WO2012060503A1 - Shared repeater and mobile communication system - Google Patents

Shared repeater and mobile communication system Download PDF

Info

Publication number
WO2012060503A1
WO2012060503A1 PCT/KR2010/008135 KR2010008135W WO2012060503A1 WO 2012060503 A1 WO2012060503 A1 WO 2012060503A1 KR 2010008135 W KR2010008135 W KR 2010008135W WO 2012060503 A1 WO2012060503 A1 WO 2012060503A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile communication
signal
base station
communication terminal
base stations
Prior art date
Application number
PCT/KR2010/008135
Other languages
French (fr)
Korean (ko)
Inventor
이용훈
오영석
유희정
성영철
류근영
조동호
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2012060503A1 publication Critical patent/WO2012060503A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15507Relay station based processing for cell extension or control of coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow

Definitions

  • the present invention relates to a mobile communication system including a shared repeater and a shared repeater for relaying communication between a mobile communication terminal and a base station in a mobile communication system.
  • a mobile communication terminal such as a mobile phone or a smart phone has been widely used for acquiring various information through various aspects of communication, including making a voice call while users move.
  • a communication not only the quality of a voice call but also a video call requiring a high data transfer amount and a communication quality in a data communication are more important.
  • each base station provides a service to mobile terminals in its cell and installs a base station so that the boundary areas of each cell overlap each other, so that when a user moves between cells, the mobile communication is performed at the cell boundary.
  • the service of the terminal is to be made smoothly.
  • mobile communication terminals located at cell boundaries are subjected to inter-cell interference by signals of other adjacent base stations, thereby making it difficult to guarantee communication quality.
  • each base station allocates different resources such as time, frequency, or code to the mobile communication terminals, which is generated due to a signal from an adjacent base station.
  • Cell interference was effectively removed.
  • this method has a disadvantage in that the cell capacity is reduced by the number of orthogonal resources.
  • the existing repeater has been used to solve the shadow area problem of the cellular system or to expand the coverage of the base station, and in recent years, multiple base stations and the shared repeater are wirelessly connected so that the neighboring cell interference is zero-forced at the shared repeater.
  • a technique for eliminating by zero-forcing has also been proposed. In this technique, since the shared repeater and the base stations are wirelessly connected, the shared repeater becomes a half-duplex form, and thus cell capacity is halved.
  • MIMO multi-user multi input multi output
  • the present invention has been made to solve the above-described problem, and an object thereof is to provide a technique for minimizing cell interference which may be caused by a signal of an adjacent base station at a cell boundary.
  • a shared repeater includes: at least one base station communication unit provided to perform communication with a plurality of adjacent base stations; A terminal communication unit provided to perform communication with the mobile communication terminal; An amplifying unit for amplifying a signal received through the at least one base station communication unit and outputting the signal to the terminal communication unit, and amplifying the signal received through the terminal communication unit and outputting the signal to the base station communication unit; And at least one base station communication unit, terminal communication unit, and amplifying unit to transmit the received signal to any one of a plurality of base stations when a signal is received from the mobile communication terminal, and to transmit the received signal to the mobile communication terminal when a signal is received from the base station.
  • control unit combines the signals received from a plurality of base stations or mobile communication terminal into a single signal and outputs the signal to the one or more base station communication unit or the terminal communication unit.
  • the controller transmits the signal to any one of base stations corresponding to a cell to which the mobile communication terminal belongs.
  • the base station communication unit is characterized in that the communication is made through the communication using a plurality of base stations or optical communication or microwave.
  • the control unit may control the at least one base station communication unit to perform multi-user signal processing on the signals received at the mobile communication terminal.
  • the multi-user signal processing is characterized in that at least one of multi-user decoding (MUD) or receive zero-forcing (ZF).
  • MOD multi-user decoding
  • ZF receive zero-forcing
  • a mobile communication system includes: a plurality of base stations connected to a mobile communication network; A mobile communication terminal connected to a mobile communication network through communication with any one of the plurality of base stations; And a shared repeater located at cell boundaries of the plurality of base stations, communicating with the plurality of base stations, and relaying communication between the mobile communication terminal and the plurality of base stations. Characterized in that it comprises a.
  • the shared repeater is characterized in that the communication with the plurality of base stations using optical communication or microwave.
  • the shared repeater When the shared repeater receives a signal from a mobile communication terminal located at a cell boundary, the shared repeater transmits the received signal to any one of the plurality of base stations, and any one of the plurality of base stations receiving the signal transmits the signal.
  • the communication with the communication terminal is characterized in that the control is made only through the shared repeater.
  • the base station in communication with the shared repeater of the plurality of base stations when the mobile terminal performs MUD (Multi-user Decoding), the mobile communication terminal to control the transmission rate or multiplex so that the signal can be recovered without error
  • MUD Multi-user Decoding
  • any one of a plurality of base stations for receiving a signal from the mobile communication terminal is characterized in that to perform a multi-user signal processing to obtain its own signal.
  • the multi-user signal processing may be any one or more of multi-user decoding (MUD) and received zero-forcing (ZF).
  • MCD multi-user decoding
  • ZF received zero-forcing
  • the mobile communication terminal may recover a signal without error at any one of the plurality of base stations. It is characterized by controlling the transmission rate so that.
  • the mobile communication terminal is characterized by generating a precoder of the mobile communication terminal to control the transmission rate so that the total capacity of the signal when the signal is transmitted to the shared repeater side.
  • the shared repeater may be configured with a mobile communication terminal adjacent to a cell boundary of the base station during downlink communication in which a signal is transmitted from a base station to a mobile communication terminal.
  • the present invention provides a shared repeater that communicates with a plurality of base stations at a cell boundary between base stations, thereby minimizing problems caused by cell interference in a mobile communication terminal located at a cell boundary. It is possible for the users located to guarantee the communication quality of the mobile communication terminal, and further increase the cell capacity of the entire mobile communication system.
  • a channel between the mobile communication terminals located at the cell boundary and the base stations is multiplexed in the existing interference channel.
  • the existing interference channel is changed to a broadcast channel.
  • mobile terminals located at a cell boundary communicate with a shared relay that is closer than a base station.
  • 1 is a diagram illustrating communication between a mobile communication terminal and a base station in a conventional base station cell boundary.
  • FIG. 2 is a block diagram showing a shared repeater of the present invention.
  • FIG. 3 is a diagram illustrating communication between a mobile communication terminal and a base station at a base station cell boundary of the present invention.
  • FIG. 4 is a diagram illustrating the coverage of the shared repeater of the present invention.
  • FIG. 5 is a simulation result when a mobile communication terminal has a uniform distribution in a shaded area and the number of antennas of a mobile communication terminal, a shared repeater, and a base station is one in the present invention.
  • 6 is a simulation result when the mobile communication terminal has a uniform distribution in the shaded area, and the number of antennas of the mobile communication terminal, the shared repeater, and the base station is two.
  • FIG. 7 is a diagram illustrating a mobile terminal through a shared repeater 100 located at a cell boundary of the present invention.
  • base station 300 mobile communication terminal
  • the shared repeater 100 of the present invention includes a base station communication unit 110, a terminal communication unit 120, an amplifier 130, and a controller 140, which are described with reference to FIGS. 2 to 7. Will be explained.
  • the base station communication unit 110 is in communication with the base station 200 installed in the vicinity of the shared repeater 100, the base station communication unit 110 at this time is made of the communication using each base station 200 and the optical cable or microwave Communication is made through a reliable link.
  • the terminal communication unit 120 communicates with a plurality of mobile communication terminals 300 adjacent to the shared repeater 100 during the up / down link communication.
  • the amplification unit 130 amplifies the signal received from the terminal communication unit 120 and outputs the signal to the base station communication unit 110, and amplifies the signal received from the base station communication unit 110 to output the terminal communication unit 120. To perform. That is, the amplifier 130 amplifies and outputs each received signal in uplink communication or downlink communication.
  • a signal from the mobile communication terminal 300 is received by the terminal communication unit 120 and then transmitted to the base station 200 through the base station communication unit 110 via the amplifier 130.
  • a signal from the base station 200 is received by the base station communication unit 110 and then transmitted to the mobile communication terminal 300 through the terminal communication unit 120 via the amplifier 130.
  • control unit 140 combines signals from the plurality of base stations 200 or the plurality of mobile communication terminals 300 into one, and the other roles are transmitted after the conventional amplification (AF: Amplify-and-Forward). Is the same as the repeaters.
  • FIG. 3 is a diagram of a plurality of mobile communication terminals located at a cell boundary between a plurality of adjacent base stations 200 connected to a plurality of adjacent base stations 200 by a reliable link such as communication using an optical cable or a microwave.
  • communication with the 300 is performed, wherein each base station 200 and each mobile communication terminal 300 have channel information (CSI: channel state) between the shared repeater 100 and all mobile communication terminals 300. share information).
  • CSI channel state
  • the interference by the adjacent cell is not received by the base station 200 from the multi-user decoding (MUD) or the received zero-forcing (ZF). It is possible to solve using multi-user signal processing such as, or to solve using the transmission ZF in the mobile communication terminal 300, the downlink that the signal is transmitted from the base station 200 to the mobile communication terminal 300 side
  • interference by an adjacent cell may be solved by using multi-user signal processing such as MUD or receiving ZF in the mobile communication terminal 300 or transmitting ZF in the base station 200.
  • the number of the base station 200 is three.
  • the number of the base station 200 can be expanded as needed, and the base station 200, the mobile communication terminal 300 and the shared repeater 100 is described as an example that is composed of a plurality of antennas, In this case, the number of antennas of the base station 200, the mobile communication terminal 300, and the shared repeater 100 may not be identical.
  • the mobile communication terminal 300 located at a cell boundary transmits data to any one of the plurality of base stations 200 through the shared relay 100 without directly communicating with the base station 200 of the cell to which the cell belongs.
  • the signal received from the shared repeater 100 may be represented as shown in [Equation 1].
  • Equation 1 may be regarded as the same as the signal received from each base station 200.
  • Is Following the distribution of Data of the second terminal (at this time, Can be applied even if the control is not generated by the Gaussian Codebook or when power control is performed for each symbol sent).
  • Is Transmission power of the second terminal Is sign Precoder of the second terminal, in which case, Is, Is The channel between the second terminal and the shared repeater 100, Is Additive White Gaussian Noise (AWGN) following the distribution of.
  • AWGN Additive White Gaussian Noise
  • the shared repeater 100 transmits a signal received from the mobile communication terminal 300 to the corresponding base stations 200 connected by a reliable link, and the base station 200 decodes the received signal.
  • each mobile communication terminal 300 controls the transmission rate so that each base station 200 can perform the MUD without error.
  • each base station (In step 200), a reception ZF is performed.
  • the total capacity of the system is determined by the shared repeater 100. It is equal to the total capacity when it is assumed to run.
  • a multiple access channel is formed between each of the terminals and the shared repeater 100, and in each mobile communication terminal 300 in order for the base station 200 to restore data of the corresponding terminal without error. It is necessary to control the transmission rate as shown in [Equation 2].
  • Equation 3 Is The rate of the second terminal, Is Wow Mutual information between them.
  • Equation 3 a precoder value of each mobile communication terminal 300 that maximizes the sum rate of cell boundary terminals is obtained through Equation 3.
  • the target signal-to-noise ratio (target) is reduced with a smaller transmission power than when directly communicating with the corresponding base station 200.
  • SNR Signal-to-Noise Ratio
  • Table 1 Cell structure Hexagonal grid, 3-cell BS, MS pair 3 pairs Tx, Rx distribution Uniform distribution Cell radius 1000 m Cell edge radius 50 ⁇ 200m BS (RS) -to-MS Propagation loss 128.1 + 37.6 log 10 (R) 128.1 + 28.8 log 10 (R), Rinkilometers Shadowing, Fading model Log Normal stdev 8 dB, Rayleigh fading Carrier frequency 2 GHz Bandwidth 10 MHz Tx power (BS, RS / MS) 24/16 dBm BS / RS Antenna gain 10 dBi MS Antenna gain 0 dBi Thermal noise density -174 dBm / Hz Noise figure 9 dB
  • FIG. 4 and Table 1 are simulation environments used for performance verification when the present invention is applied to a cellular communication system.
  • one cell is selected from each cell in a shaded area of the cell to be serviced through the shared repeater 100, and the mobile communication terminal 300 is uniformly distributed in the shaded area.
  • Figures 5 and 6 show this in a given environment (SISO: Single Input Single Output) and Results of the simulation of one case (MIMO).
  • the mobile communication terminal 300 at the cell boundary is It can be seen that there is a performance gain of more than 10 times compared to a conventional system (Comventional Scheme), a TDMA (Time Division Multiple Access) based system, an IA based system, and a Max-SINR based system that directly communicate with the base stations 200.
  • a conventional system Comventional Scheme
  • TDMA Time Division Multiple Access
  • IA IA
  • Max-SINR Max-SINR
  • the IA-based system guarantees maximum performance when the SNR is high in the multi-user interference channel.
  • the mobile communication terminal 300 at the cell boundary is located in a low SNR region, and exhibits similar performance.
  • the Max-SINR based system shows higher performance than existing systems, but this value is much smaller than the value using the shared repeater 100. The reason is that the distance between the shared repeater 100 and the mobile communication terminal 300 at the cell boundary is very close, so if the same power is used in the mobile communication terminal 300 at the cell boundary, the multiple access channel having a very high SNR Because it is formed. If the target capacity is determined, since the target capacity can be obtained with lower battery power, battery power of the mobile communication terminals 300 located at the cell boundary can be saved.
  • the shared repeater 100 installed at the cell boundary is not only cheaper in terms of cost than when the small base station 200 is installed, but also merely transmits the received signal to the corresponding base station 200 through a reliable link such as an optical cable. Therefore, unlike when installing the small base station 200 has the advantage that does not cause another cell boundary problem or handover problem. Therefore, the method of installing the small base station 200 instead of the shared repeater 100 increases the overhead and complexity of the system compared to the method of using the shared repeater 100, and thus the shared repeater 100 as in the present invention. ) Is more effective.
  • the base stations 200 do not communicate directly with the mobile communication terminals 300 located at their cell boundaries, but transmit data corresponding to the shared relay 100 through a reliable link.
  • the signal received from the shared repeater 100 may be represented as shown in [Equation 4].
  • Is Following the distribution of Data of the second base station 200 (in this case, Is also applicable when the power is not generated by the Gaussian Codebook or when power control is performed for each symbol sent). Is The transmission power of the second base station 200, Is sign Is the precoder of the base station 200, Is, Is The channel between the base station 200 and the shared repeater 100, Is Additive White Gaussian Noise (AWGN) following the distribution of.
  • AWGN Additive White Gaussian Noise
  • the shared repeater 100 distributes the received signal to each mobile communication terminal 300. Since the shared repeater 100 and each base station 200 are connected by a reliable link, when performing the MUD in each mobile communication terminal 300, each base station 200, each mobile communication terminal 300 in a distribution channel Performs rate control to enable MUD without error.
  • each base station In step 200, a transmission ZF may be performed. In this case, cooperative communication for sharing transmission data between the base stations 200 is required.
  • DPC Denssion Paper Coding
  • CMHP Cross-van der Meulen-Hajek-Pursley
  • FIG. 7 is a diagram illustrating a mobile terminal 300 supporting mobility through a shared repeater 100 located at a cell boundary, and moves from a cell position (a) to another cell position (e). If there is a mobile communication terminal 300, the mobile communication terminal 300 at the position of (a) currently has its own signal-to-interference noise ratio (SINR) 200a). If this value is large enough, the mobile communication terminal 300 at the position of (a) will communicate directly with the first base station 200a to which it belongs.
  • SINR signal-to-interference noise ratio
  • the SINR becomes lower and this value is larger than the first threshold. If low, the first base station 200a may reduce the communication quality of the mobile communication terminal 300, so a candidate set capable of communicating the mobile communication terminal 300 using the shared repeater 100 may be a candidate set. Classify as) In this case, the mobile terminal 300 still communicates directly with the first base station 200a to which it belongs.
  • the mobile communication terminal 300 moves to the position of (c) so that the SINR is very low due to the neighboring cell interference and thus lower than the second threshold, the mobile communication terminal 300 is located in the positions of (a) and (b).
  • the first base station (200a) when the communication was made to the mobile terminal 300 is classified as an active set (Active Set), the communication with the mobile communication terminal 300 using the shared repeater 100 Communicate
  • the mobile communication terminal 300 classified as an activity set feeds back SINRs with the first and second base stations 200a and 200b to both the first and second base stations 200a and 200b forming the cell boundary, respectively. do.
  • the SINR with the first base station 200a is referred to as the first SINR
  • the SINR with the second base station 200b is referred to as the second SINR.
  • the position of (d) is reached.
  • the located mobile communication terminal 300 is again classified as a candidate set, directly communicates with the second base station 200b, and feeds back SINR only to the second base station 200b.
  • the mobile communication terminal 300 moves to the position of (e) and completely moves out of the cell boundary, and the SINR of the mobile communication terminal 300 exceeds the first threshold, it is released from the candidate set and continues to the second base station. Communicate with 200b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a shared repeater for repeating communication between a mobile communication terminal and a base station in a mobile communication system, and to a mobile communication system including the shared repeater. By installing the shared repeater for repeating the communication between each base of the station and corresponding mobile communication terminals at the cell boundaries of the base stations, the problem of cell interference which occurs on the mobile communication terminal at the cell boundary can be minimized. As a result, the quality of communication for users located at the cell boundary can be guaranteed, and total cell capacity can also be significantly increased. Representative drawing: figure 3

Description

공유 중계기 및 이동통신 시스템Shared repeater and mobile communication system
본 발명은 이동통신 시스템에서 이동통신 단말기와 기지국간의 통신을 중계하는 공유 중계기 및 공유 중계기가 포함된 이동통신 시스템에 관한 것이다.The present invention relates to a mobile communication system including a shared repeater and a shared repeater for relaying communication between a mobile communication terminal and a base station in a mobile communication system.
최근의 휴대폰이나 스마트폰과 같은 이동통신 단말기는 사용자들이 이동하면서 음성통화를 하는 것을 비롯하여 다양한 방면의 통신을 통해 다양한 정보를 획득하기 위한 용도로 많이 활용되고 있다. 이러한 통신에 있어서, 음성통화의 품질뿐만 아니라 높은 데이터 전송량을 요구하는 영상통화나 데이터 통신에서의 통신품질이 더욱 중요한 관건으로 부각되고 있다.Recently, a mobile communication terminal such as a mobile phone or a smart phone has been widely used for acquiring various information through various aspects of communication, including making a voice call while users move. In such a communication, not only the quality of a voice call but also a video call requiring a high data transfer amount and a communication quality in a data communication are more important.
이러한 이동통신 시스템에서 각 기지국은 자신의 셀 내에 있는 이동통신 단말기들에게 서비스를 제공하고, 각 셀의 경계 지역이 서로 겹치도록 기지국을 설치함으로써, 사용자가 셀 사이를 이동할 때, 셀 경계에서 이동통신 단말기의 서비스가 원활하게 이루어지도록 하고 있다.In such a mobile communication system, each base station provides a service to mobile terminals in its cell and installs a base station so that the boundary areas of each cell overlap each other, so that when a user moves between cells, the mobile communication is performed at the cell boundary. The service of the terminal is to be made smoothly.
그렇지만, 도1에 도시된 바와 같이, 셀 경계에 위치한 이동통신 단말기들은 인접한 다른 기지국의 신호에 의한 인접 셀 간섭(Inter-cell Interference)을 받게 되고, 그로인하여 통신 품질을 보장받는 것이 힘들다.However, as shown in FIG. 1, mobile communication terminals located at cell boundaries are subjected to inter-cell interference by signals of other adjacent base stations, thereby making it difficult to guarantee communication quality.
따라서 셀 경계에 위치한 이동통신 단말기의 통신 품질을 보장하고 전체 시스템 용량을 증대시키기 위한 간섭 관리 기술이 필요하다. 이를 위해 기존에는 셀 경계에 위치하는 이동통신 단말기와 기지국간의 통신이 이루어질 때, 각 기지국에서 이동통신 단말기들에게 시간, 주파수, 또는 코드 등의 각각 다른 자원을 할당하여 인접한 기지국의 신호로 인해 발생하는 셀 간섭을 효과적으로 제거하였다. 그러나 이 방법은 직교하는 자원의 수만큼 셀 용량이 작아지는 단점이 있었다.Therefore, there is a need for an interference management technique for ensuring communication quality of a mobile communication terminal located at a cell boundary and increasing overall system capacity. To this end, when a communication between a mobile communication terminal located at a cell boundary and a base station is established, each base station allocates different resources such as time, frequency, or code to the mobile communication terminals, which is generated due to a signal from an adjacent base station. Cell interference was effectively removed. However, this method has a disadvantage in that the cell capacity is reduced by the number of orthogonal resources.
이를 해결하기 위해 최근에는 간섭신호들을 제약된 간섭 공간에서만 존재하도록 간섭정렬기술(IA: Interference Alignment)과 신호대 간섭잡음비(Max-SINR: Max Signal-to-Interference Noise Ratio)를 최대화 시키는 용량 증대기법 등이 제시되었고, 이 기법들은 다중 사용자 간섭채널에서 전송률을 향상시킬 수 있다.In order to solve this problem, in recent years, an interference alignment technique (IA) and a capacity increasing technique for maximizing the maximum signal-to-interference noise ratio (Max-SINR) so that the interference signals exist only in a limited interference space, etc. In this paper, these techniques can improve the transmission rate in a multi-user interference channel.
또한, 기존 중계기는 셀룰러(Cellular) 시스템의 음영 지역 문제를 해결하거나 기지국의 커버리지를 넓히기 위해 사용되어 왔는데, 최근에는 다수의 기지국들과 공유중계기가 무선으로 연결되어 인접 셀 간섭을 공유중계기에서 제로 포싱(ZF: Zero-forcing)을 통해 제거하는 기법이 제안되기도 하였다. 이 기법은 공유중계기와 기지국들이 무선으로 연결되어 있으므로 공유중계기는 반이중(Half-Duplex) 형태가 되어 셀 용량이 반감되는 문제가 있다. 또한 ZF와 같은 다중 사용자 MIMO(Multi Input Multi Output) 신호처리를 수행해야 하므로 공유중계기의 구현이 복잡할 뿐 아니라, 안테나 수에 대한 조건을 만족하여야 한다는 제약이 있다.In addition, the existing repeater has been used to solve the shadow area problem of the cellular system or to expand the coverage of the base station, and in recent years, multiple base stations and the shared repeater are wirelessly connected so that the neighboring cell interference is zero-forced at the shared repeater. A technique for eliminating by zero-forcing has also been proposed. In this technique, since the shared repeater and the base stations are wirelessly connected, the shared repeater becomes a half-duplex form, and thus cell capacity is halved. In addition, since multi-user multi input multi output (MIMO) signal processing, such as ZF, must be performed, the implementation of a shared repeater is not only complicated, but also has a constraint of satisfying a condition for the number of antennas.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 셀 경계에서 인접한 기지국의 신호에 의해 발생할 수 있는 셀 간섭을 최소화하는 기술을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and an object thereof is to provide a technique for minimizing cell interference which may be caused by a signal of an adjacent base station at a cell boundary.
이러한 목적을 달성하기 위하여 본 발명의 일 태양으로 공유 중계기는 인접한 복수의 기지국과 통신을 수행하기 위해 구비되는 하나 이상의 기지국 통신부; 이동통신 단말기와 통신을 수행하기 위해 구비되는 단말기 통신부; 상기 하나 이상의 기지국 통신부를 통해 수신된 신호를 증폭하여 상기 단말기 통신부로 출력하고, 단말기 통신부를 통해 수신된 신호를 증폭하여 상기 기지국 통신부로 출력하는 증폭부; 및 이동통신 단말기로부터 신호가 수신되면 수신된 신호를 복수의 기지국 중 어느 하나로 전송하고, 기지국으로부터 신호가 수신되면 수신된 신호를 이동통신 단말기로 전송할 수 있도록 상기 하나 이상의 기지국 통신부, 단말기 통신부 및 증폭부를 제어하는 제어부; 를 포함하는 것을 특징으로 한다.In one aspect of the present invention, a shared repeater includes: at least one base station communication unit provided to perform communication with a plurality of adjacent base stations; A terminal communication unit provided to perform communication with the mobile communication terminal; An amplifying unit for amplifying a signal received through the at least one base station communication unit and outputting the signal to the terminal communication unit, and amplifying the signal received through the terminal communication unit and outputting the signal to the base station communication unit; And at least one base station communication unit, terminal communication unit, and amplifying unit to transmit the received signal to any one of a plurality of base stations when a signal is received from the mobile communication terminal, and to transmit the received signal to the mobile communication terminal when a signal is received from the base station. A control unit for controlling; Characterized in that it comprises a.
이때, 상기 제어부는 복수의 기지국이나 이동통신 단말기로부터 수신되는 신호를 하나의 신호로 합쳐 상기 하나 이상의 기지국 통신부나 단말기 통신부로 출력하는 것을 특징으로 한다.In this case, the control unit combines the signals received from a plurality of base stations or mobile communication terminal into a single signal and outputs the signal to the one or more base station communication unit or the terminal communication unit.
또한, 상기 제어부는 셀 경계에 위치한 이동통신 단말기로부터 신호가 수신되면, 이동통신 단말기가 속한 셀에 해당하는 기지국들 중 어느 하나로 신호를 전송하는 것을 특징으로 한다.In addition, when a signal is received from a mobile communication terminal located at a cell boundary, the controller transmits the signal to any one of base stations corresponding to a cell to which the mobile communication terminal belongs.
그리고 상기 기지국 통신부는 복수의 기지국과 광통신이나 마이크로웨이브를 이용한 통신을 통해 통신이 이루어지는 것을 특징으로 한다.And the base station communication unit is characterized in that the communication is made through the communication using a plurality of base stations or optical communication or microwave.
또한, 상기 제어부는 상기 이동통신 단말기 측에서 수신된 신호를 상기 복수의 기지국에서 다중 사용자 신호처리를 수행할 수 있도록 상기 하나 이상의 기지국 통신부를 제어하는 것을 특징으로 한다.The control unit may control the at least one base station communication unit to perform multi-user signal processing on the signals received at the mobile communication terminal.
이때, 상기 다중 사용자 신호처리는 MUD(Multi-user Decoding)나 수신 ZF(Zero-forcing) 중 어느 하나 이상인 것을 특징으로 한다.In this case, the multi-user signal processing is characterized in that at least one of multi-user decoding (MUD) or receive zero-forcing (ZF).
한편, 이러한 목적을 달성하기 위하여 본 발명의 일 태양으로 이동통신 시스템은 이동통신망에 접속되는 복수의 기지국; 상기 복수의 기지국 중 어느 하나와의 통신을 통해 이동통신망으로 접속이 이루어지는 이동통신 단말기; 및 상기 복수의 기지국의 셀 경계에 위치하고, 상기 복수의 기지국과 통신이 이루어지며, 상기 이동통신 단말기와 복수의 기지국의 통신을 중계하는 공유 중계기; 를 포함하는 것을 특징으로 한다.On the other hand, in order to achieve this object, in one aspect of the present invention, a mobile communication system includes: a plurality of base stations connected to a mobile communication network; A mobile communication terminal connected to a mobile communication network through communication with any one of the plurality of base stations; And a shared repeater located at cell boundaries of the plurality of base stations, communicating with the plurality of base stations, and relaying communication between the mobile communication terminal and the plurality of base stations. Characterized in that it comprises a.
이때, 상기 공유 중계기는 상기 복수의 기지국과 광통신이나 마이크로웨이브를 이용한 통신이 이루어지는 것을 특징으로 한다.At this time, the shared repeater is characterized in that the communication with the plurality of base stations using optical communication or microwave.
그리고 상기 공유 중계기는 셀 경계에 위치한 이동통신 단말기로부터 신호가 수신되면, 수신된 신호를 상기 복수의 기지국 중 어느 하나로 전송하고, 상기 신호를 수신한 복수의 기지국 중 어느 하나는 신호를 전송한 상기 이동통신 단말기와의 통신은 상기 공유 중계기를 통해서만 이루어지도록 제어하는 것을 특징으로 한다.When the shared repeater receives a signal from a mobile communication terminal located at a cell boundary, the shared repeater transmits the received signal to any one of the plurality of base stations, and any one of the plurality of base stations receiving the signal transmits the signal. The communication with the communication terminal is characterized in that the control is made only through the shared repeater.
또한, 상기 복수의 기지국 중 상기 공유 중계기와 통신 이루어지는 기지국은 상기 이동통신 단말기에서 MUD(Multi-user Decoding)를 수행할 경우, 상기 이동통신 단말기가 에러 없이 신호를 복원할 수 있도록 전송률을 제어하거나 다중 사용자 신호처리를 통해 신호를 상기 공유중계기 측으로 전송하는 것을 특징으로 한다.In addition, the base station in communication with the shared repeater of the plurality of base stations when the mobile terminal performs MUD (Multi-user Decoding), the mobile communication terminal to control the transmission rate or multiplex so that the signal can be recovered without error The signal is transmitted to the shared repeater through user signal processing.
그리고 상기 이동통신 단말기 측으로부터 신호를 수신하는 복수의 기지국 중 어느 하나는 자신의 신호를 얻기 위해 다중 사용자 신호처리를 수행하는 것을 특징으로 한다.And any one of a plurality of base stations for receiving a signal from the mobile communication terminal is characterized in that to perform a multi-user signal processing to obtain its own signal.
여기서, 상기 다중 사용자 신호처리는 MUD(Multi-user Decoding)나 수신 ZF(Zero-forcing) 중 어느 하나 이상인 것을 특징으로 한다.The multi-user signal processing may be any one or more of multi-user decoding (MUD) and received zero-forcing (ZF).
또한, 상기 이동통신 단말기 측으로부터 신호를 수신하는 복수의 기지국 중 어느 하나에서 MUD(Multi-user Decoding)를 수행하는 경우, 상기 이동통신 단말기는 상기 복수의 기지국 중 어느 하나에서 에러 없이 신호를 복원할 수 있도록 전송률을 제어하는 것을 특징으로 한다.In addition, when performing multi-user decoding (MUD) at any one of a plurality of base stations receiving a signal from the mobile communication terminal, the mobile communication terminal may recover a signal without error at any one of the plurality of base stations. It is characterized by controlling the transmission rate so that.
이때, 상기 이동통신 단말기는 상기 공유 중계기 측으로 신호를 송신할 때 신호의 전체 용량이 최대가 되도록 상기 이동통신 단말기의 프리코더를 생성하여 전송률을 제어하는 것을 특징으로 한다.At this time, the mobile communication terminal is characterized by generating a precoder of the mobile communication terminal to control the transmission rate so that the total capacity of the signal when the signal is transmitted to the shared repeater side.
그리고 상기 공유 중계기는 기지국에서 이동통신 단말기로 신호가 전달되는 하향링크 통신시 상기 기지국의 셀 경계에 인접한 이동통신 단말기와 이루어지는 것을 특징으로 한다.The shared repeater may be configured with a mobile communication terminal adjacent to a cell boundary of the base station during downlink communication in which a signal is transmitted from a base station to a mobile communication terminal.
이상에서 설명한 바와 같이 본 발명은, 기지국 간의 셀 경계에 복수의 기지국과 통신이 이루어지는 공유중계기를 설치함으로써, 셀 경계에 위치한 이동통신 단말기에서 셀 간섭에 의해 발생할 수 있는 문제를 최소화하여, 셀 경계에 위치한 사용자들이 이동통신 단말기의 통신품질을 보장하는 것이 가능하고, 더 나아가 전체 이동통신 시스템의 셀 용량을 증가시킬 수 있다는 효과가 있다.As described above, the present invention provides a shared repeater that communicates with a plurality of base stations at a cell boundary between base stations, thereby minimizing problems caused by cell interference in a mobile communication terminal located at a cell boundary. It is possible for the users located to guarantee the communication quality of the mobile communication terminal, and further increase the cell capacity of the entire mobile communication system.
또한, 공유 중계기를 통해 통신을 함으로써, 이동통신 단말기 측에서부터 기지국 측으로의 상향링크 통신이 이루어질 때, 셀 경계에 위치한 이동통신 단말기들과 기지국 들 사이의 채널은 기존 간섭채널(Interference Channel)에서 다중 접속채널(Multiple Access Channel)로 변경되고, 하향링크 통신이 이루어질 때에는 기존의 간섭 채널이 산포 채널(Broadcast Channel)로 변경되며, 또한, 셀 경계에 위치한 이동통신 단말기들은 기지국보다 거리가 가까운 공유중계기와 통신이 이루어짐에 따라서, 기지국과 직접 통신할 때보다 더 작은 송신 전력으로 목표 신호 대 잡음비를 얻을 수 있어, 이동통신 단말기들의 배터리 효율을 높일 수 있으며, 높은 송신전력으로 인해 발생되는 인접 셀 간섭의 양을 줄임으로써, 네트워크 용량을 증가시킬 수 있다는 효과가 있다.In addition, by communicating through a shared repeater, when uplink communication is performed from the mobile communication terminal side to the base station side, a channel between the mobile communication terminals located at the cell boundary and the base stations is multiplexed in the existing interference channel. When the channel is changed to a multiple access channel and downlink communication is performed, the existing interference channel is changed to a broadcast channel. Also, mobile terminals located at a cell boundary communicate with a shared relay that is closer than a base station. As a result, a target signal-to-noise ratio can be obtained with a smaller transmission power than when directly communicating with a base station, thereby increasing battery efficiency of mobile communication terminals, and reducing the amount of adjacent cell interference generated by high transmission power. By reducing, there is an effect that the network capacity can be increased.
도1은 종래의 기지국 셀 경계에서의 이동통신 단말기와 기지국 간의 통신이 이루어지는 것에 대하여 도시한 도면이다.1 is a diagram illustrating communication between a mobile communication terminal and a base station in a conventional base station cell boundary.
도2는 본 발명의 공유 중계기를 도시한 블록도이다.2 is a block diagram showing a shared repeater of the present invention.
도3은 본 발명의 기지국 셀 경계에서의 이동통신 단말기와 기지국 간의 통신이 이루어지는 것에 대하여 도시한 도면이다.FIG. 3 is a diagram illustrating communication between a mobile communication terminal and a base station at a base station cell boundary of the present invention.
도4는 본 발명의 공유 중계기의 커버리지를 도시한 도면이다.4 is a diagram illustrating the coverage of the shared repeater of the present invention.
도5는 본 발명에서 음영지역 내에서 이동통신 단말기가 균일 분포를 가지고, 이동통신 단말기, 공유 중계기, 그리고 기지국의 안테나의 수가 하나일 경우의 모의실험 결과이다.FIG. 5 is a simulation result when a mobile communication terminal has a uniform distribution in a shaded area and the number of antennas of a mobile communication terminal, a shared repeater, and a base station is one in the present invention.
도6은 본 발명에서 이동통신 단말기가 음영지역 내에서 균일 분포를 가지고, 이동통신 단말기, 공유 중계기, 그리고 기지국의 안테나의 수가 두 개일 경우의 모의실험 결과이다.6 is a simulation result when the mobile communication terminal has a uniform distribution in the shaded area, and the number of antennas of the mobile communication terminal, the shared repeater, and the base station is two.
도7은 본 발명의 셀 경계에 위치한 공유 중계기(100)를 통하여 이동성이 있는 단말들을 지원하는 모습을 나타내는 도면이다.7 is a diagram illustrating a mobile terminal through a shared repeater 100 located at a cell boundary of the present invention.
*부호의 설명** Description of the sign *
100: 공유 중계기100: shared repeater
110: 기지국 통신부 120: 단말기 통신부 110: base station communication unit 120: terminal communication unit
130: 증폭부 140: 제어부 130: amplification unit 140: control unit
200: 기지국 300: 이동통신 단말기200: base station 300: mobile communication terminal
본 발명의 바람직한 실시예에 대하여 첨부된 도면을 참조하여 더 구체적으로 설명하되, 이미 주지되어진 기술적 부분에 대해서는 설명의 간결함을 위해 생략하거나 압축하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings, and the well-known technical parts will be omitted or compressed for brevity of description.
본 발명의 공유 중계기(100)는 기지국 통신부(110), 단말기 통신부(120), 증폭부(130) 및 제어부(140)를 포함하여 구성되는데, 이에 대하여 도2 내지 도7에 도시된 도면을 참조하여 설명한다.The shared repeater 100 of the present invention includes a base station communication unit 110, a terminal communication unit 120, an amplifier 130, and a controller 140, which are described with reference to FIGS. 2 to 7. Will be explained.
기지국 통신부(110)는 공유 중계기(100)의 주변에 설치된 기지국(200)들과 통신이 이루어지는데, 이때의 기지국 통신부(110)는 각각의 기지국(200)과 광케이블이나 마이크로웨이브를 이용한 통신이 이루어져 신뢰성 있는 링크로 연결되어 통신 이 이루어진다.The base station communication unit 110 is in communication with the base station 200 installed in the vicinity of the shared repeater 100, the base station communication unit 110 at this time is made of the communication using each base station 200 and the optical cable or microwave Communication is made through a reliable link.
단말기 통신부(120)는 상/하향 링크 통신시에 공유 중계기(100)와 인접한 다수의 이동통신 단말기(300)와 통신을 수행한다.The terminal communication unit 120 communicates with a plurality of mobile communication terminals 300 adjacent to the shared repeater 100 during the up / down link communication.
증폭부(130)는 단말기 통신부(120)에서 수신된 신호를 증폭하여 기지국 통신부(110) 측으로 출력을 하고, 기지국 통신부(110)에서 수신된 신호를 증폭하여 단말기 통신부(120)로 출력하는 역할을 수행한다. 즉, 증폭부(130)는 상향링크 통신이나 하향링크 통신에 있어서 각각의 수신 신호를 증폭하여 출력한다.The amplification unit 130 amplifies the signal received from the terminal communication unit 120 and outputs the signal to the base station communication unit 110, and amplifies the signal received from the base station communication unit 110 to output the terminal communication unit 120. To perform. That is, the amplifier 130 amplifies and outputs each received signal in uplink communication or downlink communication.
다시 말해, 상향링크 통신일 경우, 이동통신 단말기(300)로부터 오는 신호는 단말기 통신부(120)에 수신된 후, 증폭부(130)를 거쳐 기지국 통신부(110)를 통해 기지국(200) 측으로 전달되고, 하향링크 통신일 경우, 기지국(200)으로부터 오는 신호는 기지국 통신부(110)에 수신된 후, 증폭부(130)를 거쳐 단말기 통신부(120)를 통해 이동통신 단말기(300)측으로 전달된다.In other words, in the case of uplink communication, a signal from the mobile communication terminal 300 is received by the terminal communication unit 120 and then transmitted to the base station 200 through the base station communication unit 110 via the amplifier 130. In the case of downlink communication, a signal from the base station 200 is received by the base station communication unit 110 and then transmitted to the mobile communication terminal 300 through the terminal communication unit 120 via the amplifier 130.
이때, 제어부(140)는 복수의 기지국(200) 또는 다수의 이동통신 단말기(300)로부터 오는 신호를 하나로 합치는 역할을 수행하며, 그 외의 역할은 기존 증폭 후 전송(AF: Amplify-and-Forward)하는 중계기들과 동일하다.In this case, the control unit 140 combines signals from the plurality of base stations 200 or the plurality of mobile communication terminals 300 into one, and the other roles are transmitted after the conventional amplification (AF: Amplify-and-Forward). Is the same as the repeaters.
도3은 본 발명의 공유 중계기(100)가 인접한 복수의 기지국(200)과 광케이블이나 마이크로웨이브를 이용한 통신 등의 신뢰성 있는 링크로 연결되어, 기지국(200) 간의 셀 경계에 위치한 다수의 이동통신 단말기(300)와 통신이 이루어지는 것을 도시한 것으로, 이때의 각 기지국(200)과 각 이동통신 단말기(300)는 공유 중계기(100)와 모든 이동통신 단말기(300) 사이의 채널 정보(CSI: channel state information)를 공유한다.3 is a diagram of a plurality of mobile communication terminals located at a cell boundary between a plurality of adjacent base stations 200 connected to a plurality of adjacent base stations 200 by a reliable link such as communication using an optical cable or a microwave. In this case, communication with the 300 is performed, wherein each base station 200 and each mobile communication terminal 300 have channel information (CSI: channel state) between the shared repeater 100 and all mobile communication terminals 300. share information).
즉, 이동통신 단말기(300)에서 기지국(200) 측으로의 신호가 전달되는 상향링크 통신 시에는 인접한 셀에 의한 간섭을 기지국(200)에서 MUD(Multi-user Decoding)나 수신 ZF(Zero-forcing) 등의 다중 사용자 신호처리를 이용하여 해결하거나, 이동통신 단말기(300)에서의 송신 ZF 등을 이용하여 해결하는 것이 가능하고, 기지국(200)에서 이동통신 단말기(300) 측으로 신호가 전달되는 하향링크 통신 시에는 인접한 셀에 의한 간섭을 이동통신 단말기(300)에서 MUD나 수신 ZF 등의 다중 사용자 신호처리를 이용하거나 기지국(200)에서 송신 ZF 등을 이용하여 해결하는 것이 가능하다.That is, in the uplink communication in which a signal is transmitted from the mobile communication terminal 300 to the base station 200, the interference by the adjacent cell is not received by the base station 200 from the multi-user decoding (MUD) or the received zero-forcing (ZF). It is possible to solve using multi-user signal processing such as, or to solve using the transmission ZF in the mobile communication terminal 300, the downlink that the signal is transmitted from the base station 200 to the mobile communication terminal 300 side In communication, interference by an adjacent cell may be solved by using multi-user signal processing such as MUD or receiving ZF in the mobile communication terminal 300 or transmitting ZF in the base station 200.
이에 대한 설명을 위해 본 발명의 일실시예에서 하기에서 좀 더 자세히 설명하되, 기지국(200)의 개수가 세 개인 것을 가정하여 설명한다. 물론, 기지국(200)의 개수는 필요에 따라 확장하는 것이 가능하고, 기지국(200), 이동통신 단말기(300) 및 공유 중계기(100)의 안테나는 복수 개로 구성되어 있는 것을 일례로 하여 설명하는데, 이때, 기지국(200), 이동통신 단말기(300) 및 공유 중계기(100)의 안테나 개수는 각각 일치하지 않아도 무방하다.In order to explain this, in an embodiment of the present invention, it will be described in more detail below, assuming that the number of the base station 200 is three. Of course, the number of the base station 200 can be expanded as needed, and the base station 200, the mobile communication terminal 300 and the shared repeater 100 is described as an example that is composed of a plurality of antennas, In this case, the number of antennas of the base station 200, the mobile communication terminal 300, and the shared repeater 100 may not be identical.
1) 상향 링크(Up-Link) 통신에서의 실시예1) Embodiment in Up-Link Communication
셀 경계에 위치한 이동통신 단말기(300)은 자기가 속한 셀의 기지국(200)과 직접 통신하지 않고, 공유 중계기(100)를 통하여 데이터를 복수의 기지국(200) 중 어느 하나로 전송한다. 공유 중계기(100)에서 수신되는 신호는 [수학식 1]과 같이 나타낼 수 있다. 이때, 공유 중계기(100)와 각 기지국(200)들은 신뢰성 있는 링크로 연결 되어 있으므로, [수학식 1]은 각 기지국(200)에서 수신되는 신호와 동일하다고 보아도 무방하다.The mobile communication terminal 300 located at a cell boundary transmits data to any one of the plurality of base stations 200 through the shared relay 100 without directly communicating with the base station 200 of the cell to which the cell belongs. The signal received from the shared repeater 100 may be represented as shown in [Equation 1]. At this time, since the shared repeater 100 and each base station 200 is connected by a reliable link, Equation 1 may be regarded as the same as the signal received from each base station 200.
수학식 1
Figure PCTKR2010008135-appb-M000001
Equation 1
Figure PCTKR2010008135-appb-M000001
여기서,
Figure PCTKR2010008135-appb-I000001
Figure PCTKR2010008135-appb-I000002
의 분포를 따르는
Figure PCTKR2010008135-appb-I000003
째 단말의 데이터(이때,
Figure PCTKR2010008135-appb-I000004
가 Gaussian Codebook에 의해서 생성되지 않는 경우와 보내는 심볼별로 전력 제어를 수행한 경우에도 적용하는 것이 가능하다)이고,
Figure PCTKR2010008135-appb-I000005
Figure PCTKR2010008135-appb-I000006
째 단말의 송신 전력이며,
Figure PCTKR2010008135-appb-I000007
Figure PCTKR2010008135-appb-I000008
Figure PCTKR2010008135-appb-I000009
째 단말의 프리코더(Precoder)이고, 이때,
Figure PCTKR2010008135-appb-I000010
이며,
Figure PCTKR2010008135-appb-I000011
Figure PCTKR2010008135-appb-I000012
째 단말과 공유 중계기(100) 사이의 채널이고,
Figure PCTKR2010008135-appb-I000013
Figure PCTKR2010008135-appb-I000014
의 분포를 따르는 가산 백색 가우시안 잡음(AWGN: Additive White Gaussian Noise)이다.
here,
Figure PCTKR2010008135-appb-I000001
Is
Figure PCTKR2010008135-appb-I000002
Following the distribution of
Figure PCTKR2010008135-appb-I000003
Data of the second terminal (at this time,
Figure PCTKR2010008135-appb-I000004
Can be applied even if the control is not generated by the Gaussian Codebook or when power control is performed for each symbol sent).
Figure PCTKR2010008135-appb-I000005
Is
Figure PCTKR2010008135-appb-I000006
Transmission power of the second terminal,
Figure PCTKR2010008135-appb-I000007
Is
Figure PCTKR2010008135-appb-I000008
sign
Figure PCTKR2010008135-appb-I000009
Precoder of the second terminal, in which case,
Figure PCTKR2010008135-appb-I000010
Is,
Figure PCTKR2010008135-appb-I000011
Is
Figure PCTKR2010008135-appb-I000012
The channel between the second terminal and the shared repeater 100,
Figure PCTKR2010008135-appb-I000013
Is
Figure PCTKR2010008135-appb-I000014
Additive White Gaussian Noise (AWGN) following the distribution of.
공유 중계기(100)는 이동통신 단말기(300)로부터 수신된 신호를 신뢰성 있는 링크로 연결된 해당 기지국(200)들에게 전송하고, 해당 기지국(200)에서는 수신 신호를 디코딩(Decoding)한다. 기지국(200)에서 MUD를 수행할 경우, 각 이동통신 단말기(300)에서는 각 기지국(200)이 에러 없이 MUD가 가능하도록 전송률을 제어한다.The shared repeater 100 transmits a signal received from the mobile communication terminal 300 to the corresponding base stations 200 connected by a reliable link, and the base station 200 decodes the received signal. When the base station 200 performs the MUD, each mobile communication terminal 300 controls the transmission rate so that each base station 200 can perform the MUD without error.
그리고 기지국(200)의 안테나 수가 수신 ZF가 가능한 안테나 수의 제약 조건을 만족할 때(기지국(200)의 안테나 수 ≥ 셀 경계에 위치한 이동통신 단말기(300)의 안테나 수의 합)에는, 각 기지국(200)에서 수신 ZF를 수행한다.When the number of antennas of the base station 200 satisfies the constraint of the number of antennas capable of receiving ZF (the number of antennas of the base station 200 ≥ the sum of the number of antennas of the mobile communication terminal 300 located at the cell boundary), each base station ( In step 200), a reception ZF is performed.
그리고 기지국(200)에서 MUD를 수행하는 경우에 대해서 설명하면, 공유 중계기(100)와 다수의 기지국(200)들은 신뢰성 있는 링크로 연결되어 있으므로, 시스템의 전체 용량은 공유 중계기(100)에서 MUD를 수행한다고 가정했을 때의 전체 용량과 같다. 여기서, 각 단말들과 공유 중계기(100) 사이에는 다중 접속 채널(MAC: Multiple Access Channel)이 형성되고, 기지국(200)이 해당 단말의 데이터를 에러 없이 복원하기 위해 각 이동통신 단말기(300)에서는 [수학식 2]와 같이 전송률을 제어하는 것이 필요하다.In addition, when the MUD is performed by the base station 200, since the shared repeater 100 and the plurality of base stations 200 are connected by a reliable link, the total capacity of the system is determined by the shared repeater 100. It is equal to the total capacity when it is assumed to run. Here, a multiple access channel (MAC) is formed between each of the terminals and the shared repeater 100, and in each mobile communication terminal 300 in order for the base station 200 to restore data of the corresponding terminal without error. It is necessary to control the transmission rate as shown in [Equation 2].
수학식 2
Figure PCTKR2010008135-appb-M000002
Equation 2
Figure PCTKR2010008135-appb-M000002
Figure PCTKR2010008135-appb-I000015
Figure PCTKR2010008135-appb-I000015
Figure PCTKR2010008135-appb-I000016
Figure PCTKR2010008135-appb-I000016
여기서
Figure PCTKR2010008135-appb-I000017
Figure PCTKR2010008135-appb-I000018
째 단말의 전송률이고,
Figure PCTKR2010008135-appb-I000019
Figure PCTKR2010008135-appb-I000020
Figure PCTKR2010008135-appb-I000021
사이의 상호 정보(Mutual Information)이다. [수학식 2]의 부등식 조건 하에서, 셀 경계 단말들의 전송률 합(Sum Rate)을 최대화시키는 각 이동통신 단말기(300)의 프리코더(Precoder) 값은 [수학식 3]을 통해 얻어진다.
here
Figure PCTKR2010008135-appb-I000017
Is
Figure PCTKR2010008135-appb-I000018
The rate of the second terminal,
Figure PCTKR2010008135-appb-I000019
Is
Figure PCTKR2010008135-appb-I000020
Wow
Figure PCTKR2010008135-appb-I000021
Mutual information between them. Under the inequality condition of Equation 2, a precoder value of each mobile communication terminal 300 that maximizes the sum rate of cell boundary terminals is obtained through Equation 3.
수학식 3
Figure PCTKR2010008135-appb-M000003
Equation 3
Figure PCTKR2010008135-appb-M000003
subject to
Figure PCTKR2010008135-appb-I000022
subject to
Figure PCTKR2010008135-appb-I000022
and inequalities in [수학식 2]  and inequalities in [Equation 2]
셀 경계에 위치한 이동통신 단말기(300)들은 셀 경계에 위치한 공유 중계기(100)와 가까운 거리에 있기 때문에, 해당하는 기지국(200)과 직접 통신할 때에 비하여 작은 송신 전력으로 목표 신호 대 잡음 비(target SNR: Signal-to-Noise Ratio)를 얻을 수 있다.Since the mobile communication terminals 300 located at the cell boundary are close to the shared repeater 100 located at the cell boundary, the target signal-to-noise ratio (target) is reduced with a smaller transmission power than when directly communicating with the corresponding base station 200. Signal-to-Noise Ratio (SNR) can be obtained.
표 1
Cell structure Hexagonal grid, 3-cell
BS, MS pair 3 pairs
Tx, Rx distribution Uniform distribution
Cell Radius 1000m
Cell edge radius 50~200m
BS(RS)-to-MS Propagation lossBS-to-RS propagation loss 128.1 + 37.6 log10(R)128.1 + 28.8 log10(R),Rinkilometers
Shadowing, Fading model Log Normal stdev 8 dB, Rayleigh fading
Carrier frequency 2 GHz
Bandwidth 10MHz
Tx power (BS, RS/MS) 24/16 dBm
BS/RS Antenna gain 10 dBi
MS Antenna gain 0 dBi
Thermal noise density -174 dBm/Hz
Noise figure 9 dB
Table 1
Cell structure Hexagonal grid, 3-cell
BS, MS pair 3 pairs
Tx, Rx distribution Uniform distribution
Cell radius 1000 m
Cell edge radius 50 ~ 200m
BS (RS) -to-MS Propagation loss 128.1 + 37.6 log 10 (R) 128.1 + 28.8 log 10 (R), Rinkilometers
Shadowing, Fading model Log Normal stdev 8 dB, Rayleigh fading
Carrier frequency
2 GHz
Bandwidth
10 MHz
Tx power (BS, RS / MS) 24/16 dBm
BS / RS Antenna gain 10 dBi
MS Antenna gain 0 dBi
Thermal noise density -174 dBm / Hz
Noise figure 9 dB
도4와 [표1]은 본 발명을 셀룰러 통신 시스템에 적용했을 때의 성능확인을 위해 사용된 모의실험 환경이다. 도4에서는 각 셀마다 셀의 음영지역(Shaded Area)에서 하나의 단말을 선택하여 공유 중계기(100)를 통해 서비스 받도록 하였으며, 이동통신 단말기(300)는 음영지역 내에서 균일한 분포(Uniform Distribution)를 가진다고 가정하였다. 도5와 도6은 이와 같이 주어진 환경에서
Figure PCTKR2010008135-appb-I000023
일 경우(SISO: Single Input Single Output)와
Figure PCTKR2010008135-appb-I000024
일 경우(MIMO)의 모의실험 결과이다.
4 and Table 1 are simulation environments used for performance verification when the present invention is applied to a cellular communication system. In FIG. 4, one cell is selected from each cell in a shaded area of the cell to be serviced through the shared repeater 100, and the mobile communication terminal 300 is uniformly distributed in the shaded area. Assume that we have Figures 5 and 6 show this in a given environment
Figure PCTKR2010008135-appb-I000023
(SISO: Single Input Single Output) and
Figure PCTKR2010008135-appb-I000024
Results of the simulation of one case (MIMO).
도5와 도6에서 알 수 있듯이, 셀 경계의 공유 중계기(100)를 사용하는 시스템은 셀 크기가 1000m이고, 셀 경계의 거리가 50m일 때, 셀 경계에서의 이동통신 단말기(300)들이 해당 기지국(200)들과 직접 통신 하는 기존 시스템(Conventional Scheme), TDMA(Time Division Multiple Access) 기반 시스템, IA 기반 시스템, 그리고 Max-SINR 기반 시스템보다 10배 이상 성능 이득이 있음을 확인 할 수 있다.As can be seen in Figures 5 and 6, in the system using the shared repeater 100 of the cell boundary, when the cell size is 1000m and the cell boundary distance is 50m, the mobile communication terminal 300 at the cell boundary is It can be seen that there is a performance gain of more than 10 times compared to a conventional system (Comventional Scheme), a TDMA (Time Division Multiple Access) based system, an IA based system, and a Max-SINR based system that directly communicate with the base stations 200.
IA 기반 시스템은 다중 사용자 간섭 채널에서 SNR이 높을 때 최대의 성능을 보장하지만, 이 모의 실험 환경에서는 셀 경계의 이동통신 단말기(300)가 낮은 SNR영역에 위치하고 있기 때문에 기존과 비슷한 성능을 나타낸다. Max-SINR기반 시스템은 기존 시스템들보다 더 높은 성능을 보여주지만, 이 값은 공유 중계기(100)를 이용했을 때의 값보다 매우 작다. 그 이유는 공유 중계기(100)와 셀 경계의 이동통신 단말기(300) 사이의 거리가 매우 가깝기 때문에, 셀 경계의 이동통신 단말기(300)에서 같은 전력을 사용한다면, 매우 높은 SNR을 갖는 다중 접속 채널이 형성되기 때문이다. 만일, 목표 용량이 정해져 있다면, 더 낮은 배터리 전력으로 목표 용량을 얻을 수 있기 때문에, 셀 경계에 위치한 이동통신 단말기(300)들의 배터리 전력을 절약할 수 있다.The IA-based system guarantees maximum performance when the SNR is high in the multi-user interference channel. However, in this simulation environment, the mobile communication terminal 300 at the cell boundary is located in a low SNR region, and exhibits similar performance. The Max-SINR based system shows higher performance than existing systems, but this value is much smaller than the value using the shared repeater 100. The reason is that the distance between the shared repeater 100 and the mobile communication terminal 300 at the cell boundary is very close, so if the same power is used in the mobile communication terminal 300 at the cell boundary, the multiple access channel having a very high SNR Because it is formed. If the target capacity is determined, since the target capacity can be obtained with lower battery power, battery power of the mobile communication terminals 300 located at the cell boundary can be saved.
또한, 더 높은 셀 용량을 얻기 위해, 필요에 따라 더 많은 공유 중계기(100)를 설치 할 수 있다. 셀 경계에 설치된 공유 중계기(100)는 소형 기지국(200)을 설치할 때에 비해 비용 면에서 더 저렴할 뿐 아니라, 단순히 받은 신호를 광케이블 등의 신뢰성 있는 링크를 통해 해당 기지국(200)으로 전송하는 역할만을 수행하기 때문에, 소형 기지국(200)을 설치할 때와 달리 또 다른 셀 경계 문제나 핸드오버 문제 등을 야기 시키지 않는다는 장점이 있다. 따라서 공유중계기(100)대신 소형기지국(200)을 설치하는 방안은, 공유중계기(100)를 사용하는 방안에 비해서 시스템의 오버헤드(Overhead) 및 복잡도를 증가시키므로 본 발명에서와 같이 공유 중계기(100)를 사용하는 방안이 더 효과적이다.In addition, in order to obtain higher cell capacity, more shared repeaters 100 may be installed as needed. The shared repeater 100 installed at the cell boundary is not only cheaper in terms of cost than when the small base station 200 is installed, but also merely transmits the received signal to the corresponding base station 200 through a reliable link such as an optical cable. Therefore, unlike when installing the small base station 200 has the advantage that does not cause another cell boundary problem or handover problem. Therefore, the method of installing the small base station 200 instead of the shared repeater 100 increases the overhead and complexity of the system compared to the method of using the shared repeater 100, and thus the shared repeater 100 as in the present invention. ) Is more effective.
2) 하향 링크(Down-Link) 통신에서의 실시예2) Embodiment in Down-Link Communication
기지국(200)들은 자신의 셀 경계에 위치한 이동통신 단말기(300)들과 직접 통신하지 않고, 공유 중계기(100)에게 해당하는 데이터를 신뢰성 있는 링크를 통해 전송한다. 공유 중계기(100)에서 수신되는 신호는 [수학식 4]와 같이 나타낼 수 있다.The base stations 200 do not communicate directly with the mobile communication terminals 300 located at their cell boundaries, but transmit data corresponding to the shared relay 100 through a reliable link. The signal received from the shared repeater 100 may be represented as shown in [Equation 4].
수학식 4
Figure PCTKR2010008135-appb-M000004
Equation 4
Figure PCTKR2010008135-appb-M000004
여기서
Figure PCTKR2010008135-appb-I000025
Figure PCTKR2010008135-appb-I000026
의 분포를 따르는
Figure PCTKR2010008135-appb-I000027
째 기지국(200)의 데이터(이때,
Figure PCTKR2010008135-appb-I000028
가 Gaussian Codebook에 의해서 생성되지 않는 경우와 보내는 심볼 별로 전력 제어를 수행한 경우에도 적용 가능하다)이고,
Figure PCTKR2010008135-appb-I000029
Figure PCTKR2010008135-appb-I000030
째 기지국(200)의 송신 전력이며,
Figure PCTKR2010008135-appb-I000031
Figure PCTKR2010008135-appb-I000032
Figure PCTKR2010008135-appb-I000033
째 기지국(200)의 프리코더(Precoder)이고, 이때
Figure PCTKR2010008135-appb-I000034
이며,
Figure PCTKR2010008135-appb-I000035
Figure PCTKR2010008135-appb-I000036
째 기지국(200)과 공유 중계기(100) 사이의 채널이고,
Figure PCTKR2010008135-appb-I000037
Figure PCTKR2010008135-appb-I000038
의 분포를 따르는 가산 백색 가우시안 잡음(AWGN: Additive White Gaussian Noise)이다.
here
Figure PCTKR2010008135-appb-I000025
Is
Figure PCTKR2010008135-appb-I000026
Following the distribution of
Figure PCTKR2010008135-appb-I000027
Data of the second base station 200 (in this case,
Figure PCTKR2010008135-appb-I000028
Is also applicable when the power is not generated by the Gaussian Codebook or when power control is performed for each symbol sent).
Figure PCTKR2010008135-appb-I000029
Is
Figure PCTKR2010008135-appb-I000030
The transmission power of the second base station 200,
Figure PCTKR2010008135-appb-I000031
Is
Figure PCTKR2010008135-appb-I000032
sign
Figure PCTKR2010008135-appb-I000033
Is the precoder of the base station 200,
Figure PCTKR2010008135-appb-I000034
Is,
Figure PCTKR2010008135-appb-I000035
Is
Figure PCTKR2010008135-appb-I000036
The channel between the base station 200 and the shared repeater 100,
Figure PCTKR2010008135-appb-I000037
Is
Figure PCTKR2010008135-appb-I000038
Additive White Gaussian Noise (AWGN) following the distribution of.
공유 중계기(100)는 수신된 신호를 각 이동통신 단말기(300)에게 산포(Broadcast)한다. 공유 중계기(100)와 각 기지국(200)은 신뢰성 있는 링크로 연결되어 있으므로, 각 이동통신 단말기(300)에서 MUD를 수행할 경우, 각 기지국(200)에서는 산포채널에서 각 이동통신 단말기(300)가 에러 없이 MUD가 가능하도록 전송률 제어를 수행한다.The shared repeater 100 distributes the received signal to each mobile communication terminal 300. Since the shared repeater 100 and each base station 200 are connected by a reliable link, when performing the MUD in each mobile communication terminal 300, each base station 200, each mobile communication terminal 300 in a distribution channel Performs rate control to enable MUD without error.
그리고 기지국(200) 안테나의 수가 송신 ZF가 가능한 안테나 수의 제약 조건을 만족할 때(기지국(200)의 안테나 수 ≥ 셀 경계에 위치한 이동통신 단말기(300)들의 안테나 수의 합)에는, 각 기지국(200)에서 송신 ZF를 수행할 수 있는데, 이 경우 기지국(200) 간의 송신 데이터 공유를 위한 협력 통신(Cooperative Communication)이 요구된다. 또한 기지국(200) 협력이 이루어질 경우 송신 ZF 외에도 DPC(Dirty Paper Coding), CMHP(Cover-van der Meulen-Hajek-Pursley) 등이 적용 가능하다.When the number of antennas of the base station 200 satisfies the constraint of the number of antennas capable of transmitting ZF (the number of antennas of the base station 200 ≥ the sum of the number of antennas of the mobile communication terminals 300 located at the cell boundary), each base station ( In step 200, a transmission ZF may be performed. In this case, cooperative communication for sharing transmission data between the base stations 200 is required. In addition, when cooperation with the base station 200 is made, DPC (Dirty Paper Coding), CMHP (Cover-van der Meulen-Hajek-Pursley), etc. may be applied in addition to the transmission ZF.
3) 공유 중계기를 이용할 이동통신 단말기 선택 프로토콜3) Mobile communication terminal selection protocol using shared repeater
도7은 셀 경계에 위치한 공유 중계기(100)를 통하여 이동성이 있는 이동통신 단말기(300)들을 지원하는 모습을 나타낸 도면으로, 한 셀의 위치(a)에서 다른 셀의 위치(e)로 이동하는 이동통신 단말기(300)가 있을 경우, (a)의 위치에 있는 이동통신 단말기(300)는 현재 자신의 신호 대 간섭 잡음비(SINR: Signal-to-Interference Noise Ratio)를 자신이 속한 제1기지국(200a)에 알려준다. 이 값이 충분히 클 경우, (a)의 위치에 있는 이동통신 단말기(300)는 현재 자신이 속한 제1기지국(200a)과 직접 통신하게 된다.FIG. 7 is a diagram illustrating a mobile terminal 300 supporting mobility through a shared repeater 100 located at a cell boundary, and moves from a cell position (a) to another cell position (e). If there is a mobile communication terminal 300, the mobile communication terminal 300 at the position of (a) currently has its own signal-to-interference noise ratio (SINR) 200a). If this value is large enough, the mobile communication terminal 300 at the position of (a) will communicate directly with the first base station 200a to which it belongs.
하지만, 이동통신 단말기(300)가 셀 경계로 이동함(이동통신 단말기(300)가 (a)의 위치에서 (b)의 위치로 이동)에 따라 SINR은 낮아지게 되고 이 수치가 제1임계치보다 낮을 경우, 제1기지국(200a)은 이동통신 단말기(300)의 통신 품질이 낮아질 우려가 있으므로 해당 이동통신 단말기(300)를 공유 중계기(100)를 이용해서 통신할 가능성이 있는 후보 집합(Candidate Set)으로 분류한다. 이때도, 이동통신 단말기(300)는 아직 자신이 속한 제1기지국(200a)과 직접 통신을 한다.However, as the mobile communication terminal 300 moves to the cell boundary (the mobile communication terminal 300 moves from the position of (a) to the position of (b)), the SINR becomes lower and this value is larger than the first threshold. If low, the first base station 200a may reduce the communication quality of the mobile communication terminal 300, so a candidate set capable of communicating the mobile communication terminal 300 using the shared repeater 100 may be a candidate set. Classify as) In this case, the mobile terminal 300 still communicates directly with the first base station 200a to which it belongs.
그렇지만, 이동통신 단말기(300)가 (c)의 위치로 이동하여 SINR이 인접 셀 간섭으로 인해 매우 낮아져 제2임계치보다 낮아지는 경우에 이동통신 단말기(300)가 (a) 및 (b)의 위치에 있을 때 통신이 이루어지던 제1기지국(200a)에서는 해당 이동통신 단말기(300)를 활동 집합(Active Set)으로 분류하고, 해당 이동통신 단말기(300)와의 통신은 공유 중계기(100)를 이용해서 통신한다. 활동 집합으로 분류된 이동통신 단말기(300)는 셀 경계를 형성하는 양쪽의 제1 및 제2기지국(200a, 200b)에 각각의 제1 및 제2기지국(200a, 200b)과의 SINR을 각각 피드백 한다. 이때, 제1기지국(200a)과의 SINR을 제1SINR, 제2기지국(200b)과의 SINR을 제2SINR이라한다.However, when the mobile communication terminal 300 moves to the position of (c) so that the SINR is very low due to the neighboring cell interference and thus lower than the second threshold, the mobile communication terminal 300 is located in the positions of (a) and (b). In the first base station (200a) when the communication was made to the mobile terminal 300 is classified as an active set (Active Set), the communication with the mobile communication terminal 300 using the shared repeater 100 Communicate The mobile communication terminal 300 classified as an activity set feeds back SINRs with the first and second base stations 200a and 200b to both the first and second base stations 200a and 200b forming the cell boundary, respectively. do. In this case, the SINR with the first base station 200a is referred to as the first SINR, and the SINR with the second base station 200b is referred to as the second SINR.
그리고 이동통신 단말기(300)가 (d)의 위치로 이동하여 다른 기지국(200b)의 셀로 이동함에 따라 제1SINR < 제2SINR이 되고, 제2SINR이 제2계치를 넘어서게 되면, (d)의 위치에 위치한 이동통신 단말기(300)는 다시 후보 집합(Candidate Set)으로 분류되며, 제2기지국(200b)과 직접 통신하게 되고, 제2기지국(200b)에만 SINR을 피드백하게 된다.When the mobile communication terminal 300 moves to the position of (d) and moves to a cell of another base station 200b, when the first SINR <2 SINR is exceeded and the second SINR exceeds the second threshold, the position of (d) is reached. The located mobile communication terminal 300 is again classified as a candidate set, directly communicates with the second base station 200b, and feeds back SINR only to the second base station 200b.
이렇게 해서 이동통신 단말기(300)가 (e)의 위치로 이동하여 셀 경계를 완전히 벗어남에 따라 이동통신 단말기(300)의 SINR이 제1임계치를 넘어서게 되면, 후보 집합에서 해제되고 계속해서 제2기지국(200b)과 통신하게 된다.In this way, if the mobile communication terminal 300 moves to the position of (e) and completely moves out of the cell boundary, and the SINR of the mobile communication terminal 300 exceeds the first threshold, it is released from the candidate set and continues to the second base station. Communicate with 200b.
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시예에만 국한되는 것으로 이해되어져서는 아니 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어져야 할 것이다.As described above, the detailed description of the present invention has been made by the embodiments with reference to the accompanying drawings. However, since the above-described embodiments have only been described with reference to preferred examples of the present invention, the present invention is limited to the above embodiments. It should not be understood that the scope of the present invention is to be understood by the claims and equivalent concepts described below.

Claims (15)

  1. 인접한 복수의 기지국과 통신을 수행하기 위해 구비되는 하나 이상의 기지국 통신부;One or more base station communication units provided to perform communication with a plurality of adjacent base stations;
    이동통신 단말기와 통신을 수행하기 위해 구비되는 단말기 통신부;A terminal communication unit provided to perform communication with the mobile communication terminal;
    상기 하나 이상의 기지국 통신부를 통해 수신된 신호를 증폭하여 상기 단말기 통신부로 출력하고, 단말기 통신부를 통해 수신된 신호를 증폭하여 상기 기지국 통신부로 출력하는 증폭부; 및An amplifying unit for amplifying a signal received through the at least one base station communication unit and outputting the signal to the terminal communication unit, and amplifying the signal received through the terminal communication unit and outputting the signal to the base station communication unit; And
    이동통신 단말기로부터 신호가 수신되면 수신된 신호를 복수의 기지국 중 어느 하나로 전송하고, 기지국으로부터 신호가 수신되면 수신된 신호를 이동통신 단말기로 전송할 수 있도록 상기 하나 이상의 기지국 통신부, 단말기 통신부 및 증폭부를 제어하는 제어부; 를 포함하는 것을 특징으로 하는Control the one or more base station communication unit, terminal communication unit and amplification unit to transmit the received signal to any one of a plurality of base stations when the signal is received from the mobile communication terminal, and to transmit the received signal to the mobile communication terminal when the signal is received from the base station A control unit; Characterized in that it comprises
    공유 중계기.Shared repeater.
  2. 제1항에 있어서,The method of claim 1,
    상기 제어부는 복수의 기지국이나 이동통신 단말기로부터 수신되는 신호를 하나의 신호로 합쳐 상기 하나 이상의 기지국 통신부나 단말기 통신부로 출력하는 것을 특징으로 하는The control unit combines the signals received from a plurality of base stations or mobile communication terminal into a single signal and outputs the signal to the one or more base station communication unit or terminal communication unit
    공유 중계기.Shared repeater.
  3. 제1항에 있어서,The method of claim 1,
    상기 제어부는 셀 경계에 위치한 이동통신 단말기로부터 신호가 수신되면, 이동통신 단말기가 속한 셀에 해당하는 기지국들 중 어느 하나로 신호를 전송하는 것을 특징으로 하는When the control unit receives a signal from a mobile communication terminal located at a cell boundary, the controller transmits the signal to any one of base stations corresponding to a cell to which the mobile communication terminal belongs.
    공유 중계기.Shared repeater.
  4. 제1항에 있어서,The method of claim 1,
    상기 기지국 통신부는 복수의 기지국과 광통신이나 마이크로웨이브를 이용한 통신을 통해 통신이 이루어지는 것을 특징으로 하는The base station communication unit is characterized in that the communication with a plurality of base stations through the communication using optical or microwave
    공유 중계기.Shared repeater.
  5. 제1항에 있어서,The method of claim 1,
    상기 제어부는 상기 이동통신 단말기 측에서 수신된 신호를 상기 복수의 기지국에서 다중 사용자 신호처리를 수행할 수 있도록 상기 하나 이상의 기지국 통신부를 제어하는 것을 특징으로 하는The control unit controls the at least one base station communication unit to perform the multi-user signal processing in the plurality of base stations for the signal received from the mobile communication terminal side
    공유 중계기.Shared repeater.
  6. 제5항에 있어서,The method of claim 5,
    상기 다중 사용자 신호처리는 MUD(Multi-user Decoding)나 수신 ZF(Zero-forcing) 중 어느 하나 이상인 것을 특징으로 하는The multi-user signal processing may be any one or more of multi-user decoding (MUD) or receive zero-forcing (ZF).
    공유 중계기.Shared repeater.
  7. 이동통신망에 접속되는 복수의 기지국;A plurality of base stations connected to a mobile communication network;
    상기 복수의 기지국 중 어느 하나와의 통신을 통해 이동통신망으로 접속이 이루어지는 이동통신 단말기; 및A mobile communication terminal connected to a mobile communication network through communication with any one of the plurality of base stations; And
    상기 복수의 기지국의 셀 경계에 위치하고, 상기 복수의 기지국과 통신이 이루어지며, 상기 이동통신 단말기와 복수의 기지국의 통신을 중계하는 공유 중계기; 를 포함하는 것을 특징으로 하는A shared repeater located at a cell boundary of the plurality of base stations, communicating with the plurality of base stations, and relaying communication between the mobile communication terminal and the plurality of base stations; Characterized in that it comprises
    이동통신 시스템.Mobile communication system.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 공유 중계기는 상기 복수의 기지국과 광통신이나 마이크로웨이브를 이용한 통신이 이루어지는 것을 특징으로 하는The shared repeater is characterized in that the communication with the plurality of base stations using optical communication or microwave
    이동통신 시스템.Mobile communication system.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 공유 중계기는 셀 경계에 위치한 이동통신 단말기로부터 신호가 수신되면, 수신된 신호를 상기 복수의 기지국 중 어느 하나로 전송하고,When the shared repeater receives a signal from a mobile communication terminal located at a cell boundary, the shared repeater transmits the received signal to any one of the plurality of base stations.
    상기 신호를 수신한 복수의 기지국 중 어느 하나는 신호를 전송한 상기 이동통신 단말기와의 통신은 상기 공유 중계기를 통해서만 이루어지도록 제어하는 것을 특징으로 하는Any one of the plurality of base stations receiving the signal controls communication with the mobile communication terminal transmitting the signal only through the shared repeater.
    이동통신 시스템.Mobile communication system.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 복수의 기지국 중 상기 공유 중계기와 통신 이루어지는 기지국은 상기 이동통신 단말기에서 MUD(Multi-user Decoding)를 수행할 경우, 상기 이동통신 단말기가 에러 없이 신호를 복원할 수 있도록 전송률을 제어하거나 다중 사용자 신호처리를 통해 신호를 상기 공유중계기 측으로 전송하는 것을 특징으로 하는The base station communicating with the shared repeater among the plurality of base stations controls the data rate or multi-user signal so that the mobile communication terminal can recover the signal without error when MUD (Multi-user Decoding) is performed in the mobile communication terminal. Transmitting the signal to the shared repeater side through the process
    이동통신 시스템.Mobile communication system.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 이동통신 단말기 측으로부터 신호를 수신하는 복수의 기지국 중 어느 하나는 자신의 신호를 얻기 위해 다중 사용자 신호처리를 수행하는 것을 특징으로 하는Any one of a plurality of base stations receiving a signal from the mobile communication terminal side performs a multi-user signal processing to obtain its own signal
    이동통신 시스템.Mobile communication system.
  12. 제11항에 있어서,The method of claim 11,
    상기 다중 사용자 신호처리는 MUD(Multi-user Decoding)나 수신 ZF(Zero-forcing) 중 어느 하나 이상인 것을 특징으로 하는The multi-user signal processing may be any one or more of multi-user decoding (MUD) or receive zero-forcing (ZF).
    이동통신 시스템.Mobile communication systems.
  13. 제7항에 있어서,The method of claim 7, wherein
    상기 이동통신 단말기 측으로부터 신호를 수신하는 복수의 기지국 중 어느 하나에서 MUD(Multi-user Decoding)를 수행하는 경우,When performing MUD (Multi-user Decoding) in any one of a plurality of base stations receiving a signal from the mobile communication terminal side,
    상기 이동통신 단말기는 상기 복수의 기지국 중 어느 하나에서 에러 없이 신호를 복원할 수 있도록 전송률을 제어하는 것을 특징으로 하는The mobile communication terminal controls the data rate so that any one of the plurality of base stations can recover a signal without error.
    이동통신 시스템.Mobile communication system.
  14. 제13항에 있어서,The method of claim 13,
    상기 이동통신 단말기는 상기 공유 중계기 측으로 신호를 송신할 때 신호의 전체 용량이 최대가 되도록 상기 이동통신 단말기의 프리코더를 생성하여 전송률을 제어하는 것을 특징으로 하는The mobile communication terminal controls the data rate by generating a precoder of the mobile communication terminal so that the total capacity of the signal is maximum when the signal is transmitted to the shared repeater side.
    이동통신 시스템.Mobile communication system.
  15. 제7항에 있어서,The method of claim 7, wherein
    상기 공유 중계기는 기지국에서 이동통신 단말기로 신호가 전달되는 하향링크 통신시 상기 기지국의 셀 경계에 인접한 이동통신 단말기와 이루어지는 것을 특징으로 하는The shared repeater may be configured with a mobile communication terminal adjacent to a cell boundary of the base station during downlink communication in which a signal is transmitted from a base station to a mobile communication terminal.
    이동통신 시스템.Mobile communication system.
PCT/KR2010/008135 2010-11-01 2010-11-17 Shared repeater and mobile communication system WO2012060503A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100107849A KR101197613B1 (en) 2010-11-01 2010-11-01 Shared repeater and mobile communicating system
KR10-2010-0107849 2010-11-01

Publications (1)

Publication Number Publication Date
WO2012060503A1 true WO2012060503A1 (en) 2012-05-10

Family

ID=46024608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008135 WO2012060503A1 (en) 2010-11-01 2010-11-17 Shared repeater and mobile communication system

Country Status (2)

Country Link
KR (1) KR101197613B1 (en)
WO (1) WO2012060503A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023141865A1 (en) * 2022-01-27 2023-08-03 Zte Corporation Systems and methods using reflection-based communication elements

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L. LU ET AL.: "Relay-aided multi-cell broadcasting with random network coding", 2010 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA), 20 October 2010 (2010-10-20), pages 957 - 962 *
S. W. PETERS ET AL.: "Relay architectures for 3GPP LTE-advanced", EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, vol. 2009, March 2009 (2009-03-01) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023141865A1 (en) * 2022-01-27 2023-08-03 Zte Corporation Systems and methods using reflection-based communication elements

Also Published As

Publication number Publication date
KR101197613B1 (en) 2012-11-07
KR20120047326A (en) 2012-05-11

Similar Documents

Publication Publication Date Title
WO2013028012A2 (en) Mobile terminal and communication method thereof, base station controller and control method thereof, and multi-cooperative transmission system using the same and method thereof
EP2190234B1 (en) Base station and method for covering a plurality of areas by one cell
WO2012111974A2 (en) Method and apparatus for uplink power control in wireless communication system
WO2010107207A2 (en) Method and device for transmitting data on a relay communications system
WO2010093205A2 (en) Method for avoiding interference
WO2010064867A2 (en) Data transfer method, data transmission apparatus, and communication system in multi-hop relay system
WO2015147546A1 (en) Method and apparatus for scheduling in a multi-input multi-output system
WO2011108889A2 (en) Apparatus and method for controlling inter-cell interference
WO2010101352A2 (en) Method for setting control multi point in wireless communication system and apparatus thereof
WO2011037413A2 (en) Method and device for managing interference in neighbouring cells having multiple sending and receiving nodes
KR101066326B1 (en) Scheduling apparatus and method in distributed antenna systems
WO2011040773A2 (en) Method for transmitting comp feedback information in wireless communication system and terminal apparatus
WO2014014315A1 (en) Power control method and device for forming multiple beams in wireless communication system
WO2010123282A2 (en) Method and apparatus for transmitting a reference signal in a relay communication system
WO2010120024A1 (en) Method of coordinating precoding matrixes in a wireless communication system
WO2013137635A1 (en) Method and apparatus for controlling uplink transmission power of user equipment 단말의 상향 링크 송신 전력을 제어하는 방법 및 장치
WO2011126313A2 (en) Method of transmitting and receiving signal in a distributed antenna system
WO2011065773A2 (en) Relay method for increasing frequency selective characteristic of wireless channel and relay device using same
WO2017171120A1 (en) Base station signal matching device, and base station interface unit and distributed antenna system comprising same
Wirth et al. LTE amplify and forward relaying for indoor coverage extension
US9100985B2 (en) Coordinated multi-point communications system and methods for controlling coordinated multi-point transmission and reception
WO2011002134A1 (en) Method and apparatus for data transmission based on distributed discrete power control in cooperative multi-user multi-input multi-output system
WO2014061995A1 (en) Method and apparatus for selecting user terminal in mobile communication system
WO2012060503A1 (en) Shared repeater and mobile communication system
KR100852419B1 (en) Method and System for Repeating with Spatial Division Multiplexing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859305

Country of ref document: EP

Kind code of ref document: A1