캐리어들은 각기 다른 PDCCH 길이와 PDSCH 로드(load)를 설정할 수 있으므로, 도 11과 같이 f2에 짧은 길이의 PDCCH를 할당하고 (혹은 같은 개수의 OFDM 심볼을 사용하더라고 실제 전송되는 PDCCH의 수를 줄여주어) 작은 부하 혹은 ABS를 할당함으로써 피코 셀의 중요 정보를 담고 있는 피코 셀 PCell(f2)에 대한 간섭 영향을 줄일 수 있다.In detail, since component carriers of a macro cell may set different PDCCH lengths and PDSCH loads, as shown in FIG. 11, a short PDCCH is allocated to f2 (or the same number of OFDM symbols are actually transmitted. By allocating a small load or ABS by reducing the number of PDCCHs, it is possible to reduce the influence of interference on the pico cell PCell (f2) containing important information of the pico cell.
이 경우, 피코 단말 및/또는 피코 기지국은 피코 PCell에 대한 신호 측정 값(예, RSRP/RSRQ)에 바이어스를 부가하여 임의적으로 피코 셀의 커버리지를 크게 할 수 있다. 피코 PCell(f2)에 대한 신호 측정은 ABS에 대응하는 피코 서브프레임에서 수행될 수 있다. ABS에서 손해보는 매크로 셀의 데이터 쓰루풋(throughput)을 피코 셀에서 얻을 수 있으며, 매크로 셀의 오프로드(Offload) 효과를 통해 전체 셀의 쓰루풋을 향상 시킬 수 있다.In this case, the pico terminal and / or pico base station may arbitrarily increase the coverage of the pico cell by adding a bias to a signal measurement value (eg, RSRP / RSRQ) for the pico PCell. Signal measurement for the pico PCell f2 may be performed in a pico subframe corresponding to the ABS. Data throughput of the macro cell, which is lost in ABS, can be obtained from the pico cell, and the throughput of the entire cell can be improved through the offload effect of the macro cell.
그러나, 상술한 바와 같이, 기존의 CRE에 따른 피드백에서는 피코 단말이 하나의 콤포넌트 캐리어(즉, PCell, f2)만을 기준으로 RSRP/RSRQ를 측정하여 보고한다. 그러나, 기존의 방법에 따르면, 간섭 상황이 심한 f1을 PCellCellCell 있는 피코 단말이 있는 경우, f2의 신호와 인접 셀 신호의 대비 및 그에 따른 피드백이 없으므로, 해당 피코 단말은 좋은 채널 상황을 가질 수 있는 f2로의 PCell 변경(change)에 제약이 존재한다. 즉, f1을 PCell로 유지하고 있는 단말이 f2로 핸드오버하기 위해서 각 콤포넌트 캐리어별로 인접 셀의 신호/커버리지를 고려해 RSRP/RSRQ를 보고할 필요가 있다.However, as described above, in the feedback based on the existing CRE, the pico terminal measures and reports RSRP / RSRQ based on only one component carrier (ie, PCell, f2). However, according to the conventional method, when there is a pico terminal having a PCellCellCell interference f1 severely, there is no contrast between the signal of f2 and the neighbor cell signal and accordingly feedback, the corresponding pico terminal f2 can have a good channel situation There is a constraint on PCell change to. That is, in order to handover to f2 the terminal holding f1 as a PCell, it is necessary to report RSRP / RSRQ in consideration of the signal / coverage of the neighbor cell for each component carrier.
따라서, 본 발명에서는 이종 네트워크에서 하향링크 채널 측정 시(예, RSRP/RSRQ 측정 시)에 CC(즉, 셀, 서빙 셀)별로 바이어스 값을 독립적으로 사용하는 방법을 제안한다. 본 발명에 따르면, 각 콤포넌트 캐리어별로 바이어스 값을 독립적으로 할당함으로써 PCell 변경을 용이하게 제어하거나 각 콤포넌트 캐리어별로 셀 커버리지를 다르게 유지하여 자원 유연성(resource flexibility)을 높일 수 있다.Accordingly, the present invention proposes a method of independently using a bias value for each CC (ie, cell, serving cell) in downlink channel measurement (eg, RSRP / RSRQ measurement) in a heterogeneous network. According to the present invention, by independently assigning a bias value to each component carrier, it is possible to easily control PCell change or to increase resource flexibility by maintaining cell coverage differently for each component carrier.
도 12는 본 발명의 일 실시예에 따른 피드백 수행 과정을 예시한다.12 illustrates a process of performing feedback according to an embodiment of the present invention.
도 12를 참조하면, 단말은 매크로 기지국으로부터 바이어스 정보를 수신한다(S1202). 바이어스 정보는 CRE 과정(예, 피드백 정보 생성, 피드백 트리거링 등)에서 사용될 수 있다. 바이어스 정보는 매크로 기지국의 PCC(즉, PCell) 및/또는 SCC(즉, SCell)에 대한 바이어스 값을 지시하며, 피코 기지국별로 독립적으로 주어질 수 있다. 각각의 CC별 바이어스 값은 방송 정보, 상위 계층(RRC 계층) 시그널링, L1 시그널링(예, PDCCH)에 의해 명시적으로 주어질 수 있다. 바이어스 정보는 셀-특정, 단말-그룹 특정, 단말-특정, 바람직하게는 단말-특정하게 주어질 수 있다.Referring to FIG. 12, the terminal receives bias information from the macro base station (S1202). The bias information may be used in a CRE process (eg, feedback information generation, feedback triggering, etc.). The bias information indicates a bias value for the PCC (ie, PCell) and / or SCC (ie, SCell) of the macro base station, and may be given independently for each pico base station. Each CC-specific bias value may be explicitly given by broadcast information, higher layer (RRC layer) signaling, and L1 signaling (eg, PDCCH). The bias information may be given cell-specific, terminal-group specific, terminal-specific, preferably terminal-specific.
다른 방안으로, 기준 CC의 바이어스 값으로부터 다른 CC의 바이어스 값을 묵시적(implicit)으로 계산할 수 있다. 기준 CC는 PCC (PCell)이거나, 기지국으로부터 명시적(explicit)으로 바이어스 값을 처음으로 전달받은 CC일수 있다. 묵시적으로 바이어스 값을 계산하는 방법으로는 다음과 같은 방법을 고려할 수 있다.Alternatively, the bias value of the other CC may be calculated implicitly from the bias value of the reference CC. The reference CC may be a PCC (PCell) or a CC initially receiving an explicit bias value from the base station. As a method of calculating the implicit value implicitly, the following method may be considered.
1. 기준 CC의 바이어스 값과 일정한 오프셋 값을 +/-하여 결정할 수 있다. 오프셋 값은 상위 계층(예, RRC) 시그널링을 통해 기지국으로부터 단말에게 시그널링 될 수 있다. 기준 CC의 바이어스 값과 해당 CC를 위한 바이어스 오프셋 값은 함께 또는 별도로 시그널링 할 수 있다. 또는, 오프셋 스텝 크기를 미리 정해두고, 증가 또는 감소 여부만을 시그널링 할 수 있다.1. The bias value and the constant offset value of the reference CC can be determined by +/-. The offset value may be signaled from the base station to the terminal through higher layer (eg, RRC) signaling. The bias value of the reference CC and the bias offset value for the corresponding CC may be signaled together or separately. Alternatively, the offset step size may be determined in advance, and only the increase or decrease may be signaled.
2. CC별로 N(N≥1)개의 무선 프레임 동안(혹은 ABS 구성(configuration)의 한 주기 동안) 설정되는 ABS 개수에 따라 바이어스 값을 계산할 수 있다. 예를 들어, 각 CC의 바이어스 값은 기준 CC의 ABS 개수와 해당 CC의 ABS 개수의 비율에 따라 결정되거나, 혹은 반비례 관계에 따라 설정될 수 있다. 다른 예로, ABS 개수의 비율을 고려하지 않고, 모든 CC에 대해 각 CC에서 주어진 기간 동안의 ABS 개수만을 고려하여 바이어스 값을 계산할 수 있다. 예를 들어, ABS 개수와 그에 따른 바이어스 값의 매핑 관계를 미리 정해놓고, ABS 개수에 따라 자동적으로 바이어스 값을 계산할 수 있다. ABS 개수와 바이어스 값은 비례할 수 있다.2. The bias value may be calculated according to the number of ABS set for N (N≥1) radio frames per CC (or during one cycle of an ABS configuration). For example, the bias value of each CC may be determined according to a ratio of the ABS number of the reference CC and the ABS number of the CC, or may be set according to an inverse relationship. As another example, the bias value may be calculated by considering only the number of ABS for a given period in each CC without considering the ratio of the number of ABS. For example, the mapping relationship between the ABS number and the bias value accordingly can be determined in advance, and the bias value can be automatically calculated according to the ABS number. The number of ABS and the bias value may be proportional.
3. PDCCH 전송을 위한 OFDM 심볼의 개수(간단히, PDCCH 심볼 개수로 지칭)를 RRC로 구성(configuration)하는 경우라면, 각 CC의 바이어스 값은 기준 CC의 PDCCHM 심볼 개수와 해당 CC의 PDCCH 심볼 개수의 비율에 따라 결정될 수 있다. 예를 들어, PDCCH 심볼 개수가 많은 CC에 대해서는 바이어스 값이 작게 설정되도록 할 수 있다. 다른 예로, PDCCH 심볼 개수의 비율을 고려하지 않고, 모든 CC에 대해 각 CC에서 주어진 기간 동안의 PDCCH 심볼 개수만을 고려하여 바이어스 값을 계산할 수 있다. 예를 들어, PDCCH 심볼 개수와 그에 따른 바이어스 값의 매핑 관계를 미리 정해놓고, PDCCH 심볼 개수에 따라 자동적으로 바이어스 값을 계산할 수 있다. PDCCH 심볼 개수와 바이어스 값은 반비례할 수 있다.3. If the number of OFDM symbols for the PDCCH transmission (or simply referred to as the number of PDCCH symbols) is configured in RRC, the bias value of each CC is the number of PDCCHM symbols of the reference CC and the number of PDCCH symbols of the CC. It can be determined according to the ratio. For example, a bias value may be set to be small for a CC having a large number of PDCCH symbols. As another example, the bias value may be calculated by considering only the number of PDCCH symbols for a given period in each CC without considering the ratio of the number of PDCCH symbols. For example, the mapping relationship between the number of PDCCH symbols and the corresponding bias value may be determined in advance, and the bias value may be automatically calculated according to the number of PDCCH symbols. The number of PDCCH symbols and the bias value may be inversely proportional.
4. 단말이 각 CC의 최대 TX(Transmit) 파워를 알고 있다면, 각 CC의 바이어스 값은 기준 CC의 최대 파워와 해당 CC의 최대 파워의 비율에 따라 결정될 수 있다. 다른 예로, 최대 TX 파워의 비율을 고려하지 않고, 각 CC의 최대 TX 파워를 개별적으로 고려하여 바이어스 값을 계산할 수 있다. 예를 들어, TX 최대 파워와 그에 따른 바이어스 값의 매핑 관계를 미리 정해놓고, TX 최대 파워에 따라 자동적으로 바이어스 값을 계산할 수 있다. TX 최대 파워와 바이어스 값은 반비례할 수 있다.4. If the UE knows the maximum TX (Transmit) power of each CC, the bias value of each CC may be determined according to the ratio of the maximum power of the reference CC and the maximum power of the CC. As another example, the bias value may be calculated by individually considering the maximum TX power of each CC without considering the ratio of the maximum TX power. For example, a mapping relationship between TX maximum power and a corresponding bias value may be determined in advance, and a bias value may be automatically calculated according to the TX maximum power. The TX maximum power and bias values can be inversely proportional.
5. 인접한 피코 셀의 수나 간섭 레벨(예, SIR, SINR, CINR 등)에 따라 대상 CC의 바이어스 값을 결정할 수 있다. 예를 들어, 인접한 피코 셀의 수가 간섭 레벨이 큰 경우 바이어스 값을 적게 설정하고, 인접한 피코 셀의 수가 간섭 레벨이 작은 경우 바이어스 값이 크게 설정되도록 할 수 있다.5. The bias value of the target CC can be determined according to the number of adjacent pico cells or the interference level (eg, SIR, SINR, CINR, etc.). For example, a bias value may be set to be small when the number of adjacent pico cells has a large interference level, and a bias value may be set to be large when the number of adjacent pico cells is small.
또한, 도시하지는 않았지만, 단말은 매크로 기지국으로부터 피코 기지국에 관한 정보를 수신할 수 있다. 피코 기지국에 관한 정보는 이로 제한되는 것은 아니지만 예를 들어 피코 기지국 식별 정보, 피코 기지국의 주파수 구성 정보를 포함할 수 있다. 바이어스 정보와 피코 기지국에 관한 정보는 함께 시그널링되거나 별도로 시그널링될 수 있다.In addition, although not shown, the terminal may receive information about the pico base station from the macro base station. Information about the pico base station may include, but is not limited to, pico base station identification information, frequency configuration information of the pico base station. The bias information and the information about the pico base station may be signaled together or separately signaled.
이후, 단말은 매크로 기지국, 피코 기지국#1, 피코 기지국#2의 하향링크 신호를 측정한다(S1204). 하향링크 신호 측정은 참조 신호에 기반하여 수행된다. 하향링크 신호 측정 결과는 다양한 형태로 얻어질 수 있다. 예를 들어, SNR, SINR, CIR, CINR, RSRP, RSRQ 또는 이와 관련된 값을 나타낼 수 있다.Thereafter, the UE measures downlink signals of the macro base station, pico base station # 1, and pico base station # 2 (S1204). Downlink signal measurement is performed based on the reference signal. The downlink signal measurement result can be obtained in various forms. For example, SNR, SINR, CIR, CINR, RSRP, RSRQ or a value related thereto may be indicated.
이후, 단말은 바이어스를 고려하여 피코 기지국 신호의 측정 값과 매크로 기지국 신호의 측정 값을 비교한다(S1206). 신호 측정 값이 RSRP인 경우를 가정하면, 단말은 [RSRP피코#1+바이어스#1셀#k]과 [RSRP매크로,셀#k]를 비교하고, [RSRP피코#2+바이어스#2셀#k]과 [RSRP매크로,셀#k]를 비교할 수 있다. RSRP피코#X는 피코 기지국#X의 신호에 대한 RSRP를 나타낸다. 바이어스#X셀#k는 매크로 기지국의 셀#k에 대해 피코 기지국#X를 위해 주어진 바이어스 값을 나타낸다. 피코 기지국의 신호가 셀(즉, 콤포넌트 캐리어) 단위로 수행될 경우, RSRP피코#X는 RSRP피코#X,셀#i로 대체될 수 있다. 셀#i는 피코 기지국의 셀(즉, 콤포넌트 캐리어) 인덱스를 나타낸다. RSRP매크로,셀#k는 매크로 기지국의 셀#i 신호에 대한 RSRP를 나타낸다.Thereafter, the terminal compares the measured value of the pico base station signal with the measured value of the macro base station signal in consideration of the bias (S1206). Assuming that the signal measurement value is RSRP, the terminal compares the [RSRP Pico # 1 + bias # 1 cell # k ] and [RSRP macro, cell # k ], and [RSRP Pico # 2 + bias # 2 cell # k ] and [RSRP macro, cell #k ] can be compared. RSRP Pico # X represents RSRP for the signal of Pico Base Station #X. The bias #X cell #k represents a bias value given for pico base station #X for cell #k of the macro base station. When the signal of the pico base station is performed in units of cells (ie, component carriers), RSRP pico # X may be replaced with RSRP pico # X and cell # i . Cell #i represents the cell (ie, component carrier) index of the pico base station. RSRP macro, cell #k represents the RSRP for the cell #i signal of the macro base station.
이후, 단말은 피드백 정보를 매크로 기지국에게 전송한다(S1208). 피드백 정보는 [RSRP피코#X+바이어스#X셀#k] > (또는 ≥) [RSRP매크로,셀#k]가 만족되는 경우, 혹은 [RSRP피코#X+바이어스#X셀#k] > (또는 ≥) [RSRP매크로,셀#k]가 소정의 기간 동안 만족되는 경우에 전송될 수 있다. 즉, 피코 기지국에 대한 피드백 전송 빈도/횟수가 바이어스 값에 의해 조절될 수 있다. 피드백 정보는 [RSRP피코#X+바이어스#X셀#k] > (또는 ≥) [RSRP매크로,셀#k]를 만족하는 피코 기지국을 지시하는 정보, 혹은 해당 피코 기지국과 관련된 신호 측정 정보를 포함할 수 있다. 예를 들어, [RSRP피코#X+바이어스#X셀#k] > (또는 ≥) [RSRP매크로,셀#k]가 만족되는 경우, 피드백 정보는 피코 기지국#X의 식별자, [RSRP피코#X] 및 [RSRP피코#X+바이어스#X셀#k] 중 적어도 하나를 포함할 수 있다. 피코 기지국의 신호가 셀(즉, 콤포넌트 캐리어) 단위로 수행될 경우, 피드백 과정도 피코 기지국의 셀 단위로 수행될 수 있다. 매크로 기지국은 단말로부터 피드백 정보를 백홀 링크를 이용하여 피코 기지국과 공유할 수 있다. 단계 S1208은 피드백 정보가 피코 기지국에 관한 정보만을 포함하는 경우를 기술하고 있으나, 이는 예시로서 본 예에서 피드백 정보 내의 피코 기지국 관련 정보는 매크로 기지국 관련 정보로 대체되거나 함께 포함될 수 있다.Thereafter, the terminal transmits the feedback information to the macro base station (S1208). Feedback information is available when [RSRP Pico # X + Bias # X Cell # k ]> (or ≥) [RSRP Macro, Cell # k ] is satisfied or [RSRP Pico # X + Bias # X Cell # k ]> ( Or ≥) [RSRP macro, cell #k ] may be transmitted if it is satisfied for a predetermined period. That is, the frequency / number of feedback transmissions for the pico base station can be adjusted by the bias value. The feedback information includes information indicating a pico base station satisfying [RSRP pico # X + bias # X cell # k ]> (or ≥) [RSRP macro, cell # k ], or signal measurement information related to the pico base station. can do. For example, if [RSRP Pico # X + Bias # X Cell # k ]> (or ≥) [RSRP Macro, Cell # k ] is satisfied, the feedback information may be an identifier of Pico Base Station #X, [RSRP Pico # X]. And [RSRP Pico # X + Bias # X Cell # k ]. When the signal of the pico base station is performed in units of cells (ie, component carriers), the feedback process may also be performed in units of cells of the pico base station. The macro base station may share feedback information from the terminal with the pico base station using a backhaul link. Step S1208 describes a case in which the feedback information includes only information about the pico base station. However, this is an example. In this example, the pico base station related information in the feedback information may be replaced with or included with the macro base station related information.
이후, 단말과 매크로/피코 기지국은 피드백 정보를 고려하여 다양한 동작을 수행할 수 있다(S1210). 예를 들어, 단말과 매크로/피코 기지국은 피드백 정보를 이용하여 PCell/SCell 재구성, 핸드오버, 셀-(재)선택 과정 등을 수행할 수 있다. 구체적으로, 단말은 [RSRP피코#X+바이어스#X셀#k] 값이 가장 큰 피코 셀(피코 기지국)을 선택하여 해당 동작을 수행할 수 있다. 피드백 정보가 [RSRP피코#X]을 포함하는 경우, 매크로 기지국은 [RSRP피코#X]을 [RSRP피코#X+바이어스#X셀#k]로 환산한 뒤, 해당 동작을 수행할 수 있다. 피드백 정보가 [RSRP피코#X+바이어스#X셀#k]을 포함하는 경우, 매크로 기지국은 피드백 정보를 그대로 이용하여 해당 동작을 수행할 수 있다.Thereafter, the terminal and the macro / pico base station may perform various operations in consideration of the feedback information (S1210). For example, the terminal and the macro / pico base station may perform PCell / SCell reconfiguration, handover, cell- (re) selection process, etc. using the feedback information. Specifically, the terminal may select a pico cell (Pico base station) having the largest value of [RSRP pico #X + bias #X cell #k ] to perform a corresponding operation. When the feedback information includes [RSRP pico # X], the macro base station may convert [RSRP pico # X] to [RSRP pico # X + bias # X cell # k ] and then perform a corresponding operation. When the feedback information includes [RSRP Pico # X + Bias # X Cell # k ], the macro base station may perform the operation by using the feedback information as it is.
상술한 과정은 단말이 매크로 셀에 속해있는 경우(즉, 매크로 단말)를 위주로 설명하고 있으나, 이는 예시로서 단말이 피코 셀에 속해있는 경우(즉, 피코 단말)에도 유사한 방식으로 CRE를 수행할 수 있다. 바이어스 값은 셀 우선 순위에 따라 매크로 셀 신호의 측정 값 또는 피코 셀 신호의 측정 값에 더해질 수 있다.The above-described process mainly describes the case where the UE belongs to the macro cell (that is, the macro terminal). However, this is an example and the CRE may be performed in a similar manner even when the UE belongs to the pico cell (ie, the pico terminal). have. The bias value may be added to the measured value of the macro cell signal or the measured value of the pico cell signal according to the cell priority.
본 발명의 실시예에 따른 피드백 방법은 다음의 장점을 가진다.The feedback method according to the embodiment of the present invention has the following advantages.
1. 피코 기지국 혹은 매크로 기지국은 단말로부터 받은 각 콤포넌트 캐리어의 RSRP/RSRQ 값을 셀 쓰루풋을 최고로 높일 수 있도록 각 단말의 PCell과 SCell간의 스위칭에 이용할 수 있다.1. The pico base station or the macro base station may use the RSRP / RSRQ value of each component carrier received from the terminal for switching between the PCell and the SCell of each terminal to maximize the cell throughput.
2. 매크로/피코 기지국은 콤포넌트 캐리어별로 다른 바이어스 값을 할당하여 단말로 하여금 불필요하거나 의도하지 않은 보고를 제어할 수 있다.2. The macro / pico base station may assign different bias values to component carriers to allow the terminal to control unnecessary or unintended reporting.
3. 셀 레인지 확장 관점에서 간섭 영향이 적은 콤포넌트 캐리어의 셀 경계만을 크게 하여 매크로 단말이 피코 셀에 핸드오버 절차가 쉽게 일어날 수 있도록 할 수 있다. 이를 통해, 우선적으로 피코 셀의 PCell에 속한 단말의 수를 늘려 전체 셀 쓰루풋을 늘릴 수 있다.3. In terms of cell range extension, the macro terminal can easily make a handover procedure to a pico cell by increasing only a cell boundary of a component carrier having low interference effects. Through this, first of all, the total cell throughput can be increased by increasing the number of terminals belonging to the PCell of the pico cell.
4. RF 주파수 특성 상 서로 다른 전파 도달 거리로 인하여 발생하는 콤포넌트 캐리어별 다른 셀 레인지를 가질 수 있다. 3번과는 다른 목적으로 각 콤포넌트 캐리어의 셀 커버리지를 동일하게 유지할 필요가 있는 경우, 각 콤포넌트 캐리어에 각기 다른 바이어스 값을 할당함으로써 동일한 셀 레인지를 유지할 수 있다. 이와 같은 문제점은 비-연속적 캐리어 병합(non-contiguous carrier aggregation) 상황에서 심화될 수 있다.4. Due to RF frequency characteristics, it may have a different cell range for each component carrier caused by different propagation distances. If it is necessary to keep the cell coverage of each component carrier the same for the purpose different from the third, it is possible to maintain the same cell range by assigning different bias values to each component carrier. This problem may be exacerbated in a non-contiguous carrier aggregation situation.
따라서, 본 발명의 실시예에 따르면, 멀티캐리어 상황에서 캐리어 자원을 보다 유연하고 효율적으로 사용하는 것이 가능하다.Thus, according to an embodiment of the present invention, it is possible to use carrier resources more flexibly and efficiently in a multicarrier situation.
도 13은 본 발명의 일 실시예에 따른 응용 예를 나타낸다. 편의상, 특정 매크로 단말에 대해 매크로 CC2가 PCell로 구성되고 매크로 CC1가 SCell로 구성되었다고 가정한다. 이 경우, 본 발명의 실시예에 따르면, 매크로 단말은 피코 셀의 RSRP와 매크로 SCell의 RSRP를 비교하여 보고할 수 있다. 따라서, 매크로 단말/매크로 기지국은 매크로 CC1과 피코 CC1&2의 RSRP를 비교할 수 있다. 만약, 피코 CC2에 대하여 바이어스 값을 크게 주면 매크로 단말은 피드백 보고를 수행할 것이며, 기지국간 협력 하에 매크로 단말에게 피코 CC2를 SCell로 구성할 수 있다. 즉, 한 단말에 대해, PCell을 매크로 CC2로 구성하고 SCell을 피코 CC2로 구성함으로써 SCell에 대한 부하 밸런스를 할 수 있다. 이를 통해, 전체 셀 쓰루풋을 향상시킬 수 있다.13 shows an application example according to an embodiment of the present invention. For convenience, it is assumed that the macro CC2 is configured as the PCell and the macro CC1 is configured as the SCell for the specific macro terminal. In this case, according to an embodiment of the present invention, the macro terminal may compare and report the RSRP of the pico cell and the RSRP of the macro SCell. Therefore, the macro terminal / macro base station can compare the RSRP of the macro CC1 and pico CC1 & 2. If a large bias value is given to the pico CC2, the macro terminal will perform a feedback report, and may configure the pico CC2 as a SCell to the macro terminal in cooperation with the base stations. That is, for one terminal, the load balance for the SCell can be achieved by configuring the PCell as the macro CC2 and the SCell as the pico CC2. This can improve overall cell throughput.
본 예는 매크로 단말의 입장에서 기술되지만, 이는 예시로서 아래의 설명에서 매크로 단말은 피코 단말로 대체될 수 있다.This example is described from the viewpoint of a macro terminal, but this is an example and in the following description, the macro terminal may be replaced with a pico terminal.
도 14는 본 발명에 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 기지국은 매크로 기지국, 피코 기지국을 포함한다.14 illustrates a base station and a terminal that can be applied to an embodiment of the present invention. The base station includes a macro base station and a pico base station.
도 14를 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency, RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(120)은 프로세서(122), 메모리(124) 및 RF 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다. 기지국(110) 및/또는 단말(120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.Referring to FIG. 14, a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120. Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116. The processor 112 may be configured to implement the procedures and / or methods proposed in the present invention. The memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112. The RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal. The terminal 120 includes a processor 122, a memory 124, and an RF unit 126. The processor 122 may be configured to implement the procedures and / or methods proposed in the present invention. The memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122. The RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal. The base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form embodiments by combining claims that do not have an explicit citation in the claims or as new claims by post-application correction.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, 단말은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.In this document, embodiments of the present invention have been mainly described based on data transmission / reception relations between a terminal and a base station. Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station. A base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like. In addition, the terminal may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of a hardware implementation, an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above. The software code may be stored in a memory unit and driven by a processor. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit of the invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있다.The present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Claims (10)

  1. 매크로 기지국과 피코 기지국을 포함하는 무선 통신 시스템에서 통신 장치가 하향링크 측정 정보를 피드백 하는 방법에 있어서,In the wireless communication system comprising a macro base station and a pico base station, a communication device for feeding back downlink measurement information,
    상기 매크로 기지국의 신호를 서빙 셀별로 측정하여 복수의 제1 신호 측정 값을 생성하는 단계;Measuring a signal of the macro base station for each serving cell to generate a plurality of first signal measurement values;
    상기 피코 기지국의 신호를 측정하여 제2 신호 측정 값을 생성하는 단계; 및Measuring a signal of the pico base station to generate a second signal measurement value; And
    소정의 조건이 만족할 경우, 상기 제2 측정 값을 상기 매크로 기지국에게 제공하는 단계를 포함하고,If the predetermined condition is satisfied, providing the second measurement value to the macro base station,
    상기 소정의 조건은 상기 제2 신호 측정 값과 바이어스 값의 합이 상기 복수의 제1 신호 측정 값 중 적어도 하나보다 큰 것을 포함하며,The predetermined condition includes a sum of the second signal measurement value and a bias value being greater than at least one of the plurality of first signal measurement values,
    상기 바이어스 값은 매크로 기지국을 구성하는 복수의 서빙 셀에 대해 서빙 셀마다 각각 독립적으로 주어지는 방법.The bias value is given independently for each serving cell for a plurality of serving cells constituting a macro base station.
  2. 제1항에 있어서,The method of claim 1,
    서빙 셀별 바이어스 값은 기준 서빙 셀의 바이어스 값과 오프셋 값을 이용하여 계산되는 방법.The serving cell bias value is calculated using the bias value and the offset value of the reference serving cell.
  3. 제1항에 있어서,The method of claim 1,
    서빙 셀별 바이어스 값은 소정 시간 구간 동안 기준 서빙 셀의 ABS(Almost Blank Subframe) 개수와 해당 서빙 셀의 ABS 개수의 비율을 이용하여 계산되는 방법.The bias value for each serving cell is calculated using a ratio of the number of ABS (Almost Blank Subframe) of the reference serving cell and the number of ABS of the serving cell during a predetermined time interval.
  4. 제1항에 있어서,The method of claim 1,
    서빙 셀별 바이어스 값은 기준 서빙 셀의 PDCCH(Physical Downlink Control CHannel) 전송을 위한 OFDM(Orthogonal Frequency Division Symbol) 개수와 해당 서빙 셀의 PDCCH 전송을 위한 OFDM 심볼 개수의 비율을 이용하여 계산되는 방법.A bias value for each serving cell is calculated by using a ratio of the number of orthogonal frequency division symbols (OFDM) for transmitting a physical downlink control channel (PDCCH) of a reference serving cell and the number of OFDM symbols for PDCCH transmission of a corresponding serving cell.
  5. 제1항에 있어서,The method of claim 1,
    서빙 셀별 바이어스 값은 기준 서빙 셀의 최대 전송 파워와 해당 서빙 셀의 최대 전송 파워의 비율을 이용하여 계산되는 방법.The bias value for each serving cell is calculated using a ratio of the maximum transmit power of the reference serving cell and the maximum transmit power of the corresponding serving cell.
  6. 매크로 기지국과 피코 기지국을 포함하는 무선 통신 시스템에서 하향링크 측정 정보를 피드백 하도록 구성된 통신 장치에 있어서,A communication apparatus configured to feedback downlink measurement information in a wireless communication system including a macro base station and a pico base station,
    무선 주파수(Radio Frequency, RF) 유닛; 및A radio frequency (RF) unit; And
    프로세서를 포함하고,Includes a processor,
    상기 프로세서는 상기 매크로 기지국의 신호를 서빙 셀별로 측정하여 복수의 제1 신호 측정 값을 생성하고, 상기 피코 기지국의 신호를 측정하여 제2 신호 측정 값을 생성하며, 소정의 조건이 만족할 경우, 상기 제2 측정 값을 상기 매크로 기지국에게 제공하도록 구성되며,The processor measures a signal of the macro base station for each serving cell to generate a plurality of first signal measurement values, measures a signal of the pico base station to generate a second signal measurement value, and when a predetermined condition is satisfied, the processor Provide a second measurement value to the macro base station,
    상기 소정의 조건은 상기 제2 신호 측정 값과 바이어스 값의 합이 상기 복수의 제1 신호 측정 값 중 적어도 하나보다 큰 것을 포함하며,The predetermined condition includes a sum of the second signal measurement value and a bias value being greater than at least one of the plurality of first signal measurement values,
    상기 바이어스 값은 매크로 기지국을 구성하는 복수의 서빙 셀에 대해 서빙 셀마다 각각 독립적으로 주어지는 통신 장치.And the bias value is independently given to each serving cell for a plurality of serving cells constituting a macro base station.
  7. 제6항에 있어서,The method of claim 6,
    서빙 셀별 바이어스 값은 기준 서빙 셀의 바이어스 값과 오프셋 값을 이용하여 계산되는 통신 장치.The serving cell bias value is calculated using the bias value and the offset value of the reference serving cell.
  8. 제6항에 있어서,The method of claim 6,
    서빙 셀별 바이어스 값은 소정 시간 구간 동안 기준 서빙 셀의 ABS(Almost Blank Subframe) 개수와 해당 서빙 셀의 ABS 개수의 비율을 이용하여 계산되는 통신 장치.The bias value for each serving cell is calculated using a ratio of the number of ABS (Almost Blank Subframe) of the reference serving cell and the number of ABS of the serving cell during a predetermined time interval.
  9. 제6항에 있어서,The method of claim 6,
    서빙 셀별 바이어스 값은 기준 서빙 셀의 PDCCH(Physical Downlink Control CHannel) 전송을 위한 OFDM(Orthogonal Frequency Division Symbol) 개수와 해당 서빙 셀의 PDCCH 전송을 위한 OFDM 심볼 개수의 비율을 이용하여 통신 장치.The bias value for each serving cell is a communication device using a ratio of the number of orthogonal frequency division symbols (OFDM) for transmitting a physical downlink control channel (PDCCH) of a reference serving cell and the number of OFDM symbols for PDCCH transmission of a corresponding serving cell.
  10. 제6항에 있어서,The method of claim 6,
    서빙 셀별 바이어스 값은 기준 서빙 셀의 최대 전송 파워와 해당 서빙 셀의 최대 전송 파워의 비율을 이용하여 계산되는 통신 장치.The serving cell bias value is calculated using a ratio of the maximum transmit power of the reference serving cell and the maximum transmit power of the serving cell.
PCT/KR2011/008366 2010-11-04 2011-11-04 Method for transmitting channel measurement information and device therefor WO2012060656A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41032210P 2010-11-04 2010-11-04
US61/410,322 2010-11-04

Publications (2)

Publication Number Publication Date
WO2012060656A2 true WO2012060656A2 (en) 2012-05-10
WO2012060656A3 WO2012060656A3 (en) 2012-06-28

Family

ID=46024970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008366 WO2012060656A2 (en) 2010-11-04 2011-11-04 Method for transmitting channel measurement information and device therefor

Country Status (1)

Country Link
WO (1) WO2012060656A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183869A1 (en) * 2012-06-08 2013-12-12 엘지전자 주식회사 Method for controlling interference in wireless communication system and apparatus therefor
WO2014133263A1 (en) * 2013-02-26 2014-09-04 주식회사 케이티 Method and apparatus for performing carrier aggregation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090006200A (en) * 2006-05-22 2009-01-14 루센트 테크놀러지스 인크 Controlling transmit power of picocell base units
KR20090099058A (en) * 2006-12-18 2009-09-21 루센트 테크놀러지스 인크 Establishing cell codes for picocells within a macrocell
KR20100018777A (en) * 2008-08-07 2010-02-18 에스케이 텔레콤주식회사 Method and system for allocating a resource in hierarchy cellular network
KR20100056962A (en) * 2008-11-20 2010-05-28 엘지전자 주식회사 Method for transmitting referece signal for downlink channel measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090006200A (en) * 2006-05-22 2009-01-14 루센트 테크놀러지스 인크 Controlling transmit power of picocell base units
KR20090099058A (en) * 2006-12-18 2009-09-21 루센트 테크놀러지스 인크 Establishing cell codes for picocells within a macrocell
KR20100018777A (en) * 2008-08-07 2010-02-18 에스케이 텔레콤주식회사 Method and system for allocating a resource in hierarchy cellular network
KR20100056962A (en) * 2008-11-20 2010-05-28 엘지전자 주식회사 Method for transmitting referece signal for downlink channel measurement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183869A1 (en) * 2012-06-08 2013-12-12 엘지전자 주식회사 Method for controlling interference in wireless communication system and apparatus therefor
US9461789B2 (en) 2012-06-08 2016-10-04 Lg Electronics Inc. Method for controlling interference in wireless communication system and apparatus therefor
WO2014133263A1 (en) * 2013-02-26 2014-09-04 주식회사 케이티 Method and apparatus for performing carrier aggregation

Also Published As

Publication number Publication date
WO2012060656A3 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
US9426801B2 (en) Method and apparatus for transceiving control signal
US9648632B2 (en) Communication method considering carrier type and apparatus for same
US9936408B2 (en) Communication method in consideration of carrier types and apparatus for same
KR102069071B1 (en) Method and Apparatus for transceiving a signal in a wireless communication system
WO2013191518A1 (en) Scheduling method for device-to-device communication and apparatus for same
WO2014148875A1 (en) Method and apparatus for performing interference coordination in wireless communication system
WO2014123335A1 (en) Method and apparatus for performing resource allocation in wireless communication system
WO2014142611A1 (en) Method and apparatus for performing data transmission in wireless communication system
WO2015076587A1 (en) Method and apparatus for network synchronization
WO2014175638A1 (en) Method and apparatus for controlling data transmission in wireless communication system
WO2012077974A2 (en) Method for controlling inter-cell interference in a wireless communication system that supports a plurality of component carriers, and base station apparatus for same
WO2014137170A1 (en) Method and apparatus for transmitting/receiving signal related to device-to-device communication in wireless communication system
WO2013055126A1 (en) Method for measuring state of channel quality in wireless communication system including cells formed with a plurality of network nodes, and apparatus therefor
WO2015016567A1 (en) Method and device for performing link adaptation in wireless communication system
WO2012169716A1 (en) Method for transmitting/receiving control information and apparatus for transmitting/receiving
WO2014116039A1 (en) Method and device for measuring channel between base stations in wireless communication system
WO2013019046A2 (en) Method of measuring channel quality in a wireless access system and apparatus for same
WO2012124931A2 (en) Method and device for controlling interference between cells in wireless communication system
WO2015174805A1 (en) Method and apparatus for transmitting and receiving signal by device-to-device terminal in wireless communication system
WO2012153962A2 (en) Method for determining uplink transmission power in a network including a plurality of cells, and apparatus therefor
WO2017026848A1 (en) Method for transmitting and receiving wireless signal and apparatus therefor
WO2013094958A1 (en) Measuring method and apparatus in wireless communication system
WO2013048079A1 (en) Method and user equipment for transmitting channel state information and method and base station for receiving channel state information
WO2015147452A1 (en) Method and terminal for executing measurement
WO2015130107A1 (en) Method and device for transceiving device-to-device terminal signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838261

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11838261

Country of ref document: EP

Kind code of ref document: A2