WO2012060592A2 - Carbon nanotube polymer composite coating film which suppresses toxicity and inflammation and has improved biocompatibility and adjusted surface strength - Google Patents

Carbon nanotube polymer composite coating film which suppresses toxicity and inflammation and has improved biocompatibility and adjusted surface strength Download PDF

Info

Publication number
WO2012060592A2
WO2012060592A2 PCT/KR2011/008193 KR2011008193W WO2012060592A2 WO 2012060592 A2 WO2012060592 A2 WO 2012060592A2 KR 2011008193 W KR2011008193 W KR 2011008193W WO 2012060592 A2 WO2012060592 A2 WO 2012060592A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
carbon nanotubes
polymer
thickness
biocompatible polymer
Prior art date
Application number
PCT/KR2011/008193
Other languages
French (fr)
Korean (ko)
Other versions
WO2012060592A9 (en
WO2012060592A3 (en
Inventor
강동우
남태현
Original Assignee
경상대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교 산학협력단 filed Critical 경상대학교 산학협력단
Publication of WO2012060592A2 publication Critical patent/WO2012060592A2/en
Publication of WO2012060592A9 publication Critical patent/WO2012060592A9/en
Publication of WO2012060592A3 publication Critical patent/WO2012060592A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L27/422Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/121Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L31/122Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of carbon

Definitions

  • the present invention relates to a bio-insertable polymer coating film comprising a biocompatible polymer and carbon nanotubes and having a thickness of nanometer and submicron meter and a method of manufacturing the same. More specifically, the present invention has an ultra-thin film thickness of less than a micron manufactured by synthesizing carbon nanotubes in a biocompatible polymer, and can improve biocompatibility and control surface strength, and inhibit coating toxicity and inflammation. And a method for producing the same.
  • carbon nanotubes have a graphite sheet rounded to a nano-sized diameter to form a tubular shape, and the diameter of the tube is a very small region of several to several tens of nanometers. While these carbon nanotubes are known as new materials having excellent mechanical strength, electrical conductivity and thermal conductivity, excellent field emission characteristics, and highly efficient hydrogen storage medium characteristics, efforts to manufacture high-performance advanced materials using these characteristics are active. Do.
  • the present inventors have made efforts to manufacture a coating film having an ultra-thin thickness that can be applied to a medical device inserted into a microvascular in vivo.
  • the inventors have developed a coating film having a thickness of 200 nm or less by mixing carbon nanotubes with a biocompatible polymer.
  • the biocompatibility of the coating film having the ultra-thin film thickness can be increased, the mechanical strength can be adjusted, and toxicity and inflammation can be suppressed.
  • Another object of the present invention is to provide a method of manufacturing the coating film and a method of controlling the nano-surface roughness and surface tension of the coating film.
  • the present invention provides a polymer composite coating film comprising a biocompatible polymer and carbon nanotubes and has a thickness of nano (nanometer) and submicron (meter) and suppresses toxicity and inflammation to provide.
  • biocompatible polymer has affinity with blood or cellular tissues, and when applied to a living body, is not recognized as an external foreign substance and has undesirable long-term effects such as clot formation, inflammation, and physical property change. It means a polymer that does not induce. In general, when the polymer material is in contact with blood, the adsorption of blood protein components occurs on the surface of the material within a few seconds after contact with the blood, and platelet thrombosis reaction and red thrombus appear.
  • the biocompatible polymer of the present invention has a surface modification to improve blood compatibility. Included polymers. Biocompatible polymers that can be used in the present invention include polymers surface-modified with high hydrophilic polymer materials such as polyethylene glycol and polyacrylamide.
  • the biocompatible polymer includes a polymer having cell compatibility, and includes a polymer having little or no effect on the number or growth of cells, cell membrane maintenance, biosynthesis process or enzyme activity.
  • the biocompatible polymer of the present invention may mean a non-degradable polymer, polyolefin, polystyrene, polyethylene oxide, polyvinyl chloride, polyamide, polymethyl methacrylate, polyurethane, polyester or these Combinations of but are not limited to.
  • it has excellent blood compatibility and is widely used in artificial blood vessels, artificial heart, etc., which are in direct contact with blood, and has excellent mechanical and thermal resistance, and polycarbonates, which are applied to heart, lung assistive devices, artificial heart valve switch, etc. to be.
  • the biocompatible polymer of the present invention may be polycarbonate urethane (hereinafter referred to as PCU).
  • the PCU is an FDA approved polymer medical polymer for clinical applications such as heart valves, meniscus or artificial blood, and because it is not degraded by oxygen, it can maintain a constant mechanical strength even in body fluids.
  • the PCU may be synthesized with carbon nanotubes as a matrix to exhibit good dispersibility.
  • carbon nanotube is a honeycomb-shaped planar carbon structure in which one carbon atom is bonded to three other carbon atoms is rolled to have a tube shape, and generally has a diameter of 1 to 100 nanometers (nm) and a length.
  • a carbon material having a high aspect ratio ranging from several nanometers (nm) to several tens of micrometers ( ⁇ m).
  • MWCNTs multi-walled nanotubes
  • SWCNT single-walled nanotube
  • carbon nanotubes include all of them without limitation, but are preferably multi-walled carbon nanotubes.
  • the diameter of the carbon nanotubes usable in the present invention may be 1 to 100nm.
  • the polymer composite coating film of the present invention can be used to coat a living body implantable medical device.
  • bioinsertion medical device is a medical device for artificial blood vessels, artificial vessel support, fusion power electrode source or power supply wire in the blood vessel, biochip, nano robot, implant, artificial heart valve, artificial bladder and artificial urinary tract, artificial It may be selected from the group consisting of meniscus, artificial blood vessel, artificial heart, pacemaker insulator, catheter, and stent, but is not limited thereto.
  • the biocompatible polymer and the carbon nanotube content included in the coating film of the present invention may be included in a ratio of 1: 1 to 1:10 wt%.
  • the coating film is composed of a polymer-nanocomposite obtained by synthesizing the biocompatible polymer and carbon nanotubes.
  • the polymer-nanocomplex has all the features of the coating film disclosed in the present invention.
  • composite means that two or more individual materials are synthesized.
  • the polymer composite coating film of the present invention may have a thickness of nano (nanometer) and submicron (submicron-meter), preferably has a thickness of 30 to 200 nm and is characterized in that the transparent.
  • the nanometer thickness refers to one millionth of one meter, and means a thickness range of 100 nm or less for the purposes of the present invention.
  • the submicron means a thickness range of 100nm to 1 ⁇ m.
  • the biocompatible polymer and carbon nanotubes to the thickness of the nano and submicron meters, preferably 100nm or less, it is possible to form a coating of the biomedical device to be inserted into the microvascular and coronary artery, transparent It can be used to analyze the activity of living cells.
  • the coating film is toxic (NO: Nitrite) and anti-inflammatory factors (TNF-alpha, IL-1beta) is reduced as the carbon carbon nanotubes (CNT) is added, the synthesis of CNTs to make nanotopoes of immune cells Activity can also be inhibited (see FIGS. 12 and 13).
  • the coating film is characterized in that the carbon nanotubes have a structure that is not directly exposed to the surface of the biocompatible polymer. Since the carbon nanotubes are not directly exposed to the surface, the chemical composition of the biocompatible polymer is maintained, but the biocompatibility and toxicity are improved compared to the existing biopolymer materials by generating the carbon nanotube-like nanoforms in the biocompatible polymer. The mechanical strength can be controlled by the synthesis ratio of carbon nanotubes. As shown in FIG. 6, when the polymer sphere generated when the heat is applied is also generated on the carbon nanotubes (30 nm thick), the carbon nanotubes are not exposed on the surface and covered with an ultra-thin film of about 30 nm. I could confirm it.
  • the coating film has insulation unlike a polymer-carbon nanotube composite used in an information and communication device for medical use.
  • the present invention comprises the steps of sonicating each of the biocompatible polymer and carbon nanotubes in each solvent in a synthesis ratio of 1: 1 to 1:10 wt%; Mixing the two sonicated solutions; Coating the mixed solution on glass using a spin coater; Drying the glass coated with the mixed solution at room temperature; And to provide a method for producing a polymer composite coating film having a thickness of nano (nanometer) and submicron (submicron-meter), comprising the step of sterilizing and disinfecting the dried glass by ultraviolet rays.
  • biocompatible polymer in the production method of the present invention is the same as described above, preferably polycarbonate-based, more preferably may be a polycarbonate urethane.
  • the solvent of the carbon nanotube may be any one or more selected from the group consisting of water, 1,2-dichloroethane, tetrahydrofuran, dimethylformamide, toluene, ethanol, and mixtures thereof. And preferably 1,2-dichloroethane.
  • the solvent of the polycarbonate urethane is preferably chloroform.
  • tip and bath ultrasonic equipment may be used, and the sonication time may be 1 to 24 hours, but is not limited thereto and may be easily selected by those skilled in the art according to the purpose.
  • polycarbonate urethane is mixed with chloroform
  • carbon nanotubes are mixed with 1,2-dichloroethane
  • each solution is sonicated and dispersed, and then coated on glass using a spin coater. It was dried at room temperature, sterilized and disinfected with ultraviolet rays to prepare a coating film having a thickness of 100 nm or less.
  • the coating film may be used as a coating material of a bio-invasive medical device, and the above-described bio-invasive medical device may be applied in the same manner, and preferably, a microvascular medical device, an artificial vessel support, a source of fusion power electrode in a blood vessel, or Power supply wire, nanorobot, implant, artificial heart valve, artificial bladder and urinary tract, artificial meniscus, artificial blood vessel, artificial heart, heart pacemaker insulator.
  • the manufacturing method of the present invention may further include adjusting the surface strength of the coating film by adjusting the synthesis ratio of the biocompatible polymer and the carbon nanotubes.
  • the manufacturing method of the present invention may further comprise the step of checking the biocompatibility by controlling the roughness at the nanoscale of the coating film by adjusting the synthesis ratio of the biocompatible polymer and the carbon nanotubes.
  • the weight percent content ratio of the carbon nanotubes is increased during the synthesis between the biocompatible polymer and the carbon nanotubes, the roughness at the nanoscale of the nanocoating film is increased and the surface energy is increased. It was confirmed that biocompatibility can be increased by controlling the adsorption of proteins in vivo by increasing the surface energy in the polymer-nano composite coating film having a thickness of.
  • the roughness of the nano-surface can be controlled to adjust the adsorption of the protein in the living body can be prepared to suit the biocompatibility of the polymer-nanocomplex.
  • vitronectin which is a cell-adhesive glycoprotein present in plasma and serum connective tissue, and animals
  • FBS a cell-adhesive glycoprotein present in plasma and serum connective tissue
  • the present invention can be improved in comparison with the present invention, and can be applied to more implant polymer applications by controlling the mechanical properties by controlling the mechanical strength by the synthesis ratio of the nanotubes.
  • a coating film having a thickness of nano and submicron meters manufactured by the manufacturing method may be used for artificial blood vessel support, artificial bladder and urinary tract, coating of fusion power electrode source in blood vessel and power supply wire of power source. It can be used as a bio coating material.
  • the ultra-thin structure has the effect of inhibiting human immune toxicity
  • the method of the present invention improves the biocompatibility of tissue cells (or stem cells) and immune by inhibiting the activity of macrophage (macrophage) which is a representative immune active cell Toxicity can be reduced, more specifically, the addition of carbon carbon nanotubes (CNT) reduces the toxicity (NO: Nitrite) and anti-inflammatory factors (TNF-alpha, IL-1beta), and also synthesizes CNTs Making a topo may inhibit the activity of immune cells (see FIGS. 12 and 13).
  • the polymer-nanocomposite or coating film may be used in all bio-invasive medical devices, and may be suitable for an environment such as capillary and micro-vessel insertion that requires ultra-thin thickness while maintaining nanotopos.
  • the present invention relates to a coating film having a thickness of nano (nanometer) and submicron (submicron-meter) by mixing carbon nanotubes with a biocompatible polymer, and a method of manufacturing the same, by controlling the synthesis ratio of the polymer and carbon nanotubes It has been found that it is possible to increase the biocompatibility and control the mechanical strength of the coating film having the ultra-thin film thickness, and to suppress toxicity and inflammation, and to use such features to insert a medical device that is inserted into microvascular vessels such as nano medical devices and wire coatings. There is an effect that can be applied to.
  • Figure 1 shows a coating of the surface of the power supply wire and the electrode source module as an application example of the coating film according to the present invention.
  • Figure 2 schematically shows the manufacturing process of the coating film according to the present invention.
  • Figure 3 shows a sample of the coating film prepared while varying the synthesis ratio of CNT and PCU.
  • Figure 4 shows an example of the result of measuring the thickness of the polymer coating film according to the present invention.
  • the lower figure shows the thickness of the carbon nanotube and polymer composite (AFM analysis) and has a thickness of about 31 nm.)
  • Figure 5 shows another example of the results of measuring the thickness of the polymer coating film according to the present invention.
  • the lower figure shows the thickness of the carbon nanotube and polymer composite (AFM analysis) and has a thickness of about 31 nm.)
  • FIG. 6 shows that the polymer sphere generated when the heat is applied is also generated on the carbon nanotubes (30 nm thick), and the carbon nanotubes are not exposed on the surface and are covered with an ultra-thin film of about 30 nm. .
  • Figure 7 shows the nano-scale surface roughness of the coating film prepared by varying the synthesis ratio of CNT and PCU by atomic microscope (AFM).
  • the bottom plot shows the change in surface tension due to the synthesis of carbon nanotubes (the y-axis represents the angle). As the nanotubes increase, the surface roughness increases and thus the surface tension increases.
  • Figure 8 shows the results of measuring the dynamic hardness of the coating film prepared while varying the synthesis ratio of the weight of the CNT and PCU. It can be seen that as the carbon nanotubes increase, the surface hardness increases (the surface hardness increases more than twice when the CNT weight is increased by 10 times).
  • Figure 9 shows the degree of protein adsorption according to the synthesis ratio of CNT and PCU weight in the coating film of the present invention. It can be seen that the roughness of the nanosurface rather than the surface energy affects the protein adsorption. As carbon nanotubes increase, more proteins are adsorbed. The lower figure shows the degree of adsorption of Vitronectin according to the synthesis ratio of the coating film. As the carbon nanotube ratio increases, more protein is adsorbed.
  • Figure 10 shows the adsorption and proliferation of immune cells according to the synthesis ratio of CNTs and PCU in the coating film of the present invention (upper figure). As the surface tension increases, the adsorption of immune cells increases (3 hours). . In addition, it can be seen that the increase in growth (24 hours) by the increased adsorption. The lower figure shows the adsorption and proliferation of messengerchymal stem cells, and it can be seen that the self-renewal is regulated according to the increased degree of nanoroughness and the degree of protein adsorption.
  • FIG. 11 is a photograph showing comparison of the thickness and shape of the coating film of the pure PCU (left) and the PCU / CNT composite (right) synthesized with CNT, respectively.
  • FIG. 12 is a photograph and a graph showing an aspect of suppressing the activity of immune cells according to the synthesis ratio of CNT and PCU in the coating film of the present invention. Through this, it can be seen that the activity of immune cells is inhibited by making CNTs by synthesizing CNTs as in the present invention.
  • FIG. 13 is a graph showing that toxicity (NO: Nitrite) and anti-inflammatory factors (TNF-alpha, IL-1beta) decrease as carbon carbon nanotubes (CNT) are added in the coating film of the present invention. Through this, it can be seen that the present invention is inhibited toxic and anti-inflammatory factors.
  • NO Nitrite
  • TNF-alpha, IL-1beta carbon carbon nanotubes
  • a solution was prepared by injecting 1 g of polycarbonate urethane (Lubrizol, PC-3575A) into 16 ml of chloroform. 0.3g of carbon nanotubes were injected into 60 ml of 1,2-dichloroethane to prepare a solution. Then, polycarbonate urethane was subjected to ultrasonic waves at room temperature for 1 hour and carbon nanotubes for 24 hours, respectively. Then, the two solutions were mixed. Thus, the content of carbon nanotubes compared to the polycarbonate urethane is 100 and 1000% by weight. Then, two spin coaters were used to coat the glass, followed by drying in vacuo at room temperature. And CNT-PCU was prepared by sterilization and disinfection by exposing to UV. The mixing degree of chemcal solution to make a specific combination is as follows.
  • the carbon nanotubes are coated at 100 nm or less, thereby maintaining a transparent state.
  • the dynamic hardness is a hardness obtained from the test force and the indent depth of the process of pushing the indenter as a method of measuring how the indenter penetrates into the sample.
  • the test force P [mN] intruder penetrates into the sample.
  • Hardness was calculated
  • Example 3 In vivo protein adsorption regulation effect of CNT-PCU composite coating membrane
  • the degree of protein adsorption of the coating film was found to increase with the CNT / PCU ratio.
  • nanoscale surface roughness is very important in protein adsorption, and vitronectin adsorption also increased with the CNT / PCU ratio. Therefore, by adjusting the surface energy by adjusting the CNT / PCU ratio of the coating film, it was confirmed that the adsorption of protein in vivo can be adjusted to make it more suitable for living (see Figure 9).
  • Macrophages J774, ATCC were incubated at 100000 / cm 2 in each coated sample, and the number of cells was measured by MTT after 3 and 24 hours.
  • MTT MTT after 3 and 24 hours.
  • MSC stem cells
  • Lonza stem cells
  • TNF- ⁇ and IL-6 levels were measured using commercial ELISA kits (Quantikine: R & D system, Minneapolis, MN) of mouse TNF- ⁇ and IL-6.
  • each supernatant sample was collected and stored at -80 ° C, and also measured three times at the same time by a microplate reader and by the average sample error. Appeared.
  • Recombinant TNF- ⁇ and IL-6 were used as standard controls for each cytokine assay.
  • This analysis range is 15.6-1000 pg / ml for TNF- ⁇ and 7.8-500 pg / ml for IL-6.
  • macrophages medium was recovered and used for ELISA experiments for IL-6 and TNF- ⁇ . Data were calculated from the ELISA experiment, and the optical density unit was converted into pg / 10 4 cells divided by the number of viable cells obtained in the viability and apoptosis experiments.
  • macrophage-derived proinflammatory cytokines (TNF- ⁇ and IL-6) were synthesized at 37 ° C., 0-4 h, 4-12 h, 12-24 h, 24- Media was harvested at 36h and 48h and cells were washed with DPBS, provided fresh media and measured. All recovered media was stored at -80 ° C and measured simultaneously.
  • the composite coating film of the present invention reduces the toxicity (NO: Nitrite) and anti-inflammatory factors (TNF-alpha, IL-1beta) as carbon carbon nanotubes (CNT) is added, and synthesizes CNTs to nanotopo Making it was confirmed that it has an effect that can also inhibit the activity of immune cells (see Figure 12, 13).

Abstract

The present invention relates to a coating film having a thickness of no more than 200 nm in which carbon nanotubes are mixed with a biocompatible polymer, and the invention is advantageous in that it has been confirmed that adjusting the synthesis proportions of the polymer and the carbon nanotubes can increase the biocompatibility and adjust the mechanical strength and can suppress toxicity and inflammation of the coating film having an ultra-thin-film thickness, and these characteristics can be used in articles of medical equipment which are inserted into microvessels in the body such as nano-sized medical devices and wire coatings.

Description

생체 적합성의 향상, 표면 강도의 조절, 독성 및 염증을 억제하는 탄소나노튜브 폴리머 복합체 코팅막 및 그의 제조방법Carbon nanotube polymer composite coating film and its manufacturing method for improving biocompatibility, controlling surface strength, suppressing toxicity and inflammation
본 발명은 생체적합한 폴리머 및 탄소나노튜브를 포함하고 나노 (nanometer) 및 서브마이크론 (submicron-meter)의 두께를 갖는 생체 삽입 폴리머 코팅막 및 그의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 생체적합한 폴리머에 탄소나노튜브를 합성하여 제조된 마이크론 이하의 초박막 두께를 가지며, 생체 적합성의 향상 및 표면 강도를 조절할 수 있고, 독성 및 염증을 억제하는 생체 삽입 의료기기용 코팅막 및 그의 제조방법에 관한 것이다. The present invention relates to a bio-insertable polymer coating film comprising a biocompatible polymer and carbon nanotubes and having a thickness of nanometer and submicron meter and a method of manufacturing the same. More specifically, the present invention has an ultra-thin film thickness of less than a micron manufactured by synthesizing carbon nanotubes in a biocompatible polymer, and can improve biocompatibility and control surface strength, and inhibit coating toxicity and inflammation. And a method for producing the same.
일반적으로, 탄소나노튜브는 흑연면(graphite sheet)이 나노 크기의 직경으로 둥글게 말려 관 모양을 이루고 있으며 관의 지름이 수~ 수십 나노미터 수준으로 극히 작은 영역의 물질이다. 이와 같은 탄소나노튜브가 우수한 기계적 강도, 전기 전도도 및 열전도도, 뛰어난 전계 방출 특성, 고효율의 수소 저장매체 특성 등을 지니는 신소재로 알려지면서, 이들 특성을 이용하여 고성능 첨단 신소재를 제조하기 위한 노력이 활발하다. In general, carbon nanotubes have a graphite sheet rounded to a nano-sized diameter to form a tubular shape, and the diameter of the tube is a very small region of several to several tens of nanometers. While these carbon nanotubes are known as new materials having excellent mechanical strength, electrical conductivity and thermal conductivity, excellent field emission characteristics, and highly efficient hydrogen storage medium characteristics, efforts to manufacture high-performance advanced materials using these characteristics are active. Do.
또한, 생명공학기술 및 나노기술의 발달에 힘입어 탄소나노튜브를 의료분야, 예를 들면 분자진단기술, 나노-약물 복합체의 개발에 적용하려는 시도가 활발해지고 있으며, 재생조직 공학 및 임플란트용 나노 신물질에 대한 연구 또한 활발해지고 있는 실정이다. 특히, 생체 내 미세혈관에 삽입되는 인공혈관의 경우, 초박막 두께를 가지면서도 내구성이 있고 생체 적합성이 우수한 코팅제로 코팅되는 것이 요구된다. 그리고, 생체 내 적용에 요구되는 물성을 갖추고 활용도를 높이기 위해서는 이러한 초박막 두께를 가지는 코팅막의 물성을 조절할 수 있는 방법 또한 필요하다. In addition, thanks to the development of biotechnology and nanotechnology, attempts are being made to apply carbon nanotubes to the medical field, for example, molecular diagnostic technology, and nano-drug complex development, and new nanomaterials for regenerative tissue engineering and implants. The research on is also active. In particular, in the case of artificial blood vessels that are inserted into the microvascular in vivo, it is required to be coated with a coating agent having a high thickness and durability and excellent biocompatibility. In addition, in order to improve the utilization and the physical properties required for in vivo applications, there is also a need for a method of controlling the physical properties of the coating film having such an ultra-thin thickness.
그러나, 종래에 탄소나노튜브를 이용한 폴리머 복합체를 제조하는 방법은 알려져 있었으나, 이러한 복합체의 구조는 수십 마이크론 이상의 두께를 가지는 것이어서 미세혈관과 같은 생체 조건에서 활용되기 어려우며 얇은 박막 조건에서 인체 조직세포와의 생체 적합성 향상 및 면역 독성 완화, 그리고 내구성과 관련있는 표면 강도를 조절할 수 있는 나노 표면 성질을 조절할 수 없는 단점이 있다. 다시 말하면, 지금까지 초박막 두께를 갖는 코팅막에서 나노 표면 에너지 및 표면 강도를 동시에 조절하는 기술은 전혀 보고된 바가 없다. However, in the past, a method of manufacturing a polymer composite using carbon nanotubes has been known, but the structure of such a composite has a thickness of several tens of microns or more, and thus it is difficult to be used in a living body such as microvascular vessels. There is a disadvantage in that it is not possible to control the nano surface properties that can adjust the surface strength associated with improved biocompatibility, mitigate immune toxicity, and durability. In other words, until now, no technique for simultaneously controlling nano surface energy and surface strength in a coating film having an ultra-thin film thickness has been reported.
이에 본 발명자는 생체 내 미세혈관에 삽입되는 의료기기에 적용할 수 있는 초박막 두께의 코팅막을 제조하기 위해 예의 노력한 결과, 생체 적합 폴리머에 탄소나노튜브를 혼합하여 200nm 이하의 두께를 가지는 코팅막을 개발하였으며, 상기 폴리머와 탄소나노튜브의 합성 비율을 조절함으로써 상기 초박막 두께를 갖는 코팅막의 생체 적합성을 증가시키고 기계적 강도를 조절할 수 있으며, 독성 및 염증을 억제할 수 있음을 최초로 밝혀 본 발명을 완성하였다. Accordingly, the present inventors have made efforts to manufacture a coating film having an ultra-thin thickness that can be applied to a medical device inserted into a microvascular in vivo. As a result, the inventors have developed a coating film having a thickness of 200 nm or less by mixing carbon nanotubes with a biocompatible polymer. By adjusting the synthesis ratio of the polymer and carbon nanotubes, the biocompatibility of the coating film having the ultra-thin film thickness can be increased, the mechanical strength can be adjusted, and toxicity and inflammation can be suppressed.
본 발명의 목적은 생체적합한 폴리머 및 탄소나노튜브를 포함하고 나노 (nanometer) 및 서브마이크론 (submicron-meter) 의 두께를 갖는 폴리머 복합체 코팅막을 제공하는 것이다.It is an object of the present invention to provide a polymer composite coating film comprising a biocompatible polymer and carbon nanotubes and having a thickness of nanometers and submicrons.
본 발명의 다른 목적은 상기 코팅막의 제조방법 및 상기 코팅막의 나노 표면 거침도 및 표면 장력을 조절하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method of manufacturing the coating film and a method of controlling the nano-surface roughness and surface tension of the coating film.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 생체적합한 폴리머 및 탄소나노튜브를 포함하고 나노 (nanometer) 및 서브마이크론 (submicron-meter)의 두께를 가지며 독성 및 염증을 억제하는 폴리머 복합체 코팅막을 제공한다. As one aspect for achieving the above object, the present invention provides a polymer composite coating film comprising a biocompatible polymer and carbon nanotubes and has a thickness of nano (nanometer) and submicron (meter) and suppresses toxicity and inflammation to provide.
본 발명에서 용어 "생체적합한 폴리머(biocompatible polymer)"란 혈액 또는 세포조직과 친화력을 가지고 있어서 생체에 적용하였을때 외부의 이물질로 인식되지 않고 혈전형성이나 염증, 물성의 변화 등의 바람직하지 않은 장기적 효과를 유도하지 않는 고분자를 의미한다. 일반적으로 고분자 재료가 혈액과 접촉했을때 재료표면에서는 혈액과 접촉 후 수초 내에 혈액 단백질 성분의 흡착이 일어나고 혈소판 혈전 반응 및 적색혈전이 나타나게 되는데, 본 발명의 생체적합한 폴리머는 혈액적합성을 높이기 위해 표면 개질된 폴리머를 포함한다. 본 발명에서 사용될 수 있는 생체적합한 폴리머는 폴리에틸렌 글리콜, 폴리아크릴 아마이드 등 친수성이 높은 고분자 물질로 표면개질한 고분자를 포함한다. 또한, 상기 생체적합한 폴리머는 세포적합성을 가진 고분자를 포함하며 세포의 수나 성장, 세포막 유지, 생합성 과정이나 효소 활성에 미치는 영향이 적거나 없는 고분자를 포함한다. In the present invention, the term "biocompatible polymer" has affinity with blood or cellular tissues, and when applied to a living body, is not recognized as an external foreign substance and has undesirable long-term effects such as clot formation, inflammation, and physical property change. It means a polymer that does not induce. In general, when the polymer material is in contact with blood, the adsorption of blood protein components occurs on the surface of the material within a few seconds after contact with the blood, and platelet thrombosis reaction and red thrombus appear. The biocompatible polymer of the present invention has a surface modification to improve blood compatibility. Included polymers. Biocompatible polymers that can be used in the present invention include polymers surface-modified with high hydrophilic polymer materials such as polyethylene glycol and polyacrylamide. In addition, the biocompatible polymer includes a polymer having cell compatibility, and includes a polymer having little or no effect on the number or growth of cells, cell membrane maintenance, biosynthesis process or enzyme activity.
본 발명의 목적에 따르면, 본 발명의 생체적합한 폴리머는 비분해성 고분자를 의미할 수 있으며, 폴리올레핀, 폴리스티렌, 폴리에틸렌옥사이드, 폴리염화비닐, 폴리아마이드, 폴리메틸메타크릴레이트, 폴리우레탄, 폴리에스테르 또는 이들의 조합을 포함하나, 이에 제한되지는 않는다. 바람직하게는 우수한 혈액 적합성을가지고 있어서 혈액과 직접 접촉하는 인공혈관, 인공심장 등에 널리 사용되는 폴리우레탄계, 기계적 및 열적 저항성이 우수하여 심장이나 폐 보조 기구, 인공심장판막 개폐기 등에 응용되는 폴리카보네이트계 등이다. 더욱 바람직하게 본 발명의 생체적합한 폴리머는 폴리카보네이트 우레탄(polycarbonate urethane, 이하 PCU이라고 함)일 수 있다. 상기 PCU는 심장판막, 반월판 또는 인공혈액과 같은 임상 적용에 있어서 FDA 허가를 받은 고분자 의료용 폴리머이며, 산소에 의해 분해되지 않기 때문에 체액 내에서도 일정한 기계적 강도를 유지할 수 있다. 상기 PCU는 매트릭스로서 탄소나노튜브와 합성되어 좋은 분산성을 보일 수 있다. According to the object of the present invention, the biocompatible polymer of the present invention may mean a non-degradable polymer, polyolefin, polystyrene, polyethylene oxide, polyvinyl chloride, polyamide, polymethyl methacrylate, polyurethane, polyester or these Combinations of but are not limited to. Preferably, it has excellent blood compatibility and is widely used in artificial blood vessels, artificial heart, etc., which are in direct contact with blood, and has excellent mechanical and thermal resistance, and polycarbonates, which are applied to heart, lung assistive devices, artificial heart valve switch, etc. to be. More preferably, the biocompatible polymer of the present invention may be polycarbonate urethane (hereinafter referred to as PCU). The PCU is an FDA approved polymer medical polymer for clinical applications such as heart valves, meniscus or artificial blood, and because it is not degraded by oxygen, it can maintain a constant mechanical strength even in body fluids. The PCU may be synthesized with carbon nanotubes as a matrix to exhibit good dispersibility.
본 발명에서 용어 "탄소나노튜브"란 탄소 원자 1개가 3개의 다른 탄소 원자와 결합되어 이루어진 벌집모양의 평면형 탄소구조가 말려서 튜브모양을 가지며, 통상 직경이 1 내지 100나노미터(nm)이고, 길이는 수 나노미터(nm)부터 수십 마이크로미터(㎛)인 높은 종횡비(aspect ratio)를 갖는 탄소재료를 말한다. 상기 탄소나노튜브에는 여러가지 종류가 있으며, 그 중 길이 방향을 축으로 감싸고 있는 벽의 개수에 따라서 2개 이상의 벽으로 이루어진 다중벽 나노튜브(multi-walled nanotube, MWCNT), 1개의 벽만으로 이루어진 단일벽 나노튜브(sigle-walled nanotube, SWCNT)로 나눌 수 있다. 본 발명에서 탄소나노튜브는 이들 모두를 종류의 제한없이 포함하나, 바람직하게는 다중벽 탄소나노튜브이다. 본 발명에서 사용가능한 탄소나노튜브의 직경은 1 내지 100nm일 수 있다. In the present invention, the term "carbon nanotube" is a honeycomb-shaped planar carbon structure in which one carbon atom is bonded to three other carbon atoms is rolled to have a tube shape, and generally has a diameter of 1 to 100 nanometers (nm) and a length. Refers to a carbon material having a high aspect ratio ranging from several nanometers (nm) to several tens of micrometers (μm). There are various types of carbon nanotubes, and among them, multi-walled nanotubes (MWCNTs) consisting of two or more walls, and a single wall consisting of only one wall, depending on the number of walls enclosing the longitudinal direction. It can be divided into single-walled nanotube (SWCNT). In the present invention, carbon nanotubes include all of them without limitation, but are preferably multi-walled carbon nanotubes. The diameter of the carbon nanotubes usable in the present invention may be 1 to 100nm.
본 발명의 상기 폴리머 복합체 코팅막은 생체 삽입 의료기기를 코팅하는데 사용될 수 있다. The polymer composite coating film of the present invention can be used to coat a living body implantable medical device.
본 발명에서 용어 "생체삽입 의료기기"는 미세 혈관용 의용기구, 인공 혈관 지지체, 혈관 내의 융합전원 전극 소스 또는 전원 공급 전선, 바이오칩, 나노로봇, 임플란트, 인공심장판막, 인공 방광 및 인공 요로, 인공 반월판, 인공혈관, 인공심장, 심장 박동 조율기 절연체, 카테터, 및 스텐트로 이루어진 군으로부터 선택된 것일 수 있으나 생체 내로 삽입되는 것이면 이에 제한되지 않는다. In the present invention, the term "bioinsertion medical device" is a medical device for artificial blood vessels, artificial vessel support, fusion power electrode source or power supply wire in the blood vessel, biochip, nano robot, implant, artificial heart valve, artificial bladder and artificial urinary tract, artificial It may be selected from the group consisting of meniscus, artificial blood vessel, artificial heart, pacemaker insulator, catheter, and stent, but is not limited thereto.
본 발명의 코팅막에 포함되는 생체적합한 폴리머와 탄소나노튜브의 함량은 1:1 내지 1:10 중량% 비율로 포함될 수 있다. 상기 코팅막은 상기 생체적합한 폴리머와 탄소나노튜브를 합성한 폴리머-나노 복합체로 이루어지며, 본 발명에서는 상기 폴리머-나노 복합체가 본 발명에 개시된 코팅막의 특징을 모두 갖는다. The biocompatible polymer and the carbon nanotube content included in the coating film of the present invention may be included in a ratio of 1: 1 to 1:10 wt%. The coating film is composed of a polymer-nanocomposite obtained by synthesizing the biocompatible polymer and carbon nanotubes. In the present invention, the polymer-nanocomplex has all the features of the coating film disclosed in the present invention.
본 발명에서 용어 "복합체(composite)"는 둘 이상의 개별적 물질이 합성된 것을 의미한다. As used herein, the term "composite" means that two or more individual materials are synthesized.
본 발명의 상기 폴리머 복합체 코팅막은 나노(nanometer) 및 서브마이크론(submicron-meter)의 두께를 가질 수 있으며, 바람직하게 30 내지 200 nm의 두께를 가지며 투명한 것을 특징으로 한다. 상기 나노미터 두께는 10억분의 1m를 가리키며, 본 발명의 목적상 100nm 이하 두께 범위를 의미한다. 또한, 상기 서브마이크론은 100nm 내지 1μm의 두께 범위를 의미한다. The polymer composite coating film of the present invention may have a thickness of nano (nanometer) and submicron (submicron-meter), preferably has a thickness of 30 to 200 nm and is characterized in that the transparent. The nanometer thickness refers to one millionth of one meter, and means a thickness range of 100 nm or less for the purposes of the present invention. In addition, the submicron means a thickness range of 100nm to 1μm.
본 발명에서는 생체적합한 폴리머와 탄소나노튜브를 나노 및 서브마이크론 미터의 두께로, 바람직하게 100nm 이하의 두께로 조절함으로써 미세혈관 및 관상동맥의 내에 삽입되는 생체 의료기기의 코팅을 형성할 수 있으며, 투명하기 때문에 살아있는 세포의 활동을 분석하는데 사용할 수 있다. In the present invention, by adjusting the biocompatible polymer and carbon nanotubes to the thickness of the nano and submicron meters, preferably 100nm or less, it is possible to form a coating of the biomedical device to be inserted into the microvascular and coronary artery, transparent It can be used to analyze the activity of living cells.
또한, 상기 코팅막은 탄소카본나노튜브(CNT)가 첨가됨에 따라 독성(NO:Nitrite) 및 항염증성 인자(TNF-alpha, IL-1beta)가 감소하고, CNT를 합성하여 나노토포를 만들면 면역세포의 활동성도 억제시킬 수 있다 (도 12, 13 참조).In addition, the coating film is toxic (NO: Nitrite) and anti-inflammatory factors (TNF-alpha, IL-1beta) is reduced as the carbon carbon nanotubes (CNT) is added, the synthesis of CNTs to make nanotopoes of immune cells Activity can also be inhibited (see FIGS. 12 and 13).
또한, 상기 코팅막은 탄소나노튜브가 상기 생체적합한 폴리머의 표면에 직접 노출되지 않은 구조를 가지고 있는 것을 특징으로 한다. 탄소나노튜브가 표면에 직접 노출되지 않기 때문에 생체적합한 폴리머의 화학적인 성분은 유지하되, 탄소나노튜브에 의한 나노형상을 생체적합한 폴리머에 생성함으로써 생체 적합성 및 독성을 기존의 생체 폴리머 물질과 비교하여 향상시킬 수 있고 기계적 강도를 탄소나노튜브의 합성비율로 조절할 수 있다. 도 6에서 보듯이, 열을 가해 주었을 때 생기는 폴리머 구 (sphere) 가 탄소나노튜브 위에서도 발생되는 것으로 볼 때 (30 nm 두께) 탄소나노튜브가 표면 위로 노출되지 않고 30nm 정도의 초박막으로 덮혀져 있는 것을 확인할 수 있었다. In addition, the coating film is characterized in that the carbon nanotubes have a structure that is not directly exposed to the surface of the biocompatible polymer. Since the carbon nanotubes are not directly exposed to the surface, the chemical composition of the biocompatible polymer is maintained, but the biocompatibility and toxicity are improved compared to the existing biopolymer materials by generating the carbon nanotube-like nanoforms in the biocompatible polymer. The mechanical strength can be controlled by the synthesis ratio of carbon nanotubes. As shown in FIG. 6, when the polymer sphere generated when the heat is applied is also generated on the carbon nanotubes (30 nm thick), the carbon nanotubes are not exposed on the surface and covered with an ultra-thin film of about 30 nm. I could confirm it.
또한, 상기 코팅막은 의료용으로서 정보통신기기에서 사용되는 폴리머-탄소나노튜브 복합체와는 달리 절연성을 가진다. In addition, the coating film has insulation unlike a polymer-carbon nanotube composite used in an information and communication device for medical use.
다른 하나의 양태로서, 본 발명은 생체적합한 폴리머와 탄소나노튜브를 1:1 ~ 1:10 중량%의 합성 비율로 각각의 용매에 넣은 후 각각 초음파 처리하는 단계; 상기 초음파 처리된 두 개의 용액을 혼합하는 단계; 상기 혼합용액을 스핀 코터(spin coater)를 사용하여 유리 위에 코팅하는 단계; 상기 혼합용액이 코팅된 유리를 실온에서 건조하는 단계; 및 상기 건조된 유리를 자외선을 조사하여 살균 및 소독하는 단계를 포함하는, 나노 (nanometer) 및 서브마이크론 (submicron-meter)의 두께를 갖는 폴리머 복합체 코팅막의 제조방법을 제공하는 것이다. As another aspect, the present invention comprises the steps of sonicating each of the biocompatible polymer and carbon nanotubes in each solvent in a synthesis ratio of 1: 1 to 1:10 wt%; Mixing the two sonicated solutions; Coating the mixed solution on glass using a spin coater; Drying the glass coated with the mixed solution at room temperature; And to provide a method for producing a polymer composite coating film having a thickness of nano (nanometer) and submicron (submicron-meter), comprising the step of sterilizing and disinfecting the dried glass by ultraviolet rays.
본 발명의 제조방법에서 상기 생체적합한 폴리머에 대하여는 앞서 개시한 내용이 동일하게 적용되며, 바람직하게 폴리카보네이트계이며, 더욱 바람직하게는 폴리카보네이트 우레탄일 수 있다. For the biocompatible polymer in the production method of the present invention is the same as described above, preferably polycarbonate-based, more preferably may be a polycarbonate urethane.
본 발명의 제조방법에서 상기 탄소나노튜브의 용매는 물, 1,2-디클로로에탄, 테트라하이드로퓨란, 디메틸포름아미드, 톨루엔(toluene), 에탄올 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나 이상일 수 있으며, 바람직하게는 1,2 -디클로로에탄일 수 있다. In the manufacturing method of the present invention, the solvent of the carbon nanotube may be any one or more selected from the group consisting of water, 1,2-dichloroethane, tetrahydrofuran, dimethylformamide, toluene, ethanol, and mixtures thereof. And preferably 1,2-dichloroethane.
상기 폴리카보네이트 우레탄의 용매는 클로로포름이 바람직하다. The solvent of the polycarbonate urethane is preferably chloroform.
상기 초음파 처리 단계에서 tip 및 bath 초음파 장비를 사용할 수 있으며 초음파 처리시간은 1 내지 24 시간일 수 있으나, 이에 제한되지 않으며, 목적에 따라 당업자에 의해 용이하게 선택될 수 있다. In the sonication step, tip and bath ultrasonic equipment may be used, and the sonication time may be 1 to 24 hours, but is not limited thereto and may be easily selected by those skilled in the art according to the purpose.
본 발명의 구체적 실시예에서는 폴리카보네이트 우레탄을 클로로포름과 혼합하고, 탄소나노튜브를 1,2-디클로로에탄과 혼합한 후 각각의 용액을 초음파처리하여 분산시킨 후 스핀 코터를 사용하여 유리 위에 코팅한 후 실온에서 건조시키고 자외선으로 살균 및 소독하여 100nm 이하의 두께를 가지는 코팅막을 제조하였다. In a specific embodiment of the present invention, polycarbonate urethane is mixed with chloroform, carbon nanotubes are mixed with 1,2-dichloroethane, and each solution is sonicated and dispersed, and then coated on glass using a spin coater. It was dried at room temperature, sterilized and disinfected with ultraviolet rays to prepare a coating film having a thickness of 100 nm or less.
상기 코팅막은 생체 삽입 의료기기의 피복재료로 사용할 수 있으며, 상기 생체삽입 의료기기는 앞서 개시한 내용이 동일하게 적용되며, 바람직하게 미세 혈관용 의용기구, 인공 혈관 지지체, 혈관 내의 융합전원 전극 소스 또는 전원 공급 전선, 나노로봇, 임플란트, 인공심장판막, 인공 방광 및 인공 요로, 인공 반월판, 인공혈관, 인공심장, 심장 박동 조율기 절연체일 수 있다. The coating film may be used as a coating material of a bio-invasive medical device, and the above-described bio-invasive medical device may be applied in the same manner, and preferably, a microvascular medical device, an artificial vessel support, a source of fusion power electrode in a blood vessel, or Power supply wire, nanorobot, implant, artificial heart valve, artificial bladder and urinary tract, artificial meniscus, artificial blood vessel, artificial heart, heart pacemaker insulator.
본 발명의 제조방법은 상기 생체적합한 폴리머와 상기 탄소나노튜브의 합성 비율을 조절하여 상기 코팅막의 표면 강도를 조절하는 단계를 추가로 포함할 수 있다.The manufacturing method of the present invention may further include adjusting the surface strength of the coating film by adjusting the synthesis ratio of the biocompatible polymer and the carbon nanotubes.
종래에는 생체 적합성이 우수한 나노 및 서브마이크론 미터의 두께를 갖는 단일막의 생체 폴리머-나노 복합체의 공정기술이 개발되지 않았으며, 아울러 지금까지 초박막 두께를 갖는 코팅막에서 나노 표면 에너지 및 표면 강도를 동시에 조절하는 기술은 전혀 보고된 바가 없었다. 본 발명에서는 생체적합한 폴리머와 탄소나노튜브 간의 합성시 탄소나노튜브의중량 % 함량비율을 늘림에 따라 기계적 표면 강도가 증가함을 밝힘으로써 초박막 나노 코팅막의 표면 강도를 조절할 수 있음을 밝혔다. Conventionally, a process technology for a single-layer biopolymer-nano composite having a thickness of nano and submicron meters having high biocompatibility has not been developed, and until now, it is possible to simultaneously control nano surface energy and surface strength in an ultra thin film coating layer. No technology has been reported at all. In the present invention, it was found that the surface strength of the ultra-thin nanocoated film can be controlled by revealing that the mechanical surface strength increases with increasing the weight% content ratio of the carbon nanotubes during the synthesis between the biocompatible polymer and the carbon nanotubes.
또한, 본 발명의 제조방법은 상기 생체적합한 폴리머와 상기 탄소나노튜브의 합성 비율을 조절하여 상기 코팅막의 나노 스케일에서의 거침도를 조절함으로써 생체 적합성 여부를 확인하는 단계를 추가로 포함할 수 있다. In addition, the manufacturing method of the present invention may further comprise the step of checking the biocompatibility by controlling the roughness at the nanoscale of the coating film by adjusting the synthesis ratio of the biocompatible polymer and the carbon nanotubes.
본 발명에서는 생체적합한 폴리머와 탄소나노튜브 간의 합성시 탄소나노튜브의중량 % 함량비율을 늘림에 따라 나노 코팅막의 나노 스케일에서의 거침도가 증가하고 표면 에너지가 증가함을 밝혀, 나노 및 서브마이크론 미터의 두께를 가지는 폴리머-나노 복합체 코팅막에서 표면 에너지를 증가시켜 생체 내 단백질의 흡착을 조절함으로써 생체 적합성을 증가시킬 수 있음을 확인하였다. In the present invention, as the weight percent content ratio of the carbon nanotubes is increased during the synthesis between the biocompatible polymer and the carbon nanotubes, the roughness at the nanoscale of the nanocoating film is increased and the surface energy is increased. It was confirmed that biocompatibility can be increased by controlling the adsorption of proteins in vivo by increasing the surface energy in the polymer-nano composite coating film having a thickness of.
본 발명의 구체적 실시예에서는 생체적합한 폴리머와 탄소나노튜브를 1:1 ~ 1:10의 비율로 합성하고 복합체의 물성의 경향성을 알아보기 위해 합성 비율을 달리해가면서 실험한 결과, 상기 폴리카보네이트 우레탄에 1,2-디클로로에탄을 첨가하면 할수록 표면 에너지가 감소하고 표면 강도가 부드러워짐을 확인할 수 있었으며, 상기 폴리카보네이트 우레탄에 탄소나노튜브의 합성비율을 높이면 높일수록 표면 에너지가 증가하여 나노 스케일에서의 거침도가 증가하고 표면 강도가 증가하는 것을 알 수 있었다 (도 8 참조). 이러한 사실로부터 나노 및 서브마이크론 미터의 두께를 가지는 생체적합한 폴리머와 나노 복합체가 폴리머와 탄소나노튜브의 합성비율을 조절함으로써 표면 에너지 및 표면 강도를 조절할 수 있음을 알 수 있다. In a specific embodiment of the present invention synthesized biocompatible polymers and carbon nanotubes in a ratio of 1: 1 to 1:10, and experiments while varying the synthesis ratio in order to determine the tendency of the physical properties of the composite, the polycarbonate urethane The addition of 1,2-dichloroethane to the surface energy was reduced and the surface strength was softened, and as the synthesis ratio of carbon nanotubes to the polycarbonate urethane increases, the surface energy increases and roughness at nanoscale. It was found that the degree increased and the surface strength increased (see FIG. 8). From this fact, it can be seen that biocompatible polymers and nanocomposites having a thickness of nano and submicron meters can control surface energy and surface strength by controlling the synthesis ratio of polymer and carbon nanotubes.
또한, 상기 나노 표면의 거침도를 생체 내의 단백질의 흡착을 조절할 수 있어서 폴리머-나노 복합체의 생체 적합성을 적합하도록 제조할 수 있다. 본 발명의 구체적 실시예에서는 탄소나노튜브-폴리카보네이트 우레탄 복합체의 생체 내 단백질에 대한 흡착 조절 효과를 알아보기 위하여, 혈장, 혈청 결합조직에 존재하는 세포접착성 당단백질인 비트로넥틴(vitronectin)과 동물 혈액 내, 배양세포 베이지의 필수 단백질로 사용되는 FBS의 흡착도를 조사해본 결과, 비트로넥틴 및 FBS의 경우 탄소나노튜브의 함량 비율을 증가시킴에 따라 흡착이 잘 됨을 알 수 있었다. 도 9에서 보듯이, 탄소나노튜브가 증가할수록 단백질이 많이 흡착되며, 단백질 흡착에는 표면 에너지보다는 나노 표면의 거침도가 영향을 더 미치는 것을 확인할 수 있었다. 또한, 탄소나노튜브가 증가하면 나노 표면 거침도가 증가하고 이에 따라 표면 장력이 증가하고(도 7 참조), 표면 장력이 증가하면 면역세포의 흡착이 증가하고 이러한 증가된 흡착에 의하여 증식도 증가함을 알 수 있다 (도 10 참조). In addition, the roughness of the nano-surface can be controlled to adjust the adsorption of the protein in the living body can be prepared to suit the biocompatibility of the polymer-nanocomplex. In a specific embodiment of the present invention, in order to investigate the effect of carbon nanotube-polycarbonate urethane complex on the adsorption regulation of proteins in vivo, vitronectin, which is a cell-adhesive glycoprotein present in plasma and serum connective tissue, and animals As a result of examining the adsorption degree of FBS used as an essential protein of cultured cell beige, it was found that the adsorption was good as the content of carbon nanotubes was increased in the case of Vitronectin and FBS. As shown in FIG. 9, as the carbon nanotubes increase, more proteins are adsorbed, and it was confirmed that the roughness of the nanosurface has more influence on protein adsorption than surface energy. In addition, as the carbon nanotubes increase, the nano-surface roughness increases and accordingly, the surface tension increases (see FIG. 7), and when the surface tension increases, the adsorption of immune cells increases, and the proliferation also increases by the increased adsorption. It can be seen (see FIG. 10).
상기와 같은 본 발명의 조절 방법을 통해, 인체 삽입형 기구에 생체 폴리머를 코팅할 경우 생체폴리머에 나노튜브를 합성하여 나노 토포를 형성함으로서 표면 장력을 조절하여, 생체 적합성 및 독성을 기존의 생체 폴리머 물질에 비교하여 향상시킬 수 있고, 또한 기계적 강도를 나노튜브의 합성비율로 조절하여 역학적 성질을 조절함으로써 보다 많은 임플란트 폴리머 응용분야에 적용할 수 있음을 알 수 있다. Through the control method of the present invention as described above, when the biopolymer is coated on the human implantable device by synthesizing the nanotubes on the biopolymer to form a nano topo by adjusting the surface tension, biocompatibility and toxicity of the existing biopolymer material It can be seen that the present invention can be improved in comparison with the present invention, and can be applied to more implant polymer applications by controlling the mechanical properties by controlling the mechanical strength by the synthesis ratio of the nanotubes.
상기 제조방법에 의해 제조된 나노 및 서브마이크론 미터의 두께를 가지는 코팅막 즉, 나노튜브 폴리머 초박막 구조체는 인공 혈관 지지체, 인공 방광 및 인공 요로, 혈관 내의 융합 전원 전극 소스 코팅 및 전원소스의 전원공급 전선의 바이오 피복 재료로 사용할 수 있다. 상기 초박막 구조체는 인체 면역 독성을 억제하는 효과를 가지는데, 본 발명의 제조방법은 조직세포 (또는 줄기세포)의 생체 적합성을 향상시키고 대표적인 면역 활성 세포인 대식세포(macrophage)의 활동을 억제함으로써 면역독성을 줄일 수 있는 바, 보다 구체적으로 탄소카본나노튜브(CNT)가 첨가됨에 따라 독성(NO:Nitrite) 및 항염증성 인자(TNF-alpha, IL-1beta)가 감소하고, 또한 CNT를 합성하여 나노토포를 만들면 면역세포의 활동성이 억제될 수 있다 (도 12, 13 참조). 상기 폴리머-나노 복합체 또는 코팅막은 모든 생체 삽입형 의료장비에 사용될 수 있으며, 나노토포를 유지하면서 초미세 두께를 이용해야 하는 모세혈관 및 미세 혈관 삽입과 같은 환경에 적합할 수 있다. A coating film having a thickness of nano and submicron meters manufactured by the manufacturing method, ie, nanotube polymer ultra-thin film structure, may be used for artificial blood vessel support, artificial bladder and urinary tract, coating of fusion power electrode source in blood vessel and power supply wire of power source. It can be used as a bio coating material. The ultra-thin structure has the effect of inhibiting human immune toxicity, the method of the present invention improves the biocompatibility of tissue cells (or stem cells) and immune by inhibiting the activity of macrophage (macrophage) which is a representative immune active cell Toxicity can be reduced, more specifically, the addition of carbon carbon nanotubes (CNT) reduces the toxicity (NO: Nitrite) and anti-inflammatory factors (TNF-alpha, IL-1beta), and also synthesizes CNTs Making a topo may inhibit the activity of immune cells (see FIGS. 12 and 13). The polymer-nanocomposite or coating film may be used in all bio-invasive medical devices, and may be suitable for an environment such as capillary and micro-vessel insertion that requires ultra-thin thickness while maintaining nanotopos.
본 발명은 생체 적합 폴리머에 탄소나노튜브를 혼합하여 나노(nanometer) 및서브마이크론(submicron-meter)의 두께를 가지는 코팅막 및 그의 제조방법에 관한 것으로서, 상기 폴리머와 탄소나노튜브의 합성 비율을 조절함으로써 상기 초박막 두께를 갖는 코팅막의 생체 적합성의 증가시키고 기계적 강도를 조절할 수 있으며, 독성 및 염증을 억제할 수 있음을 밝혔고, 이러한 특징을 이용하여 나노의료기 및 와이어 코팅 등 생체 내 미세혈관에 삽입되는 의료기기에 적용할 수 있는 효과가 있다. The present invention relates to a coating film having a thickness of nano (nanometer) and submicron (submicron-meter) by mixing carbon nanotubes with a biocompatible polymer, and a method of manufacturing the same, by controlling the synthesis ratio of the polymer and carbon nanotubes It has been found that it is possible to increase the biocompatibility and control the mechanical strength of the coating film having the ultra-thin film thickness, and to suppress toxicity and inflammation, and to use such features to insert a medical device that is inserted into microvascular vessels such as nano medical devices and wire coatings. There is an effect that can be applied to.
도 1은 본 발명에 따른 코팅막의 하나의 적용예로서 전원공급 와이어 및 전극소스 모듈의 표면을 코팅한 것을 나타낸 것이다. Figure 1 shows a coating of the surface of the power supply wire and the electrode source module as an application example of the coating film according to the present invention.
도 2는 본 발명에 따른 코팅막의 제조과정을 개략적으로 나타낸 것이다.Figure 2 schematically shows the manufacturing process of the coating film according to the present invention.
도 3은 CNT와 PCU의 합성비율을 달리하면서 제조한 코팅막의 샘플을 나타낸 것이다. Figure 3 shows a sample of the coating film prepared while varying the synthesis ratio of CNT and PCU.
도 4는 본 발명에 따른 폴리머 코팅막의 두께를 측정한 결과의 일례를 나타낸 것이다. (하단의 그림은 탄소나노튜브와 폴리머 복합체의 두께 (AFM 분석)를 나타내고 있으며 31 nm 정도의 두께를 가지고 있다.)Figure 4 shows an example of the result of measuring the thickness of the polymer coating film according to the present invention. (The lower figure shows the thickness of the carbon nanotube and polymer composite (AFM analysis) and has a thickness of about 31 nm.)
도 5는 본 발명에 따른 폴리머 코팅막의 두께를 측정한 결과의 또다른 일례를 나타낸 것이다. (하단의 그림은 탄소나노튜브와 폴리머 복합체의 두께 (AFM 분석)를 나타내고 있으며 31 nm 정도의 두께를 가지고 있다.)Figure 5 shows another example of the results of measuring the thickness of the polymer coating film according to the present invention. (The lower figure shows the thickness of the carbon nanotube and polymer composite (AFM analysis) and has a thickness of about 31 nm.)
도 6은 열을 가해 주었을 때 생기는 폴리머 구 (sphere) 가 탄소나노튜브 위에서도 발생되는 것으로 볼 때 (30 nm 두께) 탄소나노튜브가 표면 위로 노출되지 않고 30nm 정도의 초박막으로 덮혀져 있는 것을 확인할 수 있다. FIG. 6 shows that the polymer sphere generated when the heat is applied is also generated on the carbon nanotubes (30 nm thick), and the carbon nanotubes are not exposed on the surface and are covered with an ultra-thin film of about 30 nm. .
도 7은 CNT와 PCU의 합성비율을 달리하면서 제조한 코팅막의 나노 스케일 표면 거칠기를 원자 현미경 (AFM) 으로 나타낸 것이다. 하단 도표는 탄소나노튜브의 합성에 따른 표면 장력의 변화를 나타낸 것이다 (y 축은 측정값 (angle)을 나타냄)나노튜브가 증가하면 표면 거침도가 증가하고 이에 따라 표면 장력이 증가한다.Figure 7 shows the nano-scale surface roughness of the coating film prepared by varying the synthesis ratio of CNT and PCU by atomic microscope (AFM). The bottom plot shows the change in surface tension due to the synthesis of carbon nanotubes (the y-axis represents the angle). As the nanotubes increase, the surface roughness increases and thus the surface tension increases.
도 8은 CNT와 PCU의 중량의 합성비율을 달리하면서 제조한 코팅막의 다이나믹 경도 측정 결과를 나타낸 것이다. 카본 나노 튜브가 증가할수록 표면경도가 증가하는 것을 알 수 있다 (CNT 중량을 10배 증가하였을 경우 표면 경도값은 두배 이상 증가함).Figure 8 shows the results of measuring the dynamic hardness of the coating film prepared while varying the synthesis ratio of the weight of the CNT and PCU. It can be seen that as the carbon nanotubes increase, the surface hardness increases (the surface hardness increases more than twice when the CNT weight is increased by 10 times).
도 9는 본 발명의 코팅막에서 CNT와 PCU 중량의 합성비율에 따른 단백질 흡착 정도를 나타낸 것이다. 표면 에너지보다는 나노 표면의 거침도가 단백질 흡착에 영향을 주는 것을 확인할 수 있다. 탄소나노튜브가 증가할수록 단백질이 많이 흡착되는 것을 알 수 있다. 하단 그림은 코팅막의 합성비율에 따른 비트로넥틴의 흡착 정도를 나타낸 것으로, 탄소나노튜브 비율이 증가할수록 단백질이 많이 흡착되는 것을 알 수 있다. Figure 9 shows the degree of protein adsorption according to the synthesis ratio of CNT and PCU weight in the coating film of the present invention. It can be seen that the roughness of the nanosurface rather than the surface energy affects the protein adsorption. As carbon nanotubes increase, more proteins are adsorbed. The lower figure shows the degree of adsorption of Vitronectin according to the synthesis ratio of the coating film. As the carbon nanotube ratio increases, more protein is adsorbed.
도 10은 본 발명의 코팅막에서 CNT와 PCU의 합성비율에 따른 면역세포의 흡착 및 증식을 나타낸 것(상단 그림)으로 표면 장력이 증가하면 면역세포의 흡착이 증가함을 볼 수 있다 (3시간). 또한 증가된 흡착에 의하여 증식(24 시간)도 증가함을 알 수 있다. 하단 그림은 중간엽 줄기세포 (messenchymal stem cell)의 흡착 및 증식도를 나타낸 것으로, 증가된 나노 거침도 및 단백질의 흡착 정도에 따라서 증식(self-renewal)이 조절됨을 알 수 있다.Figure 10 shows the adsorption and proliferation of immune cells according to the synthesis ratio of CNTs and PCU in the coating film of the present invention (upper figure). As the surface tension increases, the adsorption of immune cells increases (3 hours). . In addition, it can be seen that the increase in growth (24 hours) by the increased adsorption. The lower figure shows the adsorption and proliferation of messenchymal stem cells, and it can be seen that the self-renewal is regulated according to the increased degree of nanoroughness and the degree of protein adsorption.
도 11은 순수한 PCU(좌) 및, CNT와 합성된 PCU/CNT 복합체(우)의 코팅막 두께 및 그에 따른 형상을 각각 비교하여 나타낸 사진이다.FIG. 11 is a photograph showing comparison of the thickness and shape of the coating film of the pure PCU (left) and the PCU / CNT composite (right) synthesized with CNT, respectively.
도 12는 본 발명의 코팅막에서 CNT와 PCU의 합성비율에 따른 면역세포의 활동성이 억제되는 양상을 나타낸 사진 및 그래프이다. 이를 통해 본 발명과 같이 CNT를 합성하여 나노포토를 만들면 면역세포의 활동성이 억제됨을 알 수 있다.12 is a photograph and a graph showing an aspect of suppressing the activity of immune cells according to the synthesis ratio of CNT and PCU in the coating film of the present invention. Through this, it can be seen that the activity of immune cells is inhibited by making CNTs by synthesizing CNTs as in the present invention.
도 13은 본 발명의 코팅막에서 탄소카본나노튜브(CNT)가 첨가됨에 따라 독성(NO: Nitrite) 및 항염증성 인자(TNF-alpha, IL-1beta)가 감소함을 나타낸 그래프이다. 이를 통해 본 발명이 독성 및 항염증성 인자가 억제됨을 알 수 있다.FIG. 13 is a graph showing that toxicity (NO: Nitrite) and anti-inflammatory factors (TNF-alpha, IL-1beta) decrease as carbon carbon nanotubes (CNT) are added in the coating film of the present invention. Through this, it can be seen that the present invention is inhibited toxic and anti-inflammatory factors.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
실시예 1: CNT-PCU 복합체 코팅막의 제조Example 1: Preparation of CNT-PCU Composite Coating Film
클로로포름 16ml에 폴리카보네이트 우레탄(Lubrizol, PC-3575A) 1g을 주입하여 용액을 제조하였다. 1, 2-Dichloroethane 60ml에 탄소나노튜브 0.3g을 주입하여 용액을 제조하였다. 그런 다음, 폴리카보네이트 우레탄은 1시간, 탄소나노튜브는 24시간 동안 각각 상온에서 초음파를 가하였다. 그런 다음, 상기 두 용액을 혼합하였다. 이로써, 상기 폴리카보네이트 우레탄 대비 탄소나노튜브의 함량은 100 및 1000 중량%가 된다. 그런 다음, 두 스핀 코터(Spin Coater)를 사용하여 유리 위에 코팅시킨 후 실온에서 진공상태에서 건조시켰다. 그리고 UV를 쬐어줌으로써 살균 및 소독시켜 CNT-PCU를 제조하였다. 특정 조합을 만들기 위한 chemcal solution 혼합 정도는 아래와 같다.A solution was prepared by injecting 1 g of polycarbonate urethane (Lubrizol, PC-3575A) into 16 ml of chloroform. 0.3g of carbon nanotubes were injected into 60 ml of 1,2-dichloroethane to prepare a solution. Then, polycarbonate urethane was subjected to ultrasonic waves at room temperature for 1 hour and carbon nanotubes for 24 hours, respectively. Then, the two solutions were mixed. Thus, the content of carbon nanotubes compared to the polycarbonate urethane is 100 and 1000% by weight. Then, two spin coaters were used to coat the glass, followed by drying in vacuo at room temperature. And CNT-PCU was prepared by sterilization and disinfection by exposing to UV. The mixing degree of chemcal solution to make a specific combination is as follows.
(1) PCU: 1, 2-Dichloroethane (1: 1) → 2ml: 25ml(1) PCU: 1, 2-Dichloroethane (1: 1) → 2ml: 25ml
(2) PCU: 1, 2-Dichloroethane (1: 10) → 0.2ml: 25ml(2) PCU: 1, 2-Dichloroethane (1: 10) → 0.2ml: 25ml
(3) PCU: CNT (1: 1) → 2ml: 25ml(3) PCU: CNT (1: 1) → 2ml: 25ml
(4) PCU: CNT (1: 10) → 0.2ml: 25ml(4) PCU: CNT (1:10) → 0.2ml: 25ml
Sonication (PCU+1, 2-Dichloroethane = 30min, PCU+CNT = 1hr) 후 Spin Coater를 사용하여 glass 위에 각각의 composite solution을 코팅한다. 그런 다음, 건조(상온에서 진공상태)한 후 UV를 쬐어줌으로써 살균 및 소독한 상태로 보관한다.After sonication (PCU + 1, 2-Dichloroethane = 30min, PCU + CNT = 1hr), coat each composite solution on glass using a spin coater. It is then dried (vacuum at room temperature) and then stored under sterilization and disinfection by exposure to UV light.
그 결과, 100 또는 200 nm 이하의 두께를 가진 나노 박막구조를 가지는 코팅막을 얻을 수 있었다 (도 4, 5, 11 참조). As a result, a coating film having a nano thin film structure having a thickness of 100 or 200 nm or less was obtained (see FIGS. 4, 5, and 11).
실시예 2: CNT-PCU 복합체 코팅막의 표면 특성 조사Example 2: Investigation of surface properties of CNT-PCU composite coating film
투명도transparency
본 발명의 CNT-PCU 복합체 코팅막의 투명한 정도를 조사해본 결과, 도 3에서와 같이 탄소나노튜브가 100nm 이하로 코팅되어 있기에 투명한 상태를 유지하고 있음을 알 수 있었다. As a result of examining the degree of transparency of the CNT-PCU composite coating film of the present invention, it can be seen that the carbon nanotubes are coated at 100 nm or less, thereby maintaining a transparent state.
표면 경도의 측정: Dynamic 경도Measurement of Surface Hardness: Dynamic Hardness
표면 경도는 현재 JIS(일본 공업 규격)화 되고 있는 새로운 정의의 경도인 Dynamic 경도를 측정하였다. 상기 Dynamic 경도는 압자가 시료에 얼마나 침입했는지를 측정하는 방식으로서 압자를 밀어 넣어가는 과정의 시험력과 indent 깊이로부터 얻을 수 있는 경도이며, 본 발명에서는 시험력 P[mN] 압자의 시료에의 침입량(Indent 깊이) D[㎛]로 할 때에 하기 식에서 정의되는 Dynamic 경도 DH를 이용하여 경도를 구하였다:Surface hardness measured the dynamic hardness which is a new definition hardness currently being JIS (Japanese Industrial Standard). The dynamic hardness is a hardness obtained from the test force and the indent depth of the process of pushing the indenter as a method of measuring how the indenter penetrates into the sample. In the present invention, the test force P [mN] intruder penetrates into the sample. Hardness was calculated | required using Dynamic hardness DH defined by the following formula at the time (Indent depth) D [micrometer]:
DH=αX P/D2 DH = αX P / D 2
(α는 압자 형상에 의한 정수임. 115°삼각 피라미드형 압자: α=3.8584로 주어짐)(α is an integer by indenter shape. 115 ° triangle pyramid indenter: given by α = 3.8584)
그 결과, 도 8에서 보듯이 PCU에 대한 CNT 합성비율을 늘림에 따라 경도가 증가하는 것을 확인할 수 있었다. CNT를 첨가할수록 표면 에너지가 증가하고 (나노 스케일에서의 거침도가 증가) 표면 강도 (hardness)이 증가하는 것을 알 수 있었다. 또한, 화학적으로 PCU 에 1, 2-디클로로에탄을 첨가할수록 표면에너지가 감소하고 표면강도가 부드러워짐을 알 수 있었다. 이를 통해, 100nm 이하의 두께를 가지는 생체 폴리머 나노 복합체의 박막구조에서 폴리머에 대한 CNT 비율을 조절하여 표면 에너지 및 표면 강도를 조절할 수 있음을 알 수 있었다. As a result, as shown in Figure 8 it was confirmed that the hardness increases with increasing the CNT synthesis ratio for PCU. It was found that the addition of CNTs increased the surface energy (roughness at the nanoscale) and the surface hardness (hardness). In addition, it can be seen that as the 1, 2-dichloroethane is added to the PCU chemically, the surface energy decreases and the surface strength becomes smooth. Through this, it was found that the surface energy and the surface strength can be controlled by controlling the CNT ratio of the polymer in the thin film structure of the biopolymer nanocomposite having a thickness of 100 nm or less.
실시예 3: CNT-PCU 복합체 코팅막의 생체 내 단백질 흡착 조절 효과Example 3: In vivo protein adsorption regulation effect of CNT-PCU composite coating membrane
CNT-PCU 복합체 코팅막에 대한 단백질 흡착 테스트(ELISA 또는 absorbance KIT)를 하기 위해, 세포 배양용 단백질 원액 (FBS , Gibco) 을 1/5 로 희석한 후 각 샘플의 표면에 흡착 실험을 실시하여 진행하였다. 3시간 경과 후 세제 (SDS 1%)를 써서 단백질을 떼어낸 후 단백질 흡광도 측정 킷 (coomasie 595nm, Thermo)을 사용하여 단백질의 흡광도를 ELISA reader 기로 측정하였다. In order to perform protein adsorption test (ELISA or absorbance KIT) on the CNT-PCU composite coating membrane, cell culture protein stocks (FBS, Gibco) were diluted to 1/5, and the adsorption experiment was performed on the surface of each sample. . After 3 hours, the protein was removed using detergent (SDS 1%), and then the absorbance of the protein was measured using a protein absorbance measurement kit (coomasie 595 nm, Thermo) using an ELISA reader.
또한, 비트로넥틴 (V 8379, Sigma)을 사용하여 흡착 실험을 실시하였다. 3시간 경과 후 세제 (SDS 1%)를 써서 단백질을 떼어낸 후 단백질 흡광도 측정 킷(coomasie 595nm, Thermo)을 사용하여 단백질의 흡광도를 ELISA reader 기로 측정하였다. Adsorption experiments were also carried out using Vitronectin (V 8379, Sigma). After 3 hours, the protein was separated using detergent (SDS 1%), and then the absorbance of the protein was measured using an ELISA reader using a protein absorbance measurement kit (coomasie 595 nm, Thermo).
그 결과, 코팅막의 단백질 흡착 정도는 CNT/PCU 비율에 따라 증가함을 알 수 있었다. 또한, 단백질 흡착에 있어서는 나노스케일 표면 거침도가 매우 중요함을 알 수 있었으며, 비트로넥틴 흡착 역시 CNT/PCU 비율에 따라 증가함을 확인할 수 있었다. 따라서, 코팅막의 CNT/PCU 비율을 조절하여 표면 에너지를 조절하면, 생체내의 단백질의 흡착을 조절할 수 있어서 더욱 생체에 적합하도록 할 수 있음을 확인하였다 (도 9 참조). As a result, the degree of protein adsorption of the coating film was found to increase with the CNT / PCU ratio. In addition, it was found that nanoscale surface roughness is very important in protein adsorption, and vitronectin adsorption also increased with the CNT / PCU ratio. Therefore, by adjusting the surface energy by adjusting the CNT / PCU ratio of the coating film, it was confirmed that the adsorption of protein in vivo can be adjusted to make it more suitable for living (see Figure 9).
실시예 4: CNT-PCU 복합체의 세포 내 부착 및 증식에 미치는 영향Example 4: Effect of CNT-PCU Complex on Intracellular Attachment and Proliferation
코팅된 각각의 샘플에 대식세포 (J774, ATCC) 를 100000/cm2 로 배양시킨 후 3시간 및 24시간 후에 세포의 갯수를 MTT로 측정하였다. 또한, 코팅된 각각의 샘플에 줄기세포 (MSC, Lonza)를 2500/cm2 로 배양 시킨 후 3시간 및 24시간 후에 세포의 갯수를 Dapi (형광 현미경 사용) 측정 방법을 이용하여 측정하였다. Macrophages (J774, ATCC) were incubated at 100000 / cm 2 in each coated sample, and the number of cells was measured by MTT after 3 and 24 hours. In addition, after 3 hours and 24 hours after incubating the stem cells (MSC, Lonza) in each of the coated samples at 2500 / cm 2 The number of cells was measured using a Dapi (fluorescence microscope) measuring method.
그 결과, 코팅막의 면역세포 및 중간엽줄기세포에 대한 부착 및 증식은 CNT/PCU 비율에 따라 증가함을 알 수 있었다. 따라서, 본 발명의 코팅막의 줄기세포 및 면역세포와의 상호작용에 있어서도 부착 정도를 향상시키고, 증식도 많이 하는 것을 보아 본 발명의 코팅막은 CNT/PCU 비율을 조절하여 생체 적합성을 향상시킬 수 있음을 확인할 수 있었다.As a result, it was found that adhesion and proliferation of the coating membrane to immune cells and mesenchymal stem cells increased with the CNT / PCU ratio. Therefore, in the interaction with the stem cells and immune cells of the coating film of the present invention improves the degree of adhesion, and the proliferation also shows that the coating film of the present invention can improve the biocompatibility by controlling the CNT / PCU ratio I could confirm it.
실시예 5: CNT-PCU 복합체의 세포 내 독성 억제 및 면역세포 활동성 억제: CNFs상 대식세포 유래의 전구염증 사이토카인Example 5 Intracellular Toxicity Inhibition and Immune Cell Activity Inhibition of CNT-PCU Complexes: Pro-inflammatory Cytokines Derived from Macrophages on CNFs
제조업체의 프로토콜에 따라, TNF-α와 IL-6 수준은 마우스 TNF-α와 IL-6의 상용 ELISA 키트(Quantikine: R&D 시스템, 미네폴리스, MN)를 사용하여 측정되었다. 각 정해진 시점 (4h, 12h, 24, 36h 및 48h)의 끝 부분에, 각 상등액 샘플이 수집되고 -80℃에서 저장되었으며, 또한, 동시에 마이크로플레이트 리더기에 의해 세번 반복 측정되었고, 평균표본오차에 의해 나타나졌다. 재조합 TNF-α와 IL-6는 각 사이토카인 분석에 표준 대조군으로 사용되었다.According to the manufacturer's protocol, TNF-α and IL-6 levels were measured using commercial ELISA kits (Quantikine: R & D system, Minneapolis, MN) of mouse TNF-α and IL-6. At the end of each set of time points (4h, 12h, 24, 36h and 48h), each supernatant sample was collected and stored at -80 ° C, and also measured three times at the same time by a microplate reader and by the average sample error. Appeared. Recombinant TNF-α and IL-6 were used as standard controls for each cytokine assay.
이러한 분석 범위는 TNF-α에 대해서는 15.6-1000pg/ml, 또한, IL-6에 대해서는 7.8-500pg/ml이다. 대식세포로부터 유래된 전구염증 사이토카인의 측정을 위해, 대식세포 배지가 회수되었고, IL-6와 TNF-α에 대한 ELISA 실험을 위해 사용되었다. ELISA 실험으로부터 data가 계산되었고, 광학밀도 단위가 상기 생존도 및 세포자살 실험에서 얻은 살아있는 세포의 숫자로 나누어져 pg/104 세포로 변환되었다.This analysis range is 15.6-1000 pg / ml for TNF-α and 7.8-500 pg / ml for IL-6. For the determination of proinflammatory cytokines derived from macrophages, macrophages medium was recovered and used for ELISA experiments for IL-6 and TNF-α. Data were calculated from the ELISA experiment, and the optical density unit was converted into pg / 10 4 cells divided by the number of viable cells obtained in the viability and apoptosis experiments.
시간 경과에 따른 전구염증 사이토카인 방출을 결정하기 위하여, 대식세포 유래의 전구염증 사이토카인(TNF-α와 IL-6)이, 37℃의 0-4h, 4-12h, 12-24h, 24-36h 및 48h에서 배지를 수거하며 DPBS로 세포를 세척하고, 신선한 배지를 제공하며 측정되어졌다. 모든 회수된 배지는 -80°C에서 저장되었고, 또한 동시에 측정되어졌다.To determine proinflammatory cytokine release over time, macrophage-derived proinflammatory cytokines (TNF-α and IL-6) were synthesized at 37 ° C., 0-4 h, 4-12 h, 12-24 h, 24- Media was harvested at 36h and 48h and cells were washed with DPBS, provided fresh media and measured. All recovered media was stored at -80 ° C and measured simultaneously.
그 결과, 상기 본원 발명의 복합체 코팅막은 탄소카본나노튜브(CNT)가 첨가됨에 따라 독성(NO:Nitrite) 및 항염성증 인자(TNF-alpha, IL-1beta)가 감소하고, CNT를 합성하여 나노토포를 만들면 면역세포의 활동성도 억제시킬 수 있는 효과를 지니고 있음을 확인할 수 있었다 (도 12, 13 참조).As a result, the composite coating film of the present invention reduces the toxicity (NO: Nitrite) and anti-inflammatory factors (TNF-alpha, IL-1beta) as carbon carbon nanotubes (CNT) is added, and synthesizes CNTs to nanotopo Making it was confirmed that it has an effect that can also inhibit the activity of immune cells (see Figure 12, 13).

Claims (10)

  1. 생체적합한 폴리머 및 탄소나노튜브를 포함하고 나노 (nanometer) 및 서브마이크론 (submicron-meter)의 두께를 갖고 독성 및 염증을 억제하는, 폴리머 복합체 코팅막.A polymer composite coating film comprising biocompatible polymers and carbon nanotubes and having a thickness of nanometers and submicron meters to suppress toxicity and inflammation.
  2. 제1항에 있어서, 상기 코팅막은 탄소나노튜브가 상기 생체적합한 폴리머의 표면에 직접 노출되지 않은 구조를 가지는 것을 특징으로 하는 코팅막.The coating film of claim 1, wherein the coating film has a structure in which carbon nanotubes are not directly exposed to the surface of the biocompatible polymer.
  3. 제1항에 있어서, 상기 생체적합한 폴리머는 폴리카보네이트 우레탄(polycarbonate urethane)인 코팅막. The coating film of claim 1, wherein the biocompatible polymer is polycarbonate urethane.
  4. 제1항에 있어서, 상기 코팅막은 30~200nm의 두께를 갖는 코팅막. The coating film of claim 1, wherein the coating film has a thickness of 30 to 200 nm.
  5. 생체적합한 폴리머와 탄소나노튜브를 1:1 ~ 1:10 중량%의 합성 비율로 각각의 용매에 넣은 후 각각 초음파 처리하는 단계;Sonicating the biocompatible polymer and carbon nanotubes in each solvent at a synthesis ratio of 1: 1 to 1:10 wt%, respectively;
    상기 초음파 처리된 두 개의 용액을 혼합하는 단계;Mixing the two sonicated solutions;
    상기 혼합용액을 스핀 코터(spin coater)를 사용하여 유리 위에 코팅하는 단계; Coating the mixed solution on glass using a spin coater;
    상기 혼합용액이 코팅된 유리를 실온에서 건조하는 단계; 및Drying the glass coated with the mixed solution at room temperature; And
    상기 건조된 유리를 자외선을 조사하여 살균 및 소독하는 단계를 포함하는, 나노 (nanometer) 및 서브마이크론 (submicron-meter)의 두께를 갖는 폴리머 복합체 코팅막의 제조방법.Method of producing a polymer composite coating film having a thickness of nano (nanometer) and submicron (submeter), comprising the step of sterilizing and disinfecting the dried glass by ultraviolet rays.
  6. 제5항에 있어서, 상기 생체적합한 폴리머는 폴리카보네이트 우레탄(polycarbonate urethane)인 제조방법. The method of claim 5, wherein the biocompatible polymer is polycarbonate urethane.
  7. 제5항에 있어서, 상기 탄소나노튜브의 용매는 물, 1,2 -디클로로에탄, 테트라하이드로퓨란, 디메틸포름아미드, 톨루엔(toluene), 에탄올 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 제조방법.The solvent of claim 5, wherein the solvent of the carbon nanotubes is any one or more selected from the group consisting of water, 1,2-dichloroethane, tetrahydrofuran, dimethylformamide, toluene, ethanol, and mixtures thereof. Characterized in the manufacturing method.
  8. 제6항에 있어서, 상기 폴리카보네이트 우레탄의 용매는 클로로포름인 제조방법.The method of claim 6, wherein the solvent of the polycarbonate urethane is chloroform.
  9. 제5항에 있어서, 상기 생체적합한 폴리머와 상기 탄소나노튜브의 합성 비율을 조절하여 상기 코팅막의 표면 강도를 조절하는 단계를 추가로 포함하는 제조방법. The method of claim 5, further comprising adjusting a surface strength of the coating layer by adjusting a synthesis ratio of the biocompatible polymer and the carbon nanotubes.
  10. 제5항에 있어서, 상기 생체적합한 폴리머와 상기 탄소나노튜브의 합성 비율을 조절하여 상기 코팅막의 나노 스케일에서의 거침도를 조절함으로써 생체 적합성 여부를 확인하는 단계를 추가로 포함하는 제조방법. 6. The method of claim 5, further comprising: checking biocompatibility by controlling a roughness at the nanoscale of the coating layer by adjusting a synthesis ratio of the biocompatible polymer and the carbon nanotube.
PCT/KR2011/008193 2010-11-01 2011-10-31 Carbon nanotube polymer composite coating film which suppresses toxicity and inflammation and has improved biocompatibility and adjusted surface strength WO2012060592A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0107561 2010-11-01
KR20100107561A KR101271535B1 (en) 2010-11-01 2010-11-01 Ultra thin film comprising carbon nanotube polymer composites for increasing biocompatibility and controlling mechanical strength and a method of preparing the same

Publications (3)

Publication Number Publication Date
WO2012060592A2 true WO2012060592A2 (en) 2012-05-10
WO2012060592A9 WO2012060592A9 (en) 2012-06-28
WO2012060592A3 WO2012060592A3 (en) 2012-08-16

Family

ID=46024926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008193 WO2012060592A2 (en) 2010-11-01 2011-10-31 Carbon nanotube polymer composite coating film which suppresses toxicity and inflammation and has improved biocompatibility and adjusted surface strength

Country Status (2)

Country Link
KR (1) KR101271535B1 (en)
WO (1) WO2012060592A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118522A1 (en) 2013-01-30 2014-08-07 Jaeger, Michael Carbon nanostructures for ocular tissue reinforcement
WO2015034930A1 (en) * 2013-09-03 2015-03-12 William Marsh Rice University Treatment of inflammatory diseases by carbon materials
US9312046B2 (en) 2014-02-12 2016-04-12 South Dakota Board Of Regents Composite materials with magnetically aligned carbon nanoparticles having enhanced electrical properties and methods of preparation
US9396853B2 (en) 2010-09-16 2016-07-19 Georgia Tech Research Corporation Alignment of carbon nanotubes comprising magnetically sensitive metal oxides in nanofluids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080096051A (en) * 2007-04-26 2008-10-30 한국과학기술원 Preparation methods for polymer composites containing carbon nanotubes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080096051A (en) * 2007-04-26 2008-10-30 한국과학기술원 Preparation methods for polymer composites containing carbon nanotubes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANG, DONG U ET AL.: 'Enhanced fibronectin adsorption on carbon nanotube/poly (carbonate) urethane: Independent role of surface nano-roughness and associated surface energy' BIOMATERIALS vol. 28, 2007, pages 4756 - 4768 *
SONG, HAO-JIE ET AL.: 'Surface-modified carbon nanobubes and the effect of their addition on the tribological behavior of a polyurethane coating' EUROPEAN POLYMER JOURNAL vol. 43, 2007, pages 4092 - 4102 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9396853B2 (en) 2010-09-16 2016-07-19 Georgia Tech Research Corporation Alignment of carbon nanotubes comprising magnetically sensitive metal oxides in nanofluids
US9892835B2 (en) 2010-09-16 2018-02-13 South Dakota Board Of Regents Composite materials with magnetically aligned carbon nanoparticles and methods of preparation
WO2014118522A1 (en) 2013-01-30 2014-08-07 Jaeger, Michael Carbon nanostructures for ocular tissue reinforcement
WO2015034930A1 (en) * 2013-09-03 2015-03-12 William Marsh Rice University Treatment of inflammatory diseases by carbon materials
US9312046B2 (en) 2014-02-12 2016-04-12 South Dakota Board Of Regents Composite materials with magnetically aligned carbon nanoparticles having enhanced electrical properties and methods of preparation

Also Published As

Publication number Publication date
KR20120045775A (en) 2012-05-09
KR101271535B1 (en) 2013-06-05
WO2012060592A9 (en) 2012-06-28
WO2012060592A3 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
Tahriri et al. Graphene and its derivatives: Opportunities and challenges in dentistry
Jia et al. Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor
Gu et al. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering?
Gheith et al. Stimulation of neural cells by lateral currents in conductive layer‐by‐layer films of single‐walled carbon nanotubes
Correa-Duarte et al. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth
Babaie et al. Synergistic effects of conductive PVA/PEDOT electrospun scaffolds and electrical stimulation for more effective neural tissue engineering
Polizu et al. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology
Lee et al. Graphene: an emerging material for biological tissue engineering
Gupta et al. Aligned carbon nanotube reinforced polymeric scaffolds with electrical cues for neural tissue regeneration
US7993412B2 (en) Nanofibers as a neural biomaterial
Voge et al. Carbon nanotubes in neural interfacing applications
Curtis et al. Cell signaling arising from nanotopography: implications for nanomedical devices
Li et al. The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials
Mwenifumbo et al. Exploring cellular behaviour with multi-walled carbon nanotube constructs
Redondo-Gomez et al. Recent advances in carbon nanotubes for nervous tissue regeneration
WO2012060592A2 (en) Carbon nanotube polymer composite coating film which suppresses toxicity and inflammation and has improved biocompatibility and adjusted surface strength
Wang et al. In vivo feasibility test using transparent carbon nanotube‐coated polydimethylsiloxane sheet at brain tissue and sciatic nerve
Bierman‐Duquette et al. Engineering tissues of the central nervous system: Interfacing conductive biomaterials with neural stem/progenitor cells
Sun et al. Combined application of graphene‐family materials and silk fibroin in biomedicine
Gupta et al. Poly (3, 4‐ethylenedioxythiophene): Poly (styrene sulfonate) in antibacterial, tissue engineering and biosensors applications: Progress, challenges and perspectives
Fatma et al. Biocompatible, breathable and degradable microbial cellulose based triboelectric nanogenerator for wearable transient electronics
Fan et al. Improvement of neural cell adherence to silicon surface by hydroxyl ion implantation
Li et al. 3D conductive material strategies for modulating and monitoring cells
CN112190594B (en) Antibacterial carbon nanotube with good biocompatibility and preparation method thereof
Liu Emerging Nanocomposite and Nanoarchitectonic Coatings for Biomedical Engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838197

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11838197

Country of ref document: EP

Kind code of ref document: A2